1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/dmu.h>
27 #include <sys/dmu_impl.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/zfs_context.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_traverse.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_pool.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_prop.h>
39 #include <sys/dmu_zfetch.h>
40 #include <sys/zfs_ioctl.h>
41 #include <sys/zap.h>
42 #include <sys/zio_checksum.h>
43 #ifdef _KERNEL
44 #include <sys/vmsystm.h>
45 #include <sys/zfs_znode.h>
46 #endif
47 
48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
49 	{	byteswap_uint8_array,	TRUE,	"unallocated"		},
50 	{	zap_byteswap,		TRUE,	"object directory"	},
51 	{	byteswap_uint64_array,	TRUE,	"object array"		},
52 	{	byteswap_uint8_array,	TRUE,	"packed nvlist"		},
53 	{	byteswap_uint64_array,	TRUE,	"packed nvlist size"	},
54 	{	byteswap_uint64_array,	TRUE,	"bplist"		},
55 	{	byteswap_uint64_array,	TRUE,	"bplist header"		},
56 	{	byteswap_uint64_array,	TRUE,	"SPA space map header"	},
57 	{	byteswap_uint64_array,	TRUE,	"SPA space map"		},
58 	{	byteswap_uint64_array,	TRUE,	"ZIL intent log"	},
59 	{	dnode_buf_byteswap,	TRUE,	"DMU dnode"		},
60 	{	dmu_objset_byteswap,	TRUE,	"DMU objset"		},
61 	{	byteswap_uint64_array,	TRUE,	"DSL directory"		},
62 	{	zap_byteswap,		TRUE,	"DSL directory child map"},
63 	{	zap_byteswap,		TRUE,	"DSL dataset snap map"	},
64 	{	zap_byteswap,		TRUE,	"DSL props"		},
65 	{	byteswap_uint64_array,	TRUE,	"DSL dataset"		},
66 	{	zfs_znode_byteswap,	TRUE,	"ZFS znode"		},
67 	{	zfs_oldacl_byteswap,	TRUE,	"ZFS V0 ACL"		},
68 	{	byteswap_uint8_array,	FALSE,	"ZFS plain file"	},
69 	{	zap_byteswap,		TRUE,	"ZFS directory"		},
70 	{	zap_byteswap,		TRUE,	"ZFS master node"	},
71 	{	zap_byteswap,		TRUE,	"ZFS delete queue"	},
72 	{	byteswap_uint8_array,	FALSE,	"zvol object"		},
73 	{	zap_byteswap,		TRUE,	"zvol prop"		},
74 	{	byteswap_uint8_array,	FALSE,	"other uint8[]"		},
75 	{	byteswap_uint64_array,	FALSE,	"other uint64[]"	},
76 	{	zap_byteswap,		TRUE,	"other ZAP"		},
77 	{	zap_byteswap,		TRUE,	"persistent error log"	},
78 	{	byteswap_uint8_array,	TRUE,	"SPA history"		},
79 	{	byteswap_uint64_array,	TRUE,	"SPA history offsets"	},
80 	{	zap_byteswap,		TRUE,	"Pool properties"	},
81 	{	zap_byteswap,		TRUE,	"DSL permissions"	},
82 	{	zfs_acl_byteswap,	TRUE,	"ZFS ACL"		},
83 	{	byteswap_uint8_array,	TRUE,	"ZFS SYSACL"		},
84 	{	byteswap_uint8_array,	TRUE,	"FUID table"		},
85 	{	byteswap_uint64_array,	TRUE,	"FUID table size"	},
86 	{	zap_byteswap,		TRUE,	"DSL dataset next clones"},
87 	{	zap_byteswap,		TRUE,	"scrub work queue"	},
88 	{	zap_byteswap,		TRUE,	"ZFS user/group used"	},
89 	{	zap_byteswap,		TRUE,	"ZFS user/group quota"	},
90 	{	zap_byteswap,		TRUE,	"snapshot refcount tags"},
91 	{	zap_byteswap,		TRUE,	"DDT ZAP algorithm"	},
92 	{	zap_byteswap,		TRUE,	"DDT statistics"	},
93 };
94 
95 int
dmu_buf_hold(objset_t * os,uint64_t object,uint64_t offset,void * tag,dmu_buf_t ** dbp)96 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
97     void *tag, dmu_buf_t **dbp)
98 {
99 	dnode_t *dn;
100 	uint64_t blkid;
101 	dmu_buf_impl_t *db;
102 	int err;
103 
104 	err = dnode_hold(os, object, FTAG, &dn);
105 	if (err)
106 		return (err);
107 	blkid = dbuf_whichblock(dn, offset);
108 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
109 	db = dbuf_hold(dn, blkid, tag);
110 	rw_exit(&dn->dn_struct_rwlock);
111 	if (db == NULL) {
112 		err = EIO;
113 	} else {
114 		err = dbuf_read(db, NULL, DB_RF_CANFAIL);
115 		if (err) {
116 			dbuf_rele(db, tag);
117 			db = NULL;
118 		}
119 	}
120 
121 	dnode_rele(dn, FTAG);
122 	*dbp = &db->db;
123 	return (err);
124 }
125 
126 int
dmu_bonus_max(void)127 dmu_bonus_max(void)
128 {
129 	return (DN_MAX_BONUSLEN);
130 }
131 
132 int
dmu_set_bonus(dmu_buf_t * db,int newsize,dmu_tx_t * tx)133 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx)
134 {
135 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
136 
137 	if (dn->dn_bonus != (dmu_buf_impl_t *)db)
138 		return (EINVAL);
139 	if (newsize < 0 || newsize > db->db_size)
140 		return (EINVAL);
141 	dnode_setbonuslen(dn, newsize, tx);
142 	return (0);
143 }
144 
145 /*
146  * returns ENOENT, EIO, or 0.
