xref: /netbsd/sbin/resize_ffs/resize_ffs.c (revision 7dd7c4e0)
1 /*	$NetBSD: resize_ffs.c,v 1.58 2023/01/07 19:41:30 chs Exp $	*/
2 /* From sources sent on February 17, 2003 */
3 /*-
4  * As its sole author, I explicitly place this code in the public
5  *  domain.  Anyone may use it for any purpose (though I would
6  *  appreciate credit where it is due).
7  *
8  *					der Mouse
9  *
10  *			       mouse@rodents.montreal.qc.ca
11  *		     7D C8 61 52 5D E7 2D 39  4E F1 31 3E E8 B3 27 4B
12  */
13 /*
14  * resize_ffs:
15  *
16  * Resize a file system.  Is capable of both growing and shrinking.
17  *
18  * Usage: resize_ffs [-s newsize] [-y] file_system
19  *
20  * Example: resize_ffs -s 29574 /dev/rsd1e
21  *
22  * newsize is in DEV_BSIZE units (ie, disk sectors, usually 512 bytes
23  *  each).
24  *
25  * Note: this currently requires gcc to build, since it is written
26  *  depending on gcc-specific features, notably nested function
27  *  definitions (which in at least a few cases depend on the lexical
28  *  scoping gcc provides, so they can't be trivially moved outside).
29  *
30  * Many thanks go to John Kohl <jtk@NetBSD.org> for finding bugs: the
31  *  one responsible for the "realloccgblk: can't find blk in cyl"
32  *  problem and a more minor one which left fs_dsize wrong when
33  *  shrinking.  (These actually indicate bugs in fsck too - it should
34  *  have caught and fixed them.)
35  *
36  */
37 
38 #include <sys/cdefs.h>
39 __RCSID("$NetBSD: resize_ffs.c,v 1.58 2023/01/07 19:41:30 chs Exp $");
40 
41 #include <sys/disk.h>
42 #include <sys/disklabel.h>
43 #include <sys/dkio.h>
44 #include <sys/ioctl.h>
45 #include <sys/stat.h>
46 #include <sys/mman.h>
47 #include <sys/param.h>		/* MAXFRAG */
48 #include <ufs/ffs/fs.h>
49 #include <ufs/ffs/ffs_extern.h>
50 #include <ufs/ufs/dir.h>
51 #include <ufs/ufs/dinode.h>
52 #include <ufs/ufs/ufs_bswap.h>	/* ufs_rw32 */
53 
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <strings.h>
60 #include <unistd.h>
61 #include <util.h>
62 
63 #include "progress.h"
64 
65 /* new size of file system, in sectors */
66 static int64_t newsize;
67 
68 /* fd open onto disk device or file */
69 static int fd;
70 
71 /* disk device or file path */
72 const char *special;
73 
74 /* must we break up big I/O operations - see checksmallio() */
75 static int smallio;
76 
77 /* size of a cg, in bytes, rounded up to a frag boundary */
78 static int cgblksz;
79 
80 /* possible superblock localtions */
81 static int search[] = SBLOCKSEARCH;
82 /* location of the superblock */
83 static off_t where;
84 
85 /* Superblocks. */
86 static struct fs *oldsb;	/* before we started */
87 static struct fs *newsb;	/* copy to work with */
88 /* Buffer to hold the above.  Make sure it's aligned correctly. */
89 static char sbbuf[2 * SBLOCKSIZE]
90 	__attribute__((__aligned__(__alignof__(struct fs))));
91 
92 union dinode {
93 	struct ufs1_dinode dp1;
94 	struct ufs2_dinode dp2;
95 };
96 #define DIP(dp, field)							      \
97 	((is_ufs2) ?							      \
98 	    (dp)->dp2.field : (dp)->dp1.field)
99 
100 #define DIP_ASSIGN(dp, field, value)					      \
101 	do {								      \
102 		if (is_ufs2)						      \
103 			(dp)->dp2.field = (value);			      \
104 		else							      \
105 			(dp)->dp1.field = (value);			      \
106 	} while (0)
107 
108 /* a cg's worth of brand new squeaky-clean inodes */
109 static struct ufs1_dinode *zinodes1;
110 static struct ufs2_dinode *zinodes2;
111 
112 /* pointers to the in-core cgs, read off disk and possibly modified */
113 static struct cg **cgs;
114 
115 /* pointer to csum array - the stuff pointed to on-disk by fs_csaddr */
116 static struct csum *csums;
117 
118 /* per-cg flags, indexed by cg number */
119 static unsigned char *cgflags;
120 #define CGF_DIRTY   0x01	/* needs to be written to disk */
121 #define CGF_BLKMAPS 0x02	/* block bitmaps need rebuilding */
122 #define CGF_INOMAPS 0x04	/* inode bitmaps need rebuilding */
123 
124 /* when shrinking, these two arrays record how we want blocks to move.	 */
125 /*  if blkmove[i] is j, the frag that started out as frag #i should end	 */
126 /*  up as frag #j.  inomove[i]=j means, similarly, that the inode that	 */
127 /*  started out as inode i should end up as inode j.			 */
128 static unsigned int *blkmove;
129 static unsigned int *inomove;
130 
131 /* in-core copies of all inodes in the fs, indexed by inumber */
132 union dinode *inodes;
133 
134 void *ibuf;	/* ptr to fs block-sized buffer for reading/writing inodes */
135 
136 /* byteswapped inodes */
137 union dinode *sinodes;
138 
139 /* per-inode flags, indexed by inumber */
140 static unsigned char *iflags;
141 #define IF_DIRTY  0x01		/* needs to be written to disk */
142 #define IF_BDIRTY 0x02		/* like DIRTY, but is set on first inode in a
143 				 * block of inodes, and applies to the whole
144 				 * block. */
145 
146 /* resize_ffs works directly on dinodes, adapt blksize() */
147 #define dblksize(fs, dip, lbn, filesize) \
148 	(((lbn) >= UFS_NDADDR || (uint64_t)(filesize) >= ffs_lblktosize(fs, (lbn) + 1)) \
149 	    ? (fs)->fs_bsize						       \
150 	    : (ffs_fragroundup(fs, ffs_blkoff(fs, (filesize)))))
151 
152 
153 /*
154  * Number of disk sectors per block/fragment
155  */
156 #define NSPB(fs)	(FFS_FSBTODB((fs),1) << (fs)->fs_fragshift)
157 #define NSPF(fs)	(FFS_FSBTODB((fs),1))
158 
159 /* global flags */
160 int is_ufs2 = 0;
161 int needswap = 0;
162 int verbose = 0;
163 int progress = 0;
164 
165 static void usage(void) __dead;
166 
167 /*
168  * See if we need to break up large I/O operations.  This should never
169  *  be needed, but under at least one <version,platform> combination,
170  *  large enough disk transfers to the raw device hang.  So if we're
171  *  talking to a character special device, play it safe; in this case,
172  *  readat() and writeat() break everything up into pieces no larger
173  *  than 8K, doing multiple syscalls for larger operations.
174  */
175 static void
checksmallio(void)176 checksmallio(void)
177 {
178 	struct stat stb;
179 
180 	fstat(fd, &stb);
181 	smallio = ((stb.st_mode & S_IFMT) == S_IFCHR);
182 }
183 
184 static int
isplainfile(void)185 isplainfile(void)
186 {
187 	struct stat stb;
188 
189 	fstat(fd, &stb);
190 	return S_ISREG(stb.st_mode);
191 }
192 /*
193  * Read size bytes starting at blkno into buf.  blkno is in DEV_BSIZE
194  *  units, ie, after FFS_FSBTODB(); size is in bytes.
195  */
196 static void
readat(off_t blkno,void * buf,int size)197 readat(off_t blkno, void *buf, int size)
198 {
199 	/* Seek to the correct place. */
200 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
201 		err(EXIT_FAILURE, "lseek failed");
202 
203 	/* See if we have to break up the transfer... */
204 	if (smallio) {
205 		char *bp;	/* pointer into buf */
206 		int left;	/* bytes left to go */
207 		int n;		/* number to do this time around */
208 		int rv;		/* syscall return value */
209 		bp = buf;
210 		left = size;
211 		while (left > 0) {
212 			n = (left > 8192) ? 8192 : left;
213 			rv = read(fd, bp, n);
214 			if (rv < 0)
215 				err(EXIT_FAILURE, "read failed");
216 			if (rv != n)
217 				errx(EXIT_FAILURE,
218 				    "read: wanted %d, got %d", n, rv);
219 			bp += n;
220 			left -= n;
221 		}
222 	} else {
223 		int rv;
224 		rv = read(fd, buf, size);
225 		if (rv < 0)
226 			err(EXIT_FAILURE, "read failed");
227 		if (rv != size)
228 			errx(EXIT_FAILURE, "read: wanted %d, got %d",
229 			    size, rv);
230 	}
231 }
232 /*
233  * Write size bytes from buf starting at blkno.  blkno is in DEV_BSIZE
234  *  units, ie, after FFS_FSBTODB(); size is in bytes.
235  */
236 static void
writeat(off_t blkno,const void * buf,int size)237 writeat(off_t blkno, const void *buf, int size)
238 {
239 	/* Seek to the correct place. */
240 	if (lseek(fd, blkno * DEV_BSIZE, L_SET) < 0)
241 		err(EXIT_FAILURE, "lseek failed");
242 	/* See if we have to break up the transfer... */
243 	if (smallio) {
244 		const char *bp;	/* pointer into buf */
245 		int left;	/* bytes left to go */
246 		int n;		/* number to do this time around */
247 		int rv;		/* syscall return value */
248 		bp = buf;
249 		left = size;
250 		while (left > 0) {
251 			n = (left > 8192) ? 8192 : left;
252 			rv = write(fd, bp, n);
253 			if (rv < 0)
254 				err(EXIT_FAILURE, "write failed");
255 			if (rv != n)
256 				errx(EXIT_FAILURE,
257 				    "write: wanted %d, got %d", n, rv);
258 			bp += n;
259 			left -= n;
260 		}
261 	} else {
262 		int rv;
263 		rv = write(fd, buf, size);
264 		if (rv < 0)
265 			err(EXIT_FAILURE, "write failed");
266 		if (rv != size)
267 			errx(EXIT_FAILURE,
268 			    "write: wanted %d, got %d", size, rv);
269 	}
270 }
271 /*
272  * Never-fail versions of malloc() and realloc(), and an allocation
273  *  routine (which also never fails) for allocating memory that will
274  *  never be freed until exit.
275  */
276 
277 /*
278  * Never-fail malloc.
279  */
280 static void *
nfmalloc(size_t nb,const char * tag)281 nfmalloc(size_t nb, const char *tag)
282 {
283 	void *rv;
284 
285 	rv = malloc(nb);
286 	if (rv)
287 		return (rv);
288 	err(EXIT_FAILURE, "Can't allocate %lu bytes for %s",
289 	    (unsigned long int) nb, tag);
290 }
291 /*
292  * Never-fail realloc.
293  */
294 static void *
nfrealloc(void * blk,size_t nb,const char * tag)295 nfrealloc(void *blk, size_t nb, const char *tag)
296 {
297 	void *rv;
298 
299 	rv = realloc(blk, nb);
300 	if (rv)
301 		return (rv);
302 	err(EXIT_FAILURE, "Can't re-allocate %lu bytes for %s",
303 	    (unsigned long int) nb, tag);
304 }
305 /*
306  * Allocate memory that will never be freed or reallocated.  Arguably
307  *  this routine should handle small allocations by chopping up pages,
308  *  but that's not worth the bother; it's not called more than a
309  *  handful of times per run, and if the allocations are that small the
310  *  waste in giving each one its own page is ignorable.
311  */
312 static void *
alloconce(size_t nb,const char * tag)313 alloconce(size_t nb, const char *tag)
314 {
315 	void *rv;
316 
317 	rv = mmap(0, nb, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);
318 	if (rv != MAP_FAILED)
319 		return (rv);
320 	err(EXIT_FAILURE, "Can't map %lu bytes for %s",
321 	    (unsigned long int) nb, tag);
322 }
323 /*
324  * Load the cgs and csums off disk.  Also allocates the space to load
325  *  them into and initializes the per-cg flags.
