xref: /netbsd/external/cddl/osnet/dist/uts/common/fs/zfs/dbuf.c (revision 52f6b44a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 
50 uint_t zfs_dbuf_evict_key;
51 
52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
54 
55 #ifndef __lint
56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57     dmu_buf_evict_func_t *evict_func_sync,
58     dmu_buf_evict_func_t *evict_func_async,
59     dmu_buf_t **clear_on_evict_dbufp);
60 #endif /* ! __lint */
61 
62 /*
63  * Global data structures and functions for the dbuf cache.
64  */
65 static kmem_cache_t *dbuf_kmem_cache;
66 static taskq_t *dbu_evict_taskq;
67 
68 static kthread_t *dbuf_cache_evict_thread;
69 static kmutex_t dbuf_evict_lock;
70 static kcondvar_t dbuf_evict_cv;
71 static boolean_t dbuf_evict_thread_exit;
72 
73 /*
74  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
75  * are not currently held but have been recently released. These dbufs
76  * are not eligible for arc eviction until they are aged out of the cache.
77  * Dbufs are added to the dbuf cache once the last hold is released. If a
78  * dbuf is later accessed and still exists in the dbuf cache, then it will
79  * be removed from the cache and later re-added to the head of the cache.
80  * Dbufs that are aged out of the cache will be immediately destroyed and
81  * become eligible for arc eviction.
82  */
83 static multilist_t dbuf_cache;
84 static refcount_t dbuf_cache_size;
85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
86 
87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
88 int dbuf_cache_max_shift = 5;
89 
90 /*
91  * The dbuf cache uses a three-stage eviction policy:
92  *	- A low water marker designates when the dbuf eviction thread
93  *	should stop evicting from the dbuf cache.
94  *	- When we reach the maximum size (aka mid water mark), we
95  *	signal the eviction thread to run.
96  *	- The high water mark indicates when the eviction thread
97  *	is unable to keep up with the incoming load and eviction must
98  *	happen in the context of the calling thread.
99  *
100  * The dbuf cache:
101  *                                                 (max size)
102  *                                      low water   mid water   hi water
103  * +----------------------------------------+----------+----------+
104  * |                                        |          |          |
105  * |                                        |          |          |
106  * |                                        |          |          |
107  * |                                        |          |          |
108  * +----------------------------------------+----------+----------+
109  *                                        stop        signal     evict
110  *                                      evicting     eviction   directly
111  *                                                    thread
112  *
113  * The high and low water marks indicate the operating range for the eviction
114  * thread. The low water mark is, by default, 90% of the total size of the
115  * cache and the high water mark is at 110% (both of these percentages can be
116  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
117  * respectively). The eviction thread will try to ensure that the cache remains
118  * within this range by waking up every second and checking if the cache is
119  * above the low water mark. The thread can also be woken up by callers adding
120  * elements into the cache if the cache is larger than the mid water (i.e max
121  * cache size). Once the eviction thread is woken up and eviction is required,
122  * it will continue evicting buffers until it's able to reduce the cache size
123  * to the low water mark. If the cache size continues to grow and hits the high
124  * water mark, then callers adding elments to the cache will begin to evict
125  * directly from the cache until the cache is no longer above the high water
126  * mark.
127  */
128 
129 /*
130  * The percentage above and below the maximum cache size.
131  */
132 uint_t dbuf_cache_hiwater_pct = 10;
133 uint_t dbuf_cache_lowater_pct = 10;
134 
135 /* ARGSUSED */
136 static int
dbuf_cons(void * vdb,void * unused,int kmflag)137 dbuf_cons(void *vdb, void *unused, int kmflag)
138 {
139 	dmu_buf_impl_t *db = vdb;
140 
141 	bzero(db, sizeof (dmu_buf_impl_t));
142 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
143 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
144 	multilist_link_init(&db->db_cache_link);
145 	refcount_create(&db->db_holds);
146 
147 	return (0);
148 }
149 
150 /* ARGSUSED */
151 static void
dbuf_dest(void * vdb,void * unused)152 dbuf_dest(void *vdb, void *unused)
153 {
154 	dmu_buf_impl_t *db = vdb;
155 
156 	mutex_destroy(&db->db_mtx);
157 	cv_destroy(&db->db_changed);
158 	ASSERT(!multilist_link_active(&db->db_cache_link));
159 	refcount_destroy(&db->db_holds);
160 }
161 
162 /*
163  * dbuf hash table routines
164  */
165 static dbuf_hash_table_t dbuf_hash_table;
166 
167 static uint64_t dbuf_hash_count;
168 
169 static uint64_t
dbuf_hash(void * os,uint64_t obj,uint8_t lvl,uint64_t blkid)170 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
171 {
172 	uintptr_t osv = (uintptr_t)os;
173 	uint64_t crc = -1ULL;
174 
175 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
176 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
177 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
178 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
179 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
180 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
181 	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
182 
183 	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
184 
185 	return (crc);
186 }
187 
188 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
189 	((dbuf)->db.db_object == (obj) &&		\
190 	(dbuf)->db_objset == (os) &&			\
191 	(dbuf)->db_level == (level) &&			\
192 	(dbuf)->db_blkid == (blkid))
193 
194 dmu_buf_impl_t *
dbuf_find(objset_t * os,uint64_t obj,uint8_t level,uint64_t blkid)195 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
196 {
197 	dbuf_hash_table_t *h = &dbuf_hash_table;
198 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
199 	uint64_t idx = hv & h->hash_table_mask;
200 	dmu_buf_impl_t *db;
201 
202 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
203 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
204 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
205 			mutex_enter(&db->db_mtx);
206 			if (db->db_state != DB_EVICTING) {
207 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
208 				return (db);
209 			}
210 			mutex_exit(&db->db_mtx);
211 		}
212 	}
213 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
214 	return (NULL);
215 }
216 
217 static dmu_buf_impl_t *
dbuf_find_bonus(objset_t * os,uint64_t object)218 dbuf_find_bonus(objset_t *os, uint64_t object)
219 {
220 	dnode_t *dn;
221 	dmu_buf_impl_t *db = NULL;
222 
223 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
224 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
225 		if (dn->dn_bonus != NULL) {
226 			db = dn->dn_bonus;
227 			mutex_enter(&db->db_mtx);
228 		}
229 		rw_exit(&dn->dn_struct_rwlock);
230 		dnode_rele(dn, FTAG);
231 	}
232 	return (db);
233 }
234 
235 /*
236  * Insert an entry into the hash table.  If there is already an element
237  * equal to elem in the hash table, then the already existing element
238  * will be returned and the new element will not be inserted.
239  * Otherwise returns NULL.
240  */
241 static dmu_buf_impl_t *
dbuf_hash_insert(dmu_buf_impl_t * db)242 dbuf_hash_insert(dmu_buf_impl_t *db)
243 {
244 	dbuf_hash_table_t *h = &dbuf_hash_table;
245 	objset_t *os = db->db_objset;
246 	uint64_t obj = db->db.db_object;
247 	int level = db->db_level;
248 	uint64_t blkid = db->db_blkid;
249 	uint64_t hv = dbuf_hash(os, obj, level, blkid);
250 	uint64_t idx = hv & h->hash_table_mask;
251 	dmu_buf_impl_t *dbf;
252 
253 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
254 	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
255 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
256 			mutex_enter(&dbf->db_mtx);
257 			if (dbf->db_state != DB_EVICTING) {
258 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
259 				return (dbf);
260 			}
261 			mutex_exit(&dbf->db_mtx);
262 		}
263 	}
264 
265 	mutex_enter(&db->db_mtx);
266 	db->db_hash_next = h->hash_table[idx];
267 	h->hash_table[idx] = db;
268 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
269 	atomic_inc_64(&dbuf_hash_count);
270 
271 	return (NULL);
272 }
273 
274 /*
275  * Remove an entry from the hash table.  It must be in the EVICTING state.
276  */
277 static void
dbuf_hash_remove(dmu_buf_impl_t * db)278 dbuf_hash_remove(dmu_buf_impl_t *db)
279 {
280 	dbuf_hash_table_t *h = &dbuf_hash_table;
281 	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
282 	    db->db_level, db->db_blkid);
283 	uint64_t idx = hv & h->hash_table_mask;
284 	dmu_buf_impl_t *dbf, **dbp;
285 
286 	/*
287 	 * We musn't hold db_mtx to maintain lock ordering:
288 	 * DBUF_HASH_MUTEX > db_mtx.
289 	 */
290 	ASSERT(refcount_is_zero(&db->db_holds));
291 	ASSERT(db->db_state == DB_EVICTING);
292 	ASSERT(!MUTEX_HELD(&db->db_mtx));
293 
294 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
295 	dbp = &h->hash_table[idx];
296 	while ((dbf = *dbp) != db) {
297 		dbp = &dbf->db_hash_next;
298 		ASSERT(dbf != NULL);
299 	}
300 	*dbp = db->db_hash_next;
301 	db->db_hash_next = NULL;
302 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
303 	atomic_dec_64(&dbuf_hash_count);
304 }
305 
306 typedef enum {
307 	DBVU_EVICTING,
308 	DBVU_NOT_EVICTING
309 } dbvu_verify_type_t;
310 
311 static void
dbuf_verify_user(dmu_buf_impl_t * db,dbvu_verify_type_t verify_type)312 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
313 {
314 #ifdef ZFS_DEBUG
315 	int64_t holds;
316 
317 	if (db->db_user == NULL)
318 		return;
319 
320 	/* Only data blocks support the attachment of user data. */
321 	ASSERT(db->db_level == 0);
322 
323 	/* Clients must resolve a dbuf before attaching user data. */
324 	ASSERT(db->db.db_data != NULL);
325 	ASSERT3U(db->db_state, ==, DB_CACHED);
326 
327 	holds = refcount_count(&db->db_holds);
328 	if (verify_type == DBVU_EVICTING) {
329 		/*
330 		 * Immediate eviction occurs when holds == dirtycnt.
331 		 * For normal eviction buffers, holds is zero on
332 		 * eviction, except when dbuf_fix_old_data() calls
333 		 * dbuf_clear_data().  However, the hold count can grow
334 		 * during eviction even though db_mtx is held (see
335 		 * dmu_bonus_hold() for an example), so we can only
336 		 * test the generic invariant that holds >= dirtycnt.
337 		 */
338 		ASSERT3U(holds, >=, db->db_dirtycnt);
339 	} else {
340 		if (db->db_user_immediate_evict == TRUE)
341 			ASSERT3U(holds, >=, db->db_dirtycnt);
342 		else
343 			ASSERT3U(holds, >, 0);
344 	}
345 #endif
346 }
347 
348 static void
dbuf_evict_user(dmu_buf_impl_t * db)349 dbuf_evict_user(dmu_buf_impl_t *db)
350 {
351 	dmu_buf_user_t *dbu = db->db_user;
352 
353 	ASSERT(MUTEX_HELD(&db->db_mtx));
354 
355 	if (dbu == NULL)
356 		return;
357 
358 	dbuf_verify_user(db, DBVU_EVICTING);
359 	db->db_user = NULL;
360 
361 #ifdef ZFS_DEBUG
362 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
363 		*dbu->dbu_clear_on_evict_dbufp = NULL;
364 #endif
365 
366 	/*
367 	 * There are two eviction callbacks - one that we call synchronously
368 	 * and one that we invoke via a taskq.  The async one is useful for
369 	 * avoiding lock order reversals and limiting stack depth.
370 	 *
371 	 * Note that if we have a sync callback but no async callback,
372 	 * it's likely that the sync callback will free the structure
373 	 * containing the dbu.  In that case we need to take care to not
374 	 * dereference dbu after calling the sync evict func.
375 	 */
376 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
377 
378 	if (dbu->dbu_evict_func_sync != NULL)
379 		dbu->dbu_evict_func_sync(dbu);
380 
381 	if (has_async) {
382 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
383 		    dbu, 0, &dbu->dbu_tqent);
384 	}
385 }
386 
387 boolean_t
dbuf_is_metadata(dmu_buf_impl_t * db)388 dbuf_is_metadata(dmu_buf_impl_t *db)
389 {
390 	if (db->db_level > 0) {
391 		return (B_TRUE);
392 	} else {
393 		boolean_t is_metadata;
394 
395 		DB_DNODE_ENTER(db);
396 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
397 		DB_DNODE_EXIT(db);
398 
399 		return (is_metadata);
400 	}
401 }
402 
403 /*
404  * This function *must* return indices evenly distributed between all
405  * sublists of the multilist. This is needed due to how the dbuf eviction
406  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
407  * distributed between all sublists and uses this assumption when
408  * deciding which sublist to evict from and how much to evict from it.
409  */
410 unsigned int
dbuf_cache_multilist_index_func(multilist_t * ml,void * obj)411 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
412 {
413 	dmu_buf_impl_t *db = obj;
414 
415 	/*
416 	 * The assumption here, is the hash value for a given
417 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
418 	 * (i.e. it's objset, object, level and blkid fields don't change).
419 	 * Thus, we don't need to store the dbuf's sublist index
420 	 * on insertion, as this index can be recalculated on removal.
421 	 *
422 	 * Also, the low order bits of the hash value are thought to be
423 	 * distributed evenly. Otherwise, in the case that the multilist
424 	 * has a power of two number of sublists, each sublists' usage
425 	 * would not be evenly distributed.
426 	 */
427 	return (dbuf_hash(db->db_objset, db->db.db_object,
428 	    db->db_level, db->db_blkid) %
429 	    multilist_get_num_sublists(ml));
430 }
431 
432 static inline boolean_t
dbuf_cache_above_hiwater(void)433 dbuf_cache_above_hiwater(void)
434 {
435 	uint64_t dbuf_cache_hiwater_bytes =
436 	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
437 
438 	return (refcount_count(&dbuf_cache_size) >
439 	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
440 }
441 
442 static inline boolean_t
dbuf_cache_above_lowater(void)443 dbuf_cache_above_lowater(void)
444 {
445 	uint64_t dbuf_cache_lowater_bytes =
446 	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
447 
448 	return (refcount_count(&dbuf_cache_size) >
449 	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
450 }
451 
452 /*
453  * Evict the oldest eligible dbuf from the dbuf cache.
454  */
455 static void
dbuf_evict_one(void)456 dbuf_evict_one(void)
457 {
458 	int idx = multilist_get_random_index(&dbuf_cache);
459 	multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx);
460 
461 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
462 
463 	/*
464 	 * Set the thread's tsd to indicate that it's processing evictions.
465 	 * Once a thread stops evicting from the dbuf cache it will
466 	 * reset its tsd to NULL.
467 	 */
468 	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
469 	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
470 
471 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
472 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
473 		db = multilist_sublist_prev(mls, db);
474 	}
475 
476 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
477 	    multilist_sublist_t *, mls);
478 
479 	if (db != NULL) {
480 		multilist_sublist_remove(mls, db);
481 		multilist_sublist_unlock(mls);
482 		(void) refcount_remove_many(&dbuf_cache_size,
483 		    db->db.db_size, db);
484 		dbuf_destroy(db);
485 	} else {
486 		multilist_sublist_unlock(mls);
487 	}
488 	(void) tsd_set(zfs_dbuf_evict_key, NULL);
489 }
490 
491 /*
492  * The dbuf evict thread is responsible for aging out dbufs from the
493  * cache. Once the cache has reached it's maximum size, dbufs are removed
494  * and destroyed. The eviction thread will continue running until the size
495  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
496  * out of the cache it is destroyed and becomes eligible for arc eviction.
