1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
61 
62 /*
63  * Grand theory statement on scan queue sorting
64  *
65  * Scanning is implemented by recursively traversing all indirection levels
66  * in an object and reading all blocks referenced from said objects. This
67  * results in us approximately traversing the object from lowest logical
68  * offset to the highest. For best performance, we would want the logical
69  * blocks to be physically contiguous. However, this is frequently not the
70  * case with pools given the allocation patterns of copy-on-write filesystems.
71  * So instead, we put the I/Os into a reordering queue and issue them in a
72  * way that will most benefit physical disks (LBA-order).
73  *
74  * Queue management:
75  *
76  * Ideally, we would want to scan all metadata and queue up all block I/O
77  * prior to starting to issue it, because that allows us to do an optimal
78  * sorting job. This can however consume large amounts of memory. Therefore
79  * we continuously monitor the size of the queues and constrain them to 5%
80  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81  * limit, we clear out a few of the largest extents at the head of the queues
82  * to make room for more scanning. Hopefully, these extents will be fairly
83  * large and contiguous, allowing us to approach sequential I/O throughput
84  * even without a fully sorted tree.
85  *
86  * Metadata scanning takes place in dsl_scan_visit(), which is called from
87  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88  * metadata on the pool, or we need to make room in memory because our
89  * queues are too large, dsl_scan_visit() is postponed and
90  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91  * that metadata scanning and queued I/O issuing are mutually exclusive. This
92  * allows us to provide maximum sequential I/O throughput for the majority of
93  * I/O's issued since sequential I/O performance is significantly negatively
94  * impacted if it is interleaved with random I/O.
95  *
96  * Implementation Notes
97  *
98  * One side effect of the queued scanning algorithm is that the scanning code
99  * needs to be notified whenever a block is freed. This is needed to allow
100  * the scanning code to remove these I/Os from the issuing queue. Additionally,
101  * we do not attempt to queue gang blocks to be issued sequentially since this
102  * is very hard to do and would have an extremely limited performance benefit.
103  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104  * algorithm.
105  *
106  * Backwards compatibility
107  *
108  * This new algorithm is backwards compatible with the legacy on-disk data
109  * structures (and therefore does not require a new feature flag).
110  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111  * will stop scanning metadata (in logical order) and wait for all outstanding
112  * sorted I/O to complete. Once this is done, we write out a checkpoint
113  * bookmark, indicating that we have scanned everything logically before it.
114  * If the pool is imported on a machine without the new sorting algorithm,
115  * the scan simply resumes from the last checkpoint using the legacy algorithm.
116  */
117 
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119     const zbookmark_phys_t *);
120 
121 static scan_cb_t dsl_scan_scrub_cb;
122 
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128     uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
134 
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
137 
138 /*
139  * 'zpool status' uses bytes processed per pass to report throughput and
140  * estimate time remaining.  We define a pass to start when the scanning
141  * phase completes for a sequential resilver.  Optionally, this value
142  * may be used to reset the pass statistics every N txgs to provide an
143  * estimated completion time based on currently observed performance.
144  */
145 static uint_t zfs_scan_report_txgs = 0;
146 
147 /*
148  * By default zfs will check to ensure it is not over the hard memory
149  * limit before each txg. If finer-grained control of this is needed
150  * this value can be set to 1 to enable checking before scanning each
151  * block.
152  */
153 static int zfs_scan_strict_mem_lim = B_FALSE;
154 
155 /*
156  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157  * to strike a balance here between keeping the vdev queues full of I/Os
158  * at all times and not overflowing the queues to cause long latency,
159  * which would cause long txg sync times. No matter what, we will not
160  * overload the drives with I/O, since that is protected by
161  * zfs_vdev_scrub_max_active.
162  */
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
164 
165 static uint_t zfs_scan_issue_strategy = 0;
166 
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170 
171 /*
172  * fill_weight is non-tunable at runtime, so we copy it at module init from
173  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174  * break queue sorting.
175  */
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
178 
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
182 
183 
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
186 
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
189 
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
192 
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
195 
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
198 
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
201 
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
211 
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
214 
215 /*
216  * We wait a few txgs after importing a pool to begin scanning so that
217  * the import / mounting code isn't held up by scrub / resilver IO.
218  * Unfortunately, it is a bit difficult to determine exactly how long
219  * this will take since userspace will trigger fs mounts asynchronously
220  * and the kernel will create zvol minors asynchronously. As a result,
221  * the value provided here is a bit arbitrary, but represents a
222  * reasonable estimate of how many txgs it will take to finish fully
223  * importing a pool
224  */
225 #define	SCAN_IMPORT_WAIT_TXGS 		5
226 
227 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
228 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
229 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
230 
231 /*
232  * Enable/disable the processing of the free_bpobj object.
233  */
234 static int zfs_free_bpobj_enabled = 1;
235 
236 /* Error blocks to be scrubbed in one txg. */
237 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
238 
239 /* the order has to match pool_scan_type */
240 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
241 	NULL,
242 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
243 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
244 };
245 
246 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
247 typedef struct {
248 	uint64_t	sds_dsobj;
249 	uint64_t	sds_txg;
250 	avl_node_t	sds_node;
251 } scan_ds_t;
252 
253 /*
254  * This controls what conditions are placed on dsl_scan_sync_state():
255  * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
256  * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
257  * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
258  *	write out the scn_phys_cached version.
259  * See dsl_scan_sync_state for details.
260  */
261 typedef enum {
262 	SYNC_OPTIONAL,
263 	SYNC_MANDATORY,
264 	SYNC_CACHED
265 } state_sync_type_t;
266 
267 /*
268  * This struct represents the minimum information needed to reconstruct a
269  * zio for sequential scanning. This is useful because many of these will
270  * accumulate in the sequential IO queues before being issued, so saving
271  * memory matters here.
272  */
273 typedef struct scan_io {
274 	/* fields from blkptr_t */
275 	uint64_t		sio_blk_prop;
276 	uint64_t		sio_phys_birth;
277 	uint64_t		sio_birth;
278 	zio_cksum_t		sio_cksum;
279 	uint32_t		sio_nr_dvas;
280 
281 	/* fields from zio_t */
282 	uint32_t		sio_flags;
283 	zbookmark_phys_t	sio_zb;
284 
285 	/* members for queue sorting */
286 	union {
287 		avl_node_t	sio_addr_node; /* link into issuing queue */
288 		list_node_t	sio_list_node; /* link for issuing to disk */
289 	} sio_nodes;
290 
291 	/*
292 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
293 	 * depending on how many were in the original bp. Only the
294 	 * first DVA is really used for sorting and issuing purposes.
295 	 * The other DVAs (if provided) simply exist so that the zio
296 	 * layer can find additional copies to repair from in the
297 	 * event of an error. This array must go at the end of the
298 	 * struct to allow this for the variable number of elements.
299 	 */
300 	dva_t			sio_dva[];
301 } scan_io_t;
302 
303 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
304 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
305 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
306 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
307 #define	SIO_GET_END_OFFSET(sio)		\
308 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
309 #define	SIO_GET_MUSED(sio)		\
310 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
311 
312 struct dsl_scan_io_queue {
313 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
314 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
315 	zio_t		*q_zio; /* scn_zio_root child for waiting on IO */
316 
317 	/* trees used for sorting I/Os and extents of I/Os */
318 	range_tree_t	*q_exts_by_addr;
319 	zfs_btree_t	q_exts_by_size;
320 	avl_tree_t	q_sios_by_addr;
321 	uint64_t	q_sio_memused;
322 	uint64_t	q_last_ext_addr;
323 
324 	/* members for zio rate limiting */
325 	uint64_t	q_maxinflight_bytes;
326 	uint64_t	q_inflight_bytes;
327 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
328 
329 	/* per txg statistics */
330 	uint64_t	q_total_seg_size_this_txg;
331 	uint64_t	q_segs_this_txg;
332 	uint64_t	q_total_zio_size_this_txg;
333 	uint64_t	q_zios_this_txg;
334 };
335 
336 /* private data for dsl_scan_prefetch_cb() */
337 typedef struct scan_prefetch_ctx {
338 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
339 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
340 	boolean_t spc_root;		/* is this prefetch for an objset? */
341 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
342 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
343 } scan_prefetch_ctx_t;
344 
345 /* private data for dsl_scan_prefetch() */
346 typedef struct scan_prefetch_issue_ctx {
347 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
348 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
349 	blkptr_t spic_bp;		/* bp to prefetch */
350 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
351 } scan_prefetch_issue_ctx_t;
352 
353 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
354     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
355 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
356     scan_io_t *sio);
357 
358 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
359 static void scan_io_queues_destroy(dsl_scan_t *scn);
360 
361 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
362 
363 /* sio->sio_nr_dvas must be set so we know which cache to free from */
364 static void
sio_free(scan_io_t * sio)365 sio_free(scan_io_t *sio)
366 {
367 	ASSERT3U(sio->sio_nr_dvas, >, 0);
368 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
369 
370 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
371 }
372 
373 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
374 static scan_io_t *
sio_alloc(unsigned short nr_dvas)375 sio_alloc(unsigned short nr_dvas)
376 {
377 	ASSERT3U(nr_dvas, >, 0);
378 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
379 
380 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
381 }
382 
383 void
scan_init(void)384 scan_init(void)
385 {
386 	/*
387 	 * This is used in ext_size_compare() to weight segments
388 	 * based on how sparse they are. This cannot be changed
389 	 * mid-scan and the tree comparison functions don't currently
390 	 * have a mechanism for passing additional context to the
391 	 * compare functions. Thus we store this value globally and
392 	 * we only allow it to be set at module initialization time
393 	 */
394 	fill_weight = zfs_scan_fill_weight;
395 
396 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
397 		char name[36];
398 
399 		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
400 		sio_cache[i] = kmem_cache_create(name,
401 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
402 		    0, NULL, NULL, NULL, NULL, NULL, 0);
403 	}
404 }
405 
406 void
scan_fini(void)407 scan_fini(void)
408 {
409 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
410 		kmem_cache_destroy(sio_cache[i]);
411 	}
412 }
413 
414 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)415 dsl_scan_is_running(const dsl_scan_t *scn)
416 {
417 	return (scn->scn_phys.scn_state == DSS_SCANNING);
418 }
419 
420 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)421 dsl_scan_resilvering(dsl_pool_t *dp)
422 {
423 	return (dsl_scan_is_running(dp->dp_scan) &&
424 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
425 }
426 
427 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)428 sio2bp(const scan_io_t *sio, blkptr_t *bp)
429 {
430 	memset(bp, 0, sizeof (*bp));
431 	bp->blk_prop = sio->sio_blk_prop;
432 	BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
433 	BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
434 	bp->blk_fill = 1;	/* we always only work with data pointers */
435 	bp->blk_cksum = sio->sio_cksum;
436 
437 	ASSERT3U(sio->sio_nr_dvas, >, 0);
438 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
439 
440 	memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
441 }
442 
443 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)444 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
445 {
446 	sio->sio_blk_prop = bp->blk_prop;
447 	sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
448 	sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
449 	sio->sio_cksum = bp->blk_cksum;
450 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
451 
452 	/*
453 	 * Copy the DVAs to the sio. We need all copies of the block so
454 	 * that the self healing code can use the alternate copies if the
455 	 * first is corrupted. We want the DVA at index dva_i to be first
456 	 * in the sio since this is the primary one that we want to issue.
457 	 */
458 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
459 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
460 	}
461 }
462 
463 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)464 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
465 {
466 	int err;
467 	dsl_scan_t *scn;
468 	spa_t *spa = dp->dp_spa;
469 	uint64_t f;
470 
471 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
472 	scn->scn_dp = dp;
473 
474 	/*
475 	 * It's possible that we're resuming a scan after a reboot so
476 	 * make sure that the scan_async_destroying flag is initialized
477 	 * appropriately.
478 	 */
479 	ASSERT(!scn->scn_async_destroying);
480 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
481 	    SPA_FEATURE_ASYNC_DESTROY);
482 
483 	/*
484 	 * Calculate the max number of in-flight bytes for pool-wide
485 	 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
486 	 * Limits for the issuing phase are done per top-level vdev and
487 	 * are handled separately.
488 	 */
489 	scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
490 	    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
491 
492 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
493 	    offsetof(scan_ds_t, sds_node));
494 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
495 	    sizeof (scan_prefetch_issue_ctx_t),
496 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
497 
498 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
499 	    "scrub_func", sizeof (uint64_t), 1, &f);
500 	if (err == 0) {
501 		/*
502 		 * There was an old-style scrub in progress.  Restart a
503 		 * new-style scrub from the beginning.
504 		 */
505 		scn->scn_restart_txg = txg;
506 		zfs_dbgmsg("old-style scrub was in progress for %s; "
507 		    "restarting new-style scrub in txg %llu",
508 		    spa->spa_name,
509 		    (longlong_t)scn->scn_restart_txg);
510 
511 		/*
512 		 * Load the queue obj from the old location so that it
513 		 * can be freed by dsl_scan_done().
514 		 */
515 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
516 		    "scrub_queue", sizeof (uint64_t), 1,
517 		    &scn->scn_phys.scn_queue_obj);
518 	} else {
519 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
520 		    DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
521 		    ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
522 
523 		if (err != 0 && err != ENOENT)
524 			return (err);
525 
526 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
528 		    &scn->scn_phys);
529 
530 		/*
531 		 * Detect if the pool contains the signature of #2094.  If it
532 		 * does properly update the scn->scn_phys structure and notify
533 		 * the administrator by setting an errata for the pool.
534 		 */
535 		if (err == EOVERFLOW) {
536 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
537 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
538 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
539 			    (23 * sizeof (uint64_t)));
540 
541 			err = zap_lookup(dp->dp_meta_objset,
542 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
543 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
544 			if (err == 0) {
545 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
546 
547 				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
548 				    scn->scn_async_destroying) {
549 					spa->spa_errata =
550 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
551 					return (EOVERFLOW);
552 				}
553 
554 				memcpy(&scn->scn_phys, zaptmp,
555 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
556 				scn->scn_phys.scn_flags = overflow;
557 
558 				/* Required scrub already in progress. */
559 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
560 				    scn->scn_phys.scn_state == DSS_CANCELED)
561 					spa->spa_errata =
562 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
563 			}
564 		}
565 
566 		if (err == ENOENT)
567 			return (0);
568 		else if (err)
569 			return (err);
570 
571 		/*
572 		 * We might be restarting after a reboot, so jump the issued
573 		 * counter to how far we've scanned. We know we're consistent
574 		 * up to here.
575 		 */
576 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
577 		    scn->scn_phys.scn_skipped;
578 
579 		if (dsl_scan_is_running(scn) &&
580 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
581 			/*
582 			 * A new-type scrub was in progress on an old
583 			 * pool, and the pool was accessed by old
584 			 * software.  Restart from the beginning, since
585 			 * the old software may have changed the pool in
586 			 * the meantime.
587 			 */
588 			scn->scn_restart_txg = txg;
589 			zfs_dbgmsg("new-style scrub for %s was modified "
590 			    "by old software; restarting in txg %llu",
591 			    spa->spa_name,
592 			    (longlong_t)scn->scn_restart_txg);
593 		} else if (dsl_scan_resilvering(dp)) {
594 			/*
595 			 * If a resilver is in progress and there are already
596 			 * errors, restart it instead of finishing this scan and
597 			 * then restarting it. If there haven't been any errors
598 			 * then remember that the incore DTL is valid.
599 			 */
600 			if (scn->scn_phys.scn_errors > 0) {
601 				scn->scn_restart_txg = txg;
602 				zfs_dbgmsg("resilver can't excise DTL_MISSING "
603 				    "when finished; restarting on %s in txg "
604 				    "%llu",
605 				    spa->spa_name,
606 				    (u_longlong_t)scn->scn_restart_txg);
607 			} else {
608 				/* it's safe to excise DTL when finished */
609 				spa->spa_scrub_started = B_TRUE;
610 			}
611 		}
612 	}
613 
614 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
615 
616 	/* reload the queue into the in-core state */
617 	if (scn->scn_phys.scn_queue_obj != 0) {
618 		zap_cursor_t zc;
619 		zap_attribute_t za;
620 
621 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
622 		    scn->scn_phys.scn_queue_obj);
623 		    zap_cursor_retrieve(&zc, &za) == 0;
624 		    (void) zap_cursor_advance(&zc)) {
625 			scan_ds_queue_insert(scn,
626 			    zfs_strtonum(za.za_name, NULL),
627 			    za.za_first_integer);
628 		}
629 		zap_cursor_fini(&zc);
630 	}
631 
632 	spa_scan_stat_init(spa);
633 	vdev_scan_stat_init(spa->spa_root_vdev);
634 
635 	return (0);
636 }
637 
638 void
dsl_scan_fini(dsl_pool_t * dp)639 dsl_scan_fini(dsl_pool_t *dp)
640 {
641 	if (dp->dp_scan != NULL) {
642 		dsl_scan_t *scn = dp->dp_scan;
643 
644 		if (scn->scn_taskq != NULL)
645 			taskq_destroy(scn->scn_taskq);
646 
647 		scan_ds_queue_clear(scn);
648 		avl_destroy(&scn->scn_queue);
649 		scan_ds_prefetch_queue_clear(scn);
650 		avl_destroy(&scn->scn_prefetch_queue);
651 
652 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
653 		dp->dp_scan = NULL;
654 	}
655 }
656 
657 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)658 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
659 {
660 	return (scn->scn_restart_txg != 0 &&
661 	    scn->scn_restart_txg <= tx->tx_txg);
662 }
663 
664 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)665 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
666 {
667 	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
668 	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
669 }
670 
671 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)672 dsl_scan_scrubbing(const dsl_pool_t *dp)
673 {
674 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
675 
676 	return (scn_phys->scn_state == DSS_SCANNING &&
677 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
678 }
679 
680 boolean_t
dsl_errorscrubbing(const dsl_pool_t * dp)681 dsl_errorscrubbing(const dsl_pool_t *dp)
682 {
683 	dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
684 
685 	return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
686 	    errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
687 }
688 
689 boolean_t
dsl_errorscrub_is_paused(const dsl_scan_t * scn)690 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
691 {
692 	return (dsl_errorscrubbing(scn->scn_dp) &&
693 	    scn->errorscrub_phys.dep_paused_flags);
694 }
695 
696 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)697 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
698 {
699 	return (dsl_scan_scrubbing(scn->scn_dp) &&
700 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
701 }
702 
703 static void
dsl_errorscrub_sync_state(dsl_scan_t * scn,dmu_tx_t * tx)704 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
705 {
706 	scn->errorscrub_phys.dep_cursor =
707 	    zap_cursor_serialize(&scn->errorscrub_cursor);
708 
709 	VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
710 	    DMU_POOL_DIRECTORY_OBJECT,
711 	    DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
712 	    &scn->errorscrub_phys, tx));
713 }
714 
715 static void
dsl_errorscrub_setup_sync(void * arg,dmu_tx_t * tx)716 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
717 {
718 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
719 	pool_scan_func_t *funcp = arg;
720 	dsl_pool_t *dp = scn->scn_dp;
721 	spa_t *spa = dp->dp_spa;
722 
723 	ASSERT(!dsl_scan_is_running(scn));
724 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
725 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
726 
727 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
728 	scn->errorscrub_phys.dep_func = *funcp;
729 	scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
730 	scn->errorscrub_phys.dep_start_time = gethrestime_sec();
731 	scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
732 	scn->errorscrub_phys.dep_examined = 0;
733 	scn->errorscrub_phys.dep_errors = 0;
734 	scn->errorscrub_phys.dep_cursor = 0;
735 	zap_cursor_init_serialized(&scn->errorscrub_cursor,
736 	    spa->spa_meta_objset, spa->spa_errlog_last,
737 	    scn->errorscrub_phys.dep_cursor);
738 
739 	vdev_config_dirty(spa->spa_root_vdev);
740 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
741 
742 	dsl_errorscrub_sync_state(scn, tx);
743 
744 	spa_history_log_internal(spa, "error scrub setup", tx,
745 	    "func=%u mintxg=%u maxtxg=%llu",
746 	    *funcp, 0, (u_longlong_t)tx->tx_txg);
747 }
748 
749 static int
dsl_errorscrub_setup_check(void * arg,dmu_tx_t * tx)750 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
751 {
752 	(void) arg;
753 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
754 
755 	if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
756 		return (SET_ERROR(EBUSY));
757 	}
758 
759 	if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
760 		return (ECANCELED);
761 	}
762 	return (0);
763 }
764 
765 /*
766  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
767  * Because we can be running in the block sorting algorithm, we do not always
768  * want to write out the record, only when it is "safe" to do so. This safety
769  * condition is achieved by making sure that the sorting queues are empty
770  * (scn_queues_pending == 0). When this condition is not true, the sync'd state
771  * is inconsistent with how much actual scanning progress has been made. The
772  * kind of sync to be performed is specified by the sync_type argument. If the
773  * sync is optional, we only sync if the queues are empty. If the sync is
774  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
775  * third possible state is a "cached" sync. This is done in response to:
776  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
777  *	destroyed, so we wouldn't be able to restart scanning from it.
