xref: /netbsd/sys/kern/sys_timerfd.c (revision d581e544)
1 /*	$NetBSD: sys_timerfd.c,v 1.8 2022/02/17 16:28:29 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: sys_timerfd.c,v 1.8 2022/02/17 16:28:29 thorpej Exp $");
34 
35 /*
36  * timerfd
37  *
38  * Timerfd objects are similar to POSIX timers, except they are associated
39  * with a file descriptor rather than a process.  Timerfd objects are
40  * created with the timerfd_create(2) system call, similar to timer_create(2).
41  * The timerfd analogues for timer_gettime(2) and timer_settime(2) are
42  * timerfd_gettime(2) and timerfd_settime(2), respectively.
43  *
44  * When a timerfd object's timer fires, an internal counter is incremented.
45  * When this counter is non-zero, the descriptor associated with the timerfd
46  * object is "readable".  Note that this is slightly different than the
47  * POSIX timer "overrun" counter, which only increments if the timer fires
48  * again while the notification signal is already pending.  Thus, we are
49  * responsible for incrementing the "overrun" counter each time the timerfd
50  * timer fires.
51  *
52  * This implementation is API compatible with the Linux timerfd interface.
53  */
54 
55 #include <sys/param.h>
56 #include <sys/types.h>
57 #include <sys/condvar.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/poll.h>
63 #include <sys/proc.h>
64 #include <sys/select.h>
65 #include <sys/stat.h>
66 #include <sys/syscallargs.h>
67 #include <sys/timerfd.h>
68 #include <sys/uio.h>
69 
70 /* N.B. all timerfd state is protected by itimer_lock() */
71 struct timerfd {
72 	struct itimer	tfd_itimer;
73 	kcondvar_t	tfd_read_wait;
74 	struct selinfo	tfd_read_sel;
75 	int64_t		tfd_nwaiters;
76 	bool		tfd_cancel_on_set;
77 	bool		tfd_cancelled;
78 	bool		tfd_restarting;
79 
80 	/*
81 	 * Information kept for stat(2).
82 	 */
83 	struct timespec tfd_btime;	/* time created */
84 	struct timespec	tfd_mtime;	/* last timerfd_settime() */
85 	struct timespec	tfd_atime;	/* last read */
86 };
87 
88 static void	timerfd_wake(struct timerfd *);
89 
90 static inline uint64_t
timerfd_fire_count(const struct timerfd * const tfd)91 timerfd_fire_count(const struct timerfd * const tfd)
92 {
93 	return (unsigned int)tfd->tfd_itimer.it_overruns;
94 }
95 
96 static inline bool
timerfd_is_readable(const struct timerfd * const tfd)97 timerfd_is_readable(const struct timerfd * const tfd)
98 {
99 	return tfd->tfd_itimer.it_overruns != 0 || tfd->tfd_cancelled;
100 }
101 
102 /*
103  * timerfd_fire:
104  *
105  *	Called when the timerfd's timer fires.
106  *
107  *	Called from a callout with itimer lock held.
108  */
109 static void
timerfd_fire(struct itimer * const it)110 timerfd_fire(struct itimer * const it)
111 {
112 	struct timerfd * const tfd =
113 	    container_of(it, struct timerfd, tfd_itimer);
114 
115 	it->it_overruns++;
116 	timerfd_wake(tfd);
117 }
118 
119 /*
120  * timerfd_realtime_changed:
121  *
122  *	Called when CLOCK_REALTIME is changed with clock_settime()
123  *	or settimeofday().
124  *
125  *	Called with itimer lock held.