147  */
148 int
dmu_bonus_hold(objset_t * os,uint64_t object,void * tag,dmu_buf_t ** dbp)149 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
150 {
151 	dnode_t *dn;
152 	dmu_buf_impl_t *db;
153 	int error;
154 
155 	error = dnode_hold(os, object, FTAG, &dn);
156 	if (error)
157 		return (error);
158 
159 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
160 	if (dn->dn_bonus == NULL) {
161 		rw_exit(&dn->dn_struct_rwlock);
162 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
163 		if (dn->dn_bonus == NULL)
164 			dbuf_create_bonus(dn);
165 	}
166 	db = dn->dn_bonus;
167 	rw_exit(&dn->dn_struct_rwlock);
168 
169 	/* as long as the bonus buf is held, the dnode will be held */
170 	if (refcount_add(&db->db_holds, tag) == 1)
171 		VERIFY(dnode_add_ref(dn, db));
172 
173 	dnode_rele(dn, FTAG);
174 
175 	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED));
176 
177 	*dbp = &db->db;
178 	return (0);
179 }
180 
181 /*
182  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
183  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
184  * and can induce severe lock contention when writing to several files
185  * whose dnodes are in the same block.
186  */
187 static int
dmu_buf_hold_array_by_dnode(dnode_t * dn,uint64_t offset,uint64_t length,int read,void * tag,int * numbufsp,dmu_buf_t *** dbpp,uint32_t flags)188 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
189     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
190 {
191 	dsl_pool_t *dp = NULL;
192 	dmu_buf_t **dbp;
193 	uint64_t blkid, nblks, i;
194 	uint32_t dbuf_flags;
195 	int err;
196 	zio_t *zio;
197 	hrtime_t start;
198 
199 	ASSERT(length <= DMU_MAX_ACCESS);
200 
201 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
202 	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
203 		dbuf_flags |= DB_RF_NOPREFETCH;
204 
205 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
206 	if (dn->dn_datablkshift) {
207 		int blkshift = dn->dn_datablkshift;
208 		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
209 		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
210 	} else {
211 		if (offset + length > dn->dn_datablksz) {
212 			zfs_panic_recover("zfs: accessing past end of object "
213 			    "%llx/%llx (size=%u access=%llu+%llu)",
214 			    (longlong_t)dn->dn_objset->
215 			    os_dsl_dataset->ds_object,
216 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
217 			    (longlong_t)offset, (longlong_t)length);
218 			rw_exit(&dn->dn_struct_rwlock);
219 			return (EIO);
220 		}
221 		nblks = 1;
222 	}
223 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
224 
225 	if (dn->dn_objset->os_dsl_dataset)
226 		dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
227 	if (dp && dsl_pool_sync_context(dp))
228 		start = gethrtime();
229 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
230 	blkid = dbuf_whichblock(dn, offset);
231 	for (i = 0; i < nblks; i++) {
232 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
233 		if (db == NULL) {
234 			rw_exit(&dn->dn_struct_rwlock);
235 			dmu_buf_rele_array(dbp, nblks, tag);
236 			zio_nowait(zio);
237 			return (EIO);
238 		}
239 		/* initiate async i/o */
240 		if (read) {
241 			(void) dbuf_read(db, zio, dbuf_flags);
242 		}
243 		dbp[i] = &db->db;
244 	}
245 	rw_exit(&dn->dn_struct_rwlock);
246 
247 	/* wait for async i/o */
248 	err = zio_wait(zio);
249 	/* track read overhead when we are in sync context */
250 	if (dp && dsl_pool_sync_context(dp))
251 		dp->dp_read_overhead += gethrtime() - start;
252 	if (err) {
253 		dmu_buf_rele_array(dbp, nblks, tag);
254 		return (err);
255 	}
256 
257 	/* wait for other io to complete */
258 	if (read) {
259 		for (i = 0; i < nblks; i++) {
260 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
261 			mutex_enter(&db->db_mtx);
262 			while (db->db_state == DB_READ ||
263 			    db->db_state == DB_FILL)
264 				cv_wait(&db->db_changed, &db->db_mtx);
265 			if (db->db_state == DB_UNCACHED)
266 				err = EIO;
267 			mutex_exit(&db->db_mtx);
268 			if (err) {
269 				dmu_buf_rele_array(dbp, nblks, tag);
270 				return (err);
271 			}
272 		}
273 	}
274 
275 	*numbufsp = nblks;
276 	*dbpp = dbp;
277 	return (0);
278 }
279 
280 static int
dmu_buf_hold_array(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,int read,void * tag,int * numbufsp,dmu_buf_t *** dbpp)281 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
282     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
283 {
284 	dnode_t *dn;
285 	int err;
286 
287 	err = dnode_hold(os, object, FTAG, &dn);
288 	if (err)
289 		return (err);
290 
291 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
292 	    numbufsp, dbpp, DMU_READ_PREFETCH);
293 
294 	dnode_rele(dn, FTAG);
295 
296 	return (err);
297 }
298 
299 int
dmu_buf_hold_array_by_bonus(dmu_buf_t * db,uint64_t offset,uint64_t length,int read,void * tag,int * numbufsp,dmu_buf_t *** dbpp)300 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
301     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
302 {
303 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
304 	int err;
305 
306 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
307 	    numbufsp, dbpp, DMU_READ_PREFETCH);
308 
309 	return (err);
310 }
311 
312 void
dmu_buf_rele_array(dmu_buf_t ** dbp_fake,int numbufs,void * tag)313 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
314 {
315 	int i;
316 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
317 
318 	if (numbufs == 0)
319 		return;
320 
321 	for (i = 0; i < numbufs; i++) {
322 		if (dbp[i])
323 			dbuf_rele(dbp[i], tag);
324 	}
325 
326 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
327 }
328 
329 void
dmu_prefetch(objset_t * os,uint64_t object,uint64_t offset,uint64_t len)330 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
331 {
332 	dnode_t *dn;
333 	uint64_t blkid;
334 	int nblks, i, err;
335 
336 	if (zfs_prefetch_disable)
337 		return;
338 
339 	if (len == 0) {  /* they're interested in the bonus buffer */
340 		dn = os->os_meta_dnode;
341 
342 		if (object == 0 || object >= DN_MAX_OBJECT)
343 			return;
344 
345 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
346 		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
347 		dbuf_prefetch(dn, blkid);
348 		rw_exit(&dn->dn_struct_rwlock);
349 		return;
350 	}
351 
352 	/*
353 	 * XXX - Note, if the dnode for the requested object is not
354 	 * already cached, we will do a *synchronous* read in the
355 	 * dnode_hold() call.  The same is true for any indirects.
