1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_stop (ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
161
162 /* The initial current target, so that there is always a semi-valid
163 current target. */
164
165 static struct target_ops dummy_target;
166
167 /* Top of target stack. */
168
169 static struct target_ops *target_stack;
170
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
173
174 struct target_ops current_target;
175
176 /* Command list for target. */
177
178 static struct cmd_list_element *targetlist = NULL;
179
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
182
183 static int trust_readonly = 0;
184
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
187
188 static int show_memory_breakpoints = 0;
189
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
193
194 int may_write_registers = 1;
195
196 int may_write_memory = 1;
197
198 int may_insert_breakpoints = 1;
199
200 int may_insert_tracepoints = 1;
201
202 int may_insert_fast_tracepoints = 1;
203
204 int may_stop = 1;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static unsigned int targetdebug = 0;
209 static void
show_targetdebug(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
224
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
229
230 static void
set_stack_cache_enabled_p(char * args,int from_tty,struct cmd_list_element * c)231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
233 {
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
236
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
238 }
239
240 static void
show_stack_cache_enabled_p(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
245 }
246
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
249
250 /* Invalidate the target dcache. */
251
252 void
target_dcache_invalidate(void)253 target_dcache_invalidate (void)
254 {
255 dcache_invalidate (target_dcache);
256 }
257
258 /* The user just typed 'target' without the name of a target. */
259
260 static void
target_command(char * arg,int from_tty)261 target_command (char *arg, int from_tty)
262 {
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
264 gdb_stdout);
265 }
266
267 /* Default target_has_* methods for process_stratum targets. */
268
269 int
default_child_has_all_memory(struct target_ops * ops)270 default_child_has_all_memory (struct target_ops *ops)
271 {
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
default_child_has_memory(struct target_ops * ops)280 default_child_has_memory (struct target_ops *ops)
281 {
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
default_child_has_stack(struct target_ops * ops)290 default_child_has_stack (struct target_ops *ops)
291 {
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
294 return 0;
295
296 return 1;
297 }
298
299 int
default_child_has_registers(struct target_ops * ops)300 default_child_has_registers (struct target_ops *ops)
301 {
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
304 return 0;
305
306 return 1;
307 }
308
309 int
default_child_has_execution(struct target_ops * ops,ptid_t the_ptid)310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
311 {
312 /* If there's no thread selected, then we can't make it run through
313 hoops. */
314 if (ptid_equal (the_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320
321 int
target_has_all_memory_1(void)322 target_has_all_memory_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
target_has_memory_1(void)334 target_has_memory_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
target_has_stack_1(void)346 target_has_stack_1 (void)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
352 return 1;
353
354 return 0;
355 }
356
357 int
target_has_registers_1(void)358 target_has_registers_1 (void)
359 {
360 struct target_ops *t;
361
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
364 return 1;
365
366 return 0;
367 }
368
369 int
target_has_execution_1(ptid_t the_ptid)370 target_has_execution_1 (ptid_t the_ptid)
371 {
372 struct target_ops *t;
373
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
376 return 1;
377
378 return 0;
379 }
380
381 int
target_has_execution_current(void)382 target_has_execution_current (void)
383 {
384 return target_has_execution_1 (inferior_ptid);
385 }
386
387 /* Add a possible target architecture to the list. */
388
389 void
add_target(struct target_ops * t)390 add_target (struct target_ops *t)
391 {
392 /* Provide default values for all "must have" methods. */
393 if (t->to_xfer_partial == NULL)
394 t->to_xfer_partial = default_xfer_partial;
395
396 if (t->to_has_all_memory == NULL)
397 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
398
399 if (t->to_has_memory == NULL)
400 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
401
402 if (t->to_has_stack == NULL)
403 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
404
405 if (t->to_has_registers == NULL)
406 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
407
408 if (t->to_has_execution == NULL)
409 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
435 }
436
437 /* See target.h. */
438
439 void
add_deprecated_target_alias(struct target_ops * t,char * alias)440 add_deprecated_target_alias (struct target_ops *t, char *alias)
441 {
442 struct cmd_list_element *c;
443 char *alt;
444
445 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
446 see PR cli/15104. */
447 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
448 alt = xstrprintf ("target %s", t->to_shortname);
449 deprecate_cmd (c, alt);
450 }
451
452 /* Stub functions */
453
454 void
target_ignore(void)455 target_ignore (void)
456 {
457 }
458
459 void
target_kill(void)460 target_kill (void)
461 {
462 struct target_ops *t;
463
464 for (t = current_target.beneath; t != NULL; t = t->beneath)
465 if (t->to_kill != NULL)
466 {
467 if (targetdebug)
468 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
469
470 t->to_kill (t);
471 return;
472 }
473
474 noprocess ();
475 }
476
477 void
target_load(char * arg,int from_tty)478 target_load (char *arg, int from_tty)
479 {
480 target_dcache_invalidate ();
481 (*current_target.to_load) (arg, from_tty);
482 }
483
484 void
target_create_inferior(char * exec_file,char * args,char ** env,int from_tty)485 target_create_inferior (char *exec_file, char *args,
486 char **env, int from_tty)
487 {
488 struct target_ops *t;
489
490 for (t = current_target.beneath; t != NULL; t = t->beneath)
491 {
492 if (t->to_create_inferior != NULL)
493 {
494 t->to_create_inferior (t, exec_file, args, env, from_tty);
495 if (targetdebug)
496 fprintf_unfiltered (gdb_stdlog,
497 "target_create_inferior (%s, %s, xxx, %d)\n",
498 exec_file, args, from_tty);
499 return;
500 }
501 }
502
503 internal_error (__FILE__, __LINE__,
504 _("could not find a target to create inferior"));
505 }
506
507 void
target_terminal_inferior(void)508 target_terminal_inferior (void)
509 {
510 /* A background resume (``run&'') should leave GDB in control of the
511 terminal. Use target_can_async_p, not target_is_async_p, since at
512 this point the target is not async yet. However, if sync_execution
513 is not set, we know it will become async prior to resume. */
514 if (target_can_async_p () && !sync_execution)
515 return;
516
517 /* If GDB is resuming the inferior in the foreground, install
518 inferior's terminal modes. */
519 (*current_target.to_terminal_inferior) ();
520 }
521
522 static int
nomemory(CORE_ADDR memaddr,char * myaddr,int len,int write,struct target_ops * t)523 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
524 struct target_ops *t)
525 {
526 errno = EIO; /* Can't read/write this location. */
527 return 0; /* No bytes handled. */
528 }
529
530 static void
tcomplain(void)531 tcomplain (void)
532 {
533 error (_("You can't do that when your target is `%s'"),
534 current_target.to_shortname);
535 }
536
537 void
noprocess(void)538 noprocess (void)
539 {
540 error (_("You can't do that without a process to debug."));
541 }
542
543 static void
default_terminal_info(char * args,int from_tty)544 default_terminal_info (char *args, int from_tty)
545 {
546 printf_unfiltered (_("No saved terminal information.\n"));
547 }
548
549 /* A default implementation for the to_get_ada_task_ptid target method.
550
551 This function builds the PTID by using both LWP and TID as part of
552 the PTID lwp and tid elements. The pid used is the pid of the
553 inferior_ptid. */
554
555 static ptid_t
default_get_ada_task_ptid(long lwp,long tid)556 default_get_ada_task_ptid (long lwp, long tid)
557 {
558 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
559 }
560
561 static enum exec_direction_kind
default_execution_direction(void)562 default_execution_direction (void)
563 {
564 if (!target_can_execute_reverse)
565 return EXEC_FORWARD;
566 else if (!target_can_async_p ())
567 return EXEC_FORWARD;
568 else
569 gdb_assert_not_reached ("\
570 to_execution_direction must be implemented for reverse async");
571 }
572
573 /* Go through the target stack from top to bottom, copying over zero
574 entries in current_target, then filling in still empty entries. In
575 effect, we are doing class inheritance through the pushed target
576 vectors.
577
578 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
579 is currently implemented, is that it discards any knowledge of
580 which target an inherited method originally belonged to.
581 Consequently, new new target methods should instead explicitly and
582 locally search the target stack for the target that can handle the
583 request. */
584
585 static void
update_current_target(void)586 update_current_target (void)
587 {
588 struct target_ops *t;
589
590 /* First, reset current's contents. */
591 memset (¤t_target, 0, sizeof (current_target));
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 INHERIT (to_post_attach, t);
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 INHERIT (to_prepare_to_store, t);
614 INHERIT (deprecated_xfer_memory, t);
615 INHERIT (to_files_info, t);
616 INHERIT (to_insert_breakpoint, t);
617 INHERIT (to_remove_breakpoint, t);
618 INHERIT (to_can_use_hw_breakpoint, t);
619 INHERIT (to_insert_hw_breakpoint, t);
620 INHERIT (to_remove_hw_breakpoint, t);
621 /* Do not inherit to_ranged_break_num_registers. */
622 INHERIT (to_insert_watchpoint, t);
623 INHERIT (to_remove_watchpoint, t);
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 INHERIT (to_stopped_data_address, t);
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 INHERIT (to_stopped_by_watchpoint, t);
630 INHERIT (to_watchpoint_addr_within_range, t);
631 INHERIT (to_region_ok_for_hw_watchpoint, t);
632 INHERIT (to_can_accel_watchpoint_condition, t);
633 /* Do not inherit to_masked_watch_num_registers. */
634 INHERIT (to_terminal_init, t);
635 INHERIT (to_terminal_inferior, t);
636 INHERIT (to_terminal_ours_for_output, t);
637 INHERIT (to_terminal_ours, t);
638 INHERIT (to_terminal_save_ours, t);
639 INHERIT (to_terminal_info, t);
640 /* Do not inherit to_kill. */
641 INHERIT (to_load, t);
642 /* Do no inherit to_create_inferior. */
643 INHERIT (to_post_startup_inferior, t);
644 INHERIT (to_insert_fork_catchpoint, t);
645 INHERIT (to_remove_fork_catchpoint, t);
646 INHERIT (to_insert_vfork_catchpoint, t);
647 INHERIT (to_remove_vfork_catchpoint, t);
648 /* Do not inherit to_follow_fork. */
649 INHERIT (to_insert_exec_catchpoint, t);
650 INHERIT (to_remove_exec_catchpoint, t);
651 INHERIT (to_set_syscall_catchpoint, t);
652 INHERIT (to_has_exited, t);
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 INHERIT (to_extra_thread_info, t);
661 INHERIT (to_thread_name, t);
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 INHERIT (to_rcmd, t);
665 INHERIT (to_pid_to_exec_file, t);
666 INHERIT (to_log_command, t);
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 INHERIT (to_can_async_p, t);
675 INHERIT (to_is_async_p, t);
676 INHERIT (to_async, t);
677 INHERIT (to_find_memory_regions, t);
678 INHERIT (to_make_corefile_notes, t);
679 INHERIT (to_get_bookmark, t);
680 INHERIT (to_goto_bookmark, t);
681 /* Do not inherit to_get_thread_local_address. */
682 INHERIT (to_can_execute_reverse, t);
683 INHERIT (to_execution_direction, t);
684 INHERIT (to_thread_architecture, t);
685 /* Do not inherit to_read_description. */
686 INHERIT (to_get_ada_task_ptid, t);
687 /* Do not inherit to_search_memory. */
688 INHERIT (to_supports_multi_process, t);
689 INHERIT (to_supports_enable_disable_tracepoint, t);
690 INHERIT (to_supports_string_tracing, t);
691 INHERIT (to_trace_init, t);
692 INHERIT (to_download_tracepoint, t);
693 INHERIT (to_can_download_tracepoint, t);
694 INHERIT (to_download_trace_state_variable, t);
695 INHERIT (to_enable_tracepoint, t);
696 INHERIT (to_disable_tracepoint, t);
697 INHERIT (to_trace_set_readonly_regions, t);
698 INHERIT (to_trace_start, t);
699 INHERIT (to_get_trace_status, t);
700 INHERIT (to_get_tracepoint_status, t);
701 INHERIT (to_trace_stop, t);
702 INHERIT (to_trace_find, t);
703 INHERIT (to_get_trace_state_variable_value, t);
704 INHERIT (to_save_trace_data, t);
705 INHERIT (to_upload_tracepoints, t);
706 INHERIT (to_upload_trace_state_variables, t);
707 INHERIT (to_get_raw_trace_data, t);
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_magic, t);
721 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
722 INHERIT (to_can_run_breakpoint_commands, t);
723 /* Do not inherit to_memory_map. */
724 /* Do not inherit to_flash_erase. */
725 /* Do not inherit to_flash_done. */
726 }
727 #undef INHERIT
728
729 /* Clean up a target struct so it no longer has any zero pointers in
730 it. Some entries are defaulted to a method that print an error,
731 others are hard-wired to a standard recursive default. */
732
733 #define de_fault(field, value) \
734 if (!current_target.field) \
735 current_target.field = value
736
737 de_fault (to_open,
738 (void (*) (char *, int))
739 tcomplain);
740 de_fault (to_close,
741 (void (*) (int))
742 target_ignore);
743 de_fault (to_post_attach,
744 (void (*) (int))
745 target_ignore);
746 de_fault (to_prepare_to_store,
747 (void (*) (struct regcache *))
748 noprocess);
749 de_fault (deprecated_xfer_memory,
750 (int (*) (CORE_ADDR, gdb_byte *, int, int,
751 struct mem_attrib *, struct target_ops *))
752 nomemory);
753 de_fault (to_files_info,
754 (void (*) (struct target_ops *))
755 target_ignore);
756 de_fault (to_insert_breakpoint,
757 memory_insert_breakpoint);
758 de_fault (to_remove_breakpoint,
759 memory_remove_breakpoint);
760 de_fault (to_can_use_hw_breakpoint,
761 (int (*) (int, int, int))
762 return_zero);
763 de_fault (to_insert_hw_breakpoint,
764 (int (*) (struct gdbarch *, struct bp_target_info *))
765 return_minus_one);
766 de_fault (to_remove_hw_breakpoint,
767 (int (*) (struct gdbarch *, struct bp_target_info *))
768 return_minus_one);
769 de_fault (to_insert_watchpoint,
770 (int (*) (CORE_ADDR, int, int, struct expression *))
771 return_minus_one);
772 de_fault (to_remove_watchpoint,
773 (int (*) (CORE_ADDR, int, int, struct expression *))
774 return_minus_one);
775 de_fault (to_stopped_by_watchpoint,
776 (int (*) (void))
777 return_zero);
778 de_fault (to_stopped_data_address,
779 (int (*) (struct target_ops *, CORE_ADDR *))
780 return_zero);
781 de_fault (to_watchpoint_addr_within_range,
782 default_watchpoint_addr_within_range);
783 de_fault (to_region_ok_for_hw_watchpoint,
784 default_region_ok_for_hw_watchpoint);
785 de_fault (to_can_accel_watchpoint_condition,
786 (int (*) (CORE_ADDR, int, int, struct expression *))
787 return_zero);
788 de_fault (to_terminal_init,
789 (void (*) (void))
790 target_ignore);
791 de_fault (to_terminal_inferior,
792 (void (*) (void))
793 target_ignore);
794 de_fault (to_terminal_ours_for_output,
795 (void (*) (void))
796 target_ignore);
797 de_fault (to_terminal_ours,
798 (void (*) (void))
799 target_ignore);
800 de_fault (to_terminal_save_ours,
801 (void (*) (void))
802 target_ignore);
803 de_fault (to_terminal_info,
804 default_terminal_info);
805 de_fault (to_load,
806 (void (*) (char *, int))
807 tcomplain);
808 de_fault (to_post_startup_inferior,
809 (void (*) (ptid_t))
810 target_ignore);
811 de_fault (to_insert_fork_catchpoint,
812 (int (*) (int))
813 return_one);
814 de_fault (to_remove_fork_catchpoint,
815 (int (*) (int))
816 return_one);
817 de_fault (to_insert_vfork_catchpoint,
818 (int (*) (int))
819 return_one);
820 de_fault (to_remove_vfork_catchpoint,
821 (int (*) (int))
822 return_one);
823 de_fault (to_insert_exec_catchpoint,
824 (int (*) (int))
825 return_one);
826 de_fault (to_remove_exec_catchpoint,
827 (int (*) (int))
828 return_one);
829 de_fault (to_set_syscall_catchpoint,
830 (int (*) (int, int, int, int, int *))
831 return_one);
832 de_fault (to_has_exited,
833 (int (*) (int, int, int *))
834 return_zero);
835 de_fault (to_can_run,
836 return_zero);
837 de_fault (to_extra_thread_info,
838 (char *(*) (struct thread_info *))
839 return_zero);
840 de_fault (to_thread_name,
841 (char *(*) (struct thread_info *))
842 return_zero);
843 de_fault (to_stop,
844 (void (*) (ptid_t))
845 target_ignore);
846 current_target.to_xfer_partial = current_xfer_partial;
847 de_fault (to_rcmd,
848 (void (*) (char *, struct ui_file *))
849 tcomplain);
850 de_fault (to_pid_to_exec_file,
851 (char *(*) (int))
852 return_zero);
853 de_fault (to_async,
854 (void (*) (void (*) (enum inferior_event_type, void*), void*))
855 tcomplain);
856 de_fault (to_thread_architecture,
857 default_thread_architecture);
858 current_target.to_read_description = NULL;
859 de_fault (to_get_ada_task_ptid,
860 (ptid_t (*) (long, long))
861 default_get_ada_task_ptid);
862 de_fault (to_supports_multi_process,
863 (int (*) (void))
864 return_zero);
865 de_fault (to_supports_enable_disable_tracepoint,
866 (int (*) (void))
867 return_zero);
868 de_fault (to_supports_string_tracing,
869 (int (*) (void))
870 return_zero);
871 de_fault (to_trace_init,
872 (void (*) (void))
873 tcomplain);
874 de_fault (to_download_tracepoint,
875 (void (*) (struct bp_location *))
876 tcomplain);
877 de_fault (to_can_download_tracepoint,
878 (int (*) (void))
879 return_zero);
880 de_fault (to_download_trace_state_variable,
881 (void (*) (struct trace_state_variable *))
882 tcomplain);
883 de_fault (to_enable_tracepoint,
884 (void (*) (struct bp_location *))
885 tcomplain);
886 de_fault (to_disable_tracepoint,
887 (void (*) (struct bp_location *))
888 tcomplain);
889 de_fault (to_trace_set_readonly_regions,
890 (void (*) (void))
891 tcomplain);
892 de_fault (to_trace_start,
893 (void (*) (void))
894 tcomplain);
895 de_fault (to_get_trace_status,
896 (int (*) (struct trace_status *))
897 return_minus_one);
898 de_fault (to_get_tracepoint_status,
899 (void (*) (struct breakpoint *, struct uploaded_tp *))
900 tcomplain);
901 de_fault (to_trace_stop,
902 (void (*) (void))
903 tcomplain);
904 de_fault (to_trace_find,
905 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
906 return_minus_one);
907 de_fault (to_get_trace_state_variable_value,
908 (int (*) (int, LONGEST *))
909 return_zero);
910 de_fault (to_save_trace_data,
911 (int (*) (const char *))
912 tcomplain);
913 de_fault (to_upload_tracepoints,
914 (int (*) (struct uploaded_tp **))
915 return_zero);
916 de_fault (to_upload_trace_state_variables,
917 (int (*) (struct uploaded_tsv **))
918 return_zero);
919 de_fault (to_get_raw_trace_data,
920 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
921 tcomplain);
922 de_fault (to_get_min_fast_tracepoint_insn_len,
923 (int (*) (void))
924 return_minus_one);
925 de_fault (to_set_disconnected_tracing,
926 (void (*) (int))
927 target_ignore);
928 de_fault (to_set_circular_trace_buffer,
929 (void (*) (int))
930 target_ignore);
931 de_fault (to_set_trace_buffer_size,
932 (void (*) (LONGEST))
933 target_ignore);
934 de_fault (to_set_trace_notes,
935 (int (*) (char *, char *, char *))
936 return_zero);
937 de_fault (to_get_tib_address,
938 (int (*) (ptid_t, CORE_ADDR *))
939 tcomplain);
940 de_fault (to_set_permissions,
941 (void (*) (void))
942 target_ignore);
943 de_fault (to_static_tracepoint_marker_at,
944 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
945 return_zero);
946 de_fault (to_static_tracepoint_markers_by_strid,
947 (VEC(static_tracepoint_marker_p) * (*) (const char *))
948 tcomplain);
949 de_fault (to_traceframe_info,
950 (struct traceframe_info * (*) (void))
951 tcomplain);
952 de_fault (to_supports_evaluation_of_breakpoint_conditions,
953 (int (*) (void))
954 return_zero);
955 de_fault (to_can_run_breakpoint_commands,
956 (int (*) (void))
957 return_zero);
958 de_fault (to_use_agent,
959 (int (*) (int))
960 tcomplain);
961 de_fault (to_can_use_agent,
962 (int (*) (void))
963 return_zero);
964 de_fault (to_execution_direction, default_execution_direction);
965
966 #undef de_fault
967
968 /* Finally, position the target-stack beneath the squashed
969 "current_target". That way code looking for a non-inherited
970 target method can quickly and simply find it. */
971 current_target.beneath = target_stack;
972
973 if (targetdebug)
974 setup_target_debug ();
975 }
976
977 /* Push a new target type into the stack of the existing target accessors,
978 possibly superseding some of the existing accessors.