126  */
127 static void
timerfd_realtime_changed(struct itimer * const it)128 timerfd_realtime_changed(struct itimer * const it)
129 {
130 	struct timerfd * const tfd =
131 	    container_of(it, struct timerfd, tfd_itimer);
132 
133 	/* Should only be called when timer is armed. */
134 	KASSERT(timespecisset(&it->it_time.it_value));
135 
136 	if (tfd->tfd_cancel_on_set) {
137 		tfd->tfd_cancelled = true;
138 		timerfd_wake(tfd);
139 	}
140 }
141 
142 static const struct itimer_ops timerfd_itimer_monotonic_ops = {
143 	.ito_fire = timerfd_fire,
144 };
145 
146 static const struct itimer_ops timerfd_itimer_realtime_ops = {
147 	.ito_fire = timerfd_fire,
148 	.ito_realtime_changed = timerfd_realtime_changed,
149 };
150 
151 /*
152  * timerfd_create:
153  *
154  *	Create a timerfd object.
155  */
156 static struct timerfd *
timerfd_create(clockid_t const clock_id,int const flags)157 timerfd_create(clockid_t const clock_id, int const flags)
158 {
159 	struct timerfd * const tfd = kmem_zalloc(sizeof(*tfd), KM_SLEEP);
160 
161 	KASSERT(clock_id == CLOCK_REALTIME || clock_id == CLOCK_MONOTONIC);
162 
163 	cv_init(&tfd->tfd_read_wait, "tfdread");
164 	selinit(&tfd->tfd_read_sel);
165 	getnanotime(&tfd->tfd_btime);
166 
167 	/* Caller deals with TFD_CLOEXEC and TFD_NONBLOCK. */
168 
169 	itimer_lock();
170 	itimer_init(&tfd->tfd_itimer,
171 	    clock_id == CLOCK_REALTIME ? &timerfd_itimer_realtime_ops
172 				       : &timerfd_itimer_monotonic_ops,
173 	    clock_id, NULL);
174 	itimer_unlock();
175 
176 	return tfd;
177 }
178 
179 /*
180  * timerfd_destroy:
181  *
182  *	Destroy a timerfd object.
183  */
184 static void
timerfd_destroy(struct timerfd * const tfd)185 timerfd_destroy(struct timerfd * const tfd)
186 {
187 
188 	KASSERT(tfd->tfd_nwaiters == 0);
189 
190 	itimer_lock();
191 	itimer_poison(&tfd->tfd_itimer);
192 	itimer_fini(&tfd->tfd_itimer);	/* drops itimer lock */
193 
194 	cv_destroy(&tfd->tfd_read_wait);
195 
196 	seldestroy(&tfd->tfd_read_sel);
197 
198 	kmem_free(tfd, sizeof(*tfd));
199 }
200 
201 /*
202  * timerfd_wait:
203  *
204  *	Block on a timerfd.  Handles non-blocking, as well as
205  *	the restart cases.
206  */
207 static int
timerfd_wait(struct timerfd * const tfd,int const fflag)208 timerfd_wait(struct timerfd * const tfd, int const fflag)
209 {
210 	extern kmutex_t	itimer_mutex;	/* XXX */
211 	int error;
212 
213 	if (fflag & FNONBLOCK) {
214 		return EAGAIN;
215 	}
216 
217 	/*
218 	 * We're going to block.  Check if we need to return ERESTART.
219 	 */
220 	if (tfd->tfd_restarting) {
221 		return ERESTART;
222 	}
223 
224 	tfd->tfd_nwaiters++;
225 	KASSERT(tfd->tfd_nwaiters > 0);
226 	error = cv_wait_sig(&tfd->tfd_read_wait, &itimer_mutex);
227 	tfd->tfd_nwaiters--;
228 	KASSERT(tfd->tfd_nwaiters >= 0);
229 
230 	/*
231 	 * If a restart was triggered while we were asleep, we need
232 	 * to return ERESTART if no other error was returned.
233 	 */
234 	if (tfd->tfd_restarting) {
235 		if (error == 0) {
236 			error = ERESTART;
237 		}
238 	}
239 
240 	return error;
241 }
242 
243 /*
244  * timerfd_wake:
245  *
246  *	Wake LWPs blocked on a timerfd.