497  */
498 static void
dbuf_evict_thread(void * dummy __unused)499 dbuf_evict_thread(void *dummy __unused)
500 {
501 	callb_cpr_t cpr;
502 
503 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
504 
505 	mutex_enter(&dbuf_evict_lock);
506 	while (!dbuf_evict_thread_exit) {
507 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
508 			CALLB_CPR_SAFE_BEGIN(&cpr);
509 			(void) cv_timedwait_hires(&dbuf_evict_cv,
510 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
511 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
512 		}
513 		mutex_exit(&dbuf_evict_lock);
514 
515 		/*
516 		 * Keep evicting as long as we're above the low water mark
517 		 * for the cache. We do this without holding the locks to
518 		 * minimize lock contention.
519 		 */
520 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
521 			dbuf_evict_one();
522 		}
523 
524 		mutex_enter(&dbuf_evict_lock);
525 	}
526 
527 	dbuf_evict_thread_exit = B_FALSE;
528 	cv_broadcast(&dbuf_evict_cv);
529 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
530 	thread_exit();
531 }
532 
533 /*
534  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
535  * If the dbuf cache is at its high water mark, then evict a dbuf from the
536  * dbuf cache using the callers context.
537  */
538 static void
dbuf_evict_notify(void)539 dbuf_evict_notify(void)
540 {
541 
542 	/*
543 	 * We use thread specific data to track when a thread has
544 	 * started processing evictions. This allows us to avoid deeply
545 	 * nested stacks that would have a call flow similar to this:
546 	 *
547 	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
548 	 *	^						|
549 	 *	|						|
550 	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
551 	 *
552 	 * The dbuf_eviction_thread will always have its tsd set until
553 	 * that thread exits. All other threads will only set their tsd
554 	 * if they are participating in the eviction process. This only
555 	 * happens if the eviction thread is unable to process evictions
556 	 * fast enough. To keep the dbuf cache size in check, other threads
557 	 * can evict from the dbuf cache directly. Those threads will set
558 	 * their tsd values so that we ensure that they only evict one dbuf
559 	 * from the dbuf cache.
560 	 */
561 	if (tsd_get(zfs_dbuf_evict_key) != NULL)
562 		return;
563 
564 	if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
565 		boolean_t evict_now = B_FALSE;
566 
567 		mutex_enter(&dbuf_evict_lock);
568 		if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
569 			evict_now = dbuf_cache_above_hiwater();
570 			cv_signal(&dbuf_evict_cv);
571 		}
572 		mutex_exit(&dbuf_evict_lock);
573 
574 		if (evict_now) {
575 			dbuf_evict_one();
576 		}
577 	}
578 }
579 
580 void
dbuf_init(void)581 dbuf_init(void)
582 {
583 	uint64_t hsize = 1ULL << 16;
584 	dbuf_hash_table_t *h = &dbuf_hash_table;
585 	int i;
586 
587 	/*
588 	 * The hash table is big enough to fill all of physical memory
589 	 * with an average 4K block size.  The table will take up
590 	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
591 	 */
592 	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
593 		hsize <<= 1;
594 
595 retry:
596 	h->hash_table_mask = hsize - 1;
597 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
598 	if (h->hash_table == NULL) {
599 		/* XXX - we should really return an error instead of assert */
600 		ASSERT(hsize > (1ULL << 10));
601 		hsize >>= 1;
602 		goto retry;
603 	}
604 
605 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
606 	    sizeof (dmu_buf_impl_t),
607 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
608 
609 	for (i = 0; i < DBUF_MUTEXES; i++)
610 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
611 
612 	/*
613 	 * Setup the parameters for the dbuf cache. We cap the size of the
614 	 * dbuf cache to 1/32nd (default) of the size of the ARC.
615 	 */
616 	dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
617 	    arc_max_bytes() >> dbuf_cache_max_shift);
618 
619 	/*
620 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
621 	 * configuration is not required.
622 	 */
623 	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
624 
625 	multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t),
626 	    offsetof(dmu_buf_impl_t, db_cache_link),
627 	    zfs_arc_num_sublists_per_state,
628 	    dbuf_cache_multilist_index_func);
629 	refcount_create(&dbuf_cache_size);
630 
631 	tsd_create(&zfs_dbuf_evict_key, NULL);
632 	dbuf_evict_thread_exit = B_FALSE;
633 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
634 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
635 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
636 	    NULL, 0, &p0, TS_RUN, minclsyspri);
637 }
638 
639 void
dbuf_fini(void)640 dbuf_fini(void)
641 {
642 	dbuf_hash_table_t *h = &dbuf_hash_table;
643 	int i;
644 
645 	for (i = 0; i < DBUF_MUTEXES; i++)
646 		mutex_destroy(&h->hash_mutexes[i]);
647 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
648 	kmem_cache_destroy(dbuf_kmem_cache);
649 	taskq_destroy(dbu_evict_taskq);
650 
651 	mutex_enter(&dbuf_evict_lock);
652 	dbuf_evict_thread_exit = B_TRUE;
653 	while (dbuf_evict_thread_exit) {
654 		cv_signal(&dbuf_evict_cv);
655 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
656 	}
657 	mutex_exit(&dbuf_evict_lock);
658 	tsd_destroy(&zfs_dbuf_evict_key);
659 
660 	mutex_destroy(&dbuf_evict_lock);
661 	cv_destroy(&dbuf_evict_cv);
662 
663 	refcount_destroy(&dbuf_cache_size);
664 	multilist_destroy(&dbuf_cache);
665 }
666 
667 /*
668  * Other stuff.
669  */
670 
671 #ifdef ZFS_DEBUG
672 static void
dbuf_verify(dmu_buf_impl_t * db)673 dbuf_verify(dmu_buf_impl_t *db)
674 {
675 	dnode_t *dn;
676 	dbuf_dirty_record_t *dr;
677 
678 	ASSERT(MUTEX_HELD(&db->db_mtx));
679 
680 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
681 		return;
682 
683 	ASSERT(db->db_objset != NULL);
684 	DB_DNODE_ENTER(db);
685 	dn = DB_DNODE(db);
686 	if (dn == NULL) {
687 		ASSERT(db->db_parent == NULL);
688 		ASSERT(db->db_blkptr == NULL);
689 	} else {
690 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
691 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
692 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
693 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
694 		    db->db_blkid == DMU_SPILL_BLKID ||
695 		    !avl_is_empty(&dn->dn_dbufs));
696 	}
697 	if (db->db_blkid == DMU_BONUS_BLKID) {
698 		ASSERT(dn != NULL);
699 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
700 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
701 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
702 		ASSERT(dn != NULL);
703 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
704 		ASSERT0(db->db.db_offset);
705 	} else {
706 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
707 	}
708 
709 	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
710 		ASSERT(dr->dr_dbuf == db);
711 
712 	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
713 		ASSERT(dr->dr_dbuf == db);
714 
715 	/*
716 	 * We can't assert that db_size matches dn_datablksz because it
717 	 * can be momentarily different when another thread is doing
718 	 * dnode_set_blksz().
719 	 */
720 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
721 		dr = db->db_data_pending;
722 		/*
723 		 * It should only be modified in syncing context, so
724 		 * make sure we only have one copy of the data.
725 		 */
726 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
727 	}
728 
729 	/* verify db->db_blkptr */
730 	if (db->db_blkptr) {
731 		if (db->db_parent == dn->dn_dbuf) {
732 			/* db is pointed to by the dnode */
733 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
734 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
735 				ASSERT(db->db_parent == NULL);
736 			else
737 				ASSERT(db->db_parent != NULL);
738 			if (db->db_blkid != DMU_SPILL_BLKID)
739 				ASSERT3P(db->db_blkptr, ==,
740 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
741 		} else {
742 			/* db is pointed to by an indirect block */
743 			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
744 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
745 			ASSERT3U(db->db_parent->db.db_object, ==,
746 			    db->db.db_object);
747 			/*
748 			 * dnode_grow_indblksz() can make this fail if we don't
749 			 * have the struct_rwlock.  XXX indblksz no longer
750 			 * grows.  safe to do this now?
751 			 */
752 			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
753 				ASSERT3P(db->db_blkptr, ==,
754 				    ((blkptr_t *)db->db_parent->db.db_data +
755 				    db->db_blkid % epb));
756 			}
757 		}
758 	}
759 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
760 	    (db->db_buf == NULL || db->db_buf->b_data) &&
761 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
762 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
763 		/*
764 		 * If the blkptr isn't set but they have nonzero data,
765 		 * it had better be dirty, otherwise we'll lose that
766 		 * data when we evict this buffer.
767 		 *
768 		 * There is an exception to this rule for indirect blocks; in
769 		 * this case, if the indirect block is a hole, we fill in a few
770 		 * fields on each of the child blocks (importantly, birth time)
771 		 * to prevent hole birth times from being lost when you
772 		 * partially fill in a hole.
773 		 */
774 		if (db->db_dirtycnt == 0) {
775 			if (db->db_level == 0) {
776 				uint64_t *buf = db->db.db_data;
777 				int i;
778 
779 				for (i = 0; i < db->db.db_size >> 3; i++) {
780 					ASSERT(buf[i] == 0);
781 				}
782 			} else {
783 				blkptr_t *bps = db->db.db_data;
784 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
785 				    db->db.db_size);
786 				/*
787 				 * We want to verify that all the blkptrs in the
788 				 * indirect block are holes, but we may have
789 				 * automatically set up a few fields for them.
790 				 * We iterate through each blkptr and verify
791 				 * they only have those fields set.
792 				 */
793 				for (int i = 0;
794 				    i < db->db.db_size / sizeof (blkptr_t);
795 				    i++) {
796 					blkptr_t *bp = &bps[i];
797 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
798 					    &bp->blk_cksum));
799 					ASSERT(
800 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
801 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
802 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
803 					ASSERT0(bp->blk_fill);
804 					ASSERT0(bp->blk_pad[0]);
805 					ASSERT0(bp->blk_pad[1]);
806 					ASSERT(!BP_IS_EMBEDDED(bp));
807 					ASSERT(BP_IS_HOLE(bp));
808 					ASSERT0(bp->blk_phys_birth);
809 				}
810 			}
811 		}
812 	}
813 	DB_DNODE_EXIT(db);
814 }
815 #endif
816 
817 static void
dbuf_clear_data(dmu_buf_impl_t * db)818 dbuf_clear_data(dmu_buf_impl_t *db)
819 {
820 	ASSERT(MUTEX_HELD(&db->db_mtx));
821 	dbuf_evict_user(db);
822 	ASSERT3P(db->db_buf, ==, NULL);
823 	db->db.db_data = NULL;
824 	if (db->db_state != DB_NOFILL)
825 		db->db_state = DB_UNCACHED;
826 }
827 
828 static void
dbuf_set_data(dmu_buf_impl_t * db,arc_buf_t * buf)829 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
830 {
831 	ASSERT(MUTEX_HELD(&db->db_mtx));
832 	ASSERT(buf != NULL);
833 
834 	db->db_buf = buf;
835 	ASSERT(buf->b_data != NULL);
836 	db->db.db_data = buf->b_data;
837 }
838 
839 /*
840  * Loan out an arc_buf for read.  Return the loaned arc_buf.
841  */
842 arc_buf_t *
dbuf_loan_arcbuf(dmu_buf_impl_t * db)843 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
844 {
845 	arc_buf_t *abuf;
846 
847 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
848 	mutex_enter(&db->db_mtx);
849 	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
850 		int blksz = db->db.db_size;
851 		spa_t *spa = db->db_objset->os_spa;
852 
853 		mutex_exit(&db->db_mtx);
854 		abuf = arc_loan_buf(spa, blksz);
855 		bcopy(db->db.db_data, abuf->b_data, blksz);
856 	} else {
857 		abuf = db->db_buf;
858 		arc_loan_inuse_buf(abuf, db);
859 		db->db_buf = NULL;
860 		dbuf_clear_data(db);
861 		mutex_exit(&db->db_mtx);
862 	}
863 	return (abuf);
864 }
865 
866 /*
867  * Calculate which level n block references the data at the level 0 offset
868  * provided.
869  */
870 uint64_t
dbuf_whichblock(dnode_t * dn,int64_t level,uint64_t offset)871 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
872 {
873 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
874 		/*
875 		 * The level n blkid is equal to the level 0 blkid divided by
876 		 * the number of level 0s in a level n block.
877 		 *
878 		 * The level 0 blkid is offset >> datablkshift =
879 		 * offset / 2^datablkshift.
880 		 *
881 		 * The number of level 0s in a level n is the number of block
882 		 * pointers in an indirect block, raised to the power of level.
883 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
884 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
885 		 *
886 		 * Thus, the level n blkid is: offset /
887 		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
888 		 * = offset / 2^(datablkshift + level *
889 		 *   (indblkshift - SPA_BLKPTRSHIFT))
890 		 * = offset >> (datablkshift + level *
891 		 *   (indblkshift - SPA_BLKPTRSHIFT))
892 		 */
893 		return (offset >> (dn->dn_datablkshift + level *
894 		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
895 	} else {
896 		ASSERT3U(offset, <, dn->dn_datablksz);
897 		return (0);
898 	}
899 }
900 
901 static void
dbuf_read_done(zio_t * zio,arc_buf_t * buf,void * vdb)902 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
903 {
904 	dmu_buf_impl_t *db = vdb;
905 
906 	mutex_enter(&db->db_mtx);
907 	ASSERT3U(db->db_state, ==, DB_READ);
908 	/*
909 	 * All reads are synchronous, so we must have a hold on the dbuf
910 	 */
911 	ASSERT(refcount_count(&db->db_holds) > 0);
912 	ASSERT(db->db_buf == NULL);
913 	ASSERT(db->db.db_data == NULL);
914 	if (db->db_level == 0 && db->db_freed_in_flight) {
915 		/* we were freed in flight; disregard any error */
916 		arc_release(buf, db);
917 		bzero(buf->b_data, db->db.db_size);
918 		arc_buf_freeze(buf);
919 		db->db_freed_in_flight = FALSE;
920 		dbuf_set_data(db, buf);
921 		db->db_state = DB_CACHED;
922 	} else if (zio == NULL || zio->io_error == 0) {
923 		dbuf_set_data(db, buf);
924 		db->db_state = DB_CACHED;
925 	} else {
926 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
927 		ASSERT3P(db->db_buf, ==, NULL);
928 		arc_buf_destroy(buf, db);
929 		db->db_state = DB_UNCACHED;
930 	}
931 	cv_broadcast(&db->db_changed);
932 	dbuf_rele_and_unlock(db, NULL);
933 }
934 
935 static void
dbuf_read_impl(dmu_buf_impl_t * db,zio_t * zio,uint32_t flags)936 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
937 {
938 	dnode_t *dn;
939 	zbookmark_phys_t zb;
940 	arc_flags_t aflags = ARC_FLAG_NOWAIT;
941 
942 	DB_DNODE_ENTER(db);
943 	dn = DB_DNODE(db);
944 	ASSERT(!refcount_is_zero(&db->db_holds));
945 	/* We need the struct_rwlock to prevent db_blkptr from changing. */
946 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
947 	ASSERT(MUTEX_HELD(&db->db_mtx));
948 	ASSERT(db->db_state == DB_UNCACHED);
949 	ASSERT(db->db_buf == NULL);
950 
951 	if (db->db_blkid == DMU_BONUS_BLKID) {
952 		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
953 
954 		ASSERT3U(bonuslen, <=, db->db.db_size);
955 		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
956 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
957 		if (bonuslen < DN_MAX_BONUSLEN)
958 			bzero(db->db.db_data, DN_MAX_BONUSLEN);
959 		if (bonuslen)
960 			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
961 		DB_DNODE_EXIT(db);
962 		db->db_state = DB_CACHED;
963 		mutex_exit(&db->db_mtx);
964 		return;
965 	}
966 
967 	/*
968 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
969 	 * processes the delete record and clears the bp while we are waiting
970 	 * for the dn_mtx (resulting in a "no" from block_freed).