979
980 Rather than allow an empty stack, we always have the dummy target at
981 the bottom stratum, so we can call the function vectors without
982 checking them. */
983
984 void
push_target(struct target_ops * t)985 push_target (struct target_ops *t)
986 {
987 struct target_ops **cur;
988
989 /* Check magic number. If wrong, it probably means someone changed
990 the struct definition, but not all the places that initialize one. */
991 if (t->to_magic != OPS_MAGIC)
992 {
993 fprintf_unfiltered (gdb_stderr,
994 "Magic number of %s target struct wrong\n",
995 t->to_shortname);
996 internal_error (__FILE__, __LINE__,
997 _("failed internal consistency check"));
998 }
999
1000 /* Find the proper stratum to install this target in. */
1001 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1002 {
1003 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
1004 break;
1005 }
1006
1007 /* If there's already targets at this stratum, remove them. */
1008 /* FIXME: cagney/2003-10-15: I think this should be popping all
1009 targets to CUR, and not just those at this stratum level. */
1010 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
1011 {
1012 /* There's already something at this stratum level. Close it,
1013 and un-hook it from the stack. */
1014 struct target_ops *tmp = (*cur);
1015
1016 (*cur) = (*cur)->beneath;
1017 tmp->beneath = NULL;
1018 target_close (tmp, 0);
1019 }
1020
1021 /* We have removed all targets in our stratum, now add the new one. */
1022 t->beneath = (*cur);
1023 (*cur) = t;
1024
1025 update_current_target ();
1026 }
1027
1028 /* Remove a target_ops vector from the stack, wherever it may be.
1029 Return how many times it was removed (0 or 1). */
1030
1031 int
unpush_target(struct target_ops * t)1032 unpush_target (struct target_ops *t)
1033 {
1034 struct target_ops **cur;
1035 struct target_ops *tmp;
1036
1037 if (t->to_stratum == dummy_stratum)
1038 internal_error (__FILE__, __LINE__,
1039 _("Attempt to unpush the dummy target"));
1040
1041 /* Look for the specified target. Note that we assume that a target
1042 can only occur once in the target stack. */
1043
1044 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1045 {
1046 if ((*cur) == t)
1047 break;
1048 }
1049
1050 /* If we don't find target_ops, quit. Only open targets should be
1051 closed. */
1052 if ((*cur) == NULL)
1053 return 0;
1054
1055 /* Unchain the target. */
1056 tmp = (*cur);
1057 (*cur) = (*cur)->beneath;
1058 tmp->beneath = NULL;
1059
1060 update_current_target ();
1061
1062 /* Finally close the target. Note we do this after unchaining, so
1063 any target method calls from within the target_close
1064 implementation don't end up in T anymore. */
1065 target_close (t, 0);
1066
1067 return 1;
1068 }
1069
1070 void
pop_target(void)1071 pop_target (void)
1072 {
1073 target_close (target_stack, 0); /* Let it clean up. */
1074 if (unpush_target (target_stack) == 1)
1075 return;
1076
1077 fprintf_unfiltered (gdb_stderr,
1078 "pop_target couldn't find target %s\n",
1079 current_target.to_shortname);
1080 internal_error (__FILE__, __LINE__,
1081 _("failed internal consistency check"));
1082 }
1083
1084 void
pop_all_targets_above(enum strata above_stratum,int quitting)1085 pop_all_targets_above (enum strata above_stratum, int quitting)
1086 {
1087 while ((int) (current_target.to_stratum) > (int) above_stratum)
1088 {
1089 target_close (target_stack, quitting);
1090 if (!unpush_target (target_stack))
1091 {
1092 fprintf_unfiltered (gdb_stderr,
1093 "pop_all_targets couldn't find target %s\n",
1094 target_stack->to_shortname);
1095 internal_error (__FILE__, __LINE__,
1096 _("failed internal consistency check"));
1097 break;
1098 }
1099 }
1100 }
1101
1102 void
pop_all_targets(int quitting)1103 pop_all_targets (int quitting)
1104 {
1105 pop_all_targets_above (dummy_stratum, quitting);
1106 }
1107
1108 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1109
1110 int
target_is_pushed(struct target_ops * t)1111 target_is_pushed (struct target_ops *t)
1112 {
1113 struct target_ops **cur;
1114
1115 /* Check magic number. If wrong, it probably means someone changed
1116 the struct definition, but not all the places that initialize one. */
1117 if (t->to_magic != OPS_MAGIC)
1118 {
1119 fprintf_unfiltered (gdb_stderr,
1120 "Magic number of %s target struct wrong\n",
1121 t->to_shortname);
1122 internal_error (__FILE__, __LINE__,
1123 _("failed internal consistency check"));
1124 }
1125
1126 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1127 if (*cur == t)
1128 return 1;
1129
1130 return 0;
1131 }
1132
1133 /* Using the objfile specified in OBJFILE, find the address for the
1134 current thread's thread-local storage with offset OFFSET. */
1135 CORE_ADDR
target_translate_tls_address(struct objfile * objfile,CORE_ADDR offset)1136 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1137 {
1138 volatile CORE_ADDR addr = 0;
1139 struct target_ops *target;
1140
1141 for (target = current_target.beneath;
1142 target != NULL;
1143 target = target->beneath)
1144 {
1145 if (target->to_get_thread_local_address != NULL)
1146 break;
1147 }
1148
1149 if (target != NULL
1150 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1151 {
1152 ptid_t ptid = inferior_ptid;
1153 volatile struct gdb_exception ex;
1154
1155 TRY_CATCH (ex, RETURN_MASK_ALL)
1156 {
1157 CORE_ADDR lm_addr;
1158
1159 /* Fetch the load module address for this objfile. */
1160 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1161 objfile);
1162 /* If it's 0, throw the appropriate exception. */
1163 if (lm_addr == 0)
1164 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1165 _("TLS load module not found"));
1166
1167 addr = target->to_get_thread_local_address (target, ptid,
1168 lm_addr, offset);
1169 }
1170 /* If an error occurred, print TLS related messages here. Otherwise,
1171 throw the error to some higher catcher. */
1172 if (ex.reason < 0)
1173 {
1174 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1175
1176 switch (ex.error)
1177 {
1178 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1179 error (_("Cannot find thread-local variables "
1180 "in this thread library."));
1181 break;
1182 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1183 if (objfile_is_library)
1184 error (_("Cannot find shared library `%s' in dynamic"
1185 " linker's load module list"), objfile->name);
1186 else
1187 error (_("Cannot find executable file `%s' in dynamic"
1188 " linker's load module list"), objfile->name);
1189 break;
1190 case TLS_NOT_ALLOCATED_YET_ERROR:
1191 if (objfile_is_library)
1192 error (_("The inferior has not yet allocated storage for"
1193 " thread-local variables in\n"
1194 "the shared library `%s'\n"
1195 "for %s"),
1196 objfile->name, target_pid_to_str (ptid));
1197 else
1198 error (_("The inferior has not yet allocated storage for"
1199 " thread-local variables in\n"
1200 "the executable `%s'\n"
1201 "for %s"),
1202 objfile->name, target_pid_to_str (ptid));
1203 break;
1204 case TLS_GENERIC_ERROR:
1205 if (objfile_is_library)
1206 error (_("Cannot find thread-local storage for %s, "
1207 "shared library %s:\n%s"),
1208 target_pid_to_str (ptid),
1209 objfile->name, ex.message);
1210 else
1211 error (_("Cannot find thread-local storage for %s, "
1212 "executable file %s:\n%s"),
1213 target_pid_to_str (ptid),
1214 objfile->name, ex.message);
1215 break;
1216 default:
1217 throw_exception (ex);
1218 break;
1219 }
1220 }
1221 }
1222 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1223 TLS is an ABI-specific thing. But we don't do that yet. */
1224 else
1225 error (_("Cannot find thread-local variables on this target"));
1226
1227 return addr;
1228 }
1229
1230 #undef MIN
1231 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1232
1233 /* target_read_string -- read a null terminated string, up to LEN bytes,
1234 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1235 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1236 is responsible for freeing it. Return the number of bytes successfully
1237 read. */
1238
1239 int
target_read_string(CORE_ADDR memaddr,char ** string,int len,int * errnop)1240 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1241 {
1242 int tlen, offset, i;
1243 gdb_byte buf[4];
1244 int errcode = 0;
1245 char *buffer;
1246 int buffer_allocated;
1247 char *bufptr;
1248 unsigned int nbytes_read = 0;
1249
1250 gdb_assert (string);
1251
1252 /* Small for testing. */
1253 buffer_allocated = 4;
1254 buffer = xmalloc (buffer_allocated);
1255 bufptr = buffer;
1256
1257 while (len > 0)
1258 {
1259 tlen = MIN (len, 4 - (memaddr & 3));
1260 offset = memaddr & 3;
1261
1262 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1263 if (errcode != 0)
1264 {
1265 /* The transfer request might have crossed the boundary to an
1266 unallocated region of memory. Retry the transfer, requesting
1267 a single byte. */
1268 tlen = 1;
1269 offset = 0;
1270 errcode = target_read_memory (memaddr, buf, 1);
1271 if (errcode != 0)
1272 goto done;
1273 }
1274
1275 if (bufptr - buffer + tlen > buffer_allocated)
1276 {
1277 unsigned int bytes;
1278
1279 bytes = bufptr - buffer;
1280 buffer_allocated *= 2;
1281 buffer = xrealloc (buffer, buffer_allocated);
1282 bufptr = buffer + bytes;
1283 }
1284
1285 for (i = 0; i < tlen; i++)
1286 {
1287 *bufptr++ = buf[i + offset];
1288 if (buf[i + offset] == '\000')
1289 {
1290 nbytes_read += i + 1;
1291 goto done;
1292 }
1293 }
1294
1295 memaddr += tlen;
1296 len -= tlen;
1297 nbytes_read += tlen;
1298 }
1299 done:
1300 *string = buffer;
1301 if (errnop != NULL)
1302 *errnop = errcode;
1303 return nbytes_read;
1304 }
1305
1306 struct target_section_table *
target_get_section_table(struct target_ops * target)1307 target_get_section_table (struct target_ops *target)
1308 {
1309 struct target_ops *t;
1310
1311 if (targetdebug)
1312 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1313
1314 for (t = target; t != NULL; t = t->beneath)
1315 if (t->to_get_section_table != NULL)
1316 return (*t->to_get_section_table) (t);
1317
1318 return NULL;
1319 }
1320
1321 /* Find a section containing ADDR. */
1322
1323 struct target_section *
target_section_by_addr(struct target_ops * target,CORE_ADDR addr)1324 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1325 {
1326 struct target_section_table *table = target_get_section_table (target);
1327 struct target_section *secp;
1328
1329 if (table == NULL)
1330 return NULL;
1331
1332 for (secp = table->sections; secp < table->sections_end; secp++)
1333 {
1334 if (addr >= secp->addr && addr < secp->endaddr)
1335 return secp;
1336 }
1337 return NULL;
1338 }
1339
1340 /* Read memory from the live target, even if currently inspecting a
1341 traceframe. The return is the same as that of target_read. */
1342
1343 static LONGEST
target_read_live_memory(enum target_object object,ULONGEST memaddr,gdb_byte * myaddr,LONGEST len)1344 target_read_live_memory (enum target_object object,
1345 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1346 {
1347 int ret;
1348 struct cleanup *cleanup;
1349
1350 /* Switch momentarily out of tfind mode so to access live memory.
1351 Note that this must not clear global state, such as the frame
1352 cache, which must still remain valid for the previous traceframe.
1353 We may be _building_ the frame cache at this point. */
1354 cleanup = make_cleanup_restore_traceframe_number ();
1355 set_traceframe_number (-1);
1356
1357 ret = target_read (current_target.beneath, object, NULL,
1358 myaddr, memaddr, len);
1359
1360 do_cleanups (cleanup);
1361 return ret;
1362 }
1363
1364 /* Using the set of read-only target sections of OPS, read live
1365 read-only memory. Note that the actual reads start from the
1366 top-most target again.
1367
1368 For interface/parameters/return description see target.h,
1369 to_xfer_partial. */
1370
1371 static LONGEST
memory_xfer_live_readonly_partial(struct target_ops * ops,enum target_object object,gdb_byte * readbuf,ULONGEST memaddr,LONGEST len)1372 memory_xfer_live_readonly_partial (struct target_ops *ops,
1373 enum target_object object,
1374 gdb_byte *readbuf, ULONGEST memaddr,
1375 LONGEST len)
1376 {
1377 struct target_section *secp;
1378 struct target_section_table *table;
1379
1380 secp = target_section_by_addr (ops, memaddr);
1381 if (secp != NULL
1382 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1383 & SEC_READONLY))
1384 {
1385 struct target_section *p;
1386 ULONGEST memend = memaddr + len;
1387
1388 table = target_get_section_table (ops);
1389
1390 for (p = table->sections; p < table->sections_end; p++)
1391 {
1392 if (memaddr >= p->addr)
1393 {
1394 if (memend <= p->endaddr)
1395 {
1396 /* Entire transfer is within this section. */
1397 return target_read_live_memory (object, memaddr,
1398 readbuf, len);
1399 }
1400 else if (memaddr >= p->endaddr)
1401 {
1402 /* This section ends before the transfer starts. */
1403 continue;
1404 }
1405 else
1406 {
1407 /* This section overlaps the transfer. Just do half. */
1408 len = p->endaddr - memaddr;
1409 return target_read_live_memory (object, memaddr,
1410 readbuf, len);
1411 }
1412 }
1413 }
1414 }
1415
1416 return 0;
1417 }
1418
1419 /* Perform a partial memory transfer.
1420 For docs see target.h, to_xfer_partial. */
1421
1422 static LONGEST
memory_xfer_partial_1(struct target_ops * ops,enum target_object object,void * readbuf,const void * writebuf,ULONGEST memaddr,LONGEST len)1423 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1424 void *readbuf, const void *writebuf, ULONGEST memaddr,
1425 LONGEST len)
1426 {
1427 LONGEST res;
1428 int reg_len;
1429 struct mem_region *region;
1430 struct inferior *inf;
1431
1432 /* For accesses to unmapped overlay sections, read directly from
1433 files. Must do this first, as MEMADDR may need adjustment. */
1434 if (readbuf != NULL && overlay_debugging)
1435 {
1436 struct obj_section *section = find_pc_overlay (memaddr);
1437
1438 if (pc_in_unmapped_range (memaddr, section))
1439 {
1440 struct target_section_table *table
1441 = target_get_section_table (ops);
1442 const char *section_name = section->the_bfd_section->name;
1443
1444 memaddr = overlay_mapped_address (memaddr, section);
1445 return section_table_xfer_memory_partial (readbuf, writebuf,
1446 memaddr, len,
1447 table->sections,
1448 table->sections_end,
1449 section_name);
1450 }
1451 }
1452
1453 /* Try the executable files, if "trust-readonly-sections" is set. */
1454 if (readbuf != NULL && trust_readonly)
1455 {
1456 struct target_section *secp;
1457 struct target_section_table *table;
1458
1459 secp = target_section_by_addr (ops, memaddr);
1460 if (secp != NULL
1461 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1462 & SEC_READONLY))
1463 {
1464 table = target_get_section_table (ops);
1465 return section_table_xfer_memory_partial (readbuf, writebuf,
1466 memaddr, len,
1467 table->sections,
1468 table->sections_end,
1469 NULL);
1470 }
1471 }
1472
1473 /* If reading unavailable memory in the context of traceframes, and
1474 this address falls within a read-only section, fallback to
1475 reading from live memory. */
1476 if (readbuf != NULL && get_traceframe_number () != -1)
1477 {
1478 VEC(mem_range_s) *available;
1479
1480 /* If we fail to get the set of available memory, then the
1481 target does not support querying traceframe info, and so we
1482 attempt reading from the traceframe anyway (assuming the
1483 target implements the old QTro packet then). */
1484 if (traceframe_available_memory (&available, memaddr, len))
1485 {
1486 struct cleanup *old_chain;
1487
1488 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1489
1490 if (VEC_empty (mem_range_s, available)
1491 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1492 {
1493 /* Don't read into the traceframe's available
1494 memory. */
1495 if (!VEC_empty (mem_range_s, available))
1496 {
1497 LONGEST oldlen = len;
1498
1499 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1500 gdb_assert (len <= oldlen);
1501 }
1502
1503 do_cleanups (old_chain);
1504
1505 /* This goes through the topmost target again. */
1506 res = memory_xfer_live_readonly_partial (ops, object,
1507 readbuf, memaddr, len);
1508 if (res > 0)
1509 return res;
1510
1511 /* No use trying further, we know some memory starting
1512 at MEMADDR isn't available. */
1513 return -1;
1514 }
1515
1516 /* Don't try to read more than how much is available, in
1517 case the target implements the deprecated QTro packet to
1518 cater for older GDBs (the target's knowledge of read-only
1519 sections may be outdated by now). */
1520 len = VEC_index (mem_range_s, available, 0)->length;
1521
1522 do_cleanups (old_chain);
1523 }
1524 }
1525
1526 /* Try GDB's internal data cache. */
1527 region = lookup_mem_region (memaddr);
1528 /* region->hi == 0 means there's no upper bound. */
1529 if (memaddr + len < region->hi || region->hi == 0)
1530 reg_len = len;
1531 else
1532 reg_len = region->hi - memaddr;
1533
1534 switch (region->attrib.mode)
1535 {
1536 case MEM_RO:
1537 if (writebuf != NULL)
1538 return -1;
1539 break;
1540
1541 case MEM_WO:
1542 if (readbuf != NULL)
1543 return -1;
1544 break;
1545
1546 case MEM_FLASH:
1547 /* We only support writing to flash during "load" for now. */
1548 if (writebuf != NULL)
1549 error (_("Writing to flash memory forbidden in this context"));
1550 break;
1551
1552 case MEM_NONE:
1553 return -1;
1554 }
1555
1556 if (!ptid_equal (inferior_ptid, null_ptid))
1557 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1558 else
1559 inf = NULL;
1560
1561 if (inf != NULL
1562 /* The dcache reads whole cache lines; that doesn't play well
1563 with reading from a trace buffer, because reading outside of
1564 the collected memory range fails. */
1565 && get_traceframe_number () == -1
1566 && (region->attrib.cache
1567 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1568 {
1569 if (readbuf != NULL)
1570 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1571 reg_len, 0);
1572 else
1573 /* FIXME drow/2006-08-09: If we're going to preserve const
1574 correctness dcache_xfer_memory should take readbuf and
1575 writebuf. */
1576 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1577 (void *) writebuf,
1578 reg_len, 1);
1579 if (res <= 0)
1580 return -1;
1581 else
1582 return res;
1583 }
1584
1585 /* If none of those methods found the memory we wanted, fall back
1586 to a target partial transfer. Normally a single call to
1587 to_xfer_partial is enough; if it doesn't recognize an object
1588 it will call the to_xfer_partial of the next target down.
