1 //! Computations on places -- field projections, going from mir::Place, and writing
2 //! into a place.
3 //! All high-level functions to write to memory work on places as destinations.
4 
5 use std::convert::TryFrom;
6 use std::hash::Hash;
7 
8 use rustc_ast::Mutability;
9 use rustc_macros::HashStable;
10 use rustc_middle::mir;
11 use rustc_middle::ty::layout::{LayoutOf, PrimitiveExt, TyAndLayout};
12 use rustc_middle::ty::{self, Ty};
13 use rustc_target::abi::{Abi, Align, FieldsShape, TagEncoding};
14 use rustc_target::abi::{HasDataLayout, Size, VariantIdx, Variants};
15 
16 use super::{
17     alloc_range, mir_assign_valid_types, AllocId, AllocRef, AllocRefMut, CheckInAllocMsg,
18     ConstAlloc, ImmTy, Immediate, InterpCx, InterpResult, LocalValue, Machine, MemoryKind, OpTy,
19     Operand, Pointer, PointerArithmetic, Provenance, Scalar, ScalarMaybeUninit,
20 };
21 
22 #[derive(Copy, Clone, Hash, PartialEq, Eq, HashStable, Debug)]
23 /// Information required for the sound usage of a `MemPlace`.
24 pub enum MemPlaceMeta<Tag: Provenance = AllocId> {
25     /// The unsized payload (e.g. length for slices or vtable pointer for trait objects).
26     Meta(Scalar<Tag>),
27     /// `Sized` types or unsized `extern type`
28     None,
29     /// The address of this place may not be taken. This protects the `MemPlace` from coming from
30     /// a ZST Operand without a backing allocation and being converted to an integer address. This
31     /// should be impossible, because you can't take the address of an operand, but this is a second
32     /// protection layer ensuring that we don't mess up.
33     Poison,
34 }
35 
36 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
37 rustc_data_structures::static_assert_size!(MemPlaceMeta, 24);
38 
39 impl<Tag: Provenance> MemPlaceMeta<Tag> {
unwrap_meta(self) -> Scalar<Tag>40     pub fn unwrap_meta(self) -> Scalar<Tag> {
41         match self {
42             Self::Meta(s) => s,
43             Self::None | Self::Poison => {
44                 bug!("expected wide pointer extra data (e.g. slice length or trait object vtable)")
45             }
46         }
47     }
has_meta(self) -> bool48     fn has_meta(self) -> bool {
49         match self {
50             Self::Meta(_) => true,
51             Self::None | Self::Poison => false,
52         }
53     }
54 }
55 
56 #[derive(Copy, Clone, Hash, PartialEq, Eq, HashStable, Debug)]
57 pub struct MemPlace<Tag: Provenance = AllocId> {
58     /// The pointer can be a pure integer, with the `None` tag.
59     pub ptr: Pointer<Option<Tag>>,
60     pub align: Align,
61     /// Metadata for unsized places. Interpretation is up to the type.
62     /// Must not be present for sized types, but can be missing for unsized types
63     /// (e.g., `extern type`).
64     pub meta: MemPlaceMeta<Tag>,
65 }
66 
67 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
68 rustc_data_structures::static_assert_size!(MemPlace, 48);
69 
70 #[derive(Copy, Clone, Hash, PartialEq, Eq, HashStable, Debug)]
71 pub enum Place<Tag: Provenance = AllocId> {
72     /// A place referring to a value allocated in the `Memory` system.
73     Ptr(MemPlace<Tag>),
74 
75     /// To support alloc-free locals, we are able to write directly to a local.
76     /// (Without that optimization, we'd just always be a `MemPlace`.)
77     Local { frame: usize, local: mir::Local },
78 }
79 
80 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
81 rustc_data_structures::static_assert_size!(Place, 56);
82 
83 #[derive(Copy, Clone, Debug)]
84 pub struct PlaceTy<'tcx, Tag: Provenance = AllocId> {
85     place: Place<Tag>, // Keep this private; it helps enforce invariants.
86     pub layout: TyAndLayout<'tcx>,
87 }
88 
89 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
90 rustc_data_structures::static_assert_size!(PlaceTy<'_>, 72);
91 
92 impl<'tcx, Tag: Provenance> std::ops::Deref for PlaceTy<'tcx, Tag> {
93     type Target = Place<Tag>;
94     #[inline(always)]
deref(&self) -> &Place<Tag>95     fn deref(&self) -> &Place<Tag> {
96         &self.place
97     }
98 }
99 
100 /// A MemPlace with its layout. Constructing it is only possible in this module.
101 #[derive(Copy, Clone, Hash, Eq, PartialEq, Debug)]
102 pub struct MPlaceTy<'tcx, Tag: Provenance = AllocId> {
103     mplace: MemPlace<Tag>,
104     pub layout: TyAndLayout<'tcx>,
105 }
106 
107 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
108 rustc_data_structures::static_assert_size!(MPlaceTy<'_>, 64);
109 
110 impl<'tcx, Tag: Provenance> std::ops::Deref for MPlaceTy<'tcx, Tag> {
111     type Target = MemPlace<Tag>;
112     #[inline(always)]
deref(&self) -> &MemPlace<Tag>113     fn deref(&self) -> &MemPlace<Tag> {
114         &self.mplace
115     }
116 }
117 
118 impl<'tcx, Tag: Provenance> From<MPlaceTy<'tcx, Tag>> for PlaceTy<'tcx, Tag> {
119     #[inline(always)]
from(mplace: MPlaceTy<'tcx, Tag>) -> Self120     fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
121         PlaceTy { place: Place::Ptr(mplace.mplace), layout: mplace.layout }
122     }
123 }
124 
125 impl<Tag: Provenance> MemPlace<Tag> {
126     #[inline(always)]
from_ptr(ptr: Pointer<Option<Tag>>, align: Align) -> Self127     pub fn from_ptr(ptr: Pointer<Option<Tag>>, align: Align) -> Self {
128         MemPlace { ptr, align, meta: MemPlaceMeta::None }
129     }
130 
131     /// Adjust the provenance of the main pointer (metadata is unaffected).
map_provenance(self, f: impl FnOnce(Option<Tag>) -> Option<Tag>) -> Self132     pub fn map_provenance(self, f: impl FnOnce(Option<Tag>) -> Option<Tag>) -> Self {
133         MemPlace { ptr: self.ptr.map_provenance(f), ..self }
134     }
135 
136     /// Turn a mplace into a (thin or wide) pointer, as a reference, pointing to the same space.
137     /// This is the inverse of `ref_to_mplace`.