356 	 */
357 	err = dnode_hold(os, object, FTAG, &dn);
358 	if (err != 0)
359 		return;
360 
361 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
362 	if (dn->dn_datablkshift) {
363 		int blkshift = dn->dn_datablkshift;
364 		nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
365 		    P2ALIGN(offset, 1<<blkshift)) >> blkshift;
366 	} else {
367 		nblks = (offset < dn->dn_datablksz);
368 	}
369 
370 	if (nblks != 0) {
371 		blkid = dbuf_whichblock(dn, offset);
372 		for (i = 0; i < nblks; i++)
373 			dbuf_prefetch(dn, blkid+i);
374 	}
375 
376 	rw_exit(&dn->dn_struct_rwlock);
377 
378 	dnode_rele(dn, FTAG);
379 }
380 
381 /*
382  * Get the next "chunk" of file data to free.  We traverse the file from
383  * the end so that the file gets shorter over time (if we crashes in the
384  * middle, this will leave us in a better state).  We find allocated file
385  * data by simply searching the allocated level 1 indirects.
386  */
387 static int
get_next_chunk(dnode_t * dn,uint64_t * start,uint64_t limit)388 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
389 {
390 	uint64_t len = *start - limit;
391 	uint64_t blkcnt = 0;
392 	uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
393 	uint64_t iblkrange =
394 	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
395 
396 	ASSERT(limit <= *start);
397 
398 	if (len <= iblkrange * maxblks) {
399 		*start = limit;
400 		return (0);
401 	}
402 	ASSERT(ISP2(iblkrange));
403 
404 	while (*start > limit && blkcnt < maxblks) {
405 		int err;
406 
407 		/* find next allocated L1 indirect */
408 		err = dnode_next_offset(dn,
409 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
410 
411 		/* if there are no more, then we are done */
412 		if (err == ESRCH) {
413 			*start = limit;
414 			return (0);
415 		} else if (err) {
416 			return (err);
417 		}
418 		blkcnt += 1;
419 
420 		/* reset offset to end of "next" block back */
421 		*start = P2ALIGN(*start, iblkrange);
422 		if (*start <= limit)
423 			*start = limit;
424 		else
425 			*start -= 1;
426 	}
427 	return (0);
428 }
429 
430 static int
dmu_free_long_range_impl(objset_t * os,dnode_t * dn,uint64_t offset,uint64_t length,boolean_t free_dnode)431 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
432     uint64_t length, boolean_t free_dnode)
433 {
434 	dmu_tx_t *tx;
435 	uint64_t object_size, start, end, len;
436 	boolean_t trunc = (length == DMU_OBJECT_END);
437 	int align, err;
438 
439 	align = 1 << dn->dn_datablkshift;
440 	ASSERT(align > 0);
441 	object_size = align == 1 ? dn->dn_datablksz :
442 	    (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
443 
444 	end = offset + length;
445 	if (trunc || end > object_size)
446 		end = object_size;
447 	if (end <= offset)
448 		return (0);
449 	length = end - offset;
450 
451 	while (length) {
452 		start = end;
453 		/* assert(offset <= start) */
454 		err = get_next_chunk(dn, &start, offset);
455 		if (err)
456 			return (err);
457 		len = trunc ? DMU_OBJECT_END : end - start;
458 
459 		tx = dmu_tx_create(os);
460 		dmu_tx_hold_free(tx, dn->dn_object, start, len);
461 		err = dmu_tx_assign(tx, TXG_WAIT);
462 		if (err) {
463 			dmu_tx_abort(tx);
464 			return (err);
465 		}
466 
467 		dnode_free_range(dn, start, trunc ? -1 : len, tx);
468 
469 		if (start == 0 && free_dnode) {
470 			ASSERT(trunc);
471 			dnode_free(dn, tx);
472 		}
473 
474 		length -= end - start;
475 
476 		dmu_tx_commit(tx);
477 		end = start;
478 	}
479 	return (0);
480 }
481 
482 int
dmu_free_long_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t length)483 dmu_free_long_range(objset_t *os, uint64_t object,
484     uint64_t offset, uint64_t length)
485 {
486 	dnode_t *dn;
487 	int err;
488 
489 	err = dnode_hold(os, object, FTAG, &dn);
490 	if (err != 0)
491 		return (err);
492 	err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
493 	dnode_rele(dn, FTAG);
494 	return (err);
495 }
496 
497 int
dmu_free_object(objset_t * os,uint64_t object)498 dmu_free_object(objset_t *os, uint64_t object)
499 {
500 	dnode_t *dn;
501 	dmu_tx_t *tx;
502 	int err;
503 
504 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
505 	    FTAG, &dn);
506 	if (err != 0)
507 		return (err);
508 	if (dn->dn_nlevels == 1) {
509 		tx = dmu_tx_create(os);
510 		dmu_tx_hold_bonus(tx, object);
511 		dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
512 		err = dmu_tx_assign(tx, TXG_WAIT);
513 		if (err == 0) {
514 			dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
515 			dnode_free(dn, tx);
516 			dmu_tx_commit(tx);
517 		} else {
518 			dmu_tx_abort(tx);
519 		}
520 	} else {
521 		err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
522 	}
523 	dnode_rele(dn, FTAG);
524 	return (err);
525 }
526 
527 int
dmu_free_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)528 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
529     uint64_t size, dmu_tx_t *tx)
530 {
531 	dnode_t *dn;
532 	int err = dnode_hold(os, object, FTAG, &dn);
533 	if (err)
534 		return (err);
535 	ASSERT(offset < UINT64_MAX);
536 	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
537 	dnode_free_range(dn, offset, size, tx);
538 	dnode_rele(dn, FTAG);
539 	return (0);
540 }
541 
542 int
dmu_read(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,void * buf,uint32_t flags)543 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
544     void *buf, uint32_t flags)
545 {
546 	dnode_t *dn;
547 	dmu_buf_t **dbp;
548 	int numbufs, err;
549 
550 	err = dnode_hold(os, object, FTAG, &dn);
551 	if (err)
552 		return (err);
553 
554 	/*
555 	 * Deal with odd block sizes, where there can't be data past the first
556 	 * block.  If we ever do the tail block optimization, we will need to
557 	 * handle that here as well.