247  */
248 static void
timerfd_wake(struct timerfd * const tfd)249 timerfd_wake(struct timerfd * const tfd)
250 {
251 
252 	if (tfd->tfd_nwaiters) {
253 		cv_broadcast(&tfd->tfd_read_wait);
254 	}
255 	selnotify(&tfd->tfd_read_sel, POLLIN | POLLRDNORM, NOTE_SUBMIT);
256 }
257 
258 /*
259  * timerfd file operations
260  */
261 
262 static int
timerfd_fop_read(file_t * const fp,off_t * const offset,struct uio * const uio,kauth_cred_t const cred,int const flags)263 timerfd_fop_read(file_t * const fp, off_t * const offset,
264     struct uio * const uio, kauth_cred_t const cred, int const flags)
265 {
266 	struct timerfd * const tfd = fp->f_timerfd;
267 	struct itimer * const it = &tfd->tfd_itimer;
268 	int const fflag = fp->f_flag;
269 	uint64_t return_value;
270 	int error;
271 
272 	if (uio->uio_resid < sizeof(uint64_t)) {
273 		return EINVAL;
274 	}
275 
276 	itimer_lock();
277 
278 	while (!timerfd_is_readable(tfd)) {
279 		if ((error = timerfd_wait(tfd, fflag)) != 0) {
280 			itimer_unlock();
281 			return error;
282 		}
283 	}
284 
285 	if (tfd->tfd_cancelled) {
286 		itimer_unlock();
287 		return ECANCELED;
288 	}
289 
290 	return_value = timerfd_fire_count(tfd);
291 	it->it_overruns = 0;
292 
293 	getnanotime(&tfd->tfd_atime);
294 
295 	itimer_unlock();
296 
297 	error = uiomove(&return_value, sizeof(return_value), uio);
298 
299 	return error;
300 }
301 
302 static int
timerfd_fop_ioctl(file_t * const fp,unsigned long const cmd,void * const data)303 timerfd_fop_ioctl(file_t * const fp, unsigned long const cmd, void * const data)
304 {
305 	struct timerfd * const tfd = fp->f_timerfd;
306 	int error = 0;
307 
308 	switch (cmd) {
309 	case FIONBIO:
310 		break;
311 
312 	case FIONREAD:
313 		itimer_lock();
314 		*(int *)data = timerfd_is_readable(tfd) ? sizeof(uint64_t) : 0;
315 		itimer_unlock();
316 		break;
317 
318 	case TFD_IOC_SET_TICKS: {
319 		const uint64_t * const new_ticksp = data;
320 		if (*new_ticksp > INT_MAX) {
321 			return EINVAL;
322 		}
323 		itimer_lock();
324 		tfd->tfd_itimer.it_overruns = (int)*new_ticksp;
325 		itimer_unlock();
326 		break;
327 	    }
328 
329 	default:
330 		error = EPASSTHROUGH;
331 	}
332 
333 	return error;
334 }
335 
336 static int
timerfd_fop_poll(file_t * const fp,int const events)337 timerfd_fop_poll(file_t * const fp, int const events)
338 {
339 	struct timerfd * const tfd = fp->f_timerfd;
340 	int revents = events & (POLLOUT | POLLWRNORM);
341 
342 	if (events & (POLLIN | POLLRDNORM)) {
343 		itimer_lock();
344 		if (timerfd_is_readable(tfd)) {
345 			revents |= events & (POLLIN | POLLRDNORM);
346 		} else {
347 			selrecord(curlwp, &tfd->tfd_read_sel);
348 		}
349 		itimer_unlock();
350 	}
351 
352 	return revents;
353 }
354 
355 static int
timerfd_fop_stat(file_t * const fp,struct stat * const st)356 timerfd_fop_stat(file_t * const fp, struct stat * const st)
