xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 1719886f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
33  */
34 
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dbuf.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
50 #include <sys/zap.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
53 #include <sys/sa.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/brt.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
60 #ifdef _KERNEL
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
63 #endif
64 
65 /*
66  * Enable/disable nopwrite feature.
67  */
68 static int zfs_nopwrite_enabled = 1;
69 
70 /*
71  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72  * one TXG. After this threshold is crossed, additional dirty blocks from frees
73  * will wait until the next TXG.
74  * A value of zero will disable this throttle.
75  */
76 static uint_t zfs_per_txg_dirty_frees_percent = 30;
77 
78 /*
79  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80  * By default this is enabled to ensure accurate hole reporting, it can result
81  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82  * Disabling this option will result in holes never being reported in dirty
83  * files which is always safe.
84  */
85 static int zfs_dmu_offset_next_sync = 1;
86 
87 /*
88  * Limit the amount we can prefetch with one call to this amount.  This
89  * helps to limit the amount of memory that can be used by prefetching.
90  * Larger objects should be prefetched a bit at a time.
91  */
92 #ifdef _ILP32
93 uint_t dmu_prefetch_max = 8 * 1024 * 1024;
94 #else
95 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
96 #endif
97 
98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
99 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
100 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
101 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
102 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
103 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
104 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
105 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
106 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
107 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
108 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
109 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
110 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
111 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
112 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
113 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
115 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
116 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
117 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
118 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
121 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
122 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
123 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
124 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
125 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
128 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
129 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
130 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
132 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
133 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
134 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
135 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
136 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
137 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
140 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
141 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
142 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
143 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
144 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
146 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
147 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
148 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
149 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
150 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
151 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
152 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
153 };
154 
155 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
156 	{	byteswap_uint8_array,	"uint8"		},
157 	{	byteswap_uint16_array,	"uint16"	},
158 	{	byteswap_uint32_array,	"uint32"	},
159 	{	byteswap_uint64_array,	"uint64"	},
160 	{	zap_byteswap,		"zap"		},
161 	{	dnode_buf_byteswap,	"dnode"		},
162 	{	dmu_objset_byteswap,	"objset"	},
163 	{	zfs_znode_byteswap,	"znode"		},
164 	{	zfs_oldacl_byteswap,	"oldacl"	},
165 	{	zfs_acl_byteswap,	"acl"		}
166 };
167 
168 int
dmu_buf_hold_noread_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp)169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
170     const void *tag, dmu_buf_t **dbp)
171 {
172 	uint64_t blkid;
173 	dmu_buf_impl_t *db;
174 
175 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
176 	blkid = dbuf_whichblock(dn, 0, offset);
177 	db = dbuf_hold(dn, blkid, tag);
178 	rw_exit(&dn->dn_struct_rwlock);
179 
180 	if (db == NULL) {
181 		*dbp = NULL;
182 		return (SET_ERROR(EIO));
183 	}
184 
185 	*dbp = &db->db;
186 	return (0);
187 }
188 
189 int
dmu_buf_hold_noread(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp)190 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
191     const void *tag, dmu_buf_t **dbp)
192 {
193 	dnode_t *dn;
194 	uint64_t blkid;
195 	dmu_buf_impl_t *db;
196 	int err;
197 
198 	err = dnode_hold(os, object, FTAG, &dn);
199 	if (err)
200 		return (err);
201 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
202 	blkid = dbuf_whichblock(dn, 0, offset);
203 	db = dbuf_hold(dn, blkid, tag);
204 	rw_exit(&dn->dn_struct_rwlock);
205 	dnode_rele(dn, FTAG);
206 
207 	if (db == NULL) {
208 		*dbp = NULL;
209 		return (SET_ERROR(EIO));
210 	}
211 
212 	*dbp = &db->db;
213 	return (err);
214 }
215 
216 int
dmu_buf_hold_by_dnode(dnode_t * dn,uint64_t offset,const void * tag,dmu_buf_t ** dbp,int flags)217 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
218     const void *tag, dmu_buf_t **dbp, int flags)
219 {
220 	int err;
221 	int db_flags = DB_RF_CANFAIL;
222 
223 	if (flags & DMU_READ_NO_PREFETCH)
224 		db_flags |= DB_RF_NOPREFETCH;
225 	if (flags & DMU_READ_NO_DECRYPT)
226 		db_flags |= DB_RF_NO_DECRYPT;
227 
228 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
229 	if (err == 0) {
230 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
231 		err = dbuf_read(db, NULL, db_flags);
232 		if (err != 0) {
233 			dbuf_rele(db, tag);
234 			*dbp = NULL;
235 		}
236 	}
237 
238 	return (err);
239 }
240 
241 int
dmu_buf_hold(objset_t * os,uint64_t object,uint64_t offset,const void * tag,dmu_buf_t ** dbp,int flags)242 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
243     const void *tag, dmu_buf_t **dbp, int flags)
244 {
245 	int err;
246 	int db_flags = DB_RF_CANFAIL;
247 
248 	if (flags & DMU_READ_NO_PREFETCH)
249 		db_flags |= DB_RF_NOPREFETCH;
250 	if (flags & DMU_READ_NO_DECRYPT)
251 		db_flags |= DB_RF_NO_DECRYPT;
252 
253 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
254 	if (err == 0) {
255 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
256 		err = dbuf_read(db, NULL, db_flags);
257 		if (err != 0) {
258 			dbuf_rele(db, tag);
259 			*dbp = NULL;
260 		}
261 	}
262 
263 	return (err);
264 }
265 
266 int
dmu_bonus_max(void)267 dmu_bonus_max(void)
268 {
269 	return (DN_OLD_MAX_BONUSLEN);
270 }
271 
272 int
dmu_set_bonus(dmu_buf_t * db_fake,int newsize,dmu_tx_t * tx)273 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
274 {
275 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 	dnode_t *dn;
277 	int error;
278 
279 	DB_DNODE_ENTER(db);
280 	dn = DB_DNODE(db);
281 
282 	if (dn->dn_bonus != db) {
283 		error = SET_ERROR(EINVAL);
284 	} else if (newsize < 0 || newsize > db_fake->db_size) {
285 		error = SET_ERROR(EINVAL);
286 	} else {
287 		dnode_setbonuslen(dn, newsize, tx);
288 		error = 0;
289 	}
290 
291 	DB_DNODE_EXIT(db);
292 	return (error);
293 }
294 
295 int
dmu_set_bonustype(dmu_buf_t * db_fake,dmu_object_type_t type,dmu_tx_t * tx)296 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
297 {
298 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 	dnode_t *dn;
300 	int error;
301 
302 	DB_DNODE_ENTER(db);
303 	dn = DB_DNODE(db);
304 
305 	if (!DMU_OT_IS_VALID(type)) {
306 		error = SET_ERROR(EINVAL);
307 	} else if (dn->dn_bonus != db) {
308 		error = SET_ERROR(EINVAL);
309 	} else {
310 		dnode_setbonus_type(dn, type, tx);
311 		error = 0;
312 	}
313 
314 	DB_DNODE_EXIT(db);
315 	return (error);
316 }
317 
318 dmu_object_type_t
dmu_get_bonustype(dmu_buf_t * db_fake)319 dmu_get_bonustype(dmu_buf_t *db_fake)
320 {
321 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
322 	dnode_t *dn;
323 	dmu_object_type_t type;
324 
325 	DB_DNODE_ENTER(db);
326 	dn = DB_DNODE(db);
327 	type = dn->dn_bonustype;
328 	DB_DNODE_EXIT(db);
329 
330 	return (type);
331 }
332 
333 int
dmu_rm_spill(objset_t * os,uint64_t object,dmu_tx_t * tx)334 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
335 {
336 	dnode_t *dn;
337 	int error;
338 
339 	error = dnode_hold(os, object, FTAG, &dn);
340 	dbuf_rm_spill(dn, tx);
341 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
342 	dnode_rm_spill(dn, tx);
343 	rw_exit(&dn->dn_struct_rwlock);
344 	dnode_rele(dn, FTAG);
345 	return (error);
346 }
347 
348 /*
349  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
350  * has not yet been allocated a new bonus dbuf a will be allocated.
351  * Returns ENOENT, EIO, or 0.
352  */
dmu_bonus_hold_by_dnode(dnode_t * dn,const void * tag,dmu_buf_t ** dbp,uint32_t flags)353 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
354     uint32_t flags)
355 {
356 	dmu_buf_impl_t *db;
357 	int error;
358 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
359 
360 	if (flags & DMU_READ_NO_PREFETCH)
361 		db_flags |= DB_RF_NOPREFETCH;
362 	if (flags & DMU_READ_NO_DECRYPT)
363 		db_flags |= DB_RF_NO_DECRYPT;
364 
365 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
366 	if (dn->dn_bonus == NULL) {
367 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
368 			rw_exit(&dn->dn_struct_rwlock);
369 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
370 		}
371 		if (dn->dn_bonus == NULL)
372 			dbuf_create_bonus(dn);
373 	}
374 	db = dn->dn_bonus;
375 
376 	/* as long as the bonus buf is held, the dnode will be held */
377 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
378 		VERIFY(dnode_add_ref(dn, db));
379 		atomic_inc_32(&dn->dn_dbufs_count);
380 	}
381 
382 	/*
383 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
384 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
385 	 * a dnode hold for every dbuf.
386 	 */
387 	rw_exit(&dn->dn_struct_rwlock);
388 
389 	error = dbuf_read(db, NULL, db_flags);
390 	if (error) {
391 		dnode_evict_bonus(dn);
392 		dbuf_rele(db, tag);
393 		*dbp = NULL;
394 		return (error);
395 	}
396 
397 	*dbp = &db->db;
398 	return (0);
399 }
400 
401 int
dmu_bonus_hold(objset_t * os,uint64_t object,const void * tag,dmu_buf_t ** dbp)402 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
403 {
404 	dnode_t *dn;
405 	int error;
406 
407 	error = dnode_hold(os, object, FTAG, &dn);
408 	if (error)
409 		return (error);
410 
411 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
412 	dnode_rele(dn, FTAG);
413 
414 	return (error);
415 }
416 
417 /*
418  * returns ENOENT, EIO, or 0.
419  *
420  * This interface will allocate a blank spill dbuf when a spill blk
421  * doesn't already exist on the dnode.
