1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "dwarf2expr.h"
26 #include "elf/dwarf2.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41
42 /* Call Frame Information (CFI). */
43
44 /* Common Information Entry (CIE). */
45
46 struct dwarf2_cie
47 {
48 /* Offset into the .debug_frame section where this CIE was found.
49 Used to identify this CIE. */
50 ULONGEST cie_pointer;
51
52 /* Constant that is factored out of all advance location
53 instructions. */
54 ULONGEST code_alignment_factor;
55
56 /* Constants that is factored out of all offset instructions. */
57 LONGEST data_alignment_factor;
58
59 /* Return address column. */
60 ULONGEST return_address_register;
61
62 /* Instruction sequence to initialize a register set. */
63 unsigned char *initial_instructions;
64 unsigned char *end;
65
66 /* Encoding of addresses. */
67 unsigned char encoding;
68
69 /* True if a 'z' augmentation existed. */
70 unsigned char saw_z_augmentation;
71
72 struct dwarf2_cie *next;
73 };
74
75 /* Frame Description Entry (FDE). */
76
77 struct dwarf2_fde
78 {
79 /* CIE for this FDE. */
80 struct dwarf2_cie *cie;
81
82 /* First location associated with this FDE. */
83 CORE_ADDR initial_location;
84
85 /* Number of bytes of program instructions described by this FDE. */
86 CORE_ADDR address_range;
87
88 /* Instruction sequence. */
89 unsigned char *instructions;
90 unsigned char *end;
91
92 struct dwarf2_fde *next;
93 };
94
95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
96
97
98 /* Structure describing a frame state. */
99
100 struct dwarf2_frame_state
101 {
102 /* Each register save state can be described in terms of a CFA slot,
103 another register, or a location expression. */
104 struct dwarf2_frame_state_reg_info
105 {
106 struct dwarf2_frame_state_reg *reg;
107 int num_regs;
108
109 /* Used to implement DW_CFA_remember_state. */
110 struct dwarf2_frame_state_reg_info *prev;
111 } regs;
112
113 LONGEST cfa_offset;
114 ULONGEST cfa_reg;
115 unsigned char *cfa_exp;
116 enum {
117 CFA_UNSET,
118 CFA_REG_OFFSET,
119 CFA_EXP
120 } cfa_how;
121
122 /* The PC described by the current frame state. */
123 CORE_ADDR pc;
124
125 /* Initial register set from the CIE.
126 Used to implement DW_CFA_restore. */
127 struct dwarf2_frame_state_reg_info initial;
128
129 /* The information we care about from the CIE. */
130 LONGEST data_align;
131 ULONGEST code_align;
132 ULONGEST retaddr_column;
133 };
134
135 /* Store the length the expression for the CFA in the `cfa_reg' field,
136 which is unused in that case. */
137 #define cfa_exp_len cfa_reg
138
139 /* Assert that the register set RS is large enough to store NUM_REGS
140 columns. If necessary, enlarge the register set. */
141
142 static void
dwarf2_frame_state_alloc_regs(struct dwarf2_frame_state_reg_info * rs,int num_regs)143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
144 int num_regs)
145 {
146 size_t size = sizeof (struct dwarf2_frame_state_reg);
147
148 if (num_regs <= rs->num_regs)
149 return;
150
151 rs->reg = (struct dwarf2_frame_state_reg *)
152 xrealloc (rs->reg, num_regs * size);
153
154 /* Initialize newly allocated registers. */
155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
156 rs->num_regs = num_regs;
157 }
158
159 /* Copy the register columns in register set RS into newly allocated
160 memory and return a pointer to this newly created copy. */
161
162 static struct dwarf2_frame_state_reg *
dwarf2_frame_state_copy_regs(struct dwarf2_frame_state_reg_info * rs)163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
164 {
165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info);
166 struct dwarf2_frame_state_reg *reg;
167
168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
169 memcpy (reg, rs->reg, size);
170
171 return reg;
172 }
173
174 /* Release the memory allocated to register set RS. */
175
176 static void
dwarf2_frame_state_free_regs(struct dwarf2_frame_state_reg_info * rs)177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
178 {
179 if (rs)
180 {
181 dwarf2_frame_state_free_regs (rs->prev);
182
183 xfree (rs->reg);
184 xfree (rs);
185 }
186 }
187
188 /* Release the memory allocated to the frame state FS. */
189
190 static void
dwarf2_frame_state_free(void * p)191 dwarf2_frame_state_free (void *p)
192 {
193 struct dwarf2_frame_state *fs = p;
194
195 dwarf2_frame_state_free_regs (fs->initial.prev);
196 dwarf2_frame_state_free_regs (fs->regs.prev);
197 xfree (fs->initial.reg);
198 xfree (fs->regs.reg);
199 xfree (fs);
200 }
201
202
203 /* Helper functions for execute_stack_op. */
204
205 static CORE_ADDR
read_reg(void * baton,int reg)206 read_reg (void *baton, int reg)
207 {
208 struct frame_info *next_frame = (struct frame_info *) baton;
209 struct gdbarch *gdbarch = get_frame_arch (next_frame);
210 int regnum;
211 char *buf;
212
213 regnum = DWARF2_REG_TO_REGNUM (reg);
214
215 buf = (char *) alloca (register_size (gdbarch, regnum));
216 frame_unwind_register (next_frame, regnum, buf);
217 return extract_typed_address (buf, builtin_type_void_data_ptr);
218 }
219
220 static void
read_mem(void * baton,char * buf,CORE_ADDR addr,size_t len)221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len)
222 {
223 read_memory (addr, buf, len);
224 }
225
226 static void
no_get_frame_base(void * baton,unsigned char ** start,size_t * length)227 no_get_frame_base (void *baton, unsigned char **start, size_t *length)
228 {
229 internal_error (__FILE__, __LINE__,
230 "Support for DW_OP_fbreg is unimplemented");
231 }
232
233 static CORE_ADDR
no_get_tls_address(void * baton,CORE_ADDR offset)234 no_get_tls_address (void *baton, CORE_ADDR offset)
235 {
236 internal_error (__FILE__, __LINE__,
237 "Support for DW_OP_GNU_push_tls_address is unimplemented");
238 }
239
240 static CORE_ADDR
execute_stack_op(unsigned char * exp,ULONGEST len,struct frame_info * next_frame,CORE_ADDR initial)241 execute_stack_op (unsigned char *exp, ULONGEST len,
242 struct frame_info *next_frame, CORE_ADDR initial)
243 {
244 struct dwarf_expr_context *ctx;
245 CORE_ADDR result;
246
247 ctx = new_dwarf_expr_context ();
248 ctx->baton = next_frame;
249 ctx->read_reg = read_reg;
250 ctx->read_mem = read_mem;
251 ctx->get_frame_base = no_get_frame_base;
252 ctx->get_tls_address = no_get_tls_address;
253
254 dwarf_expr_push (ctx, initial);
255 dwarf_expr_eval (ctx, exp, len);
256 result = dwarf_expr_fetch (ctx, 0);
257
258 if (ctx->in_reg)