138     #[inline(always)]
to_ref(self, cx: &impl HasDataLayout) -> Immediate<Tag>139     pub fn to_ref(self, cx: &impl HasDataLayout) -> Immediate<Tag> {
140         match self.meta {
141             MemPlaceMeta::None => Immediate::from(Scalar::from_maybe_pointer(self.ptr, cx)),
142             MemPlaceMeta::Meta(meta) => {
143                 Immediate::ScalarPair(Scalar::from_maybe_pointer(self.ptr, cx).into(), meta.into())
144             }
145             MemPlaceMeta::Poison => bug!(
146                 "MPlaceTy::dangling may never be used to produce a \
147                 place that will have the address of its pointee taken"
148             ),
149         }
150     }
151 
152     #[inline]
offset( self, offset: Size, meta: MemPlaceMeta<Tag>, cx: &impl HasDataLayout, ) -> InterpResult<'tcx, Self>153     pub fn offset(
154         self,
155         offset: Size,
156         meta: MemPlaceMeta<Tag>,
157         cx: &impl HasDataLayout,
158     ) -> InterpResult<'tcx, Self> {
159         Ok(MemPlace {
160             ptr: self.ptr.offset(offset, cx)?,
161             align: self.align.restrict_for_offset(offset),
162             meta,
163         })
164     }
165 }
166 
167 impl<'tcx, Tag: Provenance> MPlaceTy<'tcx, Tag> {
168     /// Produces a MemPlace that works for ZST but nothing else
169     #[inline]
dangling(layout: TyAndLayout<'tcx>) -> Self170     pub fn dangling(layout: TyAndLayout<'tcx>) -> Self {
171         let align = layout.align.abi;
172         let ptr = Pointer::new(None, Size::from_bytes(align.bytes())); // no provenance, absolute address
173         // `Poison` this to make sure that the pointer value `ptr` is never observable by the program.
174         MPlaceTy { mplace: MemPlace { ptr, align, meta: MemPlaceMeta::Poison }, layout }
175     }
176 
177     #[inline]
offset( &self, offset: Size, meta: MemPlaceMeta<Tag>, layout: TyAndLayout<'tcx>, cx: &impl HasDataLayout, ) -> InterpResult<'tcx, Self>178     pub fn offset(
179         &self,
180         offset: Size,
181         meta: MemPlaceMeta<Tag>,
182         layout: TyAndLayout<'tcx>,
183         cx: &impl HasDataLayout,
184     ) -> InterpResult<'tcx, Self> {
185         Ok(MPlaceTy { mplace: self.mplace.offset(offset, meta, cx)?, layout })
186     }
187 
188     #[inline]
from_aligned_ptr(ptr: Pointer<Option<Tag>>, layout: TyAndLayout<'tcx>) -> Self189     pub fn from_aligned_ptr(ptr: Pointer<Option<Tag>>, layout: TyAndLayout<'tcx>) -> Self {
190         MPlaceTy { mplace: MemPlace::from_ptr(ptr, layout.align.abi), layout }
191     }
192 
193     #[inline]
len(&self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64>194     pub(super) fn len(&self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
195         if self.layout.is_unsized() {
196             // We need to consult `meta` metadata
197             match self.layout.ty.kind() {
198                 ty::Slice(..) | ty::Str => self.mplace.meta.unwrap_meta().to_machine_usize(cx),
199                 _ => bug!("len not supported on unsized type {:?}", self.layout.ty),
200             }
201         } else {
202             // Go through the layout.  There are lots of types that support a length,
203             // e.g., SIMD types. (But not all repr(simd) types even have FieldsShape::Array!)
204             match self.layout.fields {
205                 FieldsShape::Array { count, .. } => Ok(count),
206                 _ => bug!("len not supported on sized type {:?}", self.layout.ty),
207             }
208         }
209     }
210 
211     #[inline]
vtable(&self) -> Scalar<Tag>212     pub(super) fn vtable(&self) -> Scalar<Tag> {
213         match self.layout.ty.kind() {
214             ty::Dynamic(..) => self.mplace.meta.unwrap_meta(),
215             _ => bug!("vtable not supported on type {:?}", self.layout.ty),
216         }
217     }
218 }
219 
220 // These are defined here because they produce a place.
221 impl<'tcx, Tag: Provenance> OpTy<'tcx, Tag> {
222     #[inline(always)]
223     /// Note: do not call `as_ref` on the resulting place. This function should only be used to
224     /// read from the resulting mplace, not to get its address back.
try_as_mplace(&self) -> Result<MPlaceTy<'tcx, Tag>, ImmTy<'tcx, Tag>>225     pub fn try_as_mplace(&self) -> Result<MPlaceTy<'tcx, Tag>, ImmTy<'tcx, Tag>> {
226         match **self {
227             Operand::Indirect(mplace) => Ok(MPlaceTy { mplace, layout: self.layout }),
228             Operand::Immediate(_) if self.layout.is_zst() => Ok(MPlaceTy::dangling(self.layout)),
229             Operand::Immediate(imm) => Err(ImmTy::from_immediate(imm, self.layout)),
230         }
231     }
232 
233     #[inline(always)]
234     /// Note: do not call `as_ref` on the resulting place. This function should only be used to
235     /// read from the resulting mplace, not to get its address back.
assert_mem_place(&self) -> MPlaceTy<'tcx, Tag>236     pub fn assert_mem_place(&self) -> MPlaceTy<'tcx, Tag> {
237         self.try_as_mplace().unwrap()
238     }
239 }
240 
241 impl<Tag: Provenance> Place<Tag> {
242     #[inline]
assert_mem_place(self) -> MemPlace<Tag>243     pub fn assert_mem_place(self) -> MemPlace<Tag> {
244         match self {
245             Place::Ptr(mplace) => mplace,
246             _ => bug!("assert_mem_place: expected Place::Ptr, got {:?}", self),
247         }
248     }
249 }
250 
251 impl<'tcx, Tag: Provenance> PlaceTy<'tcx, Tag> {
252     #[inline]
assert_mem_place(self) -> MPlaceTy<'tcx, Tag>253     pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> {
254         MPlaceTy { mplace: self.place.assert_mem_place(), layout: self.layout }
255     }
256 }
257 
258 // separating the pointer tag for `impl Trait`, see https://github.com/rust-lang/rust/issues/54385
259 impl<'mir, 'tcx: 'mir, Tag, M> InterpCx<'mir, 'tcx, M>
260 where
261     // FIXME: Working around https://github.com/rust-lang/rust/issues/54385
262     Tag: Provenance + Eq + Hash + 'static,
263     M: Machine<'mir, 'tcx, PointerTag = Tag>,
264 {
265     /// Take a value, which represents a (thin or wide) reference, and make it a place.