422  *
423  * if you only want to find an already existing spill db, then
424  * dmu_spill_hold_existing() should be used.
425  */
426 int
dmu_spill_hold_by_dnode(dnode_t * dn,uint32_t flags,const void * tag,dmu_buf_t ** dbp)427 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
428     dmu_buf_t **dbp)
429 {
430 	dmu_buf_impl_t *db = NULL;
431 	int err;
432 
433 	if ((flags & DB_RF_HAVESTRUCT) == 0)
434 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
435 
436 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
437 
438 	if ((flags & DB_RF_HAVESTRUCT) == 0)
439 		rw_exit(&dn->dn_struct_rwlock);
440 
441 	if (db == NULL) {
442 		*dbp = NULL;
443 		return (SET_ERROR(EIO));
444 	}
445 	err = dbuf_read(db, NULL, flags);
446 	if (err == 0)
447 		*dbp = &db->db;
448 	else {
449 		dbuf_rele(db, tag);
450 		*dbp = NULL;
451 	}
452 	return (err);
453 }
454 
455 int
dmu_spill_hold_existing(dmu_buf_t * bonus,const void * tag,dmu_buf_t ** dbp)456 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
457 {
458 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
459 	dnode_t *dn;
460 	int err;
461 
462 	DB_DNODE_ENTER(db);
463 	dn = DB_DNODE(db);
464 
465 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
466 		err = SET_ERROR(EINVAL);
467 	} else {
468 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
469 
470 		if (!dn->dn_have_spill) {
471 			err = SET_ERROR(ENOENT);
472 		} else {
473 			err = dmu_spill_hold_by_dnode(dn,
474 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
475 		}
476 
477 		rw_exit(&dn->dn_struct_rwlock);
478 	}
479 
480 	DB_DNODE_EXIT(db);
481 	return (err);
482 }
483 
484 int
dmu_spill_hold_by_bonus(dmu_buf_t * bonus,uint32_t flags,const void * tag,dmu_buf_t ** dbp)485 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
486     dmu_buf_t **dbp)
487 {
488 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
489 	dnode_t *dn;
490 	int err;
491 	uint32_t db_flags = DB_RF_CANFAIL;
492 
493 	if (flags & DMU_READ_NO_DECRYPT)
494 		db_flags |= DB_RF_NO_DECRYPT;
495 
496 	DB_DNODE_ENTER(db);
497 	dn = DB_DNODE(db);
498 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
499 	DB_DNODE_EXIT(db);
500 
501 	return (err);
502 }
503 
504 /*
505  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
506  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
507  * and can induce severe lock contention when writing to several files
508  * whose dnodes are in the same block.
509  */
510 int
dmu_buf_hold_array_by_dnode(dnode_t * dn,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp,uint32_t flags)511 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
512     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
513     uint32_t flags)
514 {
515 	dmu_buf_t **dbp;
516 	zstream_t *zs = NULL;
517 	uint64_t blkid, nblks, i;
518 	uint32_t dbuf_flags;
519 	int err;
520 	zio_t *zio = NULL;
521 	boolean_t missed = B_FALSE;
522 
523 	ASSERT(!read || length <= DMU_MAX_ACCESS);
524 
525 	/*
526 	 * Note: We directly notify the prefetch code of this read, so that
527 	 * we can tell it about the multi-block read.  dbuf_read() only knows
528 	 * about the one block it is accessing.
529 	 */
530 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
531 	    DB_RF_NOPREFETCH;
532 
533 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
534 		dbuf_flags |= DB_RF_NO_DECRYPT;
535 
536 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
537 	if (dn->dn_datablkshift) {
538 		int blkshift = dn->dn_datablkshift;
539 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
540 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
541 	} else {
542 		if (offset + length > dn->dn_datablksz) {
543 			zfs_panic_recover("zfs: accessing past end of object "
544 			    "%llx/%llx (size=%u access=%llu+%llu)",
545 			    (longlong_t)dn->dn_objset->
546 			    os_dsl_dataset->ds_object,
547 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
548 			    (longlong_t)offset, (longlong_t)length);
549 			rw_exit(&dn->dn_struct_rwlock);
550 			return (SET_ERROR(EIO));
551 		}
552 		nblks = 1;
553 	}
554 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
555 
556 	if (read)
557 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
558 		    ZIO_FLAG_CANFAIL);
559 	blkid = dbuf_whichblock(dn, 0, offset);
560 	if ((flags & DMU_READ_NO_PREFETCH) == 0) {
561 		/*
562 		 * Prepare the zfetch before initiating the demand reads, so
563 		 * that if multiple threads block on same indirect block, we
564 		 * base predictions on the original less racy request order.
565 		 */
566 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
567 		    B_TRUE);
568 	}
569 	for (i = 0; i < nblks; i++) {
570 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
571 		if (db == NULL) {
572 			if (zs) {
573 				dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
574 				    B_TRUE);
575 			}
576 			rw_exit(&dn->dn_struct_rwlock);
577 			dmu_buf_rele_array(dbp, nblks, tag);
578 			if (read)
579 				zio_nowait(zio);
580 			return (SET_ERROR(EIO));
581 		}
582 
583 		/*
584 		 * Initiate async demand data read.
585 		 * We check the db_state after calling dbuf_read() because
586 		 * (1) dbuf_read() may change the state to CACHED due to a
587 		 * hit in the ARC, and (2) on a cache miss, a child will
588 		 * have been added to "zio" but not yet completed, so the
589 		 * state will not yet be CACHED.
590 		 */
591 		if (read) {
592 			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
593 			    offset + length < db->db.db_offset +
594 			    db->db.db_size) {
595 				if (offset <= db->db.db_offset)
596 					dbuf_flags |= DB_RF_PARTIAL_FIRST;
597 				else
598 					dbuf_flags |= DB_RF_PARTIAL_MORE;
599 			}
600 			(void) dbuf_read(db, zio, dbuf_flags);
601 			if (db->db_state != DB_CACHED)
602 				missed = B_TRUE;
603 		}
604 		dbp[i] = &db->db;
605 	}
606 
607 	if (!read)
608 		zfs_racct_write(length, nblks);
609 
610 	if (zs)
611 		dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE);
612 	rw_exit(&dn->dn_struct_rwlock);
613 
614 	if (read) {
615 		/* wait for async read i/o */
616 		err = zio_wait(zio);
617 		if (err) {
618 			dmu_buf_rele_array(dbp, nblks, tag);
619 			return (err);
620 		}
621 
622 		/* wait for other io to complete */
623 		for (i = 0; i < nblks; i++) {
624 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
625 			mutex_enter(&db->db_mtx);
626 			while (db->db_state == DB_READ ||
627 			    db->db_state == DB_FILL)
628 				cv_wait(&db->db_changed, &db->db_mtx);
629 			if (db->db_state == DB_UNCACHED)
630 				err = SET_ERROR(EIO);
631 			mutex_exit(&db->db_mtx);
632 			if (err) {
633 				dmu_buf_rele_array(dbp, nblks, tag);
634 				return (err);
635 			}
636 		}
637 	}
638 
639 	*numbufsp = nblks;
640 	*dbpp = dbp;
641 	return (0);
642 }
643 
644 int
dmu_buf_hold_array(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,int read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)645 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
646     uint64_t length, int read, const void *tag, int *numbufsp,
647     dmu_buf_t ***dbpp)
648 {
649 	dnode_t *dn;
650 	int err;
651 
652 	err = dnode_hold(os, object, FTAG, &dn);
653 	if (err)
654 		return (err);
655 
656 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
657 	    numbufsp, dbpp, DMU_READ_PREFETCH);
658 
659 	dnode_rele(dn, FTAG);
660 
661 	return (err);
662 }
663 
664 int
dmu_buf_hold_array_by_bonus(dmu_buf_t * db_fake,uint64_t offset,uint64_t length,boolean_t read,const void * tag,int * numbufsp,dmu_buf_t *** dbpp)665 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
666     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
667     dmu_buf_t ***dbpp)
668 {
669 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
670 	dnode_t *dn;
671 	int err;
672 
673 	DB_DNODE_ENTER(db);
674 	dn = DB_DNODE(db);
675 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
676 	    numbufsp, dbpp, DMU_READ_PREFETCH);
677 	DB_DNODE_EXIT(db);
678 
679 	return (err);
680 }
681 
682 void
dmu_buf_rele_array(dmu_buf_t ** dbp_fake,int numbufs,const void * tag)683 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
684 {
685 	int i;
686 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
687 
688 	if (numbufs == 0)
689 		return;
690 
691 	for (i = 0; i < numbufs; i++) {
692 		if (dbp[i])
693 			dbuf_rele(dbp[i], tag);
694 	}
695 
696 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
697 }
698 
699 /*
700  * Issue prefetch I/Os for the given blocks.  If level is greater than 0, the
701  * indirect blocks prefetched will be those that point to the blocks containing
702  * the data starting at offset, and continuing to offset + len.  If the range
703  * it too long, prefetch the first dmu_prefetch_max bytes as requested, while
704  * for the rest only a higher level, also fitting within dmu_prefetch_max.  It
705  * should primarily help random reads, since for long sequential reads there is
706  * a speculative prefetcher.
707  *
708  * Note that if the indirect blocks above the blocks being prefetched are not
709  * in cache, they will be asynchronously read in.  Dnode read by dnode_hold()
710  * is currently synchronous.
711  */
712 void
dmu_prefetch(objset_t * os,uint64_t object,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)713 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
714     uint64_t len, zio_priority_t pri)
715 {
716 	dnode_t *dn;
717 
718 	if (dmu_prefetch_max == 0 || len == 0) {
719 		dmu_prefetch_dnode(os, object, pri);
720 		return;
721 	}
722 
723 	if (dnode_hold(os, object, FTAG, &dn) != 0)
724 		return;
725 
726 	dmu_prefetch_by_dnode(dn, level, offset, len, pri);
727 
728 	dnode_rele(dn, FTAG);
729 }
730 
731 void
dmu_prefetch_by_dnode(dnode_t * dn,int64_t level,uint64_t offset,uint64_t len,zio_priority_t pri)732 dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
733     uint64_t len, zio_priority_t pri)
734 {
735 	int64_t level2 = level;
736 	uint64_t start, end, start2, end2;
737 
738 	/*
739 	 * Depending on len we may do two prefetches: blocks [start, end) at
740 	 * level, and following blocks [start2, end2) at higher level2.