1589 But for memory this won't do. Memory is the only target
1590 object which can be read from more than one valid target.
1591 A core file, for instance, could have some of memory but
1592 delegate other bits to the target below it. So, we must
1593 manually try all targets. */
1594
1595 do
1596 {
1597 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1598 readbuf, writebuf, memaddr, reg_len);
1599 if (res > 0)
1600 break;
1601
1602 /* We want to continue past core files to executables, but not
1603 past a running target's memory. */
1604 if (ops->to_has_all_memory (ops))
1605 break;
1606
1607 ops = ops->beneath;
1608 }
1609 while (ops != NULL);
1610
1611 /* Make sure the cache gets updated no matter what - if we are writing
1612 to the stack. Even if this write is not tagged as such, we still need
1613 to update the cache. */
1614
1615 if (res > 0
1616 && inf != NULL
1617 && writebuf != NULL
1618 && !region->attrib.cache
1619 && stack_cache_enabled_p
1620 && object != TARGET_OBJECT_STACK_MEMORY)
1621 {
1622 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1623 }
1624
1625 /* If we still haven't got anything, return the last error. We
1626 give up. */
1627 return res;
1628 }
1629
1630 /* Perform a partial memory transfer. For docs see target.h,
1631 to_xfer_partial. */
1632
1633 static LONGEST
memory_xfer_partial(struct target_ops * ops,enum target_object object,void * readbuf,const void * writebuf,ULONGEST memaddr,LONGEST len)1634 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1635 void *readbuf, const void *writebuf, ULONGEST memaddr,
1636 LONGEST len)
1637 {
1638 int res;
1639
1640 /* Zero length requests are ok and require no work. */
1641 if (len == 0)
1642 return 0;
1643
1644 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1645 breakpoint insns, thus hiding out from higher layers whether
1646 there are software breakpoints inserted in the code stream. */
1647 if (readbuf != NULL)
1648 {
1649 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1650
1651 if (res > 0 && !show_memory_breakpoints)
1652 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1653 }
1654 else
1655 {
1656 void *buf;
1657 struct cleanup *old_chain;
1658
1659 buf = xmalloc (len);
1660 old_chain = make_cleanup (xfree, buf);
1661 memcpy (buf, writebuf, len);
1662
1663 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1664 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1665
1666 do_cleanups (old_chain);
1667 }
1668
1669 return res;
1670 }
1671
1672 static void
restore_show_memory_breakpoints(void * arg)1673 restore_show_memory_breakpoints (void *arg)
1674 {
1675 show_memory_breakpoints = (uintptr_t) arg;
1676 }
1677
1678 struct cleanup *
make_show_memory_breakpoints_cleanup(int show)1679 make_show_memory_breakpoints_cleanup (int show)
1680 {
1681 int current = show_memory_breakpoints;
1682
1683 show_memory_breakpoints = show;
1684 return make_cleanup (restore_show_memory_breakpoints,
1685 (void *) (uintptr_t) current);
1686 }
1687
1688 /* For docs see target.h, to_xfer_partial. */
1689
1690 static LONGEST
target_xfer_partial(struct target_ops * ops,enum target_object object,const char * annex,void * readbuf,const void * writebuf,ULONGEST offset,LONGEST len)1691 target_xfer_partial (struct target_ops *ops,
1692 enum target_object object, const char *annex,
1693 void *readbuf, const void *writebuf,
1694 ULONGEST offset, LONGEST len)
1695 {
1696 LONGEST retval;
1697
1698 gdb_assert (ops->to_xfer_partial != NULL);
1699
1700 if (writebuf && !may_write_memory)
1701 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1702 core_addr_to_string_nz (offset), plongest (len));
1703
1704 /* If this is a memory transfer, let the memory-specific code
1705 have a look at it instead. Memory transfers are more
1706 complicated. */
1707 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1708 retval = memory_xfer_partial (ops, object, readbuf,
1709 writebuf, offset, len);
1710 else
1711 {
1712 enum target_object raw_object = object;
1713
1714 /* If this is a raw memory transfer, request the normal
1715 memory object from other layers. */
1716 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1717 raw_object = TARGET_OBJECT_MEMORY;
1718
1719 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1720 writebuf, offset, len);
1721 }
1722
1723 if (targetdebug)
1724 {
1725 const unsigned char *myaddr = NULL;
1726
1727 fprintf_unfiltered (gdb_stdlog,
1728 "%s:target_xfer_partial "
1729 "(%d, %s, %s, %s, %s, %s) = %s",
1730 ops->to_shortname,
1731 (int) object,
1732 (annex ? annex : "(null)"),
1733 host_address_to_string (readbuf),
1734 host_address_to_string (writebuf),
1735 core_addr_to_string_nz (offset),
1736 plongest (len), plongest (retval));
1737
1738 if (readbuf)
1739 myaddr = readbuf;
1740 if (writebuf)
1741 myaddr = writebuf;
1742 if (retval > 0 && myaddr != NULL)
1743 {
1744 int i;
1745
1746 fputs_unfiltered (", bytes =", gdb_stdlog);
1747 for (i = 0; i < retval; i++)
1748 {
1749 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1750 {
1751 if (targetdebug < 2 && i > 0)
1752 {
1753 fprintf_unfiltered (gdb_stdlog, " ...");
1754 break;
1755 }
1756 fprintf_unfiltered (gdb_stdlog, "\n");
1757 }
1758
1759 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1760 }
1761 }
1762
1763 fputc_unfiltered ('\n', gdb_stdlog);
1764 }
1765 return retval;
1766 }
1767
1768 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1769 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1770 if any error occurs.
1771
1772 If an error occurs, no guarantee is made about the contents of the data at
1773 MYADDR. In particular, the caller should not depend upon partial reads
1774 filling the buffer with good data. There is no way for the caller to know
1775 how much good data might have been transfered anyway. Callers that can
1776 deal with partial reads should call target_read (which will retry until
1777 it makes no progress, and then return how much was transferred). */
1778
1779 int
target_read_memory(CORE_ADDR memaddr,gdb_byte * myaddr,ssize_t len)1780 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1781 {
1782 /* Dispatch to the topmost target, not the flattened current_target.
1783 Memory accesses check target->to_has_(all_)memory, and the
1784 flattened target doesn't inherit those. */
1785 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1786 myaddr, memaddr, len) == len)
1787 return 0;
1788 else
1789 return EIO;
1790 }
1791
1792 /* Like target_read_memory, but specify explicitly that this is a read from
1793 the target's stack. This may trigger different cache behavior. */
1794
1795 int
target_read_stack(CORE_ADDR memaddr,gdb_byte * myaddr,ssize_t len)1796 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1797 {
1798 /* Dispatch to the topmost target, not the flattened current_target.
1799 Memory accesses check target->to_has_(all_)memory, and the
1800 flattened target doesn't inherit those. */
1801
1802 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1803 myaddr, memaddr, len) == len)
1804 return 0;
1805 else
1806 return EIO;
1807 }
1808
1809 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1810 Returns either 0 for success or an errno value if any error occurs.
1811 If an error occurs, no guarantee is made about how much data got written.
1812 Callers that can deal with partial writes should call target_write. */
1813
1814 int
target_write_memory(CORE_ADDR memaddr,const gdb_byte * myaddr,ssize_t len)1815 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1816 {
1817 /* Dispatch to the topmost target, not the flattened current_target.
1818 Memory accesses check target->to_has_(all_)memory, and the
1819 flattened target doesn't inherit those. */
1820 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1821 myaddr, memaddr, len) == len)
1822 return 0;
1823 else
1824 return EIO;
1825 }
1826
1827 /* Write LEN bytes from MYADDR to target raw memory at address
1828 MEMADDR. Returns either 0 for success or an errno value if any
1829 error occurs. If an error occurs, no guarantee is made about how
1830 much data got written. Callers that can deal with partial writes
1831 should call target_write. */
1832
1833 int
target_write_raw_memory(CORE_ADDR memaddr,const gdb_byte * myaddr,ssize_t len)1834 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1835 {
1836 /* Dispatch to the topmost target, not the flattened current_target.
1837 Memory accesses check target->to_has_(all_)memory, and the
1838 flattened target doesn't inherit those. */
1839 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1840 myaddr, memaddr, len) == len)
1841 return 0;
1842 else
1843 return EIO;
1844 }
1845
1846 /* Fetch the target's memory map. */
1847
VEC(mem_region_s)1848 VEC(mem_region_s) *
1849 target_memory_map (void)
1850 {
1851 VEC(mem_region_s) *result;
1852 struct mem_region *last_one, *this_one;
1853 int ix;
1854 struct target_ops *t;
1855
1856 if (targetdebug)
1857 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1858
1859 for (t = current_target.beneath; t != NULL; t = t->beneath)
1860 if (t->to_memory_map != NULL)
1861 break;
1862
1863 if (t == NULL)
1864 return NULL;
1865
1866 result = t->to_memory_map (t);
1867 if (result == NULL)
1868 return NULL;
1869
1870 qsort (VEC_address (mem_region_s, result),
1871 VEC_length (mem_region_s, result),
1872 sizeof (struct mem_region), mem_region_cmp);
1873
1874 /* Check that regions do not overlap. Simultaneously assign
1875 a numbering for the "mem" commands to use to refer to
1876 each region. */
1877 last_one = NULL;
1878 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1879 {
1880 this_one->number = ix;
1881
1882 if (last_one && last_one->hi > this_one->lo)
1883 {
1884 warning (_("Overlapping regions in memory map: ignoring"));
1885 VEC_free (mem_region_s, result);
1886 return NULL;
1887 }
1888 last_one = this_one;
1889 }
1890
1891 return result;
1892 }
1893
1894 void
target_flash_erase(ULONGEST address,LONGEST length)1895 target_flash_erase (ULONGEST address, LONGEST length)
1896 {
1897 struct target_ops *t;
1898
1899 for (t = current_target.beneath; t != NULL; t = t->beneath)
1900 if (t->to_flash_erase != NULL)
1901 {
1902 if (targetdebug)
1903 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1904 hex_string (address), phex (length, 0));
1905 t->to_flash_erase (t, address, length);
1906 return;
1907 }
1908
1909 tcomplain ();
1910 }
1911
1912 void
target_flash_done(void)1913 target_flash_done (void)
1914 {
1915 struct target_ops *t;
1916
1917 for (t = current_target.beneath; t != NULL; t = t->beneath)
1918 if (t->to_flash_done != NULL)
1919 {
1920 if (targetdebug)
1921 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1922 t->to_flash_done (t);
1923 return;
1924 }
1925
1926 tcomplain ();
1927 }
1928
1929 static void
show_trust_readonly(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)1930 show_trust_readonly (struct ui_file *file, int from_tty,
1931 struct cmd_list_element *c, const char *value)
1932 {
1933 fprintf_filtered (file,
1934 _("Mode for reading from readonly sections is %s.\n"),
1935 value);
1936 }
1937
1938 /* More generic transfers. */
1939
1940 static LONGEST
default_xfer_partial(struct target_ops * ops,enum target_object object,const char * annex,gdb_byte * readbuf,const gdb_byte * writebuf,ULONGEST offset,LONGEST len)1941 default_xfer_partial (struct target_ops *ops, enum target_object object,
1942 const char *annex, gdb_byte *readbuf,
1943 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1944 {
1945 if (object == TARGET_OBJECT_MEMORY
1946 && ops->deprecated_xfer_memory != NULL)
1947 /* If available, fall back to the target's
1948 "deprecated_xfer_memory" method. */
1949 {
1950 int xfered = -1;
1951
1952 errno = 0;
1953 if (writebuf != NULL)
1954 {
1955 void *buffer = xmalloc (len);
1956 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1957
1958 memcpy (buffer, writebuf, len);
1959 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1960 1/*write*/, NULL, ops);
1961 do_cleanups (cleanup);
1962 }
1963 if (readbuf != NULL)
1964 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1965 0/*read*/, NULL, ops);
1966 if (xfered > 0)
1967 return xfered;
1968 else if (xfered == 0 && errno == 0)
1969 /* "deprecated_xfer_memory" uses 0, cross checked against
1970 ERRNO as one indication of an error. */
1971 return 0;
1972 else
1973 return -1;
1974 }
1975 else if (ops->beneath != NULL)
1976 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1977 readbuf, writebuf, offset, len);
1978 else
1979 return -1;
1980 }
1981
1982 /* The xfer_partial handler for the topmost target. Unlike the default,
1983 it does not need to handle memory specially; it just passes all
1984 requests down the stack. */
1985
1986 static LONGEST
current_xfer_partial(struct target_ops * ops,enum target_object object,const char * annex,gdb_byte * readbuf,const gdb_byte * writebuf,ULONGEST offset,LONGEST len)1987 current_xfer_partial (struct target_ops *ops, enum target_object object,
1988 const char *annex, gdb_byte *readbuf,
1989 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1990 {
1991 if (ops->beneath != NULL)
1992 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1993 readbuf, writebuf, offset, len);
1994 else
1995 return -1;
1996 }
1997
1998 /* Target vector read/write partial wrapper functions. */
1999
2000 static LONGEST
target_read_partial(struct target_ops * ops,enum target_object object,const char * annex,gdb_byte * buf,ULONGEST offset,LONGEST len)2001 target_read_partial (struct target_ops *ops,
2002 enum target_object object,
2003 const char *annex, gdb_byte *buf,
2004 ULONGEST offset, LONGEST len)
2005 {
2006 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2007 }
2008
2009 static LONGEST
target_write_partial(struct target_ops * ops,enum target_object object,const char * annex,const gdb_byte * buf,ULONGEST offset,LONGEST len)2010 target_write_partial (struct target_ops *ops,
2011 enum target_object object,
2012 const char *annex, const gdb_byte *buf,
2013 ULONGEST offset, LONGEST len)
2014 {
2015 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2016 }
2017
2018 /* Wrappers to perform the full transfer. */
2019
2020 /* For docs on target_read see target.h. */
2021
2022 LONGEST
target_read(struct target_ops * ops,enum target_object object,const char * annex,gdb_byte * buf,ULONGEST offset,LONGEST len)2023 target_read (struct target_ops *ops,
2024 enum target_object object,
2025 const char *annex, gdb_byte *buf,
2026 ULONGEST offset, LONGEST len)
2027 {
2028 LONGEST xfered = 0;
2029
2030 while (xfered < len)
2031 {
2032 LONGEST xfer = target_read_partial (ops, object, annex,
2033 (gdb_byte *) buf + xfered,
2034 offset + xfered, len - xfered);
2035
2036 /* Call an observer, notifying them of the xfer progress? */
2037 if (xfer == 0)
2038 return xfered;
2039 if (xfer < 0)
2040 return -1;
2041 xfered += xfer;
2042 QUIT;
2043 }
2044 return len;
2045 }
2046
2047 /* Assuming that the entire [begin, end) range of memory cannot be
2048 read, try to read whatever subrange is possible to read.
2049
2050 The function returns, in RESULT, either zero or one memory block.
2051 If there's a readable subrange at the beginning, it is completely
2052 read and returned. Any further readable subrange will not be read.
2053 Otherwise, if there's a readable subrange at the end, it will be
2054 completely read and returned. Any readable subranges before it
2055 (obviously, not starting at the beginning), will be ignored. In
2056 other cases -- either no readable subrange, or readable subrange(s)
2057 that is neither at the beginning, or end, nothing is returned.
2058
2059 The purpose of this function is to handle a read across a boundary
2060 of accessible memory in a case when memory map is not available.
2061 The above restrictions are fine for this case, but will give
2062 incorrect results if the memory is 'patchy'. However, supporting
2063 'patchy' memory would require trying to read every single byte,
2064 and it seems unacceptable solution. Explicit memory map is
2065 recommended for this case -- and target_read_memory_robust will
2066 take care of reading multiple ranges then. */
2067
2068 static void
read_whatever_is_readable(struct target_ops * ops,ULONGEST begin,ULONGEST end,VEC (memory_read_result_s)** result)2069 read_whatever_is_readable (struct target_ops *ops,
2070 ULONGEST begin, ULONGEST end,
2071 VEC(memory_read_result_s) **result)
2072 {
2073 gdb_byte *buf = xmalloc (end - begin);
2074 ULONGEST current_begin = begin;
2075 ULONGEST current_end = end;
2076 int forward;
2077 memory_read_result_s r;
2078
2079 /* If we previously failed to read 1 byte, nothing can be done here. */
2080 if (end - begin <= 1)
2081 {
2082 xfree (buf);
2083 return;
2084 }
2085
2086 /* Check that either first or the last byte is readable, and give up
2087 if not. This heuristic is meant to permit reading accessible memory
2088 at the boundary of accessible region. */
2089 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2090 buf, begin, 1) == 1)
2091 {
2092 forward = 1;
2093 ++current_begin;
2094 }
2095 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2096 buf + (end-begin) - 1, end - 1, 1) == 1)
2097 {
2098 forward = 0;
2099 --current_end;
2100 }
2101 else
2102 {
2103 xfree (buf);
2104 return;
2105 }
2106
2107 /* Loop invariant is that the [current_begin, current_end) was previously
2108 found to be not readable as a whole.
