xref: /openbsd/gnu/llvm/lld/ELF/InputFiles.cpp (revision e8ae9400)
1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Config.h"
11 #include "DWARF.h"
12 #include "Driver.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "lld/Common/DWARF.h"
21 #include "llvm/ADT/CachedHashString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/Object/IRObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileSystem.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::unique_ptr<TarWriter> elf::tar;
47 
48 DenseMap<StringRef, StringRef> elf::gnuWarnings;
49 
50 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
toString(const InputFile * f)51 std::string lld::toString(const InputFile *f) {
52   static std::mutex mu;
53   if (!f)
54     return "<internal>";
55 
56   {
57     std::lock_guard<std::mutex> lock(mu);
58     if (f->toStringCache.empty()) {
59       if (f->archiveName.empty())
60         f->toStringCache = f->getName();
61       else
62         (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
63     }
64   }
65   return std::string(f->toStringCache);
66 }
67 
68 // .gnu.warning.SYMBOL are treated as warning symbols for the given symbol
parseGNUWarning(StringRef name,ArrayRef<char> data,size_t size)69 void lld::parseGNUWarning(StringRef name, ArrayRef<char> data, size_t size) {
70   static std::mutex mu;
71   if (!name.empty() && name.startswith(".gnu.warning.")) {
72     std::lock_guard<std::mutex> lock(mu);
73     StringRef wsym = name.substr(13);
74     StringRef s(data.begin());
75     StringRef wng(s.substr(0, size));
76     symtab.insert(wsym)->gwarn = true;
77     gnuWarnings.insert({wsym, wng});
78   }
79 }
80 
getELFKind(MemoryBufferRef mb,StringRef archiveName)81 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
82   unsigned char size;
83   unsigned char endian;
84   std::tie(size, endian) = getElfArchType(mb.getBuffer());
85 
86   auto report = [&](StringRef msg) {
87     StringRef filename = mb.getBufferIdentifier();
88     if (archiveName.empty())
89       fatal(filename + ": " + msg);
90     else
91       fatal(archiveName + "(" + filename + "): " + msg);
92   };
93 
94   if (!mb.getBuffer().startswith(ElfMagic))
95     report("not an ELF file");
96   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
97     report("corrupted ELF file: invalid data encoding");
98   if (size != ELFCLASS32 && size != ELFCLASS64)
99     report("corrupted ELF file: invalid file class");
100 
101   size_t bufSize = mb.getBuffer().size();
102   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
103       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
104     report("corrupted ELF file: file is too short");
105 
106   if (size == ELFCLASS32)
107     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
108   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
109 }
110 
111 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
112 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
113 // the input objects have been compiled.
updateARMVFPArgs(const ARMAttributeParser & attributes,const InputFile * f)114 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
115                              const InputFile *f) {
116   std::optional<unsigned> attr =
117       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
118   if (!attr)
119     // If an ABI tag isn't present then it is implicitly given the value of 0
120     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
121     // including some in glibc that don't use FP args (and should have value 3)
122     // don't have the attribute so we do not consider an implicit value of 0
123     // as a clash.
124     return;
125 
126   unsigned vfpArgs = *attr;
127   ARMVFPArgKind arg;
128   switch (vfpArgs) {
129   case ARMBuildAttrs::BaseAAPCS:
130     arg = ARMVFPArgKind::Base;
131     break;
132   case ARMBuildAttrs::HardFPAAPCS:
133     arg = ARMVFPArgKind::VFP;
134     break;
135   case ARMBuildAttrs::ToolChainFPPCS:
136     // Tool chain specific convention that conforms to neither AAPCS variant.
137     arg = ARMVFPArgKind::ToolChain;
138     break;
139   case ARMBuildAttrs::CompatibleFPAAPCS:
140     // Object compatible with all conventions.
141     return;
142   default:
143     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
144     return;
145   }
146   // Follow ld.bfd and error if there is a mix of calling conventions.
147   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
148     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
149   else
150     config->armVFPArgs = arg;
151 }
152 
153 // The ARM support in lld makes some use of instructions that are not available
154 // on all ARM architectures. Namely:
155 // - Use of BLX instruction for interworking between ARM and Thumb state.
156 // - Use of the extended Thumb branch encoding in relocation.
157 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
158 // The ARM Attributes section contains information about the architecture chosen
159 // at compile time. We follow the convention that if at least one input object
160 // is compiled with an architecture that supports these features then lld is
161 // permitted to use them.
updateSupportedARMFeatures(const ARMAttributeParser & attributes)162 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
163   std::optional<unsigned> attr =
164       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
165   if (!attr)
166     return;
167   auto arch = *attr;
168   switch (arch) {
169   case ARMBuildAttrs::Pre_v4:
170   case ARMBuildAttrs::v4:
171   case ARMBuildAttrs::v4T:
172     // Architectures prior to v5 do not support BLX instruction
173     break;
174   case ARMBuildAttrs::v5T:
175   case ARMBuildAttrs::v5TE:
176   case ARMBuildAttrs::v5TEJ:
177   case ARMBuildAttrs::v6:
178   case ARMBuildAttrs::v6KZ:
179   case ARMBuildAttrs::v6K:
180     config->armHasBlx = true;
181     // Architectures used in pre-Cortex processors do not support
182     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
183     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
184     break;
185   default:
186     // All other Architectures have BLX and extended branch encoding
187     config->armHasBlx = true;
188     config->armJ1J2BranchEncoding = true;
189     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
190       // All Architectures used in Cortex processors with the exception
191       // of v6-M and v6S-M have the MOVT and MOVW instructions.
192       config->armHasMovtMovw = true;
193     break;
194   }
195 }
196 
InputFile(Kind k,MemoryBufferRef m)197 InputFile::InputFile(Kind k, MemoryBufferRef m)
198     : mb(m), groupId(nextGroupId), fileKind(k) {
199   // All files within the same --{start,end}-group get the same group ID.
200   // Otherwise, a new file will get a new group ID.
201   if (!isInGroup)
202     ++nextGroupId;
203 }
204 
readFile(StringRef path)205 std::optional<MemoryBufferRef> elf::readFile(StringRef path) {
206   llvm::TimeTraceScope timeScope("Load input files", path);
207 
208   // The --chroot option changes our virtual root directory.
209   // This is useful when you are dealing with files created by --reproduce.
210   if (!config->chroot.empty() && path.startswith("/"))
211     path = saver().save(config->chroot + path);
212 
213   log(path);
214   config->dependencyFiles.insert(llvm::CachedHashString(path));
215 
216   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
217                                        /*RequiresNullTerminator=*/false);
218   if (auto ec = mbOrErr.getError()) {
219     error("cannot open " + path + ": " + ec.message());
220     return std::nullopt;
221   }
222 
223   MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
224   ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
225 
226   if (tar)
227     tar->append(relativeToRoot(path), mbref.getBuffer());
228   return mbref;
229 }
230 
231 // All input object files must be for the same architecture
232 // (e.g. it does not make sense to link x86 object files with
233 // MIPS object files.) This function checks for that error.
