1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37 
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44 boolean_t zfs_prefetch_disable = B_FALSE;
45 
46 /* max # of streams per zfetch */
47 uint32_t	zfetch_max_streams = 8;
48 /* min time before stream reclaim */
49 uint32_t	zfetch_min_sec_reap = 2;
50 /* max bytes to prefetch per stream (default 8MB) */
51 uint32_t	zfetch_max_distance = 8 * 1024 * 1024;
52 /* max bytes to prefetch indirects for per stream (default 64MB) */
53 uint32_t	zfetch_max_idistance = 64 * 1024 * 1024;
54 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
55 uint64_t	zfetch_array_rd_sz = 1024 * 1024;
56 
57 SYSCTL_DECL(_vfs_zfs);
58 SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
59     &zfs_prefetch_disable, 0, "Disable prefetch");
60 SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH");
61 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RWTUN,
62     &zfetch_max_streams, 0, "Max # of streams per zfetch");
63 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
64     &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
65 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
66     &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
67 SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_idistance, CTLFLAG_RWTUN,
68     &zfetch_max_idistance, 0, "Max bytes to prefetch indirects for per stream");
69 SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
70     &zfetch_array_rd_sz, 0,
71     "Number of bytes in a array_read at which we stop prefetching");
72 
73 typedef struct zfetch_stats {
74 	kstat_named_t zfetchstat_hits;
75 	kstat_named_t zfetchstat_misses;
76 	kstat_named_t zfetchstat_max_streams;
77 } zfetch_stats_t;
78 
79 static zfetch_stats_t zfetch_stats = {
80 	{ "hits",			KSTAT_DATA_UINT64 },
81 	{ "misses",			KSTAT_DATA_UINT64 },
82 	{ "max_streams",		KSTAT_DATA_UINT64 },
83 };
84 
85 #define	ZFETCHSTAT_BUMP(stat) \
86 	atomic_inc_64(&zfetch_stats.stat.value.ui64);
87 
88 kstat_t		*zfetch_ksp;
89 
90 void
zfetch_init(void)91 zfetch_init(void)
92 {
93 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
94 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
95 	    KSTAT_FLAG_VIRTUAL);
96 
97 	if (zfetch_ksp != NULL) {
98 		zfetch_ksp->ks_data = &zfetch_stats;
99 		kstat_install(zfetch_ksp);
100 	}
101 }
102 
103 void
zfetch_fini(void)104 zfetch_fini(void)
105 {
106 	if (zfetch_ksp != NULL) {
107 		kstat_delete(zfetch_ksp);
108 		zfetch_ksp = NULL;
109 	}
110 }
111 
112 /*
113  * This takes a pointer to a zfetch structure and a dnode.  It performs the
114  * necessary setup for the zfetch structure, grokking data from the
115  * associated dnode.
116  */
117 void
dmu_zfetch_init(zfetch_t * zf,dnode_t * dno)118 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
119 {
120 	if (zf == NULL)
121 		return;
122 
123 	zf->zf_dnode = dno;
124 
125 	list_create(&zf->zf_stream, sizeof (zstream_t),
126 	    offsetof(zstream_t, zs_node));
127 
128 	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
129 }
130 
131 static void
dmu_zfetch_stream_remove(zfetch_t * zf,zstream_t * zs)132 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
133 {
134 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
135 	list_remove(&zf->zf_stream, zs);
136 	mutex_destroy(&zs->zs_lock);
137 	kmem_free(zs, sizeof (*zs));
138 }
139 
140 /*
141  * Clean-up state associated with a zfetch structure (e.g. destroy the
142  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
143  */
144 void
dmu_zfetch_fini(zfetch_t * zf)145 dmu_zfetch_fini(zfetch_t *zf)
146 {
147 	zstream_t *zs;
148 
149 	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
150 
151 	rw_enter(&zf->zf_rwlock, RW_WRITER);
152 	while ((zs = list_head(&zf->zf_stream)) != NULL)
153 		dmu_zfetch_stream_remove(zf, zs);
154 	rw_exit(&zf->zf_rwlock);
155 	list_destroy(&zf->zf_stream);
156 	rw_destroy(&zf->zf_rwlock);
157 
158 	zf->zf_dnode = NULL;
159 }
160 
161 /*
162  * If there aren't too many streams already, create a new stream.
163  * The "blkid" argument is the next block that we expect this stream to access.
164  * While we're here, clean up old streams (which haven't been
165  * accessed for at least zfetch_min_sec_reap seconds).
166  */
167 static void
dmu_zfetch_stream_create(zfetch_t * zf,uint64_t blkid)168 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
169 {
170 	zstream_t *zs_next;
171 	int numstreams = 0;
172 
173 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
174 
175 	/*
176 	 * Clean up old streams.
177 	 */
178 	for (zstream_t *zs = list_head(&zf->zf_stream);
179 	    zs != NULL; zs = zs_next) {
180 		zs_next = list_next(&zf->zf_stream, zs);
181 		if (((gethrtime() - zs->zs_atime) / NANOSEC) >
182 		    zfetch_min_sec_reap)
183 			dmu_zfetch_stream_remove(zf, zs);
184 		else
185 			numstreams++;
186 	}
187 
188 	/*
189 	 * The maximum number of streams is normally zfetch_max_streams,
190 	 * but for small files we lower it such that it's at least possible
191 	 * for all the streams to be non-overlapping.