2109
2110 Note loop condition -- if the range has 1 byte, we can't divide the range
2111 so there's no point trying further. */
2112 while (current_end - current_begin > 1)
2113 {
2114 ULONGEST first_half_begin, first_half_end;
2115 ULONGEST second_half_begin, second_half_end;
2116 LONGEST xfer;
2117 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2118
2119 if (forward)
2120 {
2121 first_half_begin = current_begin;
2122 first_half_end = middle;
2123 second_half_begin = middle;
2124 second_half_end = current_end;
2125 }
2126 else
2127 {
2128 first_half_begin = middle;
2129 first_half_end = current_end;
2130 second_half_begin = current_begin;
2131 second_half_end = middle;
2132 }
2133
2134 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2135 buf + (first_half_begin - begin),
2136 first_half_begin,
2137 first_half_end - first_half_begin);
2138
2139 if (xfer == first_half_end - first_half_begin)
2140 {
2141 /* This half reads up fine. So, the error must be in the
2142 other half. */
2143 current_begin = second_half_begin;
2144 current_end = second_half_end;
2145 }
2146 else
2147 {
2148 /* This half is not readable. Because we've tried one byte, we
2149 know some part of this half if actually redable. Go to the next
2150 iteration to divide again and try to read.
2151
2152 We don't handle the other half, because this function only tries
2153 to read a single readable subrange. */
2154 current_begin = first_half_begin;
2155 current_end = first_half_end;
2156 }
2157 }
2158
2159 if (forward)
2160 {
2161 /* The [begin, current_begin) range has been read. */
2162 r.begin = begin;
2163 r.end = current_begin;
2164 r.data = buf;
2165 }
2166 else
2167 {
2168 /* The [current_end, end) range has been read. */
2169 LONGEST rlen = end - current_end;
2170
2171 r.data = xmalloc (rlen);
2172 memcpy (r.data, buf + current_end - begin, rlen);
2173 r.begin = current_end;
2174 r.end = end;
2175 xfree (buf);
2176 }
2177 VEC_safe_push(memory_read_result_s, (*result), &r);
2178 }
2179
2180 void
free_memory_read_result_vector(void * x)2181 free_memory_read_result_vector (void *x)
2182 {
2183 VEC(memory_read_result_s) *v = x;
2184 memory_read_result_s *current;
2185 int ix;
2186
2187 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2188 {
2189 xfree (current->data);
2190 }
2191 VEC_free (memory_read_result_s, v);
2192 }
2193
VEC(memory_read_result_s)2194 VEC(memory_read_result_s) *
2195 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2196 {
2197 VEC(memory_read_result_s) *result = 0;
2198
2199 LONGEST xfered = 0;
2200 while (xfered < len)
2201 {
2202 struct mem_region *region = lookup_mem_region (offset + xfered);
2203 LONGEST rlen;
2204
2205 /* If there is no explicit region, a fake one should be created. */
2206 gdb_assert (region);
2207
2208 if (region->hi == 0)
2209 rlen = len - xfered;
2210 else
2211 rlen = region->hi - offset;
2212
2213 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2214 {
2215 /* Cannot read this region. Note that we can end up here only
2216 if the region is explicitly marked inaccessible, or
2217 'inaccessible-by-default' is in effect. */
2218 xfered += rlen;
2219 }
2220 else
2221 {
2222 LONGEST to_read = min (len - xfered, rlen);
2223 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2224
2225 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2226 (gdb_byte *) buffer,
2227 offset + xfered, to_read);
2228 /* Call an observer, notifying them of the xfer progress? */
2229 if (xfer <= 0)
2230 {
2231 /* Got an error reading full chunk. See if maybe we can read
2232 some subrange. */
2233 xfree (buffer);
2234 read_whatever_is_readable (ops, offset + xfered,
2235 offset + xfered + to_read, &result);
2236 xfered += to_read;
2237 }
2238 else
2239 {
2240 struct memory_read_result r;
2241 r.data = buffer;
2242 r.begin = offset + xfered;
2243 r.end = r.begin + xfer;
2244 VEC_safe_push (memory_read_result_s, result, &r);
2245 xfered += xfer;
2246 }
2247 QUIT;
2248 }
2249 }
2250 return result;
2251 }
2252
2253
2254 /* An alternative to target_write with progress callbacks. */
2255
2256 LONGEST
target_write_with_progress(struct target_ops * ops,enum target_object object,const char * annex,const gdb_byte * buf,ULONGEST offset,LONGEST len,void (* progress)(ULONGEST,void *),void * baton)2257 target_write_with_progress (struct target_ops *ops,
2258 enum target_object object,
2259 const char *annex, const gdb_byte *buf,
2260 ULONGEST offset, LONGEST len,
2261 void (*progress) (ULONGEST, void *), void *baton)
2262 {
2263 LONGEST xfered = 0;
2264
2265 /* Give the progress callback a chance to set up. */
2266 if (progress)
2267 (*progress) (0, baton);
2268
2269 while (xfered < len)
2270 {
2271 LONGEST xfer = target_write_partial (ops, object, annex,
2272 (gdb_byte *) buf + xfered,
2273 offset + xfered, len - xfered);
2274
2275 if (xfer == 0)
2276 return xfered;
2277 if (xfer < 0)
2278 return -1;
2279
2280 if (progress)
2281 (*progress) (xfer, baton);
2282
2283 xfered += xfer;
2284 QUIT;
2285 }
2286 return len;
2287 }
2288
2289 /* For docs on target_write see target.h. */
2290
2291 LONGEST
target_write(struct target_ops * ops,enum target_object object,const char * annex,const gdb_byte * buf,ULONGEST offset,LONGEST len)2292 target_write (struct target_ops *ops,
2293 enum target_object object,
2294 const char *annex, const gdb_byte *buf,
2295 ULONGEST offset, LONGEST len)
2296 {
2297 return target_write_with_progress (ops, object, annex, buf, offset, len,
2298 NULL, NULL);
2299 }
2300
2301 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2302 the size of the transferred data. PADDING additional bytes are
2303 available in *BUF_P. This is a helper function for
2304 target_read_alloc; see the declaration of that function for more
2305 information. */
2306
2307 static LONGEST
target_read_alloc_1(struct target_ops * ops,enum target_object object,const char * annex,gdb_byte ** buf_p,int padding)2308 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2309 const char *annex, gdb_byte **buf_p, int padding)
2310 {
2311 size_t buf_alloc, buf_pos;
2312 gdb_byte *buf;
2313 LONGEST n;
2314
2315 /* This function does not have a length parameter; it reads the
2316 entire OBJECT). Also, it doesn't support objects fetched partly
2317 from one target and partly from another (in a different stratum,
2318 e.g. a core file and an executable). Both reasons make it
2319 unsuitable for reading memory. */
2320 gdb_assert (object != TARGET_OBJECT_MEMORY);
2321
2322 /* Start by reading up to 4K at a time. The target will throttle
2323 this number down if necessary. */
2324 buf_alloc = 4096;
2325 buf = xmalloc (buf_alloc);
2326 buf_pos = 0;
2327 while (1)
2328 {
2329 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2330 buf_pos, buf_alloc - buf_pos - padding);
2331 if (n < 0)
2332 {
2333 /* An error occurred. */
2334 xfree (buf);
2335 return -1;
2336 }
2337 else if (n == 0)
2338 {
2339 /* Read all there was. */
2340 if (buf_pos == 0)
2341 xfree (buf);
2342 else
2343 *buf_p = buf;
2344 return buf_pos;
2345 }
2346
2347 buf_pos += n;
2348
2349 /* If the buffer is filling up, expand it. */
2350 if (buf_alloc < buf_pos * 2)
2351 {
2352 buf_alloc *= 2;
2353 buf = xrealloc (buf, buf_alloc);
2354 }
2355
2356 QUIT;
2357 }
2358 }
2359
2360 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2361 the size of the transferred data. See the declaration in "target.h"
2362 function for more information about the return value. */
2363
2364 LONGEST
target_read_alloc(struct target_ops * ops,enum target_object object,const char * annex,gdb_byte ** buf_p)2365 target_read_alloc (struct target_ops *ops, enum target_object object,
2366 const char *annex, gdb_byte **buf_p)
2367 {
2368 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2369 }
2370
2371 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2372 returned as a string, allocated using xmalloc. If an error occurs
2373 or the transfer is unsupported, NULL is returned. Empty objects
2374 are returned as allocated but empty strings. A warning is issued
2375 if the result contains any embedded NUL bytes. */
2376
2377 char *
target_read_stralloc(struct target_ops * ops,enum target_object object,const char * annex)2378 target_read_stralloc (struct target_ops *ops, enum target_object object,
2379 const char *annex)
2380 {
2381 gdb_byte *buffer;
2382 char *bufstr;
2383 LONGEST i, transferred;
2384
2385 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2386 bufstr = (char *) buffer;
2387
2388 if (transferred < 0)
2389 return NULL;
2390
2391 if (transferred == 0)
2392 return xstrdup ("");
2393
2394 bufstr[transferred] = 0;
2395
2396 /* Check for embedded NUL bytes; but allow trailing NULs. */
2397 for (i = strlen (bufstr); i < transferred; i++)
2398 if (bufstr[i] != 0)
2399 {
2400 warning (_("target object %d, annex %s, "
2401 "contained unexpected null characters"),
2402 (int) object, annex ? annex : "(none)");
2403 break;
2404 }
2405
2406 return bufstr;
2407 }
2408
2409 /* Memory transfer methods. */
2410
2411 void
get_target_memory(struct target_ops * ops,CORE_ADDR addr,gdb_byte * buf,LONGEST len)2412 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2413 LONGEST len)
2414 {
2415 /* This method is used to read from an alternate, non-current
2416 target. This read must bypass the overlay support (as symbols
2417 don't match this target), and GDB's internal cache (wrong cache
2418 for this target). */
2419 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2420 != len)
2421 memory_error (EIO, addr);
2422 }
2423
2424 ULONGEST
get_target_memory_unsigned(struct target_ops * ops,CORE_ADDR addr,int len,enum bfd_endian byte_order)2425 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2426 int len, enum bfd_endian byte_order)
2427 {
2428 gdb_byte buf[sizeof (ULONGEST)];
2429
2430 gdb_assert (len <= sizeof (buf));
2431 get_target_memory (ops, addr, buf, len);
2432 return extract_unsigned_integer (buf, len, byte_order);
2433 }
2434
2435 int
target_insert_breakpoint(struct gdbarch * gdbarch,struct bp_target_info * bp_tgt)2436 target_insert_breakpoint (struct gdbarch *gdbarch,
2437 struct bp_target_info *bp_tgt)
2438 {
2439 if (!may_insert_breakpoints)
2440 {
2441 warning (_("May not insert breakpoints"));
2442 return 1;
2443 }
2444
2445 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2446 }
2447
2448 int
target_remove_breakpoint(struct gdbarch * gdbarch,struct bp_target_info * bp_tgt)2449 target_remove_breakpoint (struct gdbarch *gdbarch,
2450 struct bp_target_info *bp_tgt)
2451 {
2452 /* This is kind of a weird case to handle, but the permission might
2453 have been changed after breakpoints were inserted - in which case
2454 we should just take the user literally and assume that any
2455 breakpoints should be left in place. */
2456 if (!may_insert_breakpoints)
2457 {
2458 warning (_("May not remove breakpoints"));
2459 return 1;
2460 }
2461
2462 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2463 }
2464
2465 static void
target_info(char * args,int from_tty)2466 target_info (char *args, int from_tty)
2467 {
2468 struct target_ops *t;
2469 int has_all_mem = 0;
2470
2471 if (symfile_objfile != NULL)
2472 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2473
2474 for (t = target_stack; t != NULL; t = t->beneath)
2475 {
2476 if (!(*t->to_has_memory) (t))
2477 continue;
2478
2479 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2480 continue;
2481 if (has_all_mem)
2482 printf_unfiltered (_("\tWhile running this, "
2483 "GDB does not access memory from...\n"));
2484 printf_unfiltered ("%s:\n", t->to_longname);
2485 (t->to_files_info) (t);
2486 has_all_mem = (*t->to_has_all_memory) (t);
2487 }
2488 }
2489
2490 /* This function is called before any new inferior is created, e.g.
2491 by running a program, attaching, or connecting to a target.
2492 It cleans up any state from previous invocations which might
2493 change between runs. This is a subset of what target_preopen
2494 resets (things which might change between targets). */
2495
2496 void
target_pre_inferior(int from_tty)2497 target_pre_inferior (int from_tty)
2498 {
2499 /* Clear out solib state. Otherwise the solib state of the previous
2500 inferior might have survived and is entirely wrong for the new
2501 target. This has been observed on GNU/Linux using glibc 2.3. How
2502 to reproduce:
2503
2504 bash$ ./foo&
2505 [1] 4711
2506 bash$ ./foo&
2507 [1] 4712
2508 bash$ gdb ./foo
2509 [...]
2510 (gdb) attach 4711
2511 (gdb) detach
2512 (gdb) attach 4712
2513 Cannot access memory at address 0xdeadbeef
2514 */
2515
2516 /* In some OSs, the shared library list is the same/global/shared
2517 across inferiors. If code is shared between processes, so are
2518 memory regions and features. */
2519 if (!gdbarch_has_global_solist (target_gdbarch ()))
2520 {
2521 no_shared_libraries (NULL, from_tty);
2522
2523 invalidate_target_mem_regions ();
2524
2525 target_clear_description ();
2526 }
2527
2528 agent_capability_invalidate ();
2529 }
2530
2531 /* Callback for iterate_over_inferiors. Gets rid of the given
2532 inferior. */
2533
2534 static int
dispose_inferior(struct inferior * inf,void * args)2535 dispose_inferior (struct inferior *inf, void *args)
2536 {
2537 struct thread_info *thread;
2538
2539 thread = any_thread_of_process (inf->pid);
2540 if (thread)
2541 {
2542 switch_to_thread (thread->ptid);
2543
2544 /* Core inferiors actually should be detached, not killed. */
2545 if (target_has_execution)
2546 target_kill ();
2547 else
2548 target_detach (NULL, 0);
2549 }
2550
2551 return 0;
2552 }
2553
2554 /* This is to be called by the open routine before it does
2555 anything. */
2556
2557 void
target_preopen(int from_tty)2558 target_preopen (int from_tty)
2559 {
2560 dont_repeat ();
2561
2562 if (have_inferiors ())
2563 {
2564 if (!from_tty
2565 || !have_live_inferiors ()
2566 || query (_("A program is being debugged already. Kill it? ")))
2567 iterate_over_inferiors (dispose_inferior, NULL);
2568 else
2569 error (_("Program not killed."));
2570 }
2571
2572 /* Calling target_kill may remove the target from the stack. But if
2573 it doesn't (which seems like a win for UDI), remove it now. */
2574 /* Leave the exec target, though. The user may be switching from a
2575 live process to a core of the same program. */
2576 pop_all_targets_above (file_stratum, 0);
2577
2578 target_pre_inferior (from_tty);
2579 }
2580
2581 /* Detach a target after doing deferred register stores. */
2582
2583 void
target_detach(char * args,int from_tty)2584 target_detach (char *args, int from_tty)
2585 {
2586 struct target_ops* t;
2587
2588 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2589 /* Don't remove global breakpoints here. They're removed on
2590 disconnection from the target. */
2591 ;
2592 else
2593 /* If we're in breakpoints-always-inserted mode, have to remove
2594 them before detaching. */
2595 remove_breakpoints_pid (PIDGET (inferior_ptid));
2596
2597 prepare_for_detach ();
2598
2599 for (t = current_target.beneath; t != NULL; t = t->beneath)
2600 {
2601 if (t->to_detach != NULL)
2602 {
2603 t->to_detach (t, args, from_tty);
2604 if (targetdebug)
2605 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2606 args, from_tty);
2607 return;
2608 }
2609 }
2610
2611 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2612 }
2613
2614 void
target_disconnect(char * args,int from_tty)2615 target_disconnect (char *args, int from_tty)
2616 {
2617 struct target_ops *t;
2618
2619 /* If we're in breakpoints-always-inserted mode or if breakpoints
2620 are global across processes, we have to remove them before
2621 disconnecting. */
2622 remove_breakpoints ();
2623
2624 for (t = current_target.beneath; t != NULL; t = t->beneath)
2625 if (t->to_disconnect != NULL)
2626 {
2627 if (targetdebug)
2628 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2629 args, from_tty);
2630 t->to_disconnect (t, args, from_tty);
2631 return;
2632 }
2633
2634 tcomplain ();
2635 }
2636
2637 ptid_t
target_wait(ptid_t ptid,struct target_waitstatus * status,int options)2638 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2639 {
2640 struct target_ops *t;
2641
2642 for (t = current_target.beneath; t != NULL; t = t->beneath)
2643 {
2644 if (t->to_wait != NULL)
2645 {
2646 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2647
2648 if (targetdebug)
2649 {
2650 char *status_string;
2651 char *options_string;
2652
2653 status_string = target_waitstatus_to_string (status);
2654 options_string = target_options_to_string (options);
2655 fprintf_unfiltered (gdb_stdlog,
2656 "target_wait (%d, status, options={%s})"
2657 " = %d, %s\n",
2658 PIDGET (ptid), options_string,
2659 PIDGET (retval), status_string);
2660 xfree (status_string);
2661 xfree (options_string);
2662 }
2663
2664 return retval;
2665 }
2666 }
2667
2668 noprocess ();
2669 }
2670
2671 char *
target_pid_to_str(ptid_t ptid)2672 target_pid_to_str (ptid_t ptid)
2673 {
2674 struct target_ops *t;
2675
2676 for (t = current_target.beneath; t != NULL; t = t->beneath)
2677 {
2678 if (t->to_pid_to_str != NULL)
2679 return (*t->to_pid_to_str) (t, ptid);
2680 }
2681
2682 return normal_pid_to_str (ptid);
2683 }
2684
2685 char *
target_thread_name(struct thread_info * info)2686 target_thread_name (struct thread_info *info)
2687 {
2688 struct target_ops *t;
2689
2690 for (t = current_target.beneath; t != NULL; t = t->beneath)
2691 {
2692 if (t->to_thread_name != NULL)
2693 return (*t->to_thread_name) (info);
2694 }
2695
2696 return NULL;
2697 }
2698
2699 void
target_resume(ptid_t ptid,int step,enum gdb_signal signal)2700 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2701 {
2702 struct target_ops *t;
2703
2704 target_dcache_invalidate ();
2705
2706 for (t = current_target.beneath; t != NULL; t = t->beneath)
2707 {
2708 if (t->to_resume != NULL)
2709 {
2710 t->to_resume (t, ptid, step, signal);
2711 if (targetdebug)
2712 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2713 PIDGET (ptid),
2714 step ? "step" : "continue",
2715 gdb_signal_to_name (signal));
2716
2717 registers_changed_ptid (ptid);
2718 set_executing (ptid, 1);
2719 set_running (ptid, 1);
2720 clear_inline_frame_state (ptid);
2721 return;
2722 }
2723 }
2724
2725 noprocess ();
2726 }
2727
2728 void
target_pass_signals(int numsigs,unsigned char * pass_signals)2729 target_pass_signals (int numsigs, unsigned char *pass_signals)
2730 {
2731 struct target_ops *t;
2732
2733 for (t = current_target.beneath; t != NULL; t = t->beneath)
2734 {
2735 if (t->to_pass_signals != NULL)
2736 {
2737 if (targetdebug)
2738 {
2739 int i;
2740
2741 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2742 numsigs);
2743
2744 for (i = 0; i < numsigs; i++)
2745 if (pass_signals[i])
2746 fprintf_unfiltered (gdb_stdlog, " %s",
2747 gdb_signal_to_name (i));
2748
2749 fprintf_unfiltered (gdb_stdlog, " })\n");
2750 }
2751
2752 (*t->to_pass_signals) (numsigs, pass_signals);
2753 return;
2754 }
2755 }
2756 }
2757
2758 void
target_program_signals(int numsigs,unsigned char * program_signals)2759 target_program_signals (int numsigs, unsigned char *program_signals)
2760 {
2761 struct target_ops *t;
2762
2763 for (t = current_target.beneath; t != NULL; t = t->beneath)
2764 {
2765 if (t->to_program_signals != NULL)
2766 {
2767 if (targetdebug)
2768 {
2769 int i;
2770
2771 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2772 numsigs);
2773
2774 for (i = 0; i < numsigs; i++)
2775 if (program_signals[i])
2776 fprintf_unfiltered (gdb_stdlog, " %s",
2777 gdb_signal_to_name (i));
2778
2779 fprintf_unfiltered (gdb_stdlog, " })\n");
2780 }
2781
2782 (*t->to_program_signals) (numsigs, program_signals);
2783 return;
2784 }
2785 }
2786 }
2787
2788 /* Look through the list of possible targets for a target that can
2789 follow forks. */
2790
2791 int
target_follow_fork(int follow_child)2792 target_follow_fork (int follow_child)
2793 {
2794 struct target_ops *t;
2795
2796 for (t = current_target.beneath; t != NULL; t = t->beneath)
2797 {
2798 if (t->to_follow_fork != NULL)
2799 {
2800 int retval = t->to_follow_fork (t, follow_child);
2801
2802 if (targetdebug)
2803 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2804 follow_child, retval);
2805 return retval;
2806 }
2807 }
2808
2809 /* Some target returned a fork event, but did not know how to follow it. */
2810 internal_error (__FILE__, __LINE__,
2811 _("could not find a target to follow fork"));
2812 }
2813
2814 void
target_mourn_inferior(void)2815 target_mourn_inferior (void)
2816 {
2817 struct target_ops *t;
2818
2819 for (t = current_target.beneath; t != NULL; t = t->beneath)
2820 {
2821 if (t->to_mourn_inferior != NULL)
2822 {
2823 t->to_mourn_inferior (t);
2824 if (targetdebug)
2825 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2826
2827 /* We no longer need to keep handles on any of the object files.