971 	 */
972 	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
973 	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
974 	    BP_IS_HOLE(db->db_blkptr)))) {
975 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
976 
977 		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa,
978 		    db->db.db_size, db, type));
979 		bzero(db->db.db_data, db->db.db_size);
980 
981 		if (db->db_blkptr != NULL && db->db_level > 0 &&
982 		    BP_IS_HOLE(db->db_blkptr) &&
983 		    db->db_blkptr->blk_birth != 0) {
984 			blkptr_t *bps = db->db.db_data;
985 			for (int i = 0; i < ((1 <<
986 			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
987 			    i++) {
988 				blkptr_t *bp = &bps[i];
989 				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
990 				    1 << dn->dn_indblkshift);
991 				BP_SET_LSIZE(bp,
992 				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
993 				    dn->dn_datablksz :
994 				    BP_GET_LSIZE(db->db_blkptr));
995 				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
996 				BP_SET_LEVEL(bp,
997 				    BP_GET_LEVEL(db->db_blkptr) - 1);
998 				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
999 			}
1000 		}
1001 		DB_DNODE_EXIT(db);
1002 		db->db_state = DB_CACHED;
1003 		mutex_exit(&db->db_mtx);
1004 		return;
1005 	}
1006 
1007 	DB_DNODE_EXIT(db);
1008 
1009 	db->db_state = DB_READ;
1010 	mutex_exit(&db->db_mtx);
1011 
1012 	if (DBUF_IS_L2CACHEABLE(db))
1013 		aflags |= ARC_FLAG_L2CACHE;
1014 
1015 	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1016 	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1017 	    db->db.db_object, db->db_level, db->db_blkid);
1018 
1019 	dbuf_add_ref(db, NULL);
1020 
1021 	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1022 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1023 	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1024 	    &aflags, &zb);
1025 }
1026 
1027 int
dbuf_read(dmu_buf_impl_t * db,zio_t * zio,uint32_t flags)1028 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1029 {
1030 	int err = 0;
1031 	boolean_t havepzio = (zio != NULL);
1032 	boolean_t prefetch;
1033 	dnode_t *dn;
1034 
1035 	/*
1036 	 * We don't have to hold the mutex to check db_state because it
1037 	 * can't be freed while we have a hold on the buffer.
1038 	 */
1039 	ASSERT(!refcount_is_zero(&db->db_holds));
1040 
1041 	if (db->db_state == DB_NOFILL)
1042 		return (SET_ERROR(EIO));
1043 
1044 	DB_DNODE_ENTER(db);
1045 	dn = DB_DNODE(db);
1046 	if ((flags & DB_RF_HAVESTRUCT) == 0)
1047 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1048 
1049 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1050 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1051 	    DBUF_IS_CACHEABLE(db);
1052 
1053 	mutex_enter(&db->db_mtx);
1054 	if (db->db_state == DB_CACHED) {
1055 		mutex_exit(&db->db_mtx);
1056 		if (prefetch)
1057 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1058 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1059 			rw_exit(&dn->dn_struct_rwlock);
1060 		DB_DNODE_EXIT(db);
1061 	} else if (db->db_state == DB_UNCACHED) {
1062 		spa_t *spa = dn->dn_objset->os_spa;
1063 
1064 		if (zio == NULL)
1065 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1066 		dbuf_read_impl(db, zio, flags);
1067 
1068 		/* dbuf_read_impl has dropped db_mtx for us */
1069 
1070 		if (prefetch)
1071 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1072 
1073 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1074 			rw_exit(&dn->dn_struct_rwlock);
1075 		DB_DNODE_EXIT(db);
1076 
1077 		if (!havepzio)
1078 			err = zio_wait(zio);
1079 	} else {
1080 		/*
1081 		 * Another reader came in while the dbuf was in flight
1082 		 * between UNCACHED and CACHED.  Either a writer will finish
1083 		 * writing the buffer (sending the dbuf to CACHED) or the
1084 		 * first reader's request will reach the read_done callback
1085 		 * and send the dbuf to CACHED.  Otherwise, a failure
1086 		 * occurred and the dbuf went to UNCACHED.
1087 		 */
1088 		mutex_exit(&db->db_mtx);
1089 		if (prefetch)
1090 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1091 		if ((flags & DB_RF_HAVESTRUCT) == 0)
1092 			rw_exit(&dn->dn_struct_rwlock);
1093 		DB_DNODE_EXIT(db);
1094 
1095 		/* Skip the wait per the caller's request. */
1096 		mutex_enter(&db->db_mtx);
1097 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1098 			while (db->db_state == DB_READ ||
1099 			    db->db_state == DB_FILL) {
1100 				ASSERT(db->db_state == DB_READ ||
1101 				    (flags & DB_RF_HAVESTRUCT) == 0);
1102 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1103 				    db, zio_t *, zio);
1104 				cv_wait(&db->db_changed, &db->db_mtx);
1105 			}
1106 			if (db->db_state == DB_UNCACHED)
1107 				err = SET_ERROR(EIO);
1108 		}
1109 		mutex_exit(&db->db_mtx);
1110 	}
1111 
1112 	ASSERT(err || havepzio || db->db_state == DB_CACHED);
1113 	return (err);
1114 }
1115 
1116 static void
dbuf_noread(dmu_buf_impl_t * db)1117 dbuf_noread(dmu_buf_impl_t *db)
1118 {
1119 	ASSERT(!refcount_is_zero(&db->db_holds));
1120 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1121 	mutex_enter(&db->db_mtx);
1122 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1123 		cv_wait(&db->db_changed, &db->db_mtx);
1124 	if (db->db_state == DB_UNCACHED) {
1125 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1126 		spa_t *spa = db->db_objset->os_spa;
1127 
1128 		ASSERT(db->db_buf == NULL);
1129 		ASSERT(db->db.db_data == NULL);
1130 		dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type));
1131 		db->db_state = DB_FILL;
1132 	} else if (db->db_state == DB_NOFILL) {
1133 		dbuf_clear_data(db);
1134 	} else {
1135 		ASSERT3U(db->db_state, ==, DB_CACHED);
1136 	}
1137 	mutex_exit(&db->db_mtx);
1138 }
1139 
1140 /*
1141  * This is our just-in-time copy function.  It makes a copy of
1142  * buffers, that have been modified in a previous transaction
1143  * group, before we modify them in the current active group.
1144  *
1145  * This function is used in two places: when we are dirtying a
1146  * buffer for the first time in a txg, and when we are freeing
1147  * a range in a dnode that includes this buffer.
1148  *
1149  * Note that when we are called from dbuf_free_range() we do
1150  * not put a hold on the buffer, we just traverse the active
1151  * dbuf list for the dnode.
1152  */
1153 static void
dbuf_fix_old_data(dmu_buf_impl_t * db,uint64_t txg)1154 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1155 {
1156 	dbuf_dirty_record_t *dr = db->db_last_dirty;
1157 
1158 	ASSERT(MUTEX_HELD(&db->db_mtx));
1159 	ASSERT(db->db.db_data != NULL);
1160 	ASSERT(db->db_level == 0);
1161 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1162 
1163 	if (dr == NULL ||
1164 	    (dr->dt.dl.dr_data !=
1165 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1166 		return;
1167 
1168 	/*
1169 	 * If the last dirty record for this dbuf has not yet synced
1170 	 * and its referencing the dbuf data, either:
1171 	 *	reset the reference to point to a new copy,
1172 	 * or (if there a no active holders)
1173 	 *	just null out the current db_data pointer.
1174 	 */
1175 	ASSERT(dr->dr_txg >= txg - 2);
1176 	if (db->db_blkid == DMU_BONUS_BLKID) {
1177 		/* Note that the data bufs here are zio_bufs */
1178 		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1179 		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1180 		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1181 	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1182 		int size = db->db.db_size;
1183 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1184 		spa_t *spa = db->db_objset->os_spa;
1185 
1186 		dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type);
1187 		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1188 	} else {
1189 		db->db_buf = NULL;
1190 		dbuf_clear_data(db);
1191 	}
1192 }
1193 
1194 void
dbuf_unoverride(dbuf_dirty_record_t * dr)1195 dbuf_unoverride(dbuf_dirty_record_t *dr)
1196 {
1197 	dmu_buf_impl_t *db = dr->dr_dbuf;
1198 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1199 	uint64_t txg = dr->dr_txg;
1200 
1201 	ASSERT(MUTEX_HELD(&db->db_mtx));
1202 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1203 	ASSERT(db->db_level == 0);
1204 
1205 	if (db->db_blkid == DMU_BONUS_BLKID ||
1206 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1207 		return;
1208 
1209 	ASSERT(db->db_data_pending != dr);
1210 
1211 	/* free this block */
1212 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1213 		zio_free(db->db_objset->os_spa, txg, bp);
1214 
1215 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1216 	dr->dt.dl.dr_nopwrite = B_FALSE;
1217 
1218 	/*
1219 	 * Release the already-written buffer, so we leave it in
1220 	 * a consistent dirty state.  Note that all callers are
1221 	 * modifying the buffer, so they will immediately do
1222 	 * another (redundant) arc_release().  Therefore, leave
1223 	 * the buf thawed to save the effort of freezing &
1224 	 * immediately re-thawing it.
1225 	 */
1226 	arc_release(dr->dt.dl.dr_data, db);
1227 }
1228 
1229 /*
1230  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1231  * data blocks in the free range, so that any future readers will find
1232  * empty blocks.
1233  */
1234 void
dbuf_free_range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1235 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1236     dmu_tx_t *tx)
1237 {
1238 	dmu_buf_impl_t db_search;
1239 	dmu_buf_impl_t *db, *db_next;
1240 	uint64_t txg = tx->tx_txg;
1241 	avl_index_t where;
1242 
1243 	if (end_blkid > dn->dn_maxblkid &&
1244 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1245 		end_blkid = dn->dn_maxblkid;
1246 	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1247 
1248 	db_search.db_level = 0;
1249 	db_search.db_blkid = start_blkid;
1250 	db_search.db_state = DB_SEARCH;
1251 
1252 	mutex_enter(&dn->dn_dbufs_mtx);
1253 	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1254 	ASSERT3P(db, ==, NULL);
1255 
1256 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1257 
1258 	for (; db != NULL; db = db_next) {
1259 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1260 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1261 
1262 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1263 			break;
1264 		}
1265 		ASSERT3U(db->db_blkid, >=, start_blkid);
1266 
1267 		/* found a level 0 buffer in the range */
1268 		mutex_enter(&db->db_mtx);
1269 		if (dbuf_undirty(db, tx)) {
1270 			/* mutex has been dropped and dbuf destroyed */
1271 			continue;
1272 		}
1273 
1274 		if (db->db_state == DB_UNCACHED ||
1275 		    db->db_state == DB_NOFILL ||
1276 		    db->db_state == DB_EVICTING) {
1277 			ASSERT(db->db.db_data == NULL);
1278 			mutex_exit(&db->db_mtx);
1279 			continue;
1280 		}
1281 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1282 			/* will be handled in dbuf_read_done or dbuf_rele */
1283 			db->db_freed_in_flight = TRUE;
1284 			mutex_exit(&db->db_mtx);
1285 			continue;
1286 		}
1287 		if (refcount_count(&db->db_holds) == 0) {
1288 			ASSERT(db->db_buf);
1289 			dbuf_destroy(db);
1290 			continue;
1291 		}
1292 		/* The dbuf is referenced */
1293 
1294 		if (db->db_last_dirty != NULL) {
1295 			dbuf_dirty_record_t *dr = db->db_last_dirty;
1296 
1297 			if (dr->dr_txg == txg) {
1298 				/*
1299 				 * This buffer is "in-use", re-adjust the file
1300 				 * size to reflect that this buffer may
1301 				 * contain new data when we sync.
1302 				 */
1303 				if (db->db_blkid != DMU_SPILL_BLKID &&
1304 				    db->db_blkid > dn->dn_maxblkid)
1305 					dn->dn_maxblkid = db->db_blkid;
1306 				dbuf_unoverride(dr);
1307 			} else {
1308 				/*
1309 				 * This dbuf is not dirty in the open context.
1310 				 * Either uncache it (if its not referenced in
1311 				 * the open context) or reset its contents to
1312 				 * empty.
1313 				 */
1314 				dbuf_fix_old_data(db, txg);
1315 			}
1316 		}
1317 		/* clear the contents if its cached */
1318 		if (db->db_state == DB_CACHED) {
1319 			ASSERT(db->db.db_data != NULL);
1320 			arc_release(db->db_buf, db);
1321 			bzero(db->db.db_data, db->db.db_size);
1322 			arc_buf_freeze(db->db_buf);
1323 		}
1324 
1325 		mutex_exit(&db->db_mtx);
1326 	}
1327 	mutex_exit(&dn->dn_dbufs_mtx);
1328 }
1329 
1330 static int
dbuf_block_freeable(dmu_buf_impl_t * db)1331 dbuf_block_freeable(dmu_buf_impl_t *db)
1332 {
1333 	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1334 	uint64_t birth_txg = 0;
1335 
1336 	/*
1337 	 * We don't need any locking to protect db_blkptr:
1338 	 * If it's syncing, then db_last_dirty will be set
1339 	 * so we'll ignore db_blkptr.
1340 	 *
1341 	 * This logic ensures that only block births for
1342 	 * filled blocks are considered.
1343 	 */
1344 	ASSERT(MUTEX_HELD(&db->db_mtx));
1345 	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1346 	    !BP_IS_HOLE(db->db_blkptr))) {
1347 		birth_txg = db->db_last_dirty->dr_txg;
1348 	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1349 		birth_txg = db->db_blkptr->blk_birth;
1350 	}
1351 
1352 	/*
1353 	 * If this block don't exist or is in a snapshot, it can't be freed.
1354 	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1355 	 * are holding the db_mtx lock and might deadlock if we are
1356 	 * prefetching a dedup-ed block.
1357 	 */
1358 	if (birth_txg != 0)
1359 		return (ds == NULL ||
1360 		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1361 	else
1362 		return (B_FALSE);
1363 }
1364 
1365 void
dbuf_new_size(dmu_buf_impl_t * db,int size,dmu_tx_t * tx)1366 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1367 {
1368 	arc_buf_t *buf, *obuf;
1369 	int osize = db->db.db_size;
1370 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1371 	dnode_t *dn;
1372 
1373 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1374 
1375 	DB_DNODE_ENTER(db);
1376 	dn = DB_DNODE(db);
1377 
1378 	/* XXX does *this* func really need the lock? */
1379 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1380 
1381 	/*
1382 	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1383 	 * is OK, because there can be no other references to the db
1384 	 * when we are changing its size, so no concurrent DB_FILL can
1385 	 * be happening.