778  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
779  *	superseded by a newer snapshot.
780  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
781  *	swapped with its clone.
782  * In all cases, a cached sync simply rewrites the last record we've written,
783  * just slightly modified. For the modifications that are performed to the
784  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
785  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
786  */
787 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)788 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
789 {
790 	int i;
791 	spa_t *spa = scn->scn_dp->dp_spa;
792 
793 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
794 	if (scn->scn_queues_pending == 0) {
795 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
796 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
797 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
798 
799 			if (q == NULL)
800 				continue;
801 
802 			mutex_enter(&vd->vdev_scan_io_queue_lock);
803 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
804 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
805 			    NULL);
806 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
807 			mutex_exit(&vd->vdev_scan_io_queue_lock);
808 		}
809 
810 		if (scn->scn_phys.scn_queue_obj != 0)
811 			scan_ds_queue_sync(scn, tx);
812 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
813 		    DMU_POOL_DIRECTORY_OBJECT,
814 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
815 		    &scn->scn_phys, tx));
816 		memcpy(&scn->scn_phys_cached, &scn->scn_phys,
817 		    sizeof (scn->scn_phys));
818 
819 		if (scn->scn_checkpointing)
820 			zfs_dbgmsg("finish scan checkpoint for %s",
821 			    spa->spa_name);
822 
823 		scn->scn_checkpointing = B_FALSE;
824 		scn->scn_last_checkpoint = ddi_get_lbolt();
825 	} else if (sync_type == SYNC_CACHED) {
826 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
827 		    DMU_POOL_DIRECTORY_OBJECT,
828 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
829 		    &scn->scn_phys_cached, tx));
830 	}
831 }
832 
833 int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)834 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
835 {
836 	(void) arg;
837 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
838 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
839 
840 	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
841 	    dsl_errorscrubbing(scn->scn_dp))
842 		return (SET_ERROR(EBUSY));
843 
844 	return (0);
845 }
846 
847 void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)848 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
849 {
850 	(void) arg;
851 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
852 	pool_scan_func_t *funcp = arg;
853 	dmu_object_type_t ot = 0;
854 	dsl_pool_t *dp = scn->scn_dp;
855 	spa_t *spa = dp->dp_spa;
856 
857 	ASSERT(!dsl_scan_is_running(scn));
858 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
859 	memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
860 
861 	/*
862 	 * If we are starting a fresh scrub, we erase the error scrub
863 	 * information from disk.
864 	 */
865 	memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
866 	dsl_errorscrub_sync_state(scn, tx);
867 
868 	scn->scn_phys.scn_func = *funcp;
869 	scn->scn_phys.scn_state = DSS_SCANNING;
870 	scn->scn_phys.scn_min_txg = 0;
871 	scn->scn_phys.scn_max_txg = tx->tx_txg;
872 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
873 	scn->scn_phys.scn_start_time = gethrestime_sec();
874 	scn->scn_phys.scn_errors = 0;
875 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
876 	scn->scn_issued_before_pass = 0;
877 	scn->scn_restart_txg = 0;
878 	scn->scn_done_txg = 0;
879 	scn->scn_last_checkpoint = 0;
880 	scn->scn_checkpointing = B_FALSE;
881 	spa_scan_stat_init(spa);
882 	vdev_scan_stat_init(spa->spa_root_vdev);
883 
884 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
885 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
886 
887 		/* rewrite all disk labels */
888 		vdev_config_dirty(spa->spa_root_vdev);
889 
890 		if (vdev_resilver_needed(spa->spa_root_vdev,
891 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
892 			nvlist_t *aux = fnvlist_alloc();
893 			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
894 			    "healing");
895 			spa_event_notify(spa, NULL, aux,
896 			    ESC_ZFS_RESILVER_START);
897 			nvlist_free(aux);
898 		} else {
899 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
900 		}
901 
902 		spa->spa_scrub_started = B_TRUE;
903 		/*
904 		 * If this is an incremental scrub, limit the DDT scrub phase
905 		 * to just the auto-ditto class (for correctness); the rest
906 		 * of the scrub should go faster using top-down pruning.
907 		 */
908 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
909 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
910 
911 		/*
912 		 * When starting a resilver clear any existing rebuild state.
913 		 * This is required to prevent stale rebuild status from
914 		 * being reported when a rebuild is run, then a resilver and
915 		 * finally a scrub.  In which case only the scrub status
916 		 * should be reported by 'zpool status'.
917 		 */
918 		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
919 			vdev_t *rvd = spa->spa_root_vdev;
920 			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
921 				vdev_t *vd = rvd->vdev_child[i];
922 				vdev_rebuild_clear_sync(
923 				    (void *)(uintptr_t)vd->vdev_id, tx);
924 			}
925 		}
926 	}
927 
928 	/* back to the generic stuff */
929 
930 	if (zfs_scan_blkstats) {
931 		if (dp->dp_blkstats == NULL) {
932 			dp->dp_blkstats =
933 			    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
934 		}
935 		memset(&dp->dp_blkstats->zab_type, 0,
936 		    sizeof (dp->dp_blkstats->zab_type));
937 	} else {
938 		if (dp->dp_blkstats) {
939 			vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
940 			dp->dp_blkstats = NULL;
941 		}
942 	}
943 
944 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
945 		ot = DMU_OT_ZAP_OTHER;
946 
947 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
948 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
949 
950 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
951 
952 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
953 
954 	spa_history_log_internal(spa, "scan setup", tx,
955 	    "func=%u mintxg=%llu maxtxg=%llu",
956 	    *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
957 	    (u_longlong_t)scn->scn_phys.scn_max_txg);
958 }
959 
960 /*
961  * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
962  * error scrub or resilver. Can also be called to resume a paused scrub or
963  * error scrub.
964  */
965 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func)966 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
967 {
968 	spa_t *spa = dp->dp_spa;
969 	dsl_scan_t *scn = dp->dp_scan;
970 
971 	/*
972 	 * Purge all vdev caches and probe all devices.  We do this here
973 	 * rather than in sync context because this requires a writer lock
974 	 * on the spa_config lock, which we can't do from sync context.  The
975 	 * spa_scrub_reopen flag indicates that vdev_open() should not
976 	 * attempt to start another scrub.
977 	 */
978 	spa_vdev_state_enter(spa, SCL_NONE);
979 	spa->spa_scrub_reopen = B_TRUE;
980 	vdev_reopen(spa->spa_root_vdev);
981 	spa->spa_scrub_reopen = B_FALSE;
982 	(void) spa_vdev_state_exit(spa, NULL, 0);
983 
984 	if (func == POOL_SCAN_RESILVER) {
985 		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
986 		return (0);
987 	}
988 
989 	if (func == POOL_SCAN_ERRORSCRUB) {
990 		if (dsl_errorscrub_is_paused(dp->dp_scan)) {
991 			/*
992 			 * got error scrub start cmd, resume paused error scrub.
993 			 */
994 			int err = dsl_scrub_set_pause_resume(scn->scn_dp,
995 			    POOL_SCRUB_NORMAL);
996 			if (err == 0) {
997 				spa_event_notify(spa, NULL, NULL,
998 				    ESC_ZFS_ERRORSCRUB_RESUME);
999 				return (ECANCELED);
1000 			}
1001 			return (SET_ERROR(err));
1002 		}
1003 
1004 		return (dsl_sync_task(spa_name(dp->dp_spa),
1005 		    dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1006 		    &func, 0, ZFS_SPACE_CHECK_RESERVED));
1007 	}
1008 
1009 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1010 		/* got scrub start cmd, resume paused scrub */
1011 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1012 		    POOL_SCRUB_NORMAL);
1013 		if (err == 0) {
1014 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1015 			return (SET_ERROR(ECANCELED));
1016 		}
1017 		return (SET_ERROR(err));
1018 	}
1019 
1020 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1021 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
1022 }
1023 
1024 static void
dsl_errorscrub_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1025 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1026 {
1027 	dsl_pool_t *dp = scn->scn_dp;
1028 	spa_t *spa = dp->dp_spa;
1029 
1030 	if (complete) {
1031 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1032 		spa_history_log_internal(spa, "error scrub done", tx,
1033 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1034 	} else {
1035 		spa_history_log_internal(spa, "error scrub canceled", tx,
1036 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1037 	}
1038 
1039 	scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1040 	spa->spa_scrub_active = B_FALSE;
1041 	spa_errlog_rotate(spa);
1042 	scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1043 	zap_cursor_fini(&scn->errorscrub_cursor);
1044 
1045 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1046 		spa->spa_errata = 0;
1047 
1048 	ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1049 }
1050 
1051 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1052 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1053 {
1054 	static const char *old_names[] = {
1055 		"scrub_bookmark",
1056 		"scrub_ddt_bookmark",
1057 		"scrub_ddt_class_max",
1058 		"scrub_queue",
1059 		"scrub_min_txg",
1060 		"scrub_max_txg",
1061 		"scrub_func",
1062 		"scrub_errors",
1063 		NULL
1064 	};
1065 
1066 	dsl_pool_t *dp = scn->scn_dp;
1067 	spa_t *spa = dp->dp_spa;
1068 	int i;
1069 
1070 	/* Remove any remnants of an old-style scrub. */
1071 	for (i = 0; old_names[i]; i++) {
1072 		(void) zap_remove(dp->dp_meta_objset,
1073 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1074 	}
1075 
1076 	if (scn->scn_phys.scn_queue_obj != 0) {
1077 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
1078 		    scn->scn_phys.scn_queue_obj, tx));
1079 		scn->scn_phys.scn_queue_obj = 0;
1080 	}
1081 	scan_ds_queue_clear(scn);
1082 	scan_ds_prefetch_queue_clear(scn);
1083 
1084 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1085 
1086 	/*
1087 	 * If we were "restarted" from a stopped state, don't bother
1088 	 * with anything else.
1089 	 */
1090 	if (!dsl_scan_is_running(scn)) {
1091 		ASSERT(!scn->scn_is_sorted);
1092 		return;
1093 	}
1094 
1095 	if (scn->scn_is_sorted) {
1096 		scan_io_queues_destroy(scn);
1097 		scn->scn_is_sorted = B_FALSE;
1098 
1099 		if (scn->scn_taskq != NULL) {
1100 			taskq_destroy(scn->scn_taskq);
1101 			scn->scn_taskq = NULL;
1102 		}
1103 	}
1104 
1105 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1106 
1107 	spa_notify_waiters(spa);
1108 
1109 	if (dsl_scan_restarting(scn, tx))
1110 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
1111 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1112 	else if (!complete)
1113 		spa_history_log_internal(spa, "scan cancelled", tx,
1114 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1115 	else
1116 		spa_history_log_internal(spa, "scan done", tx,
1117 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1118 
1119 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1120 		spa->spa_scrub_active = B_FALSE;
1121 
1122 		/*
1123 		 * If the scrub/resilver completed, update all DTLs to
1124 		 * reflect this.  Whether it succeeded or not, vacate
1125 		 * all temporary scrub DTLs.
1126 		 *
1127 		 * As the scrub does not currently support traversing
1128 		 * data that have been freed but are part of a checkpoint,
1129 		 * we don't mark the scrub as done in the DTLs as faults
1130 		 * may still exist in those vdevs.
1131 		 */
1132 		if (complete &&
1133 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1134 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1135 			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1136 
1137 			if (scn->scn_phys.scn_min_txg) {
1138 				nvlist_t *aux = fnvlist_alloc();
1139 				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1140 				    "healing");
1141 				spa_event_notify(spa, NULL, aux,
1142 				    ESC_ZFS_RESILVER_FINISH);
1143 				nvlist_free(aux);
1144 			} else {
1145 				spa_event_notify(spa, NULL, NULL,
1146 				    ESC_ZFS_SCRUB_FINISH);
1147 			}
1148 		} else {
1149 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1150 			    0, B_TRUE, B_FALSE);
1151 		}
1152 		spa_errlog_rotate(spa);
1153 
1154 		/*
1155 		 * Don't clear flag until after vdev_dtl_reassess to ensure that
1156 		 * DTL_MISSING will get updated when possible.
1157 		 */
1158 		spa->spa_scrub_started = B_FALSE;
1159 
1160 		/*
1161 		 * We may have finished replacing a device.
1162 		 * Let the async thread assess this and handle the detach.
1163 		 */
1164 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1165 
1166 		/*
1167 		 * Clear any resilver_deferred flags in the config.
1168 		 * If there are drives that need resilvering, kick
1169 		 * off an asynchronous request to start resilver.
1170 		 * vdev_clear_resilver_deferred() may update the config
1171 		 * before the resilver can restart. In the event of
1172 		 * a crash during this period, the spa loading code
1173 		 * will find the drives that need to be resilvered
1174 		 * and start the resilver then.
1175 		 */
1176 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1177 		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1178 			spa_history_log_internal(spa,
1179 			    "starting deferred resilver", tx, "errors=%llu",
1180 			    (u_longlong_t)spa_approx_errlog_size(spa));
1181 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1182 		}
1183 
1184 		/* Clear recent error events (i.e. duplicate events tracking) */
1185 		if (complete)
1186 			zfs_ereport_clear(spa, NULL);
1187 	}
1188 
1189 	scn->scn_phys.scn_end_time = gethrestime_sec();
1190 
1191 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1192 		spa->spa_errata = 0;
1193 
1194 	ASSERT(!dsl_scan_is_running(scn));
1195 }
1196 
1197 static int
dsl_errorscrub_pause_resume_check(void * arg,dmu_tx_t * tx)1198 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1199 {
1200 	pool_scrub_cmd_t *cmd = arg;
1201 	dsl_pool_t *dp = dmu_tx_pool(tx);
1202 	dsl_scan_t *scn = dp->dp_scan;
1203 
1204 	if (*cmd == POOL_SCRUB_PAUSE) {
1205 		/*
1206 		 * can't pause a error scrub when there is no in-progress
1207 		 * error scrub.
1208 		 */
1209 		if (!dsl_errorscrubbing(dp))
1210 			return (SET_ERROR(ENOENT));
1211 
1212 		/* can't pause a paused error scrub */
1213 		if (dsl_errorscrub_is_paused(scn))
1214 			return (SET_ERROR(EBUSY));
1215 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1216 		return (SET_ERROR(ENOTSUP));
1217 	}
1218 
1219 	return (0);
1220 }
1221 
1222 static void
dsl_errorscrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1223 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1224 {
1225 	pool_scrub_cmd_t *cmd = arg;
1226 	dsl_pool_t *dp = dmu_tx_pool(tx);
1227 	spa_t *spa = dp->dp_spa;
1228 	dsl_scan_t *scn = dp->dp_scan;
1229 
1230 	if (*cmd == POOL_SCRUB_PAUSE) {
1231 		spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1232 		scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1233 		dsl_errorscrub_sync_state(scn, tx);
1234 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1235 	} else {
1236 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1237 		if (dsl_errorscrub_is_paused(scn)) {
1238 			/*
1239 			 * We need to keep track of how much time we spend
1240 			 * paused per pass so that we can adjust the error scrub
1241 			 * rate shown in the output of 'zpool status'.
1242 			 */
1243 			spa->spa_scan_pass_errorscrub_spent_paused +=
1244 			    gethrestime_sec() -
1245 			    spa->spa_scan_pass_errorscrub_pause;
1246 
1247 			spa->spa_scan_pass_errorscrub_pause = 0;
1248 			scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1249 
1250 			zap_cursor_init_serialized(
1251 			    &scn->errorscrub_cursor,
1252 			    spa->spa_meta_objset, spa->spa_errlog_last,
1253 			    scn->errorscrub_phys.dep_cursor);
1254 
1255 			dsl_errorscrub_sync_state(scn, tx);
1256 		}
1257 	}
1258 }
1259 
1260 static int
dsl_errorscrub_cancel_check(void * arg,dmu_tx_t * tx)1261 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1262 {
1263 	(void) arg;
1264 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1265 	/* can't cancel a error scrub when there is no one in-progress */
1266 	if (!dsl_errorscrubbing(scn->scn_dp))
1267 		return (SET_ERROR(ENOENT));
1268 	return (0);
1269 }
1270 
1271 static void
dsl_errorscrub_cancel_sync(void * arg,dmu_tx_t * tx)1272 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1273 {
1274 	(void) arg;
1275 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1276 
1277 	dsl_errorscrub_done(scn, B_FALSE, tx);
1278 	dsl_errorscrub_sync_state(scn, tx);
1279 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1280 	    ESC_ZFS_ERRORSCRUB_ABORT);
1281 }
1282 
1283 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)1284 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1285 {
1286 	(void) arg;
1287 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1288 
1289 	if (!dsl_scan_is_running(scn))
1290 		return (SET_ERROR(ENOENT));
1291 	return (0);
1292 }
1293 
1294 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)1295 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1296 {
1297 	(void) arg;
1298 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1299 
1300 	dsl_scan_done(scn, B_FALSE, tx);
1301 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1302 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1303 }
1304 
1305 int
dsl_scan_cancel(dsl_pool_t * dp)1306 dsl_scan_cancel(dsl_pool_t *dp)
1307 {
1308 	if (dsl_errorscrubbing(dp)) {
1309 		return (dsl_sync_task(spa_name(dp->dp_spa),
1310 		    dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1311 		    NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1312 	}
1313 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1314 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1315 }
1316 
1317 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)1318 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1319 {
1320 	pool_scrub_cmd_t *cmd = arg;
1321 	dsl_pool_t *dp = dmu_tx_pool(tx);
1322 	dsl_scan_t *scn = dp->dp_scan;
1323 
1324 	if (*cmd == POOL_SCRUB_PAUSE) {
1325 		/* can't pause a scrub when there is no in-progress scrub */
1326 		if (!dsl_scan_scrubbing(dp))
1327 			return (SET_ERROR(ENOENT));
1328 
1329 		/* can't pause a paused scrub */
1330 		if (dsl_scan_is_paused_scrub(scn))
1331 			return (SET_ERROR(EBUSY));
1332 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1333 		return (SET_ERROR(ENOTSUP));
1334 	}
1335 
1336 	return (0);
1337 }
1338 
1339 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1340 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1341 {
1342 	pool_scrub_cmd_t *cmd = arg;
1343 	dsl_pool_t *dp = dmu_tx_pool(tx);
1344 	spa_t *spa = dp->dp_spa;
1345 	dsl_scan_t *scn = dp->dp_scan;
1346 
1347 	if (*cmd == POOL_SCRUB_PAUSE) {
1348 		/* can't pause a scrub when there is no in-progress scrub */
1349 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1350 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1351 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1352 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1353 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1354 		spa_notify_waiters(spa);
1355 	} else {
1356 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1357 		if (dsl_scan_is_paused_scrub(scn)) {
1358 			/*
1359 			 * We need to keep track of how much time we spend
1360 			 * paused per pass so that we can adjust the scrub rate
1361 			 * shown in the output of 'zpool status'
1362 			 */
1363 			spa->spa_scan_pass_scrub_spent_paused +=
1364 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1365 			spa->spa_scan_pass_scrub_pause = 0;
1366 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1367 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1368 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1369 		}
1370 	}
1371 }
1372 
1373 /*
1374  * Set scrub pause/resume state if it makes sense to do so
1375  */
1376 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1377 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1378 {
1379 	if (dsl_errorscrubbing(dp)) {
1380 		return (dsl_sync_task(spa_name(dp->dp_spa),
1381 		    dsl_errorscrub_pause_resume_check,
1382 		    dsl_errorscrub_pause_resume_sync, &cmd, 3,
1383 		    ZFS_SPACE_CHECK_RESERVED));
1384 	}
1385 	return (dsl_sync_task(spa_name(dp->dp_spa),
1386 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1387 	    ZFS_SPACE_CHECK_RESERVED));
1388 }
1389 
1390 
1391 /* start a new scan, or restart an existing one. */
1392 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1393 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1394 {
1395 	if (txg == 0) {
1396 		dmu_tx_t *tx;
1397 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1398 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1399 
1400 		txg = dmu_tx_get_txg(tx);
1401 		dp->dp_scan->scn_restart_txg = txg;
1402 		dmu_tx_commit(tx);
1403 	} else {
1404 		dp->dp_scan->scn_restart_txg = txg;
1405 	}
1406 	zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1407 	    dp->dp_spa->spa_name, (longlong_t)txg);
1408 }
1409 
1410 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1411 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1412 {
1413 	zio_free(dp->dp_spa, txg, bp);
1414 }
1415 
1416 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1417 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1418 {
1419 	ASSERT(dsl_pool_sync_context(dp));
1420 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1421 }
1422 
1423 static int
scan_ds_queue_compare(const void * a,const void * b)1424 scan_ds_queue_compare(const void *a, const void *b)
1425 {
1426 	const scan_ds_t *sds_a = a, *sds_b = b;
1427 
1428 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1429 		return (-1);
1430 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1431 		return (0);
1432 	return (1);
1433 }
1434 
1435 static void
scan_ds_queue_clear(dsl_scan_t * scn)1436 scan_ds_queue_clear(dsl_scan_t *scn)
1437 {
1438 	void *cookie = NULL;
1439 	scan_ds_t *sds;
1440 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1441 		kmem_free(sds, sizeof (*sds));
1442 	}
1443 }
1444 
1445 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1446 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1447 {
1448 	scan_ds_t srch, *sds;
1449 
1450 	srch.sds_dsobj = dsobj;
1451 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1452 	if (sds != NULL && txg != NULL)
1453 		*txg = sds->sds_txg;
1454 	return (sds != NULL);
1455 }
1456 
1457 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1458 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1459 {
1460 	scan_ds_t *sds;
1461 	avl_index_t where;
1462 
1463 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1464 	sds->sds_dsobj = dsobj;
1465 	sds->sds_txg = txg;
1466 
1467 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1468 	avl_insert(&scn->scn_queue, sds, where);
1469 }
1470 
1471 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1472 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1473 {
1474 	scan_ds_t srch, *sds;
1475 
1476 	srch.sds_dsobj = dsobj;
1477 
1478 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1479 	VERIFY(sds != NULL);
1480 	avl_remove(&scn->scn_queue, sds);
1481 	kmem_free(sds, sizeof (*sds));
1482 }
1483 
1484 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1485 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1486 {
1487 	dsl_pool_t *dp = scn->scn_dp;
1488 	spa_t *spa = dp->dp_spa;
1489 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1490 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1491 
1492 	ASSERT0(scn->scn_queues_pending);
1493 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1494 
1495 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1496 	    scn->scn_phys.scn_queue_obj, tx));
1497 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1498 	    DMU_OT_NONE, 0, tx);
1499 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1500 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1501 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1502 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1503 		    sds->sds_txg, tx));
1504 	}
1505 }
1506 
1507 /*
1508  * Computes the memory limit state that we're currently in. A sorted scan
1509  * needs quite a bit of memory to hold the sorting queue, so we need to
1510  * reasonably constrain the size so it doesn't impact overall system
1511  * performance. We compute two limits:
1512  * 1) Hard memory limit: if the amount of memory used by the sorting
1513  *	queues on a pool gets above this value, we stop the metadata
1514  *	scanning portion and start issuing the queued up and sorted
1515  *	I/Os to reduce memory usage.