266     /// Alignment is just based on the type.  This is the inverse of `MemPlace::to_ref()`.
267     ///
268     /// Only call this if you are sure the place is "valid" (aligned and inbounds), or do not
269     /// want to ever use the place for memory access!
270     /// Generally prefer `deref_operand`.
ref_to_mplace( &self, val: &ImmTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>271     pub fn ref_to_mplace(
272         &self,
273         val: &ImmTy<'tcx, M::PointerTag>,
274     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
275         let pointee_type =
276             val.layout.ty.builtin_deref(true).expect("`ref_to_mplace` called on non-ptr type").ty;
277         let layout = self.layout_of(pointee_type)?;
278         let (ptr, meta) = match **val {
279             Immediate::Scalar(ptr) => (ptr, MemPlaceMeta::None),
280             Immediate::ScalarPair(ptr, meta) => (ptr, MemPlaceMeta::Meta(meta.check_init()?)),
281         };
282 
283         let mplace = MemPlace {
284             ptr: self.scalar_to_ptr(ptr.check_init()?),
285             // We could use the run-time alignment here. For now, we do not, because
286             // the point of tracking the alignment here is to make sure that the *static*
287             // alignment information emitted with the loads is correct. The run-time
288             // alignment can only be more restrictive.
289             align: layout.align.abi,
290             meta,
291         };
292         Ok(MPlaceTy { mplace, layout })
293     }
294 
295     /// Take an operand, representing a pointer, and dereference it to a place -- that
296     /// will always be a MemPlace.  Lives in `place.rs` because it creates a place.
deref_operand( &self, src: &OpTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>297     pub fn deref_operand(
298         &self,
299         src: &OpTy<'tcx, M::PointerTag>,
300     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
301         let val = self.read_immediate(src)?;
302         trace!("deref to {} on {:?}", val.layout.ty, *val);
303         let mplace = self.ref_to_mplace(&val)?;
304         self.check_mplace_access(mplace, CheckInAllocMsg::DerefTest)?;
305         Ok(mplace)
306     }
307 
308     #[inline]
get_alloc( &self, place: &MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, Option<AllocRef<'_, 'tcx, M::PointerTag, M::AllocExtra>>>309     pub(super) fn get_alloc(
310         &self,
311         place: &MPlaceTy<'tcx, M::PointerTag>,
312     ) -> InterpResult<'tcx, Option<AllocRef<'_, 'tcx, M::PointerTag, M::AllocExtra>>> {
313         assert!(!place.layout.is_unsized());
314         assert!(!place.meta.has_meta());
315         let size = place.layout.size;
316         self.memory.get(place.ptr, size, place.align)
317     }
318 
319     #[inline]
get_alloc_mut( &mut self, place: &MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, Option<AllocRefMut<'_, 'tcx, M::PointerTag, M::AllocExtra>>>320     pub(super) fn get_alloc_mut(
321         &mut self,
322         place: &MPlaceTy<'tcx, M::PointerTag>,
323     ) -> InterpResult<'tcx, Option<AllocRefMut<'_, 'tcx, M::PointerTag, M::AllocExtra>>> {
324         assert!(!place.layout.is_unsized());
325         assert!(!place.meta.has_meta());
326         let size = place.layout.size;
327         self.memory.get_mut(place.ptr, size, place.align)
328     }
329 
330     /// Check if this mplace is dereferencable and sufficiently aligned.
check_mplace_access( &self, mplace: MPlaceTy<'tcx, M::PointerTag>, msg: CheckInAllocMsg, ) -> InterpResult<'tcx>331     fn check_mplace_access(
332         &self,
333         mplace: MPlaceTy<'tcx, M::PointerTag>,
334         msg: CheckInAllocMsg,
335     ) -> InterpResult<'tcx> {
336         let (size, align) = self
337             .size_and_align_of_mplace(&mplace)?
338             .unwrap_or((mplace.layout.size, mplace.layout.align.abi));
339         assert!(mplace.mplace.align <= align, "dynamic alignment less strict than static one?");
340         let align = M::enforce_alignment(&self.memory.extra).then_some(align);
341         self.memory.check_ptr_access_align(mplace.ptr, size, align.unwrap_or(Align::ONE), msg)?;
342         Ok(())
343     }
344 
345     /// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
346     /// always possible without allocating, so it can take `&self`. Also return the field's layout.
347     /// This supports both struct and array fields.
348     ///
349     /// This also works for arrays, but then the `usize` index type is restricting.
350     /// For indexing into arrays, use `mplace_index`.
351     #[inline(always)]
mplace_field( &self, base: &MPlaceTy<'tcx, M::PointerTag>, field: usize, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>352     pub fn mplace_field(
353         &self,
354         base: &MPlaceTy<'tcx, M::PointerTag>,
355         field: usize,
356     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
357         let offset = base.layout.fields.offset(field);
358         let field_layout = base.layout.field(self, field);
359 
360         // Offset may need adjustment for unsized fields.
361         let (meta, offset) = if field_layout.is_unsized() {
362             // Re-use parent metadata to determine dynamic field layout.
363             // With custom DSTS, this *will* execute user-defined code, but the same
364             // happens at run-time so that's okay.
365             let align = match self.size_and_align_of(&base.meta, &field_layout)? {
366                 Some((_, align)) => align,
367                 None if offset == Size::ZERO => {
368                     // An extern type at offset 0, we fall back to its static alignment.
369                     // FIXME: Once we have made decisions for how to handle size and alignment
370                     // of `extern type`, this should be adapted.  It is just a temporary hack
371                     // to get some code to work that probably ought to work.
372                     field_layout.align.abi
373                 }
374                 None => span_bug!(
375                     self.cur_span(),
376                     "cannot compute offset for extern type field at non-0 offset"
377                 ),
378             };
379             (base.meta, offset.align_to(align))
380         } else {
381             // base.meta could be present; we might be accessing a sized field of an unsized
382             // struct.
383             (MemPlaceMeta::None, offset)
384         };
385 
386         // We do not look at `base.layout.align` nor `field_layout.align`, unlike
387         // codegen -- mostly to see if we can get away with that
388         base.offset(offset, meta, field_layout, self)
389     }
390 
391     /// Index into an array.
