xref: /netbsd/external/bsd/ntp/dist/ntpd/refclock_chu.c (revision 9034ec65)
1 /*	$NetBSD: refclock_chu.c,v 1.10 2020/05/25 20:47:25 christos Exp $	*/
2 
3 /*
4  * refclock_chu - clock driver for Canadian CHU time/frequency station
5  */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
9 
10 #include "ntp_types.h"
11 
12 #if defined(REFCLOCK) && defined(CLOCK_CHU)
13 
14 #include "ntpd.h"
15 #include "ntp_io.h"
16 #include "ntp_refclock.h"
17 #include "ntp_calendar.h"
18 #include "ntp_stdlib.h"
19 
20 #include <stdio.h>
21 #include <ctype.h>
22 #include <math.h>
23 
24 #ifdef HAVE_AUDIO
25 #include "audio.h"
26 #endif /* HAVE_AUDIO */
27 
28 #define ICOM 	1		/* undefine to suppress ICOM code */
29 
30 #ifdef ICOM
31 #include "icom.h"
32 #endif /* ICOM */
33 /*
34  * Audio CHU demodulator/decoder
35  *
36  * This driver synchronizes the computer time using data encoded in
37  * radio transmissions from Canadian time/frequency station CHU in
38  * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
39  * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
40  * ordinary shortwave receiver can be tuned manually to one of these
41  * frequencies or, in the case of ICOM receivers, the receiver can be
42  * tuned automatically as propagation conditions change throughout the
43  * day and season.
44  *
45  * The driver requires an audio codec or sound card with sampling rate 8
46  * kHz and mu-law companding. This is the same standard as used by the
47  * telephone industry and is supported by most hardware and operating
48  * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
49  * implementation, only one audio driver and codec can be supported on a
50  * single machine.
51  *
52  * The driver can be compiled to use a Bell 103 compatible modem or
53  * modem chip to receive the radio signal and demodulate the data.
54  * Alternatively, the driver can be compiled to use the audio codec of
55  * the workstation or another with compatible audio drivers. In the
56  * latter case, the driver implements the modem using DSP routines, so
57  * the radio can be connected directly to either the microphone on line
58  * input port. In either case, the driver decodes the data using a
59  * maximum-likelihood technique which exploits the considerable degree
60  * of redundancy available to maximize accuracy and minimize errors.
61  *
62  * The CHU time broadcast includes an audio signal compatible with the
63  * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
64  * consists of nine, ten-character bursts transmitted at 300 bps between
65  * seconds 31 and 39 of each minute. Each character consists of eight
66  * data bits plus one start bit and two stop bits to encode two hex
67  * digits. The burst data consist of five characters (ten hex digits)
68  * followed by a repeat of these characters. In format A, the characters
69  * are repeated in the same polarity; in format B, the characters are
70  * repeated in the opposite polarity.
71  *
72  * Format A bursts are sent at seconds 32 through 39 of the minute in
73  * hex digits (nibble swapped)
74  *
75  *	6dddhhmmss6dddhhmmss
76  *
77  * The first ten digits encode a frame marker (6) followed by the day
78  * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
79  * format A bursts are sent during the third decade of seconds the tens
80  * digit of ss is always 3. The driver uses this to determine correct
81  * burst synchronization. These digits are then repeated with the same
82  * polarity.
83  *
84  * Format B bursts are sent at second 31 of the minute in hex digits
85  *
86  *	xdyyyyttaaxdyyyyttaa
87  *
88  * The first ten digits encode a code (x described below) followed by
89  * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
90  * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
91  * digits are then repeated with inverted polarity.
92  *
93  * The x is coded
94  *
95  * 1 Sign of DUT (0 = +)
96  * 2 Leap second warning. One second will be added.
97  * 4 Leap second warning. One second will be subtracted.
98  * 8 Even parity bit for this nibble.
99  *
100  * By design, the last stop bit of the last character in the burst
101  * coincides with 0.5 second. Since characters have 11 bits and are
102  * transmitted at 300 bps, the last stop bit of the first character
103  * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
104  * UART, character interrupts can vary somewhere between the end of bit
105  * 9 and end of bit 11. These eccentricities can be corrected along with
106  * the radio propagation delay using fudge time 1.