192 	 *
193 	 * If we are already at the maximum number of streams for this file,
194 	 * even after removing old streams, then don't create this stream.
195 	 */
196 	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
197 	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
198 	    zfetch_max_distance));
199 	if (numstreams >= max_streams) {
200 		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
201 		return;
202 	}
203 
204 	zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
205 	zs->zs_blkid = blkid;
206 	zs->zs_pf_blkid = blkid;
207 	zs->zs_ipf_blkid = blkid;
208 	zs->zs_atime = gethrtime();
209 	mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
210 
211 	list_insert_head(&zf->zf_stream, zs);
212 }
213 
214 /*
215  * This is the predictive prefetch entry point.  It associates dnode access
216  * specified with blkid and nblks arguments with prefetch stream, predicts
217  * further accesses based on that stats and initiates speculative prefetch.
218  * fetch_data argument specifies whether actual data blocks should be fetched:
219  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
220  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
221  */
222 void
dmu_zfetch(zfetch_t * zf,uint64_t blkid,uint64_t nblks,boolean_t fetch_data)223 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
224 {
225 	zstream_t *zs;
226 	int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
227 	int64_t pf_ahead_blks, max_blks;
228 	int epbs, max_dist_blks, pf_nblks, ipf_nblks;
229 	uint64_t end_of_access_blkid = blkid + nblks;
230 
231 	if (zfs_prefetch_disable)
232 		return;
233 
234 	/*
235 	 * As a fast path for small (single-block) files, ignore access
236 	 * to the first block.
237 	 */
238 	if (blkid == 0)
239 		return;
240 
241 	rw_enter(&zf->zf_rwlock, RW_READER);
242 
243 	for (zs = list_head(&zf->zf_stream); zs != NULL;
244 	    zs = list_next(&zf->zf_stream, zs)) {
245 		if (blkid == zs->zs_blkid) {
246 			mutex_enter(&zs->zs_lock);
247 			/*
248 			 * zs_blkid could have changed before we
249 			 * acquired zs_lock; re-check them here.
250 			 */
251 			if (blkid != zs->zs_blkid) {
252 				mutex_exit(&zs->zs_lock);
253 				continue;
254 			}
255 			break;
256 		}
257 	}
258 
259 	if (zs == NULL) {
260 		/*
261 		 * This access is not part of any existing stream.  Create
262 		 * a new stream for it.
263 		 */
264 		ZFETCHSTAT_BUMP(zfetchstat_misses);
265 		if (rw_tryupgrade(&zf->zf_rwlock))
266 			dmu_zfetch_stream_create(zf, end_of_access_blkid);
267 		rw_exit(&zf->zf_rwlock);
268 		return;
269 	}
270 
271 	/*
272 	 * This access was to a block that we issued a prefetch for on
273 	 * behalf of this stream. Issue further prefetches for this stream.
274 	 *
275 	 * Normally, we start prefetching where we stopped
276 	 * prefetching last (zs_pf_blkid).  But when we get our first
277 	 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
278 	 * want to prefetch the block we just accessed.  In this case,
279 	 * start just after the block we just accessed.
280 	 */
281 	pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
282 
283 	/*
284 	 * Double our amount of prefetched data, but don't let the
285 	 * prefetch get further ahead than zfetch_max_distance.
286 	 */
287 	if (fetch_data) {
288 		max_dist_blks =
289 		    zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
290 		/*
291 		 * Previously, we were (zs_pf_blkid - blkid) ahead.  We
292 		 * want to now be double that, so read that amount again,
293 		 * plus the amount we are catching up by (i.e. the amount
294 		 * read just now).
295 		 */
296 		pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
297 		max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
298 		pf_nblks = MIN(pf_ahead_blks, max_blks);
299 	} else {
300 		pf_nblks = 0;
301 	}
302 
303 	zs->zs_pf_blkid = pf_start + pf_nblks;
304 
305 	/*
306 	 * Do the same for indirects, starting from where we stopped last,
307 	 * or where we will stop reading data blocks (and the indirects
308 	 * that point to them).
309 	 */
310 	ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
311 	max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
312 	/*
313 	 * We want to double our distance ahead of the data prefetch
314 	 * (or reader, if we are not prefetching data).  Previously, we
315 	 * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
316 	 * that amount again, plus the amount we are catching up by
317 	 * (i.e. the amount read now + the amount of data prefetched now).
318 	 */
319 	pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
320 	max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
321 	ipf_nblks = MIN(pf_ahead_blks, max_blks);
322 	zs->zs_ipf_blkid = ipf_start + ipf_nblks;
323 
324 	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
325 	ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
326 	ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
327 
328 	zs->zs_atime = gethrtime();
329 	zs->zs_blkid = end_of_access_blkid;
330 	mutex_exit(&zs->zs_lock);
331 	rw_exit(&zf->zf_rwlock);
332 
333 	/*
334 	 * dbuf_prefetch() is asynchronous (even when it needs to read
335 	 * indirect blocks), but we still prefer to drop our locks before
336 	 * calling it to reduce the time we hold them.
337 	 */
338 
339 	for (int i = 0; i < pf_nblks; i++) {
340 		dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
341 		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
342 	}
343 	for (int64_t iblk = ipf_istart; iblk < ipf_iend; iblk++) {
344 		dbuf_prefetch(zf->zf_dnode, 1, iblk,
345 		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
346 	}
347 	ZFETCHSTAT_BUMP(zfetchstat_hits);
348 }
349