1516  *	This limit is calculated as a fraction of physmem (by default 5%).
1517  *	We constrain the lower bound of the hard limit to an absolute
1518  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1519  *	the upper bound to 5% of the total pool size - no chance we'll
1520  *	ever need that much memory, but just to keep the value in check.
1521  * 2) Soft memory limit: once we hit the hard memory limit, we start
1522  *	issuing I/O to reduce queue memory usage, but we don't want to
1523  *	completely empty out the queues, since we might be able to find I/Os
1524  *	that will fill in the gaps of our non-sequential IOs at some point
1525  *	in the future. So we stop the issuing of I/Os once the amount of
1526  *	memory used drops below the soft limit (at which point we stop issuing
1527  *	I/O and start scanning metadata again).
1528  *
1529  *	This limit is calculated by subtracting a fraction of the hard
1530  *	limit from the hard limit. By default this fraction is 5%, so
1531  *	the soft limit is 95% of the hard limit. We cap the size of the
1532  *	difference between the hard and soft limits at an absolute
1533  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1534  *	sufficient to not cause too frequent switching between the
1535  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1536  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1537  *	that should take at least a decent fraction of a second).
1538  */
1539 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1540 dsl_scan_should_clear(dsl_scan_t *scn)
1541 {
1542 	spa_t *spa = scn->scn_dp->dp_spa;
1543 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1544 	uint64_t alloc, mlim_hard, mlim_soft, mused;
1545 
1546 	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1547 	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1548 	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1549 
1550 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1551 	    zfs_scan_mem_lim_min);
1552 	mlim_hard = MIN(mlim_hard, alloc / 20);
1553 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1554 	    zfs_scan_mem_lim_soft_max);
1555 	mused = 0;
1556 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1557 		vdev_t *tvd = rvd->vdev_child[i];
1558 		dsl_scan_io_queue_t *queue;
1559 
1560 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1561 		queue = tvd->vdev_scan_io_queue;
1562 		if (queue != NULL) {
1563 			/*
1564 			 * # of extents in exts_by_addr = # in exts_by_size.
1565 			 * B-tree efficiency is ~75%, but can be as low as 50%.
1566 			 */
1567 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1568 			    ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1569 			    3 / 2) + queue->q_sio_memused;
1570 		}
1571 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1572 	}
1573 
1574 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1575 
1576 	if (mused == 0)
1577 		ASSERT0(scn->scn_queues_pending);
1578 
1579 	/*
1580 	 * If we are above our hard limit, we need to clear out memory.
1581 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1582 	 * Otherwise, we should keep doing whatever we are currently doing.
1583 	 */
1584 	if (mused >= mlim_hard)
1585 		return (B_TRUE);
1586 	else if (mused < mlim_soft)
1587 		return (B_FALSE);
1588 	else
1589 		return (scn->scn_clearing);
1590 }
1591 
1592 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1593 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1594 {
1595 	/* we never skip user/group accounting objects */
1596 	if (zb && (int64_t)zb->zb_object < 0)
1597 		return (B_FALSE);
1598 
1599 	if (scn->scn_suspending)
1600 		return (B_TRUE); /* we're already suspending */
1601 
1602 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1603 		return (B_FALSE); /* we're resuming */
1604 
1605 	/* We only know how to resume from level-0 and objset blocks. */
1606 	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1607 		return (B_FALSE);
1608 
1609 	/*
1610 	 * We suspend if:
1611 	 *  - we have scanned for at least the minimum time (default 1 sec
1612 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1613 	 *    dirty data that we are starting to write more quickly
1614 	 *    (default 30%), someone is explicitly waiting for this txg
1615 	 *    to complete, or we have used up all of the time in the txg
1616 	 *    timeout (default 5 sec).
1617 	 *  or
1618 	 *  - the spa is shutting down because this pool is being exported
1619 	 *    or the machine is rebooting.
1620 	 *  or
1621 	 *  - the scan queue has reached its memory use limit
1622 	 */
1623 	uint64_t curr_time_ns = gethrtime();
1624 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1625 	uint64_t sync_time_ns = curr_time_ns -
1626 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1627 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
1628 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
1629 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1630 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1631 
1632 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1633 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1634 	    txg_sync_waiting(scn->scn_dp) ||
1635 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1636 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1637 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1638 		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1639 			dprintf("suspending at first available bookmark "
1640 			    "%llx/%llx/%llx/%llx\n",
1641 			    (longlong_t)zb->zb_objset,
1642 			    (longlong_t)zb->zb_object,
1643 			    (longlong_t)zb->zb_level,
1644 			    (longlong_t)zb->zb_blkid);
1645 			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1646 			    zb->zb_objset, 0, 0, 0);
1647 		} else if (zb != NULL) {
1648 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1649 			    (longlong_t)zb->zb_objset,
1650 			    (longlong_t)zb->zb_object,
1651 			    (longlong_t)zb->zb_level,
1652 			    (longlong_t)zb->zb_blkid);
1653 			scn->scn_phys.scn_bookmark = *zb;
1654 		} else {
1655 #ifdef ZFS_DEBUG
1656 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1657 			dprintf("suspending at at DDT bookmark "
1658 			    "%llx/%llx/%llx/%llx\n",
1659 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1660 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1661 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1662 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1663 #endif
1664 		}
1665 		scn->scn_suspending = B_TRUE;
1666 		return (B_TRUE);
1667 	}
1668 	return (B_FALSE);
1669 }
1670 
1671 static boolean_t
dsl_error_scrub_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1672 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1673 {
1674 	/*
1675 	 * We suspend if:
1676 	 *  - we have scrubbed for at least the minimum time (default 1 sec
1677 	 *    for error scrub), someone is explicitly waiting for this txg
1678 	 *    to complete, or we have used up all of the time in the txg
1679 	 *    timeout (default 5 sec).
1680 	 *  or
1681 	 *  - the spa is shutting down because this pool is being exported
1682 	 *    or the machine is rebooting.
1683 	 */
1684 	uint64_t curr_time_ns = gethrtime();
1685 	uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1686 	uint64_t sync_time_ns = curr_time_ns -
1687 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1688 	int mintime = zfs_scrub_min_time_ms;
1689 
1690 	if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1691 	    (txg_sync_waiting(scn->scn_dp) ||
1692 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1693 	    spa_shutting_down(scn->scn_dp->dp_spa)) {
1694 		if (zb) {
1695 			dprintf("error scrub suspending at bookmark "
1696 			    "%llx/%llx/%llx/%llx\n",
1697 			    (longlong_t)zb->zb_objset,
1698 			    (longlong_t)zb->zb_object,
1699 			    (longlong_t)zb->zb_level,
1700 			    (longlong_t)zb->zb_blkid);
1701 		}
1702 		return (B_TRUE);
1703 	}
1704 	return (B_FALSE);
1705 }
1706 
1707 typedef struct zil_scan_arg {
1708 	dsl_pool_t	*zsa_dp;
1709 	zil_header_t	*zsa_zh;
1710 } zil_scan_arg_t;
1711 
1712 static int
dsl_scan_zil_block(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)1713 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1714     uint64_t claim_txg)
1715 {
1716 	(void) zilog;
1717 	zil_scan_arg_t *zsa = arg;
1718 	dsl_pool_t *dp = zsa->zsa_dp;
1719 	dsl_scan_t *scn = dp->dp_scan;
1720 	zil_header_t *zh = zsa->zsa_zh;
1721 	zbookmark_phys_t zb;
1722 
1723 	ASSERT(!BP_IS_REDACTED(bp));
1724 	if (BP_IS_HOLE(bp) ||
1725 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1726 		return (0);
1727 
1728 	/*
1729 	 * One block ("stubby") can be allocated a long time ago; we
1730 	 * want to visit that one because it has been allocated
1731 	 * (on-disk) even if it hasn't been claimed (even though for
1732 	 * scrub there's nothing to do to it).
1733 	 */
1734 	if (claim_txg == 0 &&
1735 	    BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1736 		return (0);
1737 
1738 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1739 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1740 
1741 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1742 	return (0);
1743 }
1744 
1745 static int
dsl_scan_zil_record(zilog_t * zilog,const lr_t * lrc,void * arg,uint64_t claim_txg)1746 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1747     uint64_t claim_txg)
1748 {
1749 	(void) zilog;
1750 	if (lrc->lrc_txtype == TX_WRITE) {
1751 		zil_scan_arg_t *zsa = arg;
1752 		dsl_pool_t *dp = zsa->zsa_dp;
1753 		dsl_scan_t *scn = dp->dp_scan;
1754 		zil_header_t *zh = zsa->zsa_zh;
1755 		const lr_write_t *lr = (const lr_write_t *)lrc;
1756 		const blkptr_t *bp = &lr->lr_blkptr;
1757 		zbookmark_phys_t zb;
1758 
1759 		ASSERT(!BP_IS_REDACTED(bp));
1760 		if (BP_IS_HOLE(bp) ||
1761 		    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1762 			return (0);
1763 
1764 		/*
1765 		 * birth can be < claim_txg if this record's txg is
1766 		 * already txg sync'ed (but this log block contains
1767 		 * other records that are not synced)
1768 		 */
1769 		if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1770 			return (0);
1771 
1772 		ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1773 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1774 		    lr->lr_foid, ZB_ZIL_LEVEL,
1775 		    lr->lr_offset / BP_GET_LSIZE(bp));
1776 
1777 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1778 	}
1779 	return (0);
1780 }
1781 
1782 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1783 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1784 {
1785 	uint64_t claim_txg = zh->zh_claim_txg;
1786 	zil_scan_arg_t zsa = { dp, zh };
1787 	zilog_t *zilog;
1788 
1789 	ASSERT(spa_writeable(dp->dp_spa));
1790 
1791 	/*
1792 	 * We only want to visit blocks that have been claimed but not yet
1793 	 * replayed (or, in read-only mode, blocks that *would* be claimed).
1794 	 */
1795 	if (claim_txg == 0)
1796 		return;
1797 
1798 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1799 
1800 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1801 	    claim_txg, B_FALSE);
1802 
1803 	zil_free(zilog);
1804 }
1805 
1806 /*
1807  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1808  * here is to sort the AVL tree by the order each block will be needed.
1809  */
1810 static int
scan_prefetch_queue_compare(const void * a,const void * b)1811 scan_prefetch_queue_compare(const void *a, const void *b)
1812 {
1813 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1814 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1815 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1816 
1817 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1818 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1819 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1820 }
1821 
1822 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,const void * tag)1823 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1824 {
1825 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1826 		zfs_refcount_destroy(&spc->spc_refcnt);
1827 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1828 	}
1829 }
1830 
1831 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,const void * tag)1832 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1833 {
1834 	scan_prefetch_ctx_t *spc;
1835 
1836 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1837 	zfs_refcount_create(&spc->spc_refcnt);
1838 	zfs_refcount_add(&spc->spc_refcnt, tag);
1839 	spc->spc_scn = scn;
1840 	if (dnp != NULL) {
1841 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1842 		spc->spc_indblkshift = dnp->dn_indblkshift;
1843 		spc->spc_root = B_FALSE;
1844 	} else {
1845 		spc->spc_datablkszsec = 0;
1846 		spc->spc_indblkshift = 0;
1847 		spc->spc_root = B_TRUE;
1848 	}
1849 
1850 	return (spc);
1851 }
1852 
1853 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,const void * tag)1854 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1855 {
1856 	zfs_refcount_add(&spc->spc_refcnt, tag);
1857 }
1858 
1859 static void
scan_ds_prefetch_queue_clear(dsl_scan_t * scn)1860 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1861 {
1862 	spa_t *spa = scn->scn_dp->dp_spa;
1863 	void *cookie = NULL;
1864 	scan_prefetch_issue_ctx_t *spic = NULL;
1865 
1866 	mutex_enter(&spa->spa_scrub_lock);
1867 	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1868 	    &cookie)) != NULL) {
1869 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1870 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1871 	}
1872 	mutex_exit(&spa->spa_scrub_lock);
1873 }
1874 
1875 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1876 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1877     const zbookmark_phys_t *zb)
1878 {
1879 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1880 	dnode_phys_t tmp_dnp;
1881 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1882 
1883 	if (zb->zb_objset != last_zb->zb_objset)
1884 		return (B_TRUE);
1885 	if ((int64_t)zb->zb_object < 0)
1886 		return (B_FALSE);
1887 
1888 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1889 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1890 
1891 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1892 		return (B_TRUE);
1893 
1894 	return (B_FALSE);
1895 }
1896 
1897 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1898 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1899 {
1900 	avl_index_t idx;
1901 	dsl_scan_t *scn = spc->spc_scn;
1902 	spa_t *spa = scn->scn_dp->dp_spa;
1903 	scan_prefetch_issue_ctx_t *spic;
1904 
1905 	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1906 		return;
1907 
1908 	if (BP_IS_HOLE(bp) ||
1909 	    BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1910 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1911 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1912 		return;
1913 
1914 	if (dsl_scan_check_prefetch_resume(spc, zb))
1915 		return;
1916 
1917 	scan_prefetch_ctx_add_ref(spc, scn);
1918 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1919 	spic->spic_spc = spc;
1920 	spic->spic_bp = *bp;
1921 	spic->spic_zb = *zb;
1922 
1923 	/*
1924 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1925 	 * prioritize blocks that we will need first for the main traversal
1926 	 * thread.
1927 	 */
1928 	mutex_enter(&spa->spa_scrub_lock);
1929 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1930 		/* this block is already queued for prefetch */
1931 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1932 		scan_prefetch_ctx_rele(spc, scn);
1933 		mutex_exit(&spa->spa_scrub_lock);
1934 		return;
1935 	}
1936 
1937 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1938 	cv_broadcast(&spa->spa_scrub_io_cv);
1939 	mutex_exit(&spa->spa_scrub_lock);
1940 }
1941 
1942 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1943 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1944     uint64_t objset, uint64_t object)
1945 {
1946 	int i;
1947 	zbookmark_phys_t zb;
1948 	scan_prefetch_ctx_t *spc;
1949 
1950 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1951 		return;
1952 
1953 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1954 
1955 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1956 
1957 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1958 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1959 		zb.zb_blkid = i;
1960 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1961 	}
1962 
1963 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1964 		zb.zb_level = 0;
1965 		zb.zb_blkid = DMU_SPILL_BLKID;
1966 		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1967 	}
1968 
1969 	scan_prefetch_ctx_rele(spc, FTAG);
1970 }
1971 
1972 static void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)1973 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1974     arc_buf_t *buf, void *private)
1975 {
1976 	(void) zio;
1977 	scan_prefetch_ctx_t *spc = private;
1978 	dsl_scan_t *scn = spc->spc_scn;
1979 	spa_t *spa = scn->scn_dp->dp_spa;
1980 
1981 	/* broadcast that the IO has completed for rate limiting purposes */
1982 	mutex_enter(&spa->spa_scrub_lock);
1983 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1984 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1985 	cv_broadcast(&spa->spa_scrub_io_cv);
1986 	mutex_exit(&spa->spa_scrub_lock);
1987 
1988 	/* if there was an error or we are done prefetching, just cleanup */
1989 	if (buf == NULL || scn->scn_prefetch_stop)
1990 		goto out;
1991 
1992 	if (BP_GET_LEVEL(bp) > 0) {
1993 		int i;
1994 		blkptr_t *cbp;
1995 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1996 		zbookmark_phys_t czb;
1997 
1998 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1999 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2000 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
2001 			dsl_scan_prefetch(spc, cbp, &czb);
2002 		}
2003 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2004 		dnode_phys_t *cdnp;
2005 		int i;
2006 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2007 
2008 		for (i = 0, cdnp = buf->b_data; i < epb;
2009 		    i += cdnp->dn_extra_slots + 1,
2010 		    cdnp += cdnp->dn_extra_slots + 1) {
2011 			dsl_scan_prefetch_dnode(scn, cdnp,
2012 			    zb->zb_objset, zb->zb_blkid * epb + i);
2013 		}
2014 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2015 		objset_phys_t *osp = buf->b_data;
2016 
2017 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2018 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
2019 
2020 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2021 			if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2022 				dsl_scan_prefetch_dnode(scn,
2023 				    &osp->os_projectused_dnode, zb->zb_objset,
2024 				    DMU_PROJECTUSED_OBJECT);
2025 			}
2026 			dsl_scan_prefetch_dnode(scn,
2027 			    &osp->os_groupused_dnode, zb->zb_objset,
2028 			    DMU_GROUPUSED_OBJECT);
2029 			dsl_scan_prefetch_dnode(scn,
2030 			    &osp->os_userused_dnode, zb->zb_objset,
2031 			    DMU_USERUSED_OBJECT);
2032 		}
2033 	}
2034 
2035 out:
2036 	if (buf != NULL)
2037 		arc_buf_destroy(buf, private);
2038 	scan_prefetch_ctx_rele(spc, scn);
2039 }
2040 
2041 static void
dsl_scan_prefetch_thread(void * arg)2042 dsl_scan_prefetch_thread(void *arg)
2043 {
2044 	dsl_scan_t *scn = arg;
2045 	spa_t *spa = scn->scn_dp->dp_spa;
2046 	scan_prefetch_issue_ctx_t *spic;
2047 
2048 	/* loop until we are told to stop */
2049 	while (!scn->scn_prefetch_stop) {
2050 		arc_flags_t flags = ARC_FLAG_NOWAIT |
2051 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2052 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2053 
2054 		mutex_enter(&spa->spa_scrub_lock);
2055 
2056 		/*
2057 		 * Wait until we have an IO to issue and are not above our
2058 		 * maximum in flight limit.