392     #[inline(always)]
mplace_index( &self, base: &MPlaceTy<'tcx, M::PointerTag>, index: u64, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>393     pub fn mplace_index(
394         &self,
395         base: &MPlaceTy<'tcx, M::PointerTag>,
396         index: u64,
397     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
398         // Not using the layout method because we want to compute on u64
399         match base.layout.fields {
400             FieldsShape::Array { stride, .. } => {
401                 let len = base.len(self)?;
402                 if index >= len {
403                     // This can only be reached in ConstProp and non-rustc-MIR.
404                     throw_ub!(BoundsCheckFailed { len, index });
405                 }
406                 let offset = stride * index; // `Size` multiplication
407                 // All fields have the same layout.
408                 let field_layout = base.layout.field(self, 0);
409 
410                 assert!(!field_layout.is_unsized());
411                 base.offset(offset, MemPlaceMeta::None, field_layout, self)
412             }
413             _ => span_bug!(
414                 self.cur_span(),
415                 "`mplace_index` called on non-array type {:?}",
416                 base.layout.ty
417             ),
418         }
419     }
420 
421     // Iterates over all fields of an array. Much more efficient than doing the
422     // same by repeatedly calling `mplace_array`.
mplace_array_fields( &self, base: &'a MPlaceTy<'tcx, Tag>, ) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'a>423     pub(super) fn mplace_array_fields(
424         &self,
425         base: &'a MPlaceTy<'tcx, Tag>,
426     ) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'a>
427     {
428         let len = base.len(self)?; // also asserts that we have a type where this makes sense
429         let stride = match base.layout.fields {
430             FieldsShape::Array { stride, .. } => stride,
431             _ => span_bug!(self.cur_span(), "mplace_array_fields: expected an array layout"),
432         };
433         let layout = base.layout.field(self, 0);
434         let dl = &self.tcx.data_layout;
435         // `Size` multiplication
436         Ok((0..len).map(move |i| base.offset(stride * i, MemPlaceMeta::None, layout, dl)))
437     }
438 
mplace_subslice( &self, base: &MPlaceTy<'tcx, M::PointerTag>, from: u64, to: u64, from_end: bool, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>439     fn mplace_subslice(
440         &self,
441         base: &MPlaceTy<'tcx, M::PointerTag>,
442         from: u64,
443         to: u64,
444         from_end: bool,
445     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
446         let len = base.len(self)?; // also asserts that we have a type where this makes sense
447         let actual_to = if from_end {
448             if from.checked_add(to).map_or(true, |to| to > len) {
449                 // This can only be reached in ConstProp and non-rustc-MIR.
450                 throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
451             }
452             len.checked_sub(to).unwrap()
453         } else {
454             to
455         };
456 
457         // Not using layout method because that works with usize, and does not work with slices
458         // (that have count 0 in their layout).
459         let from_offset = match base.layout.fields {
460             FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
461             _ => {
462                 span_bug!(self.cur_span(), "unexpected layout of index access: {:#?}", base.layout)
463             }
464         };
465 
466         // Compute meta and new layout
467         let inner_len = actual_to.checked_sub(from).unwrap();
468         let (meta, ty) = match base.layout.ty.kind() {
469             // It is not nice to match on the type, but that seems to be the only way to
470             // implement this.
471             ty::Array(inner, _) => (MemPlaceMeta::None, self.tcx.mk_array(inner, inner_len)),
472             ty::Slice(..) => {
473                 let len = Scalar::from_machine_usize(inner_len, self);
474                 (MemPlaceMeta::Meta(len), base.layout.ty)
475             }
476             _ => {
477                 span_bug!(self.cur_span(), "cannot subslice non-array type: `{:?}`", base.layout.ty)
478             }
479         };
480         let layout = self.layout_of(ty)?;
481         base.offset(from_offset, meta, layout, self)
482     }
483 
mplace_downcast( &self, base: &MPlaceTy<'tcx, M::PointerTag>, variant: VariantIdx, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>484     pub(crate) fn mplace_downcast(
485         &self,
486         base: &MPlaceTy<'tcx, M::PointerTag>,
487         variant: VariantIdx,
488     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
489         // Downcasts only change the layout
490         assert!(!base.meta.has_meta());
491         Ok(MPlaceTy { layout: base.layout.for_variant(self, variant), ..*base })
492     }
493 
494     /// Project into an mplace
mplace_projection( &self, base: &MPlaceTy<'tcx, M::PointerTag>, proj_elem: mir::PlaceElem<'tcx>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>495     pub(super) fn mplace_projection(
496         &self,
497         base: &MPlaceTy<'tcx, M::PointerTag>,
498         proj_elem: mir::PlaceElem<'tcx>,
499     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
500         use rustc_middle::mir::ProjectionElem::*;
501         Ok(match proj_elem {
502             Field(field, _) => self.mplace_field(base, field.index())?,
503             Downcast(_, variant) => self.mplace_downcast(base, variant)?,
504             Deref => self.deref_operand(&base.into())?,
505 
506             Index(local) => {
507                 let layout = self.layout_of(self.tcx.types.usize)?;
508                 let n = self.access_local(self.frame(), local, Some(layout))?;
509                 let n = self.read_scalar(&n)?;
510                 let n = n.to_machine_usize(self)?;
511                 self.mplace_index(base, n)?
512             }
513 
514             ConstantIndex { offset, min_length, from_end } => {
515                 let n = base.len(self)?;
516                 if n < min_length {
517                     // This can only be reached in ConstProp and non-rustc-MIR.
518                     throw_ub!(BoundsCheckFailed { len: min_length, index: n });
519                 }
520 
521                 let index = if from_end {
522                     assert!(0 < offset && offset <= min_length);
523                     n.checked_sub(offset).unwrap()
524                 } else {
525                     assert!(offset < min_length);
526                     offset
527                 };
528 
529                 self.mplace_index(base, index)?
530             }
531 
532             Subslice { from, to, from_end } => self.mplace_subslice(base, from, to, from_end)?,
533         })
534     }
535 
536     /// Converts a repr(simd) place into a place where `place_index` accesses the SIMD elements.
537     /// Also returns the number of elements.
mplace_to_simd( &self, base: &MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, u64)>538     pub fn mplace_to_simd(
539         &self,
540         base: &MPlaceTy<'tcx, M::PointerTag>,
541     ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, u64)> {
542         // Basically we just transmute this place into an array following simd_size_and_type.
543         // (Transmuting is okay since this is an in-memory place. We also double-check the size
544         // stays the same.)
545         let (len, e_ty) = base.layout.ty.simd_size_and_type(*self.tcx);
546         let array = self.tcx.mk_array(e_ty, len);
547         let layout = self.layout_of(array)?;
548         assert_eq!(layout.size, base.layout.size);
549         Ok((MPlaceTy { layout, ..*base }, len))
550     }
551 
552     /// Gets the place of a field inside the place, and also the field's type.