558 	 */
559 	if (dn->dn_maxblkid == 0) {
560 		int newsz = offset > dn->dn_datablksz ? 0 :
561 		    MIN(size, dn->dn_datablksz - offset);
562 		bzero((char *)buf + newsz, size - newsz);
563 		size = newsz;
564 	}
565 
566 	while (size > 0) {
567 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
568 		int i;
569 
570 		/*
571 		 * NB: we could do this block-at-a-time, but it's nice
572 		 * to be reading in parallel.
573 		 */
574 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
575 		    TRUE, FTAG, &numbufs, &dbp, flags);
576 		if (err)
577 			break;
578 
579 		for (i = 0; i < numbufs; i++) {
580 			int tocpy;
581 			int bufoff;
582 			dmu_buf_t *db = dbp[i];
583 
584 			ASSERT(size > 0);
585 
586 			bufoff = offset - db->db_offset;
587 			tocpy = (int)MIN(db->db_size - bufoff, size);
588 
589 			bcopy((char *)db->db_data + bufoff, buf, tocpy);
590 
591 			offset += tocpy;
592 			size -= tocpy;
593 			buf = (char *)buf + tocpy;
594 		}
595 		dmu_buf_rele_array(dbp, numbufs, FTAG);
596 	}
597 	dnode_rele(dn, FTAG);
598 	return (err);
599 }
600 
601 void
dmu_write(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)602 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
603     const void *buf, dmu_tx_t *tx)
604 {
605 	dmu_buf_t **dbp;
606 	int numbufs, i;
607 
608 	if (size == 0)
609 		return;
610 
611 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
612 	    FALSE, FTAG, &numbufs, &dbp));
613 
614 	for (i = 0; i < numbufs; i++) {
615 		int tocpy;
616 		int bufoff;
617 		dmu_buf_t *db = dbp[i];
618 
619 		ASSERT(size > 0);
620 
621 		bufoff = offset - db->db_offset;
622 		tocpy = (int)MIN(db->db_size - bufoff, size);
623 
624 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
625 
626 		if (tocpy == db->db_size)
627 			dmu_buf_will_fill(db, tx);
628 		else
629 			dmu_buf_will_dirty(db, tx);
630 
631 		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
632 
633 		if (tocpy == db->db_size)
634 			dmu_buf_fill_done(db, tx);
635 
636 		offset += tocpy;
637 		size -= tocpy;
638 		buf = (char *)buf + tocpy;
639 	}
640 	dmu_buf_rele_array(dbp, numbufs, FTAG);
641 }
642 
643 void
dmu_prealloc(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)644 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
645     dmu_tx_t *tx)
646 {
647 	dmu_buf_t **dbp;
648 	int numbufs, i;
649 
650 	if (size == 0)
651 		return;
652 
653 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
654 	    FALSE, FTAG, &numbufs, &dbp));
655 
656 	for (i = 0; i < numbufs; i++) {
657 		dmu_buf_t *db = dbp[i];
658 
659 		dmu_buf_will_not_fill(db, tx);
660 	}
661 	dmu_buf_rele_array(dbp, numbufs, FTAG);
662 }
663 
664 /*
665  * DMU support for xuio
666  */
667 kstat_t *xuio_ksp = NULL;
668 
669 int
dmu_xuio_init(xuio_t * xuio,int nblk)670 dmu_xuio_init(xuio_t *xuio, int nblk)
671 {
672 	dmu_xuio_t *priv;
673 	uio_t *uio = &xuio->xu_uio;
674 
675 	uio->uio_iovcnt = nblk;
676 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
677 
678 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
679 	priv->cnt = nblk;
680 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
681 	priv->iovp = uio->uio_iov;
682 	XUIO_XUZC_PRIV(xuio) = priv;
683 
684 #ifdef PORT_SOLARIS
685 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
686 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
687 	else
688 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
689 #endif
690 
691 	return (0);
692 }
693 
694 void
dmu_xuio_fini(xuio_t * xuio)695 dmu_xuio_fini(xuio_t *xuio)
696 {
697 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
698 	int nblk = priv->cnt;
699 
700 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
701 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
702 	kmem_free(priv, sizeof (dmu_xuio_t));
703 
704 #ifdef PORT_SOLARIS
705 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
706 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
707 	else
708 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
709 #endif
710 }
711 
712 /*
713  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
714  * and increase priv->next by 1.
715  */
716 int
dmu_xuio_add(xuio_t * xuio,arc_buf_t * abuf,offset_t off,size_t n)717 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
718 {
719 	struct iovec *iov;
720 	uio_t *uio = &xuio->xu_uio;
721 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
722 	int i = priv->next++;
723 
724 	ASSERT(i < priv->cnt);
725 	ASSERT(off + n <= arc_buf_size(abuf));
726 	iov = uio->uio_iov + i;
727 	iov->iov_base = (char *)abuf->b_data + off;
728 	iov->iov_len = n;
729 	priv->bufs[i] = abuf;
730 	return (0);
731 }
732 
733 int
dmu_xuio_cnt(xuio_t * xuio)734 dmu_xuio_cnt(xuio_t *xuio)
735 {
736 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
737 	return (priv->cnt);
738 }
739 
740 arc_buf_t *
dmu_xuio_arcbuf(xuio_t * xuio,int i)741 dmu_xuio_arcbuf(xuio_t *xuio, int i)
742 {
743 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
744 
745 	ASSERT(i < priv->cnt);
746 	return (priv->bufs[i]);
747 }
748 
749 void
dmu_xuio_clear(xuio_t * xuio,int i)750 dmu_xuio_clear(xuio_t *xuio, int i)
751 {
752 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
753 
754 	ASSERT(i < priv->cnt);
755 	priv->bufs[i] = NULL;
756 }
757 
758 #ifdef PORT_SOLARIS
759 static void
xuio_stat_init(void)760 xuio_stat_init(void)
761 {
762 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
763 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
764 	    KSTAT_FLAG_VIRTUAL);
765 	if (xuio_ksp != NULL) {
766 		xuio_ksp->ks_data = &xuio_stats;
767 		kstat_install(xuio_ksp);
768 	}
769 }
770 
771 static void
xuio_stat_fini(void)772 xuio_stat_fini(void)
773 {
774 	if (xuio_ksp != NULL) {
775 		kstat_delete(xuio_ksp);
776 		xuio_ksp = NULL;
777 	}
778 }
779 #endif
780 
781 void
xuio_stat_wbuf_copied()782 xuio_stat_wbuf_copied()
783 {
784 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
785 }
786 
787 void
xuio_stat_wbuf_nocopy()788 xuio_stat_wbuf_nocopy()
789 {
790 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
791 }
792 
793 #ifdef _KERNEL
794 int
dmu_read_uio(objset_t * os,uint64_t object,uio_t * uio,uint64_t size)795 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
796 {
797 	dmu_buf_t **dbp;
798 	int numbufs, i, err;
799 	xuio_t *xuio = NULL;
800 
801 	/*
802 	 * NB: we could do this block-at-a-time, but it's nice
803 	 * to be reading in parallel.