2059 		 */
2060 		while (!scn->scn_prefetch_stop &&
2061 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2062 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2063 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2064 		}
2065 
2066 		/* recheck if we should stop since we waited for the cv */
2067 		if (scn->scn_prefetch_stop) {
2068 			mutex_exit(&spa->spa_scrub_lock);
2069 			break;
2070 		}
2071 
2072 		/* remove the prefetch IO from the tree */
2073 		spic = avl_first(&scn->scn_prefetch_queue);
2074 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2075 		avl_remove(&scn->scn_prefetch_queue, spic);
2076 
2077 		mutex_exit(&spa->spa_scrub_lock);
2078 
2079 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
2080 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2081 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2082 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2083 			zio_flags |= ZIO_FLAG_RAW;
2084 		}
2085 
2086 		/* We don't need data L1 buffer since we do not prefetch L0. */
2087 		blkptr_t *bp = &spic->spic_bp;
2088 		if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2089 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2090 			flags |= ARC_FLAG_NO_BUF;
2091 
2092 		/* issue the prefetch asynchronously */
2093 		(void) arc_read(scn->scn_zio_root, spa, bp,
2094 		    dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2095 		    zio_flags, &flags, &spic->spic_zb);
2096 
2097 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2098 	}
2099 
2100 	ASSERT(scn->scn_prefetch_stop);
2101 
2102 	/* free any prefetches we didn't get to complete */
2103 	mutex_enter(&spa->spa_scrub_lock);
2104 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2105 		avl_remove(&scn->scn_prefetch_queue, spic);
2106 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
2107 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2108 	}
2109 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2110 	mutex_exit(&spa->spa_scrub_lock);
2111 }
2112 
2113 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)2114 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2115     const zbookmark_phys_t *zb)
2116 {
2117 	/*
2118 	 * We never skip over user/group accounting objects (obj<0)
2119 	 */
2120 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2121 	    (int64_t)zb->zb_object >= 0) {
2122 		/*
2123 		 * If we already visited this bp & everything below (in
2124 		 * a prior txg sync), don't bother doing it again.
2125 		 */
2126 		if (zbookmark_subtree_completed(dnp, zb,
2127 		    &scn->scn_phys.scn_bookmark))
2128 			return (B_TRUE);
2129 
2130 		/*
2131 		 * If we found the block we're trying to resume from, or
2132 		 * we went past it, zero it out to indicate that it's OK
2133 		 * to start checking for suspending again.
2134 		 */
2135 		if (zbookmark_subtree_tbd(dnp, zb,
2136 		    &scn->scn_phys.scn_bookmark)) {
2137 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
2138 			    (longlong_t)zb->zb_objset,
2139 			    (longlong_t)zb->zb_object,
2140 			    (longlong_t)zb->zb_level,
2141 			    (longlong_t)zb->zb_blkid);
2142 			memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2143 		}
2144 	}
2145 	return (B_FALSE);
2146 }
2147 
2148 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2149     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2150     dmu_objset_type_t ostype, dmu_tx_t *tx);
2151 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2152     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2153     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2154 
2155 /*
2156  * Return nonzero on i/o error.
2157  * Return new buf to write out in *bufp.
2158  */
2159 inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)2160 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2161     dnode_phys_t *dnp, const blkptr_t *bp,
2162     const zbookmark_phys_t *zb, dmu_tx_t *tx)
2163 {
2164 	dsl_pool_t *dp = scn->scn_dp;
2165 	spa_t *spa = dp->dp_spa;
2166 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2167 	int err;
2168 
2169 	ASSERT(!BP_IS_REDACTED(bp));
2170 
2171 	/*
2172 	 * There is an unlikely case of encountering dnodes with contradicting
2173 	 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2174 	 * or modified before commit 4254acb was merged. As it is not possible
2175 	 * to know which of the two is correct, report an error.
2176 	 */
2177 	if (dnp != NULL &&
2178 	    dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2179 		scn->scn_phys.scn_errors++;
2180 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2181 		return (SET_ERROR(EINVAL));
2182 	}
2183 
2184 	if (BP_GET_LEVEL(bp) > 0) {
2185 		arc_flags_t flags = ARC_FLAG_WAIT;
2186 		int i;
2187 		blkptr_t *cbp;
2188 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2189 		arc_buf_t *buf;
2190 
2191 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2192 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2193 		if (err) {
2194 			scn->scn_phys.scn_errors++;
2195 			return (err);
2196 		}
2197 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2198 			zbookmark_phys_t czb;
2199 
2200 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2201 			    zb->zb_level - 1,
2202 			    zb->zb_blkid * epb + i);
2203 			dsl_scan_visitbp(cbp, &czb, dnp,
2204 			    ds, scn, ostype, tx);
2205 		}
2206 		arc_buf_destroy(buf, &buf);
2207 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2208 		arc_flags_t flags = ARC_FLAG_WAIT;
2209 		dnode_phys_t *cdnp;
2210 		int i;
2211 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2212 		arc_buf_t *buf;
2213 
2214 		if (BP_IS_PROTECTED(bp)) {
2215 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2216 			zio_flags |= ZIO_FLAG_RAW;
2217 		}
2218 
2219 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2220 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2221 		if (err) {
2222 			scn->scn_phys.scn_errors++;
2223 			return (err);
2224 		}
2225 		for (i = 0, cdnp = buf->b_data; i < epb;
2226 		    i += cdnp->dn_extra_slots + 1,
2227 		    cdnp += cdnp->dn_extra_slots + 1) {
2228 			dsl_scan_visitdnode(scn, ds, ostype,
2229 			    cdnp, zb->zb_blkid * epb + i, tx);
2230 		}
2231 
2232 		arc_buf_destroy(buf, &buf);
2233 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2234 		arc_flags_t flags = ARC_FLAG_WAIT;
2235 		objset_phys_t *osp;
2236 		arc_buf_t *buf;
2237 
2238 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2239 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2240 		if (err) {
2241 			scn->scn_phys.scn_errors++;
2242 			return (err);
2243 		}
2244 
2245 		osp = buf->b_data;
2246 
2247 		dsl_scan_visitdnode(scn, ds, osp->os_type,
2248 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2249 
2250 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
2251 			/*
2252 			 * We also always visit user/group/project accounting
2253 			 * objects, and never skip them, even if we are
2254 			 * suspending. This is necessary so that the
2255 			 * space deltas from this txg get integrated.
2256 			 */
2257 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2258 				dsl_scan_visitdnode(scn, ds, osp->os_type,
2259 				    &osp->os_projectused_dnode,
2260 				    DMU_PROJECTUSED_OBJECT, tx);
2261 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2262 			    &osp->os_groupused_dnode,
2263 			    DMU_GROUPUSED_OBJECT, tx);
2264 			dsl_scan_visitdnode(scn, ds, osp->os_type,
2265 			    &osp->os_userused_dnode,
2266 			    DMU_USERUSED_OBJECT, tx);
2267 		}
2268 		arc_buf_destroy(buf, &buf);
2269 	} else if (!zfs_blkptr_verify(spa, bp,
2270 	    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2271 		/*
2272 		 * Sanity check the block pointer contents, this is handled
2273 		 * by arc_read() for the cases above.
2274 		 */
2275 		scn->scn_phys.scn_errors++;
2276 		spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2277 		return (SET_ERROR(EINVAL));
2278 	}
2279 
2280 	return (0);
2281 }
2282 
2283 inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)2284 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2285     dmu_objset_type_t ostype, dnode_phys_t *dnp,
2286     uint64_t object, dmu_tx_t *tx)
2287 {
2288 	int j;
2289 
2290 	for (j = 0; j < dnp->dn_nblkptr; j++) {
2291 		zbookmark_phys_t czb;
2292 
2293 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2294 		    dnp->dn_nlevels - 1, j);
2295 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
2296 		    &czb, dnp, ds, scn, ostype, tx);
2297 	}
2298 
2299 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2300 		zbookmark_phys_t czb;
2301 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2302 		    0, DMU_SPILL_BLKID);
2303 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2304 		    &czb, dnp, ds, scn, ostype, tx);
2305 	}
2306 }
2307 
2308 /*
2309  * The arguments are in this order because mdb can only print the
2310  * first 5; we want them to be useful.
2311  */
2312 static void
dsl_scan_visitbp(const blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)2313 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2314     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2315     dmu_objset_type_t ostype, dmu_tx_t *tx)
2316 {
2317 	dsl_pool_t *dp = scn->scn_dp;
2318 
2319 	if (dsl_scan_check_suspend(scn, zb))
2320 		return;
2321 
2322 	if (dsl_scan_check_resume(scn, dnp, zb))
2323 		return;
2324 
2325 	scn->scn_visited_this_txg++;
2326 
2327 	if (BP_IS_HOLE(bp)) {
2328 		scn->scn_holes_this_txg++;
2329 		return;
2330 	}
2331 
2332 	if (BP_IS_REDACTED(bp)) {
2333 		ASSERT(dsl_dataset_feature_is_active(ds,
2334 		    SPA_FEATURE_REDACTED_DATASETS));
2335 		return;
2336 	}
2337 
2338 	/*
2339 	 * Check if this block contradicts any filesystem flags.
2340 	 */
2341 	spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2342 	if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2343 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2344 
2345 	f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2346 	if (f != SPA_FEATURE_NONE)
2347 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2348 
2349 	f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2350 	if (f != SPA_FEATURE_NONE)
2351 		ASSERT(dsl_dataset_feature_is_active(ds, f));
2352 
2353 	if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2354 		scn->scn_lt_min_this_txg++;
2355 		return;
2356 	}
2357 
2358 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2359 		return;
2360 
2361 	/*
2362 	 * If dsl_scan_ddt() has already visited this block, it will have
2363 	 * already done any translations or scrubbing, so don't call the
2364 	 * callback again.
2365 	 */
2366 	if (ddt_class_contains(dp->dp_spa,
2367 	    scn->scn_phys.scn_ddt_class_max, bp)) {
2368 		scn->scn_ddt_contained_this_txg++;
2369 		return;
2370 	}
2371 
2372 	/*
2373 	 * If this block is from the future (after cur_max_txg), then we
2374 	 * are doing this on behalf of a deleted snapshot, and we will
2375 	 * revisit the future block on the next pass of this dataset.
2376 	 * Don't scan it now unless we need to because something
2377 	 * under it was modified.
2378 	 */
2379 	if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2380 		scn->scn_gt_max_this_txg++;
2381 		return;
2382 	}
2383 
2384 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2385 }
2386 
2387 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)2388 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2389     dmu_tx_t *tx)
2390 {
2391 	zbookmark_phys_t zb;
2392 	scan_prefetch_ctx_t *spc;
2393 
2394 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2395 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2396 
2397 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2398 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2399 		    zb.zb_objset, 0, 0, 0);
2400 	} else {
2401 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2402 	}
2403 
2404 	scn->scn_objsets_visited_this_txg++;
2405 
2406 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2407 	dsl_scan_prefetch(spc, bp, &zb);
2408 	scan_prefetch_ctx_rele(spc, FTAG);
2409 
2410 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2411 
2412 	dprintf_ds(ds, "finished scan%s", "");
2413 }
2414 
2415 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)2416 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2417 {
2418 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2419 		if (ds->ds_is_snapshot) {
2420 			/*
2421 			 * Note:
2422 			 *  - scn_cur_{min,max}_txg stays the same.
2423 			 *  - Setting the flag is not really necessary if
2424 			 *    scn_cur_max_txg == scn_max_txg, because there
2425 			 *    is nothing after this snapshot that we care
2426 			 *    about.  However, we set it anyway and then
2427 			 *    ignore it when we retraverse it in
2428 			 *    dsl_scan_visitds().
2429 			 */
2430 			scn_phys->scn_bookmark.zb_objset =
2431 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2432 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2433 			    "traversing; reset zb_objset to %llu",
2434 			    (u_longlong_t)ds->ds_object,
2435 			    ds->ds_dir->dd_pool->dp_spa->spa_name,
2436 			    (u_longlong_t)dsl_dataset_phys(ds)->
2437 			    ds_next_snap_obj);
2438 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2439 		} else {
2440 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2441 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2442 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2443 			    "traversing; reset bookmark to -1,0,0,0",
2444 			    (u_longlong_t)ds->ds_object,
2445 			    ds->ds_dir->dd_pool->dp_spa->spa_name);
2446 		}
2447 	}
2448 }
2449 
2450 /*
2451  * Invoked when a dataset is destroyed. We need to make sure that:
2452  *
2453  * 1) If it is the dataset that was currently being scanned, we write
2454  *	a new dsl_scan_phys_t and marking the objset reference in it
2455  *	as destroyed.
2456  * 2) Remove it from the work queue, if it was present.
2457  *
2458  * If the dataset was actually a snapshot, instead of marking the dataset
2459  * as destroyed, we instead substitute the next snapshot in line.
2460  */
2461 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2462 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2463 {
2464 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2465 	dsl_scan_t *scn = dp->dp_scan;
2466 	uint64_t mintxg;
2467 
2468 	if (!dsl_scan_is_running(scn))
2469 		return;
2470 
2471 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2472 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2473 
2474 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2475 		scan_ds_queue_remove(scn, ds->ds_object);
2476 		if (ds->ds_is_snapshot)
2477 			scan_ds_queue_insert(scn,
2478 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2479 	}
2480 
2481 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2482 	    ds->ds_object, &mintxg) == 0) {
2483 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2484 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2485 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2486 		if (ds->ds_is_snapshot) {
2487 			/*
2488 			 * We keep the same mintxg; it could be >
2489 			 * ds_creation_txg if the previous snapshot was
2490 			 * deleted too.
2491 			 */
2492 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2493 			    scn->scn_phys.scn_queue_obj,
2494 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2495 			    mintxg, tx) == 0);
2496 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2497 			    "replacing with %llu",
2498 			    (u_longlong_t)ds->ds_object,
2499 			    dp->dp_spa->spa_name,
2500 			    (u_longlong_t)dsl_dataset_phys(ds)->
2501 			    ds_next_snap_obj);
2502 		} else {
2503 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2504 			    "removing",
2505 			    (u_longlong_t)ds->ds_object,
2506 			    dp->dp_spa->spa_name);
2507 		}
2508 	}
2509 
2510 	/*
2511 	 * dsl_scan_sync() should be called after this, and should sync
2512 	 * out our changed state, but just to be safe, do it here.
2513 	 */
2514 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2515 }
2516 
2517 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2518 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2519 {
2520 	if (scn_bookmark->zb_objset == ds->ds_object) {
2521 		scn_bookmark->zb_objset =
2522 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2523 		zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2524 		    "reset zb_objset to %llu",
2525 		    (u_longlong_t)ds->ds_object,
2526 		    ds->ds_dir->dd_pool->dp_spa->spa_name,
2527 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2528 	}
2529 }
2530 
2531 /*
2532  * Called when a dataset is snapshotted. If we were currently traversing
2533  * this snapshot, we reset our bookmark to point at the newly created
2534  * snapshot. We also modify our work queue to remove the old snapshot and
2535  * replace with the new one.
2536  */
2537 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2538 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2539 {
2540 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2541 	dsl_scan_t *scn = dp->dp_scan;
2542 	uint64_t mintxg;
2543 
2544 	if (!dsl_scan_is_running(scn))
2545 		return;
2546 
2547 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2548 
2549 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2550 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2551 
2552 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2553 		scan_ds_queue_remove(scn, ds->ds_object);
2554 		scan_ds_queue_insert(scn,
2555 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2556 	}
2557 
2558 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2559 	    ds->ds_object, &mintxg) == 0) {
2560 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2561 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2562 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2563 		    scn->scn_phys.scn_queue_obj,
2564 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2565 		zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2566 		    "replacing with %llu",
2567 		    (u_longlong_t)ds->ds_object,
2568 		    dp->dp_spa->spa_name,
2569 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2570 	}
2571 
2572 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2573 }
2574 
2575 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2576 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2577     zbookmark_phys_t *scn_bookmark)
2578 {
2579 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2580 		scn_bookmark->zb_objset = ds2->ds_object;
2581 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2582 		    "reset zb_objset to %llu",
2583 		    (u_longlong_t)ds1->ds_object,
2584 		    ds1->ds_dir->dd_pool->dp_spa->spa_name,
2585 		    (u_longlong_t)ds2->ds_object);
2586 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2587 		scn_bookmark->zb_objset = ds1->ds_object;
2588 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2589 		    "reset zb_objset to %llu",
2590 		    (u_longlong_t)ds2->ds_object,
2591 		    ds2->ds_dir->dd_pool->dp_spa->spa_name,
2592 		    (u_longlong_t)ds1->ds_object);
2593 	}
2594 }
2595 
2596 /*
2597  * Called when an origin dataset and its clone are swapped.  If we were
2598  * currently traversing the dataset, we need to switch to traversing the
2599  * newly promoted clone.
2600  */
2601 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2602 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2603 {
2604 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2605 	dsl_scan_t *scn = dp->dp_scan;
2606 	uint64_t mintxg1, mintxg2;
2607 	boolean_t ds1_queued, ds2_queued;
2608 
2609 	if (!dsl_scan_is_running(scn))
2610 		return;
2611 
2612 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2613 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2614 
2615 	/*
2616 	 * Handle the in-memory scan queue.
2617 	 */
2618 	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2619 	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2620 
2621 	/* Sanity checking. */
2622 	if (ds1_queued) {
2623 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2624 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2625 	}
2626 	if (ds2_queued) {
2627 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2628 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2629 	}
2630 
2631 	if (ds1_queued && ds2_queued) {
2632 		/*
2633 		 * If both are queued, we don't need to do anything.
2634 		 * The swapping code below would not handle this case correctly,
2635 		 * since we can't insert ds2 if it is already there. That's
2636 		 * because scan_ds_queue_insert() prohibits a duplicate insert
2637 		 * and panics.
2638 		 */
2639 	} else if (ds1_queued) {
2640 		scan_ds_queue_remove(scn, ds1->ds_object);
2641 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2642 	} else if (ds2_queued) {
2643 		scan_ds_queue_remove(scn, ds2->ds_object);
2644 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2645 	}
2646 
2647 	/*
2648 	 * Handle the on-disk scan queue.
2649 	 * The on-disk state is an out-of-date version of the in-memory state,
2650 	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2651 	 * be different. Therefore we need to apply the swap logic to the
2652 	 * on-disk state independently of the in-memory state.
2653 	 */
2654 	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2655 	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2656 	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2657 	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2658 
2659 	/* Sanity checking. */
2660 	if (ds1_queued) {
2661 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2662 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2663 	}
2664 	if (ds2_queued) {
2665 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2666 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2667 	}
2668 
2669 	if (ds1_queued && ds2_queued) {
2670 		/*
2671 		 * If both are queued, we don't need to do anything.
2672 		 * Alternatively, we could check for EEXIST from
2673 		 * zap_add_int_key() and back out to the original state, but
2674 		 * that would be more work than checking for this case upfront.
2675 		 */
2676 	} else if (ds1_queued) {
2677 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2678 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2679 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2680 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2681 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2682 		    "replacing with %llu",
2683 		    (u_longlong_t)ds1->ds_object,
2684 		    dp->dp_spa->spa_name,
2685 		    (u_longlong_t)ds2->ds_object);
2686 	} else if (ds2_queued) {
2687 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2688 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2689 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2690 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2691 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2692 		    "replacing with %llu",
2693 		    (u_longlong_t)ds2->ds_object,
2694 		    dp->dp_spa->spa_name,
2695 		    (u_longlong_t)ds1->ds_object);
2696 	}
2697 
2698 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2699 }
2700 
2701 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2702 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2703 {
2704 	uint64_t originobj = *(uint64_t *)arg;
2705 	dsl_dataset_t *ds;
2706 	int err;
2707 	dsl_scan_t *scn = dp->dp_scan;
2708 
2709 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2710 		return (0);
2711 
2712 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2713 	if (err)
2714 		return (err);
2715 
2716 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2717 		dsl_dataset_t *prev;
2718 		err = dsl_dataset_hold_obj(dp,
2719 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2720 
2721 		dsl_dataset_rele(ds, FTAG);
2722 		if (err)
2723 			return (err);
2724 		ds = prev;
2725 	}
2726 	scan_ds_queue_insert(scn, ds->ds_object,
2727 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2728 	dsl_dataset_rele(ds, FTAG);
2729 	return (0);
2730 }
2731 
2732 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2733 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2734 {
2735 	dsl_pool_t *dp = scn->scn_dp;
2736 	dsl_dataset_t *ds;
2737 
2738 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2739 
2740 	if (scn->scn_phys.scn_cur_min_txg >=
2741 	    scn->scn_phys.scn_max_txg) {
2742 		/*
2743 		 * This can happen if this snapshot was created after the
2744 		 * scan started, and we already completed a previous snapshot
2745 		 * that was created after the scan started.  This snapshot
2746 		 * only references blocks with:
2747 		 *
2748 		 *	birth < our ds_creation_txg
2749 		 *	cur_min_txg is no less than ds_creation_txg.
2750 		 *	We have already visited these blocks.
2751 		 * or
2752 		 *	birth > scn_max_txg
2753 		 *	The scan requested not to visit these blocks.
2754 		 *
2755 		 * Subsequent snapshots (and clones) can reference our
2756 		 * blocks, or blocks with even higher birth times.
2757 		 * Therefore we do not need to visit them either,
2758 		 * so we do not add them to the work queue.
2759 		 *
2760 		 * Note that checking for cur_min_txg >= cur_max_txg
2761 		 * is not sufficient, because in that case we may need to
2762 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2763 		 * which raises cur_min_txg.  In this case we will visit
2764 		 * this dataset but skip all of its blocks, because the
2765 		 * rootbp's birth time is < cur_min_txg.  Then we will
2766 		 * add the next snapshots/clones to the work queue.