259 result = read_reg (next_frame, result);
260
261 free_dwarf_expr_context (ctx);
262
263 return result;
264 }
265
266
267 static void
execute_cfa_program(unsigned char * insn_ptr,unsigned char * insn_end,struct frame_info * next_frame,struct dwarf2_frame_state * fs)268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end,
269 struct frame_info *next_frame,
270 struct dwarf2_frame_state *fs)
271 {
272 CORE_ADDR pc = frame_pc_unwind (next_frame);
273 int bytes_read;
274
275 while (insn_ptr < insn_end && fs->pc <= pc)
276 {
277 unsigned char insn = *insn_ptr++;
278 ULONGEST utmp, reg;
279 LONGEST offset;
280
281 if ((insn & 0xc0) == DW_CFA_advance_loc)
282 fs->pc += (insn & 0x3f) * fs->code_align;
283 else if ((insn & 0xc0) == DW_CFA_offset)
284 {
285 reg = insn & 0x3f;
286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
287 offset = utmp * fs->data_align;
288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
290 fs->regs.reg[reg].loc.offset = offset;
291 }
292 else if ((insn & 0xc0) == DW_CFA_restore)
293 {
294 gdb_assert (fs->initial.reg);
295 reg = insn & 0x3f;
296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
297 fs->regs.reg[reg] = fs->initial.reg[reg];
298 }
299 else
300 {
301 switch (insn)
302 {
303 case DW_CFA_set_loc:
304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read);
305 insn_ptr += bytes_read;
306 break;
307
308 case DW_CFA_advance_loc1:
309 utmp = extract_unsigned_integer (insn_ptr, 1);
310 fs->pc += utmp * fs->code_align;
311 insn_ptr++;
312 break;
313 case DW_CFA_advance_loc2:
314 utmp = extract_unsigned_integer (insn_ptr, 2);
315 fs->pc += utmp * fs->code_align;
316 insn_ptr += 2;
317 break;
318 case DW_CFA_advance_loc4:
319 utmp = extract_unsigned_integer (insn_ptr, 4);
320 fs->pc += utmp * fs->code_align;
321 insn_ptr += 4;
322 break;
323
324 case DW_CFA_offset_extended:
325 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
327 offset = utmp * fs->data_align;
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
330 fs->regs.reg[reg].loc.offset = offset;
331 break;
332
333 case DW_CFA_restore_extended:
334 gdb_assert (fs->initial.reg);
335 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
337 fs->regs.reg[reg] = fs->initial.reg[reg];
338 break;
339
340 case DW_CFA_undefined:
341 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
344 break;
345
346 case DW_CFA_same_value:
347 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
350 break;
351
352 case DW_CFA_register:
353 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
357 fs->regs.reg[reg].loc.reg = utmp;
358 break;
359
360 case DW_CFA_remember_state:
361 {
362 struct dwarf2_frame_state_reg_info *new_rs;
363
364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
365 *new_rs = fs->regs;
366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
367 fs->regs.prev = new_rs;
368 }
369 break;
370
371 case DW_CFA_restore_state:
372 {
373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
374
375 if (old_rs == NULL)
376 {
377 complaint (&symfile_complaints, "\
378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc));
379 }
380 else
381 {
382 xfree (fs->regs.reg);
383 fs->regs = *old_rs;
384 xfree (old_rs);
385 }
386 }
387 break;
388
389 case DW_CFA_def_cfa:
390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
392 fs->cfa_offset = utmp;
393 fs->cfa_how = CFA_REG_OFFSET;
394 break;
395
396 case DW_CFA_def_cfa_register:
397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
398 fs->cfa_how = CFA_REG_OFFSET;
399 break;
400
401 case DW_CFA_def_cfa_offset:
402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset);
403 /* cfa_how deliberately not set. */
404 break;
405
406 case DW_CFA_nop:
407 break;
408
409 case DW_CFA_def_cfa_expression:
410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len);
411 fs->cfa_exp = insn_ptr;
412 fs->cfa_how = CFA_EXP;
413 insn_ptr += fs->cfa_exp_len;
414 break;
415
416 case DW_CFA_expression:
417 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
420 fs->regs.reg[reg].loc.exp = insn_ptr;
421 fs->regs.reg[reg].exp_len = utmp;
422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
423 insn_ptr += utmp;
424 break;
425
426 case DW_CFA_offset_extended_sf:
427 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
429 offset *= fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 break;
434
435 case DW_CFA_def_cfa_sf:
436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg);
437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
438 fs->cfa_offset = offset * fs->data_align;
439 fs->cfa_how = CFA_REG_OFFSET;
440 break;
441
442 case DW_CFA_def_cfa_offset_sf:
443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
444 fs->cfa_offset = offset * fs->data_align;
445 /* cfa_how deliberately not set. */
446 break;
447
448 case DW_CFA_val_expression:
449 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
450 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
451 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
452 fs->regs.reg[reg].loc.exp = insn_ptr;
453 fs->regs.reg[reg].exp_len = utmp;
454 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
455 insn_ptr += utmp;
456 break;
457
458 case DW_CFA_GNU_args_size:
459 /* Ignored. */
460 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
461 break;
462
463 default:
464 internal_error (__FILE__, __LINE__, "Unknown CFI encountered.");
465 }
466 }
467 }
468
469 /* Don't allow remember/restore between CIE and FDE programs. */
470 dwarf2_frame_state_free_regs (fs->regs.prev);
471 fs->regs.prev = NULL;
472 }
473
474
475 /* Architecture-specific operations. */
476
477 /* Per-architecture data key. */
478 static struct gdbarch_data *dwarf2_frame_data;
479
480 struct dwarf2_frame_ops
481 {
482 /* Pre-initialize the register state REG for register REGNUM. */
483 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *);
484 };
485
486 /* Default architecture-specific register state initialization
487 function. */
488
489 static void
dwarf2_frame_default_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg)490 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
491 struct dwarf2_frame_state_reg *reg)
492 {
493 /* If we have a register that acts as a program counter, mark it as
494 a destination for the return address. If we have a register that
495 serves as the stack pointer, arrange for it to be filled with the
496 call frame address (CFA). The other registers are marked as
497 unspecified.