326  */
327 static void
loadcgs(void)328 loadcgs(void)
329 {
330 	uint32_t cg;
331 	char *cgp;
332 
333 	cgblksz = roundup(oldsb->fs_cgsize, oldsb->fs_fsize);
334 	cgs = nfmalloc(oldsb->fs_ncg * sizeof(*cgs), "cg pointers");
335 	cgp = alloconce(oldsb->fs_ncg * cgblksz, "cgs");
336 	cgflags = nfmalloc(oldsb->fs_ncg, "cg flags");
337 	csums = nfmalloc(oldsb->fs_cssize, "cg summary");
338 	for (cg = 0; cg < oldsb->fs_ncg; cg++) {
339 		cgs[cg] = (struct cg *) cgp;
340 		readat(FFS_FSBTODB(oldsb, cgtod(oldsb, cg)), cgp, cgblksz);
341 		if (needswap)
342 			ffs_cg_swap(cgs[cg],cgs[cg],oldsb);
343 		cgflags[cg] = 0;
344 		cgp += cgblksz;
345 	}
346 	readat(FFS_FSBTODB(oldsb, oldsb->fs_csaddr), csums, oldsb->fs_cssize);
347 	if (needswap)
348 		ffs_csum_swap(csums,csums,oldsb->fs_cssize);
349 }
350 /*
351  * Set n bits, starting with bit #base, in the bitmap pointed to by
352  *  bitvec (which is assumed to be large enough to include bits base
353  *  through base+n-1).
354  */
355 static void
set_bits(unsigned char * bitvec,unsigned int base,unsigned int n)356 set_bits(unsigned char *bitvec, unsigned int base, unsigned int n)
357 {
358 	if (n < 1)
359 		return;		/* nothing to do */
360 	if (base & 7) {		/* partial byte at beginning */
361 		if (n <= 8 - (base & 7)) {	/* entirely within one byte */
362 			bitvec[base >> 3] |= (~((~0U) << n)) << (base & 7);
363 			return;
364 		}
365 		bitvec[base >> 3] |= (~0U) << (base & 7);
366 		n -= 8 - (base & 7);
367 		base = (base & ~7) + 8;
368 	}
369 	if (n >= 8) {		/* do full bytes */
370 		memset(bitvec + (base >> 3), 0xff, n >> 3);
371 		base += n & ~7;
372 		n &= 7;
373 	}
374 	if (n) {		/* partial byte at end */
375 		bitvec[base >> 3] |= ~((~0U) << n);
376 	}
377 }
378 /*
379  * Clear n bits, starting with bit #base, in the bitmap pointed to by
380  *  bitvec (which is assumed to be large enough to include bits base
381  *  through base+n-1).  Code parallels set_bits().
382  */
383 static void
clr_bits(unsigned char * bitvec,int base,int n)384 clr_bits(unsigned char *bitvec, int base, int n)
385 {
386 	if (n < 1)
387 		return;
388 	if (base & 7) {
389 		if (n <= 8 - (base & 7)) {
390 			bitvec[base >> 3] &= ~((~((~0U) << n)) << (base & 7));
391 			return;
392 		}
393 		bitvec[base >> 3] &= ~((~0U) << (base & 7));
394 		n -= 8 - (base & 7);
395 		base = (base & ~7) + 8;
396 	}
397 	if (n >= 8) {
398 		memset(bitvec + (base >> 3), 0, n >> 3);
399 		base += n & ~7;
400 		n &= 7;
401 	}
402 	if (n) {
403 		bitvec[base >> 3] &= (~0U) << n;
404 	}
405 }
406 /*
407  * Test whether bit #bit is set in the bitmap pointed to by bitvec.
408  */
409 static int
bit_is_set(unsigned char * bitvec,int bit)410 bit_is_set(unsigned char *bitvec, int bit)
411 {
412 	return (bitvec[bit >> 3] & (1 << (bit & 7)));
413 }
414 /*
415  * Test whether bit #bit is clear in the bitmap pointed to by bitvec.
416  */
417 static int
bit_is_clr(unsigned char * bitvec,int bit)418 bit_is_clr(unsigned char *bitvec, int bit)
419 {
420 	return (!bit_is_set(bitvec, bit));
421 }
422 /*
423  * Test whether a whole block of bits is set in a bitmap.  This is
424  *  designed for testing (aligned) disk blocks in a bit-per-frag
425  *  bitmap; it has assumptions wired into it based on that, essentially
426  *  that the entire block fits into a single byte.  This returns true
427  *  iff _all_ the bits are set; it is not just the complement of
428  *  blk_is_clr on the same arguments (unless blkfrags==1).
429  */
430 static int
blk_is_set(unsigned char * bitvec,int blkbase,int blkfrags)431 blk_is_set(unsigned char *bitvec, int blkbase, int blkfrags)
432 {
433 	unsigned int mask;
434 
435 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
436 	return ((bitvec[blkbase >> 3] & mask) == mask);
437 }
438 /*
439  * Test whether a whole block of bits is clear in a bitmap.  See
440  *  blk_is_set (above) for assumptions.  This returns true iff _all_
441  *  the bits are clear; it is not just the complement of blk_is_set on
442  *  the same arguments (unless blkfrags==1).
443  */
444 static int
blk_is_clr(unsigned char * bitvec,int blkbase,int blkfrags)445 blk_is_clr(unsigned char *bitvec, int blkbase, int blkfrags)
446 {
447 	unsigned int mask;
448 
449 	mask = (~((~0U) << blkfrags)) << (blkbase & 7);
450 	return ((bitvec[blkbase >> 3] & mask) == 0);
451 }
452 /*
453  * Initialize a new cg.  Called when growing.  Assumes memory has been
454  *  allocated but not otherwise set up.  This code sets the fields of
455  *  the cg, initializes the bitmaps (and cluster summaries, if
456  *  applicable), updates both per-cylinder summary info and the global
457  *  summary info in newsb; it also writes out new inodes for the cg.
458  *
459  * This code knows it can never be called for cg 0, which makes it a
460  *  bit simpler than it would otherwise be.
461  */
462 static void
initcg(uint32_t cgn)463 initcg(uint32_t cgn)
464 {
465 	struct cg *cg;		/* The in-core cg, of course */
466 	int64_t base;		/* Disk address of cg base */
467 	int64_t dlow;		/* Size of pre-cg data area */
468 	int64_t dhigh;		/* Offset of post-inode data area, from base */
469 	int64_t dmax;		/* Offset of end of post-inode data area */
470 	int i;			/* Generic loop index */
471 	int n;			/* Generic count */
472 	int start;		/* start of cg maps */
473 
474 	cg = cgs[cgn];
475 	/* Place the data areas */
476 	base = cgbase(newsb, cgn);
477 	dlow = cgsblock(newsb, cgn) - base;
478 	dhigh = cgdmin(newsb, cgn) - base;
479 	dmax = newsb->fs_size - base;
480 	if (dmax > newsb->fs_fpg)
481 		dmax = newsb->fs_fpg;
482 	start = (unsigned char *)&cg->cg_space[0] - (unsigned char *) cg;
483 	/*
484          * Clear out the cg - assumes all-0-bytes is the correct way
485          * to initialize fields we don't otherwise touch, which is
486          * perhaps not the right thing to do, but it's what fsck and
487          * mkfs do.
488          */
489 	memset(cg, 0, newsb->fs_cgsize);
490 	if (newsb->fs_old_flags & FS_FLAGS_UPDATED)
491 		cg->cg_time = newsb->fs_time;
492 	cg->cg_magic = CG_MAGIC;
493 	cg->cg_cgx = cgn;
494 	cg->cg_niblk = newsb->fs_ipg;
495 	cg->cg_ndblk = dmax;
496 
497 	if (is_ufs2) {
498 		cg->cg_time = newsb->fs_time;
499 		cg->cg_initediblk = newsb->fs_ipg < 2 * FFS_INOPB(newsb) ?
500 		    newsb->fs_ipg : 2 * FFS_INOPB(newsb);
501 		cg->cg_iusedoff = start;
502 	} else {
503 		cg->cg_old_time = newsb->fs_time;
504 		cg->cg_old_niblk = cg->cg_niblk;
505 		cg->cg_niblk = 0;
506 		cg->cg_initediblk = 0;
507 
508 
509 		cg->cg_old_ncyl = newsb->fs_old_cpg;
510 		/* Update the cg_old_ncyl value for the last cylinder. */
511 		if (cgn == newsb->fs_ncg - 1) {
512 			if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
513 				cg->cg_old_ncyl = newsb->fs_old_ncyl %
514 				    newsb->fs_old_cpg;
515 		}
516 
517 		/* Set up the bitmap pointers.  We have to be careful
518 		 * to lay out the cg _exactly_ the way mkfs and fsck
519 		 * do it, since fsck compares the _entire_ cg against
520 		 * a recomputed cg, and whines if there is any
521 		 * mismatch, including the bitmap offsets. */
522 		/* XXX update this comment when fsck is fixed */
523 		cg->cg_old_btotoff = start;
524 		cg->cg_old_boff = cg->cg_old_btotoff
525 		    + (newsb->fs_old_cpg * sizeof(int32_t));
526 		cg->cg_iusedoff = cg->cg_old_boff +
527 		    (newsb->fs_old_cpg * newsb->fs_old_nrpos * sizeof(int16_t));
528 	}
529 	cg->cg_freeoff = cg->cg_iusedoff + howmany(newsb->fs_ipg, NBBY);
530 	if (newsb->fs_contigsumsize > 0) {
531 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
532 		cg->cg_clustersumoff = cg->cg_freeoff +
533 		    howmany(newsb->fs_fpg, NBBY) - sizeof(int32_t);
534 		cg->cg_clustersumoff =
535 		    roundup(cg->cg_clustersumoff, sizeof(int32_t));
536 		cg->cg_clusteroff = cg->cg_clustersumoff +
537 		    ((newsb->fs_contigsumsize + 1) * sizeof(int32_t));
538 		cg->cg_nextfreeoff = cg->cg_clusteroff +
539 		    howmany(ffs_fragstoblks(newsb,newsb->fs_fpg), NBBY);
540 		n = dlow / newsb->fs_frag;
541 		if (n > 0) {
542 			set_bits(cg_clustersfree(cg, 0), 0, n);
543 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
544 			    newsb->fs_contigsumsize : n]++;
545 		}
546 	} else {
547 		cg->cg_nextfreeoff = cg->cg_freeoff +
548 		    howmany(newsb->fs_fpg, NBBY);
549 	}
550 	/* Mark the data areas as free; everything else is marked busy by the
551 	 * memset() up at the top. */
552 	set_bits(cg_blksfree(cg, 0), 0, dlow);
553 	set_bits(cg_blksfree(cg, 0), dhigh, dmax - dhigh);
554 	/* Initialize summary info */
555 	cg->cg_cs.cs_ndir = 0;
556 	cg->cg_cs.cs_nifree = newsb->fs_ipg;
557 	cg->cg_cs.cs_nbfree = dlow / newsb->fs_frag;
558 	cg->cg_cs.cs_nffree = 0;
559 
560 	/* This is the simplest way of doing this; we perhaps could
561 	 * compute the correct cg_blktot()[] and cg_blks()[] values
562 	 * other ways, but it would be complicated and hardly seems
563 	 * worth the effort.  (The reason there isn't
564 	 * frag-at-beginning and frag-at-end code here, like the code
565 	 * below for the post-inode data area, is that the pre-sb data
566 	 * area always starts at 0, and thus is block-aligned, and
567 	 * always ends at the sb, which is block-aligned.) */
568 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
569 		int64_t di;
570 
571 		for (di = 0; di < dlow; di += newsb->fs_frag) {
572 			old_cg_blktot(cg, 0)[old_cbtocylno(newsb, di)]++;
573 			old_cg_blks(newsb, cg,
574 			    old_cbtocylno(newsb, di),
575 			    0)[old_cbtorpos(newsb, di)]++;
576 		}
577 	}
578 
579 	/* Deal with a partial block at the beginning of the post-inode area.
580 	 * I'm not convinced this can happen - I think the inodes are always
581 	 * block-aligned and always an integral number of blocks - but it's
582 	 * cheap to do the right thing just in case. */
583 	if (dhigh % newsb->fs_frag) {
584 		n = newsb->fs_frag - (dhigh % newsb->fs_frag);
585 		cg->cg_frsum[n]++;
586 		cg->cg_cs.cs_nffree += n;
587 		dhigh += n;
588 	}
589 	n = (dmax - dhigh) / newsb->fs_frag;
590 	/* We have n full-size blocks in the post-inode data area. */
591 	if (n > 0) {
592 		cg->cg_cs.cs_nbfree += n;
593 		if (newsb->fs_contigsumsize > 0) {
594 			i = dhigh / newsb->fs_frag;
595 			set_bits(cg_clustersfree(cg, 0), i, n);
596 			cg_clustersum(cg, 0)[(n > newsb->fs_contigsumsize) ?