1386 	 */
1387 	/*
1388 	 * XXX we should be doing a dbuf_read, checking the return
1389 	 * value and returning that up to our callers
1390 	 */
1391 	dmu_buf_will_dirty(&db->db, tx);
1392 
1393 	/* create the data buffer for the new block */
1394 	buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type);
1395 
1396 	/* copy old block data to the new block */
1397 	obuf = db->db_buf;
1398 	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1399 	/* zero the remainder */
1400 	if (size > osize)
1401 		bzero((uint8_t *)buf->b_data + osize, size - osize);
1402 
1403 	mutex_enter(&db->db_mtx);
1404 	dbuf_set_data(db, buf);
1405 	arc_buf_destroy(obuf, db);
1406 	db->db.db_size = size;
1407 
1408 	if (db->db_level == 0) {
1409 		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1410 		db->db_last_dirty->dt.dl.dr_data = buf;
1411 	}
1412 	mutex_exit(&db->db_mtx);
1413 
1414 	dnode_willuse_space(dn, size-osize, tx);
1415 	DB_DNODE_EXIT(db);
1416 }
1417 
1418 void
dbuf_release_bp(dmu_buf_impl_t * db)1419 dbuf_release_bp(dmu_buf_impl_t *db)
1420 {
1421 	objset_t *os = db->db_objset;
1422 
1423 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1424 	ASSERT(arc_released(os->os_phys_buf) ||
1425 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1426 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1427 
1428 	(void) arc_release(db->db_buf, db);
1429 }
1430 
1431 /*
1432  * We already have a dirty record for this TXG, and we are being
1433  * dirtied again.
1434  */
1435 static void
dbuf_redirty(dbuf_dirty_record_t * dr)1436 dbuf_redirty(dbuf_dirty_record_t *dr)
1437 {
1438 	dmu_buf_impl_t *db = dr->dr_dbuf;
1439 
1440 	ASSERT(MUTEX_HELD(&db->db_mtx));
1441 
1442 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1443 		/*
1444 		 * If this buffer has already been written out,
1445 		 * we now need to reset its state.
1446 		 */
1447 		dbuf_unoverride(dr);
1448 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1449 		    db->db_state != DB_NOFILL) {
1450 			/* Already released on initial dirty, so just thaw. */
1451 			ASSERT(arc_released(db->db_buf));
1452 			arc_buf_thaw(db->db_buf);
1453 		}
1454 	}
1455 }
1456 
1457 dbuf_dirty_record_t *
dbuf_dirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1458 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1459 {
1460 	dnode_t *dn;
1461 	objset_t *os;
1462 	dbuf_dirty_record_t **drp, *dr;
1463 	int drop_struct_lock = FALSE;
1464 	boolean_t do_free_accounting = B_FALSE;
1465 	int txgoff = tx->tx_txg & TXG_MASK;
1466 
1467 	ASSERT(tx->tx_txg != 0);
1468 	ASSERT(!refcount_is_zero(&db->db_holds));
1469 	DMU_TX_DIRTY_BUF(tx, db);
1470 
1471 	DB_DNODE_ENTER(db);
1472 	dn = DB_DNODE(db);
1473 	/*
1474 	 * Shouldn't dirty a regular buffer in syncing context.  Private
1475 	 * objects may be dirtied in syncing context, but only if they
1476 	 * were already pre-dirtied in open context.
1477 	 */
1478 #ifdef DEBUG
1479 	if (dn->dn_objset->os_dsl_dataset != NULL) {
1480 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1481 		    RW_READER, FTAG);
1482 	}
1483 	ASSERT(!dmu_tx_is_syncing(tx) ||
1484 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1485 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1486 	    dn->dn_objset->os_dsl_dataset == NULL);
1487 	if (dn->dn_objset->os_dsl_dataset != NULL)
1488 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1489 #endif
1490 	/*
1491 	 * We make this assert for private objects as well, but after we
1492 	 * check if we're already dirty.  They are allowed to re-dirty
1493 	 * in syncing context.
1494 	 */
1495 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1496 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1497 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1498 
1499 	mutex_enter(&db->db_mtx);
1500 	/*
1501 	 * XXX make this true for indirects too?  The problem is that
1502 	 * transactions created with dmu_tx_create_assigned() from
1503 	 * syncing context don't bother holding ahead.
1504 	 */
1505 	ASSERT(db->db_level != 0 ||
1506 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1507 	    db->db_state == DB_NOFILL);
1508 
1509 	mutex_enter(&dn->dn_mtx);
1510 	/*
1511 	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1512 	 * initialize the objset.
1513 	 */
1514 	if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1515 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1516 			rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1517 			    RW_READER, FTAG);
1518 		}
1519 		if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1520 			dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1521 			    DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1522 			ASSERT(dn->dn_dirtyctx_firstset == NULL);
1523 			dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1524 		}
1525 		if (dn->dn_objset->os_dsl_dataset != NULL) {
1526 			rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1527 			    FTAG);
1528 		}
1529 	}
1530 	mutex_exit(&dn->dn_mtx);
1531 
1532 	if (db->db_blkid == DMU_SPILL_BLKID)
1533 		dn->dn_have_spill = B_TRUE;
1534 
1535 	/*
1536 	 * If this buffer is already dirty, we're done.
1537 	 */
1538 	drp = &db->db_last_dirty;
1539 	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1540 	    db->db.db_object == DMU_META_DNODE_OBJECT);
1541 	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1542 		drp = &dr->dr_next;
1543 	if (dr && dr->dr_txg == tx->tx_txg) {
1544 		DB_DNODE_EXIT(db);
1545 
1546 		dbuf_redirty(dr);
1547 		mutex_exit(&db->db_mtx);
1548 		return (dr);
1549 	}
1550 
1551 	/*
1552 	 * Only valid if not already dirty.
1553 	 */
1554 	ASSERT(dn->dn_object == 0 ||
1555 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1556 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1557 
1558 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1559 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1560 	    dn->dn_phys->dn_nlevels > db->db_level ||
1561 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1562 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1563 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1564 
1565 	/*
1566 	 * We should only be dirtying in syncing context if it's the
1567 	 * mos or we're initializing the os or it's a special object.
1568 	 * However, we are allowed to dirty in syncing context provided
1569 	 * we already dirtied it in open context.  Hence we must make
1570 	 * this assertion only if we're not already dirty.
1571 	 */
1572 	os = dn->dn_objset;
1573 #ifdef DEBUG
1574 	if (dn->dn_objset->os_dsl_dataset != NULL)
1575 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1576 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1577 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1578 	if (dn->dn_objset->os_dsl_dataset != NULL)
1579 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1580 #endif
1581 	ASSERT(db->db.db_size != 0);
1582 
1583 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1584 
1585 	if (db->db_blkid != DMU_BONUS_BLKID) {
1586 		/*
1587 		 * Update the accounting.
1588 		 * Note: we delay "free accounting" until after we drop
1589 		 * the db_mtx.  This keeps us from grabbing other locks
1590 		 * (and possibly deadlocking) in bp_get_dsize() while
1591 		 * also holding the db_mtx.
1592 		 */
1593 		dnode_willuse_space(dn, db->db.db_size, tx);
1594 		do_free_accounting = dbuf_block_freeable(db);
1595 	}
1596 
1597 	/*
1598 	 * If this buffer is dirty in an old transaction group we need
1599 	 * to make a copy of it so that the changes we make in this
1600 	 * transaction group won't leak out when we sync the older txg.
1601 	 */
1602 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1603 	if (db->db_level == 0) {
1604 		void *data_old = db->db_buf;
1605 
1606 		if (db->db_state != DB_NOFILL) {
1607 			if (db->db_blkid == DMU_BONUS_BLKID) {
1608 				dbuf_fix_old_data(db, tx->tx_txg);
1609 				data_old = db->db.db_data;
1610 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1611 				/*
1612 				 * Release the data buffer from the cache so
1613 				 * that we can modify it without impacting
1614 				 * possible other users of this cached data
1615 				 * block.  Note that indirect blocks and
1616 				 * private objects are not released until the
1617 				 * syncing state (since they are only modified
1618 				 * then).
1619 				 */
1620 				arc_release(db->db_buf, db);
1621 				dbuf_fix_old_data(db, tx->tx_txg);
1622 				data_old = db->db_buf;
1623 			}
1624 			ASSERT(data_old != NULL);
1625 		}
1626 		dr->dt.dl.dr_data = data_old;
1627 	} else {
1628 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1629 		list_create(&dr->dt.di.dr_children,
1630 		    sizeof (dbuf_dirty_record_t),
1631 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1632 	}
1633 	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1634 		dr->dr_accounted = db->db.db_size;
1635 	dr->dr_dbuf = db;
1636 	dr->dr_txg = tx->tx_txg;
1637 	dr->dr_next = *drp;
1638 	*drp = dr;
1639 
1640 	/*
1641 	 * We could have been freed_in_flight between the dbuf_noread
1642 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1643 	 * happened after the free.
1644 	 */
1645 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1646 	    db->db_blkid != DMU_SPILL_BLKID) {
1647 		mutex_enter(&dn->dn_mtx);
1648 		if (dn->dn_free_ranges[txgoff] != NULL) {
1649 			range_tree_clear(dn->dn_free_ranges[txgoff],
1650 			    db->db_blkid, 1);
1651 		}
1652 		mutex_exit(&dn->dn_mtx);
1653 		db->db_freed_in_flight = FALSE;
1654 	}
1655 
1656 	/*
1657 	 * This buffer is now part of this txg
1658 	 */
1659 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1660 	db->db_dirtycnt += 1;
1661 	ASSERT3U(db->db_dirtycnt, <=, 3);
1662 
1663 	mutex_exit(&db->db_mtx);
1664 
1665 	if (db->db_blkid == DMU_BONUS_BLKID ||
1666 	    db->db_blkid == DMU_SPILL_BLKID) {
1667 		mutex_enter(&dn->dn_mtx);
1668 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1669 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1670 		mutex_exit(&dn->dn_mtx);
1671 		dnode_setdirty(dn, tx);
1672 		DB_DNODE_EXIT(db);
1673 		return (dr);
1674 	}
1675 
1676 	/*
1677 	 * The dn_struct_rwlock prevents db_blkptr from changing
1678 	 * due to a write from syncing context completing
1679 	 * while we are running, so we want to acquire it before
1680 	 * looking at db_blkptr.
1681 	 */
1682 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1683 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1684 		drop_struct_lock = TRUE;
1685 	}
1686 
1687 	if (do_free_accounting) {
1688 		blkptr_t *bp = db->db_blkptr;
1689 		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1690 		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1691 		/*
1692 		 * This is only a guess -- if the dbuf is dirty
1693 		 * in a previous txg, we don't know how much
1694 		 * space it will use on disk yet.  We should
1695 		 * really have the struct_rwlock to access
1696 		 * db_blkptr, but since this is just a guess,
1697 		 * it's OK if we get an odd answer.
1698 		 */
1699 		ddt_prefetch(os->os_spa, bp);
1700 		dnode_willuse_space(dn, -willfree, tx);
1701 	}
1702 
1703 	if (db->db_level == 0) {
1704 		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1705 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1706 	}
1707 
1708 	if (db->db_level+1 < dn->dn_nlevels) {
1709 		dmu_buf_impl_t *parent = db->db_parent;
1710 		dbuf_dirty_record_t *di;
1711 		int parent_held = FALSE;
1712 
1713 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1714 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1715 
1716 			parent = dbuf_hold_level(dn, db->db_level+1,
1717 			    db->db_blkid >> epbs, FTAG);
1718 			ASSERT(parent != NULL);
1719 			parent_held = TRUE;
1720 		}
1721 		if (drop_struct_lock)
1722 			rw_exit(&dn->dn_struct_rwlock);
1723 		ASSERT3U(db->db_level+1, ==, parent->db_level);
1724 		di = dbuf_dirty(parent, tx);
1725 		if (parent_held)
1726 			dbuf_rele(parent, FTAG);
1727 
1728 		mutex_enter(&db->db_mtx);
1729 		/*
1730 		 * Since we've dropped the mutex, it's possible that
1731 		 * dbuf_undirty() might have changed this out from under us.
1732 		 */
1733 		if (db->db_last_dirty == dr ||
1734 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1735 			mutex_enter(&di->dt.di.dr_mtx);
1736 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1737 			ASSERT(!list_link_active(&dr->dr_dirty_node));
1738 			list_insert_tail(&di->dt.di.dr_children, dr);
1739 			mutex_exit(&di->dt.di.dr_mtx);
1740 			dr->dr_parent = di;
1741 		}
1742 		mutex_exit(&db->db_mtx);
1743 	} else {
1744 		ASSERT(db->db_level+1 == dn->dn_nlevels);
1745 		ASSERT(db->db_blkid < dn->dn_nblkptr);
1746 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1747 		mutex_enter(&dn->dn_mtx);
1748 		ASSERT(!list_link_active(&dr->dr_dirty_node));
1749 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1750 		mutex_exit(&dn->dn_mtx);
1751 		if (drop_struct_lock)
1752 			rw_exit(&dn->dn_struct_rwlock);
1753 	}
1754 
1755 	dnode_setdirty(dn, tx);
1756 	DB_DNODE_EXIT(db);
1757 	return (dr);
1758 }
1759 
1760 /*
1761  * Undirty a buffer in the transaction group referenced by the given
1762  * transaction.  Return whether this evicted the dbuf.
1763  */
1764 static boolean_t
dbuf_undirty(dmu_buf_impl_t * db,dmu_tx_t * tx)1765 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1766 {
1767 	dnode_t *dn;
1768 	uint64_t txg = tx->tx_txg;
1769 	dbuf_dirty_record_t *dr, **drp;
1770 
1771 	ASSERT(txg != 0);
1772 
1773 	/*
1774 	 * Due to our use of dn_nlevels below, this can only be called
1775 	 * in open context, unless we are operating on the MOS.
1776 	 * From syncing context, dn_nlevels may be different from the
1777 	 * dn_nlevels used when dbuf was dirtied.
1778 	 */
1779 	ASSERT(db->db_objset ==
1780 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1781 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1782 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1783 	ASSERT0(db->db_level);
1784 	ASSERT(MUTEX_HELD(&db->db_mtx));
1785 
1786 	/*
1787 	 * If this buffer is not dirty, we're done.
1788 	 */
1789 	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1790 		if (dr->dr_txg <= txg)
1791 			break;
1792 	if (dr == NULL || dr->dr_txg < txg)
1793 		return (B_FALSE);
1794 	ASSERT(dr->dr_txg == txg);
1795 	ASSERT(dr->dr_dbuf == db);
1796 
1797 	DB_DNODE_ENTER(db);
1798 	dn = DB_DNODE(db);
1799 
1800 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1801 
1802 	ASSERT(db->db.db_size != 0);
1803 
1804 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1805 	    dr->dr_accounted, txg);
1806 
1807 	*drp = dr->dr_next;
1808 
1809 	/*
1810 	 * Note that there are three places in dbuf_dirty()
1811 	 * where this dirty record may be put on a list.
1812 	 * Make sure to do a list_remove corresponding to
1813 	 * every one of those list_insert calls.
1814 	 */
1815 	if (dr->dr_parent) {
1816 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1817 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1818 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1819 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1820 	    db->db_level + 1 == dn->dn_nlevels) {
1821 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1822 		mutex_enter(&dn->dn_mtx);
1823 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1824 		mutex_exit(&dn->dn_mtx);
1825 	}
1826 	DB_DNODE_EXIT(db);
1827 
1828 	if (db->db_state != DB_NOFILL) {
1829 		dbuf_unoverride(dr);
1830 
1831 		ASSERT(db->db_buf != NULL);
1832 		ASSERT(dr->dt.dl.dr_data != NULL);
1833 		if (dr->dt.dl.dr_data != db->db_buf)
1834 			arc_buf_destroy(dr->dt.dl.dr_data, db);
1835 	}
1836 
1837 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1838 
1839 	ASSERT(db->db_dirtycnt > 0);
1840 	db->db_dirtycnt -= 1;
1841 
1842 	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1843 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1844 		dbuf_destroy(db);
1845 		return (B_TRUE);
1846 	}
1847 
1848 	return (B_FALSE);
1849 }
1850 
1851 void
dmu_buf_will_dirty(dmu_buf_t * db_fake,dmu_tx_t * tx)1852 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1853 {
1854 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1855 	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1856 
1857 	ASSERT(tx->tx_txg != 0);
1858 	ASSERT(!refcount_is_zero(&db->db_holds));
1859 
1860 	/*
1861 	 * Quick check for dirtyness.  For already dirty blocks, this
1862 	 * reduces runtime of this function by >90%, and overall performance
1863 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1864 	 * cached).
