xref: /linux/drivers/gpu/drm/amd/display/dc/core/dc.c (revision 6f0c228e)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24 
25 #include "dm_services.h"
26 
27 #include "amdgpu.h"
28 
29 #include "dc.h"
30 
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35 
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane_priv.h"
40 
41 #include "gpio_service_interface.h"
42 #include "clk_mgr.h"
43 #include "clock_source.h"
44 #include "dc_bios_types.h"
45 
46 #include "bios_parser_interface.h"
47 #include "bios/bios_parser_helper.h"
48 #include "include/irq_service_interface.h"
49 #include "transform.h"
50 #include "dmcu.h"
51 #include "dpp.h"
52 #include "timing_generator.h"
53 #include "abm.h"
54 #include "virtual/virtual_link_encoder.h"
55 #include "hubp.h"
56 
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59 #include "link_enc_cfg.h"
60 
61 #include "link.h"
62 #include "dm_helpers.h"
63 #include "mem_input.h"
64 
65 #include "dc_dmub_srv.h"
66 
67 #include "dsc.h"
68 
69 #include "vm_helper.h"
70 
71 #include "dce/dce_i2c.h"
72 
73 #include "dmub/dmub_srv.h"
74 
75 #include "dce/dmub_psr.h"
76 
77 #include "dce/dmub_hw_lock_mgr.h"
78 
79 #include "dc_trace.h"
80 
81 #include "hw_sequencer_private.h"
82 
83 #include "dml2/dml2_internal_types.h"
84 
85 #include "dce/dmub_outbox.h"
86 
87 #define CTX \
88 	dc->ctx
89 
90 #define DC_LOGGER \
91 	dc->ctx->logger
92 
93 static const char DC_BUILD_ID[] = "production-build";
94 
95 /**
96  * DOC: Overview
97  *
98  * DC is the OS-agnostic component of the amdgpu DC driver.
99  *
100  * DC maintains and validates a set of structs representing the state of the
101  * driver and writes that state to AMD hardware
102  *
103  * Main DC HW structs:
104  *
105  * struct dc - The central struct.  One per driver.  Created on driver load,
106  * destroyed on driver unload.
107  *
108  * struct dc_context - One per driver.
109  * Used as a backpointer by most other structs in dc.
110  *
111  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
112  * plugpoints).  Created on driver load, destroyed on driver unload.
113  *
114  * struct dc_sink - One per display.  Created on boot or hotplug.
115  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
116  * (the display directly attached).  It may also have one or more remote
117  * sinks (in the Multi-Stream Transport case)
118  *
119  * struct resource_pool - One per driver.  Represents the hw blocks not in the
120  * main pipeline.  Not directly accessible by dm.
121  *
122  * Main dc state structs:
123  *
124  * These structs can be created and destroyed as needed.  There is a full set of
125  * these structs in dc->current_state representing the currently programmed state.
126  *
127  * struct dc_state - The global DC state to track global state information,
128  * such as bandwidth values.
129  *
130  * struct dc_stream_state - Represents the hw configuration for the pipeline from
131  * a framebuffer to a display.  Maps one-to-one with dc_sink.
132  *
133  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
134  * and may have more in the Multi-Plane Overlay case.
135  *
136  * struct resource_context - Represents the programmable state of everything in
137  * the resource_pool.  Not directly accessible by dm.
138  *
139  * struct pipe_ctx - A member of struct resource_context.  Represents the
140  * internal hardware pipeline components.  Each dc_plane_state has either
141  * one or two (in the pipe-split case).
142  */
143 
144 /* Private functions */
145 
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)146 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
147 {
148 	if (new > *original)
149 		*original = new;
150 }
151 
destroy_links(struct dc * dc)152 static void destroy_links(struct dc *dc)
153 {
154 	uint32_t i;
155 
156 	for (i = 0; i < dc->link_count; i++) {
157 		if (NULL != dc->links[i])
158 			dc->link_srv->destroy_link(&dc->links[i]);
159 	}
160 }
161 
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)162 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
163 {
164 	int i;
165 	uint32_t count = 0;
166 
167 	for (i = 0; i < num_links; i++) {
168 		if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
169 				links[i]->is_internal_display)
170 			count++;
171 	}
172 
173 	return count;
174 }
175 
get_seamless_boot_stream_count(struct dc_state * ctx)176 static int get_seamless_boot_stream_count(struct dc_state *ctx)
177 {
178 	uint8_t i;
179 	uint8_t seamless_boot_stream_count = 0;
180 
181 	for (i = 0; i < ctx->stream_count; i++)
182 		if (ctx->streams[i]->apply_seamless_boot_optimization)
183 			seamless_boot_stream_count++;
184 
185 	return seamless_boot_stream_count;
186 }
187 
create_links(struct dc * dc,uint32_t num_virtual_links)188 static bool create_links(
189 		struct dc *dc,
190 		uint32_t num_virtual_links)
191 {
192 	int i;
193 	int connectors_num;
194 	struct dc_bios *bios = dc->ctx->dc_bios;
195 
196 	dc->link_count = 0;
197 
198 	connectors_num = bios->funcs->get_connectors_number(bios);
199 
200 	DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
201 
202 	if (connectors_num > ENUM_ID_COUNT) {
203 		dm_error(
204 			"DC: Number of connectors %d exceeds maximum of %d!\n",
205 			connectors_num,
206 			ENUM_ID_COUNT);
207 		return false;
208 	}
209 
210 	dm_output_to_console(
211 		"DC: %s: connectors_num: physical:%d, virtual:%d\n",
212 		__func__,
213 		connectors_num,
214 		num_virtual_links);
215 
216 	// condition loop on link_count to allow skipping invalid indices
217 	for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
218 		struct link_init_data link_init_params = {0};
219 		struct dc_link *link;
220 
221 		DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
222 
223 		link_init_params.ctx = dc->ctx;
224 		/* next BIOS object table connector */
225 		link_init_params.connector_index = i;
226 		link_init_params.link_index = dc->link_count;
227 		link_init_params.dc = dc;
228 		link = dc->link_srv->create_link(&link_init_params);
229 
230 		if (link) {
231 			dc->links[dc->link_count] = link;
232 			link->dc = dc;
233 			++dc->link_count;
234 		}
235 	}
236 
237 	DC_LOG_DC("BIOS object table - end");
238 
239 	/* Create a link for each usb4 dpia port */
240 	for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
241 		struct link_init_data link_init_params = {0};
242 		struct dc_link *link;
243 
244 		link_init_params.ctx = dc->ctx;
245 		link_init_params.connector_index = i;
246 		link_init_params.link_index = dc->link_count;
247 		link_init_params.dc = dc;
248 		link_init_params.is_dpia_link = true;
249 
250 		link = dc->link_srv->create_link(&link_init_params);
251 		if (link) {
252 			dc->links[dc->link_count] = link;
253 			link->dc = dc;
254 			++dc->link_count;
255 		}
256 	}
257 
258 	for (i = 0; i < num_virtual_links; i++) {
259 		struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
260 		struct encoder_init_data enc_init = {0};
261 
262 		if (link == NULL) {
263 			BREAK_TO_DEBUGGER();
264 			goto failed_alloc;
265 		}
266 
267 		link->link_index = dc->link_count;
268 		dc->links[dc->link_count] = link;
269 		dc->link_count++;
270 
271 		link->ctx = dc->ctx;
272 		link->dc = dc;
273 		link->connector_signal = SIGNAL_TYPE_VIRTUAL;
274 		link->link_id.type = OBJECT_TYPE_CONNECTOR;
275 		link->link_id.id = CONNECTOR_ID_VIRTUAL;
276 		link->link_id.enum_id = ENUM_ID_1;
277 		link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
278 
279 		if (!link->link_enc) {
280 			BREAK_TO_DEBUGGER();
281 			goto failed_alloc;
282 		}
283 
284 		link->link_status.dpcd_caps = &link->dpcd_caps;
285 
286 		enc_init.ctx = dc->ctx;
287 		enc_init.channel = CHANNEL_ID_UNKNOWN;
288 		enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
289 		enc_init.transmitter = TRANSMITTER_UNKNOWN;
290 		enc_init.connector = link->link_id;
291 		enc_init.encoder.type = OBJECT_TYPE_ENCODER;
292 		enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
293 		enc_init.encoder.enum_id = ENUM_ID_1;
294 		virtual_link_encoder_construct(link->link_enc, &enc_init);
295 	}
296 
297 	dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
298 
299 	return true;
300 
301 failed_alloc:
302 	return false;
303 }
304 
305 /* Create additional DIG link encoder objects if fewer than the platform
306  * supports were created during link construction. This can happen if the
307  * number of physical connectors is less than the number of DIGs.
308  */
create_link_encoders(struct dc * dc)309 static bool create_link_encoders(struct dc *dc)
310 {
311 	bool res = true;
312 	unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
313 	unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
314 	int i;
315 
316 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
317 	 * link encoders and physical display endpoints and does not require
318 	 * additional link encoder objects.
319 	 */
320 	if (num_usb4_dpia == 0)
321 		return res;
322 
323 	/* Create as many link encoder objects as the platform supports. DPIA
324 	 * endpoints can be programmably mapped to any DIG.
325 	 */
326 	if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
327 		for (i = 0; i < num_dig_link_enc; i++) {
328 			struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
329 
330 			if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
331 				link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
332 						(enum engine_id)(ENGINE_ID_DIGA + i));
333 				if (link_enc) {
334 					dc->res_pool->link_encoders[i] = link_enc;
335 					dc->res_pool->dig_link_enc_count++;
336 				} else {
337 					res = false;
338 				}
339 			}
340 		}
341 	}
342 
343 	return res;
344 }
345 
346 /* Destroy any additional DIG link encoder objects created by
347  * create_link_encoders().
348  * NB: Must only be called after destroy_links().
349  */
destroy_link_encoders(struct dc * dc)350 static void destroy_link_encoders(struct dc *dc)
351 {
352 	unsigned int num_usb4_dpia;
353 	unsigned int num_dig_link_enc;
354 	int i;
355 
356 	if (!dc->res_pool)
357 		return;
358 
359 	num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
360 	num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
361 
362 	/* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
363 	 * link encoders and physical display endpoints and does not require
364 	 * additional link encoder objects.
365 	 */
366 	if (num_usb4_dpia == 0)
367 		return;
368 
369 	for (i = 0; i < num_dig_link_enc; i++) {
370 		struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
371 
372 		if (link_enc) {
373 			link_enc->funcs->destroy(&link_enc);
374 			dc->res_pool->link_encoders[i] = NULL;
375 			dc->res_pool->dig_link_enc_count--;
376 		}
377 	}
378 }
379 
dc_perf_trace_create(void)380 static struct dc_perf_trace *dc_perf_trace_create(void)
381 {
382 	return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
383 }
384 
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)385 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
386 {
387 	kfree(*perf_trace);
388 	*perf_trace = NULL;
389 }
390 
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)391 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
392 {
393 	if (!dc || !stream || !adjust)
394 		return false;
395 
396 	if (!dc->current_state)
397 		return false;
398 
399 	int i;
400 
401 	for (i = 0; i < MAX_PIPES; i++) {
402 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
403 
404 		if (pipe->stream == stream && pipe->stream_res.tg) {
405 			if (dc->hwss.set_long_vtotal)
406 				dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
407 
408 			return true;
409 		}
410 	}
411 
412 	return false;
413 }
414 
415 /**
416  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
417  *  @dc:     dc reference
418  *  @stream: Initial dc stream state
419  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
420  *
421  *  Looks up the pipe context of dc_stream_state and updates the
422  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
423  *  Rate, which is a power-saving feature that targets reducing panel
424  *  refresh rate while the screen is static
425  *
426  *  Return: %true if the pipe context is found and adjusted;
427  *          %false if the pipe context is not found.
428  */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)429 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
430 		struct dc_stream_state *stream,
431 		struct dc_crtc_timing_adjust *adjust)
432 {
433 	int i;
434 
435 	/*
436 	 * Don't adjust DRR while there's bandwidth optimizations pending to
437 	 * avoid conflicting with firmware updates.
438 	 */
439 	if (dc->ctx->dce_version > DCE_VERSION_MAX)
440 		if (dc->optimized_required || dc->wm_optimized_required)
441 			return false;
442 
443 	dc_exit_ips_for_hw_access(dc);
444 
445 	stream->adjust.v_total_max = adjust->v_total_max;
446 	stream->adjust.v_total_mid = adjust->v_total_mid;
447 	stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
448 	stream->adjust.v_total_min = adjust->v_total_min;
449 	stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
450 
451 	if (dc->caps.max_v_total != 0 &&
452 		(adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
453 		if (adjust->allow_otg_v_count_halt)
454 			return set_long_vtotal(dc, stream, adjust);
455 		else
456 			return false;
457 	}
458 
459 	for (i = 0; i < MAX_PIPES; i++) {
460 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
461 
462 		if (pipe->stream == stream && pipe->stream_res.tg) {
463 			dc->hwss.set_drr(&pipe,
464 					1,
465 					*adjust);
466 
467 			return true;
468 		}
469 	}
470 	return false;
471 }
472 
473 /**
474  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
475  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
476  *
477  * @dc: [in] dc reference
478  * @stream: [in] Initial dc stream state
479  * @refresh_rate: [in] new refresh_rate
480  *
481  * Return: %true if the pipe context is found and there is an associated
482  *         timing_generator for the DC;
483  *         %false if the pipe context is not found or there is no
484  *         timing_generator for the DC.
485  */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)486 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
487 		struct dc_stream_state *stream,
488 		uint32_t *refresh_rate)
489 {
490 	bool status = false;
491 
492 	int i = 0;
493 
494 	dc_exit_ips_for_hw_access(dc);
495 
496 	for (i = 0; i < MAX_PIPES; i++) {
497 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
498 
499 		if (pipe->stream == stream && pipe->stream_res.tg) {
500 			/* Only execute if a function pointer has been defined for
501 			 * the DC version in question
502 			 */
503 			if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
504 				pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
505 
506 				status = true;
507 
508 				break;
509 			}
510 		}
511 	}
512 
513 	return status;
514 }
515 
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)516 bool dc_stream_get_crtc_position(struct dc *dc,
517 		struct dc_stream_state **streams, int num_streams,
518 		unsigned int *v_pos, unsigned int *nom_v_pos)
519 {
520 	/* TODO: Support multiple streams */
521 	const struct dc_stream_state *stream = streams[0];
522 	int i;
523 	bool ret = false;
524 	struct crtc_position position;
525 
526 	dc_exit_ips_for_hw_access(dc);
527 
528 	for (i = 0; i < MAX_PIPES; i++) {
529 		struct pipe_ctx *pipe =
530 				&dc->current_state->res_ctx.pipe_ctx[i];
531 
532 		if (pipe->stream == stream && pipe->stream_res.stream_enc) {
533 			dc->hwss.get_position(&pipe, 1, &position);
534 
535 			*v_pos = position.vertical_count;
536 			*nom_v_pos = position.nominal_vcount;
537 			ret = true;
538 		}
539 	}
540 	return ret;
541 }
542 
543 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
544 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)545 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
546 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
547 {
548 	union dmub_rb_cmd cmd = {0};
549 
550 	cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
551 	cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
552 
553 	if (is_stop) {
554 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
555 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
556 	} else {
557 		cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
558 		cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
559 		cmd.secure_display.roi_info.x_start = rect->x;
560 		cmd.secure_display.roi_info.y_start = rect->y;
561 		cmd.secure_display.roi_info.x_end = rect->x + rect->width;
562 		cmd.secure_display.roi_info.y_end = rect->y + rect->height;
563 	}
564 
565 	dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
566 }
567 
568 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)569 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
570 		struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
571 {
572 	if (is_stop)
573 		dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
574 	else
575 		dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
576 }
577 
578 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)579 dc_stream_forward_crc_window(struct dc_stream_state *stream,
580 		struct rect *rect, bool is_stop)
581 {
582 	struct dmcu *dmcu;
583 	struct dc_dmub_srv *dmub_srv;
584 	struct otg_phy_mux mux_mapping;
585 	struct pipe_ctx *pipe;
586 	int i;
587 	struct dc *dc = stream->ctx->dc;
588 
589 	for (i = 0; i < MAX_PIPES; i++) {
590 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
591 		if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
592 			break;
593 	}
594 
595 	/* Stream not found */
596 	if (i == MAX_PIPES)
597 		return false;
598 
599 	mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
600 	mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
601 
602 	dmcu = dc->res_pool->dmcu;
603 	dmub_srv = dc->ctx->dmub_srv;
604 
605 	/* forward to dmub */
606 	if (dmub_srv)
607 		dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
608 	/* forward to dmcu */
609 	else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
610 		dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
611 	else
612 		return false;
613 
614 	return true;
615 }
616 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
617 
618 /**
619  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
620  * @dc: DC Object
621  * @stream: The stream to configure CRC on.
622  * @enable: Enable CRC if true, disable otherwise.
623  * @crc_window: CRC window (x/y start/end) information
624  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
625  *              once.
626  *
627  * By default, only CRC0 is configured, and the entire frame is used to
628  * calculate the CRC.
629  *
630  * Return: %false if the stream is not found or CRC capture is not supported;
631  *         %true if the stream has been configured.
632  */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)633 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
634 			     struct crc_params *crc_window, bool enable, bool continuous)
635 {
636 	struct pipe_ctx *pipe;
637 	struct crc_params param;
638 	struct timing_generator *tg;
639 
640 	pipe = resource_get_otg_master_for_stream(
641 			&dc->current_state->res_ctx, stream);
642 
643 	/* Stream not found */
644 	if (pipe == NULL)
645 		return false;
646 
647 	dc_exit_ips_for_hw_access(dc);
648 
649 	/* By default, capture the full frame */
650 	param.windowa_x_start = 0;
651 	param.windowa_y_start = 0;
652 	param.windowa_x_end = pipe->stream->timing.h_addressable;
653 	param.windowa_y_end = pipe->stream->timing.v_addressable;
654 	param.windowb_x_start = 0;
655 	param.windowb_y_start = 0;
656 	param.windowb_x_end = pipe->stream->timing.h_addressable;
657 	param.windowb_y_end = pipe->stream->timing.v_addressable;
658 
659 	if (crc_window) {
660 		param.windowa_x_start = crc_window->windowa_x_start;
661 		param.windowa_y_start = crc_window->windowa_y_start;
662 		param.windowa_x_end = crc_window->windowa_x_end;
663 		param.windowa_y_end = crc_window->windowa_y_end;
664 		param.windowb_x_start = crc_window->windowb_x_start;
665 		param.windowb_y_start = crc_window->windowb_y_start;
666 		param.windowb_x_end = crc_window->windowb_x_end;
667 		param.windowb_y_end = crc_window->windowb_y_end;
668 	}
669 
670 	param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
671 	param.odm_mode = pipe->next_odm_pipe ? 1:0;
672 
673 	/* Default to the union of both windows */
674 	param.selection = UNION_WINDOW_A_B;
675 	param.continuous_mode = continuous;
676 	param.enable = enable;
677 
678 	tg = pipe->stream_res.tg;
679 
680 	/* Only call if supported */
681 	if (tg->funcs->configure_crc)
682 		return tg->funcs->configure_crc(tg, &param);
683 	DC_LOG_WARNING("CRC capture not supported.");
684 	return false;
685 }
686 
687 /**
688  * dc_stream_get_crc() - Get CRC values for the given stream.
689  *
690  * @dc: DC object.
691  * @stream: The DC stream state of the stream to get CRCs from.
692  * @r_cr: CRC value for the red component.
693  * @g_y:  CRC value for the green component.
694  * @b_cb: CRC value for the blue component.
695  *
696  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
697  *
698  * Return:
699  * %false if stream is not found, or if CRCs are not enabled.