isCompatible(InputFile * file)234 static bool isCompatible(InputFile *file) {
235   if (!file->isElf() && !isa<BitcodeFile>(file))
236     return true;
237 
238   if (file->ekind == config->ekind && file->emachine == config->emachine) {
239     if (config->emachine != EM_MIPS)
240       return true;
241     if (isMipsN32Abi(file) == config->mipsN32Abi)
242       return true;
243   }
244 
245   StringRef target =
246       !config->bfdname.empty() ? config->bfdname : config->emulation;
247   if (!target.empty()) {
248     error(toString(file) + " is incompatible with " + target);
249     return false;
250   }
251 
252   InputFile *existing = nullptr;
253   if (!ctx.objectFiles.empty())
254     existing = ctx.objectFiles[0];
255   else if (!ctx.sharedFiles.empty())
256     existing = ctx.sharedFiles[0];
257   else if (!ctx.bitcodeFiles.empty())
258     existing = ctx.bitcodeFiles[0];
259   std::string with;
260   if (existing)
261     with = " with " + toString(existing);
262   error(toString(file) + " is incompatible" + with);
263   return false;
264 }
265 
doParseFile(InputFile * file)266 template <class ELFT> static void doParseFile(InputFile *file) {
267   if (!isCompatible(file))
268     return;
269 
270   // Binary file
271   if (auto *f = dyn_cast<BinaryFile>(file)) {
272     ctx.binaryFiles.push_back(f);
273     f->parse();
274     return;
275   }
276 
277   // Lazy object file
278   if (file->lazy) {
279     if (auto *f = dyn_cast<BitcodeFile>(file)) {
280       ctx.lazyBitcodeFiles.push_back(f);
281       f->parseLazy();
282     } else {
283       cast<ObjFile<ELFT>>(file)->parseLazy();
284     }
285     return;
286   }
287 
288   if (config->trace)
289     message(toString(file));
290 
291   // .so file
292   if (auto *f = dyn_cast<SharedFile>(file)) {
293     f->parse<ELFT>();
294     return;
295   }
296 
297   // LLVM bitcode file
298   if (auto *f = dyn_cast<BitcodeFile>(file)) {
299     ctx.bitcodeFiles.push_back(f);
300     f->parse();
301     return;
302   }
303 
304   // Regular object file
305   ctx.objectFiles.push_back(cast<ELFFileBase>(file));
306   cast<ObjFile<ELFT>>(file)->parse();
307 }
308 
309 // Add symbols in File to the symbol table.
parseFile(InputFile * file)310 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
311 
312 // Concatenates arguments to construct a string representing an error location.
createFileLineMsg(StringRef path,unsigned line)313 static std::string createFileLineMsg(StringRef path, unsigned line) {
314   std::string filename = std::string(path::filename(path));
315   std::string lineno = ":" + std::to_string(line);
316   if (filename == path)
317     return filename + lineno;
318   return filename + lineno + " (" + path.str() + lineno + ")";
319 }
320 
321 template <class ELFT>
getSrcMsgAux(ObjFile<ELFT> & file,const Symbol & sym,InputSectionBase & sec,uint64_t offset)322 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
323                                 InputSectionBase &sec, uint64_t offset) {
324   // In DWARF, functions and variables are stored to different places.
325   // First, look up a function for a given offset.
326   if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
327     return createFileLineMsg(info->FileName, info->Line);
328 
329   // If it failed, look up again as a variable.
330   if (std::optional<std::pair<std::string, unsigned>> fileLine =
331           file.getVariableLoc(sym.getName()))
332     return createFileLineMsg(fileLine->first, fileLine->second);
333 
334   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
335   return std::string(file.sourceFile);
336 }
337 
getSrcMsg(const Symbol & sym,InputSectionBase & sec,uint64_t offset)338 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
339                                  uint64_t offset) {
340   if (kind() != ObjKind)
341     return "";
342   switch (ekind) {
343   default:
344     llvm_unreachable("Invalid kind");
345   case ELF32LEKind:
346     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
347   case ELF32BEKind:
348     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
349   case ELF64LEKind:
350     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
351   case ELF64BEKind:
352     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
353   }
354 }
355 
getNameForScript() const356 StringRef InputFile::getNameForScript() const {
357   if (archiveName.empty())
358     return getName();
359 
360   if (nameForScriptCache.empty())
361     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
362 
363   return nameForScriptCache;
364 }
365 
366 // An ELF object file may contain a `.deplibs` section. If it exists, the
367 // section contains a list of library specifiers such as `m` for libm. This
368 // function resolves a given name by finding the first matching library checking
369 // the various ways that a library can be specified to LLD. This ELF extension
370 // is a form of autolinking and is called `dependent libraries`. It is currently
371 // unique to LLVM and lld.
addDependentLibrary(StringRef specifier,const InputFile * f)372 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
373   if (!config->dependentLibraries)
374     return;
375   if (std::optional<std::string> s = searchLibraryBaseName(specifier))
376     ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
377   else if (std::optional<std::string> s = findFromSearchPaths(specifier))
378     ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
379   else if (fs::exists(specifier))
380     ctx.driver.addFile(specifier, /*withLOption=*/false);
381   else
382     error(toString(f) +
383           ": unable to find library from dependent library specifier: " +
384           specifier);
385 }
386 
387 // Record the membership of a section group so that in the garbage collection
388 // pass, section group members are kept or discarded as a unit.
389 template <class ELFT>
handleSectionGroup(ArrayRef<InputSectionBase * > sections,ArrayRef<typename ELFT::Word> entries)390 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
391                                ArrayRef<typename ELFT::Word> entries) {
392   bool hasAlloc = false;
393   for (uint32_t index : entries.slice(1)) {
394     if (index >= sections.size())
395       return;
396     if (InputSectionBase *s = sections[index])
397       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
398         hasAlloc = true;
399   }
400 
401   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
402   // collection. See the comment in markLive(). This rule retains .debug_types
403   // and .rela.debug_types.
404   if (!hasAlloc)
405     return;
406 
407   // Connect the members in a circular doubly-linked list via
408   // nextInSectionGroup.
409   InputSectionBase *head;
410   InputSectionBase *prev = nullptr;
411   for (uint32_t index : entries.slice(1)) {
412     InputSectionBase *s = sections[index];
413     if (!s || s == &InputSection::discarded)
414       continue;
415     if (prev)
416       prev->nextInSectionGroup = s;
417     else
418       head = s;
419     prev = s;
420   }
421   if (prev)
422     prev->nextInSectionGroup = head;
423 }
424 
getDwarf()425 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
426   llvm::call_once(initDwarf, [this]() {
427     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
428         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
429         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
430         [&](Error warning) {
431           warn(getName() + ": " + toString(std::move(warning)));
432         }));
433   });
434 
435   return dwarf.get();
436 }
437 
438 // Returns the pair of file name and line number describing location of data
439 // object (variable, array, etc) definition.
440 template <class ELFT>
441 std::optional<std::pair<std::string, unsigned>>
getVariableLoc(StringRef name)442 ObjFile<ELFT>::getVariableLoc(StringRef name) {
443   return getDwarf()->getVariableLoc(name);
444 }
445 
446 // Returns source line information for a given offset
447 // using DWARF debug info.
448 template <class ELFT>
getDILineInfo(InputSectionBase * s,uint64_t offset)449 std::optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
450                                                        uint64_t offset) {
451   // Detect SectionIndex for specified section.
452   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
453   ArrayRef<InputSectionBase *> sections = s->file->getSections();
454   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
455     if (s == sections[curIndex]) {
456       sectionIndex = curIndex;
457       break;
458     }
459   }
460 
461   return getDwarf()->getDILineInfo(offset, sectionIndex);
462 }
463 
ELFFileBase(Kind k,ELFKind ekind,MemoryBufferRef mb)464 ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb)
465     : InputFile(k, mb) {
466   this->ekind = ekind;
467 }
468 
469 template <typename Elf_Shdr>
findSection(ArrayRef<Elf_Shdr> sections,uint32_t type)470 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
471   for (const Elf_Shdr &sec : sections)
472     if (sec.sh_type == type)
473       return &sec;
474   return nullptr;
475 }
476 
init()477 void ELFFileBase::init() {
478   switch (ekind) {
479   case ELF32LEKind:
480     init<ELF32LE>(fileKind);
481     break;
482   case ELF32BEKind:
483     init<ELF32BE>(fileKind);
484     break;
485   case ELF64LEKind:
486     init<ELF64LE>(fileKind);
487     break;
488   case ELF64BEKind:
489     init<ELF64BE>(fileKind);
490     break;
491   default:
492     llvm_unreachable("getELFKind");
493   }
494 }
495 
init(InputFile::Kind k)496 template <class ELFT> void ELFFileBase::init(InputFile::Kind k) {
497   using Elf_Shdr = typename ELFT::Shdr;
498   using Elf_Sym = typename ELFT::Sym;
499 
500   // Initialize trivial attributes.