597 			    newsb->fs_contigsumsize : n]++;
598 		}
599 		for (i = n; i > 0; i--) {
600 			if (is_ufs2 == 0) {
601 				old_cg_blktot(cg, 0)[old_cbtocylno(newsb,
602 					    dhigh)]++;
603 				old_cg_blks(newsb, cg,
604 				    old_cbtocylno(newsb, dhigh),
605 				    0)[old_cbtorpos(newsb,
606 					    dhigh)]++;
607 			}
608 			dhigh += newsb->fs_frag;
609 		}
610 	}
611 	/* Deal with any leftover frag at the end of the cg. */
612 	i = dmax - dhigh;
613 	if (i) {
614 		cg->cg_frsum[i]++;
615 		cg->cg_cs.cs_nffree += i;
616 	}
617 	/* Update the csum info. */
618 	csums[cgn] = cg->cg_cs;
619 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
620 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
621 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
622 	if (is_ufs2) {
623 		/* Write out the cleared inodes. */
624 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes2,
625 		    cg->cg_initediblk * sizeof(*zinodes2));
626 	} else {
627 		/* Write out the cleared inodes. */
628 		writeat(FFS_FSBTODB(newsb, cgimin(newsb, cgn)), zinodes1,
629 		    newsb->fs_ipg * sizeof(*zinodes1));
630 	}
631 	/* Dirty the cg. */
632 	cgflags[cgn] |= CGF_DIRTY;
633 }
634 /*
635  * Find free space, at least nfrags consecutive frags of it.  Pays no
636  *  attention to block boundaries, but refuses to straddle cg
637  *  boundaries, even if the disk blocks involved are in fact
638  *  consecutive.  Return value is the frag number of the first frag of
639  *  the block, or -1 if no space was found.  Uses newsb for sb values,
640  *  and assumes the cgs[] structures correctly describe the area to be
641  *  searched.
642  *
643  * XXX is there a bug lurking in the ignoring of block boundaries by
644  *  the routine used by fragmove() in evict_data()?  Can an end-of-file
645  *  frag legally straddle a block boundary?  If not, this should be
646  *  cloned and fixed to stop at block boundaries for that use.  The
647  *  current one may still be needed for csum info motion, in case that
648  *  takes up more than a whole block (is the csum info allowed to begin
649  *  partway through a block and continue into the following block?).
650  *
651  * If we wrap off the end of the file system back to the beginning, we
652  *  can end up searching the end of the file system twice.  I ignore
653  *  this inefficiency, since if that happens we're going to croak with
654  *  a no-space error anyway, so it happens at most once.
655  */
656 static int
find_freespace(unsigned int nfrags)657 find_freespace(unsigned int nfrags)
658 {
659 	static int hand = 0;	/* hand rotates through all frags in the fs */
660 	int cgsize;		/* size of the cg hand currently points into */
661 	uint32_t cgn;		/* number of cg hand currently points into */
662 	int fwc;		/* frag-within-cg number of frag hand points
663 				 * to */
664 	unsigned int run;	/* length of run of free frags seen so far */
665 	int secondpass;		/* have we wrapped from end of fs to
666 				 * beginning? */
667 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
668 
669 	cgn = dtog(newsb, hand);
670 	fwc = dtogd(newsb, hand);
671 	secondpass = (hand == 0);
672 	run = 0;
673 	bits = cg_blksfree(cgs[cgn], 0);
674 	cgsize = cgs[cgn]->cg_ndblk;
675 	while (1) {
676 		if (bit_is_set(bits, fwc)) {
677 			run++;
678 			if (run >= nfrags)
679 				return (hand + 1 - run);
680 		} else {
681 			run = 0;
682 		}
683 		hand++;
684 		fwc++;
685 		if (fwc >= cgsize) {
686 			fwc = 0;
687 			cgn++;
688 			if (cgn >= newsb->fs_ncg) {
689 				hand = 0;
690 				if (secondpass)
691 					return (-1);
692 				secondpass = 1;
693 				cgn = 0;
694 			}
695 			bits = cg_blksfree(cgs[cgn], 0);
696 			cgsize = cgs[cgn]->cg_ndblk;
697 			run = 0;
698 		}
699 	}
700 }
701 /*
702  * Find a free block of disk space.  Finds an entire block of frags,
703  *  all of which are free.  Return value is the frag number of the
704  *  first frag of the block, or -1 if no space was found.  Uses newsb
705  *  for sb values, and assumes the cgs[] structures correctly describe
706  *  the area to be searched.
707  *
708  * See find_freespace(), above, for remarks about hand wrapping around.
709  */
710 static int
find_freeblock(void)711 find_freeblock(void)
712 {
713 	static int hand = 0;	/* hand rotates through all frags in fs */
714 	uint32_t cgn;		/* cg number of cg hand points into */
715 	int fwc;		/* frag-within-cg number of frag hand points
716 				 * to */
717 	int cgsize;		/* size of cg hand points into */
718 	int secondpass;		/* have we wrapped from end to beginning? */
719 	unsigned char *bits;	/* cg_blksfree()[] for cg hand points into */
720 
721 	cgn = dtog(newsb, hand);
722 	fwc = dtogd(newsb, hand);
723 	secondpass = (hand == 0);
724 	bits = cg_blksfree(cgs[cgn], 0);
725 	cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
726 	while (1) {
727 		if (blk_is_set(bits, fwc, newsb->fs_frag))
728 			return (hand);
729 		fwc += newsb->fs_frag;
730 		hand += newsb->fs_frag;
731 		if (fwc >= cgsize) {
732 			fwc = 0;
733 			cgn++;
734 			if (cgn >= newsb->fs_ncg) {
735 				hand = 0;
736 				if (secondpass)
737 					return (-1);
738 				secondpass = 1;
739 				cgn = 0;
740 			}
741 			bits = cg_blksfree(cgs[cgn], 0);
742 			cgsize = ffs_blknum(newsb, cgs[cgn]->cg_ndblk);
743 		}
744 	}
745 }
746 /*
747  * Find a free inode, returning its inumber or -1 if none was found.
748  *  Uses newsb for sb values, and assumes the cgs[] structures
749  *  correctly describe the area to be searched.
750  *
751  * See find_freespace(), above, for remarks about hand wrapping around.
752  */
753 static int
find_freeinode(void)754 find_freeinode(void)
755 {
756 	static int hand = 0;	/* hand rotates through all inodes in fs */
757 	uint32_t cgn;		/* cg number of cg hand points into */
758 	uint32_t iwc;		/* inode-within-cg number of inode hand points
759 				 * to */
760 	int secondpass;		/* have we wrapped from end to beginning? */
761 	unsigned char *bits;	/* cg_inosused()[] for cg hand points into */
762 
763 	cgn = hand / newsb->fs_ipg;
764 	iwc = hand % newsb->fs_ipg;
765 	secondpass = (hand == 0);
766 	bits = cg_inosused(cgs[cgn], 0);
767 	while (1) {
768 		if (bit_is_clr(bits, iwc))
769 			return (hand);
770 		hand++;
771 		iwc++;
772 		if (iwc >= newsb->fs_ipg) {
773 			iwc = 0;
774 			cgn++;
775 			if (cgn >= newsb->fs_ncg) {
776 				hand = 0;
777 				if (secondpass)
778 					return (-1);
779 				secondpass = 1;
780 				cgn = 0;
781 			}
782 			bits = cg_inosused(cgs[cgn], 0);
783 		}
784 	}
785 }
786 /*
787  * Mark a frag as free.  Sets the frag's bit in the cg_blksfree bitmap
788  *  for the appropriate cg, and marks the cg as dirty.
789  */
790 static void
free_frag(int fno)791 free_frag(int fno)
792 {
793 	int cgn;
794 
795 	cgn = dtog(newsb, fno);
796 	set_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
797 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
798 }
799 /*
800  * Allocate a frag.  Clears the frag's bit in the cg_blksfree bitmap
801  *  for the appropriate cg, and marks the cg as dirty.
802  */
803 static void
alloc_frag(int fno)804 alloc_frag(int fno)
805 {
806 	int cgn;
807 
808 	cgn = dtog(newsb, fno);
809 	clr_bits(cg_blksfree(cgs[cgn], 0), dtogd(newsb, fno), 1);
810 	cgflags[cgn] |= CGF_DIRTY | CGF_BLKMAPS;
811 }
812 /*
813  * Fix up the csum array.  If shrinking, this involves freeing zero or
814  *  more frags; if growing, it involves allocating them, or if the
815  *  frags being grown into aren't free, finding space elsewhere for the
816  *  csum info.  (If the number of occupied frags doesn't change,
817  *  nothing happens here.)
818  */
819 static void
csum_fixup(void)820 csum_fixup(void)
821 {
822 	int nold;		/* # frags in old csum info */
823 	int ntot;		/* # frags in new csum info */
824 	int nnew;		/* ntot-nold */
825 	int newloc;		/* new location for csum info, if necessary */
826 	int i;			/* generic loop index */
827 	int j;			/* generic loop index */
828 	int f;			/* "from" frag number, if moving */
829 	int t;			/* "to" frag number, if moving */
830 	int cgn;		/* cg number, used when shrinking */
831 
832 	ntot = howmany(newsb->fs_cssize, newsb->fs_fsize);
833 	nold = howmany(oldsb->fs_cssize, newsb->fs_fsize);
834 	nnew = ntot - nold;
835 	/* First, if there's no change in frag counts, it's easy. */
836 	if (nnew == 0)
837 		return;
838 	/* Next, if we're shrinking, it's almost as easy.  Just free up any
839 	 * frags in the old area we no longer need. */
840 	if (nnew < 0) {
841 		for ((i = newsb->fs_csaddr + ntot - 1), (j = nnew);
842 		    j < 0;
843 		    i--, j++) {
844 			free_frag(i);
845 		}
846 		return;
847 	}
848 	/* We must be growing.  Check to see that the new csum area fits
849 	 * within the file system.  I think this can never happen, since for
850 	 * the csum area to grow, we must be adding at least one cg, so the
851 	 * old csum area can't be this close to the end of the new file system.
852 	 * But it's a cheap check. */
853 	/* XXX what if csum info is at end of cg and grows into next cg, what
854 	 * if it spills over onto the next cg's backup superblock?  Can this
855 	 * happen? */
856 	if (newsb->fs_csaddr + ntot <= newsb->fs_size) {
857 		/* Okay, it fits - now,  see if the space we want is free. */
858 		for ((i = newsb->fs_csaddr + nold), (j = nnew);
859 		    j > 0;
860 		    i++, j--) {
861 			cgn = dtog(newsb, i);
862 			if (bit_is_clr(cg_blksfree(cgs[cgn], 0),
863 				dtogd(newsb, i)))
864 				break;
865 		}
866 		if (j <= 0) {
867 			/* Win win - all the frags we want are free. Allocate
868 			 * 'em and we're all done.  */
869 			for ((i = newsb->fs_csaddr + ntot - nnew),
870 				 (j = nnew); j > 0; i++, j--) {
871 				alloc_frag(i);
872 			}
873 			return;
874 		}
875 	}
876 	/* We have to move the csum info, sigh.  Look for new space, free old
877 	 * space, and allocate new.  Update fs_csaddr.  We don't copy anything
878 	 * on disk at this point; the csum info will be written to the
879 	 * then-current fs_csaddr as part of the final flush. */
880 	newloc = find_freespace(ntot);
881 	if (newloc < 0)
882 		errx(EXIT_FAILURE, "Sorry, no space available for new csums");
883 	for (i = 0, f = newsb->fs_csaddr, t = newloc; i < ntot; i++, f++, t++) {
884 		if (i < nold) {
885 			free_frag(f);
886 		}
887 		alloc_frag(t);
888 	}
889 	newsb->fs_csaddr = newloc;
890 }
891 /*
892  * Recompute newsb->fs_dsize.  Just scans all cgs, adding the number of
893  *  data blocks in that cg to the total.