741 	 */
742 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
743 	if (dn->dn_datablkshift != 0) {
744 		/*
745 		 * The object has multiple blocks.  Calculate the full range
746 		 * of blocks [start, end2) and then split it into two parts,
747 		 * so that the first [start, end) fits into dmu_prefetch_max.
748 		 */
749 		start = dbuf_whichblock(dn, level, offset);
750 		end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
751 		uint8_t ibs = dn->dn_indblkshift;
752 		uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
753 		uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
754 		start2 = end = MIN(end2, start + limit);
755 
756 		/*
757 		 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
758 		 */
759 		uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
760 		limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
761 		do {
762 			level2++;
763 			start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
764 			end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
765 		} while (end2 - start2 > limit);
766 	} else {
767 		/* There is only one block.  Prefetch it or nothing. */
768 		start = start2 = end2 = 0;
769 		end = start + (level == 0 && offset < dn->dn_datablksz);
770 	}
771 
772 	for (uint64_t i = start; i < end; i++)
773 		dbuf_prefetch(dn, level, i, pri, 0);
774 	for (uint64_t i = start2; i < end2; i++)
775 		dbuf_prefetch(dn, level2, i, pri, 0);
776 	rw_exit(&dn->dn_struct_rwlock);
777 }
778 
779 /*
780  * Issue prefetch I/Os for the given object's dnode.
781  */
782 void
dmu_prefetch_dnode(objset_t * os,uint64_t object,zio_priority_t pri)783 dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
784 {
785 	if (object == 0 || object >= DN_MAX_OBJECT)
786 		return;
787 
788 	dnode_t *dn = DMU_META_DNODE(os);
789 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
790 	uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
791 	dbuf_prefetch(dn, 0, blkid, pri, 0);
792 	rw_exit(&dn->dn_struct_rwlock);
793 }
794 
795 /*
796  * Get the next "chunk" of file data to free.  We traverse the file from
797  * the end so that the file gets shorter over time (if we crashes in the
798  * middle, this will leave us in a better state).  We find allocated file
799  * data by simply searching the allocated level 1 indirects.
800  *
801  * On input, *start should be the first offset that does not need to be
802  * freed (e.g. "offset + length").  On return, *start will be the first
803  * offset that should be freed and l1blks is set to the number of level 1
804  * indirect blocks found within the chunk.
805  */
806 static int
get_next_chunk(dnode_t * dn,uint64_t * start,uint64_t minimum,uint64_t * l1blks)807 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
808 {
809 	uint64_t blks;
810 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
811 	/* bytes of data covered by a level-1 indirect block */
812 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
813 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
814 
815 	ASSERT3U(minimum, <=, *start);
816 
817 	/*
818 	 * Check if we can free the entire range assuming that all of the
819 	 * L1 blocks in this range have data. If we can, we use this
820 	 * worst case value as an estimate so we can avoid having to look
821 	 * at the object's actual data.
822 	 */
823 	uint64_t total_l1blks =
824 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
825 	    iblkrange;
826 	if (total_l1blks <= maxblks) {
827 		*l1blks = total_l1blks;
828 		*start = minimum;
829 		return (0);
830 	}
831 	ASSERT(ISP2(iblkrange));
832 
833 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
834 		int err;
835 
836 		/*
837 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
838 		 * indirect block at or before the input offset.  We must
839 		 * decrement *start so that it is at the end of the region
840 		 * to search.
841 		 */
842 		(*start)--;
843 
844 		err = dnode_next_offset(dn,
845 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
846 
847 		/* if there are no indirect blocks before start, we are done */
848 		if (err == ESRCH) {
849 			*start = minimum;
850 			break;
851 		} else if (err != 0) {
852 			*l1blks = blks;
853 			return (err);
854 		}
855 
856 		/* set start to the beginning of this L1 indirect */
857 		*start = P2ALIGN(*start, iblkrange);
858 	}
859 	if (*start < minimum)
860 		*start = minimum;
861 	*l1blks = blks;
862 
863 	return (0);
864 }
865 
866 /*
867  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
868  * otherwise return false.
869  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
870  */
871 static boolean_t
dmu_objset_zfs_unmounting(objset_t * os)872 dmu_objset_zfs_unmounting(objset_t *os)
873 {
874 #ifdef _KERNEL
875 	if (dmu_objset_type(os) == DMU_OST_ZFS)
876 		return (zfs_get_vfs_flag_unmounted(os));
877 #else
878 	(void) os;
879 #endif
880 	return (B_FALSE);
881 }
882 
883 static int
dmu_free_long_range_impl(objset_t * os,dnode_t * dn,uint64_t offset,uint64_t length)884 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
885     uint64_t length)
886 {
887 	uint64_t object_size;
888 	int err;
889 	uint64_t dirty_frees_threshold;
890 	dsl_pool_t *dp = dmu_objset_pool(os);
891 
892 	if (dn == NULL)
893 		return (SET_ERROR(EINVAL));
894 
895 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
896 	if (offset >= object_size)
897 		return (0);
898 
899 	if (zfs_per_txg_dirty_frees_percent <= 100)
900 		dirty_frees_threshold =
901 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
902 	else
903 		dirty_frees_threshold = zfs_dirty_data_max / 20;
904 
905 	if (length == DMU_OBJECT_END || offset + length > object_size)
906 		length = object_size - offset;
907 
908 	while (length != 0) {
909 		uint64_t chunk_end, chunk_begin, chunk_len;
910 		uint64_t l1blks;
911 		dmu_tx_t *tx;
912 
913 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
914 			return (SET_ERROR(EINTR));
915 
916 		chunk_end = chunk_begin = offset + length;
917 
918 		/* move chunk_begin backwards to the beginning of this chunk */
919 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
920 		if (err)
921 			return (err);
922 		ASSERT3U(chunk_begin, >=, offset);
923 		ASSERT3U(chunk_begin, <=, chunk_end);
924 
925 		chunk_len = chunk_end - chunk_begin;
926 
927 		tx = dmu_tx_create(os);
928 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
929 
930 		/*
931 		 * Mark this transaction as typically resulting in a net
932 		 * reduction in space used.
933 		 */
934 		dmu_tx_mark_netfree(tx);
935 		err = dmu_tx_assign(tx, TXG_WAIT);
936 		if (err) {
937 			dmu_tx_abort(tx);
938 			return (err);
939 		}
940 
941 		uint64_t txg = dmu_tx_get_txg(tx);
942 
943 		mutex_enter(&dp->dp_lock);
944 		uint64_t long_free_dirty =
945 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
946 		mutex_exit(&dp->dp_lock);
947 
948 		/*
949 		 * To avoid filling up a TXG with just frees, wait for
950 		 * the next TXG to open before freeing more chunks if
951 		 * we have reached the threshold of frees.
952 		 */
953 		if (dirty_frees_threshold != 0 &&
954 		    long_free_dirty >= dirty_frees_threshold) {
955 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
956 			dmu_tx_commit(tx);
957 			txg_wait_open(dp, 0, B_TRUE);
958 			continue;
959 		}
960 
961 		/*
962 		 * In order to prevent unnecessary write throttling, for each
963 		 * TXG, we track the cumulative size of L1 blocks being dirtied
964 		 * in dnode_free_range() below. We compare this number to a
965 		 * tunable threshold, past which we prevent new L1 dirty freeing
966 		 * blocks from being added into the open TXG. See
967 		 * dmu_free_long_range_impl() for details. The threshold
968 		 * prevents write throttle activation due to dirty freeing L1
969 		 * blocks taking up a large percentage of zfs_dirty_data_max.
970 		 */
971 		mutex_enter(&dp->dp_lock);
972 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
973 		    l1blks << dn->dn_indblkshift;
974 		mutex_exit(&dp->dp_lock);
975 		DTRACE_PROBE3(free__long__range,
976 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
977 		    uint64_t, txg);
978 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
979 
980 		dmu_tx_commit(tx);
981 
982 		length -= chunk_len;
983 	}
984 	return (0);
985 }
986 
987 int
dmu_free_long_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t length)988 dmu_free_long_range(objset_t *os, uint64_t object,
989     uint64_t offset, uint64_t length)
990 {
991 	dnode_t *dn;
992 	int err;
993 
994 	err = dnode_hold(os, object, FTAG, &dn);
995 	if (err != 0)
996 		return (err);
997 	err = dmu_free_long_range_impl(os, dn, offset, length);
998 
999 	/*
1000 	 * It is important to zero out the maxblkid when freeing the entire
1001 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
1002 	 * will take the fast path, and (b) dnode_reallocate() can verify
1003 	 * that the entire file has been freed.
1004 	 */
1005 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1006 		dn->dn_maxblkid = 0;
1007 
1008 	dnode_rele(dn, FTAG);
1009 	return (err);
1010 }
1011 
1012 int
dmu_free_long_object(objset_t * os,uint64_t object)1013 dmu_free_long_object(objset_t *os, uint64_t object)
1014 {
1015 	dmu_tx_t *tx;
1016 	int err;
1017 
1018 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1019 	if (err != 0)
1020 		return (err);
1021 
1022 	tx = dmu_tx_create(os);
1023 	dmu_tx_hold_bonus(tx, object);
1024 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1025 	dmu_tx_mark_netfree(tx);
1026 	err = dmu_tx_assign(tx, TXG_WAIT);
1027 	if (err == 0) {
1028 		err = dmu_object_free(os, object, tx);
1029 		dmu_tx_commit(tx);
1030 	} else {
1031 		dmu_tx_abort(tx);
1032 	}
1033 
1034 	return (err);
1035 }
1036 
1037 int
dmu_free_range(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1038 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1039     uint64_t size, dmu_tx_t *tx)
1040 {
1041 	dnode_t *dn;
1042 	int err = dnode_hold(os, object, FTAG, &dn);
1043 	if (err)
1044 		return (err);
1045 	ASSERT(offset < UINT64_MAX);
1046 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1047 	dnode_free_range(dn, offset, size, tx);
1048 	dnode_rele(dn, FTAG);
1049 	return (0);
1050 }
1051 
1052 static int
dmu_read_impl(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1053 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1054     void *buf, uint32_t flags)
1055 {
1056 	dmu_buf_t **dbp;
1057 	int numbufs, err = 0;
1058 
1059 	/*
1060 	 * Deal with odd block sizes, where there can't be data past the first
1061 	 * block.  If we ever do the tail block optimization, we will need to
1062 	 * handle that here as well.