498
499 We copy the return address to the program counter, since many
500 parts in GDB assume that it is possible to get the return address
501 by unwinding the program counter register. However, on ISA's
502 with a dedicated return address register, the CFI usually only
503 contains information to unwind that return address register.
504
505 The reason we're treating the stack pointer special here is
506 because in many cases GCC doesn't emit CFI for the stack pointer
507 and implicitly assumes that it is equal to the CFA. This makes
508 some sense since the DWARF specification (version 3, draft 8,
509 p. 102) says that:
510
511 "Typically, the CFA is defined to be the value of the stack
512 pointer at the call site in the previous frame (which may be
513 different from its value on entry to the current frame)."
514
515 However, this isn't true for all platforms supported by GCC
516 (e.g. IBM S/390 and zSeries). Those architectures should provide
517 their own architecture-specific initialization function. */
518
519 if (regnum == PC_REGNUM)
520 reg->how = DWARF2_FRAME_REG_RA;
521 else if (regnum == SP_REGNUM)
522 reg->how = DWARF2_FRAME_REG_CFA;
523 }
524
525 /* Return a default for the architecture-specific operations. */
526
527 static void *
dwarf2_frame_init(struct obstack * obstack)528 dwarf2_frame_init (struct obstack *obstack)
529 {
530 struct dwarf2_frame_ops *ops;
531
532 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
533 ops->init_reg = dwarf2_frame_default_init_reg;
534 return ops;
535 }
536
537 /* Set the architecture-specific register state initialization
538 function for GDBARCH to INIT_REG. */
539
540 void
dwarf2_frame_set_init_reg(struct gdbarch * gdbarch,void (* init_reg)(struct gdbarch *,int,struct dwarf2_frame_state_reg *))541 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
542 void (*init_reg) (struct gdbarch *, int,
543 struct dwarf2_frame_state_reg *))
544 {
545 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
546
547 ops->init_reg = init_reg;
548 }
549
550 /* Pre-initialize the register state REG for register REGNUM. */
551
552 static void
dwarf2_frame_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg)553 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
554 struct dwarf2_frame_state_reg *reg)
555 {
556 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
557
558 ops->init_reg (gdbarch, regnum, reg);
559 }
560
561
562 struct dwarf2_frame_cache
563 {
564 /* DWARF Call Frame Address. */
565 CORE_ADDR cfa;
566
567 /* Saved registers, indexed by GDB register number, not by DWARF
568 register number. */
569 struct dwarf2_frame_state_reg *reg;
570 };
571
572 static struct dwarf2_frame_cache *
dwarf2_frame_cache(struct frame_info * next_frame,void ** this_cache)573 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache)
574 {
575 struct cleanup *old_chain;
576 struct gdbarch *gdbarch = get_frame_arch (next_frame);
577 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS;
578 struct dwarf2_frame_cache *cache;
579 struct dwarf2_frame_state *fs;
580 struct dwarf2_fde *fde;
581
582 if (*this_cache)
583 return *this_cache;
584
585 /* Allocate a new cache. */
586 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
587 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
588
589 /* Allocate and initialize the frame state. */
590 fs = XMALLOC (struct dwarf2_frame_state);
591 memset (fs, 0, sizeof (struct dwarf2_frame_state));
592 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
593
594 /* Unwind the PC.
595
596 Note that if NEXT_FRAME is never supposed to return (i.e. a call
597 to abort), the compiler might optimize away the instruction at
598 NEXT_FRAME's return address. As a result the return address will
599 point at some random instruction, and the CFI for that
600 instruction is probably worthless to us. GCC's unwinder solves
601 this problem by substracting 1 from the return address to get an
602 address in the middle of a presumed call instruction (or the
603 instruction in the associated delay slot). This should only be
604 done for "normal" frames and not for resume-type frames (signal
605 handlers, sentinel frames, dummy frames). The function
606 frame_unwind_address_in_block does just this. It's not clear how
607 reliable the method is though; there is the potential for the
608 register state pre-call being different to that on return. */
609 fs->pc = frame_unwind_address_in_block (next_frame);
610
611 /* Find the correct FDE. */
612 fde = dwarf2_frame_find_fde (&fs->pc);
613 gdb_assert (fde != NULL);
614
615 /* Extract any interesting information from the CIE. */
616 fs->data_align = fde->cie->data_alignment_factor;
617 fs->code_align = fde->cie->code_alignment_factor;
618 fs->retaddr_column = fde->cie->return_address_register;
619
620 /* First decode all the insns in the CIE. */
621 execute_cfa_program (fde->cie->initial_instructions,
622 fde->cie->end, next_frame, fs);
623
624 /* Save the initialized register set. */
625 fs->initial = fs->regs;
626 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
627
628 /* Then decode the insns in the FDE up to our target PC. */
629 execute_cfa_program (fde->instructions, fde->end, next_frame, fs);
630
631 /* Caclulate the CFA. */
632 switch (fs->cfa_how)
633 {
634 case CFA_REG_OFFSET:
635 cache->cfa = read_reg (next_frame, fs->cfa_reg);
636 cache->cfa += fs->cfa_offset;
637 break;
638
639 case CFA_EXP:
640 cache->cfa =
641 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0);
642 break;
643
644 default:
645 internal_error (__FILE__, __LINE__, "Unknown CFA rule.");
646 }
647
648 /* Initialize the register state. */
649 {
650 int regnum;
651
652 for (regnum = 0; regnum < num_regs; regnum++)
653 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]);
654 }
655
656 /* Go through the DWARF2 CFI generated table and save its register