894  */
895 static void
recompute_fs_dsize(void)896 recompute_fs_dsize(void)
897 {
898 	uint32_t i;
899 
900 	newsb->fs_dsize = 0;
901 	for (i = 0; i < newsb->fs_ncg; i++) {
902 		int64_t dlow;	/* size of before-sb data area */
903 		int64_t dhigh;	/* offset of post-inode data area */
904 		int64_t dmax;	/* total size of cg */
905 		int64_t base;	/* base of cg, since cgsblock() etc add it in */
906 		base = cgbase(newsb, i);
907 		dlow = cgsblock(newsb, i) - base;
908 		dhigh = cgdmin(newsb, i) - base;
909 		dmax = newsb->fs_size - base;
910 		if (dmax > newsb->fs_fpg)
911 			dmax = newsb->fs_fpg;
912 		newsb->fs_dsize += dlow + dmax - dhigh;
913 	}
914 	/* Space in cg 0 before cgsblock is boot area, not free space! */
915 	newsb->fs_dsize -= cgsblock(newsb, 0) - cgbase(newsb, 0);
916 	/* And of course the csum info takes up space. */
917 	newsb->fs_dsize -= howmany(newsb->fs_cssize, newsb->fs_fsize);
918 }
919 /*
920  * Return the current time.  We call this and assign, rather than
921  *  calling time() directly, as insulation against OSes where fs_time
922  *  is not a time_t.
923  */
924 static time_t
timestamp(void)925 timestamp(void)
926 {
927 	time_t t;
928 
929 	time(&t);
930 	return (t);
931 }
932 
933 /*
934  * Calculate new filesystem geometry
935  *  return 0 if geometry actually changed
936  */
937 static int
makegeometry(int chatter)938 makegeometry(int chatter)
939 {
940 
941 	/* Update the size. */
942 	newsb->fs_size = FFS_DBTOFSB(newsb, newsize);
943 	if (is_ufs2)
944 		newsb->fs_ncg = howmany(newsb->fs_size, newsb->fs_fpg);
945 	else {
946 		/* Update fs_old_ncyl and fs_ncg. */
947 		newsb->fs_old_ncyl = howmany(newsb->fs_size * NSPF(newsb),
948 		    newsb->fs_old_spc);
949 		newsb->fs_ncg = howmany(newsb->fs_old_ncyl, newsb->fs_old_cpg);
950 	}
951 
952 	/* Does the last cg end before the end of its inode area? There is no
953 	 * reason why this couldn't be handled, but it would complicate a lot
954 	 * of code (in all file system code - fsck, kernel, etc) because of the
955 	 * potential partial inode area, and the gain in space would be
956 	 * minimal, at most the pre-sb data area. */
957 	if (cgdmin(newsb, newsb->fs_ncg - 1) > newsb->fs_size) {
958 		newsb->fs_ncg--;
959 		if (is_ufs2)
960 			newsb->fs_size = newsb->fs_ncg * newsb->fs_fpg;
961 		else {
962 			newsb->fs_old_ncyl = newsb->fs_ncg * newsb->fs_old_cpg;
963 			newsb->fs_size = (newsb->fs_old_ncyl *
964 				newsb->fs_old_spc) / NSPF(newsb);
965 		}
966 		if (chatter || verbose) {
967 			printf("Warning: last cylinder group is too small;\n");
968 			printf("    dropping it.  New size = %lu.\n",
969 			(unsigned long int) FFS_FSBTODB(newsb, newsb->fs_size));
970 		}
971 	}
972 
973 	/* Did we actually not grow?  (This can happen if newsize is less than
974 	 * a frag larger than the old size - unlikely, but no excuse to
975 	 * misbehave if it happens.) */
976 	if (newsb->fs_size == oldsb->fs_size)
977 		return 1;
978 
979 	return 0;
980 }
981 
982 
983 /*
984  * Grow the file system.
985  */
986 static void
grow(void)987 grow(void)
988 {
989 	uint32_t i;
990 
991 	if (makegeometry(1)) {
992 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
993 		    ", not growing.\n", newsb->fs_size, oldsb->fs_size);
994 		return;
995 	}
996 
997 	if (verbose) {
998 		printf("Growing fs from %"PRIu64" blocks to %"PRIu64
999 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
1000 	}
1001 
1002 	/* Update the timestamp. */
1003 	newsb->fs_time = timestamp();
1004 	/* Allocate and clear the new-inode area, in case we add any cgs. */
1005 	if (is_ufs2) {
1006 		zinodes2 = alloconce(newsb->fs_ipg * sizeof(*zinodes2),
1007 			"zeroed inodes");
1008 		memset(zinodes2, 0, newsb->fs_ipg * sizeof(*zinodes2));
1009 	} else {
1010 		zinodes1 = alloconce(newsb->fs_ipg * sizeof(*zinodes1),
1011 			"zeroed inodes");
1012 		memset(zinodes1, 0, newsb->fs_ipg * sizeof(*zinodes1));
1013 	}
1014 
1015 	/* Check that the new last sector (frag, actually) is writable.  Since
1016 	 * it's at least one frag larger than it used to be, we know we aren't
1017 	 * overwriting anything important by this.  (The choice of sbbuf as
1018 	 * what to write is irrelevant; it's just something handy that's known
1019 	 * to be at least one frag in size.) */
1020 	writeat(FFS_FSBTODB(newsb,newsb->fs_size - 1), &sbbuf, newsb->fs_fsize);
1021 
1022 	/* Find out how big the csum area is, and realloc csums if bigger. */
1023 	newsb->fs_cssize = ffs_fragroundup(newsb,
1024 	    newsb->fs_ncg * sizeof(struct csum));
1025 	if (newsb->fs_cssize > oldsb->fs_cssize)
1026 		csums = nfrealloc(csums, newsb->fs_cssize, "new cg summary");
1027 	/* If we're adding any cgs, realloc structures and set up the new
1028 	   cgs. */
1029 	if (newsb->fs_ncg > oldsb->fs_ncg) {
1030 		char *cgp;
1031 		cgs = nfrealloc(cgs, newsb->fs_ncg * sizeof(*cgs),
1032                                 "cg pointers");
1033 		cgflags = nfrealloc(cgflags, newsb->fs_ncg, "cg flags");
1034 		memset(cgflags + oldsb->fs_ncg, 0,
1035 		    newsb->fs_ncg - oldsb->fs_ncg);
1036 		cgp = alloconce((newsb->fs_ncg - oldsb->fs_ncg) * cgblksz,
1037                                 "cgs");
1038 		for (i = oldsb->fs_ncg; i < newsb->fs_ncg; i++) {
1039 			cgs[i] = (struct cg *) cgp;
1040 			progress_bar(special, "grow cg",
1041 			    i - oldsb->fs_ncg, newsb->fs_ncg - oldsb->fs_ncg);
1042 			initcg(i);
1043 			cgp += cgblksz;
1044 		}
1045 		cgs[oldsb->fs_ncg - 1]->cg_old_ncyl = oldsb->fs_old_cpg;
1046 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY;
1047 	}
1048 	/* If the old fs ended partway through a cg, we have to update the old
1049 	 * last cg (though possibly not to a full cg!). */
1050 	if (oldsb->fs_size % oldsb->fs_fpg) {
1051 		struct cg *cg;
1052 		int64_t newcgsize;
1053 		int64_t prevcgtop;
1054 		int64_t oldcgsize;
1055 		cg = cgs[oldsb->fs_ncg - 1];
1056 		cgflags[oldsb->fs_ncg - 1] |= CGF_DIRTY | CGF_BLKMAPS;
1057 		prevcgtop = oldsb->fs_fpg * (oldsb->fs_ncg - 1);
1058 		newcgsize = newsb->fs_size - prevcgtop;
1059 		if (newcgsize > newsb->fs_fpg)
1060 			newcgsize = newsb->fs_fpg;
1061 		oldcgsize = oldsb->fs_size % oldsb->fs_fpg;
1062 		set_bits(cg_blksfree(cg, 0), oldcgsize, newcgsize - oldcgsize);
1063 		cg->cg_old_ncyl = oldsb->fs_old_cpg;
1064 		cg->cg_ndblk = newcgsize;
1065 	}
1066 	/* Fix up the csum info, if necessary. */
1067 	csum_fixup();
1068 	/* Make fs_dsize match the new reality. */
1069 	recompute_fs_dsize();
1070 
1071 	progress_done();
1072 }
1073 /*
1074  * Call (*fn)() for each inode, passing the inode and its inumber.  The
1075  *  number of cylinder groups is passed in, so this can be used to map
1076  *  over either the old or the new file system's set of inodes.
1077  */
1078 static void
map_inodes(void (* fn)(union dinode * di,unsigned int,void * arg),int ncg,void * cbarg)1079 map_inodes(void (*fn) (union dinode * di, unsigned int, void *arg),
1080 	   int ncg, void *cbarg) {
1081 	int i;
1082 	int ni;
1083 
1084 	ni = oldsb->fs_ipg * ncg;
1085 	for (i = 0; i < ni; i++)
1086 		(*fn) (inodes + i, i, cbarg);
1087 }
1088 /* Values for the third argument to the map function for
1089  * map_inode_data_blocks.  MDB_DATA indicates the block is contains
1090  * file data; MDB_INDIR_PRE and MDB_INDIR_POST indicate that it's an
1091  * indirect block.  The MDB_INDIR_PRE call is made before the indirect
1092  * block pointers are followed and the pointed-to blocks scanned,
1093  * MDB_INDIR_POST after.
1094  */
1095 #define MDB_DATA       1
1096 #define MDB_INDIR_PRE  2
1097 #define MDB_INDIR_POST 3
1098 
1099 typedef void (*mark_callback_t) (off_t blocknum, unsigned int nfrags,
1100 				 unsigned int blksize, int opcode);
1101 
1102 /* Helper function - handles a data block.  Calls the callback
1103  * function and returns number of bytes occupied in file (actually,
1104  * rounded up to a frag boundary).  The name is historical.  */
1105 static int
markblk(mark_callback_t fn,union dinode * di,off_t bn,off_t o)1106 markblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o)
1107 {
1108 	int sz;
1109 	int nb;
1110 	off_t filesize;
1111 
1112 	filesize = DIP(di,di_size);
1113 	if (o >= filesize)
1114 		return (0);
1115 	sz = dblksize(newsb, di, ffs_lblkno(newsb, o), filesize);
1116 	nb = (sz > filesize - o) ? filesize - o : sz;
1117 	if (bn)
1118 		(*fn) (bn, ffs_numfrags(newsb, sz), nb, MDB_DATA);
1119 	return (sz);
1120 }
1121 /* Helper function - handles an indirect block.  Makes the
1122  * MDB_INDIR_PRE callback for the indirect block, loops over the
1123  * pointers and recurses, and makes the MDB_INDIR_POST callback.
1124  * Returns the number of bytes occupied in file, as does markblk().
1125  * For the sake of update_for_data_move(), we read the indirect block
1126  * _after_ making the _PRE callback.  The name is historical.  */
1127 static off_t
markiblk(mark_callback_t fn,union dinode * di,off_t bn,off_t o,int lev)1128 markiblk(mark_callback_t fn, union dinode * di, off_t bn, off_t o, int lev)
1129 {
1130 	int i;
1131 	unsigned k;
1132 	off_t j, tot;
1133 	static int32_t indirblk1[howmany(MAXBSIZE, sizeof(int32_t))];
1134 	static int32_t indirblk2[howmany(MAXBSIZE, sizeof(int32_t))];
1135 	static int32_t indirblk3[howmany(MAXBSIZE, sizeof(int32_t))];
1136 	static int32_t *indirblks[3] = {
1137 		&indirblk1[0], &indirblk2[0], &indirblk3[0]
1138 	};
1139 
1140 	if (lev < 0)
1141 		return (markblk(fn, di, bn, o));
1142 	if (bn == 0) {
1143 		for (j = newsb->fs_bsize;
1144 		    lev >= 0;
1145 		    j *= FFS_NINDIR(newsb), lev--);
1146 		return (j);
1147 	}
1148 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_PRE);
1149 	readat(FFS_FSBTODB(newsb, bn), indirblks[lev], newsb->fs_bsize);
1150 	if (needswap)
1151 		for (k = 0; k < howmany(MAXBSIZE, sizeof(int32_t)); k++)
1152 			indirblks[lev][k] = bswap32(indirblks[lev][k]);
1153 	tot = 0;
1154 	for (i = 0; i < FFS_NINDIR(newsb); i++) {
1155 		j = markiblk(fn, di, indirblks[lev][i], o, lev - 1);
1156 		if (j == 0)
1157 			break;
1158 		o += j;
1159 		tot += j;
1160 	}
1161 	(*fn) (bn, newsb->fs_frag, newsb->fs_bsize, MDB_INDIR_POST);
1162 	return (tot);
1163 }
1164 
1165 
1166 /*
1167  * Call (*fn)() for each data block for an inode.  This routine assumes
1168  *  the inode is known to be of a type that has data blocks (file,
1169  *  directory, or non-fast symlink).  The called function is:
1170  *
1171  * (*fn)(unsigned int blkno, unsigned int nf, unsigned int nb, int op)
1172  *
1173  *  where blkno is the frag number, nf is the number of frags starting
1174  *  at blkno (always <= fs_frag), nb is the number of bytes that belong
1175  *  to the file (usually nf*fs_frag, often less for the last block/frag
1176  *  of a file).