700  */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)701 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
702 		       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
703 {
704 	int i;
705 	struct pipe_ctx *pipe;
706 	struct timing_generator *tg;
707 
708 	dc_exit_ips_for_hw_access(dc);
709 
710 	for (i = 0; i < MAX_PIPES; i++) {
711 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
712 		if (pipe->stream == stream)
713 			break;
714 	}
715 	/* Stream not found */
716 	if (i == MAX_PIPES)
717 		return false;
718 
719 	tg = pipe->stream_res.tg;
720 
721 	if (tg->funcs->get_crc)
722 		return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
723 	DC_LOG_WARNING("CRC capture not supported.");
724 	return false;
725 }
726 
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)727 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
728 		enum dc_dynamic_expansion option)
729 {
730 	/* OPP FMT dyn expansion updates*/
731 	int i;
732 	struct pipe_ctx *pipe_ctx;
733 
734 	dc_exit_ips_for_hw_access(dc);
735 
736 	for (i = 0; i < MAX_PIPES; i++) {
737 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
738 				== stream) {
739 			pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
740 			pipe_ctx->stream_res.opp->dyn_expansion = option;
741 			pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
742 					pipe_ctx->stream_res.opp,
743 					COLOR_SPACE_YCBCR601,
744 					stream->timing.display_color_depth,
745 					stream->signal);
746 		}
747 	}
748 }
749 
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)750 void dc_stream_set_dither_option(struct dc_stream_state *stream,
751 		enum dc_dither_option option)
752 {
753 	struct bit_depth_reduction_params params;
754 	struct dc_link *link = stream->link;
755 	struct pipe_ctx *pipes = NULL;
756 	int i;
757 
758 	for (i = 0; i < MAX_PIPES; i++) {
759 		if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
760 				stream) {
761 			pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
762 			break;
763 		}
764 	}
765 
766 	if (!pipes)
767 		return;
768 	if (option > DITHER_OPTION_MAX)
769 		return;
770 
771 	dc_exit_ips_for_hw_access(stream->ctx->dc);
772 
773 	stream->dither_option = option;
774 
775 	memset(&params, 0, sizeof(params));
776 	resource_build_bit_depth_reduction_params(stream, &params);
777 	stream->bit_depth_params = params;
778 
779 	if (pipes->plane_res.xfm &&
780 	    pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
781 		pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
782 			pipes->plane_res.xfm,
783 			pipes->plane_res.scl_data.lb_params.depth,
784 			&stream->bit_depth_params);
785 	}
786 
787 	pipes->stream_res.opp->funcs->
788 		opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
789 }
790 
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)791 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
792 {
793 	int i;
794 	bool ret = false;
795 	struct pipe_ctx *pipes;
796 
797 	dc_exit_ips_for_hw_access(dc);
798 
799 	for (i = 0; i < MAX_PIPES; i++) {
800 		if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
801 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
802 			dc->hwss.program_gamut_remap(pipes);
803 			ret = true;
804 		}
805 	}
806 
807 	return ret;
808 }
809 
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)810 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
811 {
812 	int i;
813 	bool ret = false;
814 	struct pipe_ctx *pipes;
815 
816 	dc_exit_ips_for_hw_access(dc);
817 
818 	for (i = 0; i < MAX_PIPES; i++) {
819 		if (dc->current_state->res_ctx.pipe_ctx[i].stream
820 				== stream) {
821 
822 			pipes = &dc->current_state->res_ctx.pipe_ctx[i];
823 			dc->hwss.program_output_csc(dc,
824 					pipes,
825 					stream->output_color_space,
826 					stream->csc_color_matrix.matrix,
827 					pipes->stream_res.opp->inst);
828 			ret = true;
829 		}
830 	}
831 
832 	return ret;
833 }
834 
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)835 void dc_stream_set_static_screen_params(struct dc *dc,
836 		struct dc_stream_state **streams,
837 		int num_streams,
838 		const struct dc_static_screen_params *params)
839 {
840 	int i, j;
841 	struct pipe_ctx *pipes_affected[MAX_PIPES];
842 	int num_pipes_affected = 0;
843 
844 	dc_exit_ips_for_hw_access(dc);
845 
846 	for (i = 0; i < num_streams; i++) {
847 		struct dc_stream_state *stream = streams[i];
848 
849 		for (j = 0; j < MAX_PIPES; j++) {
850 			if (dc->current_state->res_ctx.pipe_ctx[j].stream
851 					== stream) {
852 				pipes_affected[num_pipes_affected++] =
853 						&dc->current_state->res_ctx.pipe_ctx[j];
854 			}
855 		}
856 	}
857 
858 	dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
859 }
860 
dc_destruct(struct dc * dc)861 static void dc_destruct(struct dc *dc)
862 {
863 	// reset link encoder assignment table on destruct
864 	if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
865 		link_enc_cfg_init(dc, dc->current_state);
866 
867 	if (dc->current_state) {
868 		dc_state_release(dc->current_state);
869 		dc->current_state = NULL;
870 	}
871 
872 	destroy_links(dc);
873 
874 	destroy_link_encoders(dc);
875 
876 	if (dc->clk_mgr) {
877 		dc_destroy_clk_mgr(dc->clk_mgr);
878 		dc->clk_mgr = NULL;
879 	}
880 
881 	dc_destroy_resource_pool(dc);
882 
883 	if (dc->link_srv)
884 		link_destroy_link_service(&dc->link_srv);
885 
886 	if (dc->ctx->gpio_service)
887 		dal_gpio_service_destroy(&dc->ctx->gpio_service);
888 
889 	if (dc->ctx->created_bios)
890 		dal_bios_parser_destroy(&dc->ctx->dc_bios);
891 
892 	kfree(dc->ctx->logger);
893 	dc_perf_trace_destroy(&dc->ctx->perf_trace);
894 
895 	kfree(dc->ctx);
896 	dc->ctx = NULL;
897 
898 	kfree(dc->bw_vbios);
899 	dc->bw_vbios = NULL;
900 
901 	kfree(dc->bw_dceip);
902 	dc->bw_dceip = NULL;
903 
904 	kfree(dc->dcn_soc);
905 	dc->dcn_soc = NULL;
906 
907 	kfree(dc->dcn_ip);
908 	dc->dcn_ip = NULL;
909 
910 	kfree(dc->vm_helper);
911 	dc->vm_helper = NULL;
912 
913 }
914 
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)915 static bool dc_construct_ctx(struct dc *dc,
916 		const struct dc_init_data *init_params)
917 {
918 	struct dc_context *dc_ctx;
919 
920 	dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
921 	if (!dc_ctx)
922 		return false;
923 
924 	dc_ctx->cgs_device = init_params->cgs_device;
925 	dc_ctx->driver_context = init_params->driver;
926 	dc_ctx->dc = dc;
927 	dc_ctx->asic_id = init_params->asic_id;
928 	dc_ctx->dc_sink_id_count = 0;
929 	dc_ctx->dc_stream_id_count = 0;
930 	dc_ctx->dce_environment = init_params->dce_environment;
931 	dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
932 	dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
933 	dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
934 
935 	/* Create logger */
936 	dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
937 
938 	if (!dc_ctx->logger) {
939 		kfree(dc_ctx);
940 		return false;
941 	}
942 
943 	dc_ctx->logger->dev = adev_to_drm(init_params->driver);
944 	dc->dml.logger = dc_ctx->logger;
945 
946 	dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
947 
948 	dc_ctx->perf_trace = dc_perf_trace_create();
949 	if (!dc_ctx->perf_trace) {
950 		kfree(dc_ctx);
951 		ASSERT_CRITICAL(false);
952 		return false;
953 	}
954 
955 	dc->ctx = dc_ctx;
956 
957 	dc->link_srv = link_create_link_service();
958 	if (!dc->link_srv)
959 		return false;
960 
961 	return true;
962 }
963 
dc_construct(struct dc * dc,const struct dc_init_data * init_params)964 static bool dc_construct(struct dc *dc,
965 		const struct dc_init_data *init_params)
966 {
967 	struct dc_context *dc_ctx;
968 	struct bw_calcs_dceip *dc_dceip;
969 	struct bw_calcs_vbios *dc_vbios;
970 	struct dcn_soc_bounding_box *dcn_soc;
971 	struct dcn_ip_params *dcn_ip;
972 
973 	dc->config = init_params->flags;
974 
975 	// Allocate memory for the vm_helper
976 	dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
977 	if (!dc->vm_helper) {
978 		dm_error("%s: failed to create dc->vm_helper\n", __func__);
979 		goto fail;
980 	}
981 
982 	memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
983 
984 	dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
985 	if (!dc_dceip) {
986 		dm_error("%s: failed to create dceip\n", __func__);
987 		goto fail;
988 	}
989 
990 	dc->bw_dceip = dc_dceip;
991 
992 	dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
993 	if (!dc_vbios) {
994 		dm_error("%s: failed to create vbios\n", __func__);
995 		goto fail;
996 	}
997 
998 	dc->bw_vbios = dc_vbios;
999 	dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1000 	if (!dcn_soc) {
1001 		dm_error("%s: failed to create dcn_soc\n", __func__);
1002 		goto fail;
1003 	}
1004 
1005 	dc->dcn_soc = dcn_soc;
1006 
1007 	dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1008 	if (!dcn_ip) {
1009 		dm_error("%s: failed to create dcn_ip\n", __func__);
1010 		goto fail;
1011 	}
1012 
1013 	dc->dcn_ip = dcn_ip;
1014 
1015 	if (!dc_construct_ctx(dc, init_params)) {
1016 		dm_error("%s: failed to create ctx\n", __func__);
1017 		goto fail;
1018 	}
1019 
1020         dc_ctx = dc->ctx;
1021 
1022 	/* Resource should construct all asic specific resources.
1023 	 * This should be the only place where we need to parse the asic id
1024 	 */
1025 	if (init_params->vbios_override)
1026 		dc_ctx->dc_bios = init_params->vbios_override;
1027 	else {
1028 		/* Create BIOS parser */
1029 		struct bp_init_data bp_init_data;
1030 
1031 		bp_init_data.ctx = dc_ctx;
1032 		bp_init_data.bios = init_params->asic_id.atombios_base_address;
1033 
1034 		dc_ctx->dc_bios = dal_bios_parser_create(
1035 				&bp_init_data, dc_ctx->dce_version);
1036 
1037 		if (!dc_ctx->dc_bios) {
1038 			ASSERT_CRITICAL(false);
1039 			goto fail;
1040 		}
1041 
1042 		dc_ctx->created_bios = true;
1043 	}
1044 
1045 	dc->vendor_signature = init_params->vendor_signature;
1046 
1047 	/* Create GPIO service */
1048 	dc_ctx->gpio_service = dal_gpio_service_create(
1049 			dc_ctx->dce_version,
1050 			dc_ctx->dce_environment,
1051 			dc_ctx);
1052 
1053 	if (!dc_ctx->gpio_service) {
1054 		ASSERT_CRITICAL(false);
1055 		goto fail;
1056 	}
1057 
1058 	dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1059 	if (!dc->res_pool)
1060 		goto fail;
1061 
1062 	/* set i2c speed if not done by the respective dcnxxx__resource.c */
1063 	if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1064 		dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1065 	if (dc->caps.max_optimizable_video_width == 0)
1066 		dc->caps.max_optimizable_video_width = 5120;
1067 	dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1068 	if (!dc->clk_mgr)
1069 		goto fail;
1070 #ifdef CONFIG_DRM_AMD_DC_FP
1071 	dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1072 
1073 	if (dc->res_pool->funcs->update_bw_bounding_box) {
1074 		DC_FP_START();
1075 		dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1076 		DC_FP_END();
1077 	}
1078 #endif
1079 
1080 	if (!create_links(dc, init_params->num_virtual_links))
1081 		goto fail;
1082 
1083 	/* Create additional DIG link encoder objects if fewer than the platform
1084 	 * supports were created during link construction.
1085 	 */
1086 	if (!create_link_encoders(dc))
1087 		goto fail;
1088 
1089 	/* Creation of current_state must occur after dc->dml
1090 	 * is initialized in dc_create_resource_pool because
1091 	 * on creation it copies the contents of dc->dml
1092 	 */
1093 	dc->current_state = dc_state_create(dc, NULL);
1094 
1095 	if (!dc->current_state) {
1096 		dm_error("%s: failed to create validate ctx\n", __func__);
1097 		goto fail;
1098 	}
1099 
1100 	return true;
1101 
1102 fail:
1103 	return false;
1104 }
1105 
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1106 static void disable_all_writeback_pipes_for_stream(
1107 		const struct dc *dc,
1108 		struct dc_stream_state *stream,
1109 		struct dc_state *context)
1110 {
1111 	int i;
1112 
1113 	for (i = 0; i < stream->num_wb_info; i++)
1114 		stream->writeback_info[i].wb_enabled = false;
1115 }
1116 
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1117 static void apply_ctx_interdependent_lock(struct dc *dc,
1118 					  struct dc_state *context,
1119 					  struct dc_stream_state *stream,
1120 					  bool lock)
1121 {
1122 	int i;
1123 
1124 	/* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1125 	if (dc->hwss.interdependent_update_lock)
1126 		dc->hwss.interdependent_update_lock(dc, context, lock);
1127 	else {
1128 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1129 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1130 			struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1131 
1132 			// Copied conditions that were previously in dce110_apply_ctx_for_surface
1133 			if (stream == pipe_ctx->stream) {
1134 				if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1135 					(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1136 					dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1137 			}
1138 		}
1139 	}
1140 }
1141 
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1142 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1143 {
1144 	if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1145 		memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1146 
1147 		if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1148 			get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1149 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1150 			get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1151 		else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1152 			get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1153 		else {
1154 			if (dc->ctx->dce_version < DCN_VERSION_2_0)
1155 				color_space_to_black_color(
1156 					dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1157 		}
1158 		if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1159 			if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1160 				get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1161 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1162 				get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1163 			else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1164 				get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1165 		}
1166 	}
1167 }
1168 
disable_dangling_plane(struct dc * dc,struct dc_state * context)1169 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1170 {
1171 	int i, j;
1172 	struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1173 	struct dc_state *current_ctx;
1174 	struct pipe_ctx *pipe;
1175 	struct timing_generator *tg;
1176 
1177 	if (dangling_context == NULL)
1178 		return;
1179 
1180 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1181 		struct dc_stream_state *old_stream =
1182 				dc->current_state->res_ctx.pipe_ctx[i].stream;
1183 		bool should_disable = true;
1184 		bool pipe_split_change = false;
1185 
1186 		if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1187 			(dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1188 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1189 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1190 		else
1191 			pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1192 				dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1193 
1194 		for (j = 0; j < context->stream_count; j++) {
1195 			if (old_stream == context->streams[j]) {
1196 				should_disable = false;
1197 				break;
1198 			}
1199 		}
1200 		if (!should_disable && pipe_split_change &&
1201 				dc->current_state->stream_count != context->stream_count)
1202 			should_disable = true;
1203 
1204 		if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1205 				!dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1206 			struct pipe_ctx *old_pipe, *new_pipe;
1207 
1208 			old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1209 			new_pipe = &context->res_ctx.pipe_ctx[i];
1210 
1211 			if (old_pipe->plane_state && !new_pipe->plane_state)
1212 				should_disable = true;
1213 		}
1214 
1215 		if (should_disable && old_stream) {
1216 			bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1217 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1218 			tg = pipe->stream_res.tg;
1219 			/* When disabling plane for a phantom pipe, we must turn on the
1220 			 * phantom OTG so the disable programming gets the double buffer
1221 			 * update. Otherwise the pipe will be left in a partially disabled
1222 			 * state that can result in underflow or hang when enabling it
1223 			 * again for different use.
1224 			 */
1225 			if (is_phantom) {
1226 				if (tg->funcs->enable_crtc) {
1227 					int main_pipe_width, main_pipe_height;
1228 					struct dc_stream_state *old_paired_stream = dc_state_get_paired_subvp_stream(dc->current_state, old_stream);
1229 
1230 					main_pipe_width = old_paired_stream->dst.width;
1231 					main_pipe_height = old_paired_stream->dst.height;
1232 					if (dc->hwss.blank_phantom)
1233 						dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1234 					tg->funcs->enable_crtc(tg);
1235 				}
1236 			}
1237 
1238 			if (is_phantom)
1239 				dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1240 			else
1241 				dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1242 			disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1243 
1244 			if (pipe->stream && pipe->plane_state) {
1245 				set_p_state_switch_method(dc, context, pipe);
1246 				dc_update_visual_confirm_color(dc, context, pipe);
1247 			}
1248 
1249 			if (dc->hwss.apply_ctx_for_surface) {
1250 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1251 				dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1252 				apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1253 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1254 			}
1255 			if (dc->hwss.program_front_end_for_ctx) {
1256 				dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1257 				dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1258 				dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1259 				dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1260 			}
1261 			/* We need to put the phantom OTG back into it's default (disabled) state or we
1262 			 * can get corruption when transition from one SubVP config to a different one.
1263 			 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1264 			 * will still get it's double buffer update.
1265 			 */
1266 			if (is_phantom) {
1267 				if (tg->funcs->disable_phantom_crtc)
1268 					tg->funcs->disable_phantom_crtc(tg);
1269 			}
1270 		}
1271 	}
1272 
1273 	current_ctx = dc->current_state;
1274 	dc->current_state = dangling_context;
1275 	dc_state_release(current_ctx);
1276 }
1277 
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1278 static void disable_vbios_mode_if_required(
1279 		struct dc *dc,
1280 		struct dc_state *context)
1281 {
1282 	unsigned int i, j;
1283 
1284 	/* check if timing_changed, disable stream*/
1285 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1286 		struct dc_stream_state *stream = NULL;
1287 		struct dc_link *link = NULL;
1288 		struct pipe_ctx *pipe = NULL;
1289 
1290 		pipe = &context->res_ctx.pipe_ctx[i];
1291 		stream = pipe->stream;
1292 		if (stream == NULL)
1293 			continue;
1294 
1295 		if (stream->apply_seamless_boot_optimization)
1296 			continue;
1297 
1298 		// only looking for first odm pipe
1299 		if (pipe->prev_odm_pipe)
1300 			continue;
1301 
1302 		if (stream->link->local_sink &&
1303 			stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1304 			link = stream->link;
1305 		}
1306 
1307 		if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1308 			unsigned int enc_inst, tg_inst = 0;
1309 			unsigned int pix_clk_100hz = 0;
1310 
1311 			enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1312 			if (enc_inst != ENGINE_ID_UNKNOWN) {
1313 				for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1314 					if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1315 						tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1316 							dc->res_pool->stream_enc[j]);
1317 						break;
1318 					}
1319 				}
1320 
1321 				dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1322 					dc->res_pool->dp_clock_source,
1323 					tg_inst, &pix_clk_100hz);
1324 
1325 				if (link->link_status.link_active) {
1326 					uint32_t requested_pix_clk_100hz =
1327 						pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1328 
1329 					if (pix_clk_100hz != requested_pix_clk_100hz) {
1330 						dc->link_srv->set_dpms_off(pipe);
1331 						pipe->stream->dpms_off = false;
1332 					}
1333 				}
1334 			}
1335 		}
1336 	}
1337 }
1338 
1339 /**
1340  * wait_for_blank_complete - wait for all active OPPs to finish pending blank
1341  * pattern updates
1342  *
1343  * @dc: [in] dc reference
1344  * @context: [in] hardware context in use
1345  */
wait_for_blank_complete(struct dc * dc,struct dc_state * context)1346 static void wait_for_blank_complete(struct dc *dc,
1347 		struct dc_state *context)
1348 {
1349 	struct pipe_ctx *opp_head;
1350 	struct dce_hwseq *hws = dc->hwseq;
1351 	int i;
1352 
1353 	if (!hws->funcs.wait_for_blank_complete)
1354 		return;
1355 
1356 	for (i = 0; i < MAX_PIPES; i++) {
1357 		opp_head = &context->res_ctx.pipe_ctx[i];
1358 
1359 		if (!resource_is_pipe_type(opp_head, OPP_HEAD) ||
1360 				dc_state_get_pipe_subvp_type(context, opp_head) == SUBVP_PHANTOM)
1361 			continue;
1362 
1363 		hws->funcs.wait_for_blank_complete(opp_head->stream_res.opp);
1364 	}
1365 }
1366 
wait_for_odm_update_pending_complete(struct dc * dc,struct dc_state * context)1367 static void wait_for_odm_update_pending_complete(struct dc *dc, struct dc_state *context)
1368 {
1369 	struct pipe_ctx *otg_master;
1370 	struct timing_generator *tg;
1371 	int i;
1372 
1373 	for (i = 0; i < MAX_PIPES; i++) {
1374 		otg_master = &context->res_ctx.pipe_ctx[i];
1375 		if (!resource_is_pipe_type(otg_master, OTG_MASTER) ||
1376 				dc_state_get_pipe_subvp_type(context, otg_master) == SUBVP_PHANTOM)
1377 			continue;
1378 		tg = otg_master->stream_res.tg;
1379 		if (tg->funcs->wait_odm_doublebuffer_pending_clear)
1380 			tg->funcs->wait_odm_doublebuffer_pending_clear(tg);
1381 	}
1382 
1383 	/* ODM update may require to reprogram blank pattern for each OPP */
1384 	wait_for_blank_complete(dc, context);
1385 }
1386 
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1387 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1388 {
1389 	int i;
1390 	PERF_TRACE();
1391 	for (i = 0; i < MAX_PIPES; i++) {
1392 		int count = 0;
1393 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1394 
1395 		if (!pipe->plane_state || dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM)
1396 			continue;
1397 
1398 		/* Timeout 100 ms */
1399 		while (count < 100000) {
1400 			/* Must set to false to start with, due to OR in update function */
1401 			pipe->plane_state->status.is_flip_pending = false;
1402 			dc->hwss.update_pending_status(pipe);
1403 			if (!pipe->plane_state->status.is_flip_pending)
1404 				break;
1405 			udelay(1);
1406 			count++;
1407 		}
1408 		ASSERT(!pipe->plane_state->status.is_flip_pending);
1409 	}
1410 	PERF_TRACE();
1411 }
1412 
1413 /* Public functions */
1414 
dc_create(const struct dc_init_data * init_params)1415 struct dc *dc_create(const struct dc_init_data *init_params)
1416 {
1417 	struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1418 	unsigned int full_pipe_count;
1419 
1420 	if (!dc)
1421 		return NULL;
1422 
1423 	if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1424 		if (!dc_construct_ctx(dc, init_params))
1425 			goto destruct_dc;
1426 	} else {
1427 		if (!dc_construct(dc, init_params))
1428 			goto destruct_dc;
1429 
1430 		full_pipe_count = dc->res_pool->pipe_count;
1431 		if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1432 			full_pipe_count--;
1433 		dc->caps.max_streams = min(
1434 				full_pipe_count,
1435 				dc->res_pool->stream_enc_count);
1436 
1437 		dc->caps.max_links = dc->link_count;
1438 		dc->caps.max_audios = dc->res_pool->audio_count;
1439 		dc->caps.linear_pitch_alignment = 64;
1440 
1441 		dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1442 
1443 		dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1444 
1445 		if (dc->res_pool->dmcu != NULL)
1446 			dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1447 	}
1448 
1449 	dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1450 	dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1451 	dc->clk_reg_offsets = init_params->clk_reg_offsets;
1452 
1453 	/* Populate versioning information */
1454 	dc->versions.dc_ver = DC_VER;
1455 
1456 	dc->build_id = DC_BUILD_ID;
1457 
1458 	DC_LOG_DC("Display Core initialized\n");
1459 
1460 
1461 
1462 	return dc;
1463 
1464 destruct_dc:
1465 	dc_destruct(dc);
1466 	kfree(dc);
1467 	return NULL;
1468 }
1469 
detect_edp_presence(struct dc * dc)1470 static void detect_edp_presence(struct dc *dc)
1471 {
1472 	struct dc_link *edp_links[MAX_NUM_EDP];
1473 	struct dc_link *edp_link = NULL;
1474 	enum dc_connection_type type;
1475 	int i;
1476 	int edp_num;
1477 
1478 	dc_get_edp_links(dc, edp_links, &edp_num);
1479 	if (!edp_num)
1480 		return;
1481 
1482 	for (i = 0; i < edp_num; i++) {
1483 		edp_link = edp_links[i];
1484 		if (dc->config.edp_not_connected) {
1485 			edp_link->edp_sink_present = false;
1486 		} else {
1487 			dc_link_detect_connection_type(edp_link, &type);
1488 			edp_link->edp_sink_present = (type != dc_connection_none);
1489 		}
1490 	}
1491 }
1492 
dc_hardware_init(struct dc * dc)1493 void dc_hardware_init(struct dc *dc)
1494 {
1495 
1496 	detect_edp_presence(dc);
1497 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1498 		dc->hwss.init_hw(dc);
1499 }
1500 
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1501 void dc_init_callbacks(struct dc *dc,
1502 		const struct dc_callback_init *init_params)
1503 {
1504 	dc->ctx->cp_psp = init_params->cp_psp;
1505 }
1506 
dc_deinit_callbacks(struct dc * dc)1507 void dc_deinit_callbacks(struct dc *dc)
1508 {