1063 	 */
1064 	if (dn->dn_maxblkid == 0) {
1065 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1066 		    MIN(size, dn->dn_datablksz - offset);
1067 		memset((char *)buf + newsz, 0, size - newsz);
1068 		size = newsz;
1069 	}
1070 
1071 	while (size > 0) {
1072 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1073 		int i;
1074 
1075 		/*
1076 		 * NB: we could do this block-at-a-time, but it's nice
1077 		 * to be reading in parallel.
1078 		 */
1079 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1080 		    TRUE, FTAG, &numbufs, &dbp, flags);
1081 		if (err)
1082 			break;
1083 
1084 		for (i = 0; i < numbufs; i++) {
1085 			uint64_t tocpy;
1086 			int64_t bufoff;
1087 			dmu_buf_t *db = dbp[i];
1088 
1089 			ASSERT(size > 0);
1090 
1091 			bufoff = offset - db->db_offset;
1092 			tocpy = MIN(db->db_size - bufoff, size);
1093 
1094 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1095 
1096 			offset += tocpy;
1097 			size -= tocpy;
1098 			buf = (char *)buf + tocpy;
1099 		}
1100 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1101 	}
1102 	return (err);
1103 }
1104 
1105 int
dmu_read(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1106 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1107     void *buf, uint32_t flags)
1108 {
1109 	dnode_t *dn;
1110 	int err;
1111 
1112 	err = dnode_hold(os, object, FTAG, &dn);
1113 	if (err != 0)
1114 		return (err);
1115 
1116 	err = dmu_read_impl(dn, offset, size, buf, flags);
1117 	dnode_rele(dn, FTAG);
1118 	return (err);
1119 }
1120 
1121 int
dmu_read_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,void * buf,uint32_t flags)1122 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1123     uint32_t flags)
1124 {
1125 	return (dmu_read_impl(dn, offset, size, buf, flags));
1126 }
1127 
1128 static void
dmu_write_impl(dmu_buf_t ** dbp,int numbufs,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1129 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1130     const void *buf, dmu_tx_t *tx)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; i < numbufs; i++) {
1135 		uint64_t tocpy;
1136 		int64_t bufoff;
1137 		dmu_buf_t *db = dbp[i];
1138 
1139 		ASSERT(size > 0);
1140 
1141 		bufoff = offset - db->db_offset;
1142 		tocpy = MIN(db->db_size - bufoff, size);
1143 
1144 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1145 
1146 		if (tocpy == db->db_size)
1147 			dmu_buf_will_fill(db, tx, B_FALSE);
1148 		else
1149 			dmu_buf_will_dirty(db, tx);
1150 
1151 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1152 
1153 		if (tocpy == db->db_size)
1154 			dmu_buf_fill_done(db, tx, B_FALSE);
1155 
1156 		offset += tocpy;
1157 		size -= tocpy;
1158 		buf = (char *)buf + tocpy;
1159 	}
1160 }
1161 
1162 void
dmu_write(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1163 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1164     const void *buf, dmu_tx_t *tx)
1165 {
1166 	dmu_buf_t **dbp;
1167 	int numbufs;
1168 
1169 	if (size == 0)
1170 		return;
1171 
1172 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1173 	    FALSE, FTAG, &numbufs, &dbp));
1174 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1175 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1176 }
1177 
1178 /*
1179  * Note: Lustre is an external consumer of this interface.
1180  */
1181 void
dmu_write_by_dnode(dnode_t * dn,uint64_t offset,uint64_t size,const void * buf,dmu_tx_t * tx)1182 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1183     const void *buf, dmu_tx_t *tx)
1184 {
1185 	dmu_buf_t **dbp;
1186 	int numbufs;
1187 
1188 	if (size == 0)
1189 		return;
1190 
1191 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1192 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1193 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1194 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1195 }
1196 
1197 void
dmu_prealloc(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1198 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1199     dmu_tx_t *tx)
1200 {
1201 	dmu_buf_t **dbp;
1202 	int numbufs, i;
1203 
1204 	if (size == 0)
1205 		return;
1206 
1207 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1208 	    FALSE, FTAG, &numbufs, &dbp));
1209 
1210 	for (i = 0; i < numbufs; i++) {
1211 		dmu_buf_t *db = dbp[i];
1212 
1213 		dmu_buf_will_not_fill(db, tx);
1214 	}
1215 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1216 }
1217 
1218 void
dmu_write_embedded(objset_t * os,uint64_t object,uint64_t offset,void * data,uint8_t etype,uint8_t comp,int uncompressed_size,int compressed_size,int byteorder,dmu_tx_t * tx)1219 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1220     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1221     int compressed_size, int byteorder, dmu_tx_t *tx)
1222 {
1223 	dmu_buf_t *db;
1224 
1225 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1226 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1227 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1228 	    FTAG, &db));
1229 
1230 	dmu_buf_write_embedded(db,
1231 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1232 	    uncompressed_size, compressed_size, byteorder, tx);
1233 
1234 	dmu_buf_rele(db, FTAG);
1235 }
1236 
1237 void
dmu_redact(objset_t * os,uint64_t object,uint64_t offset,uint64_t size,dmu_tx_t * tx)1238 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1239     dmu_tx_t *tx)
1240 {
1241 	int numbufs, i;
1242 	dmu_buf_t **dbp;
1243 
1244 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1245 	    &numbufs, &dbp));
1246 	for (i = 0; i < numbufs; i++)
1247 		dmu_buf_redact(dbp[i], tx);
1248 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1249 }
1250 
1251 #ifdef _KERNEL
1252 int
dmu_read_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size)1253 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1254 {
1255 	dmu_buf_t **dbp;
1256 	int numbufs, i, err;
1257 
1258 	/*
1259 	 * NB: we could do this block-at-a-time, but it's nice
1260 	 * to be reading in parallel.
1261 	 */
1262 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1263 	    TRUE, FTAG, &numbufs, &dbp, 0);
1264 	if (err)
1265 		return (err);
1266 
1267 	for (i = 0; i < numbufs; i++) {
1268 		uint64_t tocpy;
1269 		int64_t bufoff;
1270 		dmu_buf_t *db = dbp[i];
1271 
1272 		ASSERT(size > 0);
1273 
1274 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1275 		tocpy = MIN(db->db_size - bufoff, size);
1276 
1277 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1278 		    UIO_READ, uio);
1279 
1280 		if (err)
1281 			break;
1282 
1283 		size -= tocpy;
1284 	}
1285 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1286 
1287 	return (err);
1288 }
1289 
1290 /*
1291  * Read 'size' bytes into the uio buffer.
1292  * From object zdb->db_object.
1293  * Starting at zfs_uio_offset(uio).
1294  *
1295  * If the caller already has a dbuf in the target object
1296  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1297  * because we don't have to find the dnode_t for the object.
1298  */
1299 int
dmu_read_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size)1300 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1301 {
1302 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1303 	dnode_t *dn;
1304 	int err;
1305 
1306 	if (size == 0)
1307 		return (0);
1308 
1309 	DB_DNODE_ENTER(db);
1310 	dn = DB_DNODE(db);
1311 	err = dmu_read_uio_dnode(dn, uio, size);
1312 	DB_DNODE_EXIT(db);
1313 
1314 	return (err);
1315 }
1316 
1317 /*
1318  * Read 'size' bytes into the uio buffer.
1319  * From the specified object
1320  * Starting at offset zfs_uio_offset(uio).
1321  */
1322 int
dmu_read_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size)1323 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1324 {
1325 	dnode_t *dn;
1326 	int err;
1327 
1328 	if (size == 0)
1329 		return (0);
1330 
1331 	err = dnode_hold(os, object, FTAG, &dn);
1332 	if (err)
1333 		return (err);
1334 
1335 	err = dmu_read_uio_dnode(dn, uio, size);
1336 
1337 	dnode_rele(dn, FTAG);
1338 
1339 	return (err);
1340 }
1341 
1342 int
dmu_write_uio_dnode(dnode_t * dn,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx)1343 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1344 {
1345 	dmu_buf_t **dbp;
1346 	int numbufs;
1347 	int err = 0;
1348 	int i;
1349 
1350 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1351 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1352 	if (err)
1353 		return (err);
1354 
1355 	for (i = 0; i < numbufs; i++) {
1356 		uint64_t tocpy;
1357 		int64_t bufoff;
1358 		dmu_buf_t *db = dbp[i];
1359 
1360 		ASSERT(size > 0);
1361 
1362 		offset_t off = zfs_uio_offset(uio);
1363 		bufoff = off - db->db_offset;
1364 		tocpy = MIN(db->db_size - bufoff, size);
1365 
1366 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1367 
1368 		if (tocpy == db->db_size)
1369 			dmu_buf_will_fill(db, tx, B_TRUE);
1370 		else
1371 			dmu_buf_will_dirty(db, tx);
1372 
1373 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1374 		    tocpy, UIO_WRITE, uio);
1375 
1376 		if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1377 			/* The fill was reverted.  Undo any uio progress. */
1378 			zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1379 		}
1380 
1381 		if (err)
1382 			break;
1383 
1384 		size -= tocpy;
1385 	}
1386 
1387 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1388 	return (err);
1389 }
1390 
1391 /*
1392  * Write 'size' bytes from the uio buffer.
1393  * To object zdb->db_object.
1394  * Starting at offset zfs_uio_offset(uio).
1395  *
1396  * If the caller already has a dbuf in the target object
1397  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1398  * because we don't have to find the dnode_t for the object.
1399  */
1400 int
dmu_write_uio_dbuf(dmu_buf_t * zdb,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx)1401 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1402     dmu_tx_t *tx)
1403 {
1404 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1405 	dnode_t *dn;
1406 	int err;
1407 
1408 	if (size == 0)
1409 		return (0);
1410 
1411 	DB_DNODE_ENTER(db);
1412 	dn = DB_DNODE(db);
1413 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1414 	DB_DNODE_EXIT(db);
1415 
1416 	return (err);
1417 }
1418 
1419 /*
1420  * Write 'size' bytes from the uio buffer.
1421  * To the specified object.