804 	 */
805 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
806 	    &numbufs, &dbp);
807 	if (err)
808 		return (err);
809 
810 #ifndef __NetBSD__		/* XXX xuio */
811 	if (uio->uio_extflg == UIO_XUIO)
812 		xuio = (xuio_t *)uio;
813 #endif
814 
815 	for (i = 0; i < numbufs; i++) {
816 		int tocpy;
817 		int bufoff;
818 		dmu_buf_t *db = dbp[i];
819 
820 		ASSERT(size > 0);
821 
822 		bufoff = uio->uio_loffset - db->db_offset;
823 		tocpy = (int)MIN(db->db_size - bufoff, size);
824 
825 		if (xuio) {
826 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
827 			arc_buf_t *dbuf_abuf = dbi->db_buf;
828 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
829 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
830 			if (!err) {
831 				uio->uio_resid -= tocpy;
832 				uio->uio_loffset += tocpy;
833 			}
834 
835 			if (abuf == dbuf_abuf)
836 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
837 			else
838 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
839 		} else {
840 			err = uiomove((char *)db->db_data + bufoff, tocpy,
841 			    UIO_READ, uio);
842 		}
843 		if (err)
844 			break;
845 
846 		size -= tocpy;
847 	}
848 	dmu_buf_rele_array(dbp, numbufs, FTAG);
849 
850 	return (err);
851 }
852 
853 int
dmu_write_uio(objset_t * os,uint64_t object,uio_t * uio,uint64_t size,dmu_tx_t * tx)854 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
855     dmu_tx_t *tx)
856 {
857 	dmu_buf_t **dbp;
858 	int numbufs, i;
859 	int err = 0;
860 
861 	if (size == 0)
862 		return (0);
863 
864 	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size,
865 	    FALSE, FTAG, &numbufs, &dbp);
866 	if (err)
867 		return (err);
868 
869 	for (i = 0; i < numbufs; i++) {
870 		int tocpy;
871 		int bufoff;
872 		dmu_buf_t *db = dbp[i];
873 
874 		ASSERT(size > 0);
875 
876 		bufoff = uio->uio_loffset - db->db_offset;
877 		tocpy = (int)MIN(db->db_size - bufoff, size);
878 
879 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
880 
881 		if (tocpy == db->db_size)
882 			dmu_buf_will_fill(db, tx);
883 		else
884 			dmu_buf_will_dirty(db, tx);
885 
886 		/*
887 		 * XXX uiomove could block forever (eg. nfs-backed
888 		 * pages).  There needs to be a uiolockdown() function
889 		 * to lock the pages in memory, so that uiomove won't
890 		 * block.
891 		 */
892 		err = uiomove((char *)db->db_data + bufoff, tocpy,
893 		    UIO_WRITE, uio);
894 
895 		if (tocpy == db->db_size)
896 			dmu_buf_fill_done(db, tx);
897 
898 		if (err)
899 			break;
900 
901 		size -= tocpy;
902 	}
903 	dmu_buf_rele_array(dbp, numbufs, FTAG);
904 	return (err);
905 }
906 
907 #ifndef __NetBSD__
908 int
dmu_write_pages(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,page_t * pp,dmu_tx_t * tx)909 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
910     page_t *pp, dmu_tx_t *tx)
911 {
912 	dmu_buf_t **dbp;
913 	int numbufs, i;
914 	int err;
915 
916 	if (size == 0)
917 		return (0);
918 
919 	err = dmu_buf_hold_array(os, object, offset, size,
920 	    FALSE, FTAG, &numbufs, &dbp);
921 	if (err)
922 		return (err);
923 
924 	for (i = 0; i < numbufs; i++) {
925 		int tocpy, copied, thiscpy;
926 		int bufoff;
927 		dmu_buf_t *db = dbp[i];
928 		caddr_t va;
929 
930 		ASSERT(size > 0);
931 		ASSERT3U(db->db_size, >=, PAGESIZE);
932 
933 		bufoff = offset - db->db_offset;
934 		tocpy = (int)MIN(db->db_size - bufoff, size);
935 
936 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
937 
938 		if (tocpy == db->db_size)
939 			dmu_buf_will_fill(db, tx);
940 		else
941 			dmu_buf_will_dirty(db, tx);
942 
943 		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
944 			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
945 			thiscpy = MIN(PAGESIZE, tocpy - copied);
946 			va = zfs_map_page(pp, S_READ);
947 			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
948 			zfs_unmap_page(pp, va);
949 			pp = pp->p_next;
950 			bufoff += PAGESIZE;
951 		}
952 
953 		if (tocpy == db->db_size)
954 			dmu_buf_fill_done(db, tx);
955 
956 		offset += tocpy;
957 		size -= tocpy;
958 	}
959 	dmu_buf_rele_array(dbp, numbufs, FTAG);
960 	return (err);
961 }
962 #endif  /* __NetBSD__ */
963 #endif
964 
965 /*
966  * Allocate a loaned anonymous arc buffer.
967  */
968 arc_buf_t *
dmu_request_arcbuf(dmu_buf_t * handle,int size)969 dmu_request_arcbuf(dmu_buf_t *handle, int size)
970 {
971 	dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
972 
973 	return (arc_loan_buf(dn->dn_objset->os_spa, size));
974 }
975 
976 /*
977  * Free a loaned arc buffer.
978  */
979 void
dmu_return_arcbuf(arc_buf_t * buf)980 dmu_return_arcbuf(arc_buf_t *buf)
981 {
982 	arc_return_buf(buf, FTAG);
983 	VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
984 }
985 
986 /*
987  * When possible directly assign passed loaned arc buffer to a dbuf.
988  * If this is not possible copy the contents of passed arc buf via
989  * dmu_write().