553     /// Just a convenience function, but used quite a bit.
554     /// This is the only projection that might have a side-effect: We cannot project
555     /// into the field of a local `ScalarPair`, we have to first allocate it.
place_field( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, field: usize, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>556     pub fn place_field(
557         &mut self,
558         base: &PlaceTy<'tcx, M::PointerTag>,
559         field: usize,
560     ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
561         // FIXME: We could try to be smarter and avoid allocation for fields that span the
562         // entire place.
563         let mplace = self.force_allocation(base)?;
564         Ok(self.mplace_field(&mplace, field)?.into())
565     }
566 
place_index( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, index: u64, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>567     pub fn place_index(
568         &mut self,
569         base: &PlaceTy<'tcx, M::PointerTag>,
570         index: u64,
571     ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
572         let mplace = self.force_allocation(base)?;
573         Ok(self.mplace_index(&mplace, index)?.into())
574     }
575 
place_downcast( &self, base: &PlaceTy<'tcx, M::PointerTag>, variant: VariantIdx, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>576     pub fn place_downcast(
577         &self,
578         base: &PlaceTy<'tcx, M::PointerTag>,
579         variant: VariantIdx,
580     ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
581         // Downcast just changes the layout
582         Ok(match base.place {
583             Place::Ptr(mplace) => {
584                 self.mplace_downcast(&MPlaceTy { mplace, layout: base.layout }, variant)?.into()
585             }
586             Place::Local { .. } => {
587                 let layout = base.layout.for_variant(self, variant);
588                 PlaceTy { layout, ..*base }
589             }
590         })
591     }
592 
593     /// Projects into a place.
place_projection( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, &proj_elem: &mir::ProjectionElem<mir::Local, Ty<'tcx>>, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>594     pub fn place_projection(
595         &mut self,
596         base: &PlaceTy<'tcx, M::PointerTag>,
597         &proj_elem: &mir::ProjectionElem<mir::Local, Ty<'tcx>>,
598     ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
599         use rustc_middle::mir::ProjectionElem::*;
600         Ok(match proj_elem {
601             Field(field, _) => self.place_field(base, field.index())?,
602             Downcast(_, variant) => self.place_downcast(base, variant)?,
603             Deref => self.deref_operand(&self.place_to_op(base)?)?.into(),
604             // For the other variants, we have to force an allocation.
605             // This matches `operand_projection`.
606             Subslice { .. } | ConstantIndex { .. } | Index(_) => {
607                 let mplace = self.force_allocation(base)?;
608                 self.mplace_projection(&mplace, proj_elem)?.into()
609             }
610         })
611     }
612 
613     /// Converts a repr(simd) place into a place where `place_index` accesses the SIMD elements.
614     /// Also returns the number of elements.
place_to_simd( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, u64)>615     pub fn place_to_simd(
616         &mut self,
617         base: &PlaceTy<'tcx, M::PointerTag>,
618     ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, u64)> {
619         let mplace = self.force_allocation(base)?;
620         self.mplace_to_simd(&mplace)
621     }
622 
623     /// Computes a place. You should only use this if you intend to write into this
624     /// place; for reading, a more efficient alternative is `eval_place_for_read`.
eval_place( &mut self, place: mir::Place<'tcx>, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>>625     pub fn eval_place(
626         &mut self,
627         place: mir::Place<'tcx>,
628     ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
629         let mut place_ty = PlaceTy {
630             // This works even for dead/uninitialized locals; we check further when writing
631             place: Place::Local { frame: self.frame_idx(), local: place.local },
632             layout: self.layout_of_local(self.frame(), place.local, None)?,
633         };
634 
635         for elem in place.projection.iter() {
636             place_ty = self.place_projection(&place_ty, &elem)?
637         }
638 
639         trace!("{:?}", self.dump_place(place_ty.place));
640         // Sanity-check the type we ended up with.
641         debug_assert!(mir_assign_valid_types(
642             *self.tcx,
643             self.param_env,
644             self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
645                 place.ty(&self.frame().body.local_decls, *self.tcx).ty
646             ))?,
647             place_ty.layout,
648         ));
649         Ok(place_ty)
650     }
651 
652     /// Write an immediate to a place
653     #[inline(always)]
write_immediate( &mut self, src: Immediate<M::PointerTag>, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>654     pub fn write_immediate(
655         &mut self,
656         src: Immediate<M::PointerTag>,
657         dest: &PlaceTy<'tcx, M::PointerTag>,
658     ) -> InterpResult<'tcx> {
659         self.write_immediate_no_validate(src, dest)?;
660 
661         if M::enforce_validity(self) {
662             // Data got changed, better make sure it matches the type!
663             self.validate_operand(&self.place_to_op(dest)?)?;
664         }
665 
666         Ok(())
667     }
668 
669     /// Write a scalar to a place
670     #[inline(always)]
write_scalar( &mut self, val: impl Into<ScalarMaybeUninit<M::PointerTag>>, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>671     pub fn write_scalar(
672         &mut self,
673         val: impl Into<ScalarMaybeUninit<M::PointerTag>>,
674         dest: &PlaceTy<'tcx, M::PointerTag>,
675     ) -> InterpResult<'tcx> {
676         self.write_immediate(Immediate::Scalar(val.into()), dest)
677     }
678 
679     /// Write a pointer to a place
680     #[inline(always)]
write_pointer( &mut self, ptr: impl Into<Pointer<Option<M::PointerTag>>>, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>681     pub fn write_pointer(
682         &mut self,
683         ptr: impl Into<Pointer<Option<M::PointerTag>>>,
684         dest: &PlaceTy<'tcx, M::PointerTag>,
685     ) -> InterpResult<'tcx> {
686         self.write_scalar(Scalar::from_maybe_pointer(ptr.into(), self), dest)
687     }
688 
689     /// Write an immediate to a place.
690     /// If you use this you are responsible for validating that things got copied at the
691     /// right type.
write_immediate_no_validate( &mut self, src: Immediate<M::PointerTag>, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>692     fn write_immediate_no_validate(
693         &mut self,
694         src: Immediate<M::PointerTag>,
695         dest: &PlaceTy<'tcx, M::PointerTag>,
696     ) -> InterpResult<'tcx> {
697         if cfg!(debug_assertions) {
698             // This is a very common path, avoid some checks in release mode
699             assert!(!dest.layout.is_unsized(), "Cannot write unsized data");
700             match src {
701                 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Ptr(..))) => assert_eq!(
702                     self.pointer_size(),
703                     dest.layout.size,
704                     "Size mismatch when writing pointer"
705                 ),
706                 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Int(int))) => {
707                     assert_eq!(int.size(), dest.layout.size, "Size mismatch when writing bits")
708                 }
709                 Immediate::Scalar(ScalarMaybeUninit::Uninit) => {} // uninit can have any size
710                 Immediate::ScalarPair(_, _) => {
711                     // FIXME: Can we check anything here?