1422  * Starting at offset zfs_uio_offset(uio).
1423  */
1424 int
dmu_write_uio(objset_t * os,uint64_t object,zfs_uio_t * uio,uint64_t size,dmu_tx_t * tx)1425 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1426     dmu_tx_t *tx)
1427 {
1428 	dnode_t *dn;
1429 	int err;
1430 
1431 	if (size == 0)
1432 		return (0);
1433 
1434 	err = dnode_hold(os, object, FTAG, &dn);
1435 	if (err)
1436 		return (err);
1437 
1438 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1439 
1440 	dnode_rele(dn, FTAG);
1441 
1442 	return (err);
1443 }
1444 #endif /* _KERNEL */
1445 
1446 /*
1447  * Allocate a loaned anonymous arc buffer.
1448  */
1449 arc_buf_t *
dmu_request_arcbuf(dmu_buf_t * handle,int size)1450 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1451 {
1452 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1453 
1454 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1455 }
1456 
1457 /*
1458  * Free a loaned arc buffer.
1459  */
1460 void
dmu_return_arcbuf(arc_buf_t * buf)1461 dmu_return_arcbuf(arc_buf_t *buf)
1462 {
1463 	arc_return_buf(buf, FTAG);
1464 	arc_buf_destroy(buf, FTAG);
1465 }
1466 
1467 /*
1468  * A "lightweight" write is faster than a regular write (e.g.
1469  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1470  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1471  * data can not be read or overwritten until the transaction's txg has been
1472  * synced.  This makes it appropriate for workloads that are known to be
1473  * (temporarily) write-only, like "zfs receive".
1474  *
1475  * A single block is written, starting at the specified offset in bytes.  If
1476  * the call is successful, it returns 0 and the provided abd has been
1477  * consumed (the caller should not free it).
1478  */
1479 int
dmu_lightweight_write_by_dnode(dnode_t * dn,uint64_t offset,abd_t * abd,const zio_prop_t * zp,zio_flag_t flags,dmu_tx_t * tx)1480 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1481     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1482 {
1483 	dbuf_dirty_record_t *dr =
1484 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1485 	if (dr == NULL)
1486 		return (SET_ERROR(EIO));
1487 	dr->dt.dll.dr_abd = abd;
1488 	dr->dt.dll.dr_props = *zp;
1489 	dr->dt.dll.dr_flags = flags;
1490 	return (0);
1491 }
1492 
1493 /*
1494  * When possible directly assign passed loaned arc buffer to a dbuf.
1495  * If this is not possible copy the contents of passed arc buf via
1496  * dmu_write().
1497  */
1498 int
dmu_assign_arcbuf_by_dnode(dnode_t * dn,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx)1499 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1500     dmu_tx_t *tx)
1501 {
1502 	dmu_buf_impl_t *db;
1503 	objset_t *os = dn->dn_objset;
1504 	uint64_t object = dn->dn_object;
1505 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1506 	uint64_t blkid;
1507 
1508 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1509 	blkid = dbuf_whichblock(dn, 0, offset);
1510 	db = dbuf_hold(dn, blkid, FTAG);
1511 	rw_exit(&dn->dn_struct_rwlock);
1512 	if (db == NULL)
1513 		return (SET_ERROR(EIO));
1514 
1515 	/*
1516 	 * We can only assign if the offset is aligned and the arc buf is the
1517 	 * same size as the dbuf.
1518 	 */
1519 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1520 		zfs_racct_write(blksz, 1);
1521 		dbuf_assign_arcbuf(db, buf, tx);
1522 		dbuf_rele(db, FTAG);
1523 	} else {
1524 		/* compressed bufs must always be assignable to their dbuf */
1525 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1526 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1527 
1528 		dbuf_rele(db, FTAG);
1529 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1530 		dmu_return_arcbuf(buf);
1531 	}
1532 
1533 	return (0);
1534 }
1535 
1536 int
dmu_assign_arcbuf_by_dbuf(dmu_buf_t * handle,uint64_t offset,arc_buf_t * buf,dmu_tx_t * tx)1537 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1538     dmu_tx_t *tx)
1539 {
1540 	int err;
1541 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1542 
1543 	DB_DNODE_ENTER(dbuf);
1544 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1545 	DB_DNODE_EXIT(dbuf);
1546 
1547 	return (err);
1548 }
1549 
1550 typedef struct {
1551 	dbuf_dirty_record_t	*dsa_dr;
1552 	dmu_sync_cb_t		*dsa_done;
1553 	zgd_t			*dsa_zgd;
1554 	dmu_tx_t		*dsa_tx;
1555 } dmu_sync_arg_t;
1556 
1557 static void
dmu_sync_ready(zio_t * zio,arc_buf_t * buf,void * varg)1558 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1559 {
1560 	(void) buf;
1561 	dmu_sync_arg_t *dsa = varg;
1562 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1563 	blkptr_t *bp = zio->io_bp;
1564 
1565 	if (zio->io_error == 0) {
1566 		if (BP_IS_HOLE(bp)) {
1567 			/*
1568 			 * A block of zeros may compress to a hole, but the
1569 			 * block size still needs to be known for replay.
1570 			 */
1571 			BP_SET_LSIZE(bp, db->db_size);
1572 		} else if (!BP_IS_EMBEDDED(bp)) {
1573 			ASSERT(BP_GET_LEVEL(bp) == 0);
1574 			BP_SET_FILL(bp, 1);
1575 		}
1576 	}
1577 }
1578 
1579 static void
dmu_sync_late_arrival_ready(zio_t * zio)1580 dmu_sync_late_arrival_ready(zio_t *zio)
1581 {
1582 	dmu_sync_ready(zio, NULL, zio->io_private);
1583 }
1584 
1585 static void
dmu_sync_done(zio_t * zio,arc_buf_t * buf,void * varg)1586 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1587 {
1588 	(void) buf;
1589 	dmu_sync_arg_t *dsa = varg;
1590 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1591 	dmu_buf_impl_t *db = dr->dr_dbuf;
1592 	zgd_t *zgd = dsa->dsa_zgd;
1593 
1594 	/*
1595 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1596 	 * the writes for the lwb have completed.
1597 	 */
1598 	if (zio->io_error == 0) {
1599 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1600 	}
1601 
1602 	mutex_enter(&db->db_mtx);
1603 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1604 	if (zio->io_error == 0) {
1605 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1606 		if (dr->dt.dl.dr_nopwrite) {
1607 			blkptr_t *bp = zio->io_bp;
1608 			blkptr_t *bp_orig = &zio->io_bp_orig;
1609 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1610 
1611 			ASSERT(BP_EQUAL(bp, bp_orig));
1612 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1613 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1614 			VERIFY(zio_checksum_table[chksum].ci_flags &
1615 			    ZCHECKSUM_FLAG_NOPWRITE);
1616 		}
1617 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1618 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1619 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1620 
1621 		/*
1622 		 * Old style holes are filled with all zeros, whereas
1623 		 * new-style holes maintain their lsize, type, level,
1624 		 * and birth time (see zio_write_compress). While we
1625 		 * need to reset the BP_SET_LSIZE() call that happened
1626 		 * in dmu_sync_ready for old style holes, we do *not*
1627 		 * want to wipe out the information contained in new
1628 		 * style holes. Thus, only zero out the block pointer if
1629 		 * it's an old style hole.
1630 		 */
1631 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1632 		    BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1633 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1634 	} else {
1635 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1636 	}
1637 	cv_broadcast(&db->db_changed);
1638 	mutex_exit(&db->db_mtx);
1639 
1640 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1641 
1642 	kmem_free(dsa, sizeof (*dsa));
1643 }
1644 
1645 static void
dmu_sync_late_arrival_done(zio_t * zio)1646 dmu_sync_late_arrival_done(zio_t *zio)
1647 {
1648 	blkptr_t *bp = zio->io_bp;
1649 	dmu_sync_arg_t *dsa = zio->io_private;
1650 	zgd_t *zgd = dsa->dsa_zgd;
1651 
1652 	if (zio->io_error == 0) {
1653 		/*
1654 		 * Record the vdev(s) backing this blkptr so they can be
1655 		 * flushed after the writes for the lwb have completed.
1656 		 */
1657 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1658 
1659 		if (!BP_IS_HOLE(bp)) {
1660 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1661 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1662 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1663 			ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
1664 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1665 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1666 		}
1667 	}
1668 
1669 	dmu_tx_commit(dsa->dsa_tx);
1670 
1671 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1672 
1673 	abd_free(zio->io_abd);
1674 	kmem_free(dsa, sizeof (*dsa));
1675 }
1676 
1677 static int
dmu_sync_late_arrival(zio_t * pio,objset_t * os,dmu_sync_cb_t * done,zgd_t * zgd,zio_prop_t * zp,zbookmark_phys_t * zb)1678 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1679     zio_prop_t *zp, zbookmark_phys_t *zb)
1680 {
1681 	dmu_sync_arg_t *dsa;
1682 	dmu_tx_t *tx;
1683 	int error;
1684 
1685 	error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1686 	    DB_RF_CANFAIL | DB_RF_NOPREFETCH);
1687 	if (error != 0)
1688 		return (error);
1689 
1690 	tx = dmu_tx_create(os);
1691 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1692 	/*
1693 	 * This transaction does not produce any dirty data or log blocks, so
1694 	 * it should not be throttled.  All other cases wait for TXG sync, by
1695 	 * which time the log block we are writing will be obsolete, so we can
1696 	 * skip waiting and just return error here instead.
1697 	 */
1698 	if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) {
1699 		dmu_tx_abort(tx);
1700 		/* Make zl_get_data do txg_waited_synced() */
1701 		return (SET_ERROR(EIO));
1702 	}
1703 
1704 	/*
1705 	 * In order to prevent the zgd's lwb from being free'd prior to
1706 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1707 	 * the lwb's "max txg" takes this tx's txg into account.
1708 	 */
1709 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1710 
1711 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1712 	dsa->dsa_dr = NULL;
1713 	dsa->dsa_done = done;
1714 	dsa->dsa_zgd = zgd;
1715 	dsa->dsa_tx = tx;
1716 
1717 	/*
1718 	 * Since we are currently syncing this txg, it's nontrivial to
1719 	 * determine what BP to nopwrite against, so we disable nopwrite.