990  */
991 void
dmu_assign_arcbuf(dmu_buf_t * handle,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx)992 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
993     dmu_tx_t *tx)
994 {
995 	dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
996 	dmu_buf_impl_t *db;
997 	uint32_t blksz = (uint32_t)arc_buf_size(buf);
998 	uint64_t blkid;
999 
1000 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1001 	blkid = dbuf_whichblock(dn, offset);
1002 	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1003 	rw_exit(&dn->dn_struct_rwlock);
1004 
1005 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1006 		dbuf_assign_arcbuf(db, buf, tx);
1007 		dbuf_rele(db, FTAG);
1008 	} else {
1009 		dbuf_rele(db, FTAG);
1010 		dmu_write(dn->dn_objset, dn->dn_object, offset, blksz,
1011 		    buf->b_data, tx);
1012 		dmu_return_arcbuf(buf);
1013 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1014 	}
1015 }
1016 
1017 typedef struct {
1018 	dbuf_dirty_record_t	*dsa_dr;
1019 	dmu_sync_cb_t		*dsa_done;
1020 	zgd_t			*dsa_zgd;
1021 	dmu_tx_t		*dsa_tx;
1022 } dmu_sync_arg_t;
1023 
1024 /* ARGSUSED */
1025 static void
dmu_sync_ready(zio_t * zio,arc_buf_t * buf,void * varg)1026 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1027 {
1028 	dmu_sync_arg_t *dsa = varg;
1029 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1030 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1031 	blkptr_t *bp = zio->io_bp;
1032 
1033 	if (zio->io_error == 0) {
1034 		if (BP_IS_HOLE(bp)) {
1035 			/*
1036 			 * A block of zeros may compress to a hole, but the
1037 			 * block size still needs to be known for replay.
1038 			 */
1039 			BP_SET_LSIZE(bp, db->db_size);
1040 		} else {
1041 			ASSERT(BP_GET_TYPE(bp) == dn->dn_type);
1042 			ASSERT(BP_GET_LEVEL(bp) == 0);
1043 			bp->blk_fill = 1;
1044 		}
1045 	}
1046 }
1047 
1048 static void
dmu_sync_late_arrival_ready(zio_t * zio)1049 dmu_sync_late_arrival_ready(zio_t *zio)
1050 {
1051 	dmu_sync_ready(zio, NULL, zio->io_private);
1052 }
1053 
1054 /* ARGSUSED */
1055 static void
dmu_sync_done(zio_t * zio,arc_buf_t * buf,void * varg)1056 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1057 {
1058 	dmu_sync_arg_t *dsa = varg;
1059 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1060 	dmu_buf_impl_t *db = dr->dr_dbuf;
1061 
1062 	mutex_enter(&db->db_mtx);
1063 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1064 	if (zio->io_error == 0) {
1065 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1066 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1067 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1068 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1069 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1070 	} else {
1071 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1072 	}
1073 	cv_broadcast(&db->db_changed);
1074 	mutex_exit(&db->db_mtx);
1075 
1076 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1077 
1078 	kmem_free(dsa, sizeof (*dsa));
1079 }
1080 
1081 static void
dmu_sync_late_arrival_done(zio_t * zio)1082 dmu_sync_late_arrival_done(zio_t *zio)
1083 {
1084 	blkptr_t *bp = zio->io_bp;
1085 	dmu_sync_arg_t *dsa = zio->io_private;
1086 
1087 	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1088 		ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1089 		ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1090 		zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1091 	}
1092 
1093 	dmu_tx_commit(dsa->dsa_tx);
1094 
1095 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1096 
1097 	kmem_free(dsa, sizeof (*dsa));
1098 }
1099 
1100 static int
dmu_sync_late_arrival(zio_t * pio,objset_t * os,dmu_sync_cb_t * done,zgd_t * zgd,zio_prop_t * zp,zbookmark_t * zb)1101 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1102     zio_prop_t *zp, zbookmark_t *zb)
1103 {
1104 	dmu_sync_arg_t *dsa;
1105 	dmu_tx_t *tx;
1106 
1107 	tx = dmu_tx_create(os);
1108 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1109 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1110 		dmu_tx_abort(tx);
1111 		return (EIO);	/* Make zl_get_data do txg_waited_synced() */
1112 	}
1113 
1114 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1115 	dsa->dsa_dr = NULL;
1116 	dsa->dsa_done = done;
1117 	dsa->dsa_zgd = zgd;
1118 	dsa->dsa_tx = tx;
1119 
1120 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1121 	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1122 	    dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1123 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1124 
1125 	return (0);
1126 }
1127 
1128 /*
1129  * Intent log support: sync the block associated with db to disk.
1130  * N.B. and XXX: the caller is responsible for making sure that the
1131  * data isn't changing while dmu_sync() is writing it.
1132  *
1133  * Return values:
1134  *
1135  *	EEXIST: this txg has already been synced, so there's nothing to to.
1136  *		The caller should not log the write.
1137  *
1138  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1139  *		The caller should not log the write.
1140  *
1141  *	EALREADY: this block is already in the process of being synced.
1142  *		The caller should track its progress (somehow).
1143  *
1144  *	EIO: could not do the I/O.
1145  *		The caller should do a txg_wait_synced().
1146  *
1147  *	0: the I/O has been initiated.
1148  *		The caller should log this blkptr in the done callback.
1149  *		It is possible that the I/O will fail, in which case
1150  *		the error will be reported to the done callback and
1151  *		propagated to pio from zio_done().
1152  */
1153 int
dmu_sync(zio_t * pio,uint64_t txg,dmu_sync_cb_t * done,zgd_t * zgd)1154 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1155 {
1156 	blkptr_t *bp = zgd->zgd_bp;
1157 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1158 	objset_t *os = db->db_objset;
1159 	dsl_dataset_t *ds = os->os_dsl_dataset;
1160 	dbuf_dirty_record_t *dr;
1161 	dmu_sync_arg_t *dsa;
1162 	zbookmark_t zb;
1163 	zio_prop_t zp;
1164 
1165 	ASSERT(pio != NULL);
1166 	ASSERT(BP_IS_HOLE(bp));
1167 	ASSERT(txg != 0);
1168 
1169 	SET_BOOKMARK(&zb, ds->ds_object,
1170 	    db->db.db_object, db->db_level, db->db_blkid);
1171 
1172 	dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp);
1173 
1174 	/*
1175 	 * If we're frozen (running ziltest), we always need to generate a bp.