2767 		 */
2768 		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2769 		dsl_dataset_name(ds, dsname);
2770 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2771 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2772 		    (longlong_t)dsobj, dsname,
2773 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2774 		    (longlong_t)scn->scn_phys.scn_max_txg);
2775 		kmem_free(dsname, MAXNAMELEN);
2776 
2777 		goto out;
2778 	}
2779 
2780 	/*
2781 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2782 	 * snapshots can have ZIL block pointers (which may be the same
2783 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2784 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2785 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2786 	 * rather than in scan_recurse(), because the regular snapshot
2787 	 * block-sharing rules don't apply to it.
2788 	 */
2789 	if (!dsl_dataset_is_snapshot(ds) &&
2790 	    (dp->dp_origin_snap == NULL ||
2791 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2792 		objset_t *os;
2793 		if (dmu_objset_from_ds(ds, &os) != 0) {
2794 			goto out;
2795 		}
2796 		dsl_scan_zil(dp, &os->os_zil_header);
2797 	}
2798 
2799 	/*
2800 	 * Iterate over the bps in this ds.
2801 	 */
2802 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2803 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2804 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2805 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2806 
2807 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2808 	dsl_dataset_name(ds, dsname);
2809 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2810 	    "suspending=%u",
2811 	    (longlong_t)dsobj, dsname,
2812 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2813 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2814 	    (int)scn->scn_suspending);
2815 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2816 
2817 	if (scn->scn_suspending)
2818 		goto out;
2819 
2820 	/*
2821 	 * We've finished this pass over this dataset.
2822 	 */
2823 
2824 	/*
2825 	 * If we did not completely visit this dataset, do another pass.
2826 	 */
2827 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2828 		zfs_dbgmsg("incomplete pass on %s; visiting again",
2829 		    dp->dp_spa->spa_name);
2830 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2831 		scan_ds_queue_insert(scn, ds->ds_object,
2832 		    scn->scn_phys.scn_cur_max_txg);
2833 		goto out;
2834 	}
2835 
2836 	/*
2837 	 * Add descendant datasets to work queue.
2838 	 */
2839 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2840 		scan_ds_queue_insert(scn,
2841 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2842 		    dsl_dataset_phys(ds)->ds_creation_txg);
2843 	}
2844 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2845 		boolean_t usenext = B_FALSE;
2846 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2847 			uint64_t count;
2848 			/*
2849 			 * A bug in a previous version of the code could
2850 			 * cause upgrade_clones_cb() to not set
2851 			 * ds_next_snap_obj when it should, leading to a
2852 			 * missing entry.  Therefore we can only use the
2853 			 * next_clones_obj when its count is correct.
2854 			 */
2855 			int err = zap_count(dp->dp_meta_objset,
2856 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2857 			if (err == 0 &&
2858 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2859 				usenext = B_TRUE;
2860 		}
2861 
2862 		if (usenext) {
2863 			zap_cursor_t zc;
2864 			zap_attribute_t za;
2865 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2866 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2867 			    zap_cursor_retrieve(&zc, &za) == 0;
2868 			    (void) zap_cursor_advance(&zc)) {
2869 				scan_ds_queue_insert(scn,
2870 				    zfs_strtonum(za.za_name, NULL),
2871 				    dsl_dataset_phys(ds)->ds_creation_txg);
2872 			}
2873 			zap_cursor_fini(&zc);
2874 		} else {
2875 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2876 			    enqueue_clones_cb, &ds->ds_object,
2877 			    DS_FIND_CHILDREN));
2878 		}
2879 	}
2880 
2881 out:
2882 	dsl_dataset_rele(ds, FTAG);
2883 }
2884 
2885 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2886 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2887 {
2888 	(void) arg;
2889 	dsl_dataset_t *ds;
2890 	int err;
2891 	dsl_scan_t *scn = dp->dp_scan;
2892 
2893 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2894 	if (err)
2895 		return (err);
2896 
2897 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2898 		dsl_dataset_t *prev;
2899 		err = dsl_dataset_hold_obj(dp,
2900 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2901 		if (err) {
2902 			dsl_dataset_rele(ds, FTAG);
2903 			return (err);
2904 		}
2905 
2906 		/*
2907 		 * If this is a clone, we don't need to worry about it for now.
2908 		 */
2909 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2910 			dsl_dataset_rele(ds, FTAG);
2911 			dsl_dataset_rele(prev, FTAG);
2912 			return (0);
2913 		}
2914 		dsl_dataset_rele(ds, FTAG);
2915 		ds = prev;
2916 	}
2917 
2918 	scan_ds_queue_insert(scn, ds->ds_object,
2919 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2920 	dsl_dataset_rele(ds, FTAG);
2921 	return (0);
2922 }
2923 
2924 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_entry_t * dde,dmu_tx_t * tx)2925 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2926     ddt_entry_t *dde, dmu_tx_t *tx)
2927 {
2928 	(void) tx;
2929 	const ddt_key_t *ddk = &dde->dde_key;
2930 	ddt_phys_t *ddp = dde->dde_phys;
2931 	blkptr_t bp;
2932 	zbookmark_phys_t zb = { 0 };
2933 
2934 	if (!dsl_scan_is_running(scn))
2935 		return;
2936 
2937 	/*
2938 	 * This function is special because it is the only thing
2939 	 * that can add scan_io_t's to the vdev scan queues from
2940 	 * outside dsl_scan_sync(). For the most part this is ok
2941 	 * as long as it is called from within syncing context.
2942 	 * However, dsl_scan_sync() expects that no new sio's will
2943 	 * be added between when all the work for a scan is done
2944 	 * and the next txg when the scan is actually marked as
2945 	 * completed. This check ensures we do not issue new sio's
2946 	 * during this period.
2947 	 */
2948 	if (scn->scn_done_txg != 0)
2949 		return;
2950 
2951 	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2952 		if (ddp->ddp_phys_birth == 0 ||
2953 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2954 			continue;
2955 		ddt_bp_create(checksum, ddk, ddp, &bp);
2956 
2957 		scn->scn_visited_this_txg++;
2958 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2959 	}
2960 }
2961 
2962 /*
2963  * Scrub/dedup interaction.
2964  *
2965  * If there are N references to a deduped block, we don't want to scrub it
2966  * N times -- ideally, we should scrub it exactly once.
2967  *
2968  * We leverage the fact that the dde's replication class (ddt_class_t)
2969  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2970  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2971  *
2972  * To prevent excess scrubbing, the scrub begins by walking the DDT
2973  * to find all blocks with refcnt > 1, and scrubs each of these once.
2974  * Since there are two replication classes which contain blocks with
2975  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2976  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2977  *
2978  * There would be nothing more to say if a block's refcnt couldn't change
2979  * during a scrub, but of course it can so we must account for changes
2980  * in a block's replication class.
2981  *
2982  * Here's an example of what can occur:
2983  *
2984  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2985  * when visited during the top-down scrub phase, it will be scrubbed twice.
2986  * This negates our scrub optimization, but is otherwise harmless.
2987  *
2988  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2989  * on each visit during the top-down scrub phase, it will never be scrubbed.
2990  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2991  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2992  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2993  * while a scrub is in progress, it scrubs the block right then.
2994  */
2995 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)2996 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2997 {
2998 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2999 	ddt_entry_t dde = {{{{0}}}};
3000 	int error;
3001 	uint64_t n = 0;
3002 
3003 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
3004 		ddt_t *ddt;
3005 
3006 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3007 			break;
3008 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3009 		    (longlong_t)ddb->ddb_class,
3010 		    (longlong_t)ddb->ddb_type,
3011 		    (longlong_t)ddb->ddb_checksum,
3012 		    (longlong_t)ddb->ddb_cursor);
3013 
3014 		/* There should be no pending changes to the dedup table */
3015 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3016 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3017 
3018 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
3019 		n++;
3020 
3021 		if (dsl_scan_check_suspend(scn, NULL))
3022 			break;
3023 	}
3024 
3025 	zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
3026 	    "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
3027 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
3028 
3029 	ASSERT(error == 0 || error == ENOENT);
3030 	ASSERT(error != ENOENT ||
3031 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3032 }
3033 
3034 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)3035 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3036 {
3037 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3038 	if (ds->ds_is_snapshot)
3039 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3040 	return (smt);
3041 }
3042 
3043 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)3044 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3045 {
3046 	scan_ds_t *sds;
3047 	dsl_pool_t *dp = scn->scn_dp;
3048 
3049 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3050 	    scn->scn_phys.scn_ddt_class_max) {
3051 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3052 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3053 		dsl_scan_ddt(scn, tx);
3054 		if (scn->scn_suspending)
3055 			return;
3056 	}
3057 
3058 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3059 		/* First do the MOS & ORIGIN */
3060 
3061 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3062 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3063 		dsl_scan_visit_rootbp(scn, NULL,
3064 		    &dp->dp_meta_rootbp, tx);
3065 		if (scn->scn_suspending)
3066 			return;
3067 
3068 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3069 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3070 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
3071 		} else {
3072 			dsl_scan_visitds(scn,
3073 			    dp->dp_origin_snap->ds_object, tx);
3074 		}
3075 		ASSERT(!scn->scn_suspending);
3076 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
3077 	    ZB_DESTROYED_OBJSET) {
3078 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3079 		/*
3080 		 * If we were suspended, continue from here. Note if the
3081 		 * ds we were suspended on was deleted, the zb_objset may
3082 		 * be -1, so we will skip this and find a new objset
3083 		 * below.
3084 		 */
3085 		dsl_scan_visitds(scn, dsobj, tx);
3086 		if (scn->scn_suspending)
3087 			return;
3088 	}
3089 
3090 	/*
3091 	 * In case we suspended right at the end of the ds, zero the
3092 	 * bookmark so we don't think that we're still trying to resume.
3093 	 */
3094 	memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3095 
3096 	/*
3097 	 * Keep pulling things out of the dataset avl queue. Updates to the
3098 	 * persistent zap-object-as-queue happen only at checkpoints.
3099 	 */
3100 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3101 		dsl_dataset_t *ds;
3102 		uint64_t dsobj = sds->sds_dsobj;
3103 		uint64_t txg = sds->sds_txg;
3104 
3105 		/* dequeue and free the ds from the queue */
3106 		scan_ds_queue_remove(scn, dsobj);
3107 		sds = NULL;
3108 
3109 		/* set up min / max txg */
3110 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3111 		if (txg != 0) {
3112 			scn->scn_phys.scn_cur_min_txg =
3113 			    MAX(scn->scn_phys.scn_min_txg, txg);
3114 		} else {
3115 			scn->scn_phys.scn_cur_min_txg =
3116 			    MAX(scn->scn_phys.scn_min_txg,
3117 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
3118 		}
3119 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3120 		dsl_dataset_rele(ds, FTAG);
3121 
3122 		dsl_scan_visitds(scn, dsobj, tx);
3123 		if (scn->scn_suspending)
3124 			return;
3125 	}
3126 
3127 	/* No more objsets to fetch, we're done */
3128 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3129 	ASSERT0(scn->scn_suspending);
3130 }
3131 
3132 static uint64_t
dsl_scan_count_data_disks(spa_t * spa)3133 dsl_scan_count_data_disks(spa_t *spa)
3134 {
3135 	vdev_t *rvd = spa->spa_root_vdev;
3136 	uint64_t i, leaves = 0;
3137 
3138 	for (i = 0; i < rvd->vdev_children; i++) {
3139 		vdev_t *vd = rvd->vdev_child[i];
3140 		if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3141 			continue;
3142 		leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3143 	}
3144 	return (leaves);
3145 }
3146 
3147 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)3148 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3149 {
3150 	int i;
3151 	uint64_t cur_size = 0;
3152 
3153 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3154 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3155 	}
3156 
3157 	q->q_total_zio_size_this_txg += cur_size;
3158 	q->q_zios_this_txg++;
3159 }
3160 
3161 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)3162 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3163     uint64_t end)
3164 {
3165 	q->q_total_seg_size_this_txg += end - start;
3166 	q->q_segs_this_txg++;
3167 }
3168 
3169 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)3170 scan_io_queue_check_suspend(dsl_scan_t *scn)
3171 {
3172 	/* See comment in dsl_scan_check_suspend() */
3173 	uint64_t curr_time_ns = gethrtime();
3174 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3175 	uint64_t sync_time_ns = curr_time_ns -
3176 	    scn->scn_dp->dp_spa->spa_sync_starttime;
3177 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
3178 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
3179 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3180 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3181 
3182 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
3183 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3184 	    txg_sync_waiting(scn->scn_dp) ||
3185 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3186 	    spa_shutting_down(scn->scn_dp->dp_spa));
3187 }
3188 
3189 /*
3190  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3191  * disk. This consumes the io_list and frees the scan_io_t's. This is
3192  * called when emptying queues, either when we're up against the memory
3193  * limit or when we have finished scanning. Returns B_TRUE if we stopped
3194  * processing the list before we finished. Any sios that were not issued
3195  * will remain in the io_list.
3196  */
3197 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)3198 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3199 {
3200 	dsl_scan_t *scn = queue->q_scn;
3201 	scan_io_t *sio;
3202 	boolean_t suspended = B_FALSE;
3203 
3204 	while ((sio = list_head(io_list)) != NULL) {
3205 		blkptr_t bp;
3206 
3207 		if (scan_io_queue_check_suspend(scn)) {
3208 			suspended = B_TRUE;
3209 			break;
3210 		}
3211 
3212 		sio2bp(sio, &bp);
3213 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3214 		    &sio->sio_zb, queue);
3215 		(void) list_remove_head(io_list);
3216 		scan_io_queues_update_zio_stats(queue, &bp);
3217 		sio_free(sio);
3218 	}
3219 	return (suspended);
3220 }
3221 
3222 /*
3223  * This function removes sios from an IO queue which reside within a given
3224  * range_seg_t and inserts them (in offset order) into a list. Note that
3225  * we only ever return a maximum of 32 sios at once. If there are more sios
3226  * to process within this segment that did not make it onto the list we
3227  * return B_TRUE and otherwise B_FALSE.
3228  */
3229 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,range_seg_t * rs,list_t * list)3230 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3231 {
3232 	scan_io_t *srch_sio, *sio, *next_sio;
3233 	avl_index_t idx;
3234 	uint_t num_sios = 0;
3235 	int64_t bytes_issued = 0;
3236 
3237 	ASSERT(rs != NULL);
3238 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3239 
3240 	srch_sio = sio_alloc(1);
3241 	srch_sio->sio_nr_dvas = 1;
3242 	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3243 
3244 	/*
3245 	 * The exact start of the extent might not contain any matching zios,
3246 	 * so if that's the case, examine the next one in the tree.
3247 	 */
3248 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3249 	sio_free(srch_sio);
3250 
3251 	if (sio == NULL)
3252 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3253 
3254 	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3255 	    queue->q_exts_by_addr) && num_sios <= 32) {
3256 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3257 		    queue->q_exts_by_addr));
3258 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3259 		    queue->q_exts_by_addr));
3260 
3261 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3262 		avl_remove(&queue->q_sios_by_addr, sio);
3263 		if (avl_is_empty(&queue->q_sios_by_addr))
3264 			atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3265 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
3266 
3267 		bytes_issued += SIO_GET_ASIZE(sio);
3268 		num_sios++;
3269 		list_insert_tail(list, sio);
3270 		sio = next_sio;
3271 	}
3272 
3273 	/*
3274 	 * We limit the number of sios we process at once to 32 to avoid
3275 	 * biting off more than we can chew. If we didn't take everything
3276 	 * in the segment we update it to reflect the work we were able to
3277 	 * complete. Otherwise, we remove it from the range tree entirely.
3278 	 */
3279 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3280 	    queue->q_exts_by_addr)) {
3281 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3282 		    -bytes_issued);
3283 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
3284 		    SIO_GET_OFFSET(sio), rs_get_end(rs,
3285 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3286 		queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3287 		return (B_TRUE);
3288 	} else {
3289 		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3290 		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3291 		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3292 		queue->q_last_ext_addr = -1;
3293 		return (B_FALSE);
3294 	}
3295 }
3296 
3297 /*
3298  * This is called from the queue emptying thread and selects the next
3299  * extent from which we are to issue I/Os. The behavior of this function
3300  * depends on the state of the scan, the current memory consumption and
3301  * whether or not we are performing a scan shutdown.
3302  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3303  * 	needs to perform a checkpoint
3304  * 2) We select the largest available extent if we are up against the
3305  * 	memory limit.
3306  * 3) Otherwise we don't select any extents.
3307  */
3308 static range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)3309 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3310 {
3311 	dsl_scan_t *scn = queue->q_scn;
3312 	range_tree_t *rt = queue->q_exts_by_addr;
3313 
3314 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3315 	ASSERT(scn->scn_is_sorted);
3316 
3317 	if (!scn->scn_checkpointing && !scn->scn_clearing)
3318 		return (NULL);
3319 
3320 	/*
3321 	 * During normal clearing, we want to issue our largest segments
3322 	 * first, keeping IO as sequential as possible, and leaving the
3323 	 * smaller extents for later with the hope that they might eventually
3324 	 * grow to larger sequential segments. However, when the scan is
3325 	 * checkpointing, no new extents will be added to the sorting queue,
3326 	 * so the way we are sorted now is as good as it will ever get.
3327 	 * In this case, we instead switch to issuing extents in LBA order.
3328 	 */
3329 	if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3330 	    zfs_scan_issue_strategy == 1)
3331 		return (range_tree_first(rt));
3332 
3333 	/*
3334 	 * Try to continue previous extent if it is not completed yet.  After
3335 	 * shrink in scan_io_queue_gather() it may no longer be the best, but
3336 	 * otherwise we leave shorter remnant every txg.
3337 	 */
3338 	uint64_t start;
3339 	uint64_t size = 1ULL << rt->rt_shift;
3340 	range_seg_t *addr_rs;
3341 	if (queue->q_last_ext_addr != -1) {
3342 		start = queue->q_last_ext_addr;
3343 		addr_rs = range_tree_find(rt, start, size);
3344 		if (addr_rs != NULL)
3345 			return (addr_rs);
3346 	}
3347 
3348 	/*
3349 	 * Nothing to continue, so find new best extent.
3350 	 */
3351 	uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3352 	if (v == NULL)
3353 		return (NULL);
3354 	queue->q_last_ext_addr = start = *v << rt->rt_shift;
3355 
3356 	/*
3357 	 * We need to get the original entry in the by_addr tree so we can
3358 	 * modify it.
3359 	 */
3360 	addr_rs = range_tree_find(rt, start, size);
3361 	ASSERT3P(addr_rs, !=, NULL);
3362 	ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3363 	ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3364 	return (addr_rs);
3365 }
3366 
3367 static void
scan_io_queues_run_one(void * arg)3368 scan_io_queues_run_one(void *arg)
3369 {
3370 	dsl_scan_io_queue_t *queue = arg;
3371 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3372 	boolean_t suspended = B_FALSE;
3373 	range_seg_t *rs;
3374 	scan_io_t *sio;
3375 	zio_t *zio;
3376 	list_t sio_list;
3377 
3378 	ASSERT(queue->q_scn->scn_is_sorted);
3379 
3380 	list_create(&sio_list, sizeof (scan_io_t),
3381 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
3382 	zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3383 	    NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3384 	mutex_enter(q_lock);
3385 	queue->q_zio = zio;
3386 
3387 	/* Calculate maximum in-flight bytes for this vdev. */
3388 	queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3389 	    (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3390 
3391 	/* reset per-queue scan statistics for this txg */
3392 	queue->q_total_seg_size_this_txg = 0;
3393 	queue->q_segs_this_txg = 0;
3394 	queue->q_total_zio_size_this_txg = 0;
3395 	queue->q_zios_this_txg = 0;
3396 
3397 	/* loop until we run out of time or sios */
3398 	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3399 		uint64_t seg_start = 0, seg_end = 0;
3400 		boolean_t more_left;
3401 
3402 		ASSERT(list_is_empty(&sio_list));
3403 
3404 		/* loop while we still have sios left to process in this rs */
3405 		do {
3406 			scan_io_t *first_sio, *last_sio;
3407 
3408 			/*
3409 			 * We have selected which extent needs to be
3410 			 * processed next. Gather up the corresponding sios.
3411 			 */
3412 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
3413 			ASSERT(!list_is_empty(&sio_list));
3414 			first_sio = list_head(&sio_list);
3415 			last_sio = list_tail(&sio_list);
3416 
3417 			seg_end = SIO_GET_END_OFFSET(last_sio);
3418 			if (seg_start == 0)
3419 				seg_start = SIO_GET_OFFSET(first_sio);
3420 
3421 			/*
3422 			 * Issuing sios can take a long time so drop the
3423 			 * queue lock. The sio queue won't be updated by
3424 			 * other threads since we're in syncing context so
3425 			 * we can be sure that our trees will remain exactly
3426 			 * as we left them.