1720 	 *
1721 	 * When syncing, the db_blkptr is initially the BP of the previous
1722 	 * txg.  We can not nopwrite against it because it will be changed
1723 	 * (this is similar to the non-late-arrival case where the dbuf is
1724 	 * dirty in a future txg).
1725 	 *
1726 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1727 	 * We can not nopwrite against it because although the BP will not
1728 	 * (typically) be changed, the data has not yet been persisted to this
1729 	 * location.
1730 	 *
1731 	 * Finally, when dbuf_write_done() is called, it is theoretically
1732 	 * possible to always nopwrite, because the data that was written in
1733 	 * this txg is the same data that we are trying to write.  However we
1734 	 * would need to check that this dbuf is not dirty in any future
1735 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1736 	 * don't nopwrite in this case.
1737 	 */
1738 	zp->zp_nopwrite = B_FALSE;
1739 
1740 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1741 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1742 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1743 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
1744 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1745 
1746 	return (0);
1747 }
1748 
1749 /*
1750  * Intent log support: sync the block associated with db to disk.
1751  * N.B. and XXX: the caller is responsible for making sure that the
1752  * data isn't changing while dmu_sync() is writing it.
1753  *
1754  * Return values:
1755  *
1756  *	EEXIST: this txg has already been synced, so there's nothing to do.
1757  *		The caller should not log the write.
1758  *
1759  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1760  *		The caller should not log the write.
1761  *
1762  *	EALREADY: this block is already in the process of being synced.
1763  *		The caller should track its progress (somehow).
1764  *
1765  *	EIO: could not do the I/O.
1766  *		The caller should do a txg_wait_synced().
1767  *
1768  *	0: the I/O has been initiated.
1769  *		The caller should log this blkptr in the done callback.
1770  *		It is possible that the I/O will fail, in which case
1771  *		the error will be reported to the done callback and
1772  *		propagated to pio from zio_done().
1773  */
1774 int
dmu_sync(zio_t * pio,uint64_t txg,dmu_sync_cb_t * done,zgd_t * zgd)1775 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1776 {
1777 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1778 	objset_t *os = db->db_objset;
1779 	dsl_dataset_t *ds = os->os_dsl_dataset;
1780 	dbuf_dirty_record_t *dr, *dr_next;
1781 	dmu_sync_arg_t *dsa;
1782 	zbookmark_phys_t zb;
1783 	zio_prop_t zp;
1784 	dnode_t *dn;
1785 
1786 	ASSERT(pio != NULL);
1787 	ASSERT(txg != 0);
1788 
1789 	SET_BOOKMARK(&zb, ds->ds_object,
1790 	    db->db.db_object, db->db_level, db->db_blkid);
1791 
1792 	DB_DNODE_ENTER(db);
1793 	dn = DB_DNODE(db);
1794 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1795 	DB_DNODE_EXIT(db);
1796 
1797 	/*
1798 	 * If we're frozen (running ziltest), we always need to generate a bp.
1799 	 */
1800 	if (txg > spa_freeze_txg(os->os_spa))
1801 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1802 
1803 	/*
1804 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1805 	 * and us.  If we determine that this txg is not yet syncing,
1806 	 * but it begins to sync a moment later, that's OK because the
1807 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1808 	 */
1809 	mutex_enter(&db->db_mtx);
1810 
1811 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1812 		/*
1813 		 * This txg has already synced.  There's nothing to do.
1814 		 */
1815 		mutex_exit(&db->db_mtx);
1816 		return (SET_ERROR(EEXIST));
1817 	}
1818 
1819 	if (txg <= spa_syncing_txg(os->os_spa)) {
1820 		/*
1821 		 * This txg is currently syncing, so we can't mess with
1822 		 * the dirty record anymore; just write a new log block.
1823 		 */
1824 		mutex_exit(&db->db_mtx);
1825 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1826 	}
1827 
1828 	dr = dbuf_find_dirty_eq(db, txg);
1829 
1830 	if (dr == NULL) {
1831 		/*
1832 		 * There's no dr for this dbuf, so it must have been freed.
1833 		 * There's no need to log writes to freed blocks, so we're done.
1834 		 */
1835 		mutex_exit(&db->db_mtx);
1836 		return (SET_ERROR(ENOENT));
1837 	}
1838 
1839 	dr_next = list_next(&db->db_dirty_records, dr);
1840 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1841 
1842 	if (db->db_blkptr != NULL) {
1843 		/*
1844 		 * We need to fill in zgd_bp with the current blkptr so that
1845 		 * the nopwrite code can check if we're writing the same
1846 		 * data that's already on disk.  We can only nopwrite if we
1847 		 * are sure that after making the copy, db_blkptr will not
1848 		 * change until our i/o completes.  We ensure this by
1849 		 * holding the db_mtx, and only allowing nopwrite if the
1850 		 * block is not already dirty (see below).  This is verified
1851 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1852 		 * not changed.
1853 		 */
1854 		*zgd->zgd_bp = *db->db_blkptr;
1855 	}
1856 
1857 	/*
1858 	 * Assume the on-disk data is X, the current syncing data (in
1859 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1860 	 * in dmu_sync).
1861 	 *
1862 	 * We usually want to perform a nopwrite if X and Z are the
1863 	 * same.  However, if Y is different (i.e. the BP is going to
1864 	 * change before this write takes effect), then a nopwrite will
1865 	 * be incorrect - we would override with X, which could have
1866 	 * been freed when Y was written.
1867 	 *
1868 	 * (Note that this is not a concern when we are nop-writing from
1869 	 * syncing context, because X and Y must be identical, because
1870 	 * all previous txgs have been synced.)
1871 	 *
1872 	 * Therefore, we disable nopwrite if the current BP could change
1873 	 * before this TXG.  There are two ways it could change: by
1874 	 * being dirty (dr_next is non-NULL), or by being freed
1875 	 * (dnode_block_freed()).  This behavior is verified by
1876 	 * zio_done(), which VERIFYs that the override BP is identical
1877 	 * to the on-disk BP.
1878 	 */
1879 	DB_DNODE_ENTER(db);
1880 	dn = DB_DNODE(db);
1881 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1882 		zp.zp_nopwrite = B_FALSE;
1883 	DB_DNODE_EXIT(db);
1884 
1885 	ASSERT(dr->dr_txg == txg);
1886 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1887 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1888 		/*
1889 		 * We have already issued a sync write for this buffer,
1890 		 * or this buffer has already been synced.  It could not
1891 		 * have been dirtied since, or we would have cleared the state.
1892 		 */
1893 		mutex_exit(&db->db_mtx);
1894 		return (SET_ERROR(EALREADY));
1895 	}
1896 
1897 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1898 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1899 	mutex_exit(&db->db_mtx);
1900 
1901 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1902 	dsa->dsa_dr = dr;
1903 	dsa->dsa_done = done;
1904 	dsa->dsa_zgd = zgd;
1905 	dsa->dsa_tx = NULL;
1906 
1907 	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1908 	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
1909 	    &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa,
1910 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1911 
1912 	return (0);
1913 }
1914 
1915 int
dmu_object_set_nlevels(objset_t * os,uint64_t object,int nlevels,dmu_tx_t * tx)1916 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1917 {
1918 	dnode_t *dn;
1919 	int err;
1920 
1921 	err = dnode_hold(os, object, FTAG, &dn);
1922 	if (err)
1923 		return (err);
1924 	err = dnode_set_nlevels(dn, nlevels, tx);
1925 	dnode_rele(dn, FTAG);
1926 	return (err);
1927 }
1928 
1929 int
dmu_object_set_blocksize(objset_t * os,uint64_t object,uint64_t size,int ibs,dmu_tx_t * tx)1930 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1931     dmu_tx_t *tx)
1932 {
1933 	dnode_t *dn;
1934 	int err;
1935 
1936 	err = dnode_hold(os, object, FTAG, &dn);
1937 	if (err)
1938 		return (err);
1939 	err = dnode_set_blksz(dn, size, ibs, tx);
1940 	dnode_rele(dn, FTAG);
1941 	return (err);
1942 }
1943 
1944 int
dmu_object_set_maxblkid(objset_t * os,uint64_t object,uint64_t maxblkid,dmu_tx_t * tx)1945 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1946     dmu_tx_t *tx)
1947 {
1948 	dnode_t *dn;
1949 	int err;
1950 
1951 	err = dnode_hold(os, object, FTAG, &dn);
1952 	if (err)
1953 		return (err);
1954 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1955 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1956 	rw_exit(&dn->dn_struct_rwlock);
1957 	dnode_rele(dn, FTAG);
1958 	return (0);
1959 }
1960 
1961 void
dmu_object_set_checksum(objset_t * os,uint64_t object,uint8_t checksum,dmu_tx_t * tx)1962 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1963     dmu_tx_t *tx)
1964 {
1965 	dnode_t *dn;
1966 
1967 	/*
1968 	 * Send streams include each object's checksum function.  This
1969 	 * check ensures that the receiving system can understand the
1970 	 * checksum function transmitted.
1971 	 */
1972 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1973 
1974 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1975 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1976 	dn->dn_checksum = checksum;
1977 	dnode_setdirty(dn, tx);
1978 	dnode_rele(dn, FTAG);
1979 }
1980 
1981 void
dmu_object_set_compress(objset_t * os,uint64_t object,uint8_t compress,dmu_tx_t * tx)1982 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1983     dmu_tx_t *tx)
1984 {
1985 	dnode_t *dn;
1986 
1987 	/*
1988 	 * Send streams include each object's compression function.  This
1989 	 * check ensures that the receiving system can understand the
1990 	 * compression function transmitted.
1991 	 */
1992 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1993 
1994 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1995 	dn->dn_compress = compress;
1996 	dnode_setdirty(dn, tx);
1997 	dnode_rele(dn, FTAG);
1998 }
1999 
2000 /*
2001  * When the "redundant_metadata" property is set to "most", only indirect
2002  * blocks of this level and higher will have an additional ditto block.