501   const ELFFile<ELFT> &obj = getObj<ELFT>();
502   emachine = obj.getHeader().e_machine;
503   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
504   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
505 
506   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
507   elfShdrs = sections.data();
508   numELFShdrs = sections.size();
509 
510   // Find a symbol table.
511   const Elf_Shdr *symtabSec =
512       findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB);
513 
514   if (!symtabSec)
515     return;
516 
517   // Initialize members corresponding to a symbol table.
518   firstGlobal = symtabSec->sh_info;
519 
520   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
521   if (firstGlobal == 0 || firstGlobal > eSyms.size())
522     fatal(toString(this) + ": invalid sh_info in symbol table");
523 
524   elfSyms = reinterpret_cast<const void *>(eSyms.data());
525   numELFSyms = uint32_t(eSyms.size());
526   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
527 }
528 
529 template <class ELFT>
getSectionIndex(const Elf_Sym & sym) const530 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
531   return CHECK(
532       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
533       this);
534 }
535 
parse(bool ignoreComdats)536 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
537   object::ELFFile<ELFT> obj = this->getObj();
538   // Read a section table. justSymbols is usually false.
539   if (this->justSymbols) {
540     initializeJustSymbols();
541     initializeSymbols(obj);
542     return;
543   }
544 
545   // Handle dependent libraries and selection of section groups as these are not
546   // done in parallel.
547   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
548   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
549   uint64_t size = objSections.size();
550   sections.resize(size);
551   for (size_t i = 0; i != size; ++i) {
552     const Elf_Shdr &sec = objSections[i];
553     if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
554       StringRef name = check(obj.getSectionName(sec, shstrtab));
555       ArrayRef<char> data = CHECK(
556           this->getObj().template getSectionContentsAsArray<char>(sec), this);
557       if (!data.empty() && data.back() != '\0') {
558         error(
559             toString(this) +
560             ": corrupted dependent libraries section (unterminated string): " +
561             name);
562       } else {
563         for (const char *d = data.begin(), *e = data.end(); d < e;) {
564           StringRef s(d);
565           addDependentLibrary(s, this);
566           d += s.size() + 1;
567         }
568       }
569       this->sections[i] = &InputSection::discarded;
570       continue;
571     }
572 
573     if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
574       ARMAttributeParser attributes;
575       ArrayRef<uint8_t> contents =
576           check(this->getObj().getSectionContents(sec));
577       StringRef name = check(obj.getSectionName(sec, shstrtab));
578       this->sections[i] = &InputSection::discarded;
579       if (Error e =
580               attributes.parse(contents, ekind == ELF32LEKind ? support::little
581                                                               : support::big)) {
582         InputSection isec(*this, sec, name);
583         warn(toString(&isec) + ": " + llvm::toString(std::move(e)));
584       } else {
585         updateSupportedARMFeatures(attributes);
586         updateARMVFPArgs(attributes, this);
587 
588         // FIXME: Retain the first attribute section we see. The eglibc ARM
589         // dynamic loaders require the presence of an attribute section for
590         // dlopen to work. In a full implementation we would merge all attribute
591         // sections.
592         if (in.attributes == nullptr) {
593           in.attributes = std::make_unique<InputSection>(*this, sec, name);
594           this->sections[i] = in.attributes.get();
595         }
596       }
597     }
598 
599     if (sec.sh_type != SHT_GROUP)
600       continue;
601     StringRef signature = getShtGroupSignature(objSections, sec);
602     ArrayRef<Elf_Word> entries =
603         CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
604     if (entries.empty())
605       fatal(toString(this) + ": empty SHT_GROUP");
606 
607     Elf_Word flag = entries[0];
608     if (flag && flag != GRP_COMDAT)
609       fatal(toString(this) + ": unsupported SHT_GROUP format");
610 
611     bool keepGroup =
612         (flag & GRP_COMDAT) == 0 || ignoreComdats ||
613         symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this)
614             .second;
615     if (keepGroup) {
616       if (config->relocatable)
617         this->sections[i] = createInputSection(
618             i, sec, check(obj.getSectionName(sec, shstrtab)));
619       continue;
620     }
621 
622     // Otherwise, discard group members.
623     for (uint32_t secIndex : entries.slice(1)) {
624       if (secIndex >= size)
625         fatal(toString(this) +
626               ": invalid section index in group: " + Twine(secIndex));
627       this->sections[secIndex] = &InputSection::discarded;
628     }
629   }
630 
631   // Read a symbol table.
632   initializeSymbols(obj);
633 }
634 
635 // Sections with SHT_GROUP and comdat bits define comdat section groups.
636 // They are identified and deduplicated by group name. This function
637 // returns a group name.
638 template <class ELFT>
getShtGroupSignature(ArrayRef<Elf_Shdr> sections,const Elf_Shdr & sec)639 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
640                                               const Elf_Shdr &sec) {
641   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
642   if (sec.sh_info >= symbols.size())
643     fatal(toString(this) + ": invalid symbol index");
644   const typename ELFT::Sym &sym = symbols[sec.sh_info];
645   return CHECK(sym.getName(this->stringTable), this);
646 }
647 
648 template <class ELFT>
shouldMerge(const Elf_Shdr & sec,StringRef name)649 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
650   // On a regular link we don't merge sections if -O0 (default is -O1). This
651   // sometimes makes the linker significantly faster, although the output will
652   // be bigger.
653   //
654   // Doing the same for -r would create a problem as it would combine sections
655   // with different sh_entsize. One option would be to just copy every SHF_MERGE
656   // section as is to the output. While this would produce a valid ELF file with
657   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
658   // they see two .debug_str. We could have separate logic for combining
659   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
660   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
661   // logic for -r.
662   if (config->optimize == 0 && !config->relocatable)
663     return false;
664 
665   // A mergeable section with size 0 is useless because they don't have
666   // any data to merge. A mergeable string section with size 0 can be
667   // argued as invalid because it doesn't end with a null character.
668   // We'll avoid a mess by handling them as if they were non-mergeable.
669   if (sec.sh_size == 0)
670     return false;
671 
672   // Check for sh_entsize. The ELF spec is not clear about the zero
673   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
674   // the section does not hold a table of fixed-size entries". We know
675   // that Rust 1.13 produces a string mergeable section with a zero
676   // sh_entsize. Here we just accept it rather than being picky about it.
677   uint64_t entSize = sec.sh_entsize;
678   if (entSize == 0)
679     return false;
680   if (sec.sh_size % entSize)
681     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
682           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
683           Twine(entSize) + ")");
684 
685   if (sec.sh_flags & SHF_WRITE)
686     fatal(toString(this) + ":(" + name +
687           "): writable SHF_MERGE section is not supported");
688 
689   return true;
690 }
691 
692 // This is for --just-symbols.
693 //
694 // --just-symbols is a very minor feature that allows you to link your
695 // output against other existing program, so that if you load both your
696 // program and the other program into memory, your output can refer the
697 // other program's symbols.
698 //
699 // When the option is given, we link "just symbols". The section table is
700 // initialized with null pointers.
initializeJustSymbols()701 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
702   sections.resize(numELFShdrs);
703 }
704 
705 template <class ELFT>
initializeSections(bool ignoreComdats,const llvm::object::ELFFile<ELFT> & obj)706 void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
707                                        const llvm::object::ELFFile<ELFT> &obj) {
708   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
709   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
710   uint64_t size = objSections.size();
711   SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups;
712   for (size_t i = 0; i != size; ++i) {
713     if (this->sections[i] == &InputSection::discarded)
714       continue;
715     const Elf_Shdr &sec = objSections[i];
716 
717     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
718     // if -r is given, we'll let the final link discard such sections.
719     // This is compatible with GNU.
720     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
721       if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
722         cgProfileSectionIndex = i;
723       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
724         // We ignore the address-significance table if we know that the object
725         // file was created by objcopy or ld -r. This is because these tools
726         // will reorder the symbols in the symbol table, invalidating the data
727         // in the address-significance table, which refers to symbols by index.