357 {
358 	struct timerfd * const tfd = fp->f_timerfd;
359 
360 	memset(st, 0, sizeof(*st));
361 
362 	itimer_lock();
363 	st->st_size = (off_t)timerfd_fire_count(tfd);
364 	st->st_atimespec = tfd->tfd_atime;
365 	st->st_mtimespec = tfd->tfd_mtime;
366 	itimer_unlock();
367 
368 	st->st_blksize = sizeof(uint64_t);
369 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
370 	st->st_blocks = 1;
371 	st->st_birthtimespec = tfd->tfd_btime;
372 	st->st_ctimespec = st->st_mtimespec;
373 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
374 	st->st_gid = kauth_cred_getegid(fp->f_cred);
375 
376 	return 0;
377 }
378 
379 static int
timerfd_fop_close(file_t * const fp)380 timerfd_fop_close(file_t * const fp)
381 {
382 	struct timerfd * const tfd = fp->f_timerfd;
383 
384 	fp->f_timerfd = NULL;
385 	timerfd_destroy(tfd);
386 
387 	return 0;
388 }
389 
390 static void
timerfd_filt_read_detach(struct knote * const kn)391 timerfd_filt_read_detach(struct knote * const kn)
392 {
393 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
394 
395 	itimer_lock();
396 	KASSERT(kn->kn_hook == tfd);
397 	selremove_knote(&tfd->tfd_read_sel, kn);
398 	itimer_unlock();
399 }
400 
401 static int
timerfd_filt_read(struct knote * const kn,long const hint)402 timerfd_filt_read(struct knote * const kn, long const hint)
403 {
404 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
405 	int rv;
406 
407 	if (hint & NOTE_SUBMIT) {
408 		KASSERT(itimer_lock_held());
409 	} else {
410 		itimer_lock();
411 	}
412 
413 	kn->kn_data = (int64_t)timerfd_fire_count(tfd);
414 	rv = kn->kn_data != 0;
415 
416 	if ((hint & NOTE_SUBMIT) == 0) {
417 		itimer_unlock();
418 	}
419 
420 	return rv;
421 }
422 
423 static const struct filterops timerfd_read_filterops = {
424 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
425 	.f_detach = timerfd_filt_read_detach,
426 	.f_event = timerfd_filt_read,
427 };
428 
429 static int
timerfd_fop_kqfilter(file_t * const fp,struct knote * const kn)430 timerfd_fop_kqfilter(file_t * const fp, struct knote * const kn)
431 {
432 	struct timerfd * const tfd = ((file_t *)kn->kn_obj)->f_timerfd;
433 	struct selinfo *sel;
434 
435 	switch (kn->kn_filter) {
436 	case EVFILT_READ:
437 		sel = &tfd->tfd_read_sel;
438 		kn->kn_fop = &timerfd_read_filterops;
439 		break;
440 
441 	default:
442 		return EINVAL;
443 	}
444 
445 	kn->kn_hook = tfd;
446 
447 	itimer_lock();
448 	selrecord_knote(sel, kn);
449 	itimer_unlock();
450 
451 	return 0;
452 }
453 
454 static void
timerfd_fop_restart(file_t * const fp)455 timerfd_fop_restart(file_t * const fp)
456 {
457 	struct timerfd * const tfd = fp->f_timerfd;
458 
459 	/*
460 	 * Unblock blocked reads in order to allow close() to complete.
461 	 * System calls return ERESTART so that the fd is revalidated.