2003  */
2004 static const int zfs_redundant_metadata_most_ditto_level = 2;
2005 
2006 void
dmu_write_policy(objset_t * os,dnode_t * dn,int level,int wp,zio_prop_t * zp)2007 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2008 {
2009 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2010 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2011 	    (wp & WP_SPILL));
2012 	enum zio_checksum checksum = os->os_checksum;
2013 	enum zio_compress compress = os->os_compress;
2014 	uint8_t complevel = os->os_complevel;
2015 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2016 	boolean_t dedup = B_FALSE;
2017 	boolean_t nopwrite = B_FALSE;
2018 	boolean_t dedup_verify = os->os_dedup_verify;
2019 	boolean_t encrypt = B_FALSE;
2020 	int copies = os->os_copies;
2021 
2022 	/*
2023 	 * We maintain different write policies for each of the following
2024 	 * types of data:
2025 	 *	 1. metadata
2026 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2027 	 *	 3. all other level 0 blocks
2028 	 */
2029 	if (ismd) {
2030 		/*
2031 		 * XXX -- we should design a compression algorithm
2032 		 * that specializes in arrays of bps.
2033 		 */
2034 		compress = zio_compress_select(os->os_spa,
2035 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2036 
2037 		/*
2038 		 * Metadata always gets checksummed.  If the data
2039 		 * checksum is multi-bit correctable, and it's not a
2040 		 * ZBT-style checksum, then it's suitable for metadata
2041 		 * as well.  Otherwise, the metadata checksum defaults
2042 		 * to fletcher4.
2043 		 */
2044 		if (!(zio_checksum_table[checksum].ci_flags &
2045 		    ZCHECKSUM_FLAG_METADATA) ||
2046 		    (zio_checksum_table[checksum].ci_flags &
2047 		    ZCHECKSUM_FLAG_EMBEDDED))
2048 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2049 
2050 		switch (os->os_redundant_metadata) {
2051 		case ZFS_REDUNDANT_METADATA_ALL:
2052 			copies++;
2053 			break;
2054 		case ZFS_REDUNDANT_METADATA_MOST:
2055 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2056 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2057 				copies++;
2058 			break;
2059 		case ZFS_REDUNDANT_METADATA_SOME:
2060 			if (DMU_OT_IS_CRITICAL(type))
2061 				copies++;
2062 			break;
2063 		case ZFS_REDUNDANT_METADATA_NONE:
2064 			break;
2065 		}
2066 	} else if (wp & WP_NOFILL) {
2067 		ASSERT(level == 0);
2068 
2069 		/*
2070 		 * If we're writing preallocated blocks, we aren't actually
2071 		 * writing them so don't set any policy properties.  These
2072 		 * blocks are currently only used by an external subsystem
2073 		 * outside of zfs (i.e. dump) and not written by the zio
2074 		 * pipeline.
2075 		 */
2076 		compress = ZIO_COMPRESS_OFF;
2077 		checksum = ZIO_CHECKSUM_OFF;
2078 	} else {
2079 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2080 		    compress);
2081 		complevel = zio_complevel_select(os->os_spa, compress,
2082 		    complevel, complevel);
2083 
2084 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2085 		    zio_checksum_select(dn->dn_checksum, checksum) :
2086 		    dedup_checksum;
2087 
2088 		/*
2089 		 * Determine dedup setting.  If we are in dmu_sync(),
2090 		 * we won't actually dedup now because that's all
2091 		 * done in syncing context; but we do want to use the
2092 		 * dedup checksum.  If the checksum is not strong
2093 		 * enough to ensure unique signatures, force
2094 		 * dedup_verify.
2095 		 */
2096 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2097 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2098 			if (!(zio_checksum_table[checksum].ci_flags &
2099 			    ZCHECKSUM_FLAG_DEDUP))
2100 				dedup_verify = B_TRUE;
2101 		}
2102 
2103 		/*
2104 		 * Enable nopwrite if we have secure enough checksum
2105 		 * algorithm (see comment in zio_nop_write) and
2106 		 * compression is enabled.  We don't enable nopwrite if
2107 		 * dedup is enabled as the two features are mutually
2108 		 * exclusive.
2109 		 */
2110 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2111 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2112 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2113 	}
2114 
2115 	/*
2116 	 * All objects in an encrypted objset are protected from modification
2117 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2118 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2119 	 * not subject to nopwrite since writing the same data will still
2120 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2121 	 * to avoid ambiguity in the dedup code since the DDT does not store
2122 	 * object types.
2123 	 */
2124 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2125 		encrypt = B_TRUE;
2126 
2127 		if (DMU_OT_IS_ENCRYPTED(type)) {
2128 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2129 			nopwrite = B_FALSE;
2130 		} else {
2131 			dedup = B_FALSE;
2132 		}
2133 
2134 		if (level <= 0 &&
2135 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2136 			compress = ZIO_COMPRESS_EMPTY;
2137 		}
2138 	}
2139 
2140 	zp->zp_compress = compress;
2141 	zp->zp_complevel = complevel;
2142 	zp->zp_checksum = checksum;
2143 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2144 	zp->zp_level = level;
2145 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2146 	zp->zp_dedup = dedup;
2147 	zp->zp_dedup_verify = dedup && dedup_verify;
2148 	zp->zp_nopwrite = nopwrite;
2149 	zp->zp_encrypt = encrypt;
2150 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2151 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2152 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2153 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2154 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2155 	    os->os_zpl_special_smallblock : 0;
2156 
2157 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2158 }
2159 
2160 /*
2161  * Reports the location of data and holes in an object.  In order to
2162  * accurately report holes all dirty data must be synced to disk.  This
2163  * causes extremely poor performance when seeking for holes in a dirty file.
2164  * As a compromise, only provide hole data when the dnode is clean.  When
2165  * a dnode is dirty report the dnode as having no holes by returning EBUSY
2166  * which is always safe to do.
2167  */
2168 int
dmu_offset_next(objset_t * os,uint64_t object,boolean_t hole,uint64_t * off)2169 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2170 {
2171 	dnode_t *dn;
2172 	int restarted = 0, err;
2173 
2174 restart:
2175 	err = dnode_hold(os, object, FTAG, &dn);
2176 	if (err)
2177 		return (err);
2178 
2179 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2180 
2181 	if (dnode_is_dirty(dn)) {
2182 		/*
2183 		 * If the zfs_dmu_offset_next_sync module option is enabled
2184 		 * then hole reporting has been requested.  Dirty dnodes
2185 		 * must be synced to disk to accurately report holes.
2186 		 *
2187 		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2188 		 * held by the caller only a single restart will be required.
2189 		 * We tolerate callers which do not hold the rangelock by
2190 		 * returning EBUSY and not reporting holes after one restart.
2191 		 */
2192 		if (zfs_dmu_offset_next_sync) {
2193 			rw_exit(&dn->dn_struct_rwlock);
2194 			dnode_rele(dn, FTAG);
2195 
2196 			if (restarted)
2197 				return (SET_ERROR(EBUSY));
2198 
2199 			txg_wait_synced(dmu_objset_pool(os), 0);
2200 			restarted = 1;
2201 			goto restart;
2202 		}
2203 
2204 		err = SET_ERROR(EBUSY);
2205 	} else {
2206 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2207 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2208 	}
2209 
2210 	rw_exit(&dn->dn_struct_rwlock);
2211 	dnode_rele(dn, FTAG);
2212 
2213 	return (err);
2214 }
2215 
2216 int
dmu_read_l0_bps(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,blkptr_t * bps,size_t * nbpsp)2217 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2218     blkptr_t *bps, size_t *nbpsp)
2219 {
2220 	dmu_buf_t **dbp, *dbuf;
2221 	dmu_buf_impl_t *db;
2222 	blkptr_t *bp;
2223 	int error, numbufs;
2224 
2225 	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2226 	    &numbufs, &dbp);
2227 	if (error != 0) {
2228 		if (error == ESRCH) {
2229 			error = SET_ERROR(ENXIO);
2230 		}
2231 		return (error);
2232 	}
2233 
2234 	ASSERT3U(numbufs, <=, *nbpsp);
2235 
2236 	for (int i = 0; i < numbufs; i++) {
2237 		dbuf = dbp[i];
2238 		db = (dmu_buf_impl_t *)dbuf;
2239 
2240 		mutex_enter(&db->db_mtx);
2241 
2242 		if (!list_is_empty(&db->db_dirty_records)) {
2243 			dbuf_dirty_record_t *dr;
2244 
2245 			dr = list_head(&db->db_dirty_records);
2246 			if (dr->dt.dl.dr_brtwrite) {
2247 				/*
2248 				 * This is very special case where we clone a
2249 				 * block and in the same transaction group we
2250 				 * read its BP (most likely to clone the clone).
2251 				 */
2252 				bp = &dr->dt.dl.dr_overridden_by;
2253 			} else {
2254 				/*
2255 				 * The block was modified in the same
2256 				 * transaction group.
2257 				 */
2258 				mutex_exit(&db->db_mtx);
2259 				error = SET_ERROR(EAGAIN);
2260 				goto out;
2261 			}
2262 		} else {
2263 			bp = db->db_blkptr;
2264 		}
2265 
2266 		mutex_exit(&db->db_mtx);
2267 
2268 		if (bp == NULL) {
2269 			/*
2270 			 * The file size was increased, but the block was never
2271 			 * written, otherwise we would either have the block
2272 			 * pointer or the dirty record and would not get here.
2273 			 * It is effectively a hole, so report it as such.
2274 			 */
2275 			BP_ZERO(&bps[i]);
2276 			continue;
2277 		}
2278 		/*
2279 		 * Make sure we clone only data blocks.
2280 		 */
2281 		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2282 			error = SET_ERROR(EINVAL);
2283 			goto out;
2284 		}
2285 
2286 		/*
2287 		 * If the block was allocated in transaction group that is not
2288 		 * yet synced, we could clone it, but we couldn't write this
2289 		 * operation into ZIL, or it may be impossible to replay, since
2290 		 * the block may appear not yet allocated at that point.
2291 		 */
2292 		if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2293 			error = SET_ERROR(EINVAL);
2294 			goto out;
2295 		}
2296 		if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
2297 			error = SET_ERROR(EAGAIN);
2298 			goto out;
2299 		}
2300 
2301 		bps[i] = *bp;
2302 	}
2303 
2304 	*nbpsp = numbufs;
2305 out:
2306 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2307 
2308 	return (error);
2309 }
2310 
2311 int
dmu_brt_clone(objset_t * os,uint64_t object,uint64_t offset,uint64_t length,dmu_tx_t * tx,const blkptr_t * bps,size_t nbps)2312 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2313     dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2314 {
2315 	spa_t *spa;
2316 	dmu_buf_t **dbp, *dbuf;
2317 	dmu_buf_impl_t *db;
2318 	struct dirty_leaf *dl;
2319 	dbuf_dirty_record_t *dr;
2320 	const blkptr_t *bp;
2321 	int error = 0, i, numbufs;
2322 
2323 	spa = os->os_spa;
2324 
2325 	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2326 	    &numbufs, &dbp));
2327 	ASSERT3U(nbps, ==, numbufs);
2328 
2329 	/*
2330 	 * Before we start cloning make sure that the dbufs sizes match new BPs
2331 	 * sizes. If they don't, that's a no-go, as we are not able to shrink
2332 	 * dbufs.