2828 Make sure to release them to avoid unnecessarily locking any
2829 of them while we're not actually debugging. */
2830 bfd_cache_close_all ();
2831
2832 return;
2833 }
2834 }
2835
2836 internal_error (__FILE__, __LINE__,
2837 _("could not find a target to follow mourn inferior"));
2838 }
2839
2840 /* Look for a target which can describe architectural features, starting
2841 from TARGET. If we find one, return its description. */
2842
2843 const struct target_desc *
target_read_description(struct target_ops * target)2844 target_read_description (struct target_ops *target)
2845 {
2846 struct target_ops *t;
2847
2848 for (t = target; t != NULL; t = t->beneath)
2849 if (t->to_read_description != NULL)
2850 {
2851 const struct target_desc *tdesc;
2852
2853 tdesc = t->to_read_description (t);
2854 if (tdesc)
2855 return tdesc;
2856 }
2857
2858 return NULL;
2859 }
2860
2861 /* The default implementation of to_search_memory.
2862 This implements a basic search of memory, reading target memory and
2863 performing the search here (as opposed to performing the search in on the
2864 target side with, for example, gdbserver). */
2865
2866 int
simple_search_memory(struct target_ops * ops,CORE_ADDR start_addr,ULONGEST search_space_len,const gdb_byte * pattern,ULONGEST pattern_len,CORE_ADDR * found_addrp)2867 simple_search_memory (struct target_ops *ops,
2868 CORE_ADDR start_addr, ULONGEST search_space_len,
2869 const gdb_byte *pattern, ULONGEST pattern_len,
2870 CORE_ADDR *found_addrp)
2871 {
2872 /* NOTE: also defined in find.c testcase. */
2873 #define SEARCH_CHUNK_SIZE 16000
2874 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2875 /* Buffer to hold memory contents for searching. */
2876 gdb_byte *search_buf;
2877 unsigned search_buf_size;
2878 struct cleanup *old_cleanups;
2879
2880 search_buf_size = chunk_size + pattern_len - 1;
2881
2882 /* No point in trying to allocate a buffer larger than the search space. */
2883 if (search_space_len < search_buf_size)
2884 search_buf_size = search_space_len;
2885
2886 search_buf = malloc (search_buf_size);
2887 if (search_buf == NULL)
2888 error (_("Unable to allocate memory to perform the search."));
2889 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2890
2891 /* Prime the search buffer. */
2892
2893 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2894 search_buf, start_addr, search_buf_size) != search_buf_size)
2895 {
2896 warning (_("Unable to access %s bytes of target "
2897 "memory at %s, halting search."),
2898 pulongest (search_buf_size), hex_string (start_addr));
2899 do_cleanups (old_cleanups);
2900 return -1;
2901 }
2902
2903 /* Perform the search.
2904
2905 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2906 When we've scanned N bytes we copy the trailing bytes to the start and
2907 read in another N bytes. */
2908
2909 while (search_space_len >= pattern_len)
2910 {
2911 gdb_byte *found_ptr;
2912 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2913
2914 found_ptr = memmem (search_buf, nr_search_bytes,
2915 pattern, pattern_len);
2916
2917 if (found_ptr != NULL)
2918 {
2919 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2920
2921 *found_addrp = found_addr;
2922 do_cleanups (old_cleanups);
2923 return 1;
2924 }
2925
2926 /* Not found in this chunk, skip to next chunk. */
2927
2928 /* Don't let search_space_len wrap here, it's unsigned. */
2929 if (search_space_len >= chunk_size)
2930 search_space_len -= chunk_size;
2931 else
2932 search_space_len = 0;
2933
2934 if (search_space_len >= pattern_len)
2935 {
2936 unsigned keep_len = search_buf_size - chunk_size;
2937 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2938 int nr_to_read;
2939
2940 /* Copy the trailing part of the previous iteration to the front
2941 of the buffer for the next iteration. */
2942 gdb_assert (keep_len == pattern_len - 1);
2943 memcpy (search_buf, search_buf + chunk_size, keep_len);
2944
2945 nr_to_read = min (search_space_len - keep_len, chunk_size);
2946
2947 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2948 search_buf + keep_len, read_addr,
2949 nr_to_read) != nr_to_read)
2950 {
2951 warning (_("Unable to access %s bytes of target "
2952 "memory at %s, halting search."),
2953 plongest (nr_to_read),
2954 hex_string (read_addr));
2955 do_cleanups (old_cleanups);
2956 return -1;
2957 }
2958
2959 start_addr += chunk_size;
2960 }
2961 }
2962
2963 /* Not found. */
2964
2965 do_cleanups (old_cleanups);
2966 return 0;
2967 }
2968
2969 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2970 sequence of bytes in PATTERN with length PATTERN_LEN.
2971
2972 The result is 1 if found, 0 if not found, and -1 if there was an error
2973 requiring halting of the search (e.g. memory read error).
2974 If the pattern is found the address is recorded in FOUND_ADDRP. */
2975
2976 int
target_search_memory(CORE_ADDR start_addr,ULONGEST search_space_len,const gdb_byte * pattern,ULONGEST pattern_len,CORE_ADDR * found_addrp)2977 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2978 const gdb_byte *pattern, ULONGEST pattern_len,
2979 CORE_ADDR *found_addrp)
2980 {
2981 struct target_ops *t;
2982 int found;
2983
2984 /* We don't use INHERIT to set current_target.to_search_memory,
2985 so we have to scan the target stack and handle targetdebug
2986 ourselves. */
2987
2988 if (targetdebug)
2989 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2990 hex_string (start_addr));
2991
2992 for (t = current_target.beneath; t != NULL; t = t->beneath)
2993 if (t->to_search_memory != NULL)
2994 break;
2995
2996 if (t != NULL)
2997 {
2998 found = t->to_search_memory (t, start_addr, search_space_len,
2999 pattern, pattern_len, found_addrp);
3000 }
3001 else
3002 {
3003 /* If a special version of to_search_memory isn't available, use the
3004 simple version. */
3005 found = simple_search_memory (current_target.beneath,
3006 start_addr, search_space_len,
3007 pattern, pattern_len, found_addrp);
3008 }
3009
3010 if (targetdebug)
3011 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3012
3013 return found;
3014 }
3015
3016 /* Look through the currently pushed targets. If none of them will
3017 be able to restart the currently running process, issue an error
3018 message. */
3019
3020 void
target_require_runnable(void)3021 target_require_runnable (void)
3022 {
3023 struct target_ops *t;
3024
3025 for (t = target_stack; t != NULL; t = t->beneath)
3026 {
3027 /* If this target knows how to create a new program, then
3028 assume we will still be able to after killing the current
3029 one. Either killing and mourning will not pop T, or else
3030 find_default_run_target will find it again. */
3031 if (t->to_create_inferior != NULL)
3032 return;
3033
3034 /* Do not worry about thread_stratum targets that can not
3035 create inferiors. Assume they will be pushed again if
3036 necessary, and continue to the process_stratum. */
3037 if (t->to_stratum == thread_stratum
3038 || t->to_stratum == arch_stratum)
3039 continue;
3040
3041 error (_("The \"%s\" target does not support \"run\". "
3042 "Try \"help target\" or \"continue\"."),
3043 t->to_shortname);
3044 }
3045
3046 /* This function is only called if the target is running. In that
3047 case there should have been a process_stratum target and it
3048 should either know how to create inferiors, or not... */
3049 internal_error (__FILE__, __LINE__, _("No targets found"));
3050 }
3051
3052 /* Look through the list of possible targets for a target that can
3053 execute a run or attach command without any other data. This is
3054 used to locate the default process stratum.
3055
3056 If DO_MESG is not NULL, the result is always valid (error() is
3057 called for errors); else, return NULL on error. */
3058
3059 static struct target_ops *
find_default_run_target(char * do_mesg)3060 find_default_run_target (char *do_mesg)
3061 {
3062 struct target_ops **t;
3063 struct target_ops *runable = NULL;
3064 int count;
3065
3066 count = 0;
3067
3068 for (t = target_structs; t < target_structs + target_struct_size;
3069 ++t)
3070 {
3071 if ((*t)->to_can_run && target_can_run (*t))
3072 {
3073 runable = *t;
3074 ++count;
3075 }
3076 }
3077
3078 if (count != 1)
3079 {
3080 if (do_mesg)
3081 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3082 else
3083 return NULL;
3084 }
3085
3086 return runable;
3087 }
3088
3089 void
find_default_attach(struct target_ops * ops,char * args,int from_tty)3090 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3091 {
3092 struct target_ops *t;
3093
3094 t = find_default_run_target ("attach");
3095 (t->to_attach) (t, args, from_tty);
3096 return;
3097 }
3098
3099 void
find_default_create_inferior(struct target_ops * ops,char * exec_file,char * allargs,char ** env,int from_tty)3100 find_default_create_inferior (struct target_ops *ops,
3101 char *exec_file, char *allargs, char **env,
3102 int from_tty)
3103 {
3104 struct target_ops *t;
3105
3106 t = find_default_run_target ("run");
3107 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3108 return;
3109 }
3110
3111 static int
find_default_can_async_p(void)3112 find_default_can_async_p (void)
3113 {
3114 struct target_ops *t;
3115
3116 /* This may be called before the target is pushed on the stack;
3117 look for the default process stratum. If there's none, gdb isn't
3118 configured with a native debugger, and target remote isn't
3119 connected yet. */
3120 t = find_default_run_target (NULL);
3121 if (t && t->to_can_async_p)
3122 return (t->to_can_async_p) ();
3123 return 0;
3124 }
3125
3126 static int
find_default_is_async_p(void)3127 find_default_is_async_p (void)
3128 {
3129 struct target_ops *t;
3130
3131 /* This may be called before the target is pushed on the stack;
3132 look for the default process stratum. If there's none, gdb isn't
3133 configured with a native debugger, and target remote isn't
3134 connected yet. */
3135 t = find_default_run_target (NULL);
3136 if (t && t->to_is_async_p)
3137 return (t->to_is_async_p) ();
3138 return 0;
3139 }
3140
3141 static int
find_default_supports_non_stop(void)3142 find_default_supports_non_stop (void)
3143 {
3144 struct target_ops *t;
3145
3146 t = find_default_run_target (NULL);
3147 if (t && t->to_supports_non_stop)
3148 return (t->to_supports_non_stop) ();
3149 return 0;
3150 }
3151
3152 int
target_supports_non_stop(void)3153 target_supports_non_stop (void)
3154 {
3155 struct target_ops *t;
3156
3157 for (t = ¤t_target; t != NULL; t = t->beneath)
3158 if (t->to_supports_non_stop)
3159 return t->to_supports_non_stop ();
3160
3161 return 0;
3162 }
3163
3164 /* Implement the "info proc" command. */
3165
3166 int
target_info_proc(char * args,enum info_proc_what what)3167 target_info_proc (char *args, enum info_proc_what what)
3168 {
3169 struct target_ops *t;
3170
3171 /* If we're already connected to something that can get us OS
3172 related data, use it. Otherwise, try using the native
3173 target. */
3174 if (current_target.to_stratum >= process_stratum)
3175 t = current_target.beneath;
3176 else
3177 t = find_default_run_target (NULL);
3178
3179 for (; t != NULL; t = t->beneath)
3180 {
3181 if (t->to_info_proc != NULL)
3182 {
3183 t->to_info_proc (t, args, what);
3184
3185 if (targetdebug)
3186 fprintf_unfiltered (gdb_stdlog,
3187 "target_info_proc (\"%s\", %d)\n", args, what);
3188
3189 return 1;
3190 }
3191 }
3192
3193 return 0;
3194 }
3195
3196 static int
find_default_supports_disable_randomization(void)3197 find_default_supports_disable_randomization (void)
3198 {
3199 struct target_ops *t;
3200
3201 t = find_default_run_target (NULL);
3202 if (t && t->to_supports_disable_randomization)
3203 return (t->to_supports_disable_randomization) ();
3204 return 0;
3205 }
3206
3207 int
target_supports_disable_randomization(void)3208 target_supports_disable_randomization (void)
3209 {
3210 struct target_ops *t;
3211
3212 for (t = ¤t_target; t != NULL; t = t->beneath)
3213 if (t->to_supports_disable_randomization)
3214 return t->to_supports_disable_randomization ();
3215
3216 return 0;
3217 }
3218
3219 char *
target_get_osdata(const char * type)3220 target_get_osdata (const char *type)
3221 {
3222 struct target_ops *t;
3223
3224 /* If we're already connected to something that can get us OS
3225 related data, use it. Otherwise, try using the native
3226 target. */
3227 if (current_target.to_stratum >= process_stratum)
3228 t = current_target.beneath;
3229 else
3230 t = find_default_run_target ("get OS data");
3231
3232 if (!t)
3233 return NULL;
3234
3235 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3236 }
3237
3238 /* Determine the current address space of thread PTID. */
3239
3240 struct address_space *
target_thread_address_space(ptid_t ptid)3241 target_thread_address_space (ptid_t ptid)
3242 {
3243 struct address_space *aspace;
3244 struct inferior *inf;
3245 struct target_ops *t;
3246
3247 for (t = current_target.beneath; t != NULL; t = t->beneath)
3248 {
3249 if (t->to_thread_address_space != NULL)
3250 {
3251 aspace = t->to_thread_address_space (t, ptid);
3252 gdb_assert (aspace);
3253
3254 if (targetdebug)
3255 fprintf_unfiltered (gdb_stdlog,
3256 "target_thread_address_space (%s) = %d\n",
3257 target_pid_to_str (ptid),
3258 address_space_num (aspace));
3259 return aspace;
3260 }
3261 }
3262
3263 /* Fall-back to the "main" address space of the inferior. */
3264 inf = find_inferior_pid (ptid_get_pid (ptid));
3265
3266 if (inf == NULL || inf->aspace == NULL)
3267 internal_error (__FILE__, __LINE__,
3268 _("Can't determine the current "
3269 "address space of thread %s\n"),
3270 target_pid_to_str (ptid));
3271
3272 return inf->aspace;
3273 }
3274
3275
3276 /* Target file operations. */
3277
3278 static struct target_ops *
default_fileio_target(void)3279 default_fileio_target (void)
3280 {
3281 /* If we're already connected to something that can perform
3282 file I/O, use it. Otherwise, try using the native target. */
3283 if (current_target.to_stratum >= process_stratum)
3284 return current_target.beneath;
3285 else
3286 return find_default_run_target ("file I/O");
3287 }
3288
3289 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3290 target file descriptor, or -1 if an error occurs (and set
3291 *TARGET_ERRNO). */
3292 int
target_fileio_open(const char * filename,int flags,int mode,int * target_errno)3293 target_fileio_open (const char *filename, int flags, int mode,
3294 int *target_errno)
3295 {
3296 struct target_ops *t;
3297
3298 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3299 {
3300 if (t->to_fileio_open != NULL)
3301 {
3302 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3303
3304 if (targetdebug)
3305 fprintf_unfiltered (gdb_stdlog,
3306 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3307 filename, flags, mode,
3308 fd, fd != -1 ? 0 : *target_errno);
3309 return fd;
3310 }
3311 }
3312
3313 *target_errno = FILEIO_ENOSYS;
3314 return -1;
3315 }
3316
3317 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3318 Return the number of bytes written, or -1 if an error occurs
3319 (and set *TARGET_ERRNO). */
3320 int
target_fileio_pwrite(int fd,const gdb_byte * write_buf,int len,ULONGEST offset,int * target_errno)3321 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3322 ULONGEST offset, int *target_errno)
3323 {
3324 struct target_ops *t;
3325
3326 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3327 {
3328 if (t->to_fileio_pwrite != NULL)
3329 {
3330 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3331 target_errno);
3332
3333 if (targetdebug)
3334 fprintf_unfiltered (gdb_stdlog,
3335 "target_fileio_pwrite (%d,...,%d,%s) "
3336 "= %d (%d)\n",
3337 fd, len, pulongest (offset),
3338 ret, ret != -1 ? 0 : *target_errno);
3339 return ret;
3340 }
3341 }
3342
3343 *target_errno = FILEIO_ENOSYS;
3344 return -1;
3345 }
3346
3347 /* Read up to LEN bytes FD on the target into READ_BUF.