1865 	 */
1866 	mutex_enter(&db->db_mtx);
1867 	dbuf_dirty_record_t *dr;
1868 	for (dr = db->db_last_dirty;
1869 	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1870 		/*
1871 		 * It's possible that it is already dirty but not cached,
1872 		 * because there are some calls to dbuf_dirty() that don't
1873 		 * go through dmu_buf_will_dirty().
1874 		 */
1875 		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1876 			/* This dbuf is already dirty and cached. */
1877 			dbuf_redirty(dr);
1878 			mutex_exit(&db->db_mtx);
1879 			return;
1880 		}
1881 	}
1882 	mutex_exit(&db->db_mtx);
1883 
1884 	DB_DNODE_ENTER(db);
1885 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1886 		rf |= DB_RF_HAVESTRUCT;
1887 	DB_DNODE_EXIT(db);
1888 	(void) dbuf_read(db, NULL, rf);
1889 	(void) dbuf_dirty(db, tx);
1890 }
1891 
1892 void
dmu_buf_will_not_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)1893 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1894 {
1895 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1896 
1897 	db->db_state = DB_NOFILL;
1898 
1899 	dmu_buf_will_fill(db_fake, tx);
1900 }
1901 
1902 void
dmu_buf_will_fill(dmu_buf_t * db_fake,dmu_tx_t * tx)1903 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1904 {
1905 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1906 
1907 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1908 	ASSERT(tx->tx_txg != 0);
1909 	ASSERT(db->db_level == 0);
1910 	ASSERT(!refcount_is_zero(&db->db_holds));
1911 
1912 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1913 	    dmu_tx_private_ok(tx));
1914 
1915 	dbuf_noread(db);
1916 	(void) dbuf_dirty(db, tx);
1917 }
1918 
1919 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1920 /* ARGSUSED */
1921 void
dbuf_fill_done(dmu_buf_impl_t * db,dmu_tx_t * tx)1922 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1923 {
1924 	mutex_enter(&db->db_mtx);
1925 	DBUF_VERIFY(db);
1926 
1927 	if (db->db_state == DB_FILL) {
1928 		if (db->db_level == 0 && db->db_freed_in_flight) {
1929 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1930 			/* we were freed while filling */
1931 			/* XXX dbuf_undirty? */
1932 			bzero(db->db.db_data, db->db.db_size);
1933 			db->db_freed_in_flight = FALSE;
1934 		}
1935 		db->db_state = DB_CACHED;
1936 		cv_broadcast(&db->db_changed);
1937 	}
1938 	mutex_exit(&db->db_mtx);
1939 }
1940 
1941 void
dmu_buf_write_embedded(dmu_buf_t * dbuf,void * data,bp_embedded_type_t etype,enum zio_compress comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1942 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1943     bp_embedded_type_t etype, enum zio_compress comp,
1944     int uncompressed_size, int compressed_size, int byteorder,
1945     dmu_tx_t *tx)
1946 {
1947 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1948 	struct dirty_leaf *dl;
1949 	dmu_object_type_t type;
1950 
1951 	if (etype == BP_EMBEDDED_TYPE_DATA) {
1952 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1953 		    SPA_FEATURE_EMBEDDED_DATA));
1954 	}
1955 
1956 	DB_DNODE_ENTER(db);
1957 	type = DB_DNODE(db)->dn_type;
1958 	DB_DNODE_EXIT(db);
1959 
1960 	ASSERT0(db->db_level);
1961 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1962 
1963 	dmu_buf_will_not_fill(dbuf, tx);
1964 
1965 	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1966 	dl = &db->db_last_dirty->dt.dl;
1967 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1968 	    data, comp, uncompressed_size, compressed_size);
1969 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1970 	BP_SET_TYPE(&dl->dr_overridden_by, type);
1971 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1972 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1973 
1974 	dl->dr_override_state = DR_OVERRIDDEN;
1975 	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1976 }
1977 
1978 /*
1979  * Directly assign a provided arc buf to a given dbuf if it's not referenced
1980  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1981  */
1982 void
dbuf_assign_arcbuf(dmu_buf_impl_t * db,arc_buf_t * buf,dmu_tx_t * tx)1983 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1984 {
1985 	ASSERT(!refcount_is_zero(&db->db_holds));
1986 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1987 	ASSERT(db->db_level == 0);
1988 	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1989 	ASSERT(buf != NULL);
1990 	ASSERT(arc_buf_size(buf) == db->db.db_size);
1991 	ASSERT(tx->tx_txg != 0);
1992 
1993 	arc_return_buf(buf, db);
1994 	ASSERT(arc_released(buf));
1995 
1996 	mutex_enter(&db->db_mtx);
1997 
1998 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1999 		cv_wait(&db->db_changed, &db->db_mtx);
2000 
2001 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2002 
2003 	if (db->db_state == DB_CACHED &&
2004 	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2005 		mutex_exit(&db->db_mtx);
2006 		(void) dbuf_dirty(db, tx);
2007 		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2008 		arc_buf_destroy(buf, db);
2009 		xuio_stat_wbuf_copied();
2010 		return;
2011 	}
2012 
2013 	xuio_stat_wbuf_nocopy();
2014 	if (db->db_state == DB_CACHED) {
2015 		dbuf_dirty_record_t *dr = db->db_last_dirty;
2016 
2017 		ASSERT(db->db_buf != NULL);
2018 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2019 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2020 			if (!arc_released(db->db_buf)) {
2021 				ASSERT(dr->dt.dl.dr_override_state ==
2022 				    DR_OVERRIDDEN);
2023 				arc_release(db->db_buf, db);
2024 			}
2025 			dr->dt.dl.dr_data = buf;
2026 			arc_buf_destroy(db->db_buf, db);
2027 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2028 			arc_release(db->db_buf, db);
2029 			arc_buf_destroy(db->db_buf, db);
2030 		}
2031 		db->db_buf = NULL;
2032 	}
2033 	ASSERT(db->db_buf == NULL);
2034 	dbuf_set_data(db, buf);
2035 	db->db_state = DB_FILL;
2036 	mutex_exit(&db->db_mtx);
2037 	(void) dbuf_dirty(db, tx);
2038 	dmu_buf_fill_done(&db->db, tx);
2039 }
2040 
2041 void
dbuf_destroy(dmu_buf_impl_t * db)2042 dbuf_destroy(dmu_buf_impl_t *db)
2043 {
2044 	dnode_t *dn;
2045 	dmu_buf_impl_t *parent = db->db_parent;
2046 	dmu_buf_impl_t *dndb;
2047 
2048 	ASSERT(MUTEX_HELD(&db->db_mtx));
2049 	ASSERT(refcount_is_zero(&db->db_holds));
2050 
2051 	if (db->db_buf != NULL) {
2052 		arc_buf_destroy(db->db_buf, db);
2053 		db->db_buf = NULL;
2054 	}
2055 
2056 	if (db->db_blkid == DMU_BONUS_BLKID) {
2057 		ASSERT(db->db.db_data != NULL);
2058 		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2059 		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2060 		db->db_state = DB_UNCACHED;
2061 	}
2062 
2063 	dbuf_clear_data(db);
2064 
2065 	if (multilist_link_active(&db->db_cache_link)) {
2066 		multilist_remove(&dbuf_cache, db);
2067 		(void) refcount_remove_many(&dbuf_cache_size,
2068 		    db->db.db_size, db);
2069 	}
2070 
2071 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2072 	ASSERT(db->db_data_pending == NULL);
2073 
2074 	db->db_state = DB_EVICTING;
2075 	db->db_blkptr = NULL;
2076 
2077 	/*
2078 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2079 	 * the hash table.  We can now drop db_mtx, which allows us to
2080 	 * acquire the dn_dbufs_mtx.
2081 	 */
2082 	mutex_exit(&db->db_mtx);
2083 
2084 	DB_DNODE_ENTER(db);
2085 	dn = DB_DNODE(db);
2086 	dndb = dn->dn_dbuf;
2087 	if (db->db_blkid != DMU_BONUS_BLKID) {
2088 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2089 		if (needlock)
2090 			mutex_enter(&dn->dn_dbufs_mtx);
2091 		avl_remove(&dn->dn_dbufs, db);
2092 		atomic_dec_32(&dn->dn_dbufs_count);
2093 		membar_producer();
2094 		DB_DNODE_EXIT(db);
2095 		if (needlock)
2096 			mutex_exit(&dn->dn_dbufs_mtx);
2097 		/*
2098 		 * Decrementing the dbuf count means that the hold corresponding
2099 		 * to the removed dbuf is no longer discounted in dnode_move(),
2100 		 * so the dnode cannot be moved until after we release the hold.
2101 		 * The membar_producer() ensures visibility of the decremented
2102 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2103 		 * release any lock.
2104 		 */
2105 		dnode_rele(dn, db);
2106 		db->db_dnode_handle = NULL;
2107 
2108 		dbuf_hash_remove(db);
2109 	} else {
2110 		DB_DNODE_EXIT(db);
2111 	}
2112 
2113 	ASSERT(refcount_is_zero(&db->db_holds));
2114 
2115 	db->db_parent = NULL;
2116 
2117 	ASSERT(db->db_buf == NULL);
2118 	ASSERT(db->db.db_data == NULL);
2119 	ASSERT(db->db_hash_next == NULL);
2120 	ASSERT(db->db_blkptr == NULL);
2121 	ASSERT(db->db_data_pending == NULL);
2122 	ASSERT(!multilist_link_active(&db->db_cache_link));
2123 
2124 	kmem_cache_free(dbuf_kmem_cache, db);
2125 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2126 
2127 	/*
2128 	 * If this dbuf is referenced from an indirect dbuf,
2129 	 * decrement the ref count on the indirect dbuf.
2130 	 */
2131 	if (parent && parent != dndb)
2132 		dbuf_rele(parent, db);
2133 }
2134 
2135 /*
2136  * Note: While bpp will always be updated if the function returns success,
2137  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2138  * this happens when the dnode is the meta-dnode, or a userused or groupused
2139  * object.
2140  */
2141 static int
dbuf_findbp(dnode_t * dn,int level,uint64_t blkid,int fail_sparse,dmu_buf_impl_t ** parentp,blkptr_t ** bpp)2142 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2143     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2144 {
2145 	int nlevels, epbs;
2146 
2147 	*parentp = NULL;
2148 	*bpp = NULL;
2149 
2150 	ASSERT(blkid != DMU_BONUS_BLKID);
2151 
2152 	if (blkid == DMU_SPILL_BLKID) {
2153 		mutex_enter(&dn->dn_mtx);
2154 		if (dn->dn_have_spill &&
2155 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2156 			*bpp = &dn->dn_phys->dn_spill;
2157 		else
2158 			*bpp = NULL;
2159 		dbuf_add_ref(dn->dn_dbuf, NULL);
2160 		*parentp = dn->dn_dbuf;
2161 		mutex_exit(&dn->dn_mtx);
2162 		return (0);
2163 	}
2164 
2165 	if (dn->dn_phys->dn_nlevels == 0)
2166 		nlevels = 1;
2167 	else
2168 		nlevels = dn->dn_phys->dn_nlevels;
2169 
2170 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2171 
2172 	ASSERT3U(level * epbs, <, 64);
2173 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2174 	if (level >= nlevels ||
2175 	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2176 		/* the buffer has no parent yet */
2177 		return (SET_ERROR(ENOENT));
2178 	} else if (level < nlevels-1) {
2179 		/* this block is referenced from an indirect block */
2180 		int err = dbuf_hold_impl(dn, level+1,
2181 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2182 		if (err)
2183 			return (err);
2184 		err = dbuf_read(*parentp, NULL,
2185 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2186 		if (err) {
2187 			dbuf_rele(*parentp, NULL);
2188 			*parentp = NULL;
2189 			return (err);
2190 		}
2191 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2192 		    (blkid & ((1ULL << epbs) - 1));
2193 		return (0);
2194 	} else {
2195 		/* the block is referenced from the dnode */
2196 		ASSERT3U(level, ==, nlevels-1);
2197 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2198 		    blkid < dn->dn_phys->dn_nblkptr);
2199 		if (dn->dn_dbuf) {
2200 			dbuf_add_ref(dn->dn_dbuf, NULL);
2201 			*parentp = dn->dn_dbuf;
2202 		}
2203 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2204 		return (0);
2205 	}
2206 }
2207 
2208 static dmu_buf_impl_t *
dbuf_create(dnode_t * dn,uint8_t level,uint64_t blkid,dmu_buf_impl_t * parent,blkptr_t * blkptr)2209 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2210     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2211 {
2212 	objset_t *os = dn->dn_objset;
2213 	dmu_buf_impl_t *db, *odb;
2214 
2215 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2216 	ASSERT(dn->dn_type != DMU_OT_NONE);
2217 
2218 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2219 
2220 	db->db_objset = os;
2221 	db->db.db_object = dn->dn_object;
2222 	db->db_level = level;
2223 	db->db_blkid = blkid;
2224 	db->db_last_dirty = NULL;
2225 	db->db_dirtycnt = 0;
2226 	db->db_dnode_handle = dn->dn_handle;
2227 	db->db_parent = parent;
2228 	db->db_blkptr = blkptr;
2229 
2230 	db->db_user = NULL;
2231 	db->db_user_immediate_evict = FALSE;
2232 	db->db_freed_in_flight = FALSE;
2233 	db->db_pending_evict = FALSE;
2234 
2235 	if (blkid == DMU_BONUS_BLKID) {
2236 		ASSERT3P(parent, ==, dn->dn_dbuf);
2237 		db->db.db_size = DN_MAX_BONUSLEN -
2238 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2239 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2240 		db->db.db_offset = DMU_BONUS_BLKID;
2241 		db->db_state = DB_UNCACHED;
2242 		/* the bonus dbuf is not placed in the hash table */
2243 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2244 		return (db);
2245 	} else if (blkid == DMU_SPILL_BLKID) {
2246 		db->db.db_size = (blkptr != NULL) ?
2247 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2248 		db->db.db_offset = 0;
2249 	} else {
2250 		int blocksize =
2251 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2252 		db->db.db_size = blocksize;
2253 		db->db.db_offset = db->db_blkid * blocksize;
2254 	}
2255 
2256 	/*
2257 	 * Hold the dn_dbufs_mtx while we get the new dbuf
2258 	 * in the hash table *and* added to the dbufs list.
2259 	 * This prevents a possible deadlock with someone
2260 	 * trying to look up this dbuf before its added to the
2261 	 * dn_dbufs list.