1509 	memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1510 }
1511 
dc_destroy(struct dc ** dc)1512 void dc_destroy(struct dc **dc)
1513 {
1514 	dc_destruct(*dc);
1515 	kfree(*dc);
1516 	*dc = NULL;
1517 }
1518 
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1519 static void enable_timing_multisync(
1520 		struct dc *dc,
1521 		struct dc_state *ctx)
1522 {
1523 	int i, multisync_count = 0;
1524 	int pipe_count = dc->res_pool->pipe_count;
1525 	struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1526 
1527 	for (i = 0; i < pipe_count; i++) {
1528 		if (!ctx->res_ctx.pipe_ctx[i].stream ||
1529 				!ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1530 			continue;
1531 		if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1532 			continue;
1533 		multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1534 		multisync_count++;
1535 	}
1536 
1537 	if (multisync_count > 0) {
1538 		dc->hwss.enable_per_frame_crtc_position_reset(
1539 			dc, multisync_count, multisync_pipes);
1540 	}
1541 }
1542 
program_timing_sync(struct dc * dc,struct dc_state * ctx)1543 static void program_timing_sync(
1544 		struct dc *dc,
1545 		struct dc_state *ctx)
1546 {
1547 	int i, j, k;
1548 	int group_index = 0;
1549 	int num_group = 0;
1550 	int pipe_count = dc->res_pool->pipe_count;
1551 	struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1552 
1553 	for (i = 0; i < pipe_count; i++) {
1554 		if (!ctx->res_ctx.pipe_ctx[i].stream
1555 				|| ctx->res_ctx.pipe_ctx[i].top_pipe
1556 				|| ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1557 			continue;
1558 
1559 		unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1560 	}
1561 
1562 	for (i = 0; i < pipe_count; i++) {
1563 		int group_size = 1;
1564 		enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1565 		struct pipe_ctx *pipe_set[MAX_PIPES];
1566 
1567 		if (!unsynced_pipes[i])
1568 			continue;
1569 
1570 		pipe_set[0] = unsynced_pipes[i];
1571 		unsynced_pipes[i] = NULL;
1572 
1573 		/* Add tg to the set, search rest of the tg's for ones with
1574 		 * same timing, add all tgs with same timing to the group
1575 		 */
1576 		for (j = i + 1; j < pipe_count; j++) {
1577 			if (!unsynced_pipes[j])
1578 				continue;
1579 			if (sync_type != TIMING_SYNCHRONIZABLE &&
1580 				dc->hwss.enable_vblanks_synchronization &&
1581 				unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1582 				resource_are_vblanks_synchronizable(
1583 					unsynced_pipes[j]->stream,
1584 					pipe_set[0]->stream)) {
1585 				sync_type = VBLANK_SYNCHRONIZABLE;
1586 				pipe_set[group_size] = unsynced_pipes[j];
1587 				unsynced_pipes[j] = NULL;
1588 				group_size++;
1589 			} else
1590 			if (sync_type != VBLANK_SYNCHRONIZABLE &&
1591 				resource_are_streams_timing_synchronizable(
1592 					unsynced_pipes[j]->stream,
1593 					pipe_set[0]->stream)) {
1594 				sync_type = TIMING_SYNCHRONIZABLE;
1595 				pipe_set[group_size] = unsynced_pipes[j];
1596 				unsynced_pipes[j] = NULL;
1597 				group_size++;
1598 			}
1599 		}
1600 
1601 		/* set first unblanked pipe as master */
1602 		for (j = 0; j < group_size; j++) {
1603 			bool is_blanked;
1604 
1605 			if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1606 				is_blanked =
1607 					pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1608 			else
1609 				is_blanked =
1610 					pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1611 			if (!is_blanked) {
1612 				if (j == 0)
1613 					break;
1614 
1615 				swap(pipe_set[0], pipe_set[j]);
1616 				break;
1617 			}
1618 		}
1619 
1620 		for (k = 0; k < group_size; k++) {
1621 			struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1622 
1623 			status->timing_sync_info.group_id = num_group;
1624 			status->timing_sync_info.group_size = group_size;
1625 			if (k == 0)
1626 				status->timing_sync_info.master = true;
1627 			else
1628 				status->timing_sync_info.master = false;
1629 
1630 		}
1631 
1632 		/* remove any other unblanked pipes as they have already been synced */
1633 		if (dc->config.use_pipe_ctx_sync_logic) {
1634 			/* check pipe's syncd to decide which pipe to be removed */
1635 			for (j = 1; j < group_size; j++) {
1636 				if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1637 					group_size--;
1638 					pipe_set[j] = pipe_set[group_size];
1639 					j--;
1640 				} else
1641 					/* link slave pipe's syncd with master pipe */
1642 					pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1643 			}
1644 		} else {
1645 			/* remove any other pipes by checking valid plane */
1646 			for (j = j + 1; j < group_size; j++) {
1647 				bool is_blanked;
1648 
1649 				if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1650 					is_blanked =
1651 						pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1652 				else
1653 					is_blanked =
1654 						pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1655 				if (!is_blanked) {
1656 					group_size--;
1657 					pipe_set[j] = pipe_set[group_size];
1658 					j--;
1659 				}
1660 			}
1661 		}
1662 
1663 		if (group_size > 1) {
1664 			if (sync_type == TIMING_SYNCHRONIZABLE) {
1665 				dc->hwss.enable_timing_synchronization(
1666 					dc, ctx, group_index, group_size, pipe_set);
1667 			} else
1668 				if (sync_type == VBLANK_SYNCHRONIZABLE) {
1669 				dc->hwss.enable_vblanks_synchronization(
1670 					dc, group_index, group_size, pipe_set);
1671 				}
1672 			group_index++;
1673 		}
1674 		num_group++;
1675 	}
1676 }
1677 
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1678 static bool streams_changed(struct dc *dc,
1679 			    struct dc_stream_state *streams[],
1680 			    uint8_t stream_count)
1681 {
1682 	uint8_t i;
1683 
1684 	if (stream_count != dc->current_state->stream_count)
1685 		return true;
1686 
1687 	for (i = 0; i < dc->current_state->stream_count; i++) {
1688 		if (dc->current_state->streams[i] != streams[i])
1689 			return true;
1690 		if (!streams[i]->link->link_state_valid)
1691 			return true;
1692 	}
1693 
1694 	return false;
1695 }
1696 
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1697 bool dc_validate_boot_timing(const struct dc *dc,
1698 				const struct dc_sink *sink,
1699 				struct dc_crtc_timing *crtc_timing)
1700 {
1701 	struct timing_generator *tg;
1702 	struct stream_encoder *se = NULL;
1703 
1704 	struct dc_crtc_timing hw_crtc_timing = {0};
1705 
1706 	struct dc_link *link = sink->link;
1707 	unsigned int i, enc_inst, tg_inst = 0;
1708 
1709 	/* Support seamless boot on EDP displays only */
1710 	if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1711 		return false;
1712 	}
1713 
1714 	if (dc->debug.force_odm_combine)
1715 		return false;
1716 
1717 	/* Check for enabled DIG to identify enabled display */
1718 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1719 		return false;
1720 
1721 	enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1722 
1723 	if (enc_inst == ENGINE_ID_UNKNOWN)
1724 		return false;
1725 
1726 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1727 		if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1728 
1729 			se = dc->res_pool->stream_enc[i];
1730 
1731 			tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1732 				dc->res_pool->stream_enc[i]);
1733 			break;
1734 		}
1735 	}
1736 
1737 	// tg_inst not found
1738 	if (i == dc->res_pool->stream_enc_count)
1739 		return false;
1740 
1741 	if (tg_inst >= dc->res_pool->timing_generator_count)
1742 		return false;
1743 
1744 	if (tg_inst != link->link_enc->preferred_engine)
1745 		return false;
1746 
1747 	tg = dc->res_pool->timing_generators[tg_inst];
1748 
1749 	if (!tg->funcs->get_hw_timing)
1750 		return false;
1751 
1752 	if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1753 		return false;
1754 
1755 	if (crtc_timing->h_total != hw_crtc_timing.h_total)
1756 		return false;
1757 
1758 	if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1759 		return false;
1760 
1761 	if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1762 		return false;
1763 
1764 	if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1765 		return false;
1766 
1767 	if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1768 		return false;
1769 
1770 	if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1771 		return false;
1772 
1773 	if (crtc_timing->v_total != hw_crtc_timing.v_total)
1774 		return false;
1775 
1776 	if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1777 		return false;
1778 
1779 	if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1780 		return false;
1781 
1782 	if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1783 		return false;
1784 
1785 	if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1786 		return false;
1787 
1788 	if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1789 		return false;
1790 
1791 	/* block DSC for now, as VBIOS does not currently support DSC timings */
1792 	if (crtc_timing->flags.DSC)
1793 		return false;
1794 
1795 	if (dc_is_dp_signal(link->connector_signal)) {
1796 		unsigned int pix_clk_100hz = 0;
1797 		uint32_t numOdmPipes = 1;
1798 		uint32_t id_src[4] = {0};
1799 
1800 		dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1801 			dc->res_pool->dp_clock_source,
1802 			tg_inst, &pix_clk_100hz);
1803 
1804 		if (tg->funcs->get_optc_source)
1805 			tg->funcs->get_optc_source(tg,
1806 						&numOdmPipes, &id_src[0], &id_src[1]);
1807 
1808 		if (numOdmPipes == 2)
1809 			pix_clk_100hz *= 2;
1810 		if (numOdmPipes == 4)
1811 			pix_clk_100hz *= 4;
1812 
1813 		// Note: In rare cases, HW pixclk may differ from crtc's pixclk
1814 		// slightly due to rounding issues in 10 kHz units.
1815 		if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1816 			return false;
1817 
1818 		if (!se->funcs->dp_get_pixel_format)
1819 			return false;
1820 
1821 		if (!se->funcs->dp_get_pixel_format(
1822 			se,
1823 			&hw_crtc_timing.pixel_encoding,
1824 			&hw_crtc_timing.display_color_depth))
1825 			return false;
1826 
1827 		if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1828 			return false;
1829 
1830 		if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1831 			return false;
1832 	}
1833 
1834 	if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1835 		return false;
1836 	}
1837 
1838 	if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1839 		return false;
1840 
1841 	if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1842 		DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1843 		return false;
1844 	}
1845 
1846 	return true;
1847 }
1848 
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1849 static inline bool should_update_pipe_for_stream(
1850 		struct dc_state *context,
1851 		struct pipe_ctx *pipe_ctx,
1852 		struct dc_stream_state *stream)
1853 {
1854 	return (pipe_ctx->stream && pipe_ctx->stream == stream);
1855 }
1856 
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1857 static inline bool should_update_pipe_for_plane(
1858 		struct dc_state *context,
1859 		struct pipe_ctx *pipe_ctx,
1860 		struct dc_plane_state *plane_state)
1861 {
1862 	return (pipe_ctx->plane_state == plane_state);
1863 }
1864 
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1865 void dc_enable_stereo(
1866 	struct dc *dc,
1867 	struct dc_state *context,
1868 	struct dc_stream_state *streams[],
1869 	uint8_t stream_count)
1870 {
1871 	int i, j;
1872 	struct pipe_ctx *pipe;
1873 
1874 	dc_exit_ips_for_hw_access(dc);
1875 
1876 	for (i = 0; i < MAX_PIPES; i++) {
1877 		if (context != NULL) {
1878 			pipe = &context->res_ctx.pipe_ctx[i];
1879 		} else {
1880 			context = dc->current_state;
1881 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1882 		}
1883 
1884 		for (j = 0; pipe && j < stream_count; j++)  {
1885 			if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1886 				dc->hwss.setup_stereo)
1887 				dc->hwss.setup_stereo(pipe, dc);
1888 		}
1889 	}
1890 }
1891 
dc_trigger_sync(struct dc * dc,struct dc_state * context)1892 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1893 {
1894 	if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1895 		dc_exit_ips_for_hw_access(dc);
1896 
1897 		enable_timing_multisync(dc, context);
1898 		program_timing_sync(dc, context);
1899 	}
1900 }
1901 
get_stream_mask(struct dc * dc,struct dc_state * context)1902 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1903 {
1904 	int i;
1905 	unsigned int stream_mask = 0;
1906 
1907 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1908 		if (context->res_ctx.pipe_ctx[i].stream)
1909 			stream_mask |= 1 << i;
1910 	}
1911 
1912 	return stream_mask;
1913 }
1914 
dc_z10_restore(const struct dc * dc)1915 void dc_z10_restore(const struct dc *dc)
1916 {
1917 	if (dc->hwss.z10_restore)
1918 		dc->hwss.z10_restore(dc);
1919 }
1920 
dc_z10_save_init(struct dc * dc)1921 void dc_z10_save_init(struct dc *dc)
1922 {
1923 	if (dc->hwss.z10_save_init)
1924 		dc->hwss.z10_save_init(dc);
1925 }
1926 
1927 /**
1928  * dc_commit_state_no_check - Apply context to the hardware
1929  *
1930  * @dc: DC object with the current status to be updated
1931  * @context: New state that will become the current status at the end of this function
1932  *
1933  * Applies given context to the hardware and copy it into current context.
1934  * It's up to the user to release the src context afterwards.
1935  *
1936  * Return: an enum dc_status result code for the operation
1937  */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1938 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1939 {
1940 	struct dc_bios *dcb = dc->ctx->dc_bios;
1941 	enum dc_status result = DC_ERROR_UNEXPECTED;
1942 	struct pipe_ctx *pipe;
1943 	int i, k, l;
1944 	struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1945 	struct dc_state *old_state;
1946 	bool subvp_prev_use = false;
1947 
1948 	dc_z10_restore(dc);
1949 	dc_allow_idle_optimizations(dc, false);
1950 
1951 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1952 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1953 
1954 		/* Check old context for SubVP */
1955 		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
1956 		if (subvp_prev_use)
1957 			break;
1958 	}
1959 
1960 	for (i = 0; i < context->stream_count; i++)
1961 		dc_streams[i] =  context->streams[i];
1962 
1963 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
1964 		disable_vbios_mode_if_required(dc, context);
1965 		dc->hwss.enable_accelerated_mode(dc, context);
1966 	}
1967 
1968 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
1969 		context->stream_count == 0)
1970 		dc->hwss.prepare_bandwidth(dc, context);
1971 
1972 	/* When SubVP is active, all HW programming must be done while
1973 	 * SubVP lock is acquired
1974 	 */
1975 	if (dc->hwss.subvp_pipe_control_lock)
1976 		dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1977 
1978 	if (dc->hwss.update_dsc_pg)
1979 		dc->hwss.update_dsc_pg(dc, context, false);
1980 
1981 	disable_dangling_plane(dc, context);
1982 	/* re-program planes for existing stream, in case we need to
1983 	 * free up plane resource for later use
1984 	 */
1985 	if (dc->hwss.apply_ctx_for_surface) {
1986 		for (i = 0; i < context->stream_count; i++) {
1987 			if (context->streams[i]->mode_changed)
1988 				continue;
1989 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1990 			dc->hwss.apply_ctx_for_surface(
1991 				dc, context->streams[i],
1992 				context->stream_status[i].plane_count,
1993 				context); /* use new pipe config in new context */
1994 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1995 			dc->hwss.post_unlock_program_front_end(dc, context);
1996 		}
1997 	}
1998 
1999 	/* Program hardware */
2000 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2001 		pipe = &context->res_ctx.pipe_ctx[i];
2002 		dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2003 	}
2004 
2005 	result = dc->hwss.apply_ctx_to_hw(dc, context);
2006 
2007 	if (result != DC_OK) {
2008 		/* Application of dc_state to hardware stopped. */
2009 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2010 		return result;
2011 	}
2012 
2013 	dc_trigger_sync(dc, context);
2014 
2015 	/* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2016 	for (i = 0; i < context->stream_count; i++) {
2017 		uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2018 
2019 		context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2020 		context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2021 	}
2022 
2023 	/* Program all planes within new context*/
2024 	if (dc->hwss.program_front_end_for_ctx) {
2025 		dc->hwss.interdependent_update_lock(dc, context, true);
2026 		dc->hwss.program_front_end_for_ctx(dc, context);
2027 		dc->hwss.interdependent_update_lock(dc, context, false);
2028 		dc->hwss.post_unlock_program_front_end(dc, context);
2029 	}
2030 
2031 	if (dc->hwss.commit_subvp_config)
2032 		dc->hwss.commit_subvp_config(dc, context);
2033 	if (dc->hwss.subvp_pipe_control_lock)
2034 		dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2035 
2036 	for (i = 0; i < context->stream_count; i++) {
2037 		const struct dc_link *link = context->streams[i]->link;
2038 
2039 		if (!context->streams[i]->mode_changed)
2040 			continue;
2041 
2042 		if (dc->hwss.apply_ctx_for_surface) {
2043 			apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2044 			dc->hwss.apply_ctx_for_surface(
2045 					dc, context->streams[i],
2046 					context->stream_status[i].plane_count,
2047 					context);
2048 			apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2049 			dc->hwss.post_unlock_program_front_end(dc, context);
2050 		}
2051 
2052 		/*
2053 		 * enable stereo
2054 		 * TODO rework dc_enable_stereo call to work with validation sets?
2055 		 */
2056 		for (k = 0; k < MAX_PIPES; k++) {
2057 			pipe = &context->res_ctx.pipe_ctx[k];
2058 
2059 			for (l = 0 ; pipe && l < context->stream_count; l++)  {
2060 				if (context->streams[l] &&
2061 					context->streams[l] == pipe->stream &&
2062 					dc->hwss.setup_stereo)
2063 					dc->hwss.setup_stereo(pipe, dc);
2064 			}
2065 		}
2066 
2067 		CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2068 				context->streams[i]->timing.h_addressable,
2069 				context->streams[i]->timing.v_addressable,
2070 				context->streams[i]->timing.h_total,
2071 				context->streams[i]->timing.v_total,
2072 				context->streams[i]->timing.pix_clk_100hz / 10);
2073 	}
2074 
2075 	dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2076 
2077 	if (context->stream_count > get_seamless_boot_stream_count(context) ||
2078 		context->stream_count == 0) {
2079 		/* Must wait for no flips to be pending before doing optimize bw */
2080 		wait_for_no_pipes_pending(dc, context);
2081 		/*
2082 		 * optimized dispclk depends on ODM setup. Need to wait for ODM
2083 		 * update pending complete before optimizing bandwidth.
2084 		 */
2085 		wait_for_odm_update_pending_complete(dc, context);
2086 		/* pplib is notified if disp_num changed */
2087 		dc->hwss.optimize_bandwidth(dc, context);
2088 		/* Need to do otg sync again as otg could be out of sync due to otg
2089 		 * workaround applied during clock update
2090 		 */
2091 		dc_trigger_sync(dc, context);
2092 	}
2093 
2094 	if (dc->hwss.update_dsc_pg)
2095 		dc->hwss.update_dsc_pg(dc, context, true);
2096 
2097 	if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2098 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2099 	else
2100 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2101 
2102 	context->stream_mask = get_stream_mask(dc, context);
2103 
2104 	if (context->stream_mask != dc->current_state->stream_mask)
2105 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2106 
2107 	for (i = 0; i < context->stream_count; i++)
2108 		context->streams[i]->mode_changed = false;
2109 
2110 	/* Clear update flags that were set earlier to avoid redundant programming */
2111 	for (i = 0; i < context->stream_count; i++) {
2112 		context->streams[i]->update_flags.raw = 0x0;
2113 	}
2114 
2115 	old_state = dc->current_state;
2116 	dc->current_state = context;
2117 
2118 	dc_state_release(old_state);
2119 
2120 	dc_state_retain(dc->current_state);
2121 
2122 	return result;
2123 }
2124 
2125 static bool commit_minimal_transition_state(struct dc *dc,
2126 		struct dc_state *transition_base_context);
2127 
2128 /**
2129  * dc_commit_streams - Commit current stream state
2130  *
2131  * @dc: DC object with the commit state to be configured in the hardware
2132  * @params: Parameters for the commit, including the streams to be committed
2133  *
2134  * Function responsible for commit streams change to the hardware.
2135  *
2136  * Return:
2137  * Return DC_OK if everything work as expected, otherwise, return a dc_status
2138  * code.
2139  */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2140 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2141 {
2142 	int i, j;
2143 	struct dc_state *context;
2144 	enum dc_status res = DC_OK;
2145 	struct dc_validation_set set[MAX_STREAMS] = {0};
2146 	struct pipe_ctx *pipe;
2147 	bool handle_exit_odm2to1 = false;
2148 
2149 	if (!params)
2150 		return DC_ERROR_UNEXPECTED;
2151 
2152 	if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2153 		return res;
2154 
2155 	if (!streams_changed(dc, params->streams, params->stream_count) &&
2156 			dc->current_state->power_source == params->power_source)
2157 		return res;
2158 
2159 	dc_exit_ips_for_hw_access(dc);
2160 
2161 	DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2162 
2163 	for (i = 0; i < params->stream_count; i++) {
2164 		struct dc_stream_state *stream = params->streams[i];
2165 		struct dc_stream_status *status = dc_stream_get_status(stream);
2166 
2167 		dc_stream_log(dc, stream);
2168 
2169 		set[i].stream = stream;
2170 
2171 		if (status) {
2172 			set[i].plane_count = status->plane_count;
2173 			for (j = 0; j < status->plane_count; j++)
2174 				set[i].plane_states[j] = status->plane_states[j];
2175 		}
2176 	}
2177 
2178 	/* ODM Combine 2:1 power optimization is only applied for single stream
2179 	 * scenario, it uses extra pipes than needed to reduce power consumption
2180 	 * We need to switch off this feature to make room for new streams.
2181 	 */
2182 	if (params->stream_count > dc->current_state->stream_count &&
2183 			dc->current_state->stream_count == 1) {
2184 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2185 			pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2186 			if (pipe->next_odm_pipe)
2187 				handle_exit_odm2to1 = true;
2188 		}
2189 	}
2190 
2191 	if (handle_exit_odm2to1)
2192 		res = commit_minimal_transition_state(dc, dc->current_state);
2193 
2194 	context = dc_state_create_current_copy(dc);
2195 	if (!context)
2196 		goto context_alloc_fail;
2197 
2198 	context->power_source = params->power_source;
2199 
2200 	res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2201 	if (res != DC_OK) {
2202 		BREAK_TO_DEBUGGER();
2203 		goto fail;
2204 	}
2205 
2206 	res = dc_commit_state_no_check(dc, context);
2207 
2208 	for (i = 0; i < params->stream_count; i++) {
2209 		for (j = 0; j < context->stream_count; j++) {
2210 			if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2211 				params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2212 
2213 			if (dc_is_embedded_signal(params->streams[i]->signal)) {
2214 				struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2215 
2216 				if (dc->hwss.is_abm_supported)
2217 					status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2218 				else
2219 					status->is_abm_supported = true;
2220 			}
2221 		}
2222 	}
2223 
2224 fail:
2225 	dc_state_release(context);
2226 
2227 context_alloc_fail:
2228 
2229 	DC_LOG_DC("%s Finished.\n", __func__);
2230 
2231 	return res;
2232 }
2233 
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2234 bool dc_acquire_release_mpc_3dlut(
2235 		struct dc *dc, bool acquire,
2236 		struct dc_stream_state *stream,
2237 		struct dc_3dlut **lut,
2238 		struct dc_transfer_func **shaper)
2239 {
2240 	int pipe_idx;
2241 	bool ret = false;
2242 	bool found_pipe_idx = false;
2243 	const struct resource_pool *pool = dc->res_pool;
2244 	struct resource_context *res_ctx = &dc->current_state->res_ctx;
2245 	int mpcc_id = 0;
2246 
2247 	if (pool && res_ctx) {
2248 		if (acquire) {
2249 			/*find pipe idx for the given stream*/
2250 			for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2251 				if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2252 					found_pipe_idx = true;
2253 					mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2254 					break;
2255 				}
2256 			}
2257 		} else
2258 			found_pipe_idx = true;/*for release pipe_idx is not required*/
2259 
2260 		if (found_pipe_idx) {
2261 			if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2262 				ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2263 			else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2264 				ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2265 		}
2266 	}
2267 	return ret;
2268 }
2269 
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2270 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2271 {
2272 	int i;
2273 	struct pipe_ctx *pipe;
2274 
2275 	for (i = 0; i < MAX_PIPES; i++) {
2276 		pipe = &context->res_ctx.pipe_ctx[i];
2277 
2278 		// Don't check flip pending on phantom pipes
2279 		if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2280 			continue;
2281 
2282 		/* Must set to false to start with, due to OR in update function */
2283 		pipe->plane_state->status.is_flip_pending = false;
2284 		dc->hwss.update_pending_status(pipe);
2285 		if (pipe->plane_state->status.is_flip_pending)
2286 			return true;
2287 	}
2288 	return false;
2289 }
2290 
2291 /* Perform updates here which need to be deferred until next vupdate
2292  *
2293  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2294  * but forcing lut memory to shutdown state is immediate. This causes
2295  * single frame corruption as lut gets disabled mid-frame unless shutdown
2296  * is deferred until after entering bypass.