1177  */
1178 static void
map_inode_data_blocks(union dinode * di,mark_callback_t fn)1179 map_inode_data_blocks(union dinode * di, mark_callback_t fn)
1180 {
1181 	off_t o;		/* offset within  inode */
1182 	off_t inc;		/* increment for o */
1183 	int b;			/* index within di_db[] and di_ib[] arrays */
1184 
1185 	/* Scan the direct blocks... */
1186 	o = 0;
1187 	for (b = 0; b < UFS_NDADDR; b++) {
1188 		inc = markblk(fn, di, DIP(di,di_db[b]), o);
1189 		if (inc == 0)
1190 			break;
1191 		o += inc;
1192 	}
1193 	/* ...and the indirect blocks. */
1194 	if (inc) {
1195 		for (b = 0; b < UFS_NIADDR; b++) {
1196 			inc = markiblk(fn, di, DIP(di,di_ib[b]), o, b);
1197 			if (inc == 0)
1198 				return;
1199 			o += inc;
1200 		}
1201 	}
1202 }
1203 
1204 static void
dblk_callback(union dinode * di,unsigned int inum,void * arg)1205 dblk_callback(union dinode * di, unsigned int inum, void *arg)
1206 {
1207 	mark_callback_t fn;
1208 	off_t filesize;
1209 
1210 	filesize = DIP(di,di_size);
1211 	fn = (mark_callback_t) arg;
1212 	switch (DIP(di,di_mode) & IFMT) {
1213 	case IFLNK:
1214 		if (filesize <= newsb->fs_maxsymlinklen) {
1215 			break;
1216 		}
1217 		/* FALLTHROUGH */
1218 	case IFDIR:
1219 	case IFREG:
1220 		map_inode_data_blocks(di, fn);
1221 		break;
1222 	}
1223 }
1224 /*
1225  * Make a callback call, a la map_inode_data_blocks, for all data
1226  *  blocks in the entire fs.  This is used only once, in
1227  *  update_for_data_move, but it's out at top level because the complex
1228  *  downward-funarg nesting that would otherwise result seems to give
1229  *  gcc gastric distress.
1230  */
1231 static void
map_data_blocks(mark_callback_t fn,int ncg)1232 map_data_blocks(mark_callback_t fn, int ncg)
1233 {
1234 	map_inodes(&dblk_callback, ncg, (void *) fn);
1235 }
1236 /*
1237  * Initialize the blkmove array.
1238  */
1239 static void
blkmove_init(void)1240 blkmove_init(void)
1241 {
1242 	int i;
1243 
1244 	blkmove = alloconce(oldsb->fs_size * sizeof(*blkmove), "blkmove");
1245 	for (i = 0; i < oldsb->fs_size; i++)
1246 		blkmove[i] = i;
1247 }
1248 /*
1249  * Load the inodes off disk.  Allocates the structures and initializes
1250  *  them - the inodes from disk, the flags to zero.
1251  */
1252 static void
loadinodes(void)1253 loadinodes(void)
1254 {
1255 	int imax, ino, j;
1256 	uint32_t i;
1257 	struct ufs1_dinode *dp1 = NULL;
1258 	struct ufs2_dinode *dp2 = NULL;
1259 
1260 	/* read inodes one fs block at a time and copy them */
1261 
1262 	inodes = alloconce(oldsb->fs_ncg * oldsb->fs_ipg *
1263 	    sizeof(union dinode), "inodes");
1264 	iflags = alloconce(oldsb->fs_ncg * oldsb->fs_ipg, "inode flags");
1265 	memset(iflags, 0, oldsb->fs_ncg * oldsb->fs_ipg);
1266 
1267 	ibuf = nfmalloc(oldsb->fs_bsize,"inode block buf");
1268 	if (is_ufs2)
1269 		dp2 = (struct ufs2_dinode *)ibuf;
1270 	else
1271 		dp1 = (struct ufs1_dinode *)ibuf;
1272 
1273 	for (ino = 0,imax = oldsb->fs_ipg * oldsb->fs_ncg; ino < imax; ) {
1274 		readat(FFS_FSBTODB(oldsb, ino_to_fsba(oldsb, ino)), ibuf,
1275 		    oldsb->fs_bsize);
1276 
1277 		for (i = 0; i < oldsb->fs_inopb; i++) {
1278 			if (is_ufs2) {
1279 				if (needswap) {
1280 					ffs_dinode2_swap(&(dp2[i]), &(dp2[i]));
1281 					for (j = 0; j < UFS_NDADDR; j++)
1282 						dp2[i].di_db[j] =
1283 						    bswap32(dp2[i].di_db[j]);
1284 					for (j = 0; j < UFS_NIADDR; j++)
1285 						dp2[i].di_ib[j] =
1286 						    bswap32(dp2[i].di_ib[j]);
1287 				}
1288 				memcpy(&inodes[ino].dp2, &dp2[i],
1289 				    sizeof(inodes[ino].dp2));
1290 			} else {
1291 				if (needswap) {
1292 					ffs_dinode1_swap(&(dp1[i]), &(dp1[i]));
1293 					for (j = 0; j < UFS_NDADDR; j++)
1294 						dp1[i].di_db[j] =
1295 						    bswap32(dp1[i].di_db[j]);
1296 					for (j = 0; j < UFS_NIADDR; j++)
1297 						dp1[i].di_ib[j] =
1298 						    bswap32(dp1[i].di_ib[j]);
1299 				}
1300 				memcpy(&inodes[ino].dp1, &dp1[i],
1301 				    sizeof(inodes[ino].dp1));
1302 			}
1303 			    if (++ino > imax)
1304 				    errx(EXIT_FAILURE,
1305 					"Exceeded number of inodes");
1306 		}
1307 
1308 	}
1309 }
1310 /*
1311  * Report a file-system-too-full problem.
1312  */
1313 __dead static void
toofull(void)1314 toofull(void)
1315 {
1316 	errx(EXIT_FAILURE, "Sorry, would run out of data blocks");
1317 }
1318 /*
1319  * Record a desire to move "n" frags from "from" to "to".
1320  */
1321 static void
mark_move(unsigned int from,unsigned int to,unsigned int n)1322 mark_move(unsigned int from, unsigned int to, unsigned int n)
1323 {
1324 	for (; n > 0; n--)
1325 		blkmove[from++] = to++;
1326 }
1327 /* Helper function - evict n frags, starting with start (cg-relative).
1328  * The free bitmap is scanned, unallocated frags are ignored, and
1329  * each block of consecutive allocated frags is moved as a unit.
1330  */
1331 static void
fragmove(struct cg * cg,int64_t base,unsigned int start,unsigned int n)1332 fragmove(struct cg * cg, int64_t base, unsigned int start, unsigned int n)
1333 {
1334 	unsigned int i;
1335 	int run;
1336 
1337 	run = 0;
1338 	for (i = 0; i <= n; i++) {
1339 		if ((i < n) && bit_is_clr(cg_blksfree(cg, 0), start + i)) {
1340 			run++;
1341 		} else {
1342 			if (run > 0) {
1343 				int off;
1344 				off = find_freespace(run);
1345 				if (off < 0)
1346 					toofull();
1347 				mark_move(base + start + i - run, off, run);
1348 				set_bits(cg_blksfree(cg, 0), start + i - run,
1349 				    run);
1350 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1351 				    dtogd(oldsb, off), run);
1352 			}
1353 			run = 0;
1354 		}
1355 	}
1356 }
1357 /*
1358  * Evict all data blocks from the given cg, starting at minfrag (based
1359  *  at the beginning of the cg), for length nfrag.  The eviction is
1360  *  assumed to be entirely data-area; this should not be called with a
1361  *  range overlapping the metadata structures in the cg.  It also
1362  *  assumes minfrag points into the given cg; it will misbehave if this
1363  *  is not true.
1364  *
1365  * See the comment header on find_freespace() for one possible bug
1366  *  lurking here.
1367  */
1368 static void
evict_data(struct cg * cg,unsigned int minfrag,int nfrag)1369 evict_data(struct cg * cg, unsigned int minfrag, int nfrag)
1370 {
1371 	int64_t base;	/* base of cg (in frags from beginning of fs) */
1372 
1373 	base = cgbase(oldsb, cg->cg_cgx);
1374 	/* Does the boundary fall in the middle of a block?  To avoid
1375 	 * breaking between frags allocated as consecutive, we always
1376 	 * evict the whole block in this case, though one could argue
1377 	 * we should check to see if the frag before or after the
1378 	 * break is unallocated. */
1379 	if (minfrag % oldsb->fs_frag) {
1380 		int n;
1381 		n = minfrag % oldsb->fs_frag;
1382 		minfrag -= n;
1383 		nfrag += n;
1384 	}
1385 	/* Do whole blocks.  If a block is wholly free, skip it; if
1386 	 * wholly allocated, move it in toto.  If neither, call
1387 	 * fragmove() to move the frags to new locations. */
1388 	while (nfrag >= oldsb->fs_frag) {
1389 		if (!blk_is_set(cg_blksfree(cg, 0), minfrag, oldsb->fs_frag)) {
1390 			if (blk_is_clr(cg_blksfree(cg, 0), minfrag,
1391 				oldsb->fs_frag)) {
1392 				int off;
1393 				off = find_freeblock();
1394 				if (off < 0)
1395 					toofull();
1396 				mark_move(base + minfrag, off, oldsb->fs_frag);
1397 				set_bits(cg_blksfree(cg, 0), minfrag,
1398 				    oldsb->fs_frag);
1399 				clr_bits(cg_blksfree(cgs[dtog(oldsb, off)], 0),
1400 				    dtogd(oldsb, off), oldsb->fs_frag);
1401 			} else {
1402 				fragmove(cg, base, minfrag, oldsb->fs_frag);
1403 			}
1404 		}
1405 		minfrag += oldsb->fs_frag;
1406 		nfrag -= oldsb->fs_frag;
1407 	}
1408 	/* Clean up any sub-block amount left over. */
1409 	if (nfrag) {
1410 		fragmove(cg, base, minfrag, nfrag);
1411 	}
1412 }
1413 /*
1414  * Move all data blocks according to blkmove.  We have to be careful,
1415  *  because we may be updating indirect blocks that will themselves be
1416  *  getting moved, or inode int32_t arrays that point to indirect
1417  *  blocks that will be moved.  We call this before
1418  *  update_for_data_move, and update_for_data_move does inodes first,
1419  *  then indirect blocks in preorder, so as to make sure that the
1420  *  file system is self-consistent at all points, for better crash
1421  *  tolerance.  (We can get away with this only because all the writes
1422  *  done by perform_data_move() are writing into space that's not used
1423  *  by the old file system.)  If we crash, some things may point to the
1424  *  old data and some to the new, but both copies are the same.  The
1425  *  only wrong things should be csum info and free bitmaps, which fsck
1426  *  is entirely capable of cleaning up.
1427  *
1428  * Since blkmove_init() initializes all blocks to move to their current
1429  *  locations, we can have two blocks marked as wanting to move to the
1430  *  same location, but only two and only when one of them is the one
1431  *  that was already there.  So if blkmove[i]==i, we ignore that entry
1432  *  entirely - for unallocated blocks, we don't want it (and may be
1433  *  putting something else there), and for allocated blocks, we don't
1434  *  want to copy it anywhere.
1435  */
1436 static void
perform_data_move(void)1437 perform_data_move(void)
1438 {
1439 	int i;
1440 	int run;
1441 	int maxrun;
1442 	char buf[65536];
1443 
1444 	maxrun = sizeof(buf) / newsb->fs_fsize;
1445 	run = 0;
1446 	for (i = 0; i < oldsb->fs_size; i++) {
1447 		if ((blkmove[i] == (unsigned)i /*XXX cast*/) ||
1448 		    (run >= maxrun) ||
1449 		    ((run > 0) &&
1450 			(blkmove[i] != blkmove[i - 1] + 1))) {
1451 			if (run > 0) {
1452 				readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1453 				    run << oldsb->fs_fshift);
1454 				writeat(FFS_FSBTODB(oldsb, blkmove[i - run]),
1455 				    &buf[0], run << oldsb->fs_fshift);
1456 			}
1457 			run = 0;
1458 		}
1459 		if (blkmove[i] != (unsigned)i /*XXX cast*/)
1460 			run++;
1461 	}
1462 	if (run > 0) {
1463 		readat(FFS_FSBTODB(oldsb, i - run), &buf[0],
1464 		    run << oldsb->fs_fshift);
1465 		writeat(FFS_FSBTODB(oldsb, blkmove[i - run]), &buf[0],
1466 		    run << oldsb->fs_fshift);
1467 	}
1468 }
1469 /*
1470  * This modifies an array of int32_t, according to blkmove.  This is
1471  *  used to update inode block arrays and indirect blocks to point to
1472  *  the new locations of data blocks.