3348 Return the number of bytes read, or -1 if an error occurs
3349 (and set *TARGET_ERRNO). */
3350 int
target_fileio_pread(int fd,gdb_byte * read_buf,int len,ULONGEST offset,int * target_errno)3351 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3352 ULONGEST offset, int *target_errno)
3353 {
3354 struct target_ops *t;
3355
3356 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3357 {
3358 if (t->to_fileio_pread != NULL)
3359 {
3360 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3361 target_errno);
3362
3363 if (targetdebug)
3364 fprintf_unfiltered (gdb_stdlog,
3365 "target_fileio_pread (%d,...,%d,%s) "
3366 "= %d (%d)\n",
3367 fd, len, pulongest (offset),
3368 ret, ret != -1 ? 0 : *target_errno);
3369 return ret;
3370 }
3371 }
3372
3373 *target_errno = FILEIO_ENOSYS;
3374 return -1;
3375 }
3376
3377 /* Close FD on the target. Return 0, or -1 if an error occurs
3378 (and set *TARGET_ERRNO). */
3379 int
target_fileio_close(int fd,int * target_errno)3380 target_fileio_close (int fd, int *target_errno)
3381 {
3382 struct target_ops *t;
3383
3384 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3385 {
3386 if (t->to_fileio_close != NULL)
3387 {
3388 int ret = t->to_fileio_close (fd, target_errno);
3389
3390 if (targetdebug)
3391 fprintf_unfiltered (gdb_stdlog,
3392 "target_fileio_close (%d) = %d (%d)\n",
3393 fd, ret, ret != -1 ? 0 : *target_errno);
3394 return ret;
3395 }
3396 }
3397
3398 *target_errno = FILEIO_ENOSYS;
3399 return -1;
3400 }
3401
3402 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3403 occurs (and set *TARGET_ERRNO). */
3404 int
target_fileio_unlink(const char * filename,int * target_errno)3405 target_fileio_unlink (const char *filename, int *target_errno)
3406 {
3407 struct target_ops *t;
3408
3409 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3410 {
3411 if (t->to_fileio_unlink != NULL)
3412 {
3413 int ret = t->to_fileio_unlink (filename, target_errno);
3414
3415 if (targetdebug)
3416 fprintf_unfiltered (gdb_stdlog,
3417 "target_fileio_unlink (%s) = %d (%d)\n",
3418 filename, ret, ret != -1 ? 0 : *target_errno);
3419 return ret;
3420 }
3421 }
3422
3423 *target_errno = FILEIO_ENOSYS;
3424 return -1;
3425 }
3426
3427 /* Read value of symbolic link FILENAME on the target. Return a
3428 null-terminated string allocated via xmalloc, or NULL if an error
3429 occurs (and set *TARGET_ERRNO). */
3430 char *
target_fileio_readlink(const char * filename,int * target_errno)3431 target_fileio_readlink (const char *filename, int *target_errno)
3432 {
3433 struct target_ops *t;
3434
3435 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3436 {
3437 if (t->to_fileio_readlink != NULL)
3438 {
3439 char *ret = t->to_fileio_readlink (filename, target_errno);
3440
3441 if (targetdebug)
3442 fprintf_unfiltered (gdb_stdlog,
3443 "target_fileio_readlink (%s) = %s (%d)\n",
3444 filename, ret? ret : "(nil)",
3445 ret? 0 : *target_errno);
3446 return ret;
3447 }
3448 }
3449
3450 *target_errno = FILEIO_ENOSYS;
3451 return NULL;
3452 }
3453
3454 static void
target_fileio_close_cleanup(void * opaque)3455 target_fileio_close_cleanup (void *opaque)
3456 {
3457 int fd = *(int *) opaque;
3458 int target_errno;
3459
3460 target_fileio_close (fd, &target_errno);
3461 }
3462
3463 /* Read target file FILENAME. Store the result in *BUF_P and
3464 return the size of the transferred data. PADDING additional bytes are
3465 available in *BUF_P. This is a helper function for
3466 target_fileio_read_alloc; see the declaration of that function for more
3467 information. */
3468
3469 static LONGEST
target_fileio_read_alloc_1(const char * filename,gdb_byte ** buf_p,int padding)3470 target_fileio_read_alloc_1 (const char *filename,
3471 gdb_byte **buf_p, int padding)
3472 {
3473 struct cleanup *close_cleanup;
3474 size_t buf_alloc, buf_pos;
3475 gdb_byte *buf;
3476 LONGEST n;
3477 int fd;
3478 int target_errno;
3479
3480 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3481 if (fd == -1)
3482 return -1;
3483
3484 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3485
3486 /* Start by reading up to 4K at a time. The target will throttle
3487 this number down if necessary. */
3488 buf_alloc = 4096;
3489 buf = xmalloc (buf_alloc);
3490 buf_pos = 0;
3491 while (1)
3492 {
3493 n = target_fileio_pread (fd, &buf[buf_pos],
3494 buf_alloc - buf_pos - padding, buf_pos,
3495 &target_errno);
3496 if (n < 0)
3497 {
3498 /* An error occurred. */
3499 do_cleanups (close_cleanup);
3500 xfree (buf);
3501 return -1;
3502 }
3503 else if (n == 0)
3504 {
3505 /* Read all there was. */
3506 do_cleanups (close_cleanup);
3507 if (buf_pos == 0)
3508 xfree (buf);
3509 else
3510 *buf_p = buf;
3511 return buf_pos;
3512 }
3513
3514 buf_pos += n;
3515
3516 /* If the buffer is filling up, expand it. */
3517 if (buf_alloc < buf_pos * 2)
3518 {
3519 buf_alloc *= 2;
3520 buf = xrealloc (buf, buf_alloc);
3521 }
3522
3523 QUIT;
3524 }
3525 }
3526
3527 /* Read target file FILENAME. Store the result in *BUF_P and return
3528 the size of the transferred data. See the declaration in "target.h"
3529 function for more information about the return value. */
3530
3531 LONGEST
target_fileio_read_alloc(const char * filename,gdb_byte ** buf_p)3532 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3533 {
3534 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3535 }
3536
3537 /* Read target file FILENAME. The result is NUL-terminated and
3538 returned as a string, allocated using xmalloc. If an error occurs
3539 or the transfer is unsupported, NULL is returned. Empty objects
3540 are returned as allocated but empty strings. A warning is issued
3541 if the result contains any embedded NUL bytes. */
3542
3543 char *
target_fileio_read_stralloc(const char * filename)3544 target_fileio_read_stralloc (const char *filename)
3545 {
3546 gdb_byte *buffer;
3547 char *bufstr;
3548 LONGEST i, transferred;
3549
3550 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3551 bufstr = (char *) buffer;
3552
3553 if (transferred < 0)
3554 return NULL;
3555
3556 if (transferred == 0)
3557 return xstrdup ("");
3558
3559 bufstr[transferred] = 0;
3560
3561 /* Check for embedded NUL bytes; but allow trailing NULs. */
3562 for (i = strlen (bufstr); i < transferred; i++)
3563 if (bufstr[i] != 0)
3564 {
3565 warning (_("target file %s "
3566 "contained unexpected null characters"),
3567 filename);
3568 break;
3569 }
3570
3571 return bufstr;
3572 }
3573
3574
3575 static int
default_region_ok_for_hw_watchpoint(CORE_ADDR addr,int len)3576 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3577 {
3578 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3579 }
3580
3581 static int
default_watchpoint_addr_within_range(struct target_ops * target,CORE_ADDR addr,CORE_ADDR start,int length)3582 default_watchpoint_addr_within_range (struct target_ops *target,
3583 CORE_ADDR addr,
3584 CORE_ADDR start, int length)
3585 {
3586 return addr >= start && addr < start + length;
3587 }
3588
3589 static struct gdbarch *
default_thread_architecture(struct target_ops * ops,ptid_t ptid)3590 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3591 {
3592 return target_gdbarch ();
3593 }
3594
3595 static int
return_zero(void)3596 return_zero (void)
3597 {
3598 return 0;
3599 }
3600
3601 static int
return_one(void)3602 return_one (void)
3603 {
3604 return 1;
3605 }
3606
3607 static int
return_minus_one(void)3608 return_minus_one (void)
3609 {
3610 return -1;
3611 }
3612
3613 /* Find a single runnable target in the stack and return it. If for
3614 some reason there is more than one, return NULL. */
3615
3616 struct target_ops *
find_run_target(void)3617 find_run_target (void)
3618 {
3619 struct target_ops **t;
3620 struct target_ops *runable = NULL;
3621 int count;
3622
3623 count = 0;
3624
3625 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3626 {
3627 if ((*t)->to_can_run && target_can_run (*t))
3628 {
3629 runable = *t;
3630 ++count;
3631 }
3632 }
3633
3634 return (count == 1 ? runable : NULL);
3635 }
3636
3637 /*
3638 * Find the next target down the stack from the specified target.
3639 */
3640
3641 struct target_ops *
find_target_beneath(struct target_ops * t)3642 find_target_beneath (struct target_ops *t)
3643 {
3644 return t->beneath;
3645 }
3646
3647
3648 /* The inferior process has died. Long live the inferior! */
3649
3650 void
generic_mourn_inferior(void)3651 generic_mourn_inferior (void)
3652 {
3653 ptid_t ptid;
3654
3655 ptid = inferior_ptid;
3656 inferior_ptid = null_ptid;
3657
3658 /* Mark breakpoints uninserted in case something tries to delete a
3659 breakpoint while we delete the inferior's threads (which would
3660 fail, since the inferior is long gone). */
3661 mark_breakpoints_out ();
3662
3663 if (!ptid_equal (ptid, null_ptid))
3664 {
3665 int pid = ptid_get_pid (ptid);
3666 exit_inferior (pid);
3667 }
3668
3669 /* Note this wipes step-resume breakpoints, so needs to be done
3670 after exit_inferior, which ends up referencing the step-resume
3671 breakpoints through clear_thread_inferior_resources. */
3672 breakpoint_init_inferior (inf_exited);
3673
3674 registers_changed ();
3675
3676 reopen_exec_file ();
3677 reinit_frame_cache ();
3678
3679 if (deprecated_detach_hook)
3680 deprecated_detach_hook ();
3681 }
3682
3683 /* Convert a normal process ID to a string. Returns the string in a
3684 static buffer. */
3685
3686 char *
normal_pid_to_str(ptid_t ptid)3687 normal_pid_to_str (ptid_t ptid)
3688 {
3689 static char buf[32];
3690
3691 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3692 return buf;
3693 }
3694
3695 static char *
dummy_pid_to_str(struct target_ops * ops,ptid_t ptid)3696 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3697 {
3698 return normal_pid_to_str (ptid);
3699 }
3700
3701 /* Error-catcher for target_find_memory_regions. */
3702 static int
dummy_find_memory_regions(find_memory_region_ftype ignore1,void * ignore2)3703 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3704 {
3705 error (_("Command not implemented for this target."));
3706 return 0;
3707 }
3708
3709 /* Error-catcher for target_make_corefile_notes. */
3710 static char *
dummy_make_corefile_notes(bfd * ignore1,int * ignore2)3711 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3712 {
3713 error (_("Command not implemented for this target."));
3714 return NULL;
3715 }
3716
3717 /* Error-catcher for target_get_bookmark. */
3718 static gdb_byte *
dummy_get_bookmark(char * ignore1,int ignore2)3719 dummy_get_bookmark (char *ignore1, int ignore2)
3720 {
3721 tcomplain ();
3722 return NULL;
3723 }
3724
3725 /* Error-catcher for target_goto_bookmark. */
3726 static void
dummy_goto_bookmark(gdb_byte * ignore,int from_tty)3727 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3728 {
3729 tcomplain ();
3730 }
3731
3732 /* Set up the handful of non-empty slots needed by the dummy target
3733 vector. */
3734
3735 static void
init_dummy_target(void)3736 init_dummy_target (void)
3737 {
3738 dummy_target.to_shortname = "None";
3739 dummy_target.to_longname = "None";
3740 dummy_target.to_doc = "";
3741 dummy_target.to_attach = find_default_attach;
3742 dummy_target.to_detach =
3743 (void (*)(struct target_ops *, char *, int))target_ignore;
3744 dummy_target.to_create_inferior = find_default_create_inferior;
3745 dummy_target.to_can_async_p = find_default_can_async_p;
3746 dummy_target.to_is_async_p = find_default_is_async_p;
3747 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3748 dummy_target.to_supports_disable_randomization
3749 = find_default_supports_disable_randomization;
3750 dummy_target.to_pid_to_str = dummy_pid_to_str;
3751 dummy_target.to_stratum = dummy_stratum;
3752 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3753 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3754 dummy_target.to_get_bookmark = dummy_get_bookmark;
3755 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3756 dummy_target.to_xfer_partial = default_xfer_partial;
3757 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3758 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3759 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3760 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3761 dummy_target.to_has_execution
3762 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3763 dummy_target.to_stopped_by_watchpoint = return_zero;
3764 dummy_target.to_stopped_data_address =
3765 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3766 dummy_target.to_magic = OPS_MAGIC;
3767 }
3768
3769 static void
debug_to_open(char * args,int from_tty)3770 debug_to_open (char *args, int from_tty)
3771 {
3772 debug_target.to_open (args, from_tty);
3773
3774 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3775 }
3776
3777 void
target_close(struct target_ops * targ,int quitting)3778 target_close (struct target_ops *targ, int quitting)
3779 {
3780 if (targ->to_xclose != NULL)
3781 targ->to_xclose (targ, quitting);
3782 else if (targ->to_close != NULL)
3783 targ->to_close (quitting);
3784
3785 if (targetdebug)
3786 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3787 }
3788
3789 void
target_attach(char * args,int from_tty)3790 target_attach (char *args, int from_tty)
3791 {
3792 struct target_ops *t;
3793
3794 for (t = current_target.beneath; t != NULL; t = t->beneath)
3795 {
3796 if (t->to_attach != NULL)
3797 {
3798 t->to_attach (t, args, from_tty);
3799 if (targetdebug)
3800 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3801 args, from_tty);
3802 return;
3803 }
3804 }
3805
3806 internal_error (__FILE__, __LINE__,
3807 _("could not find a target to attach"));
3808 }
3809
3810 int
target_thread_alive(ptid_t ptid)3811 target_thread_alive (ptid_t ptid)
3812 {
3813 struct target_ops *t;
3814
3815 for (t = current_target.beneath; t != NULL; t = t->beneath)
3816 {
3817 if (t->to_thread_alive != NULL)
3818 {
3819 int retval;
3820
3821 retval = t->to_thread_alive (t, ptid);
3822 if (targetdebug)
3823 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3824 PIDGET (ptid), retval);
3825
3826 return retval;
3827 }
3828 }
3829
3830 return 0;
3831 }
3832
3833 void
target_find_new_threads(void)3834 target_find_new_threads (void)
3835 {
3836 struct target_ops *t;
3837
3838 for (t = current_target.beneath; t != NULL; t = t->beneath)
3839 {
3840 if (t->to_find_new_threads != NULL)
3841 {
3842 t->to_find_new_threads (t);
3843 if (targetdebug)
3844 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3845
3846 return;
3847 }
3848 }
3849 }
3850
3851 void
target_stop(ptid_t ptid)3852 target_stop (ptid_t ptid)
3853 {
3854 if (!may_stop)
3855 {
3856 warning (_("May not interrupt or stop the target, ignoring attempt"));
3857 return;
3858 }
3859
3860 (*current_target.to_stop) (ptid);
3861 }
3862
3863 static void
debug_to_post_attach(int pid)3864 debug_to_post_attach (int pid)
3865 {
3866 debug_target.to_post_attach (pid);
3867
3868 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3869 }
3870
3871 /* Return a pretty printed form of target_waitstatus.