2297  */
process_deferred_updates(struct dc * dc)2298 static void process_deferred_updates(struct dc *dc)
2299 {
2300 	int i = 0;
2301 
2302 	if (dc->debug.enable_mem_low_power.bits.cm) {
2303 		ASSERT(dc->dcn_ip->max_num_dpp);
2304 		for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2305 			if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2306 				dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2307 	}
2308 }
2309 
dc_post_update_surfaces_to_stream(struct dc * dc)2310 void dc_post_update_surfaces_to_stream(struct dc *dc)
2311 {
2312 	int i;
2313 	struct dc_state *context = dc->current_state;
2314 
2315 	if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2316 		return;
2317 
2318 	post_surface_trace(dc);
2319 
2320 	/*
2321 	 * Only relevant for DCN behavior where we can guarantee the optimization
2322 	 * is safe to apply - retain the legacy behavior for DCE.
2323 	 */
2324 
2325 	if (dc->ctx->dce_version < DCE_VERSION_MAX)
2326 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2327 	else {
2328 		TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2329 
2330 		if (is_flip_pending_in_pipes(dc, context))
2331 			return;
2332 
2333 		for (i = 0; i < dc->res_pool->pipe_count; i++)
2334 			if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2335 					context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2336 				context->res_ctx.pipe_ctx[i].pipe_idx = i;
2337 				dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2338 			}
2339 
2340 		process_deferred_updates(dc);
2341 
2342 		dc->hwss.optimize_bandwidth(dc, context);
2343 
2344 		if (dc->hwss.update_dsc_pg)
2345 			dc->hwss.update_dsc_pg(dc, context, true);
2346 	}
2347 
2348 	dc->optimized_required = false;
2349 	dc->wm_optimized_required = false;
2350 }
2351 
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2352 bool dc_set_generic_gpio_for_stereo(bool enable,
2353 		struct gpio_service *gpio_service)
2354 {
2355 	enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2356 	struct gpio_pin_info pin_info;
2357 	struct gpio *generic;
2358 	struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2359 			   GFP_KERNEL);
2360 
2361 	if (!config)
2362 		return false;
2363 	pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2364 
2365 	if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2366 		kfree(config);
2367 		return false;
2368 	} else {
2369 		generic = dal_gpio_service_create_generic_mux(
2370 			gpio_service,
2371 			pin_info.offset,
2372 			pin_info.mask);
2373 	}
2374 
2375 	if (!generic) {
2376 		kfree(config);
2377 		return false;
2378 	}
2379 
2380 	gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2381 
2382 	config->enable_output_from_mux = enable;
2383 	config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2384 
2385 	if (gpio_result == GPIO_RESULT_OK)
2386 		gpio_result = dal_mux_setup_config(generic, config);
2387 
2388 	if (gpio_result == GPIO_RESULT_OK) {
2389 		dal_gpio_close(generic);
2390 		dal_gpio_destroy_generic_mux(&generic);
2391 		kfree(config);
2392 		return true;
2393 	} else {
2394 		dal_gpio_close(generic);
2395 		dal_gpio_destroy_generic_mux(&generic);
2396 		kfree(config);
2397 		return false;
2398 	}
2399 }
2400 
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2401 static bool is_surface_in_context(
2402 		const struct dc_state *context,
2403 		const struct dc_plane_state *plane_state)
2404 {
2405 	int j;
2406 
2407 	for (j = 0; j < MAX_PIPES; j++) {
2408 		const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2409 
2410 		if (plane_state == pipe_ctx->plane_state) {
2411 			return true;
2412 		}
2413 	}
2414 
2415 	return false;
2416 }
2417 
get_plane_info_update_type(const struct dc_surface_update * u)2418 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2419 {
2420 	union surface_update_flags *update_flags = &u->surface->update_flags;
2421 	enum surface_update_type update_type = UPDATE_TYPE_FAST;
2422 
2423 	if (!u->plane_info)
2424 		return UPDATE_TYPE_FAST;
2425 
2426 	if (u->plane_info->color_space != u->surface->color_space) {
2427 		update_flags->bits.color_space_change = 1;
2428 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2429 	}
2430 
2431 	if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2432 		update_flags->bits.horizontal_mirror_change = 1;
2433 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2434 	}
2435 
2436 	if (u->plane_info->rotation != u->surface->rotation) {
2437 		update_flags->bits.rotation_change = 1;
2438 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2439 	}
2440 
2441 	if (u->plane_info->format != u->surface->format) {
2442 		update_flags->bits.pixel_format_change = 1;
2443 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2444 	}
2445 
2446 	if (u->plane_info->stereo_format != u->surface->stereo_format) {
2447 		update_flags->bits.stereo_format_change = 1;
2448 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2449 	}
2450 
2451 	if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2452 		update_flags->bits.per_pixel_alpha_change = 1;
2453 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2454 	}
2455 
2456 	if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2457 		update_flags->bits.global_alpha_change = 1;
2458 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2459 	}
2460 
2461 	if (u->plane_info->dcc.enable != u->surface->dcc.enable
2462 			|| u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2463 			|| u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2464 		/* During DCC on/off, stutter period is calculated before
2465 		 * DCC has fully transitioned. This results in incorrect
2466 		 * stutter period calculation. Triggering a full update will
2467 		 * recalculate stutter period.
2468 		 */
2469 		update_flags->bits.dcc_change = 1;
2470 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2471 	}
2472 
2473 	if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2474 			resource_pixel_format_to_bpp(u->surface->format)) {
2475 		/* different bytes per element will require full bandwidth
2476 		 * and DML calculation
2477 		 */
2478 		update_flags->bits.bpp_change = 1;
2479 		elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2480 	}
2481 
2482 	if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2483 			|| u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2484 		update_flags->bits.plane_size_change = 1;
2485 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2486 	}
2487 
2488 
2489 	if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2490 			sizeof(union dc_tiling_info)) != 0) {
2491 		update_flags->bits.swizzle_change = 1;
2492 		elevate_update_type(&update_type, UPDATE_TYPE_MED);
2493 
2494 		/* todo: below are HW dependent, we should add a hook to
2495 		 * DCE/N resource and validated there.
2496 		 */
2497 		if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2498 			/* swizzled mode requires RQ to be setup properly,
2499 			 * thus need to run DML to calculate RQ settings
2500 			 */
2501 			update_flags->bits.bandwidth_change = 1;
2502 			elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2503 		}
2504 	}
2505 
2506 	/* This should be UPDATE_TYPE_FAST if nothing has changed. */
2507 	return update_type;
2508 }
2509 
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2510 static enum surface_update_type get_scaling_info_update_type(
2511 		const struct dc *dc,
2512 		const struct dc_surface_update *u)
2513 {
2514 	union surface_update_flags *update_flags = &u->surface->update_flags;
2515 
2516 	if (!u->scaling_info)
2517 		return UPDATE_TYPE_FAST;
2518 
2519 	if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2520 			|| u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2521 			|| u->scaling_info->scaling_quality.integer_scaling !=
2522 				u->surface->scaling_quality.integer_scaling
2523 			) {
2524 		update_flags->bits.scaling_change = 1;
2525 
2526 		if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2527 			|| u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2528 				&& (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2529 					|| u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2530 			/* Making dst rect smaller requires a bandwidth change */
2531 			update_flags->bits.bandwidth_change = 1;
2532 	}
2533 
2534 	if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2535 		|| u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2536 
2537 		update_flags->bits.scaling_change = 1;
2538 		if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2539 				|| u->scaling_info->src_rect.height > u->surface->src_rect.height)
2540 			/* Making src rect bigger requires a bandwidth change */
2541 			update_flags->bits.clock_change = 1;
2542 	}
2543 
2544 	if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2545 		(u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2546 		 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2547 		 /* Changing clip size of a large surface may result in MPC slice count change */
2548 		update_flags->bits.bandwidth_change = 1;
2549 
2550 	if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width ||
2551 			u->scaling_info->clip_rect.height != u->surface->clip_rect.height)
2552 		update_flags->bits.clip_size_change = 1;
2553 
2554 	if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2555 			|| u->scaling_info->src_rect.y != u->surface->src_rect.y
2556 			|| u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2557 			|| u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2558 			|| u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2559 			|| u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2560 		update_flags->bits.position_change = 1;
2561 
2562 	if (update_flags->bits.clock_change
2563 			|| update_flags->bits.bandwidth_change
2564 			|| update_flags->bits.scaling_change)
2565 		return UPDATE_TYPE_FULL;
2566 
2567 	if (update_flags->bits.position_change ||
2568 			update_flags->bits.clip_size_change)
2569 		return UPDATE_TYPE_MED;
2570 
2571 	return UPDATE_TYPE_FAST;
2572 }
2573 
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2574 static enum surface_update_type det_surface_update(const struct dc *dc,
2575 		const struct dc_surface_update *u)
2576 {
2577 	const struct dc_state *context = dc->current_state;
2578 	enum surface_update_type type;
2579 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2580 	union surface_update_flags *update_flags = &u->surface->update_flags;
2581 
2582 	if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2583 		update_flags->raw = 0xFFFFFFFF;
2584 		return UPDATE_TYPE_FULL;
2585 	}
2586 
2587 	update_flags->raw = 0; // Reset all flags
2588 
2589 	type = get_plane_info_update_type(u);
2590 	elevate_update_type(&overall_type, type);
2591 
2592 	type = get_scaling_info_update_type(dc, u);
2593 	elevate_update_type(&overall_type, type);
2594 
2595 	if (u->flip_addr) {
2596 		update_flags->bits.addr_update = 1;
2597 		if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2598 			update_flags->bits.tmz_changed = 1;
2599 			elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2600 		}
2601 	}
2602 	if (u->in_transfer_func)
2603 		update_flags->bits.in_transfer_func_change = 1;
2604 
2605 	if (u->input_csc_color_matrix)
2606 		update_flags->bits.input_csc_change = 1;
2607 
2608 	if (u->coeff_reduction_factor)
2609 		update_flags->bits.coeff_reduction_change = 1;
2610 
2611 	if (u->gamut_remap_matrix)
2612 		update_flags->bits.gamut_remap_change = 1;
2613 
2614 	if (u->blend_tf)
2615 		update_flags->bits.gamma_change = 1;
2616 
2617 	if (u->gamma) {
2618 		enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2619 
2620 		if (u->plane_info)
2621 			format = u->plane_info->format;
2622 		else if (u->surface)
2623 			format = u->surface->format;
2624 
2625 		if (dce_use_lut(format))
2626 			update_flags->bits.gamma_change = 1;
2627 	}
2628 
2629 	if (u->lut3d_func || u->func_shaper)
2630 		update_flags->bits.lut_3d = 1;
2631 
2632 	if (u->hdr_mult.value)
2633 		if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2634 			update_flags->bits.hdr_mult = 1;
2635 			elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2636 		}
2637 
2638 	if (update_flags->bits.in_transfer_func_change) {
2639 		type = UPDATE_TYPE_MED;
2640 		elevate_update_type(&overall_type, type);
2641 	}
2642 
2643 	if (update_flags->bits.lut_3d) {
2644 		type = UPDATE_TYPE_FULL;
2645 		elevate_update_type(&overall_type, type);
2646 	}
2647 
2648 	if (dc->debug.enable_legacy_fast_update &&
2649 			(update_flags->bits.gamma_change ||
2650 			update_flags->bits.gamut_remap_change ||
2651 			update_flags->bits.input_csc_change ||
2652 			update_flags->bits.coeff_reduction_change)) {
2653 		type = UPDATE_TYPE_FULL;
2654 		elevate_update_type(&overall_type, type);
2655 	}
2656 	return overall_type;
2657 }
2658 
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2659 static enum surface_update_type check_update_surfaces_for_stream(
2660 		struct dc *dc,
2661 		struct dc_surface_update *updates,
2662 		int surface_count,
2663 		struct dc_stream_update *stream_update,
2664 		const struct dc_stream_status *stream_status)
2665 {
2666 	int i;
2667 	enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2668 
2669 	if (dc->idle_optimizations_allowed)
2670 		overall_type = UPDATE_TYPE_FULL;
2671 
2672 	if (stream_status == NULL || stream_status->plane_count != surface_count)
2673 		overall_type = UPDATE_TYPE_FULL;
2674 
2675 	if (stream_update && stream_update->pending_test_pattern) {
2676 		overall_type = UPDATE_TYPE_FULL;
2677 	}
2678 
2679 	/* some stream updates require passive update */
2680 	if (stream_update) {
2681 		union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2682 
2683 		if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2684 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2685 			stream_update->integer_scaling_update)
2686 			su_flags->bits.scaling = 1;
2687 
2688 		if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2689 			su_flags->bits.out_tf = 1;
2690 
2691 		if (stream_update->abm_level)
2692 			su_flags->bits.abm_level = 1;
2693 
2694 		if (stream_update->dpms_off)
2695 			su_flags->bits.dpms_off = 1;
2696 
2697 		if (stream_update->gamut_remap)
2698 			su_flags->bits.gamut_remap = 1;
2699 
2700 		if (stream_update->wb_update)
2701 			su_flags->bits.wb_update = 1;
2702 
2703 		if (stream_update->dsc_config)
2704 			su_flags->bits.dsc_changed = 1;
2705 
2706 		if (stream_update->mst_bw_update)
2707 			su_flags->bits.mst_bw = 1;
2708 
2709 		if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2710 			(stream_update->vrr_infopacket || stream_update->allow_freesync ||
2711 				stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2712 			su_flags->bits.fams_changed = 1;
2713 
2714 		if (su_flags->raw != 0)
2715 			overall_type = UPDATE_TYPE_FULL;
2716 
2717 		if (stream_update->output_csc_transform || stream_update->output_color_space)
2718 			su_flags->bits.out_csc = 1;
2719 
2720 		/* Output transfer function changes do not require bandwidth recalculation,
2721 		 * so don't trigger a full update
2722 		 */
2723 		if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2724 			su_flags->bits.out_tf = 1;
2725 	}
2726 
2727 	for (i = 0 ; i < surface_count; i++) {
2728 		enum surface_update_type type =
2729 				det_surface_update(dc, &updates[i]);
2730 
2731 		elevate_update_type(&overall_type, type);
2732 	}
2733 
2734 	return overall_type;
2735 }
2736 
2737 /*
2738  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2739  *
2740  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2741  */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2742 enum surface_update_type dc_check_update_surfaces_for_stream(
2743 		struct dc *dc,
2744 		struct dc_surface_update *updates,
2745 		int surface_count,
2746 		struct dc_stream_update *stream_update,
2747 		const struct dc_stream_status *stream_status)
2748 {
2749 	int i;
2750 	enum surface_update_type type;
2751 
2752 	if (stream_update)
2753 		stream_update->stream->update_flags.raw = 0;
2754 	for (i = 0; i < surface_count; i++)
2755 		updates[i].surface->update_flags.raw = 0;
2756 
2757 	type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2758 	if (type == UPDATE_TYPE_FULL) {
2759 		if (stream_update) {
2760 			uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2761 			stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2762 			stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2763 		}
2764 		for (i = 0; i < surface_count; i++)
2765 			updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2766 	}
2767 
2768 	if (type == UPDATE_TYPE_FAST) {
2769 		// If there's an available clock comparator, we use that.
2770 		if (dc->clk_mgr->funcs->are_clock_states_equal) {
2771 			if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2772 				dc->optimized_required = true;
2773 		// Else we fallback to mem compare.
2774 		} else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2775 			dc->optimized_required = true;
2776 		}
2777 
2778 		dc->optimized_required |= dc->wm_optimized_required;
2779 	}
2780 
2781 	return type;
2782 }
2783 
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2784 static struct dc_stream_status *stream_get_status(
2785 	struct dc_state *ctx,
2786 	struct dc_stream_state *stream)
2787 {
2788 	uint8_t i;
2789 
2790 	for (i = 0; i < ctx->stream_count; i++) {
2791 		if (stream == ctx->streams[i]) {
2792 			return &ctx->stream_status[i];
2793 		}
2794 	}
2795 
2796 	return NULL;
2797 }
2798 
2799 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2800 
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2801 static void copy_surface_update_to_plane(
2802 		struct dc_plane_state *surface,
2803 		struct dc_surface_update *srf_update)
2804 {
2805 	if (srf_update->flip_addr) {
2806 		surface->address = srf_update->flip_addr->address;
2807 		surface->flip_immediate =
2808 			srf_update->flip_addr->flip_immediate;
2809 		surface->time.time_elapsed_in_us[surface->time.index] =
2810 			srf_update->flip_addr->flip_timestamp_in_us -
2811 				surface->time.prev_update_time_in_us;
2812 		surface->time.prev_update_time_in_us =
2813 			srf_update->flip_addr->flip_timestamp_in_us;
2814 		surface->time.index++;
2815 		if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2816 			surface->time.index = 0;
2817 
2818 		surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2819 	}
2820 
2821 	if (srf_update->scaling_info) {
2822 		surface->scaling_quality =
2823 				srf_update->scaling_info->scaling_quality;
2824 		surface->dst_rect =
2825 				srf_update->scaling_info->dst_rect;
2826 		surface->src_rect =
2827 				srf_update->scaling_info->src_rect;
2828 		surface->clip_rect =
2829 				srf_update->scaling_info->clip_rect;
2830 	}
2831 
2832 	if (srf_update->plane_info) {
2833 		surface->color_space =
2834 				srf_update->plane_info->color_space;
2835 		surface->format =
2836 				srf_update->plane_info->format;
2837 		surface->plane_size =
2838 				srf_update->plane_info->plane_size;
2839 		surface->rotation =
2840 				srf_update->plane_info->rotation;
2841 		surface->horizontal_mirror =
2842 				srf_update->plane_info->horizontal_mirror;
2843 		surface->stereo_format =
2844 				srf_update->plane_info->stereo_format;
2845 		surface->tiling_info =
2846 				srf_update->plane_info->tiling_info;
2847 		surface->visible =
2848 				srf_update->plane_info->visible;
2849 		surface->per_pixel_alpha =
2850 				srf_update->plane_info->per_pixel_alpha;
2851 		surface->global_alpha =
2852 				srf_update->plane_info->global_alpha;
2853 		surface->global_alpha_value =
2854 				srf_update->plane_info->global_alpha_value;
2855 		surface->dcc =
2856 				srf_update->plane_info->dcc;
2857 		surface->layer_index =
2858 				srf_update->plane_info->layer_index;
2859 	}
2860 
2861 	if (srf_update->gamma) {
2862 		memcpy(&surface->gamma_correction.entries,
2863 			&srf_update->gamma->entries,
2864 			sizeof(struct dc_gamma_entries));
2865 		surface->gamma_correction.is_identity =
2866 			srf_update->gamma->is_identity;
2867 		surface->gamma_correction.num_entries =
2868 			srf_update->gamma->num_entries;
2869 		surface->gamma_correction.type =
2870 			srf_update->gamma->type;
2871 	}
2872 
2873 	if (srf_update->in_transfer_func) {
2874 		surface->in_transfer_func.sdr_ref_white_level =
2875 			srf_update->in_transfer_func->sdr_ref_white_level;
2876 		surface->in_transfer_func.tf =
2877 			srf_update->in_transfer_func->tf;
2878 		surface->in_transfer_func.type =
2879 			srf_update->in_transfer_func->type;
2880 		memcpy(&surface->in_transfer_func.tf_pts,
2881 			&srf_update->in_transfer_func->tf_pts,
2882 			sizeof(struct dc_transfer_func_distributed_points));
2883 	}
2884 
2885 	if (srf_update->func_shaper)
2886 		memcpy(&surface->in_shaper_func, srf_update->func_shaper,
2887 		sizeof(surface->in_shaper_func));
2888 
2889 	if (srf_update->lut3d_func)
2890 		memcpy(&surface->lut3d_func, srf_update->lut3d_func,
2891 		sizeof(surface->lut3d_func));
2892 
2893 	if (srf_update->hdr_mult.value)
2894 		surface->hdr_mult =
2895 				srf_update->hdr_mult;
2896 
2897 	if (srf_update->blend_tf)
2898 		memcpy(&surface->blend_tf, srf_update->blend_tf,
2899 		sizeof(surface->blend_tf));
2900 
2901 	if (srf_update->input_csc_color_matrix)
2902 		surface->input_csc_color_matrix =
2903 			*srf_update->input_csc_color_matrix;
2904 
2905 	if (srf_update->coeff_reduction_factor)
2906 		surface->coeff_reduction_factor =
2907 			*srf_update->coeff_reduction_factor;
2908 
2909 	if (srf_update->gamut_remap_matrix)
2910 		surface->gamut_remap_matrix =
2911 			*srf_update->gamut_remap_matrix;
2912 }
2913 
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2914 static void copy_stream_update_to_stream(struct dc *dc,
2915 					 struct dc_state *context,
2916 					 struct dc_stream_state *stream,
2917 					 struct dc_stream_update *update)
2918 {
2919 	struct dc_context *dc_ctx = dc->ctx;
2920 
2921 	if (update == NULL || stream == NULL)
2922 		return;
2923 
2924 	if (update->src.height && update->src.width)
2925 		stream->src = update->src;
2926 
2927 	if (update->dst.height && update->dst.width)
2928 		stream->dst = update->dst;
2929 
2930 	if (update->out_transfer_func) {
2931 		stream->out_transfer_func.sdr_ref_white_level =
2932 			update->out_transfer_func->sdr_ref_white_level;
2933 		stream->out_transfer_func.tf = update->out_transfer_func->tf;
2934 		stream->out_transfer_func.type =
2935 			update->out_transfer_func->type;
2936 		memcpy(&stream->out_transfer_func.tf_pts,
2937 		       &update->out_transfer_func->tf_pts,
2938 		       sizeof(struct dc_transfer_func_distributed_points));
2939 	}
2940 
2941 	if (update->hdr_static_metadata)
2942 		stream->hdr_static_metadata = *update->hdr_static_metadata;
2943 
2944 	if (update->abm_level)
2945 		stream->abm_level = *update->abm_level;
2946 
2947 	if (update->periodic_interrupt)
2948 		stream->periodic_interrupt = *update->periodic_interrupt;
2949 
2950 	if (update->gamut_remap)
2951 		stream->gamut_remap_matrix = *update->gamut_remap;
2952 
2953 	/* Note: this being updated after mode set is currently not a use case
2954 	 * however if it arises OCSC would need to be reprogrammed at the
2955 	 * minimum
2956 	 */
2957 	if (update->output_color_space)
2958 		stream->output_color_space = *update->output_color_space;
2959 
2960 	if (update->output_csc_transform)
2961 		stream->csc_color_matrix = *update->output_csc_transform;
2962 
2963 	if (update->vrr_infopacket)
2964 		stream->vrr_infopacket = *update->vrr_infopacket;
2965 
2966 	if (update->allow_freesync)
2967 		stream->allow_freesync = *update->allow_freesync;
2968 
2969 	if (update->vrr_active_variable)
2970 		stream->vrr_active_variable = *update->vrr_active_variable;
2971 
2972 	if (update->vrr_active_fixed)
2973 		stream->vrr_active_fixed = *update->vrr_active_fixed;
2974 
2975 	if (update->crtc_timing_adjust)
2976 		stream->adjust = *update->crtc_timing_adjust;
2977 
2978 	if (update->dpms_off)
2979 		stream->dpms_off = *update->dpms_off;
2980 
2981 	if (update->hfvsif_infopacket)
2982 		stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2983 
2984 	if (update->vtem_infopacket)
2985 		stream->vtem_infopacket = *update->vtem_infopacket;
2986 
2987 	if (update->vsc_infopacket)
2988 		stream->vsc_infopacket = *update->vsc_infopacket;
2989 
2990 	if (update->vsp_infopacket)
2991 		stream->vsp_infopacket = *update->vsp_infopacket;
2992 
2993 	if (update->adaptive_sync_infopacket)
2994 		stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2995 
2996 	if (update->dither_option)
2997 		stream->dither_option = *update->dither_option;
2998 
2999 	if (update->pending_test_pattern)
3000 		stream->test_pattern = *update->pending_test_pattern;
3001 	/* update current stream with writeback info */
3002 	if (update->wb_update) {
3003 		int i;
3004 
3005 		stream->num_wb_info = update->wb_update->num_wb_info;
3006 		ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3007 		for (i = 0; i < stream->num_wb_info; i++)
3008 			stream->writeback_info[i] =
3009 				update->wb_update->writeback_info[i];
3010 	}
3011 	if (update->dsc_config) {
3012 		struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3013 		uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3014 		uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3015 				       update->dsc_config->num_slices_v != 0);
3016 
3017 		/* Use temporarry context for validating new DSC config */
3018 		struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3019 
3020 		if (dsc_validate_context) {
3021 			stream->timing.dsc_cfg = *update->dsc_config;
3022 			stream->timing.flags.DSC = enable_dsc;
3023 			if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3024 				stream->timing.dsc_cfg = old_dsc_cfg;
3025 				stream->timing.flags.DSC = old_dsc_enabled;
3026 				update->dsc_config = NULL;
3027 			}
3028 
3029 			dc_state_release(dsc_validate_context);
3030 		} else {
3031 			DC_ERROR("Failed to allocate new validate context for DSC change\n");
3032 			update->dsc_config = NULL;
3033 		}
3034 	}
3035 }
3036 
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3037 static void backup_planes_and_stream_state(
3038 		struct dc_scratch_space *scratch,
3039 		struct dc_stream_state *stream)
3040 {
3041 	int i;
3042 	struct dc_stream_status *status = dc_stream_get_status(stream);
3043 
3044 	if (!status)
3045 		return;
3046 
3047 	for (i = 0; i < status->plane_count; i++) {
3048 		scratch->plane_states[i] = *status->plane_states[i];
3049 	}
3050 	scratch->stream_state = *stream;
3051 }
3052 
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3053 static void restore_planes_and_stream_state(
3054 		struct dc_scratch_space *scratch,
3055 		struct dc_stream_state *stream)
3056 {
3057 	int i;
3058 	struct dc_stream_status *status = dc_stream_get_status(stream);
3059 
3060 	if (!status)
3061 		return;
3062 
3063 	for (i = 0; i < status->plane_count; i++) {
3064 		*status->plane_states[i] = scratch->plane_states[i];
3065 	}
3066 	*stream = scratch->stream_state;
3067 }
3068 
3069 /**
3070  * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3071  *
3072  * @dc: Current DC state
3073  * @context: New DC state to be programmed
3074  * @surface_count: Number of surfaces that have an updated
3075  * @stream: Corresponding stream to be updated in the current flip
3076  *
3077  * Updating seamless boot flags do not need to be part of the commit sequence. This
3078  * helper function will update the seamless boot flags on each flip (if required)
3079  * outside of the HW commit sequence (fast or slow).