2262 	 */
2263 	mutex_enter(&dn->dn_dbufs_mtx);
2264 	db->db_state = DB_EVICTING;
2265 	if ((odb = dbuf_hash_insert(db)) != NULL) {
2266 		/* someone else inserted it first */
2267 		kmem_cache_free(dbuf_kmem_cache, db);
2268 		mutex_exit(&dn->dn_dbufs_mtx);
2269 		return (odb);
2270 	}
2271 	avl_add(&dn->dn_dbufs, db);
2272 
2273 	db->db_state = DB_UNCACHED;
2274 	mutex_exit(&dn->dn_dbufs_mtx);
2275 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2276 
2277 	if (parent && parent != dn->dn_dbuf)
2278 		dbuf_add_ref(parent, db);
2279 
2280 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2281 	    refcount_count(&dn->dn_holds) > 0);
2282 	(void) refcount_add(&dn->dn_holds, db);
2283 	atomic_inc_32(&dn->dn_dbufs_count);
2284 
2285 	dprintf_dbuf(db, "db=%p\n", db);
2286 
2287 	return (db);
2288 }
2289 
2290 typedef struct dbuf_prefetch_arg {
2291 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2292 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2293 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2294 	int dpa_curlevel; /* The current level that we're reading */
2295 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2296 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2297 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2298 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2299 } dbuf_prefetch_arg_t;
2300 
2301 /*
2302  * Actually issue the prefetch read for the block given.
2303  */
2304 static void
dbuf_issue_final_prefetch(dbuf_prefetch_arg_t * dpa,blkptr_t * bp)2305 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2306 {
2307 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2308 		return;
2309 
2310 	arc_flags_t aflags =
2311 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2312 
2313 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2314 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2315 	ASSERT(dpa->dpa_zio != NULL);
2316 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2317 	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2318 	    &aflags, &dpa->dpa_zb);
2319 }
2320 
2321 /*
2322  * Called when an indirect block above our prefetch target is read in.  This
2323  * will either read in the next indirect block down the tree or issue the actual
2324  * prefetch if the next block down is our target.
2325  */
2326 static void
dbuf_prefetch_indirect_done(zio_t * zio,arc_buf_t * abuf,void * private)2327 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2328 {
2329 	dbuf_prefetch_arg_t *dpa = private;
2330 
2331 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2332 	ASSERT3S(dpa->dpa_curlevel, >, 0);
2333 
2334 	/*
2335 	 * The dpa_dnode is only valid if we are called with a NULL
2336 	 * zio. This indicates that the arc_read() returned without
2337 	 * first calling zio_read() to issue a physical read. Once
2338 	 * a physical read is made the dpa_dnode must be invalidated
2339 	 * as the locks guarding it may have been dropped. If the
2340 	 * dpa_dnode is still valid, then we want to add it to the dbuf
2341 	 * cache. To do so, we must hold the dbuf associated with the block
2342 	 * we just prefetched, read its contents so that we associate it
2343 	 * with an arc_buf_t, and then release it.
2344 	 */
2345 	if (zio != NULL) {
2346 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2347 		if (zio->io_flags & ZIO_FLAG_RAW) {
2348 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2349 		} else {
2350 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2351 		}
2352 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2353 
2354 		dpa->dpa_dnode = NULL;
2355 	} else if (dpa->dpa_dnode != NULL) {
2356 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2357 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2358 		    dpa->dpa_zb.zb_level));
2359 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2360 		    dpa->dpa_curlevel, curblkid, FTAG);
2361 		(void) dbuf_read(db, NULL,
2362 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2363 		dbuf_rele(db, FTAG);
2364 	}
2365 
2366 	dpa->dpa_curlevel--;
2367 
2368 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2369 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2370 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2371 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2372 	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2373 		kmem_free(dpa, sizeof (*dpa));
2374 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2375 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2376 		dbuf_issue_final_prefetch(dpa, bp);
2377 		kmem_free(dpa, sizeof (*dpa));
2378 	} else {
2379 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2380 		zbookmark_phys_t zb;
2381 
2382 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2383 
2384 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2385 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2386 
2387 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2388 		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2389 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2390 		    &iter_aflags, &zb);
2391 	}
2392 
2393 	arc_buf_destroy(abuf, private);
2394 }
2395 
2396 /*
2397  * Issue prefetch reads for the given block on the given level.  If the indirect
2398  * blocks above that block are not in memory, we will read them in
2399  * asynchronously.  As a result, this call never blocks waiting for a read to
2400  * complete.
2401  */
2402 void
dbuf_prefetch(dnode_t * dn,int64_t level,uint64_t blkid,zio_priority_t prio,arc_flags_t aflags)2403 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2404     arc_flags_t aflags)
2405 {
2406 	blkptr_t bp;
2407 	int epbs, nlevels, curlevel;
2408 	uint64_t curblkid;
2409 
2410 	ASSERT(blkid != DMU_BONUS_BLKID);
2411 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2412 
2413 	if (blkid > dn->dn_maxblkid)
2414 		return;
2415 
2416 	if (dnode_block_freed(dn, blkid))
2417 		return;
2418 
2419 	/*
2420 	 * This dnode hasn't been written to disk yet, so there's nothing to
2421 	 * prefetch.
2422 	 */
2423 	nlevels = dn->dn_phys->dn_nlevels;
2424 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2425 		return;
2426 
2427 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2428 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2429 		return;
2430 
2431 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2432 	    level, blkid);
2433 	if (db != NULL) {
2434 		mutex_exit(&db->db_mtx);
2435 		/*
2436 		 * This dbuf already exists.  It is either CACHED, or
2437 		 * (we assume) about to be read or filled.
2438 		 */
2439 		return;
2440 	}
2441 
2442 	/*
2443 	 * Find the closest ancestor (indirect block) of the target block
2444 	 * that is present in the cache.  In this indirect block, we will
2445 	 * find the bp that is at curlevel, curblkid.
2446 	 */
2447 	curlevel = level;
2448 	curblkid = blkid;
2449 	while (curlevel < nlevels - 1) {
2450 		int parent_level = curlevel + 1;
2451 		uint64_t parent_blkid = curblkid >> epbs;
2452 		dmu_buf_impl_t *db;
2453 
2454 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2455 		    FALSE, TRUE, FTAG, &db) == 0) {
2456 			blkptr_t *bpp = db->db_buf->b_data;
2457 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2458 			dbuf_rele(db, FTAG);
2459 			break;
2460 		}
2461 
2462 		curlevel = parent_level;
2463 		curblkid = parent_blkid;
2464 	}
2465 
2466 	if (curlevel == nlevels - 1) {
2467 		/* No cached indirect blocks found. */
2468 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2469 		bp = dn->dn_phys->dn_blkptr[curblkid];
2470 	}
2471 	if (BP_IS_HOLE(&bp))
2472 		return;
2473 
2474 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2475 
2476 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2477 	    ZIO_FLAG_CANFAIL);
2478 
2479 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2480 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2481 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2482 	    dn->dn_object, level, blkid);
2483 	dpa->dpa_curlevel = curlevel;
2484 	dpa->dpa_prio = prio;
2485 	dpa->dpa_aflags = aflags;
2486 	dpa->dpa_spa = dn->dn_objset->os_spa;
2487 	dpa->dpa_dnode = dn;
2488 	dpa->dpa_epbs = epbs;
2489 	dpa->dpa_zio = pio;
2490 
2491 	/*
2492 	 * If we have the indirect just above us, no need to do the asynchronous
2493 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2494 	 * a higher level, though, we want to issue the prefetches for all the
2495 	 * indirect blocks asynchronously, so we can go on with whatever we were
2496 	 * doing.
2497 	 */
2498 	if (curlevel == level) {
2499 		ASSERT3U(curblkid, ==, blkid);
2500 		dbuf_issue_final_prefetch(dpa, &bp);
2501 		kmem_free(dpa, sizeof (*dpa));
2502 	} else {
2503 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2504 		zbookmark_phys_t zb;
2505 
2506 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2507 		    dn->dn_object, curlevel, curblkid);
2508 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2509 		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2510 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2511 		    &iter_aflags, &zb);
2512 	}
2513 	/*
2514 	 * We use pio here instead of dpa_zio since it's possible that
2515 	 * dpa may have already been freed.
2516 	 */
2517 	zio_nowait(pio);
2518 }
2519 
2520 /*
2521  * Returns with db_holds incremented, and db_mtx not held.
2522  * Note: dn_struct_rwlock must be held.
2523  */
2524 int
dbuf_hold_impl(dnode_t * dn,uint8_t level,uint64_t blkid,boolean_t fail_sparse,boolean_t fail_uncached,void * tag,dmu_buf_impl_t ** dbp)2525 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2526     boolean_t fail_sparse, boolean_t fail_uncached,
2527     void *tag, dmu_buf_impl_t **dbp)
2528 {
2529 	dmu_buf_impl_t *db, *parent = NULL;
2530 
2531 	ASSERT(blkid != DMU_BONUS_BLKID);
2532 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2533 	ASSERT3U(dn->dn_nlevels, >, level);
2534 
2535 	*dbp = NULL;
2536 top:
2537 	/* dbuf_find() returns with db_mtx held */
2538 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2539 
2540 	if (db == NULL) {
2541 		blkptr_t *bp = NULL;
2542 		int err;
2543 
2544 		if (fail_uncached)
2545 			return (SET_ERROR(ENOENT));
2546 
2547 		ASSERT3P(parent, ==, NULL);
2548 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2549 		if (fail_sparse) {
2550 			if (err == 0 && bp && BP_IS_HOLE(bp))
2551 				err = SET_ERROR(ENOENT);
2552 			if (err) {
2553 				if (parent)
2554 					dbuf_rele(parent, NULL);
2555 				return (err);
2556 			}
2557 		}
2558 		if (err && err != ENOENT)
2559 			return (err);
2560 		db = dbuf_create(dn, level, blkid, parent, bp);
2561 	}
2562 
2563 	if (fail_uncached && db->db_state != DB_CACHED) {
2564 		mutex_exit(&db->db_mtx);
2565 		return (SET_ERROR(ENOENT));
2566 	}
2567 
2568 	if (db->db_buf != NULL)
2569 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2570 
2571 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2572 
2573 	/*
2574 	 * If this buffer is currently syncing out, and we are are
2575 	 * still referencing it from db_data, we need to make a copy
2576 	 * of it in case we decide we want to dirty it again in this txg.
2577 	 */
2578 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2579 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2580 	    db->db_state == DB_CACHED && db->db_data_pending) {
2581 		dbuf_dirty_record_t *dr = db->db_data_pending;
2582 
2583 		if (dr->dt.dl.dr_data == db->db_buf) {
2584 			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2585 
2586 			dbuf_set_data(db,
2587 			    arc_alloc_buf(dn->dn_objset->os_spa,
2588 			    db->db.db_size, db, type));
2589 			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2590 			    db->db.db_size);
2591 		}
2592 	}
2593 
2594 	if (multilist_link_active(&db->db_cache_link)) {
2595 		ASSERT(refcount_is_zero(&db->db_holds));
2596 		multilist_remove(&dbuf_cache, db);
2597 		(void) refcount_remove_many(&dbuf_cache_size,
2598 		    db->db.db_size, db);
2599 	}
2600 	(void) refcount_add(&db->db_holds, tag);
2601 	DBUF_VERIFY(db);
2602 	mutex_exit(&db->db_mtx);
2603 
2604 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2605 	if (parent)
2606 		dbuf_rele(parent, NULL);
2607 
2608 	ASSERT3P(DB_DNODE(db), ==, dn);
2609 	ASSERT3U(db->db_blkid, ==, blkid);
2610 	ASSERT3U(db->db_level, ==, level);
2611 	*dbp = db;
2612 
2613 	return (0);
2614 }
2615 
2616 dmu_buf_impl_t *
dbuf_hold(dnode_t * dn,uint64_t blkid,void * tag)2617 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2618 {
2619 	return (dbuf_hold_level(dn, 0, blkid, tag));
2620 }
2621 
2622 dmu_buf_impl_t *
dbuf_hold_level(dnode_t * dn,int level,uint64_t blkid,void * tag)2623 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2624 {
2625 	dmu_buf_impl_t *db;
2626 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2627 	return (err ? NULL : db);
2628 }
2629 
2630 void
dbuf_create_bonus(dnode_t * dn)2631 dbuf_create_bonus(dnode_t *dn)
2632 {
2633 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2634 
2635 	ASSERT(dn->dn_bonus == NULL);
2636 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2637 }
2638 
2639 int
dbuf_spill_set_blksz(dmu_buf_t * db_fake,uint64_t blksz,dmu_tx_t * tx)2640 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2641 {
2642 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2643 	dnode_t *dn;
2644 
2645 	if (db->db_blkid != DMU_SPILL_BLKID)
2646 		return (SET_ERROR(ENOTSUP));
2647 	if (blksz == 0)
2648 		blksz = SPA_MINBLOCKSIZE;
2649 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2650 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2651 
2652 	DB_DNODE_ENTER(db);
2653 	dn = DB_DNODE(db);
2654 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2655 	dbuf_new_size(db, blksz, tx);
2656 	rw_exit(&dn->dn_struct_rwlock);
2657 	DB_DNODE_EXIT(db);
2658 
2659 	return (0);
2660 }
2661 
2662 void
dbuf_rm_spill(dnode_t * dn,dmu_tx_t * tx)2663 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2664 {
2665 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2666 }
2667 
2668 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2669 void
dbuf_add_ref(dmu_buf_impl_t * db,void * tag)2670 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2671 {
2672 	int64_t holds = refcount_add(&db->db_holds, tag);
2673 	ASSERT3S(holds, >, 1);
2674 }
2675 
2676 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2677 boolean_t
dbuf_try_add_ref(dmu_buf_t * db_fake,objset_t * os,uint64_t obj,uint64_t blkid,void * tag)2678 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2679     void *tag)
2680 {
2681 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2682 	dmu_buf_impl_t *found_db;
2683 	boolean_t result = B_FALSE;
2684 
2685 	if (db->db_blkid == DMU_BONUS_BLKID)
2686 		found_db = dbuf_find_bonus(os, obj);
2687 	else
2688 		found_db = dbuf_find(os, obj, 0, blkid);
2689 
2690 	if (found_db != NULL) {
2691 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2692 			(void) refcount_add(&db->db_holds, tag);
2693 			result = B_TRUE;
2694 		}
2695 		mutex_exit(&db->db_mtx);
2696 	}
2697 	return (result);
2698 }
2699 
2700 /*
2701  * If you call dbuf_rele() you had better not be referencing the dnode handle
2702  * unless you have some other direct or indirect hold on the dnode. (An indirect
2703  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2704  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2705  * dnode's parent dbuf evicting its dnode handles.
2706  */
2707 void
dbuf_rele(dmu_buf_impl_t * db,void * tag)2708 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2709 {
2710 	mutex_enter(&db->db_mtx);
2711 	dbuf_rele_and_unlock(db, tag);
2712 }
2713 
2714 void
dmu_buf_rele(dmu_buf_t * db,void * tag)2715 dmu_buf_rele(dmu_buf_t *db, void *tag)
2716 {
2717 	dbuf_rele((dmu_buf_impl_t *)db, tag);
2718 }
2719 
2720 /*
2721  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2722  * db_dirtycnt and db_holds to be updated atomically.
2723  */
2724 void
dbuf_rele_and_unlock(dmu_buf_impl_t * db,void * tag)2725 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2726 {
2727 	int64_t holds;
2728 
2729 	ASSERT(MUTEX_HELD(&db->db_mtx));
2730 	DBUF_VERIFY(db);
2731 
2732 	/*
2733 	 * Remove the reference to the dbuf before removing its hold on the
2734 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2735 	 * buffer has a corresponding dnode hold.
2736 	 */
2737 	holds = refcount_remove(&db->db_holds, tag);
2738 	ASSERT(holds >= 0);
2739 
2740 	/*
2741 	 * We can't freeze indirects if there is a possibility that they
2742 	 * may be modified in the current syncing context.