728         if (sec.sh_link != 0)
729           this->addrsigSec = &sec;
730         else if (config->icf == ICFLevel::Safe)
731           warn(toString(this) +
732                ": --icf=safe conservatively ignores "
733                "SHT_LLVM_ADDRSIG [index " +
734                Twine(i) +
735                "] with sh_link=0 "
736                "(likely created using objcopy or ld -r)");
737       }
738       this->sections[i] = &InputSection::discarded;
739       continue;
740     }
741 
742     switch (sec.sh_type) {
743     case SHT_GROUP: {
744       if (!config->relocatable)
745         sections[i] = &InputSection::discarded;
746       StringRef signature =
747           cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable));
748       ArrayRef<Elf_Word> entries =
749           cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec));
750       if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats ||
751           symtab.comdatGroups.find(CachedHashStringRef(signature))->second ==
752               this)
753         selectedGroups.push_back(entries);
754       break;
755     }
756     case SHT_SYMTAB_SHNDX:
757       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
758       break;
759     case SHT_SYMTAB:
760     case SHT_STRTAB:
761     case SHT_REL:
762     case SHT_RELA:
763     case SHT_NULL:
764       break;
765     case SHT_PROGBITS: {
766       this->sections[i] = createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
767       StringRef name = check(obj.getSectionName(sec, shstrtab));
768       ArrayRef<char> data =
769           CHECK(obj.template getSectionContentsAsArray<char>(sec), this);
770       parseGNUWarning(name, data, sec.sh_size);
771       }
772       break;
773     case SHT_LLVM_SYMPART:
774       ctx.hasSympart.store(true, std::memory_order_relaxed);
775       [[fallthrough]];
776     default:
777       this->sections[i] =
778           createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
779     }
780   }
781 
782   // We have a second loop. It is used to:
783   // 1) handle SHF_LINK_ORDER sections.
784   // 2) create SHT_REL[A] sections. In some cases the section header index of a
785   //    relocation section may be smaller than that of the relocated section. In
786   //    such cases, the relocation section would attempt to reference a target
787   //    section that has not yet been created. For simplicity, delay creation of
788   //    relocation sections until now.
789   for (size_t i = 0; i != size; ++i) {
790     if (this->sections[i] == &InputSection::discarded)
791       continue;
792     const Elf_Shdr &sec = objSections[i];
793 
794     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) {
795       // Find a relocation target section and associate this section with that.
796       // Target may have been discarded if it is in a different section group
797       // and the group is discarded, even though it's a violation of the spec.
798       // We handle that situation gracefully by discarding dangling relocation
799       // sections.
800       const uint32_t info = sec.sh_info;
801       InputSectionBase *s = getRelocTarget(i, sec, info);
802       if (!s)
803         continue;
804 
805       // ELF spec allows mergeable sections with relocations, but they are rare,
806       // and it is in practice hard to merge such sections by contents, because
807       // applying relocations at end of linking changes section contents. So, we
808       // simply handle such sections as non-mergeable ones. Degrading like this
809       // is acceptable because section merging is optional.
810       if (auto *ms = dyn_cast<MergeInputSection>(s)) {
811         s = makeThreadLocal<InputSection>(
812             ms->file, ms->flags, ms->type, ms->addralign,
813             ms->contentMaybeDecompress(), ms->name);
814         sections[info] = s;
815       }
816 
817       if (s->relSecIdx != 0)
818         error(
819             toString(s) +
820             ": multiple relocation sections to one section are not supported");
821       s->relSecIdx = i;
822 
823       // Relocation sections are usually removed from the output, so return
824       // `nullptr` for the normal case. However, if -r or --emit-relocs is
825       // specified, we need to copy them to the output. (Some post link analysis
826       // tools specify --emit-relocs to obtain the information.)
827       if (config->copyRelocs) {
828         auto *isec = makeThreadLocal<InputSection>(
829             *this, sec, check(obj.getSectionName(sec, shstrtab)));
830         // If the relocated section is discarded (due to /DISCARD/ or
831         // --gc-sections), the relocation section should be discarded as well.
832         s->dependentSections.push_back(isec);
833         sections[i] = isec;
834       }
835       continue;
836     }
837 
838     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
839     // the flag.
840     if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
841       continue;
842 
843     InputSectionBase *linkSec = nullptr;
844     if (sec.sh_link < size)
845       linkSec = this->sections[sec.sh_link];
846     if (!linkSec)
847       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
848 
849     // A SHF_LINK_ORDER section is discarded if its linked-to section is
850     // discarded.
851     InputSection *isec = cast<InputSection>(this->sections[i]);
852     linkSec->dependentSections.push_back(isec);
853     if (!isa<InputSection>(linkSec))
854       error("a section " + isec->name +
855             " with SHF_LINK_ORDER should not refer a non-regular section: " +
856             toString(linkSec));
857   }
858 
859   for (ArrayRef<Elf_Word> entries : selectedGroups)
860     handleSectionGroup<ELFT>(this->sections, entries);
861 }
862 
863 // If a source file is compiled with x86 hardware-assisted call flow control
864 // enabled, the generated object file contains feature flags indicating that
865 // fact. This function reads the feature flags and returns it.
866 //
867 // Essentially we want to read a single 32-bit value in this function, but this
868 // function is rather complicated because the value is buried deep inside a
869 // .note.gnu.property section.
870 //
871 // The section consists of one or more NOTE records. Each NOTE record consists
872 // of zero or more type-length-value fields. We want to find a field of a
873 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
874 // the ABI is unnecessarily complicated.
readAndFeatures(const InputSection & sec)875 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
876   using Elf_Nhdr = typename ELFT::Nhdr;
877   using Elf_Note = typename ELFT::Note;
878 
879   uint32_t featuresSet = 0;
880   ArrayRef<uint8_t> data = sec.content();
881   auto reportFatal = [&](const uint8_t *place, const char *msg) {
882     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
883           Twine::utohexstr(place - sec.content().data()) + "): " + msg);
884   };
885   while (!data.empty()) {
886     // Read one NOTE record.
887     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
888     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
889       reportFatal(data.data(), "data is too short");
890 
891     Elf_Note note(*nhdr);
892     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
893       data = data.slice(nhdr->getSize());
894       continue;
895     }
896 
897     uint32_t featureAndType = config->emachine == EM_AARCH64
898                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
899                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
900 
901     // Read a body of a NOTE record, which consists of type-length-value fields.
902     ArrayRef<uint8_t> desc = note.getDesc();
903     while (!desc.empty()) {
904       const uint8_t *place = desc.data();
905       if (desc.size() < 8)
906         reportFatal(place, "program property is too short");
907       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
908       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
909       desc = desc.slice(8);
910       if (desc.size() < size)
911         reportFatal(place, "program property is too short");
912 
913       if (type == featureAndType) {
914         // We found a FEATURE_1_AND field. There may be more than one of these
915         // in a .note.gnu.property section, for a relocatable object we
916         // accumulate the bits set.
917         if (size < 4)
918           reportFatal(place, "FEATURE_1_AND entry is too short");
919         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
920       }
921 
922       // Padding is present in the note descriptor, if necessary.
923       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
924     }
925 
926     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
927     data = data.slice(nhdr->getSize());
928   }
929 
930   return featuresSet;
931 }
932 
933 template <class ELFT>
getRelocTarget(uint32_t idx,const Elf_Shdr & sec,uint32_t info)934 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx,
935                                                 const Elf_Shdr &sec,
936                                                 uint32_t info) {
937   if (info < this->sections.size()) {
938     InputSectionBase *target = this->sections[info];
939 
940     // Strictly speaking, a relocation section must be included in the
941     // group of the section it relocates. However, LLVM 3.3 and earlier
942     // would fail to do so, so we gracefully handle that case.