3427 			 */
3428 			mutex_exit(q_lock);
3429 			suspended = scan_io_queue_issue(queue, &sio_list);
3430 			mutex_enter(q_lock);
3431 
3432 			if (suspended)
3433 				break;
3434 		} while (more_left);
3435 
3436 		/* update statistics for debugging purposes */
3437 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3438 
3439 		if (suspended)
3440 			break;
3441 	}
3442 
3443 	/*
3444 	 * If we were suspended in the middle of processing,
3445 	 * requeue any unfinished sios and exit.
3446 	 */
3447 	while ((sio = list_remove_head(&sio_list)) != NULL)
3448 		scan_io_queue_insert_impl(queue, sio);
3449 
3450 	queue->q_zio = NULL;
3451 	mutex_exit(q_lock);
3452 	zio_nowait(zio);
3453 	list_destroy(&sio_list);
3454 }
3455 
3456 /*
3457  * Performs an emptying run on all scan queues in the pool. This just
3458  * punches out one thread per top-level vdev, each of which processes
3459  * only that vdev's scan queue. We can parallelize the I/O here because
3460  * we know that each queue's I/Os only affect its own top-level vdev.
3461  *
3462  * This function waits for the queue runs to complete, and must be
3463  * called from dsl_scan_sync (or in general, syncing context).
3464  */
3465 static void
scan_io_queues_run(dsl_scan_t * scn)3466 scan_io_queues_run(dsl_scan_t *scn)
3467 {
3468 	spa_t *spa = scn->scn_dp->dp_spa;
3469 
3470 	ASSERT(scn->scn_is_sorted);
3471 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3472 
3473 	if (scn->scn_queues_pending == 0)
3474 		return;
3475 
3476 	if (scn->scn_taskq == NULL) {
3477 		int nthreads = spa->spa_root_vdev->vdev_children;
3478 
3479 		/*
3480 		 * We need to make this taskq *always* execute as many
3481 		 * threads in parallel as we have top-level vdevs and no
3482 		 * less, otherwise strange serialization of the calls to
3483 		 * scan_io_queues_run_one can occur during spa_sync runs
3484 		 * and that significantly impacts performance.
3485 		 */
3486 		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3487 		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3488 	}
3489 
3490 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3491 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3492 
3493 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3494 		if (vd->vdev_scan_io_queue != NULL) {
3495 			VERIFY(taskq_dispatch(scn->scn_taskq,
3496 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3497 			    TQ_SLEEP) != TASKQID_INVALID);
3498 		}
3499 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3500 	}
3501 
3502 	/*
3503 	 * Wait for the queues to finish issuing their IOs for this run
3504 	 * before we return. There may still be IOs in flight at this
3505 	 * point.
3506 	 */
3507 	taskq_wait(scn->scn_taskq);
3508 }
3509 
3510 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3511 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3512 {
3513 	uint64_t elapsed_nanosecs;
3514 
3515 	if (zfs_recover)
3516 		return (B_FALSE);
3517 
3518 	if (zfs_async_block_max_blocks != 0 &&
3519 	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3520 		return (B_TRUE);
3521 	}
3522 
3523 	if (zfs_max_async_dedup_frees != 0 &&
3524 	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3525 		return (B_TRUE);
3526 	}
3527 
3528 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3529 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3530 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3531 	    txg_sync_waiting(scn->scn_dp)) ||
3532 	    spa_shutting_down(scn->scn_dp->dp_spa));
3533 }
3534 
3535 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3536 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3537 {
3538 	dsl_scan_t *scn = arg;
3539 
3540 	if (!scn->scn_is_bptree ||
3541 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3542 		if (dsl_scan_async_block_should_pause(scn))
3543 			return (SET_ERROR(ERESTART));
3544 	}
3545 
3546 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3547 	    dmu_tx_get_txg(tx), bp, 0));
3548 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3549 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3550 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3551 	scn->scn_visited_this_txg++;
3552 	if (BP_GET_DEDUP(bp))
3553 		scn->scn_dedup_frees_this_txg++;
3554 	return (0);
3555 }
3556 
3557 static void
dsl_scan_update_stats(dsl_scan_t * scn)3558 dsl_scan_update_stats(dsl_scan_t *scn)
3559 {
3560 	spa_t *spa = scn->scn_dp->dp_spa;
3561 	uint64_t i;
3562 	uint64_t seg_size_total = 0, zio_size_total = 0;
3563 	uint64_t seg_count_total = 0, zio_count_total = 0;
3564 
3565 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3566 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3567 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3568 
3569 		if (queue == NULL)
3570 			continue;
3571 
3572 		seg_size_total += queue->q_total_seg_size_this_txg;
3573 		zio_size_total += queue->q_total_zio_size_this_txg;
3574 		seg_count_total += queue->q_segs_this_txg;
3575 		zio_count_total += queue->q_zios_this_txg;
3576 	}
3577 
3578 	if (seg_count_total == 0 || zio_count_total == 0) {
3579 		scn->scn_avg_seg_size_this_txg = 0;
3580 		scn->scn_avg_zio_size_this_txg = 0;
3581 		scn->scn_segs_this_txg = 0;
3582 		scn->scn_zios_this_txg = 0;
3583 		return;
3584 	}
3585 
3586 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3587 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3588 	scn->scn_segs_this_txg = seg_count_total;
3589 	scn->scn_zios_this_txg = zio_count_total;
3590 }
3591 
3592 static int
bpobj_dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3593 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3594     dmu_tx_t *tx)
3595 {
3596 	ASSERT(!bp_freed);
3597 	return (dsl_scan_free_block_cb(arg, bp, tx));
3598 }
3599 
3600 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3601 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3602     dmu_tx_t *tx)
3603 {
3604 	ASSERT(!bp_freed);
3605 	dsl_scan_t *scn = arg;
3606 	const dva_t *dva = &bp->blk_dva[0];
3607 
3608 	if (dsl_scan_async_block_should_pause(scn))
3609 		return (SET_ERROR(ERESTART));
3610 
3611 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3612 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3613 	    DVA_GET_ASIZE(dva), tx);
3614 	scn->scn_visited_this_txg++;
3615 	return (0);
3616 }
3617 
3618 boolean_t
dsl_scan_active(dsl_scan_t * scn)3619 dsl_scan_active(dsl_scan_t *scn)
3620 {
3621 	spa_t *spa = scn->scn_dp->dp_spa;
3622 	uint64_t used = 0, comp, uncomp;
3623 	boolean_t clones_left;
3624 
3625 	if (spa->spa_load_state != SPA_LOAD_NONE)
3626 		return (B_FALSE);
3627 	if (spa_shutting_down(spa))
3628 		return (B_FALSE);
3629 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3630 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3631 		return (B_TRUE);
3632 
3633 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3634 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3635 		    &used, &comp, &uncomp);
3636 	}
3637 	clones_left = spa_livelist_delete_check(spa);
3638 	return ((used != 0) || (clones_left));
3639 }
3640 
3641 boolean_t
dsl_errorscrub_active(dsl_scan_t * scn)3642 dsl_errorscrub_active(dsl_scan_t *scn)
3643 {
3644 	spa_t *spa = scn->scn_dp->dp_spa;
3645 	if (spa->spa_load_state != SPA_LOAD_NONE)
3646 		return (B_FALSE);
3647 	if (spa_shutting_down(spa))
3648 		return (B_FALSE);
3649 	if (dsl_errorscrubbing(scn->scn_dp))
3650 		return (B_TRUE);
3651 	return (B_FALSE);
3652 }
3653 
3654 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3655 dsl_scan_check_deferred(vdev_t *vd)
3656 {
3657 	boolean_t need_resilver = B_FALSE;
3658 
3659 	for (int c = 0; c < vd->vdev_children; c++) {
3660 		need_resilver |=
3661 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3662 	}
3663 
3664 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3665 	    !vd->vdev_ops->vdev_op_leaf)
3666 		return (need_resilver);
3667 
3668 	if (!vd->vdev_resilver_deferred)
3669 		need_resilver = B_TRUE;
3670 
3671 	return (need_resilver);
3672 }
3673 
3674 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3675 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3676     uint64_t phys_birth)
3677 {
3678 	vdev_t *vd;
3679 
3680 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3681 
3682 	if (vd->vdev_ops == &vdev_indirect_ops) {
3683 		/*
3684 		 * The indirect vdev can point to multiple
3685 		 * vdevs.  For simplicity, always create
3686 		 * the resilver zio_t. zio_vdev_io_start()
3687 		 * will bypass the child resilver i/o's if
3688 		 * they are on vdevs that don't have DTL's.
3689 		 */
3690 		return (B_TRUE);
3691 	}
3692 
3693 	if (DVA_GET_GANG(dva)) {
3694 		/*
3695 		 * Gang members may be spread across multiple
3696 		 * vdevs, so the best estimate we have is the
3697 		 * scrub range, which has already been checked.
3698 		 * XXX -- it would be better to change our
3699 		 * allocation policy to ensure that all
3700 		 * gang members reside on the same vdev.
3701 		 */
3702 		return (B_TRUE);
3703 	}
3704 
3705 	/*
3706 	 * Check if the top-level vdev must resilver this offset.
3707 	 * When the offset does not intersect with a dirty leaf DTL
3708 	 * then it may be possible to skip the resilver IO.  The psize
3709 	 * is provided instead of asize to simplify the check for RAIDZ.
3710 	 */
3711 	if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3712 		return (B_FALSE);
3713 
3714 	/*
3715 	 * Check that this top-level vdev has a device under it which
3716 	 * is resilvering and is not deferred.
3717 	 */
3718 	if (!dsl_scan_check_deferred(vd))
3719 		return (B_FALSE);
3720 
3721 	return (B_TRUE);
3722 }
3723 
3724 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3725 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3726 {
3727 	dsl_scan_t *scn = dp->dp_scan;
3728 	spa_t *spa = dp->dp_spa;
3729 	int err = 0;
3730 
3731 	if (spa_suspend_async_destroy(spa))
3732 		return (0);
3733 
3734 	if (zfs_free_bpobj_enabled &&
3735 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3736 		scn->scn_is_bptree = B_FALSE;
3737 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3738 		scn->scn_zio_root = zio_root(spa, NULL,
3739 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3740 		err = bpobj_iterate(&dp->dp_free_bpobj,
3741 		    bpobj_dsl_scan_free_block_cb, scn, tx);
3742 		VERIFY0(zio_wait(scn->scn_zio_root));
3743 		scn->scn_zio_root = NULL;
3744 
3745 		if (err != 0 && err != ERESTART)
3746 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3747 	}
3748 
3749 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3750 		ASSERT(scn->scn_async_destroying);
3751 		scn->scn_is_bptree = B_TRUE;
3752 		scn->scn_zio_root = zio_root(spa, NULL,
3753 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3754 		err = bptree_iterate(dp->dp_meta_objset,
3755 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3756 		VERIFY0(zio_wait(scn->scn_zio_root));
3757 		scn->scn_zio_root = NULL;
3758 
3759 		if (err == EIO || err == ECKSUM) {
3760 			err = 0;
3761 		} else if (err != 0 && err != ERESTART) {
3762 			zfs_panic_recover("error %u from "
3763 			    "traverse_dataset_destroyed()", err);
3764 		}
3765 
3766 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3767 			/* finished; deactivate async destroy feature */
3768 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3769 			ASSERT(!spa_feature_is_active(spa,
3770 			    SPA_FEATURE_ASYNC_DESTROY));
3771 			VERIFY0(zap_remove(dp->dp_meta_objset,
3772 			    DMU_POOL_DIRECTORY_OBJECT,
3773 			    DMU_POOL_BPTREE_OBJ, tx));
3774 			VERIFY0(bptree_free(dp->dp_meta_objset,
3775 			    dp->dp_bptree_obj, tx));
3776 			dp->dp_bptree_obj = 0;
3777 			scn->scn_async_destroying = B_FALSE;
3778 			scn->scn_async_stalled = B_FALSE;
3779 		} else {
3780 			/*
3781 			 * If we didn't make progress, mark the async
3782 			 * destroy as stalled, so that we will not initiate
3783 			 * a spa_sync() on its behalf.  Note that we only
3784 			 * check this if we are not finished, because if the
3785 			 * bptree had no blocks for us to visit, we can
3786 			 * finish without "making progress".
3787 			 */
3788 			scn->scn_async_stalled =
3789 			    (scn->scn_visited_this_txg == 0);
3790 		}
3791 	}
3792 	if (scn->scn_visited_this_txg) {
3793 		zfs_dbgmsg("freed %llu blocks in %llums from "
3794 		    "free_bpobj/bptree on %s in txg %llu; err=%u",
3795 		    (longlong_t)scn->scn_visited_this_txg,
3796 		    (longlong_t)
3797 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3798 		    spa->spa_name, (longlong_t)tx->tx_txg, err);
3799 		scn->scn_visited_this_txg = 0;
3800 		scn->scn_dedup_frees_this_txg = 0;
3801 
3802 		/*
3803 		 * Write out changes to the DDT and the BRT that may be required
3804 		 * as a result of the blocks freed.  This ensures that the DDT
3805 		 * and the BRT are clean when a scrub/resilver runs.
3806 		 */
3807 		ddt_sync(spa, tx->tx_txg);
3808 		brt_sync(spa, tx->tx_txg);
3809 	}
3810 	if (err != 0)
3811 		return (err);
3812 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3813 	    zfs_free_leak_on_eio &&
3814 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3815 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3816 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3817 		/*
3818 		 * We have finished background destroying, but there is still
3819 		 * some space left in the dp_free_dir. Transfer this leaked
3820 		 * space to the dp_leak_dir.
3821 		 */
3822 		if (dp->dp_leak_dir == NULL) {
3823 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3824 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3825 			    LEAK_DIR_NAME, tx);
3826 			VERIFY0(dsl_pool_open_special_dir(dp,
3827 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3828 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3829 		}
3830 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3831 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3832 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3833 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3834 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3835 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3836 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3837 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3838 	}
3839 
3840 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3841 	    !spa_livelist_delete_check(spa)) {
3842 		/* finished; verify that space accounting went to zero */
3843 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3844 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3845 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3846 	}
3847 
3848 	spa_notify_waiters(spa);
3849 
3850 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3851 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3852 	    DMU_POOL_OBSOLETE_BPOBJ));
3853 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3854 		ASSERT(spa_feature_is_active(dp->dp_spa,
3855 		    SPA_FEATURE_OBSOLETE_COUNTS));
3856 
3857 		scn->scn_is_bptree = B_FALSE;
3858 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3859 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3860 		    dsl_scan_obsolete_block_cb, scn, tx);
3861 		if (err != 0 && err != ERESTART)
3862 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3863 
3864 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3865 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3866 	}
3867 	return (0);
3868 }
3869 
3870 static void
name_to_bookmark(char * buf,zbookmark_phys_t * zb)3871 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3872 {
3873 	zb->zb_objset = zfs_strtonum(buf, &buf);
3874 	ASSERT(*buf == ':');
3875 	zb->zb_object = zfs_strtonum(buf + 1, &buf);
3876 	ASSERT(*buf == ':');
3877 	zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3878 	ASSERT(*buf == ':');
3879 	zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3880 	ASSERT(*buf == '\0');
3881 }
3882 
3883 static void
name_to_object(char * buf,uint64_t * obj)3884 name_to_object(char *buf, uint64_t *obj)
3885 {
3886 	*obj = zfs_strtonum(buf, &buf);
3887 	ASSERT(*buf == '\0');
3888 }
3889 
3890 static void
read_by_block_level(dsl_scan_t * scn,zbookmark_phys_t zb)3891 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3892 {
3893 	dsl_pool_t *dp = scn->scn_dp;
3894 	dsl_dataset_t *ds;
3895 	objset_t *os;
3896 	if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3897 		return;
3898 
3899 	if (dmu_objset_from_ds(ds, &os) != 0) {
3900 		dsl_dataset_rele(ds, FTAG);
3901 		return;
3902 	}
3903 
3904 	/*
3905 	 * If the key is not loaded dbuf_dnode_findbp() will error out with
3906 	 * EACCES. However in that case dnode_hold() will eventually call
3907 	 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3908 	 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3909 	 * Avoid this by checking here if the keys are loaded, if not return.
3910 	 * If the keys are not loaded the head_errlog feature is meaningless
3911 	 * as we cannot figure out the birth txg of the block pointer.
3912 	 */
3913 	if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3914 	    ZFS_KEYSTATUS_UNAVAILABLE) {
3915 		dsl_dataset_rele(ds, FTAG);
3916 		return;
3917 	}
3918 
3919 	dnode_t *dn;
3920 	blkptr_t bp;
3921 
3922 	if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3923 		dsl_dataset_rele(ds, FTAG);
3924 		return;
3925 	}
3926 
3927 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
3928 	int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3929 	    NULL);
3930 
3931 	if (error) {
3932 		rw_exit(&dn->dn_struct_rwlock);
3933 		dnode_rele(dn, FTAG);
3934 		dsl_dataset_rele(ds, FTAG);
3935 		return;
3936 	}
3937 
3938 	if (!error && BP_IS_HOLE(&bp)) {
3939 		rw_exit(&dn->dn_struct_rwlock);
3940 		dnode_rele(dn, FTAG);
3941 		dsl_dataset_rele(ds, FTAG);
3942 		return;
3943 	}
3944 
3945 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
3946 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
3947 
3948 	/* If it's an intent log block, failure is expected. */
3949 	if (zb.zb_level == ZB_ZIL_LEVEL)
3950 		zio_flags |= ZIO_FLAG_SPECULATIVE;
3951 
3952 	ASSERT(!BP_IS_EMBEDDED(&bp));
3953 	scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
3954 	rw_exit(&dn->dn_struct_rwlock);
3955 	dnode_rele(dn, FTAG);
3956 	dsl_dataset_rele(ds, FTAG);
3957 }
3958 
3959 /*
3960  * We keep track of the scrubbed error blocks in "count". This will be used
3961  * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3962  * function is modelled after check_filesystem().
3963  */
3964 static int
scrub_filesystem(spa_t * spa,uint64_t fs,zbookmark_err_phys_t * zep,int * count)3965 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
3966     int *count)
3967 {
3968 	dsl_dataset_t *ds;
3969 	dsl_pool_t *dp = spa->spa_dsl_pool;
3970 	dsl_scan_t *scn = dp->dp_scan;
3971 
3972 	int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
3973 	if (error != 0)
3974 		return (error);
3975 
3976 	uint64_t latest_txg;
3977 	uint64_t txg_to_consider = spa->spa_syncing_txg;
3978 	boolean_t check_snapshot = B_TRUE;
3979 
3980 	error = find_birth_txg(ds, zep, &latest_txg);
3981 
3982 	/*
3983 	 * If find_birth_txg() errors out, then err on the side of caution and
3984 	 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
3985 	 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
3986 	 * scrub all objects.
3987 	 */
3988 	if (error == 0 && zep->zb_birth == latest_txg) {
3989 		/* Block neither free nor re written. */
3990 		zbookmark_phys_t zb;
3991 		zep_to_zb(fs, zep, &zb);
3992 		scn->scn_zio_root = zio_root(spa, NULL, NULL,
3993 		    ZIO_FLAG_CANFAIL);
3994 		/* We have already acquired the config lock for spa */
3995 		read_by_block_level(scn, zb);
3996 
3997 		(void) zio_wait(scn->scn_zio_root);
3998 		scn->scn_zio_root = NULL;
3999 
4000 		scn->errorscrub_phys.dep_examined++;
4001 		scn->errorscrub_phys.dep_to_examine--;
4002 		(*count)++;
4003 		if ((*count) == zfs_scrub_error_blocks_per_txg ||
4004 		    dsl_error_scrub_check_suspend(scn, &zb)) {
4005 			dsl_dataset_rele(ds, FTAG);
4006 			return (SET_ERROR(EFAULT));
4007 		}
4008 
4009 		check_snapshot = B_FALSE;
4010 	} else if (error == 0) {
4011 		txg_to_consider = latest_txg;
4012 	}
4013 
4014 	/*
4015 	 * Retrieve the number of snapshots if the dataset is not a snapshot.
4016 	 */
4017 	uint64_t snap_count = 0;
4018 	if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4019 
4020 		error = zap_count(spa->spa_meta_objset,
4021 		    dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4022 
4023 		if (error != 0) {
4024 			dsl_dataset_rele(ds, FTAG);
4025 			return (error);
4026 		}
4027 	}
4028 
4029 	if (snap_count == 0) {
4030 		/* Filesystem without snapshots. */
4031 		dsl_dataset_rele(ds, FTAG);
4032 		return (0);
4033 	}
4034 
4035 	uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4036 	uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4037 
4038 	dsl_dataset_rele(ds, FTAG);
4039 
4040 	/* Check only snapshots created from this file system. */
4041 	while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4042 	    snap_obj_txg <= txg_to_consider) {
4043 
4044 		error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4045 		if (error != 0)
4046 			return (error);
4047 
4048 		if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4049 			snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4050 			snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4051 			dsl_dataset_rele(ds, FTAG);
4052 			continue;
4053 		}
4054 
4055 		boolean_t affected = B_TRUE;
4056 		if (check_snapshot) {
4057 			uint64_t blk_txg;
4058 			error = find_birth_txg(ds, zep, &blk_txg);
4059 
4060 			/*
4061 			 * Scrub the snapshot also when zb_birth == 0 or when
4062 			 * find_birth_txg() returns an error.