3872 Space for the result is malloc'd, caller must free. */
3873
3874 char *
target_waitstatus_to_string(const struct target_waitstatus * ws)3875 target_waitstatus_to_string (const struct target_waitstatus *ws)
3876 {
3877 const char *kind_str = "status->kind = ";
3878
3879 switch (ws->kind)
3880 {
3881 case TARGET_WAITKIND_EXITED:
3882 return xstrprintf ("%sexited, status = %d",
3883 kind_str, ws->value.integer);
3884 case TARGET_WAITKIND_STOPPED:
3885 return xstrprintf ("%sstopped, signal = %s",
3886 kind_str, gdb_signal_to_name (ws->value.sig));
3887 case TARGET_WAITKIND_SIGNALLED:
3888 return xstrprintf ("%ssignalled, signal = %s",
3889 kind_str, gdb_signal_to_name (ws->value.sig));
3890 case TARGET_WAITKIND_LOADED:
3891 return xstrprintf ("%sloaded", kind_str);
3892 case TARGET_WAITKIND_FORKED:
3893 return xstrprintf ("%sforked", kind_str);
3894 case TARGET_WAITKIND_VFORKED:
3895 return xstrprintf ("%svforked", kind_str);
3896 case TARGET_WAITKIND_EXECD:
3897 return xstrprintf ("%sexecd", kind_str);
3898 case TARGET_WAITKIND_VFORK_DONE:
3899 return xstrprintf ("%svfork-done", kind_str);
3900 case TARGET_WAITKIND_SYSCALL_ENTRY:
3901 return xstrprintf ("%sentered syscall", kind_str);
3902 case TARGET_WAITKIND_SYSCALL_RETURN:
3903 return xstrprintf ("%sexited syscall", kind_str);
3904 case TARGET_WAITKIND_SPURIOUS:
3905 return xstrprintf ("%sspurious", kind_str);
3906 case TARGET_WAITKIND_IGNORE:
3907 return xstrprintf ("%signore", kind_str);
3908 case TARGET_WAITKIND_NO_HISTORY:
3909 return xstrprintf ("%sno-history", kind_str);
3910 case TARGET_WAITKIND_NO_RESUMED:
3911 return xstrprintf ("%sno-resumed", kind_str);
3912 default:
3913 return xstrprintf ("%sunknown???", kind_str);
3914 }
3915 }
3916
3917 /* Concatenate ELEM to LIST, a comma separate list, and return the
3918 result. The LIST incoming argument is released. */
3919
3920 static char *
str_comma_list_concat_elem(char * list,const char * elem)3921 str_comma_list_concat_elem (char *list, const char *elem)
3922 {
3923 if (list == NULL)
3924 return xstrdup (elem);
3925 else
3926 return reconcat (list, list, ", ", elem, (char *) NULL);
3927 }
3928
3929 /* Helper for target_options_to_string. If OPT is present in
3930 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3931 Returns the new resulting string. OPT is removed from
3932 TARGET_OPTIONS. */
3933
3934 static char *
do_option(int * target_options,char * ret,int opt,char * opt_str)3935 do_option (int *target_options, char *ret,
3936 int opt, char *opt_str)
3937 {
3938 if ((*target_options & opt) != 0)
3939 {
3940 ret = str_comma_list_concat_elem (ret, opt_str);
3941 *target_options &= ~opt;
3942 }
3943
3944 return ret;
3945 }
3946
3947 char *
target_options_to_string(int target_options)3948 target_options_to_string (int target_options)
3949 {
3950 char *ret = NULL;
3951
3952 #define DO_TARG_OPTION(OPT) \
3953 ret = do_option (&target_options, ret, OPT, #OPT)
3954
3955 DO_TARG_OPTION (TARGET_WNOHANG);
3956
3957 if (target_options != 0)
3958 ret = str_comma_list_concat_elem (ret, "unknown???");
3959
3960 if (ret == NULL)
3961 ret = xstrdup ("");
3962 return ret;
3963 }
3964
3965 static void
debug_print_register(const char * func,struct regcache * regcache,int regno)3966 debug_print_register (const char * func,
3967 struct regcache *regcache, int regno)
3968 {
3969 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3970
3971 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3972 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3973 && gdbarch_register_name (gdbarch, regno) != NULL
3974 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3975 fprintf_unfiltered (gdb_stdlog, "(%s)",
3976 gdbarch_register_name (gdbarch, regno));
3977 else
3978 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3979 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3980 {
3981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3982 int i, size = register_size (gdbarch, regno);
3983 gdb_byte buf[MAX_REGISTER_SIZE];
3984
3985 regcache_raw_collect (regcache, regno, buf);
3986 fprintf_unfiltered (gdb_stdlog, " = ");
3987 for (i = 0; i < size; i++)
3988 {
3989 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3990 }
3991 if (size <= sizeof (LONGEST))
3992 {
3993 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3994
3995 fprintf_unfiltered (gdb_stdlog, " %s %s",
3996 core_addr_to_string_nz (val), plongest (val));
3997 }
3998 }
3999 fprintf_unfiltered (gdb_stdlog, "\n");
4000 }
4001
4002 void
target_fetch_registers(struct regcache * regcache,int regno)4003 target_fetch_registers (struct regcache *regcache, int regno)
4004 {
4005 struct target_ops *t;
4006
4007 for (t = current_target.beneath; t != NULL; t = t->beneath)
4008 {
4009 if (t->to_fetch_registers != NULL)
4010 {
4011 t->to_fetch_registers (t, regcache, regno);
4012 if (targetdebug)
4013 debug_print_register ("target_fetch_registers", regcache, regno);
4014 return;
4015 }
4016 }
4017 }
4018
4019 void
target_store_registers(struct regcache * regcache,int regno)4020 target_store_registers (struct regcache *regcache, int regno)
4021 {
4022 struct target_ops *t;
4023
4024 if (!may_write_registers)
4025 error (_("Writing to registers is not allowed (regno %d)"), regno);
4026
4027 for (t = current_target.beneath; t != NULL; t = t->beneath)
4028 {
4029 if (t->to_store_registers != NULL)
4030 {
4031 t->to_store_registers (t, regcache, regno);
4032 if (targetdebug)
4033 {
4034 debug_print_register ("target_store_registers", regcache, regno);
4035 }
4036 return;
4037 }
4038 }
4039
4040 noprocess ();
4041 }
4042
4043 int
target_core_of_thread(ptid_t ptid)4044 target_core_of_thread (ptid_t ptid)
4045 {
4046 struct target_ops *t;
4047
4048 for (t = current_target.beneath; t != NULL; t = t->beneath)
4049 {
4050 if (t->to_core_of_thread != NULL)
4051 {
4052 int retval = t->to_core_of_thread (t, ptid);
4053
4054 if (targetdebug)
4055 fprintf_unfiltered (gdb_stdlog,
4056 "target_core_of_thread (%d) = %d\n",
4057 PIDGET (ptid), retval);
4058 return retval;
4059 }
4060 }
4061
4062 return -1;
4063 }
4064
4065 int
target_verify_memory(const gdb_byte * data,CORE_ADDR memaddr,ULONGEST size)4066 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4067 {
4068 struct target_ops *t;
4069
4070 for (t = current_target.beneath; t != NULL; t = t->beneath)
4071 {
4072 if (t->to_verify_memory != NULL)
4073 {
4074 int retval = t->to_verify_memory (t, data, memaddr, size);
4075
4076 if (targetdebug)
4077 fprintf_unfiltered (gdb_stdlog,
4078 "target_verify_memory (%s, %s) = %d\n",
4079 paddress (target_gdbarch (), memaddr),
4080 pulongest (size),
4081 retval);
4082 return retval;
4083 }
4084 }
4085
4086 tcomplain ();
4087 }
4088
4089 /* The documentation for this function is in its prototype declaration in
4090 target.h. */
4091
4092 int
target_insert_mask_watchpoint(CORE_ADDR addr,CORE_ADDR mask,int rw)4093 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4094 {
4095 struct target_ops *t;
4096
4097 for (t = current_target.beneath; t != NULL; t = t->beneath)
4098 if (t->to_insert_mask_watchpoint != NULL)
4099 {
4100 int ret;
4101
4102 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4103
4104 if (targetdebug)
4105 fprintf_unfiltered (gdb_stdlog, "\
4106 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4107 core_addr_to_string (addr),
4108 core_addr_to_string (mask), rw, ret);
4109
4110 return ret;
4111 }
4112
4113 return 1;
4114 }
4115
4116 /* The documentation for this function is in its prototype declaration in
4117 target.h. */
4118
4119 int
target_remove_mask_watchpoint(CORE_ADDR addr,CORE_ADDR mask,int rw)4120 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4121 {
4122 struct target_ops *t;
4123
4124 for (t = current_target.beneath; t != NULL; t = t->beneath)
4125 if (t->to_remove_mask_watchpoint != NULL)
4126 {
4127 int ret;
4128
4129 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4130
4131 if (targetdebug)
4132 fprintf_unfiltered (gdb_stdlog, "\
4133 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4134 core_addr_to_string (addr),
4135 core_addr_to_string (mask), rw, ret);
4136
4137 return ret;
4138 }
4139
4140 return 1;
4141 }
4142
4143 /* The documentation for this function is in its prototype declaration
4144 in target.h. */
4145
4146 int
target_masked_watch_num_registers(CORE_ADDR addr,CORE_ADDR mask)4147 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4148 {
4149 struct target_ops *t;
4150
4151 for (t = current_target.beneath; t != NULL; t = t->beneath)
4152 if (t->to_masked_watch_num_registers != NULL)
4153 return t->to_masked_watch_num_registers (t, addr, mask);
4154
4155 return -1;
4156 }
4157
4158 /* The documentation for this function is in its prototype declaration
4159 in target.h. */
4160
4161 int
target_ranged_break_num_registers(void)4162 target_ranged_break_num_registers (void)
4163 {
4164 struct target_ops *t;
4165
4166 for (t = current_target.beneath; t != NULL; t = t->beneath)
4167 if (t->to_ranged_break_num_registers != NULL)
4168 return t->to_ranged_break_num_registers (t);
4169
4170 return -1;
4171 }
4172
4173 /* See target.h. */
4174
4175 int
target_supports_btrace(void)4176 target_supports_btrace (void)
4177 {
4178 struct target_ops *t;
4179
4180 for (t = current_target.beneath; t != NULL; t = t->beneath)
4181 if (t->to_supports_btrace != NULL)
4182 return t->to_supports_btrace ();
4183
4184 return 0;
4185 }
4186
4187 /* See target.h. */
4188
4189 struct btrace_target_info *
target_enable_btrace(ptid_t ptid)4190 target_enable_btrace (ptid_t ptid)
4191 {
4192 struct target_ops *t;
4193
4194 for (t = current_target.beneath; t != NULL; t = t->beneath)
4195 if (t->to_enable_btrace != NULL)
4196 return t->to_enable_btrace (ptid);
4197
4198 tcomplain ();
4199 return NULL;
4200 }
4201
4202 /* See target.h. */
4203
4204 void
target_disable_btrace(struct btrace_target_info * btinfo)4205 target_disable_btrace (struct btrace_target_info *btinfo)
4206 {
4207 struct target_ops *t;
4208
4209 for (t = current_target.beneath; t != NULL; t = t->beneath)
4210 if (t->to_disable_btrace != NULL)
4211 return t->to_disable_btrace (btinfo);
4212
4213 tcomplain ();
4214 }
4215
4216 /* See target.h. */
4217
4218 void
target_teardown_btrace(struct btrace_target_info * btinfo)4219 target_teardown_btrace (struct btrace_target_info *btinfo)
4220 {
4221 struct target_ops *t;
4222
4223 for (t = current_target.beneath; t != NULL; t = t->beneath)
4224 if (t->to_teardown_btrace != NULL)
4225 return t->to_teardown_btrace (btinfo);
4226
4227 tcomplain ();
4228 }
4229
4230 /* See target.h. */
4231
VEC(btrace_block_s)4232 VEC (btrace_block_s) *
4233 target_read_btrace (struct btrace_target_info *btinfo,
4234 enum btrace_read_type type)
4235 {
4236 struct target_ops *t;
4237
4238 for (t = current_target.beneath; t != NULL; t = t->beneath)
4239 if (t->to_read_btrace != NULL)
4240 return t->to_read_btrace (btinfo, type);
4241
4242 tcomplain ();
4243 return NULL;
4244 }
4245
4246 /* See target.h. */
4247
4248 void
target_stop_recording(void)4249 target_stop_recording (void)
4250 {
4251 struct target_ops *t;
4252
4253 for (t = current_target.beneath; t != NULL; t = t->beneath)
4254 if (t->to_stop_recording != NULL)
4255 {
4256 t->to_stop_recording ();
4257 return;
4258 }
4259
4260 /* This is optional. */
4261 }
4262
4263 /* See target.h. */
4264
4265 void
target_info_record(void)4266 target_info_record (void)
4267 {
4268 struct target_ops *t;
4269
4270 for (t = current_target.beneath; t != NULL; t = t->beneath)
4271 if (t->to_info_record != NULL)
4272 {
4273 t->to_info_record ();
4274 return;
4275 }
4276
4277 tcomplain ();
4278 }
4279
4280 /* See target.h. */
4281
4282 void
target_save_record(char * filename)4283 target_save_record (char *filename)
4284 {
4285 struct target_ops *t;
4286
4287 for (t = current_target.beneath; t != NULL; t = t->beneath)
4288 if (t->to_save_record != NULL)
4289 {
4290 t->to_save_record (filename);
4291 return;
4292 }
4293
4294 tcomplain ();
4295 }
4296
4297 /* See target.h. */
4298
4299 int
target_supports_delete_record(void)4300 target_supports_delete_record (void)
4301 {
4302 struct target_ops *t;
4303
4304 for (t = current_target.beneath; t != NULL; t = t->beneath)
4305 if (t->to_delete_record != NULL)
4306 return 1;
4307
4308 return 0;
4309 }
4310
4311 /* See target.h. */
4312
4313 void
target_delete_record(void)4314 target_delete_record (void)
4315 {
4316 struct target_ops *t;
4317
4318 for (t = current_target.beneath; t != NULL; t = t->beneath)
4319 if (t->to_delete_record != NULL)
4320 {
4321 t->to_delete_record ();
4322 return;
4323 }
4324
4325 tcomplain ();
4326 }
4327
4328 /* See target.h. */
4329
4330 int
target_record_is_replaying(void)4331 target_record_is_replaying (void)
4332 {
4333 struct target_ops *t;
4334
4335 for (t = current_target.beneath; t != NULL; t = t->beneath)
4336 if (t->to_record_is_replaying != NULL)
4337 return t->to_record_is_replaying ();
4338
4339 return 0;
4340 }
4341
4342 /* See target.h. */
4343
4344 void
target_goto_record_begin(void)4345 target_goto_record_begin (void)
4346 {
4347 struct target_ops *t;
4348
4349 for (t = current_target.beneath; t != NULL; t = t->beneath)
4350 if (t->to_goto_record_begin != NULL)
4351 {
4352 t->to_goto_record_begin ();
4353 return;
4354 }
4355
4356 tcomplain ();
4357 }
4358
4359 /* See target.h. */
4360
4361 void
target_goto_record_end(void)4362 target_goto_record_end (void)
4363 {
4364 struct target_ops *t;
4365
4366 for (t = current_target.beneath; t != NULL; t = t->beneath)
4367 if (t->to_goto_record_end != NULL)
4368 {
4369 t->to_goto_record_end ();
4370 return;
4371 }
4372
4373 tcomplain ();
4374 }
4375
4376 /* See target.h. */
4377
4378 void
target_goto_record(ULONGEST insn)4379 target_goto_record (ULONGEST insn)
4380 {
4381 struct target_ops *t;
4382
4383 for (t = current_target.beneath; t != NULL; t = t->beneath)
4384 if (t->to_goto_record != NULL)
4385 {
4386 t->to_goto_record (insn);
4387 return;
4388 }
4389
4390 tcomplain ();
4391 }
4392
4393 /* See target.h. */
4394
4395 void
target_insn_history(int size,int flags)4396 target_insn_history (int size, int flags)
4397 {
4398 struct target_ops *t;
4399
4400 for (t = current_target.beneath; t != NULL; t = t->beneath)
4401 if (t->to_insn_history != NULL)
4402 {
4403 t->to_insn_history (size, flags);
4404 return;
4405 }
4406
4407 tcomplain ();
4408 }
4409
4410 /* See target.h. */
4411
4412 void
target_insn_history_from(ULONGEST from,int size,int flags)4413 target_insn_history_from (ULONGEST from, int size, int flags)
4414 {
4415 struct target_ops *t;
4416
4417 for (t = current_target.beneath; t != NULL; t = t->beneath)
4418 if (t->to_insn_history_from != NULL)
4419 {
4420 t->to_insn_history_from (from, size, flags);
4421 return;
4422 }
4423
4424 tcomplain ();
4425 }
4426
4427 /* See target.h. */
4428
4429 void
target_insn_history_range(ULONGEST begin,ULONGEST end,int flags)4430 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4431 {
4432 struct target_ops *t;
4433
4434 for (t = current_target.beneath; t != NULL; t = t->beneath)
4435 if (t->to_insn_history_range != NULL)
4436 {
4437 t->to_insn_history_range (begin, end, flags);
4438 return;
4439 }
4440
4441 tcomplain ();
4442 }
4443
4444 /* See target.h. */
4445
4446 void
target_call_history(int size,int flags)4447 target_call_history (int size, int flags)
4448 {
4449 struct target_ops *t;
4450
4451 for (t = current_target.beneath; t != NULL; t = t->beneath)
4452 if (t->to_call_history != NULL)
4453 {
4454 t->to_call_history (size, flags);
4455 return;
4456 }
4457
4458 tcomplain ();
4459 }
4460
4461 /* See target.h. */
4462
4463 void
target_call_history_from(ULONGEST begin,int size,int flags)4464 target_call_history_from (ULONGEST begin, int size, int flags)
4465 {
4466 struct target_ops *t;
4467
4468 for (t = current_target.beneath; t != NULL; t = t->beneath)
4469 if (t->to_call_history_from != NULL)
4470 {
4471 t->to_call_history_from (begin, size, flags);
4472 return;
4473 }
4474
4475 tcomplain ();
4476 }
4477
4478 /* See target.h. */
4479
4480 void
target_call_history_range(ULONGEST begin,ULONGEST end,int flags)4481 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4482 {
4483 struct target_ops *t;
4484
4485 for (t = current_target.beneath; t != NULL; t = t->beneath)
4486 if (t->to_call_history_range != NULL)
4487 {
4488 t->to_call_history_range (begin, end, flags);
4489 return;
4490 }
4491
4492 tcomplain ();
4493 }
4494
4495 static void
debug_to_prepare_to_store(struct regcache * regcache)4496 debug_to_prepare_to_store (struct regcache *regcache)
4497 {
4498 debug_target.to_prepare_to_store (regcache);
4499
4500 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4501 }
4502
4503 static int
deprecated_debug_xfer_memory(CORE_ADDR memaddr,bfd_byte * myaddr,int len,int write,struct mem_attrib * attrib,struct target_ops * target)4504 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4505 int write, struct mem_attrib *attrib,
4506 struct target_ops *target)
4507 {
4508 int retval;
4509
4510 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4511 attrib, target);
4512
4513 fprintf_unfiltered (gdb_stdlog,
4514 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4515 paddress (target_gdbarch (), memaddr), len,
4516 write ? "write" : "read", retval);
4517
4518 if (retval > 0)
4519 {
4520 int i;
4521
4522 fputs_unfiltered (", bytes =", gdb_stdlog);
4523 for (i = 0; i < retval; i++)
4524 {
4525 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4526 {
4527 if (targetdebug < 2 && i > 0)
4528 {
4529 fprintf_unfiltered (gdb_stdlog, " ...");
4530 break;
4531 }
4532 fprintf_unfiltered (gdb_stdlog, "\n");
4533 }
4534
4535 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4536 }
4537 }
4538
4539 fputc_unfiltered ('\n', gdb_stdlog);
4540
4541 return retval;
4542 }
4543
4544 static void
debug_to_files_info(struct target_ops * target)4545 debug_to_files_info (struct target_ops *target)
4546 {
4547 debug_target.to_files_info (target);
4548
4549 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4550 }
4551
4552 static int
debug_to_insert_breakpoint(struct gdbarch * gdbarch,struct bp_target_info * bp_tgt)4553 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4554 struct bp_target_info *bp_tgt)
4555 {
4556 int retval;
4557
4558 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4559
4560 fprintf_unfiltered (gdb_stdlog,
4561 "target_insert_breakpoint (%s, xxx) = %ld\n",
4562 core_addr_to_string (bp_tgt->placed_address),
4563 (unsigned long) retval);
4564 return retval;
4565 }
4566
4567 static int
debug_to_remove_breakpoint(struct gdbarch * gdbarch,struct bp_target_info * bp_tgt)4568 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4569 struct bp_target_info *bp_tgt)
4570 {
4571 int retval;
4572
4573 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4574
4575 fprintf_unfiltered (gdb_stdlog,
4576 "target_remove_breakpoint (%s, xxx) = %ld\n",
4577 core_addr_to_string (bp_tgt->placed_address),
4578 (unsigned long) retval);
4579 return retval;
4580 }
4581
4582 static int
debug_to_can_use_hw_breakpoint(int type,int cnt,int from_tty)4583 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4584 {
4585 int retval;
4586
4587 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4588
4589 fprintf_unfiltered (gdb_stdlog,
4590 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4591 (unsigned long) type,
4592 (unsigned long) cnt,
4593 (unsigned long) from_tty,
4594 (unsigned long) retval);
4595 return retval;
4596 }
4597
4598 static int
debug_to_region_ok_for_hw_watchpoint(CORE_ADDR addr,int len)4599 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4600 {
4601 CORE_ADDR retval;
4602
4603 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4604
4605 fprintf_unfiltered (gdb_stdlog,
4606 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4607 core_addr_to_string (addr), (unsigned long) len,
4608 core_addr_to_string (retval));
4609 return retval;
4610 }
4611
4612 static int
debug_to_can_accel_watchpoint_condition(CORE_ADDR addr,int len,int rw,struct expression * cond)4613 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4614 struct expression *cond)
4615 {
4616 int retval;
4617
4618 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4619 rw, cond);
4620
4621 fprintf_unfiltered (gdb_stdlog,
4622 "target_can_accel_watchpoint_condition "
4623 "(%s, %d, %d, %s) = %ld\n",
4624 core_addr_to_string (addr), len, rw,
4625 host_address_to_string (cond), (unsigned long) retval);
4626 return retval;
4627 }
4628
4629 static int
debug_to_stopped_by_watchpoint(void)4630 debug_to_stopped_by_watchpoint (void)