3080  *
3081  * Return: void
3082  */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3083 static void update_seamless_boot_flags(struct dc *dc,
3084 		struct dc_state *context,
3085 		int surface_count,
3086 		struct dc_stream_state *stream)
3087 {
3088 	if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3089 		/* Optimize seamless boot flag keeps clocks and watermarks high until
3090 		 * first flip. After first flip, optimization is required to lower
3091 		 * bandwidth. Important to note that it is expected UEFI will
3092 		 * only light up a single display on POST, therefore we only expect
3093 		 * one stream with seamless boot flag set.
3094 		 */
3095 		if (stream->apply_seamless_boot_optimization) {
3096 			stream->apply_seamless_boot_optimization = false;
3097 
3098 			if (get_seamless_boot_stream_count(context) == 0)
3099 				dc->optimized_required = true;
3100 		}
3101 	}
3102 }
3103 
3104 /**
3105  * update_planes_and_stream_state() - The function takes planes and stream
3106  * updates as inputs and determines the appropriate update type. If update type
3107  * is FULL, the function allocates a new context, populates and validates it.
3108  * Otherwise, it updates current dc context. The function will return both
3109  * new_context and new_update_type back to the caller. The function also backs
3110  * up both current and new contexts into corresponding dc state scratch memory.
3111  * TODO: The function does too many things, and even conditionally allocates dc
3112  * context memory implicitly. We should consider to break it down.
3113  *
3114  * @dc: Current DC state
3115  * @srf_updates: an array of surface updates
3116  * @surface_count: surface update count
3117  * @stream: Corresponding stream to be updated
3118  * @stream_update: stream update
3119  * @new_update_type: [out] determined update type by the function
3120  * @new_context: [out] new context allocated and validated if update type is
3121  * FULL, reference to current context if update type is less than FULL.
3122  *
3123  * Return: true if a valid update is populated into new_context, false
3124  * otherwise.
3125  */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3126 static bool update_planes_and_stream_state(struct dc *dc,
3127 		struct dc_surface_update *srf_updates, int surface_count,
3128 		struct dc_stream_state *stream,
3129 		struct dc_stream_update *stream_update,
3130 		enum surface_update_type *new_update_type,
3131 		struct dc_state **new_context)
3132 {
3133 	struct dc_state *context;
3134 	int i, j;
3135 	enum surface_update_type update_type;
3136 	const struct dc_stream_status *stream_status;
3137 	struct dc_context *dc_ctx = dc->ctx;
3138 
3139 	stream_status = dc_stream_get_status(stream);
3140 
3141 	if (!stream_status) {
3142 		if (surface_count) /* Only an error condition if surf_count non-zero*/
3143 			ASSERT(false);
3144 
3145 		return false; /* Cannot commit surface to stream that is not committed */
3146 	}
3147 
3148 	context = dc->current_state;
3149 	update_type = dc_check_update_surfaces_for_stream(
3150 			dc, srf_updates, surface_count, stream_update, stream_status);
3151 	if (update_type == UPDATE_TYPE_FULL)
3152 		backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3153 
3154 	/* update current stream with the new updates */
3155 	copy_stream_update_to_stream(dc, context, stream, stream_update);
3156 
3157 	/* do not perform surface update if surface has invalid dimensions
3158 	 * (all zero) and no scaling_info is provided
3159 	 */
3160 	if (surface_count > 0) {
3161 		for (i = 0; i < surface_count; i++) {
3162 			if ((srf_updates[i].surface->src_rect.width == 0 ||
3163 				 srf_updates[i].surface->src_rect.height == 0 ||
3164 				 srf_updates[i].surface->dst_rect.width == 0 ||
3165 				 srf_updates[i].surface->dst_rect.height == 0) &&
3166 				(!srf_updates[i].scaling_info ||
3167 				  srf_updates[i].scaling_info->src_rect.width == 0 ||
3168 				  srf_updates[i].scaling_info->src_rect.height == 0 ||
3169 				  srf_updates[i].scaling_info->dst_rect.width == 0 ||
3170 				  srf_updates[i].scaling_info->dst_rect.height == 0)) {
3171 				DC_ERROR("Invalid src/dst rects in surface update!\n");
3172 				return false;
3173 			}
3174 		}
3175 	}
3176 
3177 	if (update_type >= update_surface_trace_level)
3178 		update_surface_trace(dc, srf_updates, surface_count);
3179 
3180 	for (i = 0; i < surface_count; i++)
3181 		copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3182 
3183 	if (update_type >= UPDATE_TYPE_FULL) {
3184 		struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3185 
3186 		for (i = 0; i < surface_count; i++)
3187 			new_planes[i] = srf_updates[i].surface;
3188 
3189 		/* initialize scratch memory for building context */
3190 		context = dc_state_create_copy(dc->current_state);
3191 		if (context == NULL) {
3192 			DC_ERROR("Failed to allocate new validate context!\n");
3193 			return false;
3194 		}
3195 
3196 		/* For each full update, remove all existing phantom pipes first.
3197 		 * Ensures that we have enough pipes for newly added MPO planes
3198 		 */
3199 		dc_state_remove_phantom_streams_and_planes(dc, context);
3200 		dc_state_release_phantom_streams_and_planes(dc, context);
3201 
3202 		/*remove old surfaces from context */
3203 		if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3204 
3205 			BREAK_TO_DEBUGGER();
3206 			goto fail;
3207 		}
3208 
3209 		/* add surface to context */
3210 		if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3211 
3212 			BREAK_TO_DEBUGGER();
3213 			goto fail;
3214 		}
3215 	}
3216 
3217 	/* save update parameters into surface */
3218 	for (i = 0; i < surface_count; i++) {
3219 		struct dc_plane_state *surface = srf_updates[i].surface;
3220 
3221 		if (update_type != UPDATE_TYPE_MED)
3222 			continue;
3223 		if (surface->update_flags.bits.clip_size_change ||
3224 				surface->update_flags.bits.position_change) {
3225 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3226 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3227 
3228 				if (pipe_ctx->plane_state != surface)
3229 					continue;
3230 
3231 				resource_build_scaling_params(pipe_ctx);
3232 			}
3233 		}
3234 	}
3235 
3236 	if (update_type == UPDATE_TYPE_FULL) {
3237 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3238 			BREAK_TO_DEBUGGER();
3239 			goto fail;
3240 		}
3241 	}
3242 	update_seamless_boot_flags(dc, context, surface_count, stream);
3243 
3244 	*new_context = context;
3245 	*new_update_type = update_type;
3246 	if (update_type == UPDATE_TYPE_FULL)
3247 		backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3248 
3249 	return true;
3250 
3251 fail:
3252 	dc_state_release(context);
3253 
3254 	return false;
3255 
3256 }
3257 
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3258 static void commit_planes_do_stream_update(struct dc *dc,
3259 		struct dc_stream_state *stream,
3260 		struct dc_stream_update *stream_update,
3261 		enum surface_update_type update_type,
3262 		struct dc_state *context)
3263 {
3264 	int j;
3265 
3266 	// Stream updates
3267 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3268 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3269 
3270 		if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3271 
3272 			if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3273 				dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3274 
3275 			if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3276 					stream_update->vrr_infopacket ||
3277 					stream_update->vsc_infopacket ||
3278 					stream_update->vsp_infopacket ||
3279 					stream_update->hfvsif_infopacket ||
3280 					stream_update->adaptive_sync_infopacket ||
3281 					stream_update->vtem_infopacket) {
3282 				resource_build_info_frame(pipe_ctx);
3283 				dc->hwss.update_info_frame(pipe_ctx);
3284 
3285 				if (dc_is_dp_signal(pipe_ctx->stream->signal))
3286 					dc->link_srv->dp_trace_source_sequence(
3287 							pipe_ctx->stream->link,
3288 							DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3289 			}
3290 
3291 			if (stream_update->hdr_static_metadata &&
3292 					stream->use_dynamic_meta &&
3293 					dc->hwss.set_dmdata_attributes &&
3294 					pipe_ctx->stream->dmdata_address.quad_part != 0)
3295 				dc->hwss.set_dmdata_attributes(pipe_ctx);
3296 
3297 			if (stream_update->gamut_remap)
3298 				dc_stream_set_gamut_remap(dc, stream);
3299 
3300 			if (stream_update->output_csc_transform)
3301 				dc_stream_program_csc_matrix(dc, stream);
3302 
3303 			if (stream_update->dither_option) {
3304 				struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3305 				resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3306 									&pipe_ctx->stream->bit_depth_params);
3307 				pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3308 						&stream->bit_depth_params,
3309 						&stream->clamping);
3310 				while (odm_pipe) {
3311 					odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3312 							&stream->bit_depth_params,
3313 							&stream->clamping);
3314 					odm_pipe = odm_pipe->next_odm_pipe;
3315 				}
3316 			}
3317 
3318 
3319 			/* Full fe update*/
3320 			if (update_type == UPDATE_TYPE_FAST)
3321 				continue;
3322 
3323 			if (stream_update->dsc_config)
3324 				dc->link_srv->update_dsc_config(pipe_ctx);
3325 
3326 			if (stream_update->mst_bw_update) {
3327 				if (stream_update->mst_bw_update->is_increase)
3328 					dc->link_srv->increase_mst_payload(pipe_ctx,
3329 							stream_update->mst_bw_update->mst_stream_bw);
3330  				else
3331 					dc->link_srv->reduce_mst_payload(pipe_ctx,
3332 							stream_update->mst_bw_update->mst_stream_bw);
3333  			}
3334 
3335 			if (stream_update->pending_test_pattern) {
3336 				/*
3337 				 * test pattern params depends on ODM topology
3338 				 * changes that we could be applying to front
3339 				 * end. Since at the current stage front end
3340 				 * changes are not yet applied. We can only
3341 				 * apply test pattern in hw based on current
3342 				 * state and populate the final test pattern
3343 				 * params in new state. If current and new test
3344 				 * pattern params are different as result of
3345 				 * different ODM topology being used, it will be
3346 				 * detected and handle during front end
3347 				 * programming update.
3348 				 */
3349 				dc->link_srv->dp_set_test_pattern(stream->link,
3350 					stream->test_pattern.type,
3351 					stream->test_pattern.color_space,
3352 					stream->test_pattern.p_link_settings,
3353 					stream->test_pattern.p_custom_pattern,
3354 					stream->test_pattern.cust_pattern_size);
3355 				resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3356 			}
3357 
3358 			if (stream_update->dpms_off) {
3359 				if (*stream_update->dpms_off) {
3360 					dc->link_srv->set_dpms_off(pipe_ctx);
3361 					/* for dpms, keep acquired resources*/
3362 					if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3363 						pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3364 
3365 					dc->optimized_required = true;
3366 
3367 				} else {
3368 					if (get_seamless_boot_stream_count(context) == 0)
3369 						dc->hwss.prepare_bandwidth(dc, dc->current_state);
3370 					dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3371 				}
3372 			} else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3373 					&& !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3374 				/*
3375 				 * Workaround for firmware issue in some receivers where they don't pick up
3376 				 * correct output color space unless DP link is disabled/re-enabled
3377 				 */
3378 				dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3379 			}
3380 
3381 			if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3382 				bool should_program_abm = true;
3383 
3384 				// if otg funcs defined check if blanked before programming
3385 				if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3386 					if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3387 						should_program_abm = false;
3388 
3389 				if (should_program_abm) {
3390 					if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3391 						dc->hwss.set_abm_immediate_disable(pipe_ctx);
3392 					} else {
3393 						pipe_ctx->stream_res.abm->funcs->set_abm_level(
3394 							pipe_ctx->stream_res.abm, stream->abm_level);
3395 					}
3396 				}
3397 			}
3398 		}
3399 	}
3400 }
3401 
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3402 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3403 {
3404 	if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3405 			|| stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3406 			&& stream->ctx->dce_version >= DCN_VERSION_3_1)
3407 		return true;
3408 
3409 	if (stream->link->replay_settings.config.replay_supported)
3410 		return true;
3411 
3412 	if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3413 		return true;
3414 
3415 	return false;
3416 }
3417 
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3418 void dc_dmub_update_dirty_rect(struct dc *dc,
3419 			       int surface_count,
3420 			       struct dc_stream_state *stream,
3421 			       struct dc_surface_update *srf_updates,
3422 			       struct dc_state *context)
3423 {
3424 	union dmub_rb_cmd cmd;
3425 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3426 	unsigned int i, j;
3427 	unsigned int panel_inst = 0;
3428 
3429 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3430 		return;
3431 
3432 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3433 		return;
3434 
3435 	memset(&cmd, 0x0, sizeof(cmd));
3436 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3437 	cmd.update_dirty_rect.header.sub_type = 0;
3438 	cmd.update_dirty_rect.header.payload_bytes =
3439 		sizeof(cmd.update_dirty_rect) -
3440 		sizeof(cmd.update_dirty_rect.header);
3441 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3442 	for (i = 0; i < surface_count; i++) {
3443 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3444 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3445 
3446 		if (!srf_updates[i].surface || !flip_addr)
3447 			continue;
3448 		/* Do not send in immediate flip mode */
3449 		if (srf_updates[i].surface->flip_immediate)
3450 			continue;
3451 
3452 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3453 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3454 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3455 				sizeof(flip_addr->dirty_rects));
3456 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3457 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3458 
3459 			if (pipe_ctx->stream != stream)
3460 				continue;
3461 			if (pipe_ctx->plane_state != plane_state)
3462 				continue;
3463 
3464 			update_dirty_rect->panel_inst = panel_inst;
3465 			update_dirty_rect->pipe_idx = j;
3466 			dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3467 		}
3468 	}
3469 }
3470 
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3471 static void build_dmub_update_dirty_rect(
3472 		struct dc *dc,
3473 		int surface_count,
3474 		struct dc_stream_state *stream,
3475 		struct dc_surface_update *srf_updates,
3476 		struct dc_state *context,
3477 		struct dc_dmub_cmd dc_dmub_cmd[],
3478 		unsigned int *dmub_cmd_count)
3479 {
3480 	union dmub_rb_cmd cmd;
3481 	struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3482 	unsigned int i, j;
3483 	unsigned int panel_inst = 0;
3484 
3485 	if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3486 		return;
3487 
3488 	if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3489 		return;
3490 
3491 	memset(&cmd, 0x0, sizeof(cmd));
3492 	cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3493 	cmd.update_dirty_rect.header.sub_type = 0;
3494 	cmd.update_dirty_rect.header.payload_bytes =
3495 		sizeof(cmd.update_dirty_rect) -
3496 		sizeof(cmd.update_dirty_rect.header);
3497 	update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3498 	for (i = 0; i < surface_count; i++) {
3499 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3500 		const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3501 
3502 		if (!srf_updates[i].surface || !flip_addr)
3503 			continue;
3504 		/* Do not send in immediate flip mode */
3505 		if (srf_updates[i].surface->flip_immediate)
3506 			continue;
3507 		update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3508 		update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3509 		memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3510 				sizeof(flip_addr->dirty_rects));
3511 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3512 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3513 
3514 			if (pipe_ctx->stream != stream)
3515 				continue;
3516 			if (pipe_ctx->plane_state != plane_state)
3517 				continue;
3518 			update_dirty_rect->panel_inst = panel_inst;
3519 			update_dirty_rect->pipe_idx = j;
3520 			dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3521 			dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3522 			(*dmub_cmd_count)++;
3523 		}
3524 	}
3525 }
3526 
3527 
3528 /**
3529  * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3530  *
3531  * @dc: Current DC state
3532  * @srf_updates: Array of surface updates
3533  * @surface_count: Number of surfaces that have an updated
3534  * @stream: Corresponding stream to be updated in the current flip
3535  * @context: New DC state to be programmed
3536  *
3537  * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3538  * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3539  *
3540  * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3541  * to build an array of commands and have them sent while the OTG lock is acquired.
3542  *
3543  * Return: void
3544  */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3545 static void build_dmub_cmd_list(struct dc *dc,
3546 		struct dc_surface_update *srf_updates,
3547 		int surface_count,
3548 		struct dc_stream_state *stream,
3549 		struct dc_state *context,
3550 		struct dc_dmub_cmd dc_dmub_cmd[],
3551 		unsigned int *dmub_cmd_count)
3552 {
3553 	// Initialize cmd count to 0
3554 	*dmub_cmd_count = 0;
3555 	build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3556 }
3557 
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3558 static void commit_planes_for_stream_fast(struct dc *dc,
3559 		struct dc_surface_update *srf_updates,
3560 		int surface_count,
3561 		struct dc_stream_state *stream,
3562 		struct dc_stream_update *stream_update,
3563 		enum surface_update_type update_type,
3564 		struct dc_state *context)
3565 {
3566 	int i, j;
3567 	struct pipe_ctx *top_pipe_to_program = NULL;
3568 	struct dc_stream_status *stream_status = NULL;
3569 
3570 	dc_exit_ips_for_hw_access(dc);
3571 
3572 	dc_z10_restore(dc);
3573 
3574 	top_pipe_to_program = resource_get_otg_master_for_stream(
3575 			&context->res_ctx,
3576 			stream);
3577 
3578 	if (!top_pipe_to_program)
3579 		return;
3580 
3581 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3582 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3583 
3584 		if (pipe->stream && pipe->plane_state) {
3585 			set_p_state_switch_method(dc, context, pipe);
3586 
3587 			if (dc->debug.visual_confirm)
3588 				dc_update_visual_confirm_color(dc, context, pipe);
3589 		}
3590 	}
3591 
3592 	for (i = 0; i < surface_count; i++) {
3593 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3594 		/*set logical flag for lock/unlock use*/
3595 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3596 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3597 
3598 			if (!pipe_ctx->plane_state)
3599 				continue;
3600 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3601 				continue;
3602 			pipe_ctx->plane_state->triplebuffer_flips = false;
3603 			if (update_type == UPDATE_TYPE_FAST &&
3604 			    dc->hwss.program_triplebuffer &&
3605 			    !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3606 				/*triple buffer for VUpdate  only*/
3607 				pipe_ctx->plane_state->triplebuffer_flips = true;
3608 			}
3609 		}
3610 	}
3611 
3612 	stream_status = dc_state_get_stream_status(context, stream);
3613 
3614 	build_dmub_cmd_list(dc,
3615 			srf_updates,
3616 			surface_count,
3617 			stream,
3618 			context,
3619 			context->dc_dmub_cmd,
3620 			&(context->dmub_cmd_count));
3621 	hwss_build_fast_sequence(dc,
3622 			context->dc_dmub_cmd,
3623 			context->dmub_cmd_count,
3624 			context->block_sequence,
3625 			&(context->block_sequence_steps),
3626 			top_pipe_to_program,
3627 			stream_status,
3628 			context);
3629 	hwss_execute_sequence(dc,
3630 			context->block_sequence,
3631 			context->block_sequence_steps);
3632 	/* Clear update flags so next flip doesn't have redundant programming
3633 	 * (if there's no stream update, the update flags are not cleared).
3634 	 * Surface updates are cleared unconditionally at the beginning of each flip,
3635 	 * so no need to clear here.