943     if (target == &InputSection::discarded)
944       return nullptr;
945 
946     if (target != nullptr)
947       return target;
948   }
949 
950   error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
951         ") has invalid sh_info (" + Twine(info) + ")");
952   return nullptr;
953 }
954 
955 // The function may be called concurrently for different input files. For
956 // allocation, prefer makeThreadLocal which does not require holding a lock.
957 template <class ELFT>
createInputSection(uint32_t idx,const Elf_Shdr & sec,StringRef name)958 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
959                                                     const Elf_Shdr &sec,
960                                                     StringRef name) {
961   if (name.startswith(".n")) {
962     // The GNU linker uses .note.GNU-stack section as a marker indicating
963     // that the code in the object file does not expect that the stack is
964     // executable (in terms of NX bit). If all input files have the marker,
965     // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
966     // make the stack non-executable. Most object files have this section as
967     // of 2017.
968     //
969     // But making the stack non-executable is a norm today for security
970     // reasons. Failure to do so may result in a serious security issue.
971     // Therefore, we make LLD always add PT_GNU_STACK unless it is
972     // explicitly told to do otherwise (by -z execstack). Because the stack
973     // executable-ness is controlled solely by command line options,
974     // .note.GNU-stack sections are simply ignored.
975     if (name == ".note.GNU-stack")
976       return &InputSection::discarded;
977 
978     // Object files that use processor features such as Intel Control-Flow
979     // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
980     // .note.gnu.property section containing a bitfield of feature bits like the
981     // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
982     //
983     // Since we merge bitmaps from multiple object files to create a new
984     // .note.gnu.property containing a single AND'ed bitmap, we discard an input
985     // file's .note.gnu.property section.
986     if (name == ".note.gnu.property") {
987       this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
988       return &InputSection::discarded;
989     }
990 
991     // Split stacks is a feature to support a discontiguous stack,
992     // commonly used in the programming language Go. For the details,
993     // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
994     // for split stack will include a .note.GNU-split-stack section.
995     if (name == ".note.GNU-split-stack") {
996       if (config->relocatable) {
997         error(
998             "cannot mix split-stack and non-split-stack in a relocatable link");
999         return &InputSection::discarded;
1000       }
1001       this->splitStack = true;
1002       return &InputSection::discarded;
1003     }
1004 
1005     // An object file compiled for split stack, but where some of the
1006     // functions were compiled with the no_split_stack_attribute will
1007     // include a .note.GNU-no-split-stack section.
1008     if (name == ".note.GNU-no-split-stack") {
1009       this->someNoSplitStack = true;
1010       return &InputSection::discarded;
1011     }
1012 
1013     // Strip existing .note.gnu.build-id sections so that the output won't have
1014     // more than one build-id. This is not usually a problem because input
1015     // object files normally don't have .build-id sections, but you can create
1016     // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
1017     // against it.
1018     if (name == ".note.gnu.build-id")
1019       return &InputSection::discarded;
1020   }
1021 
1022   // The linker merges EH (exception handling) frames and creates a
1023   // .eh_frame_hdr section for runtime. So we handle them with a special
1024   // class. For relocatable outputs, they are just passed through.
1025   if (name == ".eh_frame" && !config->relocatable)
1026     return makeThreadLocal<EhInputSection>(*this, sec, name);
1027 
1028   if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
1029     return makeThreadLocal<MergeInputSection>(*this, sec, name);
1030   return makeThreadLocal<InputSection>(*this, sec, name);
1031 }
1032 
1033 // Initialize this->Symbols. this->Symbols is a parallel array as
1034 // its corresponding ELF symbol table.
1035 template <class ELFT>
initializeSymbols(const object::ELFFile<ELFT> & obj)1036 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
1037   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1038   if (numSymbols == 0) {
1039     numSymbols = eSyms.size();
1040     symbols = std::make_unique<Symbol *[]>(numSymbols);
1041   }
1042 
1043   // Some entries have been filled by LazyObjFile.
1044   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1045     if (!symbols[i])
1046       symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1047 
1048   // Perform symbol resolution on non-local symbols.
1049   SmallVector<unsigned, 32> undefineds;
1050   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1051     const Elf_Sym &eSym = eSyms[i];
1052     uint32_t secIdx = eSym.st_shndx;
1053     if (secIdx == SHN_UNDEF) {
1054       undefineds.push_back(i);
1055       continue;
1056     }
1057 
1058     uint8_t binding = eSym.getBinding();
1059     uint8_t stOther = eSym.st_other;
1060     uint8_t type = eSym.getType();
1061     uint64_t value = eSym.st_value;
1062     uint64_t size = eSym.st_size;
1063 
1064     Symbol *sym = symbols[i];
1065     sym->isUsedInRegularObj = true;
1066     if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
1067       if (value == 0 || value >= UINT32_MAX)
1068         fatal(toString(this) + ": common symbol '" + sym->getName() +
1069               "' has invalid alignment: " + Twine(value));
1070       hasCommonSyms = true;
1071       sym->resolve(
1072           CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
1073       continue;
1074     }
1075 
1076     // Handle global defined symbols. Defined::section will be set in postParse.
1077     sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
1078                          nullptr});
1079   }
1080 
1081   // Undefined symbols (excluding those defined relative to non-prevailing
1082   // sections) can trigger recursive extract. Process defined symbols first so
1083   // that the relative order between a defined symbol and an undefined symbol
1084   // does not change the symbol resolution behavior. In addition, a set of
1085   // interconnected symbols will all be resolved to the same file, instead of
1086   // being resolved to different files.
1087   for (unsigned i : undefineds) {
1088     const Elf_Sym &eSym = eSyms[i];
1089     Symbol *sym = symbols[i];
1090     sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
1091                            eSym.getType()});
1092     sym->isUsedInRegularObj = true;
1093     sym->referenced = true;
1094   }
1095 }
1096 
1097 template <class ELFT>
initSectionsAndLocalSyms(bool ignoreComdats)1098 void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) {
1099   if (!justSymbols)
1100     initializeSections(ignoreComdats, getObj());
1101 
1102   if (!firstGlobal)
1103     return;
1104   SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal);
1105   memset(locals, 0, sizeof(SymbolUnion) * firstGlobal);
1106 
1107   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1108   for (size_t i = 0, end = firstGlobal; i != end; ++i) {
1109     const Elf_Sym &eSym = eSyms[i];
1110     uint32_t secIdx = eSym.st_shndx;
1111     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1112       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1113     else if (secIdx >= SHN_LORESERVE)
1114       secIdx = 0;
1115     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1116       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1117     if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
1118       error(toString(this) + ": non-local symbol (" + Twine(i) +
1119             ") found at index < .symtab's sh_info (" + Twine(end) + ")");
1120 
1121     InputSectionBase *sec = sections[secIdx];
1122     uint8_t type = eSym.getType();
1123     if (type == STT_FILE)
1124       sourceFile = CHECK(eSym.getName(stringTable), this);
1125     if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
1126       fatal(toString(this) + ": invalid symbol name offset");
1127     StringRef name(stringTable.data() + eSym.st_name);
1128 
1129     symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1130     if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1131       new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1132                                  /*discardedSecIdx=*/secIdx);
1133     else
1134       new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1135                                eSym.st_value, eSym.st_size, sec);
1136     symbols[i]->partition = 1;
1137     symbols[i]->isUsedInRegularObj = true;
1138   }
1139 }
1140 
1141 // Called after all ObjFile::parse is called for all ObjFiles. This checks
1142 // duplicate symbols and may do symbol property merge in the future.
postParse()1143 template <class ELFT> void ObjFile<ELFT>::postParse() {
1144   static std::mutex mu;
1145   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1146   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1147     const Elf_Sym &eSym = eSyms[i];
1148     Symbol &sym = *symbols[i];
1149     uint32_t secIdx = eSym.st_shndx;
1150     uint8_t binding = eSym.getBinding();
1151     if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
1152                       binding != STB_GNU_UNIQUE))
1153       errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
1154                   ") has invalid binding: " + Twine((int)binding));
1155 
1156     // st_value of STT_TLS represents the assigned offset, not the actual
1157     // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1158     // only be referenced by special TLS relocations. It is usually an error if
1159     // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1160     if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
1161         eSym.getType() != STT_NOTYPE)
1162       errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
1163                   toString(sym.file) + "\n>>> in " + toString(this));
1164 
1165     // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1166     // assignment to redefine a symbol without an error.