4631 {
4632 int retval;
4633
4634 retval = debug_target.to_stopped_by_watchpoint ();
4635
4636 fprintf_unfiltered (gdb_stdlog,
4637 "target_stopped_by_watchpoint () = %ld\n",
4638 (unsigned long) retval);
4639 return retval;
4640 }
4641
4642 static int
debug_to_stopped_data_address(struct target_ops * target,CORE_ADDR * addr)4643 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4644 {
4645 int retval;
4646
4647 retval = debug_target.to_stopped_data_address (target, addr);
4648
4649 fprintf_unfiltered (gdb_stdlog,
4650 "target_stopped_data_address ([%s]) = %ld\n",
4651 core_addr_to_string (*addr),
4652 (unsigned long)retval);
4653 return retval;
4654 }
4655
4656 static int
debug_to_watchpoint_addr_within_range(struct target_ops * target,CORE_ADDR addr,CORE_ADDR start,int length)4657 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4658 CORE_ADDR addr,
4659 CORE_ADDR start, int length)
4660 {
4661 int retval;
4662
4663 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4664 start, length);
4665
4666 fprintf_filtered (gdb_stdlog,
4667 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4668 core_addr_to_string (addr), core_addr_to_string (start),
4669 length, retval);
4670 return retval;
4671 }
4672
4673 static int
debug_to_insert_hw_breakpoint(struct gdbarch * gdbarch,struct bp_target_info * bp_tgt)4674 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4675 struct bp_target_info *bp_tgt)
4676 {
4677 int retval;
4678
4679 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4680
4681 fprintf_unfiltered (gdb_stdlog,
4682 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4683 core_addr_to_string (bp_tgt->placed_address),
4684 (unsigned long) retval);
4685 return retval;
4686 }
4687
4688 static int
debug_to_remove_hw_breakpoint(struct gdbarch * gdbarch,struct bp_target_info * bp_tgt)4689 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4690 struct bp_target_info *bp_tgt)
4691 {
4692 int retval;
4693
4694 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4695
4696 fprintf_unfiltered (gdb_stdlog,
4697 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4698 core_addr_to_string (bp_tgt->placed_address),
4699 (unsigned long) retval);
4700 return retval;
4701 }
4702
4703 static int
debug_to_insert_watchpoint(CORE_ADDR addr,int len,int type,struct expression * cond)4704 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4705 struct expression *cond)
4706 {
4707 int retval;
4708
4709 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4710
4711 fprintf_unfiltered (gdb_stdlog,
4712 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4713 core_addr_to_string (addr), len, type,
4714 host_address_to_string (cond), (unsigned long) retval);
4715 return retval;
4716 }
4717
4718 static int
debug_to_remove_watchpoint(CORE_ADDR addr,int len,int type,struct expression * cond)4719 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4720 struct expression *cond)
4721 {
4722 int retval;
4723
4724 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4725
4726 fprintf_unfiltered (gdb_stdlog,
4727 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4728 core_addr_to_string (addr), len, type,
4729 host_address_to_string (cond), (unsigned long) retval);
4730 return retval;
4731 }
4732
4733 static void
debug_to_terminal_init(void)4734 debug_to_terminal_init (void)
4735 {
4736 debug_target.to_terminal_init ();
4737
4738 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4739 }
4740
4741 static void
debug_to_terminal_inferior(void)4742 debug_to_terminal_inferior (void)
4743 {
4744 debug_target.to_terminal_inferior ();
4745
4746 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4747 }
4748
4749 static void
debug_to_terminal_ours_for_output(void)4750 debug_to_terminal_ours_for_output (void)
4751 {
4752 debug_target.to_terminal_ours_for_output ();
4753
4754 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4755 }
4756
4757 static void
debug_to_terminal_ours(void)4758 debug_to_terminal_ours (void)
4759 {
4760 debug_target.to_terminal_ours ();
4761
4762 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4763 }
4764
4765 static void
debug_to_terminal_save_ours(void)4766 debug_to_terminal_save_ours (void)
4767 {
4768 debug_target.to_terminal_save_ours ();
4769
4770 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4771 }
4772
4773 static void
debug_to_terminal_info(char * arg,int from_tty)4774 debug_to_terminal_info (char *arg, int from_tty)
4775 {
4776 debug_target.to_terminal_info (arg, from_tty);
4777
4778 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4779 from_tty);
4780 }
4781
4782 static void
debug_to_load(char * args,int from_tty)4783 debug_to_load (char *args, int from_tty)
4784 {
4785 debug_target.to_load (args, from_tty);
4786
4787 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4788 }
4789
4790 static void
debug_to_post_startup_inferior(ptid_t ptid)4791 debug_to_post_startup_inferior (ptid_t ptid)
4792 {
4793 debug_target.to_post_startup_inferior (ptid);
4794
4795 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4796 PIDGET (ptid));
4797 }
4798
4799 static int
debug_to_insert_fork_catchpoint(int pid)4800 debug_to_insert_fork_catchpoint (int pid)
4801 {
4802 int retval;
4803
4804 retval = debug_target.to_insert_fork_catchpoint (pid);
4805
4806 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4807 pid, retval);
4808
4809 return retval;
4810 }
4811
4812 static int
debug_to_remove_fork_catchpoint(int pid)4813 debug_to_remove_fork_catchpoint (int pid)
4814 {
4815 int retval;
4816
4817 retval = debug_target.to_remove_fork_catchpoint (pid);
4818
4819 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4820 pid, retval);
4821
4822 return retval;
4823 }
4824
4825 static int
debug_to_insert_vfork_catchpoint(int pid)4826 debug_to_insert_vfork_catchpoint (int pid)
4827 {
4828 int retval;
4829
4830 retval = debug_target.to_insert_vfork_catchpoint (pid);
4831
4832 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4833 pid, retval);
4834
4835 return retval;
4836 }
4837
4838 static int
debug_to_remove_vfork_catchpoint(int pid)4839 debug_to_remove_vfork_catchpoint (int pid)
4840 {
4841 int retval;
4842
4843 retval = debug_target.to_remove_vfork_catchpoint (pid);
4844
4845 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4846 pid, retval);
4847
4848 return retval;
4849 }
4850
4851 static int
debug_to_insert_exec_catchpoint(int pid)4852 debug_to_insert_exec_catchpoint (int pid)
4853 {
4854 int retval;
4855
4856 retval = debug_target.to_insert_exec_catchpoint (pid);
4857
4858 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4859 pid, retval);
4860
4861 return retval;
4862 }
4863
4864 static int
debug_to_remove_exec_catchpoint(int pid)4865 debug_to_remove_exec_catchpoint (int pid)
4866 {
4867 int retval;
4868
4869 retval = debug_target.to_remove_exec_catchpoint (pid);
4870
4871 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4872 pid, retval);
4873
4874 return retval;
4875 }
4876
4877 static int
debug_to_has_exited(int pid,int wait_status,int * exit_status)4878 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4879 {
4880 int has_exited;
4881
4882 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4883
4884 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4885 pid, wait_status, *exit_status, has_exited);
4886
4887 return has_exited;
4888 }
4889
4890 static int
debug_to_can_run(void)4891 debug_to_can_run (void)
4892 {
4893 int retval;
4894
4895 retval = debug_target.to_can_run ();
4896
4897 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4898
4899 return retval;
4900 }
4901
4902 static struct gdbarch *
debug_to_thread_architecture(struct target_ops * ops,ptid_t ptid)4903 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4904 {
4905 struct gdbarch *retval;
4906
4907 retval = debug_target.to_thread_architecture (ops, ptid);
4908
4909 fprintf_unfiltered (gdb_stdlog,
4910 "target_thread_architecture (%s) = %s [%s]\n",
4911 target_pid_to_str (ptid),
4912 host_address_to_string (retval),
4913 gdbarch_bfd_arch_info (retval)->printable_name);
4914 return retval;
4915 }
4916
4917 static void
debug_to_stop(ptid_t ptid)4918 debug_to_stop (ptid_t ptid)
4919 {
4920 debug_target.to_stop (ptid);
4921
4922 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4923 target_pid_to_str (ptid));
4924 }
4925
4926 static void
debug_to_rcmd(char * command,struct ui_file * outbuf)4927 debug_to_rcmd (char *command,
4928 struct ui_file *outbuf)
4929 {
4930 debug_target.to_rcmd (command, outbuf);
4931 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4932 }
4933
4934 static char *
debug_to_pid_to_exec_file(int pid)4935 debug_to_pid_to_exec_file (int pid)
4936 {
4937 char *exec_file;
4938
4939 exec_file = debug_target.to_pid_to_exec_file (pid);
4940
4941 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4942 pid, exec_file);
4943
4944 return exec_file;
4945 }
4946
4947 static void
setup_target_debug(void)4948 setup_target_debug (void)
4949 {
4950 memcpy (&debug_target, ¤t_target, sizeof debug_target);
4951
4952 current_target.to_open = debug_to_open;
4953 current_target.to_post_attach = debug_to_post_attach;
4954 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4955 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4956 current_target.to_files_info = debug_to_files_info;
4957 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4958 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4959 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4960 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4961 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4962 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4963 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4964 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4965 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4966 current_target.to_watchpoint_addr_within_range
4967 = debug_to_watchpoint_addr_within_range;
4968 current_target.to_region_ok_for_hw_watchpoint
4969 = debug_to_region_ok_for_hw_watchpoint;
4970 current_target.to_can_accel_watchpoint_condition
4971 = debug_to_can_accel_watchpoint_condition;
4972 current_target.to_terminal_init = debug_to_terminal_init;
4973 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4974 current_target.to_terminal_ours_for_output
4975 = debug_to_terminal_ours_for_output;
4976 current_target.to_terminal_ours = debug_to_terminal_ours;
4977 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4978 current_target.to_terminal_info = debug_to_terminal_info;
4979 current_target.to_load = debug_to_load;
4980 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4981 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4982 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4983 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4984 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4985 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4986 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4987 current_target.to_has_exited = debug_to_has_exited;
4988 current_target.to_can_run = debug_to_can_run;
4989 current_target.to_stop = debug_to_stop;
4990 current_target.to_rcmd = debug_to_rcmd;
4991 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4992 current_target.to_thread_architecture = debug_to_thread_architecture;
4993 }
4994
4995
4996 static char targ_desc[] =
4997 "Names of targets and files being debugged.\nShows the entire \
4998 stack of targets currently in use (including the exec-file,\n\
4999 core-file, and process, if any), as well as the symbol file name.";
5000
5001 static void
do_monitor_command(char * cmd,int from_tty)5002 do_monitor_command (char *cmd,
5003 int from_tty)
5004 {
5005 if ((current_target.to_rcmd
5006 == (void (*) (char *, struct ui_file *)) tcomplain)
5007 || (current_target.to_rcmd == debug_to_rcmd
5008 && (debug_target.to_rcmd
5009 == (void (*) (char *, struct ui_file *)) tcomplain)))
5010 error (_("\"monitor\" command not supported by this target."));
5011 target_rcmd (cmd, gdb_stdtarg);
5012 }
5013
5014 /* Print the name of each layers of our target stack. */
5015
5016 static void
maintenance_print_target_stack(char * cmd,int from_tty)5017 maintenance_print_target_stack (char *cmd, int from_tty)
5018 {
5019 struct target_ops *t;
5020
5021 printf_filtered (_("The current target stack is:\n"));
5022
5023 for (t = target_stack; t != NULL; t = t->beneath)
5024 {
5025 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5026 }
5027 }
5028
5029 /* Controls if async mode is permitted. */
5030 int target_async_permitted = 0;
5031
5032 /* The set command writes to this variable. If the inferior is
5033 executing, linux_nat_async_permitted is *not* updated. */
5034 static int target_async_permitted_1 = 0;
5035
5036 static void
set_target_async_command(char * args,int from_tty,struct cmd_list_element * c)5037 set_target_async_command (char *args, int from_tty,
5038 struct cmd_list_element *c)
5039 {
5040 if (have_live_inferiors ())
5041 {
5042 target_async_permitted_1 = target_async_permitted;
5043 error (_("Cannot change this setting while the inferior is running."));
5044 }
5045
5046 target_async_permitted = target_async_permitted_1;
5047 }
5048
5049 static void
show_target_async_command(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)5050 show_target_async_command (struct ui_file *file, int from_tty,
5051 struct cmd_list_element *c,
5052 const char *value)
5053 {
5054 fprintf_filtered (file,
5055 _("Controlling the inferior in "
5056 "asynchronous mode is %s.\n"), value);
5057 }
5058
5059 /* Temporary copies of permission settings. */
5060
5061 static int may_write_registers_1 = 1;
5062 static int may_write_memory_1 = 1;
5063 static int may_insert_breakpoints_1 = 1;
5064 static int may_insert_tracepoints_1 = 1;
5065 static int may_insert_fast_tracepoints_1 = 1;
5066 static int may_stop_1 = 1;
5067
5068 /* Make the user-set values match the real values again. */
5069
5070 void
update_target_permissions(void)5071 update_target_permissions (void)
5072 {
5073 may_write_registers_1 = may_write_registers;
5074 may_write_memory_1 = may_write_memory;
5075 may_insert_breakpoints_1 = may_insert_breakpoints;
5076 may_insert_tracepoints_1 = may_insert_tracepoints;
5077 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5078 may_stop_1 = may_stop;
5079 }
5080
5081 /* The one function handles (most of) the permission flags in the same
5082 way. */
5083
5084 static void
set_target_permissions(char * args,int from_tty,struct cmd_list_element * c)5085 set_target_permissions (char *args, int from_tty,
5086 struct cmd_list_element *c)
5087 {
5088 if (target_has_execution)
5089 {
5090 update_target_permissions ();
5091 error (_("Cannot change this setting while the inferior is running."));
5092 }
5093
5094 /* Make the real values match the user-changed values. */
5095 may_write_registers = may_write_registers_1;
5096 may_insert_breakpoints = may_insert_breakpoints_1;
5097 may_insert_tracepoints = may_insert_tracepoints_1;
5098 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5099 may_stop = may_stop_1;
5100 update_observer_mode ();
5101 }
5102
5103 /* Set memory write permission independently of observer mode. */
5104
5105 static void
set_write_memory_permission(char * args,int from_tty,struct cmd_list_element * c)5106 set_write_memory_permission (char *args, int from_tty,
5107 struct cmd_list_element *c)
5108 {
5109 /* Make the real values match the user-changed values. */
5110 may_write_memory = may_write_memory_1;
5111 update_observer_mode ();
5112 }
5113
5114
5115 void
initialize_targets(void)5116 initialize_targets (void)
5117 {
5118 init_dummy_target ();
5119 push_target (&dummy_target);
5120
5121 add_info ("target", target_info, targ_desc);
5122 add_info ("files", target_info, targ_desc);
5123
5124 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5125 Set target debugging."), _("\
5126 Show target debugging."), _("\
5127 When non-zero, target debugging is enabled. Higher numbers are more\n\
5128 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5129 command."),
5130 NULL,
5131 show_targetdebug,
5132 &setdebuglist, &showdebuglist);
5133
5134 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5135 &trust_readonly, _("\
5136 Set mode for reading from readonly sections."), _("\
5137 Show mode for reading from readonly sections."), _("\
5138 When this mode is on, memory reads from readonly sections (such as .text)\n\
5139 will be read from the object file instead of from the target. This will\n\
5140 result in significant performance improvement for remote targets."),
5141 NULL,
5142 show_trust_readonly,
5143 &setlist, &showlist);
5144
5145 add_com ("monitor", class_obscure, do_monitor_command,
5146 _("Send a command to the remote monitor (remote targets only)."));
5147
5148 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5149 _("Print the name of each layer of the internal target stack."),
5150 &maintenanceprintlist);
5151
5152 add_setshow_boolean_cmd ("target-async", no_class,
5153 &target_async_permitted_1, _("\
5154 Set whether gdb controls the inferior in asynchronous mode."), _("\
5155 Show whether gdb controls the inferior in asynchronous mode."), _("\
5156 Tells gdb whether to control the inferior in asynchronous mode."),
5157 set_target_async_command,
5158 show_target_async_command,
5159 &setlist,
5160 &showlist);
5161
5162 add_setshow_boolean_cmd ("stack-cache", class_support,
5163 &stack_cache_enabled_p_1, _("\
5164 Set cache use for stack access."), _("\
5165 Show cache use for stack access."), _("\
5166 When on, use the data cache for all stack access, regardless of any\n\
5167 configured memory regions. This improves remote performance significantly.\n\
5168 By default, caching for stack access is on."),
5169 set_stack_cache_enabled_p,
5170 show_stack_cache_enabled_p,
5171 &setlist, &showlist);
5172
5173 add_setshow_boolean_cmd ("may-write-registers", class_support,
5174 &may_write_registers_1, _("\
5175 Set permission to write into registers."), _("\
5176 Show permission to write into registers."), _("\
5177 When this permission is on, GDB may write into the target's registers.\n\
5178 Otherwise, any sort of write attempt will result in an error."),
5179 set_target_permissions, NULL,
5180 &setlist, &showlist);
5181
5182 add_setshow_boolean_cmd ("may-write-memory", class_support,
5183 &may_write_memory_1, _("\
5184 Set permission to write into target memory."), _("\
5185 Show permission to write into target memory."), _("\
5186 When this permission is on, GDB may write into the target's memory.\n\
5187 Otherwise, any sort of write attempt will result in an error."),
5188 set_write_memory_permission, NULL,
5189 &setlist, &showlist);
5190
5191 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5192 &may_insert_breakpoints_1, _("\
5193 Set permission to insert breakpoints in the target."), _("\
5194 Show permission to insert breakpoints in the target."), _("\
5195 When this permission is on, GDB may insert breakpoints in the program.\n\
5196 Otherwise, any sort of insertion attempt will result in an error."),
5197 set_target_permissions, NULL,
5198 &setlist, &showlist);
5199
5200 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5201 &may_insert_tracepoints_1, _("\
5202 Set permission to insert tracepoints in the target."), _("\
5203 Show permission to insert tracepoints in the target."), _("\
5204 When this permission is on, GDB may insert tracepoints in the program.\n\
5205 Otherwise, any sort of insertion attempt will result in an error."),
5206 set_target_permissions, NULL,
5207 &setlist, &showlist);
5208
5209 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5210 &may_insert_fast_tracepoints_1, _("\
5211 Set permission to insert fast tracepoints in the target."), _("\
5212 Show permission to insert fast tracepoints in the target."), _("\
5213 When this permission is on, GDB may insert fast tracepoints.\n\
5214 Otherwise, any sort of insertion attempt will result in an error."),
5215 set_target_permissions, NULL,
5216 &setlist, &showlist);
5217
5218 add_setshow_boolean_cmd ("may-interrupt", class_support,
5219 &may_stop_1, _("\
5220 Set permission to interrupt or signal the target."), _("\
5221 Show permission to interrupt or signal the target."), _("\
5222 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5223 Otherwise, any attempt to interrupt or stop will be ignored."),
5224 set_target_permissions, NULL,
5225 &setlist, &showlist);
5226
5227
5228 target_dcache = dcache_init ();
5229 }
5230