657 location information in the cache. Note that we don't skip the
658 return address column; it's perfectly all right for it to
659 correspond to a real register. If it doesn't correspond to a
660 real register, or if we shouldn't treat it as such,
661 DWARF2_REG_TO_REGNUM should be defined to return a number outside
662 the range [0, NUM_REGS). */
663 {
664 int column; /* CFI speak for "register number". */
665
666 for (column = 0; column < fs->regs.num_regs; column++)
667 {
668 /* Use the GDB register number as the destination index. */
669 int regnum = DWARF2_REG_TO_REGNUM (column);
670
671 /* If there's no corresponding GDB register, ignore it. */
672 if (regnum < 0 || regnum >= num_regs)
673 continue;
674
675 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
676 of all debug info registers. If it doesn't, complain (but
677 not too loudly). It turns out that GCC assumes that an
678 unspecified register implies "same value" when CFI (draft
679 7) specifies nothing at all. Such a register could equally
680 be interpreted as "undefined". Also note that this check
681 isn't sufficient; it only checks that all registers in the
682 range [0 .. max column] are specified, and won't detect
683 problems when a debug info register falls outside of the
684 table. We need a way of iterating through all the valid
685 DWARF2 register numbers. */
686 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
687 complaint (&symfile_complaints,
688 "Incomplete CFI data; unspecified registers at 0x%s",
689 paddr (fs->pc));
690 else
691 cache->reg[regnum] = fs->regs.reg[column];
692 }
693 }
694
695 /* Eliminate any DWARF2_FRAME_REG_RA rules. */
696 {
697 int regnum;
698
699 for (regnum = 0; regnum < num_regs; regnum++)
700 {
701 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
702 {
703 struct dwarf2_frame_state_reg *retaddr_reg =
704 &fs->regs.reg[fs->retaddr_column];
705
706 /* It seems rather bizarre to specify an "empty" column as
707 the return adress column. However, this is exactly
708 what GCC does on some targets. It turns out that GCC
709 assumes that the return address can be found in the
710 register corresponding to the return address column.
711 Incidentally, that's how should treat a return address
712 column specifying "same value" too. */
713 if (fs->retaddr_column < fs->regs.num_regs
714 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
715 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
716 cache->reg[regnum] = *retaddr_reg;
717 else
718 {
719 cache->reg[regnum].loc.reg = fs->retaddr_column;
720 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
721 }
722 }
723 }
724 }
725
726 do_cleanups (old_chain);
727
728 *this_cache = cache;
729 return cache;
730 }
731
732 static void
dwarf2_frame_this_id(struct frame_info * next_frame,void ** this_cache,struct frame_id * this_id)733 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache,
734 struct frame_id *this_id)
735 {
736 struct dwarf2_frame_cache *cache =
737 dwarf2_frame_cache (next_frame, this_cache);
738
739 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame));
740 }
741
742 static void
dwarf2_frame_prev_register(struct frame_info * next_frame,void ** this_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)743 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache,
744 int regnum, int *optimizedp,
745 enum lval_type *lvalp, CORE_ADDR *addrp,
746 int *realnump, void *valuep)
747 {
748 struct gdbarch *gdbarch = get_frame_arch (next_frame);
749 struct dwarf2_frame_cache *cache =
750 dwarf2_frame_cache (next_frame, this_cache);
751 CORE_ADDR value;
752
753 switch (cache->reg[regnum].how)
754 {
755 case DWARF2_FRAME_REG_UNDEFINED:
756 /* If CFI explicitly specified that the value isn't defined,
757 mark it as optimized away; the value isn't available. */
758 *optimizedp = 1;
759 *lvalp = not_lval;
760 *addrp = 0;
761 *realnump = -1;
762 if (valuep)
763 {
764 /* In some cases, for example %eflags on the i386, we have
765 to provide a sane value, even though this register wasn't
766 saved. Assume we can get it from NEXT_FRAME. */
767 frame_unwind_register (next_frame, regnum, valuep);
768 }
769 break;
770
771 case DWARF2_FRAME_REG_SAVED_OFFSET:
772 *optimizedp = 0;
773 *lvalp = lval_memory;
774 *addrp = cache->cfa + cache->reg[regnum].loc.offset;
775 *realnump = -1;
776 if (valuep)
777 {
778 /* Read the value in from memory. */
779 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
780 }
781 break;
782
783 case DWARF2_FRAME_REG_SAVED_REG:
784 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg);
785 frame_register_unwind (next_frame, regnum,
786 optimizedp, lvalp, addrp, realnump, valuep);
787 break;
788
789 case DWARF2_FRAME_REG_SAVED_EXP:
790 *optimizedp = 0;
791 *lvalp = lval_memory;
792 *addrp = execute_stack_op (cache->reg[regnum].loc.exp,
793 cache->reg[regnum].exp_len,
794 next_frame, cache->cfa);
795 *realnump = -1;
796 if (valuep)
797 {
798 /* Read the value in from memory. */
799 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
800 }
801 break;
802
803 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
804 *optimizedp = 0;
805 *lvalp = not_lval;
806 *addrp = 0;
807 value = execute_stack_op (cache->reg[regnum].loc.exp,
808 cache->reg[regnum].exp_len,
809 next_frame, cache->cfa);
810 *realnump = -1;
811 if (valuep)
812 {
813 /* Store the value. */
814 store_typed_address (valuep, builtin_type_void_data_ptr, value);
815 }
816 break;
817
818 case DWARF2_FRAME_REG_UNSPECIFIED:
819 /* GCC, in its infinite wisdom decided to not provide unwind
820 information for registers that are "same value". Since
821 DWARF2 (3 draft 7) doesn't define such behavior, said
822 registers are actually undefined (which is different to CFI
823 "undefined"). Code above issues a complaint about this.