107  *
108  * Debugging aids
109  *
110  * The timecode format used for debugging and data recording includes
111  * data helpful in diagnosing problems with the radio signal and serial
112  * connections. With debugging enabled (-d on the ntpd command line),
113  * the driver produces one line for each burst in two formats
114  * corresponding to format A and B.Each line begins with the format code
115  * chuA or chuB followed by the status code and signal level (0-9999).
116  * The remainder of the line is as follows.
117  *
118  * Following is format A:
119  *
120  *	n b f s m code
121  *
122  * where n is the number of characters in the burst (0-10), b the burst
123  * distance (0-40), f the field alignment (-1, 0, 1), s the
124  * synchronization distance (0-16), m the burst number (2-9) and code
125  * the burst characters as received. Note that the hex digits in each
126  * character are reversed, so the burst
127  *
128  *	10 38 0 16 9 06851292930685129293
129  *
130  * is interpreted as containing 10 characters with burst distance 38,
131  * field alignment 0, synchronization distance 16 and burst number 9.
132  * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
133  * second 39.
134  *
135  * Following is format B:
136  *
137  *	n b s code
138  *
139  * where n is the number of characters in the burst (0-10), b the burst
140  * distance (0-40), s the synchronization distance (0-40) and code the
141  * burst characters as received. Note that the hex digits in each
142  * character are reversed and the last ten digits inverted, so the burst
143  *
144  *	10 40 1091891300ef6e76ec
145  *
146  * is interpreted as containing 10 characters with burst distance 40.
147  * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
148  * - UTC 31 seconds.
149  *
150  * Each line is preceeded by the code chuA or chuB, as appropriate. If
151  * the audio driver is compiled, the current gain (0-255) and relative
152  * signal level (0-9999) follow the code. The receiver volume control
153  * should be set so that the gain is somewhere near the middle of the
154  * range 0-255, which results in a signal level near 1000.
155  *
156  * In addition to the above, the reference timecode is updated and
157  * written to the clockstats file and debug score after the last burst
158  * received in the minute. The format is
159  *
160  *	sq yyyy ddd hh:mm:ss l s dd t agc ident m b
161  *
162  * s	'?' before first synchronized and ' ' after that
163  * q	status code (see below)
164  * yyyy	year
165  * ddd	day of year
166  * hh:mm:ss time of day
167  * l	leap second indicator (space, L or D)
168  * dst	Canadian daylight code (opaque)
169  * t	number of minutes since last synchronized
170  * agc	audio gain (0 - 255)
171  * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
172  * m	signal metric (0 - 100)
173  * b	number of timecodes for the previous minute (0 - 59)
174  *
175  * Fudge factors
176  *
177  * For accuracies better than the low millisceconds, fudge time1 can be
178  * set to the radio propagation delay from CHU to the receiver. This can
179  * be done conviently using the minimuf program.
180  *
181  * Fudge flag4 causes the dubugging output described above to be
182  * recorded in the clockstats file. When the audio driver is compiled,
183  * fudge flag2 selects the audio input port, where 0 is the mike port
184  * (default) and 1 is the line-in port. It does not seem useful to
185  * select the compact disc player port. Fudge flag3 enables audio
186  * monitoring of the input signal. For this purpose, the monitor gain is
187  * set to a default value.
188  *
189  * The audio codec code is normally compiled in the driver if the
190  * architecture supports it (HAVE_AUDIO defined), but is used only if
191  * the link /dev/chu_audio is defined and valid. The serial port code is
192  * always compiled in the driver, but is used only if the autdio codec
193  * is not available and the link /dev/chu%d is defined and valid.
194  *
195  * The ICOM code is normally compiled in the driver if selected (ICOM
196  * defined), but is used only if the link /dev/icom%d is defined and
197  * valid and the mode keyword on the server configuration command
198  * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
199  * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
200  * if one. The C-IV trace is turned on if the debug level is greater
201  * than one.