1167     if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
1168         secIdx == SHN_COMMON)
1169       continue;
1170 
1171     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1172       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1173     else if (secIdx >= SHN_LORESERVE)
1174       secIdx = 0;
1175     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1176       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1177     InputSectionBase *sec = sections[secIdx];
1178     if (sec == &InputSection::discarded) {
1179       if (sym.traced) {
1180         printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
1181                                    sym.stOther, sym.type, secIdx},
1182                          sym.getName());
1183       }
1184       if (sym.file == this) {
1185         std::lock_guard<std::mutex> lock(mu);
1186         ctx.nonPrevailingSyms.emplace_back(&sym, secIdx);
1187       }
1188       continue;
1189     }
1190 
1191     if (sym.file == this) {
1192       cast<Defined>(sym).section = sec;
1193       continue;
1194     }
1195 
1196     if (sym.binding == STB_WEAK || binding == STB_WEAK)
1197       continue;
1198     std::lock_guard<std::mutex> lock(mu);
1199     ctx.duplicates.push_back({&sym, this, sec, eSym.st_value});
1200   }
1201 }
1202 
1203 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1204 // A tentative definition will be promoted to a global definition if there are
1205 // no non-tentative definitions to dominate it. When we hold a tentative
1206 // definition to a symbol and are inspecting archive members for inclusion
1207 // there are 2 ways we can proceed:
1208 //
1209 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1210 //    tentative to real definition has already happened) and not inspect
1211 //    archive members for Global/Weak definitions to replace the tentative
1212 //    definition. An archive member would only be included if it satisfies some
1213 //    other undefined symbol. This is the behavior Gold uses.
1214 //
1215 // 2) Consider the tentative definition as still undefined (ie the promotion to
1216 //    a real definition happens only after all symbol resolution is done).
1217 //    The linker searches archive members for STB_GLOBAL definitions to
1218 //    replace the tentative definition with. This is the behavior used by
1219 //    GNU ld.
1220 //
1221 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1222 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1223 //  (pre F90) FORTRAN code that is packaged into an archive.
1224 //
1225 //  The following functions search archive members for definitions to replace
1226 //  tentative definitions (implementing behavior 2).
isBitcodeNonCommonDef(MemoryBufferRef mb,StringRef symName,StringRef archiveName)1227 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1228                                   StringRef archiveName) {
1229   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1230   for (const irsymtab::Reader::SymbolRef &sym :
1231        symtabFile.TheReader.symbols()) {
1232     if (sym.isGlobal() && sym.getName() == symName)
1233       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1234   }
1235   return false;
1236 }
1237 
1238 template <class ELFT>
isNonCommonDef(ELFKind ekind,MemoryBufferRef mb,StringRef symName,StringRef archiveName)1239 static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName,
1240                            StringRef archiveName) {
1241   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName);
1242   obj->init();
1243   StringRef stringtable = obj->getStringTable();
1244 
1245   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1246     Expected<StringRef> name = sym.getName(stringtable);
1247     if (name && name.get() == symName)
1248       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1249              !sym.isCommon();
1250   }
1251   return false;
1252 }
1253 
isNonCommonDef(MemoryBufferRef mb,StringRef symName,StringRef archiveName)1254 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1255                            StringRef archiveName) {
1256   switch (getELFKind(mb, archiveName)) {
1257   case ELF32LEKind:
1258     return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName);
1259   case ELF32BEKind:
1260     return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName);
1261   case ELF64LEKind:
1262     return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName);
1263   case ELF64BEKind:
1264     return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName);
1265   default:
1266     llvm_unreachable("getELFKind");
1267   }
1268 }
1269 
1270 unsigned SharedFile::vernauxNum;
1271 
SharedFile(MemoryBufferRef m,StringRef defaultSoName)1272 SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName)
1273     : ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName),
1274       isNeeded(!config->asNeeded) {}
1275 
1276 // Parse the version definitions in the object file if present, and return a
1277 // vector whose nth element contains a pointer to the Elf_Verdef for version
1278 // identifier n. Version identifiers that are not definitions map to nullptr.
1279 template <typename ELFT>
1280 static SmallVector<const void *, 0>
parseVerdefs(const uint8_t * base,const typename ELFT::Shdr * sec)1281 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1282   if (!sec)
1283     return {};
1284 
1285   // Build the Verdefs array by following the chain of Elf_Verdef objects
1286   // from the start of the .gnu.version_d section.
1287   SmallVector<const void *, 0> verdefs;
1288   const uint8_t *verdef = base + sec->sh_offset;
1289   for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1290     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1291     verdef += curVerdef->vd_next;
1292     unsigned verdefIndex = curVerdef->vd_ndx;
1293     if (verdefIndex >= verdefs.size())
1294       verdefs.resize(verdefIndex + 1);
1295     verdefs[verdefIndex] = curVerdef;
1296   }
1297   return verdefs;
1298 }
1299 
1300 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1301 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1302 // implement sophisticated error checking like in llvm-readobj because the value
1303 // of such diagnostics is low.
1304 template <typename ELFT>
parseVerneed(const ELFFile<ELFT> & obj,const typename ELFT::Shdr * sec)1305 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1306                                                const typename ELFT::Shdr *sec) {
1307   if (!sec)
1308     return {};
1309   std::vector<uint32_t> verneeds;
1310   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1311   const uint8_t *verneedBuf = data.begin();
1312   for (unsigned i = 0; i != sec->sh_info; ++i) {
1313     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1314       fatal(toString(this) + " has an invalid Verneed");
1315     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1316     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1317     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1318       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1319         fatal(toString(this) + " has an invalid Vernaux");
1320       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1321       if (aux->vna_name >= this->stringTable.size())
1322         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1323       uint16_t version = aux->vna_other & VERSYM_VERSION;
1324       if (version >= verneeds.size())
1325         verneeds.resize(version + 1);
1326       verneeds[version] = aux->vna_name;
1327       vernauxBuf += aux->vna_next;
1328     }
1329     verneedBuf += vn->vn_next;
1330   }
1331   return verneeds;
1332 }
1333 
1334 // We do not usually care about alignments of data in shared object
1335 // files because the loader takes care of it. However, if we promote a
1336 // DSO symbol to point to .bss due to copy relocation, we need to keep
1337 // the original alignment requirements. We infer it in this function.
1338 template <typename ELFT>
getAlignment(ArrayRef<typename ELFT::Shdr> sections,const typename ELFT::Sym & sym)1339 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1340                              const typename ELFT::Sym &sym) {
1341   uint64_t ret = UINT64_MAX;
1342   if (sym.st_value)
1343     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1344   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1345     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1346   return (ret > UINT32_MAX) ? 0 : ret;
1347 }
1348 
1349 // Fully parse the shared object file.
1350 //
1351 // This function parses symbol versions. If a DSO has version information,
1352 // the file has a ".gnu.version_d" section which contains symbol version
1353 // definitions. Each symbol is associated to one version through a table in
1354 // ".gnu.version" section. That table is a parallel array for the symbol
1355 // table, and each table entry contains an index in ".gnu.version_d".
1356 //
1357 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1358 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1359 // ".gnu.version_d".