4063 			 */
4064 			affected = (error == 0 && zep->zb_birth == blk_txg) ||
4065 			    (error != 0) || (zep->zb_birth == 0);
4066 		}
4067 
4068 		/* Scrub snapshots. */
4069 		if (affected) {
4070 			zbookmark_phys_t zb;
4071 			zep_to_zb(snap_obj, zep, &zb);
4072 			scn->scn_zio_root = zio_root(spa, NULL, NULL,
4073 			    ZIO_FLAG_CANFAIL);
4074 			/* We have already acquired the config lock for spa */
4075 			read_by_block_level(scn, zb);
4076 
4077 			(void) zio_wait(scn->scn_zio_root);
4078 			scn->scn_zio_root = NULL;
4079 
4080 			scn->errorscrub_phys.dep_examined++;
4081 			scn->errorscrub_phys.dep_to_examine--;
4082 			(*count)++;
4083 			if ((*count) == zfs_scrub_error_blocks_per_txg ||
4084 			    dsl_error_scrub_check_suspend(scn, &zb)) {
4085 				dsl_dataset_rele(ds, FTAG);
4086 				return (EFAULT);
4087 			}
4088 		}
4089 		snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4090 		snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4091 		dsl_dataset_rele(ds, FTAG);
4092 	}
4093 	return (0);
4094 }
4095 
4096 void
dsl_errorscrub_sync(dsl_pool_t * dp,dmu_tx_t * tx)4097 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4098 {
4099 	spa_t *spa = dp->dp_spa;
4100 	dsl_scan_t *scn = dp->dp_scan;
4101 
4102 	/*
4103 	 * Only process scans in sync pass 1.
4104 	 */
4105 
4106 	if (spa_sync_pass(spa) > 1)
4107 		return;
4108 
4109 	/*
4110 	 * If the spa is shutting down, then stop scanning. This will
4111 	 * ensure that the scan does not dirty any new data during the
4112 	 * shutdown phase.
4113 	 */
4114 	if (spa_shutting_down(spa))
4115 		return;
4116 
4117 	if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4118 		return;
4119 	}
4120 
4121 	if (dsl_scan_resilvering(scn->scn_dp)) {
4122 		/* cancel the error scrub if resilver started */
4123 		dsl_scan_cancel(scn->scn_dp);
4124 		return;
4125 	}
4126 
4127 	spa->spa_scrub_active = B_TRUE;
4128 	scn->scn_sync_start_time = gethrtime();
4129 
4130 	/*
4131 	 * zfs_scan_suspend_progress can be set to disable scrub progress.
4132 	 * See more detailed comment in dsl_scan_sync().
4133 	 */
4134 	if (zfs_scan_suspend_progress) {
4135 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4136 		int mintime = zfs_scrub_min_time_ms;
4137 
4138 		while (zfs_scan_suspend_progress &&
4139 		    !txg_sync_waiting(scn->scn_dp) &&
4140 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4141 		    NSEC2MSEC(scan_time_ns) < mintime) {
4142 			delay(hz);
4143 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4144 		}
4145 		return;
4146 	}
4147 
4148 	int i = 0;
4149 	zap_attribute_t *za;
4150 	zbookmark_phys_t *zb;
4151 	boolean_t limit_exceeded = B_FALSE;
4152 
4153 	za = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4154 	zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4155 
4156 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4157 		for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4158 		    zap_cursor_advance(&scn->errorscrub_cursor)) {
4159 			name_to_bookmark(za->za_name, zb);
4160 
4161 			scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4162 			    NULL, ZIO_FLAG_CANFAIL);
4163 			dsl_pool_config_enter(dp, FTAG);
4164 			read_by_block_level(scn, *zb);
4165 			dsl_pool_config_exit(dp, FTAG);
4166 
4167 			(void) zio_wait(scn->scn_zio_root);
4168 			scn->scn_zio_root = NULL;
4169 
4170 			scn->errorscrub_phys.dep_examined += 1;
4171 			scn->errorscrub_phys.dep_to_examine -= 1;
4172 			i++;
4173 			if (i == zfs_scrub_error_blocks_per_txg ||
4174 			    dsl_error_scrub_check_suspend(scn, zb)) {
4175 				limit_exceeded = B_TRUE;
4176 				break;
4177 			}
4178 		}
4179 
4180 		if (!limit_exceeded)
4181 			dsl_errorscrub_done(scn, B_TRUE, tx);
4182 
4183 		dsl_errorscrub_sync_state(scn, tx);
4184 		kmem_free(za, sizeof (*za));
4185 		kmem_free(zb, sizeof (*zb));
4186 		return;
4187 	}
4188 
4189 	int error = 0;
4190 	for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4191 	    zap_cursor_advance(&scn->errorscrub_cursor)) {
4192 
4193 		zap_cursor_t *head_ds_cursor;
4194 		zap_attribute_t *head_ds_attr;
4195 		zbookmark_err_phys_t head_ds_block;
4196 
4197 		head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4198 		head_ds_attr = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4199 
4200 		uint64_t head_ds_err_obj = za->za_first_integer;
4201 		uint64_t head_ds;
4202 		name_to_object(za->za_name, &head_ds);
4203 		boolean_t config_held = B_FALSE;
4204 		uint64_t top_affected_fs;
4205 
4206 		for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4207 		    head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4208 		    head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4209 
4210 			name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4211 
4212 			/*
4213 			 * In case we are called from spa_sync the pool
4214 			 * config is already held.
4215 			 */
4216 			if (!dsl_pool_config_held(dp)) {
4217 				dsl_pool_config_enter(dp, FTAG);
4218 				config_held = B_TRUE;
4219 			}
4220 
4221 			error = find_top_affected_fs(spa,
4222 			    head_ds, &head_ds_block, &top_affected_fs);
4223 			if (error)
4224 				break;
4225 
4226 			error = scrub_filesystem(spa, top_affected_fs,
4227 			    &head_ds_block, &i);
4228 
4229 			if (error == SET_ERROR(EFAULT)) {
4230 				limit_exceeded = B_TRUE;
4231 				break;
4232 			}
4233 		}
4234 
4235 		zap_cursor_fini(head_ds_cursor);
4236 		kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4237 		kmem_free(head_ds_attr, sizeof (*head_ds_attr));
4238 
4239 		if (config_held)
4240 			dsl_pool_config_exit(dp, FTAG);
4241 	}
4242 
4243 	kmem_free(za, sizeof (*za));
4244 	kmem_free(zb, sizeof (*zb));
4245 	if (!limit_exceeded)
4246 		dsl_errorscrub_done(scn, B_TRUE, tx);
4247 
4248 	dsl_errorscrub_sync_state(scn, tx);
4249 }
4250 
4251 /*
4252  * This is the primary entry point for scans that is called from syncing
4253  * context. Scans must happen entirely during syncing context so that we
4254  * can guarantee that blocks we are currently scanning will not change out
4255  * from under us. While a scan is active, this function controls how quickly
4256  * transaction groups proceed, instead of the normal handling provided by
4257  * txg_sync_thread().
4258  */
4259 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)4260 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4261 {
4262 	int err = 0;
4263 	dsl_scan_t *scn = dp->dp_scan;
4264 	spa_t *spa = dp->dp_spa;
4265 	state_sync_type_t sync_type = SYNC_OPTIONAL;
4266 
4267 	if (spa->spa_resilver_deferred &&
4268 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4269 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4270 
4271 	/*
4272 	 * Check for scn_restart_txg before checking spa_load_state, so
4273 	 * that we can restart an old-style scan while the pool is being
4274 	 * imported (see dsl_scan_init). We also restart scans if there
4275 	 * is a deferred resilver and the user has manually disabled
4276 	 * deferred resilvers via the tunable.
4277 	 */
4278 	if (dsl_scan_restarting(scn, tx) ||
4279 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
4280 		pool_scan_func_t func = POOL_SCAN_SCRUB;
4281 		dsl_scan_done(scn, B_FALSE, tx);
4282 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4283 			func = POOL_SCAN_RESILVER;
4284 		zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
4285 		    func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
4286 		dsl_scan_setup_sync(&func, tx);
4287 	}
4288 
4289 	/*
4290 	 * Only process scans in sync pass 1.
4291 	 */
4292 	if (spa_sync_pass(spa) > 1)
4293 		return;
4294 
4295 	/*
4296 	 * If the spa is shutting down, then stop scanning. This will
4297 	 * ensure that the scan does not dirty any new data during the
4298 	 * shutdown phase.
4299 	 */
4300 	if (spa_shutting_down(spa))
4301 		return;
4302 
4303 	/*
4304 	 * If the scan is inactive due to a stalled async destroy, try again.
4305 	 */
4306 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4307 		return;
4308 
4309 	/* reset scan statistics */
4310 	scn->scn_visited_this_txg = 0;
4311 	scn->scn_dedup_frees_this_txg = 0;
4312 	scn->scn_holes_this_txg = 0;
4313 	scn->scn_lt_min_this_txg = 0;
4314 	scn->scn_gt_max_this_txg = 0;
4315 	scn->scn_ddt_contained_this_txg = 0;
4316 	scn->scn_objsets_visited_this_txg = 0;
4317 	scn->scn_avg_seg_size_this_txg = 0;
4318 	scn->scn_segs_this_txg = 0;
4319 	scn->scn_avg_zio_size_this_txg = 0;
4320 	scn->scn_zios_this_txg = 0;
4321 	scn->scn_suspending = B_FALSE;
4322 	scn->scn_sync_start_time = gethrtime();
4323 	spa->spa_scrub_active = B_TRUE;
4324 
4325 	/*
4326 	 * First process the async destroys.  If we suspend, don't do
4327 	 * any scrubbing or resilvering.  This ensures that there are no
4328 	 * async destroys while we are scanning, so the scan code doesn't
4329 	 * have to worry about traversing it.  It is also faster to free the
4330 	 * blocks than to scrub them.
4331 	 */
4332 	err = dsl_process_async_destroys(dp, tx);
4333 	if (err != 0)
4334 		return;
4335 
4336 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4337 		return;
4338 
4339 	/*
4340 	 * Wait a few txgs after importing to begin scanning so that
4341 	 * we can get the pool imported quickly.
4342 	 */
4343 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4344 		return;
4345 
4346 	/*
4347 	 * zfs_scan_suspend_progress can be set to disable scan progress.
4348 	 * We don't want to spin the txg_sync thread, so we add a delay
4349 	 * here to simulate the time spent doing a scan. This is mostly
4350 	 * useful for testing and debugging.
4351 	 */
4352 	if (zfs_scan_suspend_progress) {
4353 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4354 		uint_t mintime = (scn->scn_phys.scn_func ==
4355 		    POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4356 		    zfs_scrub_min_time_ms;
4357 
4358 		while (zfs_scan_suspend_progress &&
4359 		    !txg_sync_waiting(scn->scn_dp) &&
4360 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
4361 		    NSEC2MSEC(scan_time_ns) < mintime) {
4362 			delay(hz);
4363 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4364 		}
4365 		return;
4366 	}
4367 
4368 	/*
4369 	 * Disabled by default, set zfs_scan_report_txgs to report
4370 	 * average performance over the last zfs_scan_report_txgs TXGs.
4371 	 */
4372 	if (zfs_scan_report_txgs != 0 &&
4373 	    tx->tx_txg % zfs_scan_report_txgs == 0) {
4374 		scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4375 		spa_scan_stat_init(spa);
4376 	}
4377 
4378 	/*
4379 	 * It is possible to switch from unsorted to sorted at any time,
4380 	 * but afterwards the scan will remain sorted unless reloaded from
4381 	 * a checkpoint after a reboot.
4382 	 */
4383 	if (!zfs_scan_legacy) {
4384 		scn->scn_is_sorted = B_TRUE;
4385 		if (scn->scn_last_checkpoint == 0)
4386 			scn->scn_last_checkpoint = ddi_get_lbolt();
4387 	}
4388 
4389 	/*
4390 	 * For sorted scans, determine what kind of work we will be doing
4391 	 * this txg based on our memory limitations and whether or not we
4392 	 * need to perform a checkpoint.
4393 	 */
4394 	if (scn->scn_is_sorted) {
4395 		/*
4396 		 * If we are over our checkpoint interval, set scn_clearing
4397 		 * so that we can begin checkpointing immediately. The
4398 		 * checkpoint allows us to save a consistent bookmark
4399 		 * representing how much data we have scrubbed so far.
4400 		 * Otherwise, use the memory limit to determine if we should
4401 		 * scan for metadata or start issue scrub IOs. We accumulate
4402 		 * metadata until we hit our hard memory limit at which point
4403 		 * we issue scrub IOs until we are at our soft memory limit.
4404 		 */
4405 		if (scn->scn_checkpointing ||
4406 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
4407 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4408 			if (!scn->scn_checkpointing)
4409 				zfs_dbgmsg("begin scan checkpoint for %s",
4410 				    spa->spa_name);
4411 
4412 			scn->scn_checkpointing = B_TRUE;
4413 			scn->scn_clearing = B_TRUE;
4414 		} else {
4415 			boolean_t should_clear = dsl_scan_should_clear(scn);
4416 			if (should_clear && !scn->scn_clearing) {
4417 				zfs_dbgmsg("begin scan clearing for %s",
4418 				    spa->spa_name);
4419 				scn->scn_clearing = B_TRUE;
4420 			} else if (!should_clear && scn->scn_clearing) {
4421 				zfs_dbgmsg("finish scan clearing for %s",
4422 				    spa->spa_name);
4423 				scn->scn_clearing = B_FALSE;
4424 			}
4425 		}
4426 	} else {
4427 		ASSERT0(scn->scn_checkpointing);
4428 		ASSERT0(scn->scn_clearing);
4429 	}
4430 
4431 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4432 		/* Need to scan metadata for more blocks to scrub */
4433 		dsl_scan_phys_t *scnp = &scn->scn_phys;
4434 		taskqid_t prefetch_tqid;
4435 
4436 		/*
4437 		 * Calculate the max number of in-flight bytes for pool-wide
4438 		 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4439 		 * Limits for the issuing phase are done per top-level vdev and
4440 		 * are handled separately.
4441 		 */
4442 		scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4443 		    zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4444 
4445 		if (scnp->scn_ddt_bookmark.ddb_class <=
4446 		    scnp->scn_ddt_class_max) {
4447 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4448 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4449 			    "ddt bm=%llu/%llu/%llu/%llx",
4450 			    spa->spa_name,
4451 			    (longlong_t)tx->tx_txg,
4452 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4453 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4454 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4455 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4456 		} else {
4457 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
4458 			    "bm=%llu/%llu/%llu/%llu",
4459 			    spa->spa_name,
4460 			    (longlong_t)tx->tx_txg,
4461 			    (longlong_t)scnp->scn_bookmark.zb_objset,
4462 			    (longlong_t)scnp->scn_bookmark.zb_object,
4463 			    (longlong_t)scnp->scn_bookmark.zb_level,
4464 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
4465 		}
4466 
4467 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4468 		    NULL, ZIO_FLAG_CANFAIL);
4469 
4470 		scn->scn_prefetch_stop = B_FALSE;
4471 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4472 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4473 		ASSERT(prefetch_tqid != TASKQID_INVALID);
4474 
4475 		dsl_pool_config_enter(dp, FTAG);
4476 		dsl_scan_visit(scn, tx);
4477 		dsl_pool_config_exit(dp, FTAG);
4478 
4479 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
4480 		scn->scn_prefetch_stop = B_TRUE;
4481 		cv_broadcast(&spa->spa_scrub_io_cv);
4482 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
4483 
4484 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4485 		(void) zio_wait(scn->scn_zio_root);
4486 		scn->scn_zio_root = NULL;
4487 
4488 		zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4489 		    "(%llu os's, %llu holes, %llu < mintxg, "
4490 		    "%llu in ddt, %llu > maxtxg)",
4491 		    (longlong_t)scn->scn_visited_this_txg,
4492 		    spa->spa_name,
4493 		    (longlong_t)NSEC2MSEC(gethrtime() -
4494 		    scn->scn_sync_start_time),
4495 		    (longlong_t)scn->scn_objsets_visited_this_txg,
4496 		    (longlong_t)scn->scn_holes_this_txg,
4497 		    (longlong_t)scn->scn_lt_min_this_txg,
4498 		    (longlong_t)scn->scn_ddt_contained_this_txg,
4499 		    (longlong_t)scn->scn_gt_max_this_txg);
4500 
4501 		if (!scn->scn_suspending) {
4502 			ASSERT0(avl_numnodes(&scn->scn_queue));
4503 			scn->scn_done_txg = tx->tx_txg + 1;
4504 			if (scn->scn_is_sorted) {
4505 				scn->scn_checkpointing = B_TRUE;
4506 				scn->scn_clearing = B_TRUE;
4507 				scn->scn_issued_before_pass +=
4508 				    spa->spa_scan_pass_issued;
4509 				spa_scan_stat_init(spa);
4510 			}
4511 			zfs_dbgmsg("scan complete for %s txg %llu",
4512 			    spa->spa_name,
4513 			    (longlong_t)tx->tx_txg);
4514 		}
4515 	} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4516 		ASSERT(scn->scn_clearing);
4517 
4518 		/* need to issue scrubbing IOs from per-vdev queues */
4519 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4520 		    NULL, ZIO_FLAG_CANFAIL);
4521 		scan_io_queues_run(scn);
4522 		(void) zio_wait(scn->scn_zio_root);
4523 		scn->scn_zio_root = NULL;
4524 
4525 		/* calculate and dprintf the current memory usage */
4526 		(void) dsl_scan_should_clear(scn);
4527 		dsl_scan_update_stats(scn);
4528 
4529 		zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4530 		    "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4531 		    (longlong_t)scn->scn_zios_this_txg,
4532 		    spa->spa_name,
4533 		    (longlong_t)scn->scn_segs_this_txg,
4534 		    (longlong_t)NSEC2MSEC(gethrtime() -
4535 		    scn->scn_sync_start_time),
4536 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
4537 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
4538 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4539 		/* Finished with everything. Mark the scrub as complete */
4540 		zfs_dbgmsg("scan issuing complete txg %llu for %s",
4541 		    (longlong_t)tx->tx_txg,
4542 		    spa->spa_name);
4543 		ASSERT3U(scn->scn_done_txg, !=, 0);
4544 		ASSERT0(spa->spa_scrub_inflight);
4545 		ASSERT0(scn->scn_queues_pending);
4546 		dsl_scan_done(scn, B_TRUE, tx);
4547 		sync_type = SYNC_MANDATORY;
4548 	}
4549 
4550 	dsl_scan_sync_state(scn, tx, sync_type);
4551 }
4552 
4553 static void
count_block_issued(spa_t * spa,const blkptr_t * bp,boolean_t all)4554 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4555 {
4556 	/*
4557 	 * Don't count embedded bp's, since we already did the work of
4558 	 * scanning these when we scanned the containing block.
4559 	 */
4560 	if (BP_IS_EMBEDDED(bp))
4561 		return;
4562 
4563 	/*
4564 	 * Update the spa's stats on how many bytes we have issued.
4565 	 * Sequential scrubs create a zio for each DVA of the bp. Each
4566 	 * of these will include all DVAs for repair purposes, but the
4567 	 * zio code will only try the first one unless there is an issue.
4568 	 * Therefore, we should only count the first DVA for these IOs.
4569 	 */
4570 	atomic_add_64(&spa->spa_scan_pass_issued,
4571 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4572 }
4573 
4574 static void
count_block_skipped(dsl_scan_t * scn,const blkptr_t * bp,boolean_t all)4575 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4576 {
4577 	if (BP_IS_EMBEDDED(bp))
4578 		return;
4579 	atomic_add_64(&scn->scn_phys.scn_skipped,
4580 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4581 }
4582 
4583 static void
count_block(zfs_all_blkstats_t * zab,const blkptr_t * bp)4584 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4585 {
4586 	/*
4587 	 * If we resume after a reboot, zab will be NULL; don't record
4588 	 * incomplete stats in that case.