202  *
203  * Alarm codes
204  *
205  * CEVNT_BADTIME	invalid date or time
206  * CEVNT_PROP		propagation failure - no stations heard
207  */
208 /*
209  * Interface definitions
210  */
211 #define	SPEED232	B300	/* uart speed (300 baud) */
212 #define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
213 #define	REFID		"CHU"	/* reference ID */
214 #define	DEVICE		"/dev/chu%d" /* device name and unit */
215 #define	SPEED232	B300	/* UART speed (300 baud) */
216 #ifdef ICOM
217 #define TUNE		.001	/* offset for narrow filter (MHz) */
218 #define DWELL		5	/* minutes in a dwell */
219 #define NCHAN		3	/* number of channels */
220 #define ISTAGE		3	/* number of integrator stages */
221 #endif /* ICOM */
222 
223 #ifdef HAVE_AUDIO
224 /*
225  * Audio demodulator definitions
226  */
227 #define SECOND		8000	/* nominal sample rate (Hz) */
228 #define BAUD		300	/* modulation rate (bps) */
229 #define OFFSET		128	/* companded sample offset */
230 #define SIZE		256	/* decompanding table size */
231 #define	MAXAMP		6000.	/* maximum signal level */
232 #define	MAXCLP		100	/* max clips above reference per s */
233 #define	SPAN		800.	/* min envelope span */
234 #define LIMIT		1000.	/* soft limiter threshold */
235 #define AGAIN		6.	/* baseband gain */
236 #define LAG		10	/* discriminator lag */
237 #define	DEVICE_AUDIO	"/dev/audio" /* device name */
238 #define	DESCRIPTION	"CHU Audio/Modem Receiver" /* WRU */
239 #define	AUDIO_BUFSIZ	240	/* audio buffer size (30 ms) */
240 #else
241 #define	DESCRIPTION	"CHU Modem Receiver" /* WRU */
242 #endif /* HAVE_AUDIO */
243 
244 /*
245  * Decoder definitions
246  */
247 #define CHAR		(11. / 300.) /* character time (s) */
248 #define BURST		11	/* max characters per burst */
249 #define MINCHARS		9	/* min characters per burst */
250 #define MINDIST		28	/* min burst distance (of 40)  */
251 #define MINSYNC		8	/* min sync distance (of 16) */
252 #define MINSTAMP	20	/* min timestamps (of 60) */
253 #define MINMETRIC	50	/* min channel metric (of 160) */
254 
255 /*
256  * The on-time synchronization point for the driver is the last stop bit
257  * of the first character 170 ms. The modem delay is 0.8 ms, while the
258  * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
259  * ms due to the codec and other causes was determined by calibrating to
260  * a PPS signal from a GPS receiver. The additional propagation delay
261  * specific to each receiver location can be programmed in the fudge
262  * time1.
263  *
264  * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
265  * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
266  * offsets vary up to 0.3 ms due to ionospheric layer height variations.
267  * The processor load due to the driver is 0.4 percent.
268  */
269 #define	PDELAY	((170 + .8 + 4.7 + 1.3) / 1000)	/* system delay (s) */
270 
271 /*
272  * Status bits (status)
273  */
274 #define RUNT		0x0001	/* runt burst */
275 #define NOISE		0x0002	/* noise burst */
276 #define BFRAME		0x0004	/* invalid format B frame sync */
277 #define BFORMAT		0x0008	/* invalid format B data */
278 #define AFRAME		0x0010	/* invalid format A frame sync */
279 #define AFORMAT		0x0020	/* invalid format A data */
280 #define DECODE		0x0040	/* invalid data decode */
281 #define STAMP		0x0080	/* too few timestamps */
282 #define AVALID		0x0100	/* valid A frame */
283 #define BVALID		0x0200	/* valid B frame */
284 #define INSYNC		0x0400	/* clock synchronized */
285 #define	METRIC		0x0800	/* one or more stations heard */
286 
287 /*
288  * Alarm status bits (alarm)
289  *
290  * These alarms are set at the end of a minute in which at least one
291  * burst was received. SYNERR is raised if the AFRAME or BFRAME status
292  * bits are set during the minute, FMTERR is raised if the AFORMAT or
293  * BFORMAT status bits are set, DECERR is raised if the DECODE status
294  * bit is set and TSPERR is raised if the STAMP status bit is set.
295  */
296 #define SYNERR		0x01	/* frame sync error */
297 #define FMTERR		0x02	/* data format error */
298 #define DECERR		0x04	/* data decoding error */
299 #define TSPERR		0x08	/* insufficient data */
300 
301 #ifdef HAVE_AUDIO
302 /*
303  * Maximum-likelihood UART structure. There are eight of these
304  * corresponding to the number of phases.
305  */
306 struct surv {
307 	l_fp	cstamp;		/* last bit timestamp */
308 	double	shift[12];	/* sample shift register */
309 	double	span;		/* shift register envelope span */
310 	double	dist;		/* sample distance */
311 	int	uart;		/* decoded character */
312 };
313 #endif /* HAVE_AUDIO */
314 
315 #ifdef ICOM
316 /*
317  * CHU station structure. There are three of these corresponding to the
318  * three frequencies.