1360 //
1361 // The file format for symbol versioning is perhaps a bit more complicated
1362 // than necessary, but you can easily understand the code if you wrap your
1363 // head around the data structure described above.
parse()1364 template <class ELFT> void SharedFile::parse() {
1365   using Elf_Dyn = typename ELFT::Dyn;
1366   using Elf_Shdr = typename ELFT::Shdr;
1367   using Elf_Sym = typename ELFT::Sym;
1368   using Elf_Verdef = typename ELFT::Verdef;
1369   using Elf_Versym = typename ELFT::Versym;
1370 
1371   ArrayRef<Elf_Dyn> dynamicTags;
1372   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1373   ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
1374 
1375   StringRef sectionStringTable =
1376       CHECK(obj.getSectionStringTable(sections), this);
1377 
1378   const Elf_Shdr *versymSec = nullptr;
1379   const Elf_Shdr *verdefSec = nullptr;
1380   const Elf_Shdr *verneedSec = nullptr;
1381 
1382   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1383   for (const Elf_Shdr &sec : sections) {
1384     switch (sec.sh_type) {
1385     default:
1386       continue;
1387     case SHT_DYNAMIC:
1388       dynamicTags =
1389           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1390       break;
1391     case SHT_GNU_versym:
1392       versymSec = &sec;
1393       break;
1394     case SHT_GNU_verdef:
1395       verdefSec = &sec;
1396       break;
1397     case SHT_GNU_verneed:
1398       verneedSec = &sec;
1399       break;
1400     case SHT_PROGBITS: {
1401       StringRef name = CHECK(obj.getSectionName(sec, sectionStringTable), this);
1402       ArrayRef<char> data =
1403           CHECK(obj.template getSectionContentsAsArray<char>(sec), this);
1404       parseGNUWarning(name, data, sec.sh_size);
1405       break;
1406     }
1407     }
1408   }
1409 
1410   if (versymSec && numELFSyms == 0) {
1411     error("SHT_GNU_versym should be associated with symbol table");
1412     return;
1413   }
1414 
1415   // Search for a DT_SONAME tag to initialize this->soName.
1416   for (const Elf_Dyn &dyn : dynamicTags) {
1417     if (dyn.d_tag == DT_NEEDED) {
1418       uint64_t val = dyn.getVal();
1419       if (val >= this->stringTable.size())
1420         fatal(toString(this) + ": invalid DT_NEEDED entry");
1421       dtNeeded.push_back(this->stringTable.data() + val);
1422     } else if (dyn.d_tag == DT_SONAME) {
1423       uint64_t val = dyn.getVal();
1424       if (val >= this->stringTable.size())
1425         fatal(toString(this) + ": invalid DT_SONAME entry");
1426       soName = this->stringTable.data() + val;
1427     }
1428   }
1429 
1430   // DSOs are uniquified not by filename but by soname.
1431   DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
1432   bool wasInserted;
1433   std::tie(it, wasInserted) =
1434       symtab.soNames.try_emplace(CachedHashStringRef(soName), this);
1435 
1436   // If a DSO appears more than once on the command line with and without
1437   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1438   // user can add an extra DSO with --no-as-needed to force it to be added to
1439   // the dependency list.
1440   it->second->isNeeded |= isNeeded;
1441   if (!wasInserted)
1442     return;
1443 
1444   ctx.sharedFiles.push_back(this);
1445 
1446   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1447   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1448 
1449   // Parse ".gnu.version" section which is a parallel array for the symbol
1450   // table. If a given file doesn't have a ".gnu.version" section, we use
1451   // VER_NDX_GLOBAL.
1452   size_t size = numELFSyms - firstGlobal;
1453   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1454   if (versymSec) {
1455     ArrayRef<Elf_Versym> versym =
1456         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1457               this)
1458             .slice(firstGlobal);
1459     for (size_t i = 0; i < size; ++i)
1460       versyms[i] = versym[i].vs_index;
1461   }
1462 
1463   // System libraries can have a lot of symbols with versions. Using a
1464   // fixed buffer for computing the versions name (foo@ver) can save a
1465   // lot of allocations.
1466   SmallString<0> versionedNameBuffer;
1467 
1468   // Add symbols to the symbol table.
1469   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1470   for (size_t i = 0, e = syms.size(); i != e; ++i) {
1471     const Elf_Sym &sym = syms[i];
1472 
1473     // ELF spec requires that all local symbols precede weak or global
1474     // symbols in each symbol table, and the index of first non-local symbol
1475     // is stored to sh_info. If a local symbol appears after some non-local
1476     // symbol, that's a violation of the spec.
1477     StringRef name = CHECK(sym.getName(stringTable), this);
1478     if (sym.getBinding() == STB_LOCAL) {
1479       errorOrWarn(toString(this) + ": invalid local symbol '" + name +
1480                   "' in global part of symbol table");
1481       continue;
1482     }
1483 
1484     const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN;
1485     if (sym.isUndefined()) {
1486       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1487       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1488       if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) {
1489         if (idx >= verneeds.size()) {
1490           error("corrupt input file: version need index " + Twine(idx) +
1491                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1492                 toString(this));
1493           continue;
1494         }
1495         StringRef verName = stringTable.data() + verneeds[idx];
1496         versionedNameBuffer.clear();
1497         name = saver().save(
1498             (name + "@" + verName).toStringRef(versionedNameBuffer));
1499       }
1500       Symbol *s = symtab.addSymbol(
1501           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1502       s->exportDynamic = true;
1503       if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
1504           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1505         requiredSymbols.push_back(s);
1506       continue;
1507     }
1508 
1509     if (ver == VER_NDX_LOCAL ||
1510         (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) {
1511       // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the
1512       // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns
1513       // VER_NDX_LOCAL. Workaround this bug.
1514       if (config->emachine == EM_MIPS && name == "_gp_disp")
1515         continue;
1516       error("corrupt input file: version definition index " + Twine(idx) +
1517             " for symbol " + name + " is out of bounds\n>>> defined in " +
1518             toString(this));
1519       continue;
1520     }
1521 
1522     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1523     if (ver == idx) {
1524       auto *s = symtab.addSymbol(
1525           SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
1526                        sym.getType(), sym.st_value, sym.st_size, alignment});
1527       if (s->file == this)
1528         s->verdefIndex = ver;
1529     }
1530 
1531     // Also add the symbol with the versioned name to handle undefined symbols
1532     // with explicit versions.
1533     if (ver == VER_NDX_GLOBAL)
1534       continue;
1535 
1536     StringRef verName =
1537         stringTable.data() +
1538         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1539     versionedNameBuffer.clear();
1540     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1541     auto *s = symtab.addSymbol(
1542         SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
1543                      sym.getType(), sym.st_value, sym.st_size, alignment});
1544     if (s->file == this)
1545       s->verdefIndex = idx;
1546   }
1547 }
1548 
getBitcodeELFKind(const Triple & t)1549 static ELFKind getBitcodeELFKind(const Triple &t) {
1550   if (t.isLittleEndian())
1551     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1552   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1553 }
1554 
getBitcodeMachineKind(StringRef path,const Triple & t)1555 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1556   switch (t.getArch()) {
1557   case Triple::aarch64:
1558   case Triple::aarch64_be:
1559     return EM_AARCH64;
1560   case Triple::amdgcn:
1561   case Triple::r600:
1562     return EM_AMDGPU;
1563   case Triple::arm:
1564   case Triple::thumb:
1565     return EM_ARM;
1566   case Triple::avr:
1567     return EM_AVR;
1568   case Triple::hexagon:
1569     return EM_HEXAGON;
1570   case Triple::mips:
1571   case Triple::mipsel:
1572   case Triple::mips64:
1573   case Triple::mips64el:
1574     return EM_MIPS;
1575   case Triple::msp430:
1576     return EM_MSP430;
1577   case Triple::ppc:
1578   case Triple::ppcle:
1579     return EM_PPC;
1580   case Triple::ppc64:
1581   case Triple::ppc64le:
1582     return EM_PPC64;
1583   case Triple::riscv32:
1584   case Triple::riscv64:
1585     return EM_RISCV;
1586   case Triple::x86:
1587     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1588   case Triple::x86_64:
1589     return EM_X86_64;
1590   default:
1591     error(path + ": could not infer e_machine from bitcode target triple " +
1592           t.str());
1593     return EM_NONE;
1594   }
1595 }
1596 
getOsAbi(const Triple & t)1597 static uint8_t getOsAbi(const Triple &t) {
1598   switch (t.getOS()) {
1599   case Triple::AMDHSA:
1600     return ELF::ELFOSABI_AMDGPU_HSA;
1601   case Triple::AMDPAL:
1602     return ELF::ELFOSABI_AMDGPU_PAL;
1603   case Triple::Mesa3D:
1604     return ELF::ELFOSABI_AMDGPU_MESA3D;
1605   default:
1606     return ELF::ELFOSABI_NONE;
1607   }
1608 }
1609 
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive,bool lazy)1610 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1611                          uint64_t offsetInArchive, bool lazy)
1612     : InputFile(BitcodeKind, mb) {
1613   this->archiveName = archiveName;
1614   this->lazy = lazy;
1615 
1616   std::string path = mb.getBufferIdentifier().str();
1617   if (config->thinLTOIndexOnly)
1618     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1619 
1620   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1621   // name. If two archives define two members with the same name, this
1622   // causes a collision which result in only one of the objects being taken
1623   // into consideration at LTO time (which very likely causes undefined
1624   // symbols later in the link stage). So we append file offset to make
1625   // filename unique.