3636 	 */
3637 	if (top_pipe_to_program->stream)
3638 		top_pipe_to_program->stream->update_flags.raw = 0;
3639 }
3640 
wait_for_outstanding_hw_updates(struct dc * dc,struct dc_state * dc_context)3641 static void wait_for_outstanding_hw_updates(struct dc *dc, struct dc_state *dc_context)
3642 {
3643 /*
3644  * This function calls HWSS to wait for any potentially double buffered
3645  * operations to complete. It should be invoked as a pre-amble prior
3646  * to full update programming before asserting any HW locks.
3647  */
3648 	int pipe_idx;
3649 	int opp_inst;
3650 	int opp_count = dc->res_pool->res_cap->num_opp;
3651 	struct hubp *hubp;
3652 	int mpcc_inst;
3653 	const struct pipe_ctx *pipe_ctx;
3654 
3655 	for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3656 		pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3657 
3658 		if (!pipe_ctx->stream)
3659 			continue;
3660 
3661 		if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3662 			pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3663 
3664 		hubp = pipe_ctx->plane_res.hubp;
3665 		if (!hubp)
3666 			continue;
3667 
3668 		mpcc_inst = hubp->inst;
3669 		// MPCC inst is equal to pipe index in practice
3670 		for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3671 			if ((dc->res_pool->opps[opp_inst] != NULL) &&
3672 				(dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst])) {
3673 				dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3674 				dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3675 				break;
3676 			}
3677 		}
3678 	}
3679 	wait_for_odm_update_pending_complete(dc, dc_context);
3680 }
3681 
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3682 static void commit_planes_for_stream(struct dc *dc,
3683 		struct dc_surface_update *srf_updates,
3684 		int surface_count,
3685 		struct dc_stream_state *stream,
3686 		struct dc_stream_update *stream_update,
3687 		enum surface_update_type update_type,
3688 		struct dc_state *context)
3689 {
3690 	int i, j;
3691 	struct pipe_ctx *top_pipe_to_program = NULL;
3692 	bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3693 	bool subvp_prev_use = false;
3694 	bool subvp_curr_use = false;
3695 	uint8_t current_stream_mask = 0;
3696 
3697 	// Once we apply the new subvp context to hardware it won't be in the
3698 	// dc->current_state anymore, so we have to cache it before we apply
3699 	// the new SubVP context
3700 	subvp_prev_use = false;
3701 	dc_exit_ips_for_hw_access(dc);
3702 
3703 	dc_z10_restore(dc);
3704 	if (update_type == UPDATE_TYPE_FULL)
3705 		wait_for_outstanding_hw_updates(dc, context);
3706 
3707 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3708 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3709 
3710 		if (pipe->stream && pipe->plane_state) {
3711 			set_p_state_switch_method(dc, context, pipe);
3712 
3713 			if (dc->debug.visual_confirm)
3714 				dc_update_visual_confirm_color(dc, context, pipe);
3715 		}
3716 	}
3717 
3718 	if (update_type == UPDATE_TYPE_FULL) {
3719 		dc_allow_idle_optimizations(dc, false);
3720 
3721 		if (get_seamless_boot_stream_count(context) == 0)
3722 			dc->hwss.prepare_bandwidth(dc, context);
3723 
3724 		if (dc->hwss.update_dsc_pg)
3725 			dc->hwss.update_dsc_pg(dc, context, false);
3726 
3727 		context_clock_trace(dc, context);
3728 	}
3729 
3730 	top_pipe_to_program = resource_get_otg_master_for_stream(
3731 				&context->res_ctx,
3732 				stream);
3733 	ASSERT(top_pipe_to_program != NULL);
3734 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3735 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3736 
3737 		// Check old context for SubVP
3738 		subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3739 		if (subvp_prev_use)
3740 			break;
3741 	}
3742 
3743 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3744 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3745 
3746 		if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3747 			subvp_curr_use = true;
3748 			break;
3749 		}
3750 	}
3751 
3752 	if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3753 		struct pipe_ctx *mpcc_pipe;
3754 		struct pipe_ctx *odm_pipe;
3755 
3756 		for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3757 			for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3758 				odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3759 	}
3760 
3761 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3762 		if (top_pipe_to_program &&
3763 			top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3764 			if (should_use_dmub_lock(stream->link)) {
3765 				union dmub_hw_lock_flags hw_locks = { 0 };
3766 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3767 
3768 				hw_locks.bits.lock_dig = 1;
3769 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3770 
3771 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3772 							true,
3773 							&hw_locks,
3774 							&inst_flags);
3775 			} else
3776 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3777 						top_pipe_to_program->stream_res.tg);
3778 		}
3779 
3780 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3781 		if (dc->hwss.subvp_pipe_control_lock)
3782 				dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3783 		dc->hwss.interdependent_update_lock(dc, context, true);
3784 
3785 	} else {
3786 		if (dc->hwss.subvp_pipe_control_lock)
3787 			dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3788 		/* Lock the top pipe while updating plane addrs, since freesync requires
3789 		 *  plane addr update event triggers to be synchronized.
3790 		 *  top_pipe_to_program is expected to never be NULL
3791 		 */
3792 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3793 	}
3794 
3795 	dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3796 
3797 	// Stream updates
3798 	if (stream_update)
3799 		commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3800 
3801 	if (surface_count == 0) {
3802 		/*
3803 		 * In case of turning off screen, no need to program front end a second time.
3804 		 * just return after program blank.
3805 		 */
3806 		if (dc->hwss.apply_ctx_for_surface)
3807 			dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3808 		if (dc->hwss.program_front_end_for_ctx)
3809 			dc->hwss.program_front_end_for_ctx(dc, context);
3810 
3811 		if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3812 			dc->hwss.interdependent_update_lock(dc, context, false);
3813 		} else {
3814 			dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3815 		}
3816 		dc->hwss.post_unlock_program_front_end(dc, context);
3817 
3818 		if (update_type != UPDATE_TYPE_FAST)
3819 			if (dc->hwss.commit_subvp_config)
3820 				dc->hwss.commit_subvp_config(dc, context);
3821 
3822 		/* Since phantom pipe programming is moved to post_unlock_program_front_end,
3823 		 * move the SubVP lock to after the phantom pipes have been setup
3824 		 */
3825 		if (dc->hwss.subvp_pipe_control_lock)
3826 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3827 							 NULL, subvp_prev_use);
3828 		return;
3829 	}
3830 
3831 	if (update_type != UPDATE_TYPE_FAST) {
3832 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3833 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3834 
3835 			if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3836 				dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3837 				pipe_ctx->stream && pipe_ctx->plane_state) {
3838 				/* Only update visual confirm for SUBVP and Mclk switching here.
3839 				 * The bar appears on all pipes, so we need to update the bar on all displays,
3840 				 * so the information doesn't get stale.
3841 				 */
3842 				dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3843 						pipe_ctx->plane_res.hubp->inst);
3844 			}
3845 		}
3846 	}
3847 
3848 	for (i = 0; i < surface_count; i++) {
3849 		struct dc_plane_state *plane_state = srf_updates[i].surface;
3850 		/*set logical flag for lock/unlock use*/
3851 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
3852 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3853 			if (!pipe_ctx->plane_state)
3854 				continue;
3855 			if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3856 				continue;
3857 			pipe_ctx->plane_state->triplebuffer_flips = false;
3858 			if (update_type == UPDATE_TYPE_FAST &&
3859 				dc->hwss.program_triplebuffer != NULL &&
3860 				!pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3861 					/*triple buffer for VUpdate  only*/
3862 					pipe_ctx->plane_state->triplebuffer_flips = true;
3863 			}
3864 		}
3865 		if (update_type == UPDATE_TYPE_FULL) {
3866 			/* force vsync flip when reconfiguring pipes to prevent underflow */
3867 			plane_state->flip_immediate = false;
3868 		}
3869 	}
3870 
3871 	// Update Type FULL, Surface updates
3872 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
3873 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3874 
3875 		if (!pipe_ctx->top_pipe &&
3876 			!pipe_ctx->prev_odm_pipe &&
3877 			should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3878 			struct dc_stream_status *stream_status = NULL;
3879 
3880 			if (!pipe_ctx->plane_state)
3881 				continue;
3882 
3883 			/* Full fe update*/
3884 			if (update_type == UPDATE_TYPE_FAST)
3885 				continue;
3886 
3887 			ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3888 
3889 			if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3890 				/*turn off triple buffer for full update*/
3891 				dc->hwss.program_triplebuffer(
3892 					dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3893 			}
3894 			stream_status =
3895 				stream_get_status(context, pipe_ctx->stream);
3896 
3897 			if (dc->hwss.apply_ctx_for_surface)
3898 				dc->hwss.apply_ctx_for_surface(
3899 					dc, pipe_ctx->stream, stream_status->plane_count, context);
3900 		}
3901 	}
3902 	if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3903 		dc->hwss.program_front_end_for_ctx(dc, context);
3904 		if (dc->debug.validate_dml_output) {
3905 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
3906 				struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3907 				if (cur_pipe->stream == NULL)
3908 					continue;
3909 
3910 				cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3911 						cur_pipe->plane_res.hubp, dc->ctx,
3912 						&context->res_ctx.pipe_ctx[i].rq_regs,
3913 						&context->res_ctx.pipe_ctx[i].dlg_regs,
3914 						&context->res_ctx.pipe_ctx[i].ttu_regs);
3915 			}
3916 		}
3917 	}
3918 
3919 	// Update Type FAST, Surface updates
3920 	if (update_type == UPDATE_TYPE_FAST) {
3921 		if (dc->hwss.set_flip_control_gsl)
3922 			for (i = 0; i < surface_count; i++) {
3923 				struct dc_plane_state *plane_state = srf_updates[i].surface;
3924 
3925 				for (j = 0; j < dc->res_pool->pipe_count; j++) {
3926 					struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3927 
3928 					if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3929 						continue;
3930 
3931 					if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3932 						continue;
3933 
3934 					// GSL has to be used for flip immediate
3935 					dc->hwss.set_flip_control_gsl(pipe_ctx,
3936 							pipe_ctx->plane_state->flip_immediate);
3937 				}
3938 			}
3939 
3940 		/* Perform requested Updates */
3941 		for (i = 0; i < surface_count; i++) {
3942 			struct dc_plane_state *plane_state = srf_updates[i].surface;
3943 
3944 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3945 				struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3946 
3947 				if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3948 					continue;
3949 
3950 				if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3951 					continue;
3952 
3953 				/*program triple buffer after lock based on flip type*/
3954 				if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3955 					/*only enable triplebuffer for  fast_update*/
3956 					dc->hwss.program_triplebuffer(
3957 						dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3958 				}
3959 				if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3960 					dc->hwss.update_plane_addr(dc, pipe_ctx);
3961 			}
3962 		}
3963 	}
3964 
3965 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3966 		dc->hwss.interdependent_update_lock(dc, context, false);
3967 	} else {
3968 		dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3969 	}
3970 
3971 	if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3972 		if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3973 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3974 				top_pipe_to_program->stream_res.tg,
3975 				CRTC_STATE_VACTIVE);
3976 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3977 				top_pipe_to_program->stream_res.tg,
3978 				CRTC_STATE_VBLANK);
3979 			top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3980 				top_pipe_to_program->stream_res.tg,
3981 				CRTC_STATE_VACTIVE);
3982 
3983 			if (should_use_dmub_lock(stream->link)) {
3984 				union dmub_hw_lock_flags hw_locks = { 0 };
3985 				struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3986 
3987 				hw_locks.bits.lock_dig = 1;
3988 				inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3989 
3990 				dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3991 							false,
3992 							&hw_locks,
3993 							&inst_flags);
3994 			} else
3995 				top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3996 					top_pipe_to_program->stream_res.tg);
3997 		}
3998 
3999 	if (subvp_curr_use) {
4000 		/* If enabling subvp or transitioning from subvp->subvp, enable the
4001 		 * phantom streams before we program front end for the phantom pipes.
4002 		 */
4003 		if (update_type != UPDATE_TYPE_FAST) {
4004 			if (dc->hwss.enable_phantom_streams)
4005 				dc->hwss.enable_phantom_streams(dc, context);
4006 		}
4007 	}
4008 
4009 	if (update_type != UPDATE_TYPE_FAST)
4010 		dc->hwss.post_unlock_program_front_end(dc, context);
4011 
4012 	if (subvp_prev_use && !subvp_curr_use) {
4013 		/* If disabling subvp, disable phantom streams after front end
4014 		 * programming has completed (we turn on phantom OTG in order
4015 		 * to complete the plane disable for phantom pipes).
4016 		 */
4017 
4018 		if (dc->hwss.disable_phantom_streams)
4019 			dc->hwss.disable_phantom_streams(dc, context);
4020 	}
4021 
4022 	if (update_type != UPDATE_TYPE_FAST)
4023 		if (dc->hwss.commit_subvp_config)
4024 			dc->hwss.commit_subvp_config(dc, context);
4025 	/* Since phantom pipe programming is moved to post_unlock_program_front_end,
4026 	 * move the SubVP lock to after the phantom pipes have been setup
4027 	 */
4028 	if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4029 		if (dc->hwss.subvp_pipe_control_lock)
4030 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4031 	} else {
4032 		if (dc->hwss.subvp_pipe_control_lock)
4033 			dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4034 	}
4035 
4036 	// Fire manual trigger only when bottom plane is flipped
4037 	for (j = 0; j < dc->res_pool->pipe_count; j++) {
4038 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4039 
4040 		if (!pipe_ctx->plane_state)
4041 			continue;
4042 
4043 		if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4044 				!pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4045 				!pipe_ctx->plane_state->update_flags.bits.addr_update ||
4046 				pipe_ctx->plane_state->skip_manual_trigger)
4047 			continue;
4048 
4049 		if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4050 			pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4051 	}
4052 
4053 	current_stream_mask = get_stream_mask(dc, context);
4054 	if (current_stream_mask != context->stream_mask) {
4055 		context->stream_mask = current_stream_mask;
4056 		dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4057 	}
4058 }
4059 
4060 /**
4061  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4062  *
4063  * @dc: Used to get the current state status
4064  * @stream: Target stream, which we want to remove the attached planes
4065  * @srf_updates: Array of surface updates
4066  * @surface_count: Number of surface update
4067  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4068  *
4069  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4070  * the MPO if used simultaneously in some specific configurations (e.g.,
4071  * 4k@144). This function checks if the incoming context requires applying a
4072  * transition state with unnecessary pipe splitting and ODM disabled to
4073  * circumvent our hardware limitations to prevent this edge case. If the OPP
4074  * associated with an MPCC might change due to plane additions, this function
4075  * returns true.
4076  *
4077  * Return:
4078  * Return true if OPP and MPCC might change, otherwise, return false.
4079  */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4080 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4081 		struct dc_stream_state *stream,
4082 		struct dc_surface_update *srf_updates,
4083 		int surface_count,
4084 		bool *is_plane_addition)
4085 {
4086 
4087 	struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4088 	bool force_minimal_pipe_splitting = false;
4089 	bool subvp_active = false;
4090 	uint32_t i;
4091 
4092 	*is_plane_addition = false;
4093 
4094 	if (cur_stream_status &&
4095 			dc->current_state->stream_count > 0 &&
4096 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4097 		/* determine if minimal transition is required due to MPC*/
4098 		if (surface_count > 0) {
4099 			if (cur_stream_status->plane_count > surface_count) {
4100 				force_minimal_pipe_splitting = true;
4101 			} else if (cur_stream_status->plane_count < surface_count) {
4102 				force_minimal_pipe_splitting = true;
4103 				*is_plane_addition = true;
4104 			}
4105 		}
4106 	}
4107 
4108 	if (cur_stream_status &&
4109 			dc->current_state->stream_count == 1 &&
4110 			dc->debug.enable_single_display_2to1_odm_policy) {
4111 		/* determine if minimal transition is required due to dynamic ODM*/
4112 		if (surface_count > 0) {
4113 			if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4114 				force_minimal_pipe_splitting = true;
4115 			} else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4116 				force_minimal_pipe_splitting = true;
4117 				*is_plane_addition = true;
4118 			}
4119 		}
4120 	}
4121 
4122 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4123 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4124 
4125 		if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4126 			subvp_active = true;
4127 			break;
4128 		}
4129 	}
4130 
4131 	/* For SubVP when adding or removing planes we need to add a minimal transition
4132 	 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4133 	 * must use the minimal transition path to disable the pipe correctly.
4134 	 *
4135 	 * We want to use the minimal transition whenever subvp is active, not only if
4136 	 * a plane is being added / removed from a subvp stream (MPO plane can be added
4137 	 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4138 	 * a min transition to disable subvp.
4139 	 */
4140 	if (cur_stream_status && subvp_active) {
4141 		/* determine if minimal transition is required due to SubVP*/
4142 		if (cur_stream_status->plane_count > surface_count) {
4143 			force_minimal_pipe_splitting = true;
4144 		} else if (cur_stream_status->plane_count < surface_count) {
4145 			force_minimal_pipe_splitting = true;
4146 			*is_plane_addition = true;
4147 		}
4148 	}
4149 
4150 	return force_minimal_pipe_splitting;
4151 }
4152 
4153 struct pipe_split_policy_backup {
4154 	bool dynamic_odm_policy;
4155 	bool subvp_policy;
4156 	enum pipe_split_policy mpc_policy;
4157 	char force_odm[MAX_PIPES];
4158 };
4159 
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4160 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4161 		struct dc_state *context,
4162 		struct pipe_split_policy_backup *policy)
4163 {
4164 	int i;
4165 
4166 	if (!dc->config.is_vmin_only_asic) {
4167 		policy->mpc_policy = dc->debug.pipe_split_policy;
4168 		dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4169 	}
4170 	policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4171 	dc->debug.enable_single_display_2to1_odm_policy = false;
4172 	policy->subvp_policy = dc->debug.force_disable_subvp;
4173 	dc->debug.force_disable_subvp = true;
4174 	for (i = 0; i < context->stream_count; i++) {
4175 		policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4176 		context->streams[i]->debug.force_odm_combine_segments = 0;
4177 	}
4178 }
4179 
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4180 static void restore_minimal_pipe_split_policy(struct dc *dc,
4181 		struct dc_state *context,
4182 		struct pipe_split_policy_backup *policy)
4183 {
4184 	uint8_t i;
4185 
4186 	if (!dc->config.is_vmin_only_asic)
4187 		dc->debug.pipe_split_policy = policy->mpc_policy;
4188 	dc->debug.enable_single_display_2to1_odm_policy =
4189 			policy->dynamic_odm_policy;
4190 	dc->debug.force_disable_subvp = policy->subvp_policy;
4191 	for (i = 0; i < context->stream_count; i++)
4192 		context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4193 }
4194 
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4195 static void release_minimal_transition_state(struct dc *dc,
4196 		struct dc_state *minimal_transition_context,
4197 		struct dc_state *base_context,
4198 		struct pipe_split_policy_backup *policy)
4199 {
4200 	restore_minimal_pipe_split_policy(dc, base_context, policy);
4201 	dc_state_release(minimal_transition_context);
4202 }
4203 
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4204 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4205 {
4206 	uint8_t i;
4207 	int j;
4208 	struct dc_stream_status *stream_status;
4209 
4210 	for (i = 0; i < context->stream_count; i++) {
4211 		stream_status = &context->stream_status[i];
4212 
4213 		for (j = 0; j < stream_status->plane_count; j++)
4214 			stream_status->plane_states[j]->flip_immediate = false;
4215 	}
4216 }
4217 
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4218 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4219 		struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4220 {
4221 	struct dc_state *minimal_transition_context = NULL;
4222 
4223 	minimal_transition_context = dc_state_create_copy(base_context);
4224 	if (!minimal_transition_context)
4225 		return NULL;
4226 
4227 	backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4228 	/* commit minimal state */
4229 	if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4230 		/* prevent underflow and corruption when reconfiguring pipes */
4231 		force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4232 	} else {
4233 		/*
4234 		 * This should never happen, minimal transition state should
4235 		 * always be validated first before adding pipe split features.
4236 		 */
4237 		release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4238 		BREAK_TO_DEBUGGER();
4239 		minimal_transition_context = NULL;
4240 	}
4241 	return minimal_transition_context;
4242 }
4243 
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4244 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4245 		struct dc *dc,
4246 		struct dc_state *initial_state,
4247 		struct dc_state *intermediate_state,
4248 		struct dc_state *final_state)
4249 {
4250 	return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4251 			intermediate_state) &&
4252 			dc->hwss.is_pipe_topology_transition_seamless(dc,
4253 					intermediate_state, final_state);
4254 }
4255 
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4256 static void swap_and_release_current_context(struct dc *dc,
4257 		struct dc_state *new_context, struct dc_stream_state *stream)
4258 {
4259 
4260 	int i;
4261 	struct dc_state *old = dc->current_state;
4262 	struct pipe_ctx *pipe_ctx;
4263 
4264 	/* Since memory free requires elevated IRQ, an interrupt
4265 	 * request is generated by mem free. If this happens
4266 	 * between freeing and reassigning the context, our vsync
4267 	 * interrupt will call into dc and cause a memory
4268 	 * corruption. Hence, we first reassign the context,
4269 	 * then free the old context.
4270 	 */
4271 	dc->current_state = new_context;
4272 	dc_state_release(old);
4273 
4274 	// clear any forced full updates
4275 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4276 		pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4277 
4278 		if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4279 			pipe_ctx->plane_state->force_full_update = false;
4280 	}
4281 }
4282 
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4283 static int initialize_empty_surface_updates(
4284 		struct dc_stream_state *stream,
4285 		struct dc_surface_update *srf_updates)
4286 {
4287 	struct dc_stream_status *status = dc_stream_get_status(stream);
4288 	int i;
4289 
4290 	if (!status)
4291 		return 0;
4292 
4293 	for (i = 0; i < status->plane_count; i++)
4294 		srf_updates[i].surface = status->plane_states[i];
4295 
4296 	return status->plane_count;
4297 }
4298 
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4299 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4300 		struct dc_state *new_context,
4301 		struct dc_stream_state *stream,
4302 		struct dc_surface_update *srf_updates,
4303 		int surface_count)
4304 {
4305 	bool success = false;
4306 	struct pipe_split_policy_backup policy;
4307 	struct dc_state *intermediate_context =
4308 			create_minimal_transition_state(dc, new_context,
4309 					&policy);
4310 
4311 	if (intermediate_context) {
4312 		if (is_pipe_topology_transition_seamless_with_intermediate_step(
4313 				dc,
4314 				dc->current_state,
4315 				intermediate_context,
4316 				new_context)) {
4317 			DC_LOG_DC("commit minimal transition state: base = new state\n");
4318 			commit_planes_for_stream(dc, srf_updates,
4319 					surface_count, stream, NULL,
4320 					UPDATE_TYPE_FULL, intermediate_context);
4321 			swap_and_release_current_context(
4322 					dc, intermediate_context, stream);
4323 			dc_state_retain(dc->current_state);
4324 			success = true;
4325 		}
4326 		release_minimal_transition_state(
4327 				dc, intermediate_context, new_context, &policy);
4328 	}
4329 	return success;
4330 }
4331 
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4332 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4333 		struct dc_state *new_context, struct dc_stream_state *stream)
4334 {
4335 	bool success = false;
4336 	struct pipe_split_policy_backup policy;
4337 	struct dc_state *intermediate_context;
4338 	struct dc_state *old_current_state = dc->current_state;
4339 	struct dc_surface_update srf_updates[MAX_SURFACE_NUM] = {0};
4340 	int surface_count;
4341 
4342 	/*
4343 	 * Both current and new contexts share the same stream and plane state
4344 	 * pointers. When new context is validated, stream and planes get
4345 	 * populated with new updates such as new plane addresses. This makes
4346 	 * the current context no longer valid because stream and planes are
4347 	 * modified from the original. We backup current stream and plane states
4348 	 * into scratch space whenever we are populating new context. So we can
4349 	 * restore the original values back by calling the restore function now.