824 Here just fudge the books, assume GCC, and that the value is
825 more inner on the stack. */
826 frame_register_unwind (next_frame, regnum,
827 optimizedp, lvalp, addrp, realnump, valuep);
828 break;
829
830 case DWARF2_FRAME_REG_SAME_VALUE:
831 frame_register_unwind (next_frame, regnum,
832 optimizedp, lvalp, addrp, realnump, valuep);
833 break;
834
835 case DWARF2_FRAME_REG_CFA:
836 *optimizedp = 0;
837 *lvalp = not_lval;
838 *addrp = 0;
839 *realnump = -1;
840 if (valuep)
841 {
842 /* Store the value. */
843 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa);
844 }
845 break;
846
847 default:
848 internal_error (__FILE__, __LINE__, "Unknown register rule.");
849 }
850 }
851
852 static const struct frame_unwind dwarf2_frame_unwind =
853 {
854 NORMAL_FRAME,
855 dwarf2_frame_this_id,
856 dwarf2_frame_prev_register
857 };
858
859 const struct frame_unwind *
dwarf2_frame_sniffer(struct frame_info * next_frame)860 dwarf2_frame_sniffer (struct frame_info *next_frame)
861 {
862 /* Grab an address that is guarenteed to reside somewhere within the
863 function. frame_pc_unwind(), for a no-return next function, can
864 end up returning something past the end of this function's body. */
865 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame);
866 if (dwarf2_frame_find_fde (&block_addr))
867 return &dwarf2_frame_unwind;
868
869 return NULL;
870 }
871
872
873 /* There is no explicitly defined relationship between the CFA and the
874 location of frame's local variables and arguments/parameters.
875 Therefore, frame base methods on this page should probably only be
876 used as a last resort, just to avoid printing total garbage as a
877 response to the "info frame" command. */
878
879 static CORE_ADDR
dwarf2_frame_base_address(struct frame_info * next_frame,void ** this_cache)880 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache)
881 {
882 struct dwarf2_frame_cache *cache =
883 dwarf2_frame_cache (next_frame, this_cache);
884
885 return cache->cfa;
886 }
887
888 static const struct frame_base dwarf2_frame_base =
889 {
890 &dwarf2_frame_unwind,
891 dwarf2_frame_base_address,
892 dwarf2_frame_base_address,
893 dwarf2_frame_base_address
894 };
895
896 const struct frame_base *
dwarf2_frame_base_sniffer(struct frame_info * next_frame)897 dwarf2_frame_base_sniffer (struct frame_info *next_frame)
898 {
899 CORE_ADDR pc = frame_pc_unwind (next_frame);
900 if (dwarf2_frame_find_fde (&pc))
901 return &dwarf2_frame_base;
902
903 return NULL;
904 }
905
906 /* A minimal decoding of DWARF2 compilation units. We only decode
907 what's needed to get to the call frame information. */
908
909 struct comp_unit
910 {
911 /* Keep the bfd convenient. */
912 bfd *abfd;
913
914 struct objfile *objfile;
915
916 /* Linked list of CIEs for this object. */
917 struct dwarf2_cie *cie;
918
919 /* Pointer to the .debug_frame section loaded into memory. */
920 char *dwarf_frame_buffer;
921
922 /* Length of the loaded .debug_frame section. */
923 unsigned long dwarf_frame_size;
924
925 /* Pointer to the .debug_frame section. */
926 asection *dwarf_frame_section;
927
928 /* Base for DW_EH_PE_datarel encodings. */
929 bfd_vma dbase;
930
931 /* Base for DW_EH_PE_textrel encodings. */
932 bfd_vma tbase;
933 };
934
935 const struct objfile_data *dwarf2_frame_objfile_data;
936
937 static unsigned int
read_1_byte(bfd * bfd,char * buf)938 read_1_byte (bfd *bfd, char *buf)
939 {
940 return bfd_get_8 (abfd, (bfd_byte *) buf);
941 }
942
943 static unsigned int
read_4_bytes(bfd * abfd,char * buf)944 read_4_bytes (bfd *abfd, char *buf)
945 {
946 return bfd_get_32 (abfd, (bfd_byte *) buf);
947 }
948
949 static ULONGEST
read_8_bytes(bfd * abfd,char * buf)950 read_8_bytes (bfd *abfd, char *buf)
951 {
952 return bfd_get_64 (abfd, (bfd_byte *) buf);
953 }
954
955 static ULONGEST
read_unsigned_leb128(bfd * abfd,char * buf,unsigned int * bytes_read_ptr)956 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
957 {
958 ULONGEST result;
959 unsigned int num_read;
960 int shift;
961 unsigned char byte;
962
963 result = 0;
964 shift = 0;
965 num_read = 0;
966
967 do
968 {
969 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
970 buf++;
971 num_read++;
972 result |= ((byte & 0x7f) << shift);
973 shift += 7;
974 }
975 while (byte & 0x80);
976
977 *bytes_read_ptr = num_read;
978
979 return result;
980 }
981
982 static LONGEST
read_signed_leb128(bfd * abfd,char * buf,unsigned int * bytes_read_ptr)983 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
984 {
985 LONGEST result;
986 int shift;
987 unsigned int num_read;
988 unsigned char byte;
989
990 result = 0;
991 shift = 0;
992 num_read = 0;
993
994 do
995 {
996 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
997 buf++;
998 num_read++;
999 result |= ((byte & 0x7f) << shift);
1000 shift += 7;
1001 }
1002 while (byte & 0x80);
1003
1004 if ((shift < 32) && (byte & 0x40))
1005 result |= -(1 << shift);
1006
1007 *bytes_read_ptr = num_read;
1008
1009 return result;
1010 }
1011
1012 static ULONGEST
read_initial_length(bfd * abfd,char * buf,unsigned int * bytes_read_ptr)1013 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
1014 {
1015 LONGEST result;
1016
1017 result = bfd_get_32 (abfd, (bfd_byte *) buf);
1018 if (result == 0xffffffff)
1019 {
1020 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
1021 *bytes_read_ptr = 12;
1022 }
1023 else
1024 *bytes_read_ptr = 4;
1025
1026 return result;
1027 }
1028
1029
1030 /* Pointer encoding helper functions. */
1031
1032 /* GCC supports exception handling based on DWARF2 CFI. However, for
1033 technical reasons, it encodes addresses in its FDE's in a different
1034 way. Several "pointer encodings" are supported. The encoding
1035 that's used for a particular FDE is determined by the 'R'
1036 augmentation in the associated CIE. The argument of this
1037 augmentation is a single byte.