2743 	 */
2744 	if (db->db_buf != NULL &&
2745 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2746 		arc_buf_freeze(db->db_buf);
2747 	}
2748 
2749 	if (holds == db->db_dirtycnt &&
2750 	    db->db_level == 0 && db->db_user_immediate_evict)
2751 		dbuf_evict_user(db);
2752 
2753 	if (holds == 0) {
2754 		if (db->db_blkid == DMU_BONUS_BLKID) {
2755 			dnode_t *dn;
2756 			boolean_t evict_dbuf = db->db_pending_evict;
2757 
2758 			/*
2759 			 * If the dnode moves here, we cannot cross this
2760 			 * barrier until the move completes.
2761 			 */
2762 			DB_DNODE_ENTER(db);
2763 
2764 			dn = DB_DNODE(db);
2765 			atomic_dec_32(&dn->dn_dbufs_count);
2766 
2767 			/*
2768 			 * Decrementing the dbuf count means that the bonus
2769 			 * buffer's dnode hold is no longer discounted in
2770 			 * dnode_move(). The dnode cannot move until after
2771 			 * the dnode_rele() below.
2772 			 */
2773 			DB_DNODE_EXIT(db);
2774 
2775 			/*
2776 			 * Do not reference db after its lock is dropped.
2777 			 * Another thread may evict it.
2778 			 */
2779 			mutex_exit(&db->db_mtx);
2780 
2781 			if (evict_dbuf)
2782 				dnode_evict_bonus(dn);
2783 
2784 			dnode_rele(dn, db);
2785 		} else if (db->db_buf == NULL) {
2786 			/*
2787 			 * This is a special case: we never associated this
2788 			 * dbuf with any data allocated from the ARC.
2789 			 */
2790 			ASSERT(db->db_state == DB_UNCACHED ||
2791 			    db->db_state == DB_NOFILL);
2792 			dbuf_destroy(db);
2793 		} else if (arc_released(db->db_buf)) {
2794 			/*
2795 			 * This dbuf has anonymous data associated with it.
2796 			 */
2797 			dbuf_destroy(db);
2798 		} else {
2799 			boolean_t do_arc_evict = B_FALSE;
2800 			blkptr_t bp;
2801 			spa_t *spa = dmu_objset_spa(db->db_objset);
2802 
2803 			if (!DBUF_IS_CACHEABLE(db) &&
2804 			    db->db_blkptr != NULL &&
2805 			    !BP_IS_HOLE(db->db_blkptr) &&
2806 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2807 				do_arc_evict = B_TRUE;
2808 				bp = *db->db_blkptr;
2809 			}
2810 
2811 			if (!DBUF_IS_CACHEABLE(db) ||
2812 			    db->db_pending_evict) {
2813 				dbuf_destroy(db);
2814 			} else if (!multilist_link_active(&db->db_cache_link)) {
2815 				multilist_insert(&dbuf_cache, db);
2816 				(void) refcount_add_many(&dbuf_cache_size,
2817 				    db->db.db_size, db);
2818 				mutex_exit(&db->db_mtx);
2819 
2820 				dbuf_evict_notify();
2821 			}
2822 
2823 			if (do_arc_evict)
2824 				arc_freed(spa, &bp);
2825 		}
2826 	} else {
2827 		mutex_exit(&db->db_mtx);
2828 	}
2829 
2830 }
2831 
2832 #pragma weak dmu_buf_refcount = dbuf_refcount
2833 uint64_t
dbuf_refcount(dmu_buf_impl_t * db)2834 dbuf_refcount(dmu_buf_impl_t *db)
2835 {
2836 	return (refcount_count(&db->db_holds));
2837 }
2838 
2839 void *
dmu_buf_replace_user(dmu_buf_t * db_fake,dmu_buf_user_t * old_user,dmu_buf_user_t * new_user)2840 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2841     dmu_buf_user_t *new_user)
2842 {
2843 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2844 
2845 	mutex_enter(&db->db_mtx);
2846 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2847 	if (db->db_user == old_user)
2848 		db->db_user = new_user;
2849 	else
2850 		old_user = db->db_user;
2851 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2852 	mutex_exit(&db->db_mtx);
2853 
2854 	return (old_user);
2855 }
2856 
2857 void *
dmu_buf_set_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)2858 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2859 {
2860 	return (dmu_buf_replace_user(db_fake, NULL, user));
2861 }
2862 
2863 void *
dmu_buf_set_user_ie(dmu_buf_t * db_fake,dmu_buf_user_t * user)2864 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2865 {
2866 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2867 
2868 	db->db_user_immediate_evict = TRUE;
2869 	return (dmu_buf_set_user(db_fake, user));
2870 }
2871 
2872 void *
dmu_buf_remove_user(dmu_buf_t * db_fake,dmu_buf_user_t * user)2873 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2874 {
2875 	return (dmu_buf_replace_user(db_fake, user, NULL));
2876 }
2877 
2878 void *
dmu_buf_get_user(dmu_buf_t * db_fake)2879 dmu_buf_get_user(dmu_buf_t *db_fake)
2880 {
2881 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2882 
2883 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2884 	return (db->db_user);
2885 }
2886 
2887 void
dmu_buf_user_evict_wait()2888 dmu_buf_user_evict_wait()
2889 {
2890 	taskq_wait(dbu_evict_taskq);
2891 }
2892 
2893 boolean_t
dmu_buf_freeable(dmu_buf_t * dbuf)2894 dmu_buf_freeable(dmu_buf_t *dbuf)
2895 {
2896 	boolean_t res = B_FALSE;
2897 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2898 
2899 	if (db->db_blkptr)
2900 		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2901 		    db->db_blkptr, db->db_blkptr->blk_birth);
2902 
2903 	return (res);
2904 }
2905 
2906 blkptr_t *
dmu_buf_get_blkptr(dmu_buf_t * db)2907 dmu_buf_get_blkptr(dmu_buf_t *db)
2908 {
2909 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2910 	return (dbi->db_blkptr);
2911 }
2912 
2913 objset_t *
dmu_buf_get_objset(dmu_buf_t * db)2914 dmu_buf_get_objset(dmu_buf_t *db)
2915 {
2916 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2917 	return (dbi->db_objset);
2918 }
2919 
2920 dnode_t *
dmu_buf_dnode_enter(dmu_buf_t * db)2921 dmu_buf_dnode_enter(dmu_buf_t *db)
2922 {
2923 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2924 	DB_DNODE_ENTER(dbi);
2925 	return (DB_DNODE(dbi));
2926 }
2927 
2928 void
dmu_buf_dnode_exit(dmu_buf_t * db)2929 dmu_buf_dnode_exit(dmu_buf_t *db)
2930 {
2931 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2932 	DB_DNODE_EXIT(dbi);
2933 }
2934 
2935 static void
dbuf_check_blkptr(dnode_t * dn,dmu_buf_impl_t * db)2936 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2937 {
2938 	/* ASSERT(dmu_tx_is_syncing(tx) */
2939 	ASSERT(MUTEX_HELD(&db->db_mtx));
2940 
2941 	if (db->db_blkptr != NULL)
2942 		return;
2943 
2944 	if (db->db_blkid == DMU_SPILL_BLKID) {
2945 		db->db_blkptr = &dn->dn_phys->dn_spill;
2946 		BP_ZERO(db->db_blkptr);
2947 		return;
2948 	}
2949 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2950 		/*
2951 		 * This buffer was allocated at a time when there was
2952 		 * no available blkptrs from the dnode, or it was
2953 		 * inappropriate to hook it in (i.e., nlevels mis-match).
2954 		 */
2955 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2956 		ASSERT(db->db_parent == NULL);
2957 		db->db_parent = dn->dn_dbuf;
2958 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2959 		DBUF_VERIFY(db);
2960 	} else {
2961 		dmu_buf_impl_t *parent = db->db_parent;
2962 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2963 
2964 		ASSERT(dn->dn_phys->dn_nlevels > 1);
2965 		if (parent == NULL) {
2966 			mutex_exit(&db->db_mtx);
2967 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2968 			parent = dbuf_hold_level(dn, db->db_level + 1,
2969 			    db->db_blkid >> epbs, db);
2970 			rw_exit(&dn->dn_struct_rwlock);
2971 			mutex_enter(&db->db_mtx);
2972 			db->db_parent = parent;
2973 		}
2974 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2975 		    (db->db_blkid & ((1ULL << epbs) - 1));
2976 		DBUF_VERIFY(db);
2977 	}
2978 }
2979 
2980 static void
dbuf_sync_indirect(dbuf_dirty_record_t * dr,dmu_tx_t * tx)2981 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2982 {
2983 	dmu_buf_impl_t *db = dr->dr_dbuf;
2984 	dnode_t *dn;
2985 	zio_t *zio;
2986 
2987 	ASSERT(dmu_tx_is_syncing(tx));
2988 
2989 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2990 
2991 	mutex_enter(&db->db_mtx);
2992 
2993 	ASSERT(db->db_level > 0);
2994 	DBUF_VERIFY(db);
2995 
2996 	/* Read the block if it hasn't been read yet. */
2997 	if (db->db_buf == NULL) {
2998 		mutex_exit(&db->db_mtx);
2999 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3000 		mutex_enter(&db->db_mtx);
3001 	}
3002 	ASSERT3U(db->db_state, ==, DB_CACHED);
3003 	ASSERT(db->db_buf != NULL);
3004 
3005 	DB_DNODE_ENTER(db);
3006 	dn = DB_DNODE(db);
3007 	/* Indirect block size must match what the dnode thinks it is. */
3008 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3009 	dbuf_check_blkptr(dn, db);
3010 	DB_DNODE_EXIT(db);
3011 
3012 	/* Provide the pending dirty record to child dbufs */
3013 	db->db_data_pending = dr;
3014 
3015 	mutex_exit(&db->db_mtx);
3016 	dbuf_write(dr, db->db_buf, tx);
3017 
3018 	zio = dr->dr_zio;
3019 	mutex_enter(&dr->dt.di.dr_mtx);
3020 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3021 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3022 	mutex_exit(&dr->dt.di.dr_mtx);
3023 	zio_nowait(zio);
3024 }
3025 
3026 static void
dbuf_sync_leaf(dbuf_dirty_record_t * dr,dmu_tx_t * tx)3027 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3028 {
3029 	arc_buf_t **datap = &dr->dt.dl.dr_data;
3030 	dmu_buf_impl_t *db = dr->dr_dbuf;
3031 	dnode_t *dn;
3032 	objset_t *os;
3033 	uint64_t txg = tx->tx_txg;
3034 
3035 	ASSERT(dmu_tx_is_syncing(tx));
3036 
3037 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3038 
3039 	mutex_enter(&db->db_mtx);
3040 	/*
3041 	 * To be synced, we must be dirtied.  But we
3042 	 * might have been freed after the dirty.
3043 	 */
3044 	if (db->db_state == DB_UNCACHED) {
3045 		/* This buffer has been freed since it was dirtied */
3046 		ASSERT(db->db.db_data == NULL);
3047 	} else if (db->db_state == DB_FILL) {
3048 		/* This buffer was freed and is now being re-filled */
3049 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3050 	} else {
3051 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3052 	}
3053 	DBUF_VERIFY(db);
3054 
3055 	DB_DNODE_ENTER(db);
3056 	dn = DB_DNODE(db);
3057 
3058 	if (db->db_blkid == DMU_SPILL_BLKID) {
3059 		mutex_enter(&dn->dn_mtx);
3060 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3061 		mutex_exit(&dn->dn_mtx);
3062 	}
3063 
3064 	/*
3065 	 * If this is a bonus buffer, simply copy the bonus data into the
3066 	 * dnode.  It will be written out when the dnode is synced (and it
3067 	 * will be synced, since it must have been dirty for dbuf_sync to
3068 	 * be called).
3069 	 */
3070 	if (db->db_blkid == DMU_BONUS_BLKID) {
3071 		dbuf_dirty_record_t **drp;
3072 
3073 		ASSERT(*datap != NULL);
3074 		ASSERT0(db->db_level);
3075 		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3076 		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3077 		DB_DNODE_EXIT(db);
3078 
3079 		if (*datap != db->db.db_data) {
3080 			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3081 			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3082 		}
3083 		db->db_data_pending = NULL;
3084 		drp = &db->db_last_dirty;
3085 		while (*drp != dr)
3086 			drp = &(*drp)->dr_next;
3087 		ASSERT(dr->dr_next == NULL);
3088 		ASSERT(dr->dr_dbuf == db);
3089 		*drp = dr->dr_next;
3090 		if (dr->dr_dbuf->db_level != 0) {
3091 			list_destroy(&dr->dt.di.dr_children);
3092 			mutex_destroy(&dr->dt.di.dr_mtx);
3093 		}
3094 		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3095 		ASSERT(db->db_dirtycnt > 0);
3096 		db->db_dirtycnt -= 1;
3097 		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3098 		return;
3099 	}
3100 
3101 	os = dn->dn_objset;
3102 
3103 	/*
3104 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3105 	 * operation to sneak in. As a result, we need to ensure that we
3106 	 * don't check the dr_override_state until we have returned from
3107 	 * dbuf_check_blkptr.
3108 	 */
3109 	dbuf_check_blkptr(dn, db);
3110 
3111 	/*
3112 	 * If this buffer is in the middle of an immediate write,
3113 	 * wait for the synchronous IO to complete.
3114 	 */
3115 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3116 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3117 		cv_wait(&db->db_changed, &db->db_mtx);
3118 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3119 	}
3120 
3121 	if (db->db_state != DB_NOFILL &&
3122 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3123 	    refcount_count(&db->db_holds) > 1 &&
3124 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3125 	    *datap == db->db_buf) {
3126 		/*
3127 		 * If this buffer is currently "in use" (i.e., there
3128 		 * are active holds and db_data still references it),
3129 		 * then make a copy before we start the write so that
3130 		 * any modifications from the open txg will not leak
3131 		 * into this write.
3132 		 *
3133 		 * NOTE: this copy does not need to be made for
3134 		 * objects only modified in the syncing context (e.g.
3135 		 * DNONE_DNODE blocks).
3136 		 */
3137 		int blksz = arc_buf_size(*datap);
3138 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3139 		*datap = arc_alloc_buf(os->os_spa, blksz, db, type);
3140 		bcopy(db->db.db_data, (*datap)->b_data, blksz);
3141 	}
3142 	db->db_data_pending = dr;
3143 
3144 	mutex_exit(&db->db_mtx);
3145 
3146 	dbuf_write(dr, *datap, tx);
3147 
3148 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3149 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3150 		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3151 		DB_DNODE_EXIT(db);
3152 	} else {
3153 		/*
3154 		 * Although zio_nowait() does not "wait for an IO", it does
3155 		 * initiate the IO. If this is an empty write it seems plausible
3156 		 * that the IO could actually be completed before the nowait
3157 		 * returns. We need to DB_DNODE_EXIT() first in case
3158 		 * zio_nowait() invalidates the dbuf.
3159 		 */
3160 		DB_DNODE_EXIT(db);
3161 		zio_nowait(dr->dr_zio);
3162 	}
3163 }
3164 
3165 void
dbuf_sync_list(list_t * list,int level,dmu_tx_t * tx)3166 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3167 {
3168 	dbuf_dirty_record_t *dr;
3169 
3170 	while (dr = list_head(list)) {
3171 		if (dr->dr_zio != NULL) {
3172 			/*
3173 			 * If we find an already initialized zio then we
3174 			 * are processing the meta-dnode, and we have finished.