2333 	 */
2334 	for (i = 0; i < numbufs; i++) {
2335 		dbuf = dbp[i];
2336 		db = (dmu_buf_impl_t *)dbuf;
2337 		bp = &bps[i];
2338 
2339 		ASSERT0(db->db_level);
2340 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2341 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2342 
2343 		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2344 			error = SET_ERROR(EXDEV);
2345 			goto out;
2346 		}
2347 	}
2348 
2349 	for (i = 0; i < numbufs; i++) {
2350 		dbuf = dbp[i];
2351 		db = (dmu_buf_impl_t *)dbuf;
2352 		bp = &bps[i];
2353 
2354 		ASSERT0(db->db_level);
2355 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2356 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2357 		ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));
2358 
2359 		dmu_buf_will_clone(dbuf, tx);
2360 
2361 		mutex_enter(&db->db_mtx);
2362 
2363 		dr = list_head(&db->db_dirty_records);
2364 		VERIFY(dr != NULL);
2365 		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2366 		dl = &dr->dt.dl;
2367 		dl->dr_overridden_by = *bp;
2368 		if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2369 			if (!BP_IS_EMBEDDED(bp)) {
2370 				BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2371 				    BP_GET_BIRTH(bp));
2372 			} else {
2373 				BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2374 				    dr->dr_txg);
2375 			}
2376 		}
2377 		dl->dr_brtwrite = B_TRUE;
2378 		dl->dr_override_state = DR_OVERRIDDEN;
2379 
2380 		mutex_exit(&db->db_mtx);
2381 
2382 		/*
2383 		 * When data in embedded into BP there is no need to create
2384 		 * BRT entry as there is no data block. Just copy the BP as
2385 		 * it contains the data.
2386 		 */
2387 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2388 			brt_pending_add(spa, bp, tx);
2389 		}
2390 	}
2391 out:
2392 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2393 
2394 	return (error);
2395 }
2396 
2397 void
__dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2398 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2399 {
2400 	dnode_phys_t *dnp = dn->dn_phys;
2401 
2402 	doi->doi_data_block_size = dn->dn_datablksz;
2403 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2404 	    1ULL << dn->dn_indblkshift : 0;
2405 	doi->doi_type = dn->dn_type;
2406 	doi->doi_bonus_type = dn->dn_bonustype;
2407 	doi->doi_bonus_size = dn->dn_bonuslen;
2408 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2409 	doi->doi_indirection = dn->dn_nlevels;
2410 	doi->doi_checksum = dn->dn_checksum;
2411 	doi->doi_compress = dn->dn_compress;
2412 	doi->doi_nblkptr = dn->dn_nblkptr;
2413 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2414 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2415 	doi->doi_fill_count = 0;
2416 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2417 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2418 }
2419 
2420 void
dmu_object_info_from_dnode(dnode_t * dn,dmu_object_info_t * doi)2421 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2422 {
2423 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2424 	mutex_enter(&dn->dn_mtx);
2425 
2426 	__dmu_object_info_from_dnode(dn, doi);
2427 
2428 	mutex_exit(&dn->dn_mtx);
2429 	rw_exit(&dn->dn_struct_rwlock);
2430 }
2431 
2432 /*
2433  * Get information on a DMU object.
2434  * If doi is NULL, just indicates whether the object exists.
2435  */
2436 int
dmu_object_info(objset_t * os,uint64_t object,dmu_object_info_t * doi)2437 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2438 {
2439 	dnode_t *dn;
2440 	int err = dnode_hold(os, object, FTAG, &dn);
2441 
2442 	if (err)
2443 		return (err);
2444 
2445 	if (doi != NULL)
2446 		dmu_object_info_from_dnode(dn, doi);
2447 
2448 	dnode_rele(dn, FTAG);
2449 	return (0);
2450 }
2451 
2452 /*
2453  * As above, but faster; can be used when you have a held dbuf in hand.
2454  */
2455 void
dmu_object_info_from_db(dmu_buf_t * db_fake,dmu_object_info_t * doi)2456 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2457 {
2458 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2459 
2460 	DB_DNODE_ENTER(db);
2461 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2462 	DB_DNODE_EXIT(db);
2463 }
2464 
2465 /*
2466  * Faster still when you only care about the size.
2467  */
2468 void
dmu_object_size_from_db(dmu_buf_t * db_fake,uint32_t * blksize,u_longlong_t * nblk512)2469 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2470     u_longlong_t *nblk512)
2471 {
2472 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2473 	dnode_t *dn;
2474 
2475 	DB_DNODE_ENTER(db);
2476 	dn = DB_DNODE(db);
2477 
2478 	*blksize = dn->dn_datablksz;
2479 	/* add in number of slots used for the dnode itself */
2480 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2481 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2482 	DB_DNODE_EXIT(db);
2483 }
2484 
2485 void
dmu_object_dnsize_from_db(dmu_buf_t * db_fake,int * dnsize)2486 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2487 {
2488 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2489 	dnode_t *dn;
2490 
2491 	DB_DNODE_ENTER(db);
2492 	dn = DB_DNODE(db);
2493 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2494 	DB_DNODE_EXIT(db);
2495 }
2496 
2497 void
byteswap_uint64_array(void * vbuf,size_t size)2498 byteswap_uint64_array(void *vbuf, size_t size)
2499 {
2500 	uint64_t *buf = vbuf;
2501 	size_t count = size >> 3;
2502 	int i;
2503 
2504 	ASSERT((size & 7) == 0);
2505 
2506 	for (i = 0; i < count; i++)
2507 		buf[i] = BSWAP_64(buf[i]);
2508 }
2509 
2510 void
byteswap_uint32_array(void * vbuf,size_t size)2511 byteswap_uint32_array(void *vbuf, size_t size)
2512 {
2513 	uint32_t *buf = vbuf;
2514 	size_t count = size >> 2;
2515 	int i;
2516 
2517 	ASSERT((size & 3) == 0);
2518 
2519 	for (i = 0; i < count; i++)
2520 		buf[i] = BSWAP_32(buf[i]);
2521 }
2522 
2523 void
byteswap_uint16_array(void * vbuf,size_t size)2524 byteswap_uint16_array(void *vbuf, size_t size)
2525 {
2526 	uint16_t *buf = vbuf;
2527 	size_t count = size >> 1;
2528 	int i;
2529 
2530 	ASSERT((size & 1) == 0);
2531 
2532 	for (i = 0; i < count; i++)
2533 		buf[i] = BSWAP_16(buf[i]);
2534 }
2535 
2536 void
byteswap_uint8_array(void * vbuf,size_t size)2537 byteswap_uint8_array(void *vbuf, size_t size)
2538 {
2539 	(void) vbuf, (void) size;
2540 }
2541 
2542 void
dmu_init(void)2543 dmu_init(void)
2544 {
2545 	abd_init();
2546 	zfs_dbgmsg_init();
2547 	sa_cache_init();
2548 	dmu_objset_init();
2549 	dnode_init();
2550 	zfetch_init();
2551 	dmu_tx_init();
2552 	l2arc_init();
2553 	arc_init();
2554 	dbuf_init();
2555 }
2556 
2557 void
dmu_fini(void)2558 dmu_fini(void)
2559 {
2560 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2561 	l2arc_fini();
2562 	dmu_tx_fini();
2563 	zfetch_fini();
2564 	dbuf_fini();
2565 	dnode_fini();
2566 	dmu_objset_fini();
2567 	sa_cache_fini();
2568 	zfs_dbgmsg_fini();
2569 	abd_fini();
2570 }
2571 
2572 EXPORT_SYMBOL(dmu_bonus_hold);
2573 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2574 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2575 EXPORT_SYMBOL(dmu_buf_rele_array);
2576 EXPORT_SYMBOL(dmu_prefetch);
2577 EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2578 EXPORT_SYMBOL(dmu_prefetch_dnode);
2579 EXPORT_SYMBOL(dmu_free_range);
2580 EXPORT_SYMBOL(dmu_free_long_range);
2581 EXPORT_SYMBOL(dmu_free_long_object);
2582 EXPORT_SYMBOL(dmu_read);
2583 EXPORT_SYMBOL(dmu_read_by_dnode);
2584 EXPORT_SYMBOL(dmu_write);
2585 EXPORT_SYMBOL(dmu_write_by_dnode);
2586 EXPORT_SYMBOL(dmu_prealloc);
2587 EXPORT_SYMBOL(dmu_object_info);
2588 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2589 EXPORT_SYMBOL(dmu_object_info_from_db);
2590 EXPORT_SYMBOL(dmu_object_size_from_db);
2591 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2592 EXPORT_SYMBOL(dmu_object_set_nlevels);
2593 EXPORT_SYMBOL(dmu_object_set_blocksize);
2594 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2595 EXPORT_SYMBOL(dmu_object_set_checksum);
2596 EXPORT_SYMBOL(dmu_object_set_compress);
2597 EXPORT_SYMBOL(dmu_offset_next);
2598 EXPORT_SYMBOL(dmu_write_policy);
2599 EXPORT_SYMBOL(dmu_sync);
2600 EXPORT_SYMBOL(dmu_request_arcbuf);
2601 EXPORT_SYMBOL(dmu_return_arcbuf);
2602 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2603 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2604 EXPORT_SYMBOL(dmu_buf_hold);
2605 EXPORT_SYMBOL(dmu_ot);
2606 
2607 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2608 	"Enable NOP writes");
2609 
2610 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2611 	"Percentage of dirtied blocks from frees in one TXG");
2612 
2613 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2614 	"Enable forcing txg sync to find holes");
2615 
2616 /* CSTYLED */
2617 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2618 	"Limit one prefetch call to this size");
2619