1038
1039 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1040 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1041 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1042 address should be interpreted (absolute, relative to the current
1043 position in the FDE, ...). Bit 7, indicates that the address
1044 should be dereferenced. */
1045
1046 static unsigned char
encoding_for_size(unsigned int size)1047 encoding_for_size (unsigned int size)
1048 {
1049 switch (size)
1050 {
1051 case 2:
1052 return DW_EH_PE_udata2;
1053 case 4:
1054 return DW_EH_PE_udata4;
1055 case 8:
1056 return DW_EH_PE_udata8;
1057 default:
1058 internal_error (__FILE__, __LINE__, "Unsupported address size");
1059 }
1060 }
1061
1062 static unsigned int
size_of_encoded_value(unsigned char encoding)1063 size_of_encoded_value (unsigned char encoding)
1064 {
1065 if (encoding == DW_EH_PE_omit)
1066 return 0;
1067
1068 switch (encoding & 0x07)
1069 {
1070 case DW_EH_PE_absptr:
1071 return TYPE_LENGTH (builtin_type_void_data_ptr);
1072 case DW_EH_PE_udata2:
1073 return 2;
1074 case DW_EH_PE_udata4:
1075 return 4;
1076 case DW_EH_PE_udata8:
1077 return 8;
1078 default:
1079 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1080 }
1081 }
1082
1083 static CORE_ADDR
read_encoded_value(struct comp_unit * unit,unsigned char encoding,char * buf,unsigned int * bytes_read_ptr)1084 read_encoded_value (struct comp_unit *unit, unsigned char encoding,
1085 char *buf, unsigned int *bytes_read_ptr)
1086 {
1087 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr);
1088 ptrdiff_t offset;
1089 CORE_ADDR base;
1090
1091 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1092 FDE's. */
1093 if (encoding & DW_EH_PE_indirect)
1094 internal_error (__FILE__, __LINE__,
1095 "Unsupported encoding: DW_EH_PE_indirect");
1096
1097 *bytes_read_ptr = 0;
1098
1099 switch (encoding & 0x70)
1100 {
1101 case DW_EH_PE_absptr:
1102 base = 0;
1103 break;
1104 case DW_EH_PE_pcrel:
1105 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section);
1106 base += (buf - unit->dwarf_frame_buffer);
1107 break;
1108 case DW_EH_PE_datarel:
1109 base = unit->dbase;
1110 break;
1111 case DW_EH_PE_textrel:
1112 base = unit->tbase;
1113 break;
1114 case DW_EH_PE_funcrel:
1115 /* FIXME: kettenis/20040501: For now just pretend
1116 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For
1117 reading the initial location of an FDE it should be treated
1118 as such, and currently that's the only place where this code
1119 is used. */
1120 base = 0;
1121 break;
1122 case DW_EH_PE_aligned:
1123 base = 0;
1124 offset = buf - unit->dwarf_frame_buffer;
1125 if ((offset % ptr_len) != 0)
1126 {
1127 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1128 buf += *bytes_read_ptr;
1129 }
1130 break;
1131 default:
1132 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1133 }
1134
1135 if ((encoding & 0x07) == 0x00)
1136 encoding |= encoding_for_size (ptr_len);
1137
1138 switch (encoding & 0x0f)
1139 {
1140 case DW_EH_PE_udata2:
1141 *bytes_read_ptr += 2;
1142 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1143 case DW_EH_PE_udata4:
1144 *bytes_read_ptr += 4;
1145 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1146 case DW_EH_PE_udata8:
1147 *bytes_read_ptr += 8;
1148 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1149 case DW_EH_PE_sdata2:
1150 *bytes_read_ptr += 2;
1151 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1152 case DW_EH_PE_sdata4:
1153 *bytes_read_ptr += 4;
1154 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1155 case DW_EH_PE_sdata8:
1156 *bytes_read_ptr += 8;
1157 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1158 default:
1159 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding");
1160 }
1161 }
1162
1163
1164 /* GCC uses a single CIE for all FDEs in a .debug_frame section.
1165 That's why we use a simple linked list here. */
1166
1167 static struct dwarf2_cie *
find_cie(struct comp_unit * unit,ULONGEST cie_pointer)1168 find_cie (struct comp_unit *unit, ULONGEST cie_pointer)
1169 {
1170 struct dwarf2_cie *cie = unit->cie;
1171
1172 while (cie)
1173 {
1174 if (cie->cie_pointer == cie_pointer)
1175 return cie;
1176
1177 cie = cie->next;
1178 }
1179
1180 return NULL;
1181 }
1182
1183 static void
add_cie(struct comp_unit * unit,struct dwarf2_cie * cie)1184 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie)
1185 {
1186 cie->next = unit->cie;
1187 unit->cie = cie;
1188 }
1189
1190 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1191 inital location associated with it into *PC. */
1192
1193 static struct dwarf2_fde *
dwarf2_frame_find_fde(CORE_ADDR * pc)1194 dwarf2_frame_find_fde (CORE_ADDR *pc)
1195 {
1196 struct objfile *objfile;
1197
1198 ALL_OBJFILES (objfile)
1199 {
1200 struct dwarf2_fde *fde;
1201 CORE_ADDR offset;
1202
1203 fde = objfile_data (objfile, dwarf2_frame_objfile_data);
1204 if (fde == NULL)
1205 continue;
1206
1207 gdb_assert (objfile->section_offsets);
1208 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1209
1210 while (fde)
1211 {
1212 if (*pc >= fde->initial_location + offset
1213 && *pc < fde->initial_location + offset + fde->address_range)
1214 {
1215 *pc = fde->initial_location + offset;
1216 return fde;
1217 }
1218
1219 fde = fde->next;
1220 }
1221 }
1222
1223 return NULL;
1224 }
1225
1226 static void
add_fde(struct comp_unit * unit,struct dwarf2_fde * fde)1227 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde)
1228 {
1229 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data);
1230 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde);
1231 }
1232
1233 #ifdef CC_HAS_LONG_LONG
1234 #define DW64_CIE_ID 0xffffffffffffffffULL
1235 #else
1236 #define DW64_CIE_ID ~0
1237 #endif
1238
1239 static char *decode_frame_entry (struct comp_unit *unit, char *start,
1240 int eh_frame_p);
1241
1242 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
1243 the next byte to be processed. */
1244 static char *
decode_frame_entry_1(struct comp_unit * unit,char * start,int eh_frame_p)1245 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p)
1246 {
1247 char *buf;
1248 LONGEST length;
1249 unsigned int bytes_read;
1250 int dwarf64_p;
1251 ULONGEST cie_id;
1252 ULONGEST cie_pointer;
1253 char *end;
1254
1255 buf = start;
1256 length = read_initial_length (unit->abfd, buf, &bytes_read);
1257 buf += bytes_read;
1258 end = buf + length;
1259