712                 }
713             }
714         }
715         trace!("write_immediate: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
716 
717         // See if we can avoid an allocation. This is the counterpart to `try_read_immediate`,
718         // but not factored as a separate function.
719         let mplace = match dest.place {
720             Place::Local { frame, local } => {
721                 match M::access_local_mut(self, frame, local)? {
722                     Ok(local) => {
723                         // Local can be updated in-place.
724                         *local = LocalValue::Live(Operand::Immediate(src));
725                         return Ok(());
726                     }
727                     Err(mplace) => {
728                         // The local is in memory, go on below.
729                         mplace
730                     }
731                 }
732             }
733             Place::Ptr(mplace) => mplace, // already referring to memory
734         };
735         let dest = MPlaceTy { mplace, layout: dest.layout };
736 
737         // This is already in memory, write there.
738         self.write_immediate_to_mplace_no_validate(src, &dest)
739     }
740 
741     /// Write an immediate to memory.
742     /// If you use this you are responsible for validating that things got copied at the
743     /// right type.
write_immediate_to_mplace_no_validate( &mut self, value: Immediate<M::PointerTag>, dest: &MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>744     fn write_immediate_to_mplace_no_validate(
745         &mut self,
746         value: Immediate<M::PointerTag>,
747         dest: &MPlaceTy<'tcx, M::PointerTag>,
748     ) -> InterpResult<'tcx> {
749         // Note that it is really important that the type here is the right one, and matches the
750         // type things are read at. In case `src_val` is a `ScalarPair`, we don't do any magic here
751         // to handle padding properly, which is only correct if we never look at this data with the
752         // wrong type.
753 
754         // Invalid places are a thing: the return place of a diverging function
755         let tcx = *self.tcx;
756         let mut alloc = match self.get_alloc_mut(dest)? {
757             Some(a) => a,
758             None => return Ok(()), // zero-sized access
759         };
760 
761         // FIXME: We should check that there are dest.layout.size many bytes available in
762         // memory.  The code below is not sufficient, with enough padding it might not
763         // cover all the bytes!
764         match value {
765             Immediate::Scalar(scalar) => {
766                 match dest.layout.abi {
767                     Abi::Scalar(_) => {} // fine
768                     _ => span_bug!(
769                         self.cur_span(),
770                         "write_immediate_to_mplace: invalid Scalar layout: {:#?}",
771                         dest.layout
772                     ),
773                 }
774                 alloc.write_scalar(alloc_range(Size::ZERO, dest.layout.size), scalar)
775             }
776             Immediate::ScalarPair(a_val, b_val) => {
777                 // We checked `ptr_align` above, so all fields will have the alignment they need.
778                 // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
779                 // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
780                 let (a, b) = match dest.layout.abi {
781                     Abi::ScalarPair(a, b) => (a.value, b.value),
782                     _ => span_bug!(
783                         self.cur_span(),
784                         "write_immediate_to_mplace: invalid ScalarPair layout: {:#?}",
785                         dest.layout
786                     ),
787                 };
788                 let (a_size, b_size) = (a.size(&tcx), b.size(&tcx));
789                 let b_offset = a_size.align_to(b.align(&tcx).abi);
790 
791                 // It is tempting to verify `b_offset` against `layout.fields.offset(1)`,
792                 // but that does not work: We could be a newtype around a pair, then the
793                 // fields do not match the `ScalarPair` components.
794 
795                 alloc.write_scalar(alloc_range(Size::ZERO, a_size), a_val)?;
796                 alloc.write_scalar(alloc_range(b_offset, b_size), b_val)
797             }
798         }
799     }
800 
801     /// Copies the data from an operand to a place. This does not support transmuting!
802     /// Use `copy_op_transmute` if the layouts could disagree.
803     #[inline(always)]
copy_op( &mut self, src: &OpTy<'tcx, M::PointerTag>, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>804     pub fn copy_op(
805         &mut self,
806         src: &OpTy<'tcx, M::PointerTag>,
807         dest: &PlaceTy<'tcx, M::PointerTag>,
808     ) -> InterpResult<'tcx> {
809         self.copy_op_no_validate(src, dest)?;
810 
811         if M::enforce_validity(self) {
812             // Data got changed, better make sure it matches the type!
813             self.validate_operand(&self.place_to_op(dest)?)?;
814         }
815 
816         Ok(())
817     }
818 
819     /// Copies the data from an operand to a place. This does not support transmuting!
820     /// Use `copy_op_transmute` if the layouts could disagree.
821     /// Also, if you use this you are responsible for validating that things get copied at the
822     /// right type.
copy_op_no_validate( &mut self, src: &OpTy<'tcx, M::PointerTag>, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>823     fn copy_op_no_validate(
824         &mut self,
825         src: &OpTy<'tcx, M::PointerTag>,
826         dest: &PlaceTy<'tcx, M::PointerTag>,
827     ) -> InterpResult<'tcx> {
828         // We do NOT compare the types for equality, because well-typed code can
829         // actually "transmute" `&mut T` to `&T` in an assignment without a cast.
830         if !mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
831             span_bug!(
832                 self.cur_span(),
833                 "type mismatch when copying!\nsrc: {:?},\ndest: {:?}",
834                 src.layout.ty,
835                 dest.layout.ty,
836             );
837         }
838 
839         // Let us see if the layout is simple so we take a shortcut, avoid force_allocation.
840         let src = match self.try_read_immediate(src)? {
841             Ok(src_val) => {
842                 assert!(!src.layout.is_unsized(), "cannot have unsized immediates");
843                 // Yay, we got a value that we can write directly.
844                 // FIXME: Add a check to make sure that if `src` is indirect,
845                 // it does not overlap with `dest`.
846                 return self.write_immediate_no_validate(*src_val, dest);
847             }
848             Err(mplace) => mplace,
849         };
850         // Slow path, this does not fit into an immediate. Just memcpy.
851         trace!("copy_op: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
852 
853         // This interprets `src.meta` with the `dest` local's layout, if an unsized local
854         // is being initialized!