1473  *
1474  * Return value is the number of int32_ts that needed updating; in
1475  *  particular, the return value is zero iff nothing was modified.
1476  */
1477 static int
movemap_blocks(int32_t * vec,int n)1478 movemap_blocks(int32_t * vec, int n)
1479 {
1480 	int rv;
1481 
1482 	rv = 0;
1483 	for (; n > 0; n--, vec++) {
1484 		if (blkmove[*vec] != (unsigned)*vec /*XXX cast*/) {
1485 			*vec = blkmove[*vec];
1486 			rv++;
1487 		}
1488 	}
1489 	return (rv);
1490 }
1491 static void
moveblocks_callback(union dinode * di,unsigned int inum,void * arg)1492 moveblocks_callback(union dinode * di, unsigned int inum, void *arg)
1493 {
1494 	int32_t *dblkptr, *iblkptr;
1495 
1496 	switch (DIP(di,di_mode) & IFMT) {
1497 	case IFLNK:
1498 		if ((off_t)DIP(di,di_size) <= oldsb->fs_maxsymlinklen) {
1499 			break;
1500 		}
1501 		/* FALLTHROUGH */
1502 	case IFDIR:
1503 	case IFREG:
1504 		if (is_ufs2) {
1505 			/* XXX these are not int32_t and this is WRONG! */
1506 			dblkptr = (void *) &(di->dp2.di_db[0]);
1507 			iblkptr = (void *) &(di->dp2.di_ib[0]);
1508 		} else {
1509 			dblkptr = &(di->dp1.di_db[0]);
1510 			iblkptr = &(di->dp1.di_ib[0]);
1511 		}
1512 		/*
1513 		 * Don't || these two calls; we need their
1514 		 * side-effects.
1515 		 */
1516 		if (movemap_blocks(dblkptr, UFS_NDADDR)) {
1517 			iflags[inum] |= IF_DIRTY;
1518 		}
1519 		if (movemap_blocks(iblkptr, UFS_NIADDR)) {
1520 			iflags[inum] |= IF_DIRTY;
1521 		}
1522 		break;
1523 	}
1524 }
1525 
1526 static void
moveindir_callback(off_t off,unsigned int nfrag,unsigned int nbytes,int kind)1527 moveindir_callback(off_t off, unsigned int nfrag, unsigned int nbytes,
1528 		   int kind)
1529 {
1530 	unsigned int i;
1531 
1532 	if (kind == MDB_INDIR_PRE) {
1533 		int32_t blk[howmany(MAXBSIZE, sizeof(int32_t))];
1534 		readat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1535 		if (needswap)
1536 			for (i = 0; i < howmany(MAXBSIZE, sizeof(int32_t)); i++)
1537 				blk[i] = bswap32(blk[i]);
1538 		if (movemap_blocks(&blk[0], FFS_NINDIR(oldsb))) {
1539 			if (needswap)
1540 				for (i = 0; i < howmany(MAXBSIZE,
1541 					sizeof(int32_t)); i++)
1542 					blk[i] = bswap32(blk[i]);
1543 			writeat(FFS_FSBTODB(oldsb, off), &blk[0], oldsb->fs_bsize);
1544 		}
1545 	}
1546 }
1547 /*
1548  * Update all inode data arrays and indirect blocks to point to the new
1549  *  locations of data blocks.  See the comment header on
1550  *  perform_data_move for some ordering considerations.
1551  */
1552 static void
update_for_data_move(void)1553 update_for_data_move(void)
1554 {
1555 	map_inodes(&moveblocks_callback, oldsb->fs_ncg, NULL);
1556 	map_data_blocks(&moveindir_callback, oldsb->fs_ncg);
1557 }
1558 /*
1559  * Initialize the inomove array.
1560  */
1561 static void
inomove_init(void)1562 inomove_init(void)
1563 {
1564 	int i;
1565 
1566 	inomove = alloconce(oldsb->fs_ipg * oldsb->fs_ncg * sizeof(*inomove),
1567                             "inomove");
1568 	for (i = (oldsb->fs_ipg * oldsb->fs_ncg) - 1; i >= 0; i--)
1569 		inomove[i] = i;
1570 }
1571 /*
1572  * Flush all dirtied inodes to disk.  Scans the inode flags array; for
1573  *  each dirty inode, it sets the BDIRTY bit on the first inode in the
1574  *  block containing the dirty inode.  Then it scans by blocks, and for
1575  *  each marked block, writes it.
1576  */
1577 static void
flush_inodes(void)1578 flush_inodes(void)
1579 {
1580 	int i, j, k, ni, m;
1581 	struct ufs1_dinode *dp1 = NULL;
1582 	struct ufs2_dinode *dp2 = NULL;
1583 
1584 	ni = newsb->fs_ipg * newsb->fs_ncg;
1585 	m = FFS_INOPB(newsb) - 1;
1586 	for (i = 0; i < ni; i++) {
1587 		if (iflags[i] & IF_DIRTY) {
1588 			iflags[i & ~m] |= IF_BDIRTY;
1589 		}
1590 	}
1591 	m++;
1592 
1593 	if (is_ufs2)
1594 		dp2 = (struct ufs2_dinode *)ibuf;
1595 	else
1596 		dp1 = (struct ufs1_dinode *)ibuf;
1597 
1598 	for (i = 0; i < ni; i += m) {
1599 		if ((iflags[i] & IF_BDIRTY) == 0)
1600 			continue;
1601 		if (is_ufs2)
1602 			for (j = 0; j < m; j++) {
1603 				dp2[j] = inodes[i + j].dp2;
1604 				if (needswap) {
1605 					for (k = 0; k < UFS_NDADDR; k++)
1606 						dp2[j].di_db[k] =
1607 						    bswap32(dp2[j].di_db[k]);
1608 					for (k = 0; k < UFS_NIADDR; k++)
1609 						dp2[j].di_ib[k] =
1610 						    bswap32(dp2[j].di_ib[k]);
1611 					ffs_dinode2_swap(&dp2[j],
1612 					    &dp2[j]);
1613 				}
1614 			}
1615 		else
1616 			for (j = 0; j < m; j++) {
1617 				dp1[j] = inodes[i + j].dp1;
1618 				if (needswap) {
1619 					for (k = 0; k < UFS_NDADDR; k++)
1620 						dp1[j].di_db[k]=
1621 						    bswap32(dp1[j].di_db[k]);
1622 					for (k = 0; k < UFS_NIADDR; k++)
1623 						dp1[j].di_ib[k]=
1624 						    bswap32(dp1[j].di_ib[k]);
1625 					ffs_dinode1_swap(&dp1[j],
1626 					    &dp1[j]);
1627 				}
1628 			}
1629 
1630 		writeat(FFS_FSBTODB(newsb, ino_to_fsba(newsb, i)),
1631 		    ibuf, newsb->fs_bsize);
1632 	}
1633 }
1634 /*
1635  * Evict all inodes from the specified cg.  shrink() already checked
1636  *  that there were enough free inodes, so the no-free-inodes check is
1637  *  a can't-happen.  If it does trip, the file system should be in good
1638  *  enough shape for fsck to fix; see the comment on perform_data_move
1639  *  for the considerations in question.
1640  */
1641 static void
evict_inodes(struct cg * cg)1642 evict_inodes(struct cg * cg)
1643 {
1644 	int inum;
1645 	int fi;
1646 	uint32_t i;
1647 
1648 	inum = newsb->fs_ipg * cg->cg_cgx;
1649 	for (i = 0; i < newsb->fs_ipg; i++, inum++) {
1650 		if (DIP(inodes + inum,di_mode) != 0) {
1651 			fi = find_freeinode();
1652 			if (fi < 0)
1653 				errx(EXIT_FAILURE, "Sorry, inodes evaporated - "
1654 				    "file system probably needs fsck");
1655 			inomove[inum] = fi;
1656 			clr_bits(cg_inosused(cg, 0), i, 1);
1657 			set_bits(cg_inosused(cgs[ino_to_cg(newsb, fi)], 0),
1658 			    fi % newsb->fs_ipg, 1);
1659 		}
1660 	}
1661 }
1662 /*
1663  * Move inodes from old locations to new.  Does not actually write
1664  *  anything to disk; just copies in-core and sets dirty bits.
1665  *
1666  * We have to be careful here for reasons similar to those mentioned in
1667  *  the comment header on perform_data_move, above: for the sake of
1668  *  crash tolerance, we want to make sure everything is present at both
1669  *  old and new locations before we update pointers.  So we call this
1670  *  first, then flush_inodes() to get them out on disk, then update
1671  *  directories to match.
1672  */
1673 static void
perform_inode_move(void)1674 perform_inode_move(void)
1675 {
1676 	unsigned int i;
1677 	unsigned int ni;
1678 
1679 	ni = oldsb->fs_ipg * oldsb->fs_ncg;
1680 	for (i = 0; i < ni; i++) {
1681 		if (inomove[i] != i) {
1682 			inodes[inomove[i]] = inodes[i];
1683 			iflags[inomove[i]] = iflags[i] | IF_DIRTY;
1684 		}
1685 	}
1686 }
1687 /*
1688  * Update the directory contained in the nb bytes at buf, to point to
1689  *  inodes' new locations.
1690  */
1691 static int
update_dirents(char * buf,int nb)1692 update_dirents(char *buf, int nb)
1693 {
1694 	int rv;
1695 #define d ((struct direct *)buf)
1696 #define s32(x) (needswap?bswap32((x)):(x))
1697 #define s16(x) (needswap?bswap16((x)):(x))
1698 
1699 	rv = 0;
1700 	while (nb > 0) {
1701 		if (inomove[s32(d->d_ino)] != s32(d->d_ino)) {
1702 			rv++;
1703 			d->d_ino = s32(inomove[s32(d->d_ino)]);
1704 		}
1705 		nb -= s16(d->d_reclen);
1706 		buf += s16(d->d_reclen);
1707 	}
1708 	return (rv);
1709 #undef d
1710 #undef s32
1711 #undef s16
1712 }
1713 /*
1714  * Callback function for map_inode_data_blocks, for updating a
1715  *  directory to point to new inode locations.
1716  */
1717 static void
update_dir_data(off_t bn,unsigned int size,unsigned int nb,int kind)1718 update_dir_data(off_t bn, unsigned int size, unsigned int nb, int kind)
1719 {
1720 	if (kind == MDB_DATA) {
1721 		union {
1722 			struct direct d;
1723 			char ch[MAXBSIZE];
1724 		}     buf;
1725 		readat(FFS_FSBTODB(oldsb, bn), &buf, size << oldsb->fs_fshift);
1726 		if (update_dirents((char *) &buf, nb)) {
1727 			writeat(FFS_FSBTODB(oldsb, bn), &buf,
1728 			    size << oldsb->fs_fshift);
1729 		}
1730 	}
1731 }
1732 static void
dirmove_callback(union dinode * di,unsigned int inum,void * arg)1733 dirmove_callback(union dinode * di, unsigned int inum, void *arg)
1734 {
1735 	switch (DIP(di,di_mode) & IFMT) {
1736 	case IFDIR:
1737 		map_inode_data_blocks(di, &update_dir_data);
1738 		break;
1739 	}
1740 }
1741 /*
1742  * Update directory entries to point to new inode locations.
1743  */
1744 static void
update_for_inode_move(void)1745 update_for_inode_move(void)
1746 {
1747 	map_inodes(&dirmove_callback, newsb->fs_ncg, NULL);
1748 }
1749 /*
1750  * Shrink the file system.