1176 	 */
1177 	if (txg > spa_freeze_txg(os->os_spa))
1178 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1179 
1180 	/*
1181 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1182 	 * and us.  If we determine that this txg is not yet syncing,
1183 	 * but it begins to sync a moment later, that's OK because the
1184 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1185 	 */
1186 	mutex_enter(&db->db_mtx);
1187 
1188 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1189 		/*
1190 		 * This txg has already synced.  There's nothing to do.
1191 		 */
1192 		mutex_exit(&db->db_mtx);
1193 		return (EEXIST);
1194 	}
1195 
1196 	if (txg <= spa_syncing_txg(os->os_spa)) {
1197 		/*
1198 		 * This txg is currently syncing, so we can't mess with
1199 		 * the dirty record anymore; just write a new log block.
1200 		 */
1201 		mutex_exit(&db->db_mtx);
1202 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1203 	}
1204 
1205 	dr = db->db_last_dirty;
1206 	while (dr && dr->dr_txg != txg)
1207 		dr = dr->dr_next;
1208 
1209 	if (dr == NULL) {
1210 		/*
1211 		 * There's no dr for this dbuf, so it must have been freed.
1212 		 * There's no need to log writes to freed blocks, so we're done.
1213 		 */
1214 		mutex_exit(&db->db_mtx);
1215 		return (ENOENT);
1216 	}
1217 
1218 	ASSERT(dr->dr_txg == txg);
1219 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1220 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1221 		/*
1222 		 * We have already issued a sync write for this buffer,
1223 		 * or this buffer has already been synced.  It could not
1224 		 * have been dirtied since, or we would have cleared the state.
1225 		 */
1226 		mutex_exit(&db->db_mtx);
1227 		return (EALREADY);
1228 	}
1229 
1230 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1231 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1232 	mutex_exit(&db->db_mtx);
1233 
1234 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1235 	dsa->dsa_dr = dr;
1236 	dsa->dsa_done = done;
1237 	dsa->dsa_zgd = zgd;
1238 	dsa->dsa_tx = NULL;
1239 
1240 	zio_nowait(arc_write(pio, os->os_spa, txg,
1241 	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1242 	    dmu_sync_ready, dmu_sync_done, dsa,
1243 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1244 
1245 	return (0);
1246 }
1247 
1248 int
dmu_object_set_blocksize(objset_t * os,uint64_t object,uint64_t size,int ibs,dmu_tx_t * tx)1249 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1250 	dmu_tx_t *tx)
1251 {
1252 	dnode_t *dn;
1253 	int err;
1254 
1255 	err = dnode_hold(os, object, FTAG, &dn);
1256 	if (err)
1257 		return (err);
1258 	err = dnode_set_blksz(dn, size, ibs, tx);
1259 	dnode_rele(dn, FTAG);
1260 	return (err);
1261 }
1262 
1263 void
dmu_object_set_checksum(objset_t * os,uint64_t object,uint8_t checksum,dmu_tx_t * tx)1264 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1265 	dmu_tx_t *tx)
1266 {
1267 	dnode_t *dn;
1268 
1269 	/* XXX assumes dnode_hold will not get an i/o error */
1270 	(void) dnode_hold(os, object, FTAG, &dn);
1271 	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1272 	dn->dn_checksum = checksum;
1273 	dnode_setdirty(dn, tx);
1274 	dnode_rele(dn, FTAG);
1275 }
1276 
1277 void
dmu_object_set_compress(objset_t * os,uint64_t object,uint8_t compress,dmu_tx_t * tx)1278 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1279 	dmu_tx_t *tx)
1280 {
1281 	dnode_t *dn;
1282 
1283 	/* XXX assumes dnode_hold will not get an i/o error */
1284 	(void) dnode_hold(os, object, FTAG, &dn);
1285 	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1286 	dn->dn_compress = compress;
1287 	dnode_setdirty(dn, tx);
1288 	dnode_rele(dn, FTAG);
1289 }
1290 
1291 int zfs_mdcomp_disable = 0;
1292 
1293 void
dmu_write_policy(objset_t * os,dnode_t * dn,int level,int wp,zio_prop_t * zp)1294 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1295 {
1296 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1297 	boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata);
1298 	enum zio_checksum checksum = os->os_checksum;
1299 	enum zio_compress compress = os->os_compress;
1300 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1301 	boolean_t dedup;
1302 	boolean_t dedup_verify = os->os_dedup_verify;
1303 	int copies = os->os_copies;
1304 
1305 	/*
1306 	 * Determine checksum setting.
1307 	 */
1308 	if (ismd) {
1309 		/*
1310 		 * Metadata always gets checksummed.  If the data
1311 		 * checksum is multi-bit correctable, and it's not a
1312 		 * ZBT-style checksum, then it's suitable for metadata
1313 		 * as well.  Otherwise, the metadata checksum defaults
1314 		 * to fletcher4.
1315 		 */
1316 		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1317 		    zio_checksum_table[checksum].ci_eck)
1318 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1319 	} else {
1320 		checksum = zio_checksum_select(dn->dn_checksum, checksum);
1321 	}
1322 
1323 	/*
1324 	 * Determine compression setting.
1325 	 */
1326 	if (ismd) {
1327 		/*
1328 		 * XXX -- we should design a compression algorithm
1329 		 * that specializes in arrays of bps.
1330 		 */
1331 		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1332 		    ZIO_COMPRESS_LZJB;
1333 	} else {
1334 		compress = zio_compress_select(dn->dn_compress, compress);
1335 	}
1336 
1337 	/*
1338 	 * Determine dedup setting.  If we are in dmu_sync(), we won't
1339 	 * actually dedup now because that's all done in syncing context;
1340 	 * but we do want to use the dedup checkum.  If the checksum is not
1341 	 * strong enough to ensure unique signatures, force dedup_verify.