855         let (dest, size) = self.force_allocation_maybe_sized(dest, src.meta)?;
856         let size = size.unwrap_or_else(|| {
857             assert!(
858                 !dest.layout.is_unsized(),
859                 "Cannot copy into already initialized unsized place"
860             );
861             dest.layout.size
862         });
863         assert_eq!(src.meta, dest.meta, "Can only copy between equally-sized instances");
864 
865         self.memory
866             .copy(src.ptr, src.align, dest.ptr, dest.align, size, /*nonoverlapping*/ true)
867     }
868 
869     /// Copies the data from an operand to a place. The layouts may disagree, but they must
870     /// have the same size.
copy_op_transmute( &mut self, src: &OpTy<'tcx, M::PointerTag>, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>871     pub fn copy_op_transmute(
872         &mut self,
873         src: &OpTy<'tcx, M::PointerTag>,
874         dest: &PlaceTy<'tcx, M::PointerTag>,
875     ) -> InterpResult<'tcx> {
876         if mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
877             // Fast path: Just use normal `copy_op`
878             return self.copy_op(src, dest);
879         }
880         // We still require the sizes to match.
881         if src.layout.size != dest.layout.size {
882             // FIXME: This should be an assert instead of an error, but if we transmute within an
883             // array length computation, `typeck` may not have yet been run and errored out. In fact
884             // most likey we *are* running `typeck` right now. Investigate whether we can bail out
885             // on `typeck_results().has_errors` at all const eval entry points.
886             debug!("Size mismatch when transmuting!\nsrc: {:#?}\ndest: {:#?}", src, dest);
887             self.tcx.sess.delay_span_bug(
888                 self.cur_span(),
889                 "size-changing transmute, should have been caught by transmute checking",
890             );
891             throw_inval!(TransmuteSizeDiff(src.layout.ty, dest.layout.ty));
892         }
893         // Unsized copies rely on interpreting `src.meta` with `dest.layout`, we want
894         // to avoid that here.
895         assert!(
896             !src.layout.is_unsized() && !dest.layout.is_unsized(),
897             "Cannot transmute unsized data"
898         );
899 
900         // The hard case is `ScalarPair`.  `src` is already read from memory in this case,
901         // using `src.layout` to figure out which bytes to use for the 1st and 2nd field.
902         // We have to write them to `dest` at the offsets they were *read at*, which is
903         // not necessarily the same as the offsets in `dest.layout`!
904         // Hence we do the copy with the source layout on both sides.  We also make sure to write
905         // into memory, because if `dest` is a local we would not even have a way to write
906         // at the `src` offsets; the fact that we came from a different layout would
907         // just be lost.
908         let dest = self.force_allocation(dest)?;
909         self.copy_op_no_validate(
910             src,
911             &PlaceTy::from(MPlaceTy { mplace: *dest, layout: src.layout }),
912         )?;
913 
914         if M::enforce_validity(self) {
915             // Data got changed, better make sure it matches the type!
916             self.validate_operand(&dest.into())?;
917         }
918 
919         Ok(())
920     }
921 
922     /// Ensures that a place is in memory, and returns where it is.
923     /// If the place currently refers to a local that doesn't yet have a matching allocation,
924     /// create such an allocation.
925     /// This is essentially `force_to_memplace`.
926     ///
927     /// This supports unsized types and returns the computed size to avoid some
928     /// redundant computation when copying; use `force_allocation` for a simpler, sized-only
929     /// version.
force_allocation_maybe_sized( &mut self, place: &PlaceTy<'tcx, M::PointerTag>, meta: MemPlaceMeta<M::PointerTag>, ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)>930     pub fn force_allocation_maybe_sized(
931         &mut self,
932         place: &PlaceTy<'tcx, M::PointerTag>,
933         meta: MemPlaceMeta<M::PointerTag>,
934     ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)> {
935         let (mplace, size) = match place.place {
936             Place::Local { frame, local } => {
937                 match M::access_local_mut(self, frame, local)? {
938                     Ok(&mut local_val) => {
939                         // We need to make an allocation.
940 
941                         // We need the layout of the local.  We can NOT use the layout we got,
942                         // that might e.g., be an inner field of a struct with `Scalar` layout,
943                         // that has different alignment than the outer field.
944                         let local_layout =
945                             self.layout_of_local(&self.stack()[frame], local, None)?;
946                         // We also need to support unsized types, and hence cannot use `allocate`.
947                         let (size, align) = self
948                             .size_and_align_of(&meta, &local_layout)?
949                             .expect("Cannot allocate for non-dyn-sized type");
950                         let ptr = self.memory.allocate(size, align, MemoryKind::Stack)?;
951                         let mplace = MemPlace { ptr: ptr.into(), align, meta };
952                         if let LocalValue::Live(Operand::Immediate(value)) = local_val {
953                             // Preserve old value.
954                             // We don't have to validate as we can assume the local
955                             // was already valid for its type.
956                             let mplace = MPlaceTy { mplace, layout: local_layout };
957                             self.write_immediate_to_mplace_no_validate(value, &mplace)?;
958                         }
959                         // Now we can call `access_mut` again, asserting it goes well,
960                         // and actually overwrite things.
961                         *M::access_local_mut(self, frame, local).unwrap().unwrap() =
962                             LocalValue::Live(Operand::Indirect(mplace));
963                         (mplace, Some(size))
964                     }
965                     Err(mplace) => (mplace, None), // this already was an indirect local
966                 }
967             }
968             Place::Ptr(mplace) => (mplace, None),
969         };
970         // Return with the original layout, so that the caller can go on
971         Ok((MPlaceTy { mplace, layout: place.layout }, size))
972     }
973 
974     #[inline(always)]
force_allocation( &mut self, place: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>975     pub fn force_allocation(
976         &mut self,
977         place: &PlaceTy<'tcx, M::PointerTag>,
978     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
979         Ok(self.force_allocation_maybe_sized(place, MemPlaceMeta::None)?.0)
980     }
981 
allocate( &mut self, layout: TyAndLayout<'tcx>, kind: MemoryKind<M::MemoryKind>, ) -> InterpResult<'static, MPlaceTy<'tcx, M::PointerTag>>982     pub fn allocate(
983         &mut self,
984         layout: TyAndLayout<'tcx>,
985         kind: MemoryKind<M::MemoryKind>,
986     ) -> InterpResult<'static, MPlaceTy<'tcx, M::PointerTag>> {
987         let ptr = self.memory.allocate(layout.size, layout.align.abi, kind)?;
988         Ok(MPlaceTy::from_aligned_ptr(ptr.into(), layout))
989     }
990 
991     /// Returns a wide MPlace of type `&'static [mut] str` to a new 1-aligned allocation.