1751  */
1752 static void
shrink(void)1753 shrink(void)
1754 {
1755 	uint32_t i;
1756 
1757 	if (makegeometry(1)) {
1758 		printf("New fs size %"PRIu64" = old fs size %"PRIu64
1759 		    ", not shrinking.\n", newsb->fs_size, oldsb->fs_size);
1760 		return;
1761 	}
1762 
1763 	/* Let's make sure we're not being shrunk into oblivion. */
1764 	if (newsb->fs_ncg < 1)
1765 		errx(EXIT_FAILURE, "Size too small - file system would "
1766 		    "have no cylinders");
1767 
1768 	if (verbose) {
1769 		printf("Shrinking fs from %"PRIu64" blocks to %"PRIu64
1770 		    " blocks.\n", oldsb->fs_size, newsb->fs_size);
1771 	}
1772 
1773 	/* Load the inodes off disk - we'll need 'em. */
1774 	loadinodes();
1775 
1776 	/* Update the timestamp. */
1777 	newsb->fs_time = timestamp();
1778 
1779 	/* Initialize for block motion. */
1780 	blkmove_init();
1781 	/* Update csum size, then fix up for the new size */
1782 	newsb->fs_cssize = ffs_fragroundup(newsb,
1783 	    newsb->fs_ncg * sizeof(struct csum));
1784 	csum_fixup();
1785 	/* Evict data from any cgs being wholly eliminated */
1786 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++) {
1787 		int64_t base;
1788 		int64_t dlow;
1789 		int64_t dhigh;
1790 		int64_t dmax;
1791 		base = cgbase(oldsb, i);
1792 		dlow = cgsblock(oldsb, i) - base;
1793 		dhigh = cgdmin(oldsb, i) - base;
1794 		dmax = oldsb->fs_size - base;
1795 		if (dmax > cgs[i]->cg_ndblk)
1796 			dmax = cgs[i]->cg_ndblk;
1797 		evict_data(cgs[i], 0, dlow);
1798 		evict_data(cgs[i], dhigh, dmax - dhigh);
1799 		newsb->fs_cstotal.cs_ndir -= cgs[i]->cg_cs.cs_ndir;
1800 		newsb->fs_cstotal.cs_nifree -= cgs[i]->cg_cs.cs_nifree;
1801 		newsb->fs_cstotal.cs_nffree -= cgs[i]->cg_cs.cs_nffree;
1802 		newsb->fs_cstotal.cs_nbfree -= cgs[i]->cg_cs.cs_nbfree;
1803 	}
1804 	/* Update the new last cg. */
1805 	cgs[newsb->fs_ncg - 1]->cg_ndblk = newsb->fs_size -
1806 	    ((newsb->fs_ncg - 1) * newsb->fs_fpg);
1807 	/* Is the new last cg partial?  If so, evict any data from the part
1808 	 * being shrunken away. */
1809 	if (newsb->fs_size % newsb->fs_fpg) {
1810 		struct cg *cg;
1811 		int oldcgsize;
1812 		int newcgsize;
1813 		cg = cgs[newsb->fs_ncg - 1];
1814 		newcgsize = newsb->fs_size % newsb->fs_fpg;
1815 		oldcgsize = oldsb->fs_size - ((newsb->fs_ncg - 1) &
1816 		    oldsb->fs_fpg);
1817 		if (oldcgsize > oldsb->fs_fpg)
1818 			oldcgsize = oldsb->fs_fpg;
1819 		evict_data(cg, newcgsize, oldcgsize - newcgsize);
1820 		clr_bits(cg_blksfree(cg, 0), newcgsize, oldcgsize - newcgsize);
1821 	}
1822 	/* Find out whether we would run out of inodes.  (Note we
1823 	 * haven't actually done anything to the file system yet; all
1824 	 * those evict_data calls just update blkmove.) */
1825 	{
1826 		int slop;
1827 		slop = 0;
1828 		for (i = 0; i < newsb->fs_ncg; i++)
1829 			slop += cgs[i]->cg_cs.cs_nifree;
1830 		for (; i < oldsb->fs_ncg; i++)
1831 			slop -= oldsb->fs_ipg - cgs[i]->cg_cs.cs_nifree;
1832 		if (slop < 0)
1833 			errx(EXIT_FAILURE, "Sorry, would run out of inodes");
1834 	}
1835 	/* Copy data, then update pointers to data.  See the comment
1836 	 * header on perform_data_move for ordering considerations. */
1837 	perform_data_move();
1838 	update_for_data_move();
1839 	/* Now do inodes.  Initialize, evict, move, update - see the
1840 	 * comment header on perform_inode_move. */
1841 	inomove_init();
1842 	for (i = newsb->fs_ncg; i < oldsb->fs_ncg; i++)
1843 		evict_inodes(cgs[i]);
1844 	perform_inode_move();
1845 	flush_inodes();
1846 	update_for_inode_move();
1847 	/* Recompute all the bitmaps; most of them probably need it anyway,
1848 	 * the rest are just paranoia and not wanting to have to bother
1849 	 * keeping track of exactly which ones require it. */
1850 	for (i = 0; i < newsb->fs_ncg; i++)
1851 		cgflags[i] |= CGF_DIRTY | CGF_BLKMAPS | CGF_INOMAPS;
1852 	/* Update the cg_old_ncyl value for the last cylinder. */
1853 	if ((newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0)
1854 		cgs[newsb->fs_ncg - 1]->cg_old_ncyl =
1855 		    newsb->fs_old_ncyl % newsb->fs_old_cpg;
1856 	/* Make fs_dsize match the new reality. */
1857 	recompute_fs_dsize();
1858 }
1859 /*
1860  * Recompute the block totals, block cluster summaries, and rotational
1861  *  position summaries, for a given cg (specified by number), based on
1862  *  its free-frag bitmap (cg_blksfree()[]).
1863  */
1864 static void
rescan_blkmaps(int cgn)1865 rescan_blkmaps(int cgn)
1866 {
1867 	struct cg *cg;
1868 	uint32_t f;
1869 	int b;
1870 	int blkfree;
1871 	int blkrun;
1872 	int fragrun;
1873 	int fwb;
1874 
1875 	cg = cgs[cgn];
1876 	/* Subtract off the current totals from the sb's summary info */
1877 	newsb->fs_cstotal.cs_nffree -= cg->cg_cs.cs_nffree;
1878 	newsb->fs_cstotal.cs_nbfree -= cg->cg_cs.cs_nbfree;
1879 	/* Clear counters and bitmaps. */
1880 	cg->cg_cs.cs_nffree = 0;
1881 	cg->cg_cs.cs_nbfree = 0;
1882 	memset(&cg->cg_frsum[0], 0, MAXFRAG * sizeof(cg->cg_frsum[0]));
1883 	memset(&old_cg_blktot(cg, 0)[0], 0,
1884 	    newsb->fs_old_cpg * sizeof(old_cg_blktot(cg, 0)[0]));
1885 	memset(&old_cg_blks(newsb, cg, 0, 0)[0], 0,
1886 	    newsb->fs_old_cpg * newsb->fs_old_nrpos *
1887 	    sizeof(old_cg_blks(newsb, cg, 0, 0)[0]));
1888 	if (newsb->fs_contigsumsize > 0) {
1889 		cg->cg_nclusterblks = cg->cg_ndblk / newsb->fs_frag;
1890 		memset(&cg_clustersum(cg, 0)[1], 0,
1891 		    newsb->fs_contigsumsize *
1892 		    sizeof(cg_clustersum(cg, 0)[1]));
1893 		if (is_ufs2)
1894 			memset(&cg_clustersfree(cg, 0)[0], 0,
1895 			    howmany(newsb->fs_fpg / NSPB(newsb), NBBY));
1896 		else
1897 			memset(&cg_clustersfree(cg, 0)[0], 0,
1898 			    howmany((newsb->fs_old_cpg * newsb->fs_old_spc) /
1899 				NSPB(newsb), NBBY));
1900 	}
1901 	/* Scan the free-frag bitmap.  Runs of free frags are kept
1902 	 * track of with fragrun, and recorded into cg_frsum[] and
1903 	 * cg_cs.cs_nffree; on each block boundary, entire free blocks
1904 	 * are recorded as well. */
1905 	blkfree = 1;
1906 	blkrun = 0;
1907 	fragrun = 0;
1908 	f = 0;
1909 	b = 0;
1910 	fwb = 0;
1911 	while (f < cg->cg_ndblk) {
1912 		if (bit_is_set(cg_blksfree(cg, 0), f)) {
1913 			fragrun++;
1914 		} else {
1915 			blkfree = 0;
1916 			if (fragrun > 0) {
1917 				cg->cg_frsum[fragrun]++;
1918 				cg->cg_cs.cs_nffree += fragrun;
1919 			}
1920 			fragrun = 0;
1921 		}
1922 		f++;
1923 		fwb++;
1924 		if (fwb >= newsb->fs_frag) {
1925 			if (blkfree) {
1926 				cg->cg_cs.cs_nbfree++;
1927 				if (newsb->fs_contigsumsize > 0)
1928 					set_bits(cg_clustersfree(cg, 0), b, 1);
1929 				if (is_ufs2 == 0) {
1930 					old_cg_blktot(cg, 0)[
1931 						old_cbtocylno(newsb,
1932 						    f - newsb->fs_frag)]++;
1933 					old_cg_blks(newsb, cg,
1934 					    old_cbtocylno(newsb,
1935 						f - newsb->fs_frag),
1936 					    0)[old_cbtorpos(newsb,
1937 						    f - newsb->fs_frag)]++;
1938 				}
1939 				blkrun++;
1940 			} else {
1941 				if (fragrun > 0) {
1942 					cg->cg_frsum[fragrun]++;
1943 					cg->cg_cs.cs_nffree += fragrun;
1944 				}
1945 				if (newsb->fs_contigsumsize > 0) {
1946 					if (blkrun > 0) {
1947 						cg_clustersum(cg, 0)[(blkrun
1948 						    > newsb->fs_contigsumsize)
1949 						    ? newsb->fs_contigsumsize
1950 						    : blkrun]++;
1951 					}
1952 				}
1953 				blkrun = 0;
1954 			}
1955 			fwb = 0;
1956 			b++;
1957 			blkfree = 1;
1958 			fragrun = 0;
1959 		}
1960 	}
1961 	if (fragrun > 0) {
1962 		cg->cg_frsum[fragrun]++;
1963 		cg->cg_cs.cs_nffree += fragrun;
1964 	}
1965 	if ((blkrun > 0) && (newsb->fs_contigsumsize > 0)) {
1966 		cg_clustersum(cg, 0)[(blkrun > newsb->fs_contigsumsize) ?
1967 		    newsb->fs_contigsumsize : blkrun]++;
1968 	}
1969 	/*
1970          * Put the updated summary info back into csums, and add it
1971          * back into the sb's summary info.  Then mark the cg dirty.
1972          */
1973 	csums[cgn] = cg->cg_cs;
1974 	newsb->fs_cstotal.cs_nffree += cg->cg_cs.cs_nffree;
1975 	newsb->fs_cstotal.cs_nbfree += cg->cg_cs.cs_nbfree;
1976 	cgflags[cgn] |= CGF_DIRTY;
1977 }
1978 /*
1979  * Recompute the cg_inosused()[] bitmap, and the cs_nifree and cs_ndir
1980  *  values, for a cg, based on the in-core inodes for that cg.
1981  */
1982 static void
rescan_inomaps(int cgn)1983 rescan_inomaps(int cgn)
1984 {
1985 	struct cg *cg;
1986 	int inum;
1987 	uint32_t iwc;
1988 
1989 	cg = cgs[cgn];
1990 	newsb->fs_cstotal.cs_ndir -= cg->cg_cs.cs_ndir;
1991 	newsb->fs_cstotal.cs_nifree -= cg->cg_cs.cs_nifree;
1992 	cg->cg_cs.cs_ndir = 0;
1993 	cg->cg_cs.cs_nifree = 0;
1994 	memset(&cg_inosused(cg, 0)[0], 0, howmany(newsb->fs_ipg, NBBY));
1995 	inum = cgn * newsb->fs_ipg;
1996 	if (cgn == 0) {
1997 		set_bits(cg_inosused(cg, 0), 0, 2);
1998 		iwc = 2;
1999 		inum += 2;
2000 	} else {
2001 		iwc = 0;
2002 	}
2003 	for (; iwc < newsb->fs_ipg; iwc++, inum++) {
2004 		switch (DIP(inodes + inum, di_mode) & IFMT) {
2005 		case 0:
2006 			cg->cg_cs.cs_nifree++;
2007 			break;
2008 		case IFDIR:
2009 			cg->cg_cs.cs_ndir++;
2010 			/* FALLTHROUGH */
2011 		default:
2012 			set_bits(cg_inosused(cg, 0), iwc, 1);
2013 			break;
2014 		}
2015 	}
2016 	csums[cgn] = cg->cg_cs;
2017 	newsb->fs_cstotal.cs_ndir += cg->cg_cs.cs_ndir;
2018 	newsb->fs_cstotal.cs_nifree += cg->cg_cs.cs_nifree;
2019 	cgflags[cgn] |= CGF_DIRTY;
2020 }
2021 /*
2022  * Flush cgs to disk, recomputing anything they're marked as needing.