3175 			 * The dbufs for all dnodes are put back on the list
3176 			 * during processing, so that we can zio_wait()
3177 			 * these IOs after initiating all child IOs.
3178 			 */
3179 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3180 			    DMU_META_DNODE_OBJECT);
3181 			break;
3182 		}
3183 		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3184 		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3185 			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3186 		}
3187 		list_remove(list, dr);
3188 		if (dr->dr_dbuf->db_level > 0)
3189 			dbuf_sync_indirect(dr, tx);
3190 		else
3191 			dbuf_sync_leaf(dr, tx);
3192 	}
3193 }
3194 
3195 /* ARGSUSED */
3196 static void
dbuf_write_ready(zio_t * zio,arc_buf_t * buf,void * vdb)3197 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3198 {
3199 	dmu_buf_impl_t *db = vdb;
3200 	dnode_t *dn;
3201 	blkptr_t *bp = zio->io_bp;
3202 	blkptr_t *bp_orig = &zio->io_bp_orig;
3203 	spa_t *spa = zio->io_spa;
3204 	int64_t delta;
3205 	uint64_t fill = 0;
3206 	int i;
3207 
3208 	ASSERT3P(db->db_blkptr, !=, NULL);
3209 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3210 
3211 	DB_DNODE_ENTER(db);
3212 	dn = DB_DNODE(db);
3213 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3214 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3215 	zio->io_prev_space_delta = delta;
3216 
3217 	if (bp->blk_birth != 0) {
3218 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3219 		    BP_GET_TYPE(bp) == dn->dn_type) ||
3220 		    (db->db_blkid == DMU_SPILL_BLKID &&
3221 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3222 		    BP_IS_EMBEDDED(bp));
3223 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3224 	}
3225 
3226 	mutex_enter(&db->db_mtx);
3227 
3228 #ifdef ZFS_DEBUG
3229 	if (db->db_blkid == DMU_SPILL_BLKID) {
3230 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3231 		ASSERT(!(BP_IS_HOLE(bp)) &&
3232 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3233 	}
3234 #endif
3235 
3236 	if (db->db_level == 0) {
3237 		mutex_enter(&dn->dn_mtx);
3238 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3239 		    db->db_blkid != DMU_SPILL_BLKID)
3240 			dn->dn_phys->dn_maxblkid = db->db_blkid;
3241 		mutex_exit(&dn->dn_mtx);
3242 
3243 		if (dn->dn_type == DMU_OT_DNODE) {
3244 			dnode_phys_t *dnp = db->db.db_data;
3245 			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3246 			    i--, dnp++) {
3247 				if (dnp->dn_type != DMU_OT_NONE)
3248 					fill++;
3249 			}
3250 		} else {
3251 			if (BP_IS_HOLE(bp)) {
3252 				fill = 0;
3253 			} else {
3254 				fill = 1;
3255 			}
3256 		}
3257 	} else {
3258 		blkptr_t *ibp = db->db.db_data;
3259 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3260 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3261 			if (BP_IS_HOLE(ibp))
3262 				continue;
3263 			fill += BP_GET_FILL(ibp);
3264 		}
3265 	}
3266 	DB_DNODE_EXIT(db);
3267 
3268 	if (!BP_IS_EMBEDDED(bp))
3269 		bp->blk_fill = fill;
3270 
3271 	mutex_exit(&db->db_mtx);
3272 
3273 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3274 	*db->db_blkptr = *bp;
3275 	rw_exit(&dn->dn_struct_rwlock);
3276 }
3277 
3278 /* ARGSUSED */
3279 /*
3280  * This function gets called just prior to running through the compression
3281  * stage of the zio pipeline. If we're an indirect block comprised of only
3282  * holes, then we want this indirect to be compressed away to a hole. In
3283  * order to do that we must zero out any information about the holes that
3284  * this indirect points to prior to before we try to compress it.
3285  */
3286 static void
dbuf_write_children_ready(zio_t * zio,arc_buf_t * buf,void * vdb)3287 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3288 {
3289 	dmu_buf_impl_t *db = vdb;
3290 	dnode_t *dn;
3291 	blkptr_t *bp;
3292 	uint64_t i;
3293 	int epbs;
3294 
3295 	ASSERT3U(db->db_level, >, 0);
3296 	DB_DNODE_ENTER(db);
3297 	dn = DB_DNODE(db);
3298 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3299 
3300 	/* Determine if all our children are holes */
3301 	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3302 		if (!BP_IS_HOLE(bp))
3303 			break;
3304 	}
3305 
3306 	/*
3307 	 * If all the children are holes, then zero them all out so that
3308 	 * we may get compressed away.
3309 	 */
3310 	if (i == 1 << epbs) {
3311 		/* didn't find any non-holes */
3312 		bzero(db->db.db_data, db->db.db_size);
3313 	}
3314 	DB_DNODE_EXIT(db);
3315 }
3316 
3317 /*
3318  * The SPA will call this callback several times for each zio - once
3319  * for every physical child i/o (zio->io_phys_children times).  This
3320  * allows the DMU to monitor the progress of each logical i/o.  For example,
3321  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3322  * block.  There may be a long delay before all copies/fragments are completed,
3323  * so this callback allows us to retire dirty space gradually, as the physical
3324  * i/os complete.
3325  */
3326 /* ARGSUSED */
3327 static void
dbuf_write_physdone(zio_t * zio,arc_buf_t * buf,void * arg)3328 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3329 {
3330 	dmu_buf_impl_t *db = arg;
3331 	objset_t *os = db->db_objset;
3332 	dsl_pool_t *dp = dmu_objset_pool(os);
3333 	dbuf_dirty_record_t *dr;
3334 	int delta = 0;
3335 
3336 	dr = db->db_data_pending;
3337 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3338 
3339 	/*
3340 	 * The callback will be called io_phys_children times.  Retire one
3341 	 * portion of our dirty space each time we are called.  Any rounding
3342 	 * error will be cleaned up by dsl_pool_sync()'s call to
3343 	 * dsl_pool_undirty_space().
3344 	 */
3345 	delta = dr->dr_accounted / zio->io_phys_children;
3346 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3347 }
3348 
3349 /* ARGSUSED */
3350 static void
dbuf_write_done(zio_t * zio,arc_buf_t * buf,void * vdb)3351 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3352 {
3353 	dmu_buf_impl_t *db = vdb;
3354 	blkptr_t *bp_orig = &zio->io_bp_orig;
3355 	blkptr_t *bp = db->db_blkptr;
3356 	objset_t *os = db->db_objset;
3357 	dmu_tx_t *tx = os->os_synctx;
3358 	dbuf_dirty_record_t **drp, *dr;
3359 
3360 	ASSERT0(zio->io_error);
3361 	ASSERT(db->db_blkptr == bp);
3362 
3363 	/*
3364 	 * For nopwrites and rewrites we ensure that the bp matches our
3365 	 * original and bypass all the accounting.
3366 	 */
3367 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3368 		ASSERT(BP_EQUAL(bp, bp_orig));
3369 	} else {
3370 		dsl_dataset_t *ds = os->os_dsl_dataset;
3371 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3372 		dsl_dataset_block_born(ds, bp, tx);
3373 	}
3374 
3375 	mutex_enter(&db->db_mtx);
3376 
3377 	DBUF_VERIFY(db);
3378 
3379 	drp = &db->db_last_dirty;
3380 	while ((dr = *drp) != db->db_data_pending)
3381 		drp = &dr->dr_next;
3382 	ASSERT(!list_link_active(&dr->dr_dirty_node));
3383 	ASSERT(dr->dr_dbuf == db);
3384 	ASSERT(dr->dr_next == NULL);
3385 	*drp = dr->dr_next;
3386 
3387 #ifdef ZFS_DEBUG
3388 	if (db->db_blkid == DMU_SPILL_BLKID) {
3389 		dnode_t *dn;
3390 
3391 		DB_DNODE_ENTER(db);
3392 		dn = DB_DNODE(db);
3393 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3394 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3395 		    db->db_blkptr == &dn->dn_phys->dn_spill);
3396 		DB_DNODE_EXIT(db);
3397 	}
3398 #endif
3399 
3400 	if (db->db_level == 0) {
3401 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3402 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3403 		if (db->db_state != DB_NOFILL) {
3404 			if (dr->dt.dl.dr_data != db->db_buf)
3405 				arc_buf_destroy(dr->dt.dl.dr_data, db);
3406 		}
3407 	} else {
3408 		dnode_t *dn;
3409 
3410 		DB_DNODE_ENTER(db);
3411 		dn = DB_DNODE(db);
3412 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3413 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3414 		if (!BP_IS_HOLE(db->db_blkptr)) {
3415 			int epbs =
3416 			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3417 			ASSERT3U(db->db_blkid, <=,
3418 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3419 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3420 			    db->db.db_size);
3421 		}
3422 		DB_DNODE_EXIT(db);
3423 		mutex_destroy(&dr->dt.di.dr_mtx);
3424 		list_destroy(&dr->dt.di.dr_children);
3425 	}
3426 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3427 
3428 	cv_broadcast(&db->db_changed);
3429 	ASSERT(db->db_dirtycnt > 0);
3430 	db->db_dirtycnt -= 1;
3431 	db->db_data_pending = NULL;
3432 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3433 }
3434 
3435 static void
dbuf_write_nofill_ready(zio_t * zio)3436 dbuf_write_nofill_ready(zio_t *zio)
3437 {
3438 	dbuf_write_ready(zio, NULL, zio->io_private);
3439 }
3440 
3441 static void
dbuf_write_nofill_done(zio_t * zio)3442 dbuf_write_nofill_done(zio_t *zio)
3443 {
3444 	dbuf_write_done(zio, NULL, zio->io_private);
3445 }
3446 
3447 static void
dbuf_write_override_ready(zio_t * zio)3448 dbuf_write_override_ready(zio_t *zio)
3449 {
3450 	dbuf_dirty_record_t *dr = zio->io_private;
3451 	dmu_buf_impl_t *db = dr->dr_dbuf;
3452 
3453 	dbuf_write_ready(zio, NULL, db);
3454 }
3455 
3456 static void
dbuf_write_override_done(zio_t * zio)3457 dbuf_write_override_done(zio_t *zio)
3458 {
3459 	dbuf_dirty_record_t *dr = zio->io_private;
3460 	dmu_buf_impl_t *db = dr->dr_dbuf;
3461 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3462 
3463 	mutex_enter(&db->db_mtx);
3464 	if (!BP_EQUAL(zio->io_bp, obp)) {
3465 		if (!BP_IS_HOLE(obp))
3466 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3467 		arc_release(dr->dt.dl.dr_data, db);
3468 	}
3469 	mutex_exit(&db->db_mtx);
3470 
3471 	dbuf_write_done(zio, NULL, db);
3472 }
3473 
3474 /* Issue I/O to commit a dirty buffer to disk. */
3475 static void
dbuf_write(dbuf_dirty_record_t * dr,arc_buf_t * data,dmu_tx_t * tx)3476 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3477 {
3478 	dmu_buf_impl_t *db = dr->dr_dbuf;
3479 	dnode_t *dn;
3480 	objset_t *os;
3481 	dmu_buf_impl_t *parent = db->db_parent;
3482 	uint64_t txg = tx->tx_txg;
3483 	zbookmark_phys_t zb;
3484 	zio_prop_t zp;
3485 	zio_t *zio;
3486 	int wp_flag = 0;
3487 
3488 	ASSERT(dmu_tx_is_syncing(tx));
3489 
3490 	DB_DNODE_ENTER(db);
3491 	dn = DB_DNODE(db);
3492 	os = dn->dn_objset;
3493 
3494 	if (db->db_state != DB_NOFILL) {
3495 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3496 			/*
3497 			 * Private object buffers are released here rather
3498 			 * than in dbuf_dirty() since they are only modified
3499 			 * in the syncing context and we don't want the
3500 			 * overhead of making multiple copies of the data.
3501 			 */
3502 			if (BP_IS_HOLE(db->db_blkptr)) {
3503 				arc_buf_thaw(data);
3504 			} else {
3505 				dbuf_release_bp(db);
3506 			}
3507 		}
3508 	}
3509 
3510 	if (parent != dn->dn_dbuf) {
3511 		/* Our parent is an indirect block. */
3512 		/* We have a dirty parent that has been scheduled for write. */
3513 		ASSERT(parent && parent->db_data_pending);
3514 		/* Our parent's buffer is one level closer to the dnode. */
3515 		ASSERT(db->db_level == parent->db_level-1);
3516 		/*
3517 		 * We're about to modify our parent's db_data by modifying
3518 		 * our block pointer, so the parent must be released.
3519 		 */
3520 		ASSERT(arc_released(parent->db_buf));
3521 		zio = parent->db_data_pending->dr_zio;
3522 	} else {
3523 		/* Our parent is the dnode itself. */
3524 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3525 		    db->db_blkid != DMU_SPILL_BLKID) ||
3526 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3527 		if (db->db_blkid != DMU_SPILL_BLKID)
3528 			ASSERT3P(db->db_blkptr, ==,
3529 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3530 		zio = dn->dn_zio;
3531 	}
3532 
3533 	ASSERT(db->db_level == 0 || data == db->db_buf);
3534 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3535 	ASSERT(zio);
3536 
3537 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3538 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3539 	    db->db.db_object, db->db_level, db->db_blkid);
3540 
3541 	if (db->db_blkid == DMU_SPILL_BLKID)
3542 		wp_flag = WP_SPILL;
3543 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3544 
3545 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3546 	DB_DNODE_EXIT(db);
3547 
3548 	/*
3549 	 * We copy the blkptr now (rather than when we instantiate the dirty
3550 	 * record), because its value can change between open context and
3551 	 * syncing context. We do not need to hold dn_struct_rwlock to read
3552 	 * db_blkptr because we are in syncing context.
3553 	 */
3554 	dr->dr_bp_copy = *db->db_blkptr;
3555 
3556 	if (db->db_level == 0 &&
3557 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3558 		/*
3559 		 * The BP for this block has been provided by open context
3560 		 * (by dmu_sync() or dmu_buf_write_embedded()).
3561 		 */
3562 		void *contents = (data != NULL) ? data->b_data : NULL;
3563 
3564 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3565 		    &dr->dr_bp_copy, contents, db->db.db_size, &zp,
3566 		    dbuf_write_override_ready, NULL, NULL,
3567 		    dbuf_write_override_done,
3568 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3569 		mutex_enter(&db->db_mtx);
3570 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3571 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3572 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3573 		mutex_exit(&db->db_mtx);
3574 	} else if (db->db_state == DB_NOFILL) {
3575 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3576 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3577 		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3578 		    &dr->dr_bp_copy, NULL, db->db.db_size, &zp,
3579 		    dbuf_write_nofill_ready, NULL, NULL,
3580 		    dbuf_write_nofill_done, db,
3581 		    ZIO_PRIORITY_ASYNC_WRITE,
3582 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3583 	} else {
3584 		ASSERT(arc_released(data));
3585 
3586 		/*
3587 		 * For indirect blocks, we want to setup the children
3588 		 * ready callback so that we can properly handle an indirect
3589 		 * block that only contains holes.
3590 		 */
3591 		arc_done_func_t *children_ready_cb = NULL;
3592 		if (db->db_level != 0)
3593 			children_ready_cb = dbuf_write_children_ready;
3594 
3595 		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3596 		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3597 		    &zp, dbuf_write_ready, children_ready_cb,
3598 		    dbuf_write_physdone, dbuf_write_done, db,
3599 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3600 	}
3601 }
3602