allocate_str( &mut self, str: &str, kind: MemoryKind<M::MemoryKind>, mutbl: Mutability, ) -> MPlaceTy<'tcx, M::PointerTag>992     pub fn allocate_str(
993         &mut self,
994         str: &str,
995         kind: MemoryKind<M::MemoryKind>,
996         mutbl: Mutability,
997     ) -> MPlaceTy<'tcx, M::PointerTag> {
998         let ptr = self.memory.allocate_bytes(str.as_bytes(), Align::ONE, kind, mutbl);
999         let meta = Scalar::from_machine_usize(u64::try_from(str.len()).unwrap(), self);
1000         let mplace =
1001             MemPlace { ptr: ptr.into(), align: Align::ONE, meta: MemPlaceMeta::Meta(meta) };
1002 
1003         let ty = self.tcx.mk_ref(
1004             self.tcx.lifetimes.re_static,
1005             ty::TypeAndMut { ty: self.tcx.types.str_, mutbl },
1006         );
1007         let layout = self.layout_of(ty).unwrap();
1008         MPlaceTy { mplace, layout }
1009     }
1010 
1011     /// Writes the discriminant of the given variant.
write_discriminant( &mut self, variant_index: VariantIdx, dest: &PlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx>1012     pub fn write_discriminant(
1013         &mut self,
1014         variant_index: VariantIdx,
1015         dest: &PlaceTy<'tcx, M::PointerTag>,
1016     ) -> InterpResult<'tcx> {
1017         // This must be an enum or generator.
1018         match dest.layout.ty.kind() {
1019             ty::Adt(adt, _) => assert!(adt.is_enum()),
1020             ty::Generator(..) => {}
1021             _ => span_bug!(
1022                 self.cur_span(),
1023                 "write_discriminant called on non-variant-type (neither enum nor generator)"
1024             ),
1025         }
1026         // Layout computation excludes uninhabited variants from consideration
1027         // therefore there's no way to represent those variants in the given layout.
1028         // Essentially, uninhabited variants do not have a tag that corresponds to their
1029         // discriminant, so we cannot do anything here.
1030         // When evaluating we will always error before even getting here, but ConstProp 'executes'
1031         // dead code, so we cannot ICE here.
1032         if dest.layout.for_variant(self, variant_index).abi.is_uninhabited() {
1033             throw_ub!(UninhabitedEnumVariantWritten)
1034         }
1035 
1036         match dest.layout.variants {
1037             Variants::Single { index } => {
1038                 assert_eq!(index, variant_index);
1039             }
1040             Variants::Multiple {
1041                 tag_encoding: TagEncoding::Direct,
1042                 tag: tag_layout,
1043                 tag_field,
1044                 ..
1045             } => {
1046                 // No need to validate that the discriminant here because the
1047                 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
1048 
1049                 let discr_val =
1050                     dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val;
1051 
1052                 // raw discriminants for enums are isize or bigger during
1053                 // their computation, but the in-memory tag is the smallest possible
1054                 // representation
1055                 let size = tag_layout.value.size(self);
1056                 let tag_val = size.truncate(discr_val);
1057 
1058                 let tag_dest = self.place_field(dest, tag_field)?;
1059                 self.write_scalar(Scalar::from_uint(tag_val, size), &tag_dest)?;
1060             }
1061             Variants::Multiple {
1062                 tag_encoding:
1063                     TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start },
1064                 tag: tag_layout,
1065                 tag_field,
1066                 ..
1067             } => {
1068                 // No need to validate that the discriminant here because the
1069                 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
1070 
1071                 if variant_index != dataful_variant {
1072                     let variants_start = niche_variants.start().as_u32();
1073                     let variant_index_relative = variant_index
1074                         .as_u32()
1075                         .checked_sub(variants_start)
1076                         .expect("overflow computing relative variant idx");
1077                     // We need to use machine arithmetic when taking into account `niche_start`:
1078                     // tag_val = variant_index_relative + niche_start_val
1079                     let tag_layout = self.layout_of(tag_layout.value.to_int_ty(*self.tcx))?;
1080                     let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
1081                     let variant_index_relative_val =
1082                         ImmTy::from_uint(variant_index_relative, tag_layout);
1083                     let tag_val = self.binary_op(
1084                         mir::BinOp::Add,
1085                         &variant_index_relative_val,
1086                         &niche_start_val,
1087                     )?;
1088                     // Write result.
1089                     let niche_dest = self.place_field(dest, tag_field)?;
1090                     self.write_immediate(*tag_val, &niche_dest)?;
1091                 }
1092             }
1093         }
1094 
1095         Ok(())
1096     }
1097 
raw_const_to_mplace( &self, raw: ConstAlloc<'tcx>, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>>1098     pub fn raw_const_to_mplace(
1099         &self,
1100         raw: ConstAlloc<'tcx>,
1101     ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
1102         // This must be an allocation in `tcx`
1103         let _ = self.tcx.global_alloc(raw.alloc_id);
1104         let ptr = self.global_base_pointer(Pointer::from(raw.alloc_id))?;
1105         let layout = self.layout_of(raw.ty)?;
1106         Ok(MPlaceTy::from_aligned_ptr(ptr.into(), layout))
1107     }
1108 
1109     /// Turn a place with a `dyn Trait` type into a place with the actual dynamic type.
1110     /// Also return some more information so drop doesn't have to run the same code twice.
unpack_dyn_trait( &self, mplace: &MPlaceTy<'tcx, M::PointerTag>, ) -> InterpResult<'tcx, (ty::Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)>1111     pub(super) fn unpack_dyn_trait(
1112         &self,
1113         mplace: &MPlaceTy<'tcx, M::PointerTag>,
1114     ) -> InterpResult<'tcx, (ty::Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)> {
1115         let vtable = self.scalar_to_ptr(mplace.vtable()); // also sanity checks the type
1116         let (instance, ty) = self.read_drop_type_from_vtable(vtable)?;
1117         let layout = self.layout_of(ty)?;
1118 
1119         // More sanity checks
1120         if cfg!(debug_assertions) {
1121             let (size, align) = self.read_size_and_align_from_vtable(vtable)?;
1122             assert_eq!(size, layout.size);
1123             // only ABI alignment is preserved
1124             assert_eq!(align, layout.align.abi);
1125         }
1126 
1127         let mplace = MPlaceTy { mplace: MemPlace { meta: MemPlaceMeta::None, ..**mplace }, layout };
1128         Ok((instance, mplace))
1129     }
1130 }
1131