2023  */
2024 static void
flush_cgs(void)2025 flush_cgs(void)
2026 {
2027 	uint32_t i;
2028 
2029 	for (i = 0; i < newsb->fs_ncg; i++) {
2030 		progress_bar(special, "flush cg",
2031 		    i, newsb->fs_ncg - 1);
2032 		if (cgflags[i] & CGF_BLKMAPS) {
2033 			rescan_blkmaps(i);
2034 		}
2035 		if (cgflags[i] & CGF_INOMAPS) {
2036 			rescan_inomaps(i);
2037 		}
2038 		if (cgflags[i] & CGF_DIRTY) {
2039 			cgs[i]->cg_rotor = 0;
2040 			cgs[i]->cg_frotor = 0;
2041 			cgs[i]->cg_irotor = 0;
2042 			if (needswap)
2043 				ffs_cg_swap(cgs[i],cgs[i],newsb);
2044 			writeat(FFS_FSBTODB(newsb, cgtod(newsb, i)), cgs[i],
2045 			    cgblksz);
2046 		}
2047 	}
2048 	if (needswap)
2049 		ffs_csum_swap(csums,csums,newsb->fs_cssize);
2050 	writeat(FFS_FSBTODB(newsb, newsb->fs_csaddr), csums, newsb->fs_cssize);
2051 
2052 	progress_done();
2053 }
2054 /*
2055  * Write the superblock, both to the main superblock and to each cg's
2056  *  alternative superblock.
2057  */
2058 static void
write_sbs(void)2059 write_sbs(void)
2060 {
2061 	uint32_t i;
2062 
2063 	if (newsb->fs_magic == FS_UFS1_MAGIC &&
2064 	    (newsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2065 		newsb->fs_old_time = newsb->fs_time;
2066 	    	newsb->fs_old_size = newsb->fs_size;
2067 	    	/* we don't update fs_csaddr */
2068 	    	newsb->fs_old_dsize = newsb->fs_dsize;
2069 		newsb->fs_old_cstotal.cs_ndir = newsb->fs_cstotal.cs_ndir;
2070 		newsb->fs_old_cstotal.cs_nbfree = newsb->fs_cstotal.cs_nbfree;
2071 		newsb->fs_old_cstotal.cs_nifree = newsb->fs_cstotal.cs_nifree;
2072 		newsb->fs_old_cstotal.cs_nffree = newsb->fs_cstotal.cs_nffree;
2073 		/* fill fs_old_postbl_start with 256 bytes of 0xff? */
2074 	}
2075 	/* copy newsb back to oldsb, so we can use it for offsets if
2076 	   newsb has been swapped for writing to disk */
2077 	memcpy(oldsb, newsb, SBLOCKSIZE);
2078 	if (needswap)
2079 		ffs_sb_swap(newsb,newsb);
2080 	writeat(where /  DEV_BSIZE, newsb, SBLOCKSIZE);
2081 	for (i = 0; i < oldsb->fs_ncg; i++) {
2082 		progress_bar(special, "write sb",
2083 		    i, oldsb->fs_ncg - 1);
2084 		writeat(FFS_FSBTODB(oldsb, cgsblock(oldsb, i)), newsb, SBLOCKSIZE);
2085 	}
2086 
2087 	progress_done();
2088 }
2089 
2090 /*
2091  * Check to see whether new size changes the filesystem
2092  *  return exit code
2093  */
2094 static int
checkonly(void)2095 checkonly(void)
2096 {
2097 	if (makegeometry(0)) {
2098 		if (verbose) {
2099 			printf("Wouldn't change: already %" PRId64
2100 			    " blocks\n", (int64_t)oldsb->fs_size);
2101 		}
2102 		return 1;
2103 	}
2104 
2105 	if (verbose) {
2106 		printf("Would change: newsize: %" PRId64 " oldsize: %"
2107 		    PRId64 " fsdb: %" PRId64 "\n", FFS_DBTOFSB(oldsb, newsize),
2108 		    (int64_t)oldsb->fs_size,
2109 		    (int64_t)oldsb->fs_fsbtodb);
2110 	}
2111 	return 0;
2112 }
2113 
2114 static off_t
get_dev_size(const char * dev_name)2115 get_dev_size(const char *dev_name)
2116 {
2117 	struct dkwedge_info dkw;
2118 	struct partition *pp;
2119 	struct disklabel lp;
2120 	struct stat st;
2121 	size_t ptn;
2122 
2123 	/* Get info about partition/wedge */
2124 	if (ioctl(fd, DIOCGWEDGEINFO, &dkw) != -1)
2125 		return dkw.dkw_size;
2126 	if (ioctl(fd, DIOCGDINFO, &lp) != -1) {
2127 		ptn = strchr(dev_name, '\0')[-1] - 'a';
2128 		if (ptn >= lp.d_npartitions)
2129 			return 0;
2130 		pp = &lp.d_partitions[ptn];
2131 		return pp->p_size;
2132 	}
2133 	if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
2134 		return st.st_size / DEV_BSIZE;
2135 
2136 	return 0;
2137 }
2138 
2139 /*
2140  * main().
2141  */
2142 int
main(int argc,char ** argv)2143 main(int argc, char **argv)
2144 {
2145 	int ch;
2146 	int CheckOnlyFlag;
2147 	int ExpertFlag;
2148 	int SFlag;
2149 	size_t i;
2150 	char specname[MAXPATHLEN];
2151 	char rawname[MAXPATHLEN];
2152 	const char *raw;
2153 
2154 	char reply[5];
2155 
2156 	newsize = 0;
2157 	ExpertFlag = 0;
2158 	SFlag = 0;
2159         CheckOnlyFlag = 0;
2160 
2161 	while ((ch = getopt(argc, argv, "cps:vy")) != -1) {
2162 		switch (ch) {
2163                 case 'c':
2164 			CheckOnlyFlag = 1;
2165 			break;
2166 		case 'p':
2167 			progress = 1;
2168 			break;
2169 		case 's':
2170 			SFlag = 1;
2171 			newsize = strtoll(optarg, NULL, 10);
2172 			if(newsize < 1) {
2173 				usage();
2174 			}
2175 			break;
2176 		case 'v':
2177 			verbose = 1;
2178 			break;
2179 		case 'y':
2180 			ExpertFlag = 1;
2181 			break;
2182 		case '?':
2183 			/* FALLTHROUGH */
2184 		default:
2185 			usage();
2186 		}
2187 	}
2188 	argc -= optind;
2189 	argv += optind;
2190 
2191 	if (argc != 1) {
2192 		usage();
2193 	}
2194 
2195 	special = getfsspecname(specname, sizeof(specname), argv[0]);
2196 	if (special == NULL)
2197 		err(EXIT_FAILURE, "%s: %s", argv[0], specname);
2198 	raw = getdiskrawname(rawname, sizeof(rawname), special);
2199 	if (raw != NULL)
2200 		special = raw;
2201 
2202 	if (ExpertFlag == 0 && CheckOnlyFlag == 0) {
2203 		printf("It's required to manually run fsck on file system "
2204 		    "before you can resize it\n\n"
2205 		    " Did you run fsck on your disk (Yes/No) ? ");
2206 		fgets(reply, (int)sizeof(reply), stdin);
2207 		if (strcasecmp(reply, "Yes\n")) {
2208 			printf("\n Nothing done \n");
2209 			exit(EXIT_SUCCESS);
2210 		}
2211 	}
2212 
2213 	fd = open(special, O_RDWR, 0);
2214 	if (fd < 0)
2215 		err(EXIT_FAILURE, "Can't open `%s'", special);
2216 	checksmallio();
2217 
2218 	if (SFlag == 0) {
2219 		newsize = get_dev_size(special);
2220 		if (newsize == 0)
2221 			err(EXIT_FAILURE,
2222 			    "Can't resize file system, newsize not known.");
2223 	}
2224 
2225 	oldsb = (struct fs *) & sbbuf;
2226 	newsb = (struct fs *) (SBLOCKSIZE + (char *) &sbbuf);
2227 	for (where = search[i = 0]; search[i] != -1; where = search[++i]) {
2228 		readat(where / DEV_BSIZE, oldsb, SBLOCKSIZE);
2229 		switch (oldsb->fs_magic) {
2230 		case FS_UFS2_MAGIC:
2231 		case FS_UFS2EA_MAGIC:
2232 			is_ufs2 = 1;
2233 			/* FALLTHROUGH */
2234 		case FS_UFS1_MAGIC:
2235 			needswap = 0;
2236 			break;
2237 		case FS_UFS2_MAGIC_SWAPPED:
2238 		case FS_UFS2EA_MAGIC_SWAPPED:
2239  			is_ufs2 = 1;
2240 			/* FALLTHROUGH */
2241 		case FS_UFS1_MAGIC_SWAPPED:
2242 			needswap = 1;
2243 			break;
2244 		default:
2245 			continue;
2246 		}
2247 		if (!is_ufs2 && where == SBLOCK_UFS2)
2248 			continue;
2249 		break;
2250 	}
2251 	if (where == (off_t)-1)
2252 		errx(EXIT_FAILURE, "Bad magic number");
2253 	if (needswap)
2254 		ffs_sb_swap(oldsb,oldsb);
2255 	if (oldsb->fs_magic == FS_UFS1_MAGIC &&
2256 	    (oldsb->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2257 		oldsb->fs_csaddr = oldsb->fs_old_csaddr;
2258 		oldsb->fs_size = oldsb->fs_old_size;
2259 		oldsb->fs_dsize = oldsb->fs_old_dsize;
2260 		oldsb->fs_cstotal.cs_ndir = oldsb->fs_old_cstotal.cs_ndir;
2261 		oldsb->fs_cstotal.cs_nbfree = oldsb->fs_old_cstotal.cs_nbfree;
2262 		oldsb->fs_cstotal.cs_nifree = oldsb->fs_old_cstotal.cs_nifree;
2263 		oldsb->fs_cstotal.cs_nffree = oldsb->fs_old_cstotal.cs_nffree;
2264 		/* any others? */
2265 		printf("Resizing with ffsv1 superblock\n");
2266 	}
2267 
2268 	oldsb->fs_qbmask = ~(int64_t) oldsb->fs_bmask;
2269 	oldsb->fs_qfmask = ~(int64_t) oldsb->fs_fmask;
2270 	if (oldsb->fs_ipg % FFS_INOPB(oldsb))
2271 		errx(EXIT_FAILURE, "ipg[%d] %% FFS_INOPB[%d] != 0",
2272 		    (int) oldsb->fs_ipg, (int) FFS_INOPB(oldsb));
2273 	/* The superblock is bigger than struct fs (there are trailing
2274 	 * tables, of non-fixed size); make sure we copy the whole
2275 	 * thing.  SBLOCKSIZE may be an over-estimate, but we do this
2276 	 * just once, so being generous is cheap. */
2277 	memcpy(newsb, oldsb, SBLOCKSIZE);
2278 
2279 	if (progress) {
2280 		progress_ttywidth(0);
2281 		signal(SIGWINCH, progress_ttywidth);
2282 	}
2283 
2284 	loadcgs();
2285 
2286 	if (progress && !CheckOnlyFlag) {
2287 		progress_switch(progress);
2288 		progress_init();
2289 	}
2290 
2291 	if (newsize > FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2292 		if (CheckOnlyFlag)
2293 			exit(checkonly());
2294 		grow();
2295 	} else if (newsize < FFS_FSBTODB(oldsb, oldsb->fs_size)) {
2296 		if (is_ufs2)
2297 			errx(EXIT_FAILURE,"shrinking not supported for ufs2");
2298 		if (CheckOnlyFlag)
2299 			exit(checkonly());
2300 		shrink();
2301 	} else {
2302 		if (CheckOnlyFlag)
2303 			exit(checkonly());
2304 		if (verbose)
2305 			printf("No change requested: already %" PRId64
2306 			    " blocks\n", (int64_t)oldsb->fs_size);
2307 	}
2308 
2309 	flush_cgs();
2310 	write_sbs();
2311 	if (isplainfile())
2312 		ftruncate(fd,newsize * DEV_BSIZE);
2313 	return 0;
2314 }
2315 
2316 static void
usage(void)2317 usage(void)
2318 {
2319 
2320 	(void)fprintf(stderr, "usage: %s [-cpvy] [-s size] special\n",
2321 	    getprogname());
2322 	exit(EXIT_FAILURE);
2323 }
2324