1260 /* Are we still within the section? */
1261 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1262 return NULL;
1263
1264 if (length == 0)
1265 return end;
1266
1267 /* Distinguish between 32 and 64-bit encoded frame info. */
1268 dwarf64_p = (bytes_read == 12);
1269
1270 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1271 if (eh_frame_p)
1272 cie_id = 0;
1273 else if (dwarf64_p)
1274 cie_id = DW64_CIE_ID;
1275 else
1276 cie_id = DW_CIE_ID;
1277
1278 if (dwarf64_p)
1279 {
1280 cie_pointer = read_8_bytes (unit->abfd, buf);
1281 buf += 8;
1282 }
1283 else
1284 {
1285 cie_pointer = read_4_bytes (unit->abfd, buf);
1286 buf += 4;
1287 }
1288
1289 if (cie_pointer == cie_id)
1290 {
1291 /* This is a CIE. */
1292 struct dwarf2_cie *cie;
1293 char *augmentation;
1294 unsigned int cie_version;
1295
1296 /* Record the offset into the .debug_frame section of this CIE. */
1297 cie_pointer = start - unit->dwarf_frame_buffer;
1298
1299 /* Check whether we've already read it. */
1300 if (find_cie (unit, cie_pointer))
1301 return end;
1302
1303 cie = (struct dwarf2_cie *)
1304 obstack_alloc (&unit->objfile->objfile_obstack,
1305 sizeof (struct dwarf2_cie));
1306 cie->initial_instructions = NULL;
1307 cie->cie_pointer = cie_pointer;
1308
1309 /* The encoding for FDE's in a normal .debug_frame section
1310 depends on the target address size. */
1311 cie->encoding = DW_EH_PE_absptr;
1312
1313 /* Check version number. */
1314 cie_version = read_1_byte (unit->abfd, buf);
1315 if (cie_version != 1 && cie_version != 3)
1316 return NULL;
1317 buf += 1;
1318
1319 /* Interpret the interesting bits of the augmentation. */
1320 augmentation = buf;
1321 buf = augmentation + strlen (augmentation) + 1;
1322
1323 /* The GCC 2.x "eh" augmentation has a pointer immediately
1324 following the augmentation string, so it must be handled
1325 first. */
1326 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1327 {
1328 /* Skip. */
1329 buf += TYPE_LENGTH (builtin_type_void_data_ptr);
1330 augmentation += 2;
1331 }
1332
1333 cie->code_alignment_factor =
1334 read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1335 buf += bytes_read;
1336
1337 cie->data_alignment_factor =
1338 read_signed_leb128 (unit->abfd, buf, &bytes_read);
1339 buf += bytes_read;
1340
1341 if (cie_version == 1)
1342 {
1343 cie->return_address_register = read_1_byte (unit->abfd, buf);
1344 bytes_read = 1;
1345 }
1346 else
1347 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1348 &bytes_read);
1349 buf += bytes_read;
1350
1351 cie->saw_z_augmentation = (*augmentation == 'z');
1352 if (cie->saw_z_augmentation)
1353 {
1354 ULONGEST length;
1355
1356 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1357 buf += bytes_read;
1358 if (buf > end)
1359 return NULL;
1360 cie->initial_instructions = buf + length;
1361 augmentation++;
1362 }
1363
1364 while (*augmentation)
1365 {
1366 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1367 if (*augmentation == 'L')
1368 {
1369 /* Skip. */
1370 buf++;
1371 augmentation++;
1372 }
1373
1374 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1375 else if (*augmentation == 'R')
1376 {
1377 cie->encoding = *buf++;
1378 augmentation++;
1379 }
1380
1381 /* "P" indicates a personality routine in the CIE augmentation. */
1382 else if (*augmentation == 'P')
1383 {
1384 /* Skip. */
1385 buf += size_of_encoded_value (*buf++);
1386 augmentation++;
1387 }
1388
1389 /* Otherwise we have an unknown augmentation.
1390 Bail out unless we saw a 'z' prefix. */
1391 else
1392 {
1393 if (cie->initial_instructions == NULL)
1394 return end;
1395
1396 /* Skip unknown augmentations. */
1397 buf = cie->initial_instructions;
1398 break;
1399 }
1400 }
1401
1402 cie->initial_instructions = buf;
1403 cie->end = end;
1404
1405 add_cie (unit, cie);
1406 }
1407 else
1408 {
1409 /* This is a FDE. */
1410 struct dwarf2_fde *fde;
1411
1412 /* In an .eh_frame section, the CIE pointer is the delta between the
1413 address within the FDE where the CIE pointer is stored and the
1414 address of the CIE. Convert it to an offset into the .eh_frame
1415 section. */
1416 if (eh_frame_p)
1417 {
1418 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1419 cie_pointer -= (dwarf64_p ? 8 : 4);
1420 }
1421
1422 /* In either case, validate the result is still within the section. */
1423 if (cie_pointer >= unit->dwarf_frame_size)
1424 return NULL;
1425
1426 fde = (struct dwarf2_fde *)
1427 obstack_alloc (&unit->objfile->objfile_obstack,
1428 sizeof (struct dwarf2_fde));
1429 fde->cie = find_cie (unit, cie_pointer);
1430 if (fde->cie == NULL)
1431 {
1432 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1433 eh_frame_p);
1434 fde->cie = find_cie (unit, cie_pointer);
1435 }
1436
1437 gdb_assert (fde->cie != NULL);
1438
1439 fde->initial_location =
1440 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read);
1441 buf += bytes_read;
1442
1443 fde->address_range =
1444 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read);
1445 buf += bytes_read;
1446
1447 /* A 'z' augmentation in the CIE implies the presence of an
1448 augmentation field in the FDE as well. The only thing known
1449 to be in here at present is the LSDA entry for EH. So we
1450 can skip the whole thing. */
1451 if (fde->cie->saw_z_augmentation)
1452 {
1453 ULONGEST length;
1454
1455 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1456 buf += bytes_read + length;
1457 if (buf > end)
1458 return NULL;
1459 }
1460
1461 fde->instructions = buf;
1462 fde->end = end;
1463
1464 add_fde (unit, fde);
1465 }
1466
1467 return end;
1468 }
1469
1470 /* Read a CIE or FDE in BUF and decode it. */
1471 static char *
decode_frame_entry(struct comp_unit * unit,char * start,int eh_frame_p)1472 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p)
1473 {
1474 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1475 char *ret;
1476 const char *msg;
1477 ptrdiff_t start_offset;
1478
1479 while (1)
1480 {
1481 ret = decode_frame_entry_1 (unit, start, eh_frame_p);
1482 if (ret != NULL)
1483 break;
1484
1485 /* We have corrupt input data of some form. */
1486
1487 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1488 and mismatches wrt padding and alignment of debug sections. */
1489 /* Note that there is no requirement in the standard for any
1490 alignment at all in the frame unwind sections. Testing for
1491 alignment before trying to interpret data would be incorrect.