1342 	 */
1343 	dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
1344 	if (dedup) {
1345 		checksum = dedup_checksum;
1346 		if (!zio_checksum_table[checksum].ci_dedup)
1347 			dedup_verify = 1;
1348 	}
1349 
1350 	if (wp & WP_DMU_SYNC)
1351 		dedup = 0;
1352 
1353 	if (wp & WP_NOFILL) {
1354 		ASSERT(!ismd && level == 0);
1355 		checksum = ZIO_CHECKSUM_OFF;
1356 		compress = ZIO_COMPRESS_OFF;
1357 		dedup = B_FALSE;
1358 	}
1359 
1360 	zp->zp_checksum = checksum;
1361 	zp->zp_compress = compress;
1362 	zp->zp_type = type;
1363 	zp->zp_level = level;
1364 	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1365 	zp->zp_dedup = dedup;
1366 	zp->zp_dedup_verify = dedup && dedup_verify;
1367 }
1368 
1369 int
dmu_offset_next(objset_t * os,uint64_t object,boolean_t hole,uint64_t * off)1370 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1371 {
1372 	dnode_t *dn;
1373 	int i, err;
1374 
1375 	err = dnode_hold(os, object, FTAG, &dn);
1376 	if (err)
1377 		return (err);
1378 	/*
1379 	 * Sync any current changes before
1380 	 * we go trundling through the block pointers.
1381 	 */
1382 	for (i = 0; i < TXG_SIZE; i++) {
1383 		if (list_link_active(&dn->dn_dirty_link[i]))
1384 			break;
1385 	}
1386 	if (i != TXG_SIZE) {
1387 		dnode_rele(dn, FTAG);
1388 		txg_wait_synced(dmu_objset_pool(os), 0);
1389 		err = dnode_hold(os, object, FTAG, &dn);
1390 		if (err)
1391 			return (err);
1392 	}
1393 
1394 	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1395 	dnode_rele(dn, FTAG);
1396 
1397 	return (err);
1398 }
1399 
1400 void
dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)1401 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1402 {
1403 	dnode_phys_t *dnp;
1404 
1405 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1406 	mutex_enter(&dn->dn_mtx);
1407 
1408 	dnp = dn->dn_phys;
1409 
1410 	doi->doi_data_block_size = dn->dn_datablksz;
1411 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1412 	    1ULL << dn->dn_indblkshift : 0;
1413 	doi->doi_type = dn->dn_type;
1414 	doi->doi_bonus_type = dn->dn_bonustype;
1415 	doi->doi_bonus_size = dn->dn_bonuslen;
1416 	doi->doi_indirection = dn->dn_nlevels;
1417 	doi->doi_checksum = dn->dn_checksum;
1418 	doi->doi_compress = dn->dn_compress;
1419 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1420 	doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1421 	doi->doi_fill_count = 0;
1422 	for (int i = 0; i < dnp->dn_nblkptr; i++)
1423 		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1424 
1425 	mutex_exit(&dn->dn_mtx);
1426 	rw_exit(&dn->dn_struct_rwlock);
1427 }
1428 
1429 /*
1430  * Get information on a DMU object.
1431  * If doi is NULL, just indicates whether the object exists.
1432  */
1433 int
dmu_object_info(objset_t * os,uint64_t object,dmu_object_info_t * doi)1434 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1435 {
1436 	dnode_t *dn;
1437 	int err = dnode_hold(os, object, FTAG, &dn);
1438 
1439 	if (err)
1440 		return (err);
1441 
1442 	if (doi != NULL)
1443 		dmu_object_info_from_dnode(dn, doi);
1444 
1445 	dnode_rele(dn, FTAG);
1446 	return (0);
1447 }
1448 
1449 /*
1450  * As above, but faster; can be used when you have a held dbuf in hand.
1451  */
1452 void
dmu_object_info_from_db(dmu_buf_t * db,dmu_object_info_t * doi)1453 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi)
1454 {
1455 	dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi);
1456 }
1457 
1458 /*
1459  * Faster still when you only care about the size.
1460  * This is specifically optimized for zfs_getattr().
1461  */
1462 void
dmu_object_size_from_db(dmu_buf_t * db,uint32_t * blksize,u_longlong_t * nblk512)1463 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512)
1464 {
1465 	dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1466 
1467 	*blksize = dn->dn_datablksz;
1468 	/* add 1 for dnode space */
1469 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1470 	    SPA_MINBLOCKSHIFT) + 1;
1471 }
1472 
1473 void
byteswap_uint64_array(void * vbuf,size_t size)1474 byteswap_uint64_array(void *vbuf, size_t size)
1475 {
1476 	uint64_t *buf = vbuf;
1477 	size_t count = size >> 3;
1478 	int i;
1479 
1480 	ASSERT((size & 7) == 0);
1481 
1482 	for (i = 0; i < count; i++)
1483 		buf[i] = BSWAP_64(buf[i]);
1484 }
1485 
1486 void
byteswap_uint32_array(void * vbuf,size_t size)1487 byteswap_uint32_array(void *vbuf, size_t size)
1488 {
1489 	uint32_t *buf = vbuf;
1490 	size_t count = size >> 2;
1491 	int i;
1492 
1493 	ASSERT((size & 3) == 0);
1494 
1495 	for (i = 0; i < count; i++)
1496 		buf[i] = BSWAP_32(buf[i]);
1497 }
1498 
1499 void
byteswap_uint16_array(void * vbuf,size_t size)1500 byteswap_uint16_array(void *vbuf, size_t size)
1501 {
1502 	uint16_t *buf = vbuf;
1503 	size_t count = size >> 1;
1504 	int i;
1505 
1506 	ASSERT((size & 1) == 0);
1507 
1508 	for (i = 0; i < count; i++)
1509 		buf[i] = BSWAP_16(buf[i]);
1510 }
1511 
1512 /* ARGSUSED */
1513 void
byteswap_uint8_array(void * vbuf,size_t size)1514 byteswap_uint8_array(void *vbuf, size_t size)
1515 {
1516 }
1517 
1518 void
dmu_init(void)1519 dmu_init(void)
1520 {
1521 	dbuf_init();
1522 	dnode_init();
1523 	zfetch_init();
1524 	arc_init();
1525 	l2arc_init();
1526 #ifdef PORT_SOLARIS
1527 	xuio_stat_init();
1528 #endif
1529 }
1530 
1531 void
dmu_fini(void)1532 dmu_fini(void)
1533 {
1534 	arc_fini();
1535 	zfetch_fini();
1536 	dnode_fini();
1537 	dbuf_fini();
1538 	l2arc_fini();
1539 #ifdef PORT_SOLARIS
1540 	xuio_stat_fini();
1541 #endif
1542 }
1543