1626   StringRef name = archiveName.empty()
1627                        ? saver().save(path)
1628                        : saver().save(archiveName + "(" + path::filename(path) +
1629                                       " at " + utostr(offsetInArchive) + ")");
1630   MemoryBufferRef mbref(mb.getBuffer(), name);
1631 
1632   obj = CHECK(lto::InputFile::create(mbref), this);
1633 
1634   Triple t(obj->getTargetTriple());
1635   ekind = getBitcodeELFKind(t);
1636   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1637   osabi = getOsAbi(t);
1638 }
1639 
mapVisibility(GlobalValue::VisibilityTypes gvVisibility)1640 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1641   switch (gvVisibility) {
1642   case GlobalValue::DefaultVisibility:
1643     return STV_DEFAULT;
1644   case GlobalValue::HiddenVisibility:
1645     return STV_HIDDEN;
1646   case GlobalValue::ProtectedVisibility:
1647     return STV_PROTECTED;
1648   }
1649   llvm_unreachable("unknown visibility");
1650 }
1651 
1652 static void
createBitcodeSymbol(Symbol * & sym,const std::vector<bool> & keptComdats,const lto::InputFile::Symbol & objSym,BitcodeFile & f)1653 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
1654                     const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
1655   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1656   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1657   uint8_t visibility = mapVisibility(objSym.getVisibility());
1658 
1659   if (!sym)
1660     sym = symtab.insert(saver().save(objSym.getName()));
1661 
1662   int c = objSym.getComdatIndex();
1663   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1664     Undefined newSym(&f, StringRef(), binding, visibility, type);
1665     sym->resolve(newSym);
1666     sym->referenced = true;
1667     return;
1668   }
1669 
1670   if (objSym.isCommon()) {
1671     sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
1672                               objSym.getCommonAlignment(),
1673                               objSym.getCommonSize()});
1674   } else {
1675     Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
1676     if (objSym.canBeOmittedFromSymbolTable())
1677       newSym.exportDynamic = false;
1678     sym->resolve(newSym);
1679   }
1680 }
1681 
parse()1682 void BitcodeFile::parse() {
1683   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1684     keptComdats.push_back(
1685         s.second == Comdat::NoDeduplicate ||
1686         symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1687             .second);
1688   }
1689 
1690   if (numSymbols == 0) {
1691     numSymbols = obj->symbols().size();
1692     symbols = std::make_unique<Symbol *[]>(numSymbols);
1693   }
1694   // Process defined symbols first. See the comment in
1695   // ObjFile<ELFT>::initializeSymbols.
1696   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1697     if (!irSym.isUndefined())
1698       createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1699   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1700     if (irSym.isUndefined())
1701       createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1702 
1703   for (auto l : obj->getDependentLibraries())
1704     addDependentLibrary(l, this);
1705 }
1706 
parseLazy()1707 void BitcodeFile::parseLazy() {
1708   numSymbols = obj->symbols().size();
1709   symbols = std::make_unique<Symbol *[]>(numSymbols);
1710   for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1711     if (!irSym.isUndefined()) {
1712       auto *sym = symtab.insert(saver().save(irSym.getName()));
1713       sym->resolve(LazyObject{*this});
1714       symbols[i] = sym;
1715     }
1716 }
1717 
postParse()1718 void BitcodeFile::postParse() {
1719   for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
1720     const Symbol &sym = *symbols[i];
1721     if (sym.file == this || !sym.isDefined() || irSym.isUndefined() ||
1722         irSym.isCommon() || irSym.isWeak())
1723       continue;
1724     int c = irSym.getComdatIndex();
1725     if (c != -1 && !keptComdats[c])
1726       continue;
1727     reportDuplicate(sym, this, nullptr, 0);
1728   }
1729 }
1730 
parse()1731 void BinaryFile::parse() {
1732   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1733   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1734                                      8, data, ".data");
1735   sections.push_back(section);
1736 
1737   // For each input file foo that is embedded to a result as a binary
1738   // blob, we define _binary_foo_{start,end,size} symbols, so that
1739   // user programs can access blobs by name. Non-alphanumeric
1740   // characters in a filename are replaced with underscore.
1741   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1742   for (size_t i = 0; i < s.size(); ++i)
1743     if (!isAlnum(s[i]))
1744       s[i] = '_';
1745 
1746   llvm::StringSaver &saver = lld::saver();
1747 
1748   symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_start"),
1749                                       STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0,
1750                                       section});
1751   symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_end"),
1752                                       STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1753                                       data.size(), 0, section});
1754   symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_size"),
1755                                       STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1756                                       data.size(), 0, nullptr});
1757 }
1758 
createObjFile(MemoryBufferRef mb,StringRef archiveName,bool lazy)1759 ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName,
1760                                 bool lazy) {
1761   ELFFileBase *f;
1762   switch (getELFKind(mb, archiveName)) {
1763   case ELF32LEKind:
1764     f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName);
1765     break;
1766   case ELF32BEKind:
1767     f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName);
1768     break;
1769   case ELF64LEKind:
1770     f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName);
1771     break;
1772   case ELF64BEKind:
1773     f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName);
1774     break;
1775   default:
1776     llvm_unreachable("getELFKind");
1777   }
1778   f->init();
1779   f->lazy = lazy;
1780   return f;
1781 }
1782 
parseLazy()1783 template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1784   const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
1785   numSymbols = eSyms.size();
1786   symbols = std::make_unique<Symbol *[]>(numSymbols);
1787 
1788   // resolve() may trigger this->extract() if an existing symbol is an undefined
1789   // symbol. If that happens, this function has served its purpose, and we can
1790   // exit from the loop early.
1791   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1792     if (eSyms[i].st_shndx == SHN_UNDEF)
1793       continue;
1794     symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1795     symbols[i]->resolve(LazyObject{*this});
1796     if (!lazy)
1797       break;
1798   }
1799 }
1800 
shouldExtractForCommon(StringRef name)1801 bool InputFile::shouldExtractForCommon(StringRef name) {
1802   if (isa<BitcodeFile>(this))
1803     return isBitcodeNonCommonDef(mb, name, archiveName);
1804 
1805   return isNonCommonDef(mb, name, archiveName);
1806 }
1807 
replaceThinLTOSuffix(StringRef path)1808 std::string elf::replaceThinLTOSuffix(StringRef path) {
1809   auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
1810   if (path.consume_back(suffix))
1811     return (path + repl).str();
1812   return std::string(path);
1813 }
1814 
1815 template class elf::ObjFile<ELF32LE>;
1816 template class elf::ObjFile<ELF32BE>;
1817 template class elf::ObjFile<ELF64LE>;
1818 template class elf::ObjFile<ELF64BE>;
1819 
1820 template void SharedFile::parse<ELF32LE>();
1821 template void SharedFile::parse<ELF32BE>();
1822 template void SharedFile::parse<ELF64LE>();
1823 template void SharedFile::parse<ELF64BE>();
1824