1492
1493 However, GCC traditionally arranged for frame sections to be
1494 sized such that the FDE length and CIE fields happen to be
1495 aligned (in theory, for performance). This, unfortunately,
1496 was done with .align directives, which had the side effect of
1497 forcing the section to be aligned by the linker.
1498
1499 This becomes a problem when you have some other producer that
1500 creates frame sections that are not as strictly aligned. That
1501 produces a hole in the frame info that gets filled by the
1502 linker with zeros.
1503
1504 The GCC behaviour is arguably a bug, but it's effectively now
1505 part of the ABI, so we're now stuck with it, at least at the
1506 object file level. A smart linker may decide, in the process
1507 of compressing duplicate CIE information, that it can rewrite
1508 the entire output section without this extra padding. */
1509
1510 start_offset = start - unit->dwarf_frame_buffer;
1511 if (workaround < ALIGN4 && (start_offset & 3) != 0)
1512 {
1513 start += 4 - (start_offset & 3);
1514 workaround = ALIGN4;
1515 continue;
1516 }
1517 if (workaround < ALIGN8 && (start_offset & 7) != 0)
1518 {
1519 start += 8 - (start_offset & 7);
1520 workaround = ALIGN8;
1521 continue;
1522 }
1523
1524 /* Nothing left to try. Arrange to return as if we've consumed
1525 the entire input section. Hopefully we'll get valid info from
1526 the other of .debug_frame/.eh_frame. */
1527 workaround = FAIL;
1528 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1529 break;
1530 }
1531
1532 switch (workaround)
1533 {
1534 case NONE:
1535 break;
1536
1537 case ALIGN4:
1538 complaint (&symfile_complaints,
1539 "Corrupt data in %s:%s; align 4 workaround apparently succeeded",
1540 unit->dwarf_frame_section->owner->filename,
1541 unit->dwarf_frame_section->name);
1542 break;
1543
1544 case ALIGN8:
1545 complaint (&symfile_complaints,
1546 "Corrupt data in %s:%s; align 8 workaround apparently succeeded",
1547 unit->dwarf_frame_section->owner->filename,
1548 unit->dwarf_frame_section->name);
1549 break;
1550
1551 default:
1552 complaint (&symfile_complaints,
1553 "Corrupt data in %s:%s",
1554 unit->dwarf_frame_section->owner->filename,
1555 unit->dwarf_frame_section->name);
1556 break;
1557 }
1558
1559 return ret;
1560 }
1561
1562
1563 /* FIXME: kettenis/20030504: This still needs to be integrated with
1564 dwarf2read.c in a better way. */
1565
1566 /* Imported from dwarf2read.c. */
1567 extern asection *dwarf_frame_section;
1568 extern asection *dwarf_eh_frame_section;
1569
1570 /* Imported from dwarf2read.c. */
1571 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp);
1572
1573 void
dwarf2_build_frame_info(struct objfile * objfile)1574 dwarf2_build_frame_info (struct objfile *objfile)
1575 {
1576 struct comp_unit unit;
1577 char *frame_ptr;
1578
1579 /* Build a minimal decoding of the DWARF2 compilation unit. */
1580 unit.abfd = objfile->obfd;
1581 unit.objfile = objfile;
1582 unit.dbase = 0;
1583 unit.tbase = 0;
1584
1585 /* First add the information from the .eh_frame section. That way,
1586 the FDEs from that section are searched last. */
1587 if (dwarf_eh_frame_section)
1588 {
1589 asection *got, *txt;
1590
1591 unit.cie = NULL;
1592 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1593 dwarf_eh_frame_section);
1594
1595 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section);
1596 unit.dwarf_frame_section = dwarf_eh_frame_section;
1597
1598 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
1599 that is used for the i386/amd64 target, which currently is
1600 the only target in GCC that supports/uses the
1601 DW_EH_PE_datarel encoding. */
1602 got = bfd_get_section_by_name (unit.abfd, ".got");
1603 if (got)
1604 unit.dbase = got->vma;
1605
1606 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
1607 so far. */
1608 txt = bfd_get_section_by_name (unit.abfd, ".text");
1609 if (txt)
1610 unit.tbase = txt->vma;
1611
1612 frame_ptr = unit.dwarf_frame_buffer;
1613 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1614 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1);
1615 }
1616
1617 if (dwarf_frame_section)
1618 {
1619 unit.cie = NULL;
1620 unit.dwarf_frame_buffer = dwarf2_read_section (objfile,
1621 dwarf_frame_section);
1622 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section);
1623 unit.dwarf_frame_section = dwarf_frame_section;
1624
1625 frame_ptr = unit.dwarf_frame_buffer;
1626 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size)
1627 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0);
1628 }
1629 }
1630
1631 /* Provide a prototype to silence -Wmissing-prototypes. */
1632 void _initialize_dwarf2_frame (void);
1633
1634 void
_initialize_dwarf2_frame(void)1635 _initialize_dwarf2_frame (void)
1636 {
1637 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1638 dwarf2_frame_objfile_data = register_objfile_data ();
1639 }
1640