4350 	 * This restores back the original stream and plane states associated
4351 	 * with the current state.
4352 	 */
4353 	restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4354 	dc_state_retain(old_current_state);
4355 	intermediate_context = create_minimal_transition_state(dc,
4356 			old_current_state, &policy);
4357 
4358 	if (intermediate_context) {
4359 		if (is_pipe_topology_transition_seamless_with_intermediate_step(
4360 				dc,
4361 				dc->current_state,
4362 				intermediate_context,
4363 				new_context)) {
4364 			DC_LOG_DC("commit minimal transition state: base = current state\n");
4365 			surface_count = initialize_empty_surface_updates(
4366 					stream, srf_updates);
4367 			commit_planes_for_stream(dc, srf_updates,
4368 					surface_count, stream, NULL,
4369 					UPDATE_TYPE_FULL, intermediate_context);
4370 			swap_and_release_current_context(
4371 					dc, intermediate_context, stream);
4372 			dc_state_retain(dc->current_state);
4373 			success = true;
4374 		}
4375 		release_minimal_transition_state(dc, intermediate_context,
4376 				old_current_state, &policy);
4377 	}
4378 	dc_state_release(old_current_state);
4379 	/*
4380 	 * Restore stream and plane states back to the values associated with
4381 	 * new context.
4382 	 */
4383 	restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4384 	return success;
4385 }
4386 
4387 /**
4388  * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4389  * on current or new context
4390  *
4391  * @dc: DC structure, used to get the current state
4392  * @new_context: New context
4393  * @stream: Stream getting the update for the flip
4394  * @srf_updates: Surface updates
4395  * @surface_count: Number of surfaces
4396  *
4397  * The function takes in current state and new state and determine a minimal
4398  * transition state as the intermediate step which could make the transition
4399  * between current and new states seamless. If found, it will commit the minimal
4400  * transition state and update current state to this minimal transition state
4401  * and return true, if not, it will return false.
4402  *
4403  * Return:
4404  * Return True if the minimal transition succeeded, false otherwise
4405  */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4406 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4407 		struct dc_state *new_context,
4408 		struct dc_stream_state *stream,
4409 		struct dc_surface_update *srf_updates,
4410 		int surface_count)
4411 {
4412 	bool success = commit_minimal_transition_based_on_new_context(
4413 				dc, new_context, stream, srf_updates,
4414 				surface_count);
4415 	if (!success)
4416 		success = commit_minimal_transition_based_on_current_context(dc,
4417 				new_context, stream);
4418 	if (!success)
4419 		DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4420 	return success;
4421 }
4422 
4423 /**
4424  * commit_minimal_transition_state - Create a transition pipe split state
4425  *
4426  * @dc: Used to get the current state status
4427  * @transition_base_context: New transition state
4428  *
4429  * In some specific configurations, such as pipe split on multi-display with
4430  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4431  * programming when moving to new planes. To mitigate those types of problems,
4432  * this function adds a transition state that minimizes pipe usage before
4433  * programming the new configuration. When adding a new plane, the current
4434  * state requires the least pipes, so it is applied without splitting. When
4435  * removing a plane, the new state requires the least pipes, so it is applied
4436  * without splitting.
4437  *
4438  * Return:
4439  * Return false if something is wrong in the transition state.
4440  */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4441 static bool commit_minimal_transition_state(struct dc *dc,
4442 		struct dc_state *transition_base_context)
4443 {
4444 	struct dc_state *transition_context;
4445 	struct pipe_split_policy_backup policy;
4446 	enum dc_status ret = DC_ERROR_UNEXPECTED;
4447 	unsigned int i, j;
4448 	unsigned int pipe_in_use = 0;
4449 	bool subvp_in_use = false;
4450 	bool odm_in_use = false;
4451 
4452 	/* check current pipes in use*/
4453 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4454 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4455 
4456 		if (pipe->plane_state)
4457 			pipe_in_use++;
4458 	}
4459 
4460 	/* If SubVP is enabled and we are adding or removing planes from any main subvp
4461 	 * pipe, we must use the minimal transition.
4462 	 */
4463 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4464 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4465 
4466 		if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4467 			subvp_in_use = true;
4468 			break;
4469 		}
4470 	}
4471 
4472 	/* If ODM is enabled and we are adding or removing planes from any ODM
4473 	 * pipe, we must use the minimal transition.
4474 	 */
4475 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
4476 		struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4477 
4478 		if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4479 			odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4480 			break;
4481 		}
4482 	}
4483 
4484 	/* When the OS add a new surface if we have been used all of pipes with odm combine
4485 	 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4486 	 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4487 	 * call it again. Otherwise return true to skip.
4488 	 *
4489 	 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4490 	 * enter/exit MPO when DCN still have enough resources.
4491 	 */
4492 	if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4493 		return true;
4494 
4495 	DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4496 			dc->current_state == transition_base_context ? "current" : "new",
4497 			subvp_in_use ? "Subvp In Use" :
4498 			odm_in_use ? "ODM in Use" :
4499 			dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4500 			"Unknown");
4501 
4502 	dc_state_retain(transition_base_context);
4503 	transition_context = create_minimal_transition_state(dc,
4504 			transition_base_context, &policy);
4505 	if (transition_context) {
4506 		ret = dc_commit_state_no_check(dc, transition_context);
4507 		release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4508 	}
4509 	dc_state_release(transition_base_context);
4510 
4511 	if (ret != DC_OK) {
4512 		/* this should never happen */
4513 		BREAK_TO_DEBUGGER();
4514 		return false;
4515 	}
4516 
4517 	/* force full surface update */
4518 	for (i = 0; i < dc->current_state->stream_count; i++) {
4519 		for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4520 			dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4521 		}
4522 	}
4523 
4524 	return true;
4525 }
4526 
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4527 static void populate_fast_updates(struct dc_fast_update *fast_update,
4528 		struct dc_surface_update *srf_updates,
4529 		int surface_count,
4530 		struct dc_stream_update *stream_update)
4531 {
4532 	int i = 0;
4533 
4534 	if (stream_update) {
4535 		fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4536 		fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4537 	}
4538 
4539 	for (i = 0; i < surface_count; i++) {
4540 		fast_update[i].flip_addr = srf_updates[i].flip_addr;
4541 		fast_update[i].gamma = srf_updates[i].gamma;
4542 		fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4543 		fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4544 		fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4545 	}
4546 }
4547 
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4548 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4549 {
4550 	int i;
4551 
4552 	if (fast_update[0].out_transfer_func ||
4553 		fast_update[0].output_csc_transform)
4554 		return true;
4555 
4556 	for (i = 0; i < surface_count; i++) {
4557 		if (fast_update[i].flip_addr ||
4558 				fast_update[i].gamma ||
4559 				fast_update[i].gamut_remap_matrix ||
4560 				fast_update[i].input_csc_color_matrix ||
4561 				fast_update[i].coeff_reduction_factor)
4562 			return true;
4563 	}
4564 
4565 	return false;
4566 }
4567 
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4568 static bool full_update_required(struct dc *dc,
4569 		struct dc_surface_update *srf_updates,
4570 		int surface_count,
4571 		struct dc_stream_update *stream_update,
4572 		struct dc_stream_state *stream)
4573 {
4574 
4575 	int i;
4576 	struct dc_stream_status *stream_status;
4577 	const struct dc_state *context = dc->current_state;
4578 
4579 	for (i = 0; i < surface_count; i++) {
4580 		if (srf_updates &&
4581 				(srf_updates[i].plane_info ||
4582 				srf_updates[i].scaling_info ||
4583 				(srf_updates[i].hdr_mult.value &&
4584 				srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4585 				srf_updates[i].in_transfer_func ||
4586 				srf_updates[i].func_shaper ||
4587 				srf_updates[i].lut3d_func ||
4588 				srf_updates[i].surface->force_full_update ||
4589 				(srf_updates[i].flip_addr &&
4590 				srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4591 				!is_surface_in_context(context, srf_updates[i].surface)))
4592 			return true;
4593 	}
4594 
4595 	if (stream_update &&
4596 			(((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4597 			(stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4598 			stream_update->integer_scaling_update) ||
4599 			stream_update->hdr_static_metadata ||
4600 			stream_update->abm_level ||
4601 			stream_update->periodic_interrupt ||
4602 			stream_update->vrr_infopacket ||
4603 			stream_update->vsc_infopacket ||
4604 			stream_update->vsp_infopacket ||
4605 			stream_update->hfvsif_infopacket ||
4606 			stream_update->vtem_infopacket ||
4607 			stream_update->adaptive_sync_infopacket ||
4608 			stream_update->dpms_off ||
4609 			stream_update->allow_freesync ||
4610 			stream_update->vrr_active_variable ||
4611 			stream_update->vrr_active_fixed ||
4612 			stream_update->gamut_remap ||
4613 			stream_update->output_color_space ||
4614 			stream_update->dither_option ||
4615 			stream_update->wb_update ||
4616 			stream_update->dsc_config ||
4617 			stream_update->mst_bw_update ||
4618 			stream_update->func_shaper ||
4619 			stream_update->lut3d_func ||
4620 			stream_update->pending_test_pattern ||
4621 			stream_update->crtc_timing_adjust))
4622 		return true;
4623 
4624 	if (stream) {
4625 		stream_status = dc_stream_get_status(stream);
4626 		if (stream_status == NULL || stream_status->plane_count != surface_count)
4627 			return true;
4628 	}
4629 	if (dc->idle_optimizations_allowed)
4630 		return true;
4631 
4632 	return false;
4633 }
4634 
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4635 static bool fast_update_only(struct dc *dc,
4636 		struct dc_fast_update *fast_update,
4637 		struct dc_surface_update *srf_updates,
4638 		int surface_count,
4639 		struct dc_stream_update *stream_update,
4640 		struct dc_stream_state *stream)
4641 {
4642 	return fast_updates_exist(fast_update, surface_count)
4643 			&& !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4644 }
4645 
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4646 static bool update_planes_and_stream_v1(struct dc *dc,
4647 		struct dc_surface_update *srf_updates, int surface_count,
4648 		struct dc_stream_state *stream,
4649 		struct dc_stream_update *stream_update,
4650 		struct dc_state *state)
4651 {
4652 	const struct dc_stream_status *stream_status;
4653 	enum surface_update_type update_type;
4654 	struct dc_state *context;
4655 	struct dc_context *dc_ctx = dc->ctx;
4656 	int i, j;
4657 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4658 
4659 	dc_exit_ips_for_hw_access(dc);
4660 
4661 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4662 	stream_status = dc_stream_get_status(stream);
4663 	context = dc->current_state;
4664 
4665 	update_type = dc_check_update_surfaces_for_stream(
4666 				dc, srf_updates, surface_count, stream_update, stream_status);
4667 
4668 	if (update_type >= UPDATE_TYPE_FULL) {
4669 
4670 		/* initialize scratch memory for building context */
4671 		context = dc_state_create_copy(state);
4672 		if (context == NULL) {
4673 			DC_ERROR("Failed to allocate new validate context!\n");
4674 			return false;
4675 		}
4676 
4677 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4678 			struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4679 			struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4680 
4681 			if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4682 				new_pipe->plane_state->force_full_update = true;
4683 		}
4684 	} else if (update_type == UPDATE_TYPE_FAST) {
4685 		/*
4686 		 * Previous frame finished and HW is ready for optimization.
4687 		 */
4688 		dc_post_update_surfaces_to_stream(dc);
4689 	}
4690 
4691 	for (i = 0; i < surface_count; i++) {
4692 		struct dc_plane_state *surface = srf_updates[i].surface;
4693 
4694 		copy_surface_update_to_plane(surface, &srf_updates[i]);
4695 
4696 		if (update_type >= UPDATE_TYPE_MED) {
4697 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
4698 				struct pipe_ctx *pipe_ctx =
4699 					&context->res_ctx.pipe_ctx[j];
4700 
4701 				if (pipe_ctx->plane_state != surface)
4702 					continue;
4703 
4704 				resource_build_scaling_params(pipe_ctx);
4705 			}
4706 		}
4707 	}
4708 
4709 	copy_stream_update_to_stream(dc, context, stream, stream_update);
4710 
4711 	if (update_type >= UPDATE_TYPE_FULL) {
4712 		if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4713 			DC_ERROR("Mode validation failed for stream update!\n");
4714 			dc_state_release(context);
4715 			return false;
4716 		}
4717 	}
4718 
4719 	TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4720 
4721 	if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4722 			!dc->debug.enable_legacy_fast_update) {
4723 		commit_planes_for_stream_fast(dc,
4724 				srf_updates,
4725 				surface_count,
4726 				stream,
4727 				stream_update,
4728 				update_type,
4729 				context);
4730 	} else {
4731 		commit_planes_for_stream(
4732 				dc,
4733 				srf_updates,
4734 				surface_count,
4735 				stream,
4736 				stream_update,
4737 				update_type,
4738 				context);
4739 	}
4740 	/*update current_State*/
4741 	if (dc->current_state != context) {
4742 
4743 		struct dc_state *old = dc->current_state;
4744 
4745 		dc->current_state = context;
4746 		dc_state_release(old);
4747 
4748 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
4749 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4750 
4751 			if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4752 				pipe_ctx->plane_state->force_full_update = false;
4753 		}
4754 	}
4755 
4756 	/* Legacy optimization path for DCE. */
4757 	if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4758 		dc_post_update_surfaces_to_stream(dc);
4759 		TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4760 	}
4761 	return true;
4762 }
4763 
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4764 static bool update_planes_and_stream_v2(struct dc *dc,
4765 		struct dc_surface_update *srf_updates, int surface_count,
4766 		struct dc_stream_state *stream,
4767 		struct dc_stream_update *stream_update)
4768 {
4769 	struct dc_state *context;
4770 	enum surface_update_type update_type;
4771 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4772 
4773 	/* In cases where MPO and split or ODM are used transitions can
4774 	 * cause underflow. Apply stream configuration with minimal pipe
4775 	 * split first to avoid unsupported transitions for active pipes.
4776 	 */
4777 	bool force_minimal_pipe_splitting = 0;
4778 	bool is_plane_addition = 0;
4779 	bool is_fast_update_only;
4780 
4781 	populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4782 	is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
4783 			surface_count, stream_update, stream);
4784 	force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4785 			dc,
4786 			stream,
4787 			srf_updates,
4788 			surface_count,
4789 			&is_plane_addition);
4790 
4791 	/* on plane addition, minimal state is the current one */
4792 	if (force_minimal_pipe_splitting && is_plane_addition &&
4793 		!commit_minimal_transition_state(dc, dc->current_state))
4794 		return false;
4795 
4796 	if (!update_planes_and_stream_state(
4797 			dc,
4798 			srf_updates,
4799 			surface_count,
4800 			stream,
4801 			stream_update,
4802 			&update_type,
4803 			&context))
4804 		return false;
4805 
4806 	/* on plane removal, minimal state is the new one */
4807 	if (force_minimal_pipe_splitting && !is_plane_addition) {
4808 		if (!commit_minimal_transition_state(dc, context)) {
4809 			dc_state_release(context);
4810 			return false;
4811 		}
4812 		update_type = UPDATE_TYPE_FULL;
4813 	}
4814 
4815 	if (dc->hwss.is_pipe_topology_transition_seamless &&
4816 			!dc->hwss.is_pipe_topology_transition_seamless(
4817 					dc, dc->current_state, context))
4818 		commit_minimal_transition_state_in_dc_update(dc, context, stream,
4819 				srf_updates, surface_count);
4820 
4821 	if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
4822 		commit_planes_for_stream_fast(dc,
4823 				srf_updates,
4824 				surface_count,
4825 				stream,
4826 				stream_update,
4827 				update_type,
4828 				context);
4829 	} else {
4830 		if (!stream_update &&
4831 				dc->hwss.is_pipe_topology_transition_seamless &&
4832 				!dc->hwss.is_pipe_topology_transition_seamless(
4833 						dc, dc->current_state, context)) {
4834 			DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4835 			BREAK_TO_DEBUGGER();
4836 		}
4837 		commit_planes_for_stream(
4838 				dc,
4839 				srf_updates,
4840 				surface_count,
4841 				stream,
4842 				stream_update,
4843 				update_type,
4844 				context);
4845 	}
4846 	if (dc->current_state != context)
4847 		swap_and_release_current_context(dc, context, stream);
4848 	return true;
4849 }
4850 
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)4851 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
4852 		struct dc_surface_update *srf_updates, int surface_count,
4853 		struct dc_stream_state *stream,
4854 		struct dc_stream_update *stream_update,
4855 		enum surface_update_type update_type)
4856 {
4857 	struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4858 
4859 	ASSERT(update_type < UPDATE_TYPE_FULL);
4860 	populate_fast_updates(fast_update, srf_updates, surface_count,
4861 			stream_update);
4862 	if (fast_update_only(dc, fast_update, srf_updates, surface_count,
4863 			stream_update, stream) &&
4864 			!dc->debug.enable_legacy_fast_update)
4865 		commit_planes_for_stream_fast(dc,
4866 				srf_updates,
4867 				surface_count,
4868 				stream,
4869 				stream_update,
4870 				update_type,
4871 				dc->current_state);
4872 	else
4873 		commit_planes_for_stream(
4874 				dc,
4875 				srf_updates,
4876 				surface_count,
4877 				stream,
4878 				stream_update,
4879 				update_type,
4880 				dc->current_state);
4881 }
4882 
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)4883 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
4884 		struct dc_surface_update *srf_updates, int surface_count,
4885 		struct dc_stream_state *stream,
4886 		struct dc_stream_update *stream_update,
4887 		enum surface_update_type update_type,
4888 		struct dc_state *new_context)
4889 {
4890 	ASSERT(update_type >= UPDATE_TYPE_FULL);
4891 	if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
4892 			dc->current_state, new_context))
4893 		/*
4894 		 * It is required by the feature design that all pipe topologies
4895 		 * using extra free pipes for power saving purposes such as
4896 		 * dynamic ODM or SubVp shall only be enabled when it can be
4897 		 * transitioned seamlessly to AND from its minimal transition
4898 		 * state. A minimal transition state is defined as the same dc
4899 		 * state but with all power saving features disabled. So it uses
4900 		 * the minimum pipe topology. When we can't seamlessly
4901 		 * transition from state A to state B, we will insert the
4902 		 * minimal transition state A' or B' in between so seamless
4903 		 * transition between A and B can be made possible.
4904 		 */
4905 		commit_minimal_transition_state_in_dc_update(dc, new_context,
4906 				stream, srf_updates, surface_count);
4907 
4908 	commit_planes_for_stream(
4909 			dc,
4910 			srf_updates,
4911 			surface_count,
4912 			stream,
4913 			stream_update,
4914 			update_type,
4915 			new_context);
4916 }
4917 
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4918 static bool update_planes_and_stream_v3(struct dc *dc,
4919 		struct dc_surface_update *srf_updates, int surface_count,
4920 		struct dc_stream_state *stream,
4921 		struct dc_stream_update *stream_update)
4922 {
4923 	struct dc_state *new_context;
4924 	enum surface_update_type update_type;
4925 
4926 	/*
4927 	 * When this function returns true and new_context is not equal to
4928 	 * current state, the function allocates and validates a new dc state
4929 	 * and assigns it to new_context. The function expects that the caller
4930 	 * is responsible to free this memory when new_context is no longer
4931 	 * used. We swap current with new context and free current instead. So
4932 	 * new_context's memory will live until the next full update after it is
4933 	 * replaced by a newer context. Refer to the use of
4934 	 * swap_and_free_current_context below.
4935 	 */
4936 	if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
4937 				stream, stream_update, &update_type,
4938 				&new_context))
4939 		return false;
4940 
4941 	if (new_context == dc->current_state) {
4942 		commit_planes_and_stream_update_on_current_context(dc,
4943 				srf_updates, surface_count, stream,
4944 				stream_update, update_type);
4945 	} else {
4946 		commit_planes_and_stream_update_with_new_context(dc,
4947 				srf_updates, surface_count, stream,
4948 				stream_update, update_type, new_context);
4949 		swap_and_release_current_context(dc, new_context, stream);
4950 	}
4951 
4952 	return true;
4953 }
4954 
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4955 bool dc_update_planes_and_stream(struct dc *dc,
4956 		struct dc_surface_update *srf_updates, int surface_count,
4957 		struct dc_stream_state *stream,
4958 		struct dc_stream_update *stream_update)
4959 {
4960 	dc_exit_ips_for_hw_access(dc);
4961 	/*
4962 	 * update planes and stream version 3 separates FULL and FAST updates
4963 	 * to their own sequences. It aims to clean up frequent checks for
4964 	 * update type resulting unnecessary branching in logic flow. It also
4965 	 * adds a new commit minimal transition sequence, which detects the need
4966 	 * for minimal transition based on the actual comparison of current and
4967 	 * new states instead of "predicting" it based on per feature software
4968 	 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
4969 	 * minimal transition sequence is made universal to any power saving
4970 	 * features that would use extra free pipes such as Dynamic ODM/MPC
4971 	 * Combine, MPO or SubVp. Therefore there is no longer a need to
4972 	 * specially handle compatibility problems with transitions among those
4973 	 * features as they are now transparent to the new sequence.
4974 	 */
4975 	if (dc->ctx->dce_version > DCN_VERSION_3_51)
4976 		return update_planes_and_stream_v3(dc, srf_updates,
4977 				surface_count, stream, stream_update);
4978 	return update_planes_and_stream_v2(dc, srf_updates,
4979 			surface_count, stream, stream_update);
4980 }
4981 
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4982 void dc_commit_updates_for_stream(struct dc *dc,
4983 		struct dc_surface_update *srf_updates,
4984 		int surface_count,
4985 		struct dc_stream_state *stream,
4986 		struct dc_stream_update *stream_update,
4987 		struct dc_state *state)
4988 {
4989 	dc_exit_ips_for_hw_access(dc);
4990 	/* TODO: Since change commit sequence can have a huge impact,
4991 	 * we decided to only enable it for DCN3x. However, as soon as
4992 	 * we get more confident about this change we'll need to enable
4993 	 * the new sequence for all ASICs.