462 	 */
463 
464 	itimer_lock();
465 
466 	if (tfd->tfd_nwaiters != 0) {
467 		tfd->tfd_restarting = true;
468 		cv_broadcast(&tfd->tfd_read_wait);
469 	}
470 
471 	itimer_unlock();
472 }
473 
474 static const struct fileops timerfd_fileops = {
475 	.fo_name = "timerfd",
476 	.fo_read = timerfd_fop_read,
477 	.fo_write = fbadop_write,
478 	.fo_ioctl = timerfd_fop_ioctl,
479 	.fo_fcntl = fnullop_fcntl,
480 	.fo_poll = timerfd_fop_poll,
481 	.fo_stat = timerfd_fop_stat,
482 	.fo_close = timerfd_fop_close,
483 	.fo_kqfilter = timerfd_fop_kqfilter,
484 	.fo_restart = timerfd_fop_restart,
485 };
486 
487 /*
488  * timerfd_create(2) system call
489  */
490 int
do_timerfd_create(struct lwp * const l,clockid_t const clock_id,int const flags,register_t * retval)491 do_timerfd_create(struct lwp * const l, clockid_t const clock_id,
492     int const flags, register_t *retval)
493 {
494 	file_t *fp;
495 	int fd, error;
496 
497 	if (flags & ~(TFD_CLOEXEC | TFD_NONBLOCK)) {
498 		return EINVAL;
499 	}
500 
501 	switch (clock_id) {
502 	case CLOCK_REALTIME:
503 	case CLOCK_MONOTONIC:
504 		/* allowed */
505 		break;
506 
507 	default:
508 		return EINVAL;
509 	}
510 
511 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
512 		return error;
513 	}
514 
515 	fp->f_flag = FREAD;
516 	if (flags & TFD_NONBLOCK) {
517 		fp->f_flag |= FNONBLOCK;
518 	}
519 	fp->f_type = DTYPE_TIMERFD;
520 	fp->f_ops = &timerfd_fileops;
521 	fp->f_timerfd = timerfd_create(clock_id, flags);
522 	fd_set_exclose(l, fd, !!(flags & TFD_CLOEXEC));
523 	fd_affix(curproc, fp, fd);
524 
525 	*retval = fd;
526 	return 0;
527 }
528 
529 int
sys_timerfd_create(struct lwp * l,const struct sys_timerfd_create_args * uap,register_t * retval)530 sys_timerfd_create(struct lwp *l, const struct sys_timerfd_create_args *uap,
531     register_t *retval)
532 {
533 	/* {
534 		syscallarg(clockid_t) clock_id;
535 		syscallarg(int) flags;
536 	} */
537 
538 	return do_timerfd_create(l, SCARG(uap, clock_id), SCARG(uap, flags),
539 	    retval);
540 }
541 
542 /*
543  * timerfd_gettime(2) system call.
544  */
545 int
do_timerfd_gettime(struct lwp * l,int fd,struct itimerspec * curr_value,register_t * retval)546 do_timerfd_gettime(struct lwp *l, int fd, struct itimerspec *curr_value,
547     register_t *retval)
548 {
549 	file_t *fp;
550 
551 	if ((fp = fd_getfile(fd)) == NULL) {
552 		return EBADF;
553 	}
554 
555 	if (fp->f_ops != &timerfd_fileops) {
556 		fd_putfile(fd);
557 		return EINVAL;
558 	}
559 
560 	struct timerfd * const tfd = fp->f_timerfd;
561 	itimer_lock();
562 	itimer_gettime(&tfd->tfd_itimer, curr_value);
563 	itimer_unlock();
564 
565 	fd_putfile(fd);
566 	return 0;
567 }
568 
569 int
sys_timerfd_gettime(struct lwp * l,const struct sys_timerfd_gettime_args * uap,register_t * retval)570 sys_timerfd_gettime(struct lwp *l, const struct sys_timerfd_gettime_args *uap,
571     register_t *retval)
572 {
573 	/* {
574 		syscallarg(int) fd;
575 		syscallarg(struct itimerspec *) curr_value;
576 	} */
577 
578 	struct itimerspec oits;
579 	int error;
580 
581 	error = do_timerfd_gettime(l, SCARG(uap, fd), &oits, retval);
582 	if (error == 0) {
583 		error = copyout(&oits, SCARG(uap, curr_value), sizeof(oits));
584 	}
585 	return error;
586 }
587 
588 /*
589  * timerfd_settime(2) system call.