4589 	 */
4590 	if (zab == NULL)
4591 		return;
4592 
4593 	for (int i = 0; i < 4; i++) {
4594 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4595 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4596 
4597 		if (t & DMU_OT_NEWTYPE)
4598 			t = DMU_OT_OTHER;
4599 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
4600 		int equal;
4601 
4602 		zb->zb_count++;
4603 		zb->zb_asize += BP_GET_ASIZE(bp);
4604 		zb->zb_lsize += BP_GET_LSIZE(bp);
4605 		zb->zb_psize += BP_GET_PSIZE(bp);
4606 		zb->zb_gangs += BP_COUNT_GANG(bp);
4607 
4608 		switch (BP_GET_NDVAS(bp)) {
4609 		case 2:
4610 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4611 			    DVA_GET_VDEV(&bp->blk_dva[1]))
4612 				zb->zb_ditto_2_of_2_samevdev++;
4613 			break;
4614 		case 3:
4615 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4616 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
4617 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4618 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
4619 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4620 			    DVA_GET_VDEV(&bp->blk_dva[2]));
4621 			if (equal == 1)
4622 				zb->zb_ditto_2_of_3_samevdev++;
4623 			else if (equal == 3)
4624 				zb->zb_ditto_3_of_3_samevdev++;
4625 			break;
4626 		}
4627 	}
4628 }
4629 
4630 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)4631 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4632 {
4633 	avl_index_t idx;
4634 	dsl_scan_t *scn = queue->q_scn;
4635 
4636 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4637 
4638 	if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4639 		atomic_add_64(&scn->scn_queues_pending, 1);
4640 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4641 		/* block is already scheduled for reading */
4642 		sio_free(sio);
4643 		return;
4644 	}
4645 	avl_insert(&queue->q_sios_by_addr, sio, idx);
4646 	queue->q_sio_memused += SIO_GET_MUSED(sio);
4647 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4648 	    SIO_GET_ASIZE(sio));
4649 }
4650 
4651 /*
4652  * Given all the info we got from our metadata scanning process, we
4653  * construct a scan_io_t and insert it into the scan sorting queue. The
4654  * I/O must already be suitable for us to process. This is controlled
4655  * by dsl_scan_enqueue().
4656  */
4657 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)4658 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4659     int zio_flags, const zbookmark_phys_t *zb)
4660 {
4661 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4662 
4663 	ASSERT0(BP_IS_GANG(bp));
4664 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4665 
4666 	bp2sio(bp, sio, dva_i);
4667 	sio->sio_flags = zio_flags;
4668 	sio->sio_zb = *zb;
4669 
4670 	queue->q_last_ext_addr = -1;
4671 	scan_io_queue_insert_impl(queue, sio);
4672 }
4673 
4674 /*
4675  * Given a set of I/O parameters as discovered by the metadata traversal
4676  * process, attempts to place the I/O into the sorted queues (if allowed),
4677  * or immediately executes the I/O.
4678  */
4679 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)4680 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4681     const zbookmark_phys_t *zb)
4682 {
4683 	spa_t *spa = dp->dp_spa;
4684 
4685 	ASSERT(!BP_IS_EMBEDDED(bp));
4686 
4687 	/*
4688 	 * Gang blocks are hard to issue sequentially, so we just issue them
4689 	 * here immediately instead of queuing them.
4690 	 */
4691 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4692 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
4693 		return;
4694 	}
4695 
4696 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4697 		dva_t dva;
4698 		vdev_t *vdev;
4699 
4700 		dva = bp->blk_dva[i];
4701 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4702 		ASSERT(vdev != NULL);
4703 
4704 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
4705 		if (vdev->vdev_scan_io_queue == NULL)
4706 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4707 		ASSERT(dp->dp_scan != NULL);
4708 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4709 		    i, zio_flags, zb);
4710 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
4711 	}
4712 }
4713 
4714 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)4715 dsl_scan_scrub_cb(dsl_pool_t *dp,
4716     const blkptr_t *bp, const zbookmark_phys_t *zb)
4717 {
4718 	dsl_scan_t *scn = dp->dp_scan;
4719 	spa_t *spa = dp->dp_spa;
4720 	uint64_t phys_birth = BP_GET_BIRTH(bp);
4721 	size_t psize = BP_GET_PSIZE(bp);
4722 	boolean_t needs_io = B_FALSE;
4723 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4724 
4725 	count_block(dp->dp_blkstats, bp);
4726 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
4727 	    phys_birth >= scn->scn_phys.scn_max_txg) {
4728 		count_block_skipped(scn, bp, B_TRUE);
4729 		return (0);
4730 	}
4731 
4732 	/* Embedded BP's have phys_birth==0, so we reject them above. */
4733 	ASSERT(!BP_IS_EMBEDDED(bp));
4734 
4735 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4736 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4737 		zio_flags |= ZIO_FLAG_SCRUB;
4738 		needs_io = B_TRUE;
4739 	} else {
4740 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4741 		zio_flags |= ZIO_FLAG_RESILVER;
4742 		needs_io = B_FALSE;
4743 	}
4744 
4745 	/* If it's an intent log block, failure is expected. */
4746 	if (zb->zb_level == ZB_ZIL_LEVEL)
4747 		zio_flags |= ZIO_FLAG_SPECULATIVE;
4748 
4749 	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4750 		const dva_t *dva = &bp->blk_dva[d];
4751 
4752 		/*
4753 		 * Keep track of how much data we've examined so that
4754 		 * zpool(8) status can make useful progress reports.
4755 		 */
4756 		uint64_t asize = DVA_GET_ASIZE(dva);
4757 		scn->scn_phys.scn_examined += asize;
4758 		spa->spa_scan_pass_exam += asize;
4759 
4760 		/* if it's a resilver, this may not be in the target range */
4761 		if (!needs_io)
4762 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
4763 			    phys_birth);
4764 	}
4765 
4766 	if (needs_io && !zfs_no_scrub_io) {
4767 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
4768 	} else {
4769 		count_block_skipped(scn, bp, B_TRUE);
4770 	}
4771 
4772 	/* do not relocate this block */
4773 	return (0);
4774 }
4775 
4776 static void
dsl_scan_scrub_done(zio_t * zio)4777 dsl_scan_scrub_done(zio_t *zio)
4778 {
4779 	spa_t *spa = zio->io_spa;
4780 	blkptr_t *bp = zio->io_bp;
4781 	dsl_scan_io_queue_t *queue = zio->io_private;
4782 
4783 	abd_free(zio->io_abd);
4784 
4785 	if (queue == NULL) {
4786 		mutex_enter(&spa->spa_scrub_lock);
4787 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4788 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4789 		cv_broadcast(&spa->spa_scrub_io_cv);
4790 		mutex_exit(&spa->spa_scrub_lock);
4791 	} else {
4792 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4793 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4794 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4795 		cv_broadcast(&queue->q_zio_cv);
4796 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4797 	}
4798 
4799 	if (zio->io_error && (zio->io_error != ECKSUM ||
4800 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4801 		if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4802 		    !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4803 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4804 			    ->errorscrub_phys.dep_errors);
4805 		} else {
4806 			atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4807 			    .scn_errors);
4808 		}
4809 	}
4810 }
4811 
4812 /*
4813  * Given a scanning zio's information, executes the zio. The zio need
4814  * not necessarily be only sortable, this function simply executes the
4815  * zio, no matter what it is. The optional queue argument allows the
4816  * caller to specify that they want per top level vdev IO rate limiting
4817  * instead of the legacy global limiting.
4818  */
4819 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)4820 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4821     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4822 {
4823 	spa_t *spa = dp->dp_spa;
4824 	dsl_scan_t *scn = dp->dp_scan;
4825 	size_t size = BP_GET_PSIZE(bp);
4826 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
4827 	zio_t *pio;
4828 
4829 	if (queue == NULL) {
4830 		ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4831 		mutex_enter(&spa->spa_scrub_lock);
4832 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4833 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4834 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4835 		mutex_exit(&spa->spa_scrub_lock);
4836 		pio = scn->scn_zio_root;
4837 	} else {
4838 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4839 
4840 		ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4841 		mutex_enter(q_lock);
4842 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4843 			cv_wait(&queue->q_zio_cv, q_lock);
4844 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4845 		pio = queue->q_zio;
4846 		mutex_exit(q_lock);
4847 	}
4848 
4849 	ASSERT(pio != NULL);
4850 	count_block_issued(spa, bp, queue == NULL);
4851 	zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4852 	    queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4853 }
4854 
4855 /*
4856  * This is the primary extent sorting algorithm. We balance two parameters:
4857  * 1) how many bytes of I/O are in an extent
4858  * 2) how well the extent is filled with I/O (as a fraction of its total size)
4859  * Since we allow extents to have gaps between their constituent I/Os, it's
4860  * possible to have a fairly large extent that contains the same amount of
4861  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4862  * The algorithm sorts based on a score calculated from the extent's size,
4863  * the relative fill volume (in %) and a "fill weight" parameter that controls
4864  * the split between whether we prefer larger extents or more well populated
4865  * extents:
4866  *
4867  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4868  *
4869  * Example:
4870  * 1) assume extsz = 64 MiB
4871  * 2) assume fill = 32 MiB (extent is half full)
4872  * 3) assume fill_weight = 3
4873  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4874  *	SCORE = 32M + (50 * 3 * 32M) / 100
4875  *	SCORE = 32M + (4800M / 100)
4876  *	SCORE = 32M + 48M
4877  *	         ^     ^
4878  *	         |     +--- final total relative fill-based score
4879  *	         +--------- final total fill-based score
4880  *	SCORE = 80M
4881  *
4882  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4883  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4884  * Note that as an optimization, we replace multiplication and division by
4885  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4886  *
4887  * Since we do not care if one extent is only few percent better than another,
4888  * compress the score into 6 bits via binary logarithm AKA highbit64() and
4889  * put into otherwise unused due to ashift high bits of offset.  This allows
4890  * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4891  * with single operation.  Plus it makes scrubs more sequential and reduces
4892  * chances that minor extent change move it within the B-tree.
4893  */
4894 __attribute__((always_inline)) inline
4895 static int
ext_size_compare(const void * x,const void * y)4896 ext_size_compare(const void *x, const void *y)
4897 {
4898 	const uint64_t *a = x, *b = y;
4899 
4900 	return (TREE_CMP(*a, *b));
4901 }
4902 
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf,uint64_t,ext_size_compare)4903 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4904     ext_size_compare)
4905 
4906 static void
4907 ext_size_create(range_tree_t *rt, void *arg)
4908 {
4909 	(void) rt;
4910 	zfs_btree_t *size_tree = arg;
4911 
4912 	zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4913 	    sizeof (uint64_t));
4914 }
4915 
4916 static void
ext_size_destroy(range_tree_t * rt,void * arg)4917 ext_size_destroy(range_tree_t *rt, void *arg)
4918 {
4919 	(void) rt;
4920 	zfs_btree_t *size_tree = arg;
4921 	ASSERT0(zfs_btree_numnodes(size_tree));
4922 
4923 	zfs_btree_destroy(size_tree);
4924 }
4925 
4926 static uint64_t
ext_size_value(range_tree_t * rt,range_seg_gap_t * rsg)4927 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4928 {
4929 	(void) rt;
4930 	uint64_t size = rsg->rs_end - rsg->rs_start;
4931 	uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4932 	    fill_weight * rsg->rs_fill) >> 7);
4933 	ASSERT3U(rt->rt_shift, >=, 8);
4934 	return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4935 }
4936 
4937 static void
ext_size_add(range_tree_t * rt,range_seg_t * rs,void * arg)4938 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4939 {
4940 	zfs_btree_t *size_tree = arg;
4941 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4942 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4943 	zfs_btree_add(size_tree, &v);
4944 }
4945 
4946 static void
ext_size_remove(range_tree_t * rt,range_seg_t * rs,void * arg)4947 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4948 {
4949 	zfs_btree_t *size_tree = arg;
4950 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4951 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4952 	zfs_btree_remove(size_tree, &v);
4953 }
4954 
4955 static void
ext_size_vacate(range_tree_t * rt,void * arg)4956 ext_size_vacate(range_tree_t *rt, void *arg)
4957 {
4958 	zfs_btree_t *size_tree = arg;
4959 	zfs_btree_clear(size_tree);
4960 	zfs_btree_destroy(size_tree);
4961 
4962 	ext_size_create(rt, arg);
4963 }
4964 
4965 static const range_tree_ops_t ext_size_ops = {
4966 	.rtop_create = ext_size_create,
4967 	.rtop_destroy = ext_size_destroy,
4968 	.rtop_add = ext_size_add,
4969 	.rtop_remove = ext_size_remove,
4970 	.rtop_vacate = ext_size_vacate
4971 };
4972 
4973 /*
4974  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4975  * based on LBA-order (from lowest to highest).
4976  */
4977 static int
sio_addr_compare(const void * x,const void * y)4978 sio_addr_compare(const void *x, const void *y)
4979 {
4980 	const scan_io_t *a = x, *b = y;
4981 
4982 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4983 }
4984 
4985 /* IO queues are created on demand when they are needed. */
4986 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)4987 scan_io_queue_create(vdev_t *vd)
4988 {
4989 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4990 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4991 
4992 	q->q_scn = scn;
4993 	q->q_vd = vd;
4994 	q->q_sio_memused = 0;
4995 	q->q_last_ext_addr = -1;
4996 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4997 	q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
4998 	    &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
4999 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
5000 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5001 
5002 	return (q);
5003 }
5004 
5005 /*
5006  * Destroys a scan queue and all segments and scan_io_t's contained in it.
5007  * No further execution of I/O occurs, anything pending in the queue is
5008  * simply freed without being executed.
5009  */
5010 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)5011 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5012 {
5013 	dsl_scan_t *scn = queue->q_scn;
5014 	scan_io_t *sio;
5015 	void *cookie = NULL;
5016 
5017 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5018 
5019 	if (!avl_is_empty(&queue->q_sios_by_addr))
5020 		atomic_add_64(&scn->scn_queues_pending, -1);
5021 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5022 	    NULL) {
5023 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
5024 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5025 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5026 		sio_free(sio);
5027 	}
5028 
5029 	ASSERT0(queue->q_sio_memused);
5030 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5031 	range_tree_destroy(queue->q_exts_by_addr);
5032 	avl_destroy(&queue->q_sios_by_addr);
5033 	cv_destroy(&queue->q_zio_cv);
5034 
5035 	kmem_free(queue, sizeof (*queue));
5036 }
5037 
5038 /*
5039  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5040  * called on behalf of vdev_top_transfer when creating or destroying
5041  * a mirror vdev due to zpool attach/detach.
5042  */
5043 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)5044 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5045 {
5046 	mutex_enter(&svd->vdev_scan_io_queue_lock);
5047 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
5048 
5049 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5050 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5051 	svd->vdev_scan_io_queue = NULL;
5052 	if (tvd->vdev_scan_io_queue != NULL)
5053 		tvd->vdev_scan_io_queue->q_vd = tvd;
5054 
5055 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
5056 	mutex_exit(&svd->vdev_scan_io_queue_lock);
5057 }
5058 
5059 static void
scan_io_queues_destroy(dsl_scan_t * scn)5060 scan_io_queues_destroy(dsl_scan_t *scn)
5061 {
5062 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5063 
5064 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5065 		vdev_t *tvd = rvd->vdev_child[i];
5066 
5067 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
5068 		if (tvd->vdev_scan_io_queue != NULL)
5069 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5070 		tvd->vdev_scan_io_queue = NULL;
5071 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
5072 	}
5073 }
5074 
5075 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)5076 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5077 {
5078 	dsl_pool_t *dp = spa->spa_dsl_pool;
5079 	dsl_scan_t *scn = dp->dp_scan;
5080 	vdev_t *vdev;
5081 	kmutex_t *q_lock;
5082 	dsl_scan_io_queue_t *queue;
5083 	scan_io_t *srch_sio, *sio;
5084 	avl_index_t idx;
5085 	uint64_t start, size;
5086 
5087 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5088 	ASSERT(vdev != NULL);
5089 	q_lock = &vdev->vdev_scan_io_queue_lock;
5090 	queue = vdev->vdev_scan_io_queue;
5091 
5092 	mutex_enter(q_lock);
5093 	if (queue == NULL) {
5094 		mutex_exit(q_lock);
5095 		return;
5096 	}
5097 
5098 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5099 	bp2sio(bp, srch_sio, dva_i);
5100 	start = SIO_GET_OFFSET(srch_sio);
5101 	size = SIO_GET_ASIZE(srch_sio);
5102 
5103 	/*
5104 	 * We can find the zio in two states:
5105 	 * 1) Cold, just sitting in the queue of zio's to be issued at
5106 	 *	some point in the future. In this case, all we do is
5107 	 *	remove the zio from the q_sios_by_addr tree, decrement
5108 	 *	its data volume from the containing range_seg_t and
5109 	 *	resort the q_exts_by_size tree to reflect that the
5110 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
5111 	 *	the range_seg_t - this is usually rare enough not to be
5112 	 *	worth the extra hassle of trying keep track of precise
5113 	 *	extent boundaries.
5114 	 * 2) Hot, where the zio is currently in-flight in
5115 	 *	dsl_scan_issue_ios. In this case, we can't simply
5116 	 *	reach in and stop the in-flight zio's, so we instead
5117 	 *	block the caller. Eventually, dsl_scan_issue_ios will
5118 	 *	be done with issuing the zio's it gathered and will
5119 	 *	signal us.
5120 	 */
5121 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5122 	sio_free(srch_sio);
5123 
5124 	if (sio != NULL) {
5125 		blkptr_t tmpbp;
5126 
5127 		/* Got it while it was cold in the queue */
5128 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5129 		ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5130 		avl_remove(&queue->q_sios_by_addr, sio);
5131 		if (avl_is_empty(&queue->q_sios_by_addr))
5132 			atomic_add_64(&scn->scn_queues_pending, -1);
5133 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
5134 
5135 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5136 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5137 
5138 		/* count the block as though we skipped it */
5139 		sio2bp(sio, &tmpbp);
5140 		count_block_skipped(scn, &tmpbp, B_FALSE);
5141 
5142 		sio_free(sio);
5143 	}
5144 	mutex_exit(q_lock);
5145 }
5146 
5147 /*
5148  * Callback invoked when a zio_free() zio is executing. This needs to be
5149  * intercepted to prevent the zio from deallocating a particular portion
5150  * of disk space and it then getting reallocated and written to, while we
5151  * still have it queued up for processing.
5152  */
5153 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)5154 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5155 {
5156 	dsl_pool_t *dp = spa->spa_dsl_pool;
5157 	dsl_scan_t *scn = dp->dp_scan;
5158 
5159 	ASSERT(!BP_IS_EMBEDDED(bp));
5160 	ASSERT(scn != NULL);
5161 	if (!dsl_scan_is_running(scn))
5162 		return;
5163 
5164 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5165 		dsl_scan_freed_dva(spa, bp, i);
5166 }
5167 
5168 /*
5169  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5170  * not started, start it. Otherwise, only restart if max txg in DTL range is
5171  * greater than the max txg in the current scan. If the DTL max is less than
5172  * the scan max, then the vdev has not missed any new data since the resilver
5173  * started, so a restart is not needed.
5174  */
5175 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)5176 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5177 {
5178 	uint64_t min, max;
5179 
5180 	if (!vdev_resilver_needed(vd, &min, &max))
5181 		return;
5182 
5183 	if (!dsl_scan_resilvering(dp)) {
5184 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5185 		return;
5186 	}
5187 
5188 	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5189 		return;
5190 
5191 	/* restart is needed, check if it can be deferred */
5192 	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5193 		vdev_defer_resilver(vd);
5194 	else
5195 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5196 }
5197 
5198 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5199 	"Max bytes in flight per leaf vdev for scrubs and resilvers");
5200 
5201 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5202 	"Min millisecs to scrub per txg");
5203 
5204 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5205 	"Min millisecs to obsolete per txg");
5206 
5207 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5208 	"Min millisecs to free per txg");
5209 
5210 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5211 	"Min millisecs to resilver per txg");
5212 
5213 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5214 	"Set to prevent scans from progressing");
5215 
5216 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5217 	"Set to disable scrub I/O");
5218 
5219 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5220 	"Set to disable scrub prefetching");
5221 
5222 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5223 	"Max number of blocks freed in one txg");
5224 
5225 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5226 	"Max number of dedup blocks freed in one txg");
5227 
5228 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5229 	"Enable processing of the free_bpobj");
5230 
5231 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5232 	"Enable block statistics calculation during scrub");
5233 
5234 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5235 	"Fraction of RAM for scan hard limit");
5236 
5237 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5238 	"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5239 
5240 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5241 	"Scrub using legacy non-sequential method");
5242 
5243 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5244 	"Scan progress on-disk checkpointing interval");
5245 
5246 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5247 	"Max gap in bytes between sequential scrub / resilver I/Os");
5248 
5249 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5250 	"Fraction of hard limit used as soft limit");
5251 
5252 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5253 	"Tunable to attempt to reduce lock contention");
5254 
5255 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5256 	"Tunable to adjust bias towards more filled segments during scans");
5257 
5258 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5259 	"Tunable to report resilver performance over the last N txgs");
5260 
5261 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5262 	"Process all resilvers immediately");
5263 
5264 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5265 	"Error blocks to be scrubbed in one txg");
5266 /* END CSTYLED */
5267