4994 	 */
4995 	if (dc->ctx->dce_version > DCN_VERSION_3_51) {
4996 		update_planes_and_stream_v3(dc, srf_updates, surface_count,
4997 				stream, stream_update);
4998 		return;
4999 	}
5000 	if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5001 		update_planes_and_stream_v2(dc, srf_updates, surface_count,
5002 				stream, stream_update);
5003 		return;
5004 	}
5005 	update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5006 			stream_update, state);
5007 }
5008 
dc_get_current_stream_count(struct dc * dc)5009 uint8_t dc_get_current_stream_count(struct dc *dc)
5010 {
5011 	return dc->current_state->stream_count;
5012 }
5013 
dc_get_stream_at_index(struct dc * dc,uint8_t i)5014 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5015 {
5016 	if (i < dc->current_state->stream_count)
5017 		return dc->current_state->streams[i];
5018 	return NULL;
5019 }
5020 
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5021 enum dc_irq_source dc_interrupt_to_irq_source(
5022 		struct dc *dc,
5023 		uint32_t src_id,
5024 		uint32_t ext_id)
5025 {
5026 	return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5027 }
5028 
5029 /*
5030  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5031  */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5032 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5033 {
5034 
5035 	if (dc == NULL)
5036 		return false;
5037 
5038 	return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5039 }
5040 
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5041 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5042 {
5043 	dal_irq_service_ack(dc->res_pool->irqs, src);
5044 }
5045 
dc_power_down_on_boot(struct dc * dc)5046 void dc_power_down_on_boot(struct dc *dc)
5047 {
5048 	if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5049 			dc->hwss.power_down_on_boot) {
5050 
5051 			if (dc->caps.ips_support)
5052 				dc_exit_ips_for_hw_access(dc);
5053 
5054 		dc->hwss.power_down_on_boot(dc);
5055 	}
5056 }
5057 
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5058 void dc_set_power_state(
5059 	struct dc *dc,
5060 	enum dc_acpi_cm_power_state power_state)
5061 {
5062 	if (!dc->current_state)
5063 		return;
5064 
5065 	switch (power_state) {
5066 	case DC_ACPI_CM_POWER_STATE_D0:
5067 		dc_state_construct(dc, dc->current_state);
5068 
5069 		dc_exit_ips_for_hw_access(dc);
5070 
5071 		dc_z10_restore(dc);
5072 
5073 		dc->hwss.init_hw(dc);
5074 
5075 		if (dc->hwss.init_sys_ctx != NULL &&
5076 			dc->vm_pa_config.valid) {
5077 			dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5078 		}
5079 
5080 		break;
5081 	default:
5082 		ASSERT(dc->current_state->stream_count == 0);
5083 
5084 		dc_state_destruct(dc->current_state);
5085 
5086 		break;
5087 	}
5088 }
5089 
dc_resume(struct dc * dc)5090 void dc_resume(struct dc *dc)
5091 {
5092 	uint32_t i;
5093 
5094 	for (i = 0; i < dc->link_count; i++)
5095 		dc->link_srv->resume(dc->links[i]);
5096 }
5097 
dc_is_dmcu_initialized(struct dc * dc)5098 bool dc_is_dmcu_initialized(struct dc *dc)
5099 {
5100 	struct dmcu *dmcu = dc->res_pool->dmcu;
5101 
5102 	if (dmcu)
5103 		return dmcu->funcs->is_dmcu_initialized(dmcu);
5104 	return false;
5105 }
5106 
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5107 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
5108 {
5109 	info->displayClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
5110 	info->engineClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
5111 	info->memoryClock				= (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
5112 	info->maxSupportedDppClock		= (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
5113 	info->dppClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
5114 	info->socClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
5115 	info->dcfClockDeepSleep			= (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
5116 	info->fClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
5117 	info->phyClock					= (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
5118 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5119 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5120 {
5121 	if (dc->hwss.set_clock)
5122 		return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5123 	return DC_ERROR_UNEXPECTED;
5124 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5125 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5126 {
5127 	if (dc->hwss.get_clock)
5128 		dc->hwss.get_clock(dc, clock_type, clock_cfg);
5129 }
5130 
5131 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5132 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5133 {
5134 	int i;
5135 	bool allow_active;
5136 
5137 	for (i = 0; i < dc->current_state->stream_count ; i++) {
5138 		struct dc_link *link;
5139 		struct dc_stream_state *stream = dc->current_state->streams[i];
5140 
5141 		link = stream->link;
5142 		if (!link)
5143 			continue;
5144 
5145 		if (link->psr_settings.psr_feature_enabled) {
5146 			if (enable && !link->psr_settings.psr_allow_active) {
5147 				allow_active = true;
5148 				if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5149 					return false;
5150 			} else if (!enable && link->psr_settings.psr_allow_active) {
5151 				allow_active = false;
5152 				if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5153 					return false;
5154 			}
5155 		}
5156 	}
5157 
5158 	return true;
5159 }
5160 
5161 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5162 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5163 {
5164 	int i;
5165 	bool allow_active;
5166 
5167 	for (i = 0; i < dc->current_state->stream_count; i++) {
5168 		struct dc_link *link;
5169 		struct dc_stream_state *stream = dc->current_state->streams[i];
5170 
5171 		link = stream->link;
5172 		if (!link)
5173 			continue;
5174 
5175 		if (link->replay_settings.replay_feature_enabled) {
5176 			if (active && !link->replay_settings.replay_allow_active) {
5177 				allow_active = true;
5178 				if (!dc_link_set_replay_allow_active(link, &allow_active,
5179 					false, false, NULL))
5180 					return false;
5181 			} else if (!active && link->replay_settings.replay_allow_active) {
5182 				allow_active = false;
5183 				if (!dc_link_set_replay_allow_active(link, &allow_active,
5184 					true, false, NULL))
5185 					return false;
5186 			}
5187 		}
5188 	}
5189 
5190 	return true;
5191 }
5192 
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5193 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5194 {
5195 	if (dc->debug.disable_idle_power_optimizations)
5196 		return;
5197 
5198 	if (allow != dc->idle_optimizations_allowed)
5199 		DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5200 			   dc->idle_optimizations_allowed, allow, caller_name);
5201 
5202 	if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5203 		return;
5204 
5205 	if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5206 		if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5207 			return;
5208 
5209 	if (allow == dc->idle_optimizations_allowed)
5210 		return;
5211 
5212 	if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
5213 		dc->idle_optimizations_allowed = allow;
5214 }
5215 
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5216 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5217 {
5218 	if (dc->caps.ips_support)
5219 		dc_allow_idle_optimizations_internal(dc, false, caller_name);
5220 }
5221 
dc_dmub_is_ips_idle_state(struct dc * dc)5222 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5223 {
5224 	if (dc->debug.disable_idle_power_optimizations)
5225 		return false;
5226 
5227 	if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5228 		return false;
5229 
5230 	if (!dc->ctx->dmub_srv)
5231 		return false;
5232 
5233 	return dc->ctx->dmub_srv->idle_allowed;
5234 }
5235 
5236 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5237 void dc_unlock_memory_clock_frequency(struct dc *dc)
5238 {
5239 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
5240 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5241 
5242 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
5243 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5244 }
5245 
5246 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5247 void dc_lock_memory_clock_frequency(struct dc *dc)
5248 {
5249 	if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5250 		dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5251 
5252 	if (dc->clk_mgr->funcs->set_hard_min_memclk)
5253 		dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5254 
5255 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
5256 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5257 }
5258 
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5259 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5260 {
5261 	struct dc_state *context = dc->current_state;
5262 	struct hubp *hubp;
5263 	struct pipe_ctx *pipe;
5264 	int i;
5265 
5266 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5267 		pipe = &context->res_ctx.pipe_ctx[i];
5268 
5269 		if (pipe->stream != NULL) {
5270 			dc->hwss.disable_pixel_data(dc, pipe, true);
5271 
5272 			// wait for double buffer
5273 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5274 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5275 			pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5276 
5277 			hubp = pipe->plane_res.hubp;
5278 			hubp->funcs->set_blank_regs(hubp, true);
5279 		}
5280 	}
5281 
5282 	dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5283 	dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5284 
5285 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
5286 		pipe = &context->res_ctx.pipe_ctx[i];
5287 
5288 		if (pipe->stream != NULL) {
5289 			dc->hwss.disable_pixel_data(dc, pipe, false);
5290 
5291 			hubp = pipe->plane_res.hubp;
5292 			hubp->funcs->set_blank_regs(hubp, false);
5293 		}
5294 	}
5295 }
5296 
5297 
5298 /**
5299  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5300  * @dc: pointer to dc of the dm calling this
5301  * @enable: True = transition to DC mode, false = transition back to AC mode
5302  *
5303  * Some SoCs define additional clock limits when in DC mode, DM should
5304  * invoke this function when the platform undergoes a power source transition
5305  * so DC can apply/unapply the limit. This interface may be disruptive to
5306  * the onscreen content.
5307  *
5308  * Context: Triggered by OS through DM interface, or manually by escape calls.
5309  * Need to hold a dclock when doing so.
5310  *
5311  * Return: none (void function)
5312  *
5313  */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5314 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5315 {
5316 	unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5317 	bool p_state_change_support;
5318 
5319 	if (!dc->config.dc_mode_clk_limit_support)
5320 		return;
5321 
5322 	softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5323 	for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5324 		if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5325 			maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5326 	}
5327 	funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5328 	p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5329 
5330 	if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5331 		if (p_state_change_support) {
5332 			if (funcMin <= softMax)
5333 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5334 			// else: No-Op
5335 		} else {
5336 			if (funcMin <= softMax)
5337 				blank_and_force_memclk(dc, true, softMax);
5338 			// else: No-Op
5339 		}
5340 	} else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5341 		if (p_state_change_support) {
5342 			if (funcMin <= softMax)
5343 				dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5344 			// else: No-Op
5345 		} else {
5346 			if (funcMin <= softMax)
5347 				blank_and_force_memclk(dc, true, maxDPM);
5348 			// else: No-Op
5349 		}
5350 	}
5351 	dc->clk_mgr->dc_mode_softmax_enabled = enable;
5352 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5353 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5354 		unsigned int pitch,
5355 		unsigned int height,
5356 		enum surface_pixel_format format,
5357 		struct dc_cursor_attributes *cursor_attr)
5358 {
5359 	if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5360 		return true;
5361 	return false;
5362 }
5363 
5364 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5365 void dc_hardware_release(struct dc *dc)
5366 {
5367 	dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5368 
5369 	if (dc->hwss.hardware_release)
5370 		dc->hwss.hardware_release(dc);
5371 }
5372 
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5373 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5374 {
5375 	if (dc->current_state)
5376 		dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5377 }
5378 
5379 /**
5380  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5381  *
5382  * @dc: [in] dc structure
5383  *
5384  * Checks whether DMUB FW supports outbox notifications, if supported DM
5385  * should register outbox interrupt prior to actually enabling interrupts
5386  * via dc_enable_dmub_outbox
5387  *
5388  * Return:
5389  * True if DMUB FW supports outbox notifications, False otherwise
5390  */
dc_is_dmub_outbox_supported(struct dc * dc)5391 bool dc_is_dmub_outbox_supported(struct dc *dc)
5392 {
5393 	switch (dc->ctx->asic_id.chip_family) {
5394 
5395 	case FAMILY_YELLOW_CARP:
5396 		/* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5397 		if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5398 		    !dc->debug.dpia_debug.bits.disable_dpia)
5399 			return true;
5400 	break;
5401 
5402 	case AMDGPU_FAMILY_GC_11_0_1:
5403 	case AMDGPU_FAMILY_GC_11_5_0:
5404 		if (!dc->debug.dpia_debug.bits.disable_dpia)
5405 			return true;
5406 	break;
5407 
5408 	default:
5409 		break;
5410 	}
5411 
5412 	/* dmub aux needs dmub notifications to be enabled */
5413 	return dc->debug.enable_dmub_aux_for_legacy_ddc;
5414 
5415 }
5416 
5417 /**
5418  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5419  *
5420  * @dc: [in] dc structure
5421  *
5422  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5423  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
5424  * API shall be removed after switching.
5425  *
5426  * Return:
5427  * True if DMUB FW supports outbox notifications, False otherwise
5428  */
dc_enable_dmub_notifications(struct dc * dc)5429 bool dc_enable_dmub_notifications(struct dc *dc)
5430 {
5431 	return dc_is_dmub_outbox_supported(dc);
5432 }
5433 
5434 /**
5435  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5436  *
5437  * @dc: [in] dc structure
5438  *
5439  * Enables DMUB unsolicited notifications to x86 via outbox.
5440  */
dc_enable_dmub_outbox(struct dc * dc)5441 void dc_enable_dmub_outbox(struct dc *dc)
5442 {
5443 	struct dc_context *dc_ctx = dc->ctx;
5444 
5445 	dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5446 	DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5447 }
5448 
5449 /**
5450  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5451  *                                      Sets port index appropriately for legacy DDC
5452  * @dc: dc structure
5453  * @link_index: link index
5454  * @payload: aux payload
5455  *
5456  * Returns: True if successful, False if failure
5457  */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5458 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5459 				uint32_t link_index,
5460 				struct aux_payload *payload)
5461 {
5462 	uint8_t action;
5463 	union dmub_rb_cmd cmd = {0};
5464 
5465 	ASSERT(payload->length <= 16);
5466 
5467 	cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5468 	cmd.dp_aux_access.header.payload_bytes = 0;
5469 	/* For dpia, ddc_pin is set to NULL */
5470 	if (!dc->links[link_index]->ddc->ddc_pin)
5471 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5472 	else
5473 		cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5474 
5475 	cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5476 	cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5477 	cmd.dp_aux_access.aux_control.timeout = 0;
5478 	cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5479 	cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5480 	cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5481 
5482 	/* set aux action */
5483 	if (payload->i2c_over_aux) {
5484 		if (payload->write) {
5485 			if (payload->mot)
5486 				action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5487 			else
5488 				action = DP_AUX_REQ_ACTION_I2C_WRITE;
5489 		} else {
5490 			if (payload->mot)
5491 				action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5492 			else
5493 				action = DP_AUX_REQ_ACTION_I2C_READ;
5494 			}
5495 	} else {
5496 		if (payload->write)
5497 			action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5498 		else
5499 			action = DP_AUX_REQ_ACTION_DPCD_READ;
5500 	}
5501 
5502 	cmd.dp_aux_access.aux_control.dpaux.action = action;
5503 
5504 	if (payload->length && payload->write) {
5505 		memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5506 			payload->data,
5507 			payload->length
5508 			);
5509 	}
5510 
5511 	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5512 
5513 	return true;
5514 }
5515 
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5516 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5517 					    uint8_t dpia_port_index)
5518 {
5519 	uint8_t index, link_index = 0xFF;
5520 
5521 	for (index = 0; index < dc->link_count; index++) {
5522 		/* ddc_hw_inst has dpia port index for dpia links
5523 		 * and ddc instance for legacy links
5524 		 */
5525 		if (!dc->links[index]->ddc->ddc_pin) {
5526 			if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5527 				link_index = index;
5528 				break;
5529 			}
5530 		}
5531 	}
5532 	ASSERT(link_index != 0xFF);
5533 	return link_index;
5534 }
5535 
5536 /**
5537  * dc_process_dmub_set_config_async - Submits set_config command
5538  *
5539  * @dc: [in] dc structure
5540  * @link_index: [in] link_index: link index
5541  * @payload: [in] aux payload
5542  * @notify: [out] set_config immediate reply
5543  *
5544  * Submits set_config command to dmub via inbox message.
5545  *
5546  * Return:
5547  * True if successful, False if failure
5548  */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5549 bool dc_process_dmub_set_config_async(struct dc *dc,
5550 				uint32_t link_index,
5551 				struct set_config_cmd_payload *payload,
5552 				struct dmub_notification *notify)
5553 {
5554 	union dmub_rb_cmd cmd = {0};
5555 	bool is_cmd_complete = true;
5556 
5557 	/* prepare SET_CONFIG command */
5558 	cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5559 	cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5560 
5561 	cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5562 	cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5563 	cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5564 
5565 	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5566 		/* command is not processed by dmub */
5567 		notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5568 		return is_cmd_complete;
5569 	}
5570 
5571 	/* command processed by dmub, if ret_status is 1, it is completed instantly */
5572 	if (cmd.set_config_access.header.ret_status == 1)
5573 		notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5574 	else
5575 		/* cmd pending, will receive notification via outbox */
5576 		is_cmd_complete = false;
5577 
5578 	return is_cmd_complete;
5579 }
5580 
5581 /**
5582  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5583  *
5584  * @dc: [in] dc structure
5585  * @link_index: [in] link index
5586  * @mst_alloc_slots: [in] mst slots to be allotted
5587  * @mst_slots_in_use: [out] mst slots in use returned in failure case
5588  *
5589  * Submits mst slot allocation command to dmub via inbox message
5590  *
5591  * Return:
5592  * DC_OK if successful, DC_ERROR if failure
5593  */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5594 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5595 				uint32_t link_index,
5596 				uint8_t mst_alloc_slots,
5597 				uint8_t *mst_slots_in_use)
5598 {
5599 	union dmub_rb_cmd cmd = {0};
5600 
5601 	/* prepare MST_ALLOC_SLOTS command */
5602 	cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5603 	cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5604 
5605 	cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5606 	cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5607 
5608 	if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5609 		/* command is not processed by dmub */
5610 		return DC_ERROR_UNEXPECTED;
5611 
5612 	/* command processed by dmub, if ret_status is 1 */
5613 	if (cmd.set_config_access.header.ret_status != 1)
5614 		/* command processing error */
5615 		return DC_ERROR_UNEXPECTED;
5616 
5617 	/* command processed and we have a status of 2, mst not enabled in dpia */
5618 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5619 		return DC_FAIL_UNSUPPORTED_1;
5620 
5621 	/* previously configured mst alloc and used slots did not match */
5622 	if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5623 		*mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5624 		return DC_NOT_SUPPORTED;
5625 	}
5626 
5627 	return DC_OK;
5628 }
5629 
5630 /**
5631  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5632  *
5633  * @dc: [in] dc structure
5634  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5635  *
5636  * Submits dpia hpd int enable command to dmub via inbox message
5637  */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5638 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5639 				uint32_t hpd_int_enable)
5640 {
5641 	union dmub_rb_cmd cmd = {0};
5642 
5643 	cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5644 	cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5645 
5646 	dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5647 
5648 	DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5649 }
5650 
5651 /**
5652  * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5653  *
5654  * @dc: [in] dc structure
5655  *
5656  *
5657  */
dc_print_dmub_diagnostic_data(const struct dc * dc)5658 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5659 {
5660 	dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5661 }
5662 
5663 /**
5664  * dc_disable_accelerated_mode - disable accelerated mode
5665  * @dc: dc structure
5666  */
dc_disable_accelerated_mode(struct dc * dc)5667 void dc_disable_accelerated_mode(struct dc *dc)
5668 {
5669 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5670 }
5671 
5672 
5673 /**
5674  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
5675  *  @dc: dc structure
5676  *  @stream: stream where vsync int state changed
5677  *  @enable: whether vsync is enabled or disabled
5678  *
5679  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5680  *  interrupts after steady state is reached.
5681  */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5682 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5683 {
5684 	int i;
5685 	int edp_num;
5686 	struct pipe_ctx *pipe = NULL;
5687 	struct dc_link *link = stream->sink->link;
5688 	struct dc_link *edp_links[MAX_NUM_EDP];
5689 
5690 
5691 	if (link->psr_settings.psr_feature_enabled)
5692 		return;
5693 
5694 	if (link->replay_settings.replay_feature_enabled)
5695 		return;
5696 
5697 	/*find primary pipe associated with stream*/
5698 	for (i = 0; i < MAX_PIPES; i++) {
5699 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5700 
5701 		if (pipe->stream == stream && pipe->stream_res.tg)
5702 			break;
5703 	}
5704 
5705 	if (i == MAX_PIPES) {
5706 		ASSERT(0);
5707 		return;
5708 	}
5709 
5710 	dc_get_edp_links(dc, edp_links, &edp_num);
5711 
5712 	/* Determine panel inst */
5713 	for (i = 0; i < edp_num; i++) {
5714 		if (edp_links[i] == link)
5715 			break;
5716 	}
5717 
5718 	if (i == edp_num) {
5719 		return;
5720 	}
5721 
5722 	if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5723 		pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5724 }
5725 
5726 /*****************************************************************************
5727  *  dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5728  *                          ABM
5729  *  @dc: dc structure
5730  *	@stream: stream where vsync int state changed
5731  *  @pData: abm hw states
5732  *
5733  ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5734 bool dc_abm_save_restore(
5735 		struct dc *dc,
5736 		struct dc_stream_state *stream,
5737 		struct abm_save_restore *pData)
5738 {
5739 	int i;
5740 	int edp_num;
5741 	struct pipe_ctx *pipe = NULL;
5742 	struct dc_link *link = stream->sink->link;
5743 	struct dc_link *edp_links[MAX_NUM_EDP];
5744 
5745 	if (link->replay_settings.replay_feature_enabled)
5746 		return false;
5747 
5748 	/*find primary pipe associated with stream*/
5749 	for (i = 0; i < MAX_PIPES; i++) {
5750 		pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5751 
5752 		if (pipe->stream == stream && pipe->stream_res.tg)
5753 			break;
5754 	}
5755 
5756 	if (i == MAX_PIPES) {
5757 		ASSERT(0);
5758 		return false;
5759 	}
5760 
5761 	dc_get_edp_links(dc, edp_links, &edp_num);
5762 
5763 	/* Determine panel inst */
5764 	for (i = 0; i < edp_num; i++)
5765 		if (edp_links[i] == link)
5766 			break;
5767 
5768 	if (i == edp_num)
5769 		return false;
5770 
5771 	if (pipe->stream_res.abm &&
5772 		pipe->stream_res.abm->funcs->save_restore)
5773 		return pipe->stream_res.abm->funcs->save_restore(
5774 				pipe->stream_res.abm,
5775 				i,
5776 				pData);
5777 	return false;
5778 }
5779 
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5780 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5781 {
5782 	unsigned int i;
5783 	bool subvp_sw_cursor_req = false;
5784 
5785 	for (i = 0; i < dc->current_state->stream_count; i++) {
5786 		if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i])) {
5787 			subvp_sw_cursor_req = true;
5788 			break;
5789 		}
5790 	}
5791 	properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
5792 }
5793 
5794 /**
5795  * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5796  *
5797  * Called when DM wants to power on/off eDP.
5798  *     Only work on links with flag skip_implict_edp_power_control is set.
5799  *
5800  * @dc: Current DC state
5801  * @edp_link: a link with eDP connector signal type
5802  * @powerOn: power on/off eDP
5803  *
5804  * Return: void
5805  */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5806 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5807 				 bool powerOn)
5808 {
5809 	if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5810 		return;
5811 
5812 	if (edp_link->skip_implict_edp_power_control == false)
5813 		return;
5814 
5815 	edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5816 }
5817 
5818 /*
5819  *****************************************************************************
5820  * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
5821  *
5822  * Called when DM wants to make power policy decisions based on dc_state
5823  *
5824  *****************************************************************************
5825  */
dc_get_power_profile_for_dc_state(const struct dc_state * context)5826 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
5827 {
5828 	struct dc_power_profile profile = { 0 };
5829 
5830 	profile.power_level += !context->bw_ctx.bw.dcn.clk.p_state_change_support;
5831 
5832 	return profile;
5833 }
5834 
5835