590  */
591 int
do_timerfd_settime(struct lwp * l,int fd,int flags,const struct itimerspec * new_value,struct itimerspec * old_value,register_t * retval)592 do_timerfd_settime(struct lwp *l, int fd, int flags,
593     const struct itimerspec *new_value, struct itimerspec *old_value,
594     register_t *retval)
595 {
596 	file_t *fp;
597 	int error;
598 
599 	if (flags & ~(TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET)) {
600 		return EINVAL;
601 	}
602 
603 	if ((fp = fd_getfile(fd)) == NULL) {
604 		return EBADF;
605 	}
606 
607 	if (fp->f_ops != &timerfd_fileops) {
608 		fd_putfile(fd);
609 		return EINVAL;
610 	}
611 
612 	struct timerfd * const tfd = fp->f_timerfd;
613 	struct itimer * const it = &tfd->tfd_itimer;
614 
615 	itimer_lock();
616 
617  restart:
618 	if (old_value != NULL) {
619 		*old_value = it->it_time;
620 	}
621 	it->it_time = *new_value;
622 
623 	/*
624 	 * If we've been passed a relative value, convert it to an
625 	 * absolute, as that's what the itimer facility expects for
626 	 * non-virtual timers.  Also ensure that this doesn't set it
627 	 * to zero or lets it go negative.
628 	 * XXXJRT re-factor.
629 	 */
630 	if (timespecisset(&it->it_time.it_value) &&
631 	    (flags & TFD_TIMER_ABSTIME) == 0) {
632 		struct timespec now;
633 		if (it->it_clockid == CLOCK_REALTIME) {
634 			getnanotime(&now);
635 		} else { /* CLOCK_MONOTONIC */
636 			getnanouptime(&now);
637 		}
638 		timespecadd(&it->it_time.it_value, &now,
639 		    &it->it_time.it_value);
640 	}
641 
642 	error = itimer_settime(it);
643 	if (error == ERESTART) {
644 		goto restart;
645 	}
646 	KASSERT(error == 0);
647 
648 	/* Reset the expirations counter. */
649 	it->it_overruns = 0;
650 
651 	if (it->it_clockid == CLOCK_REALTIME) {
652 		tfd->tfd_cancelled = false;
653 		tfd->tfd_cancel_on_set = !!(flags & TFD_TIMER_CANCEL_ON_SET);
654 	}
655 
656 	getnanotime(&tfd->tfd_mtime);
657 	itimer_unlock();
658 
659 	fd_putfile(fd);
660 	return error;
661 }
662 
663 int
sys_timerfd_settime(struct lwp * l,const struct sys_timerfd_settime_args * uap,register_t * retval)664 sys_timerfd_settime(struct lwp *l, const struct sys_timerfd_settime_args *uap,
665     register_t *retval)
666 {
667 	/* {
668 		syscallarg(int) fd;
669 		syscallarg(int) flags;
670 		syscallarg(const struct itimerspec *) new_value;
671 		syscallarg(struct itimerspec *) old_value;
672 	} */
673 
674 	struct itimerspec nits, oits, *oitsp = NULL;
675 	int error;
676 
677 	error = copyin(SCARG(uap, new_value), &nits, sizeof(nits));
678 	if (error) {
679 		return error;
680 	}
681 
682 	if (SCARG(uap, old_value) != NULL) {
683 		oitsp = &oits;
684 	}
685 
686 	error = do_timerfd_settime(l, SCARG(uap, fd), SCARG(uap, flags),
687 	    &nits, oitsp, retval);
688 	if (error == 0 && oitsp != NULL) {
689 		error = copyout(oitsp, SCARG(uap, old_value), sizeof(*oitsp));
690 	}
691 	return error;
692 }
693