319  */
320 struct xmtr {
321 	double	integ[ISTAGE];	/* circular integrator */
322 	double	metric;		/* integrator sum */
323 	int	iptr;		/* integrator pointer */
324 	int	probe;		/* dwells since last probe */
325 };
326 #endif /* ICOM */
327 
328 /*
329  * CHU unit control structure
330  */
331 struct chuunit {
332 	u_char	decode[20][16];	/* maximum-likelihood decoding matrix */
333 	l_fp	cstamp[BURST];	/* character timestamps */
334 	l_fp	tstamp[MAXSTAGE]; /* timestamp samples */
335 	l_fp	timestamp;	/* current buffer timestamp */
336 	l_fp	laststamp;	/* last buffer timestamp */
337 	l_fp	charstamp;	/* character time as a l_fp */
338 	int	second;		/* counts the seconds of the minute */
339 	int	errflg;		/* error flags */
340 	int	status;		/* status bits */
341 	char	ident[5];	/* station ID and channel */
342 #ifdef ICOM
343 	int	fd_icom;	/* ICOM file descriptor */
344 	int	chan;		/* radio channel */
345 	int	dwell;		/* dwell cycle */
346 	struct xmtr xmtr[NCHAN]; /* station metric */
347 #endif /* ICOM */
348 
349 	/*
350 	 * Character burst variables
351 	 */
352 	int	cbuf[BURST];	/* character buffer */
353 	int	ntstamp;	/* number of timestamp samples */
354 	int	ndx;		/* buffer start index */
355 	int	prevsec;	/* previous burst second */
356 	int	burdist;	/* burst distance */
357 	int	syndist;	/* sync distance */
358 	int	burstcnt;	/* format A bursts this minute */
359 	double	maxsignal;	/* signal level (modem only) */
360 	int	gain;		/* codec gain (modem only) */
361 
362 	/*
363 	 * Format particulars
364 	 */
365 	int	leap;		/* leap/dut code */
366 	int	dut;		/* UTC1 correction */
367 	int	tai;		/* TAI - UTC correction */
368 	int	dst;		/* Canadian DST code */
369 
370 #ifdef HAVE_AUDIO
371 	/*
372 	 * Audio codec variables
373 	 */
374 	int	fd_audio;	/* audio port file descriptor */
375 	double	comp[SIZE];	/* decompanding table */
376 	int	port;		/* codec port */
377 	int	mongain;	/* codec monitor gain */
378 	int	clipcnt;	/* sample clip count */
379 	int	seccnt;		/* second interval counter */
380 
381 	/*
382 	 * Modem variables
383 	 */
384 	l_fp	tick;		/* audio sample increment */
385 	double	bpf[9];		/* IIR bandpass filter */
386 	double	disc[LAG];	/* discriminator shift register */
387 	double	lpf[27];	/* FIR lowpass filter */
388 	double	monitor;	/* audio monitor */
389 	int	discptr;	/* discriminator pointer */
390 
391 	/*
392 	 * Maximum-likelihood UART variables
393 	 */
394 	double	baud;		/* baud interval */
395 	struct surv surv[8];	/* UART survivor structures */
396 	int	decptr;		/* decode pointer */
397 	int	decpha;		/* decode phase */
398 	int	dbrk;		/* holdoff counter */
399 #endif /* HAVE_AUDIO */
400 };
401 
402 /*
403  * Function prototypes
404  */
405 static	int	chu_start	(int, struct peer *);
406 static	void	chu_shutdown	(int, struct peer *);
407 static	void	chu_receive	(struct recvbuf *);
408 static	void	chu_second	(int, struct peer *);
409 static	void	chu_poll	(int, struct peer *);
410 
411 /*
412  * More function prototypes
413  */
414 static	void	chu_decode	(struct peer *, int, l_fp);
415 static	void	chu_burst	(struct peer *);
416 static	void	chu_clear	(struct peer *);
417 static	void	chu_a		(struct peer *, int);
418 static	void	chu_b		(struct peer *, int);
419 static	int	chu_dist	(int, int);
420 static	double	chu_major	(struct peer *);
421 #ifdef HAVE_AUDIO
422 static	void	chu_uart	(struct surv *, double);
423 static	void	chu_rf		(struct peer *, double);
424 static	void	chu_gain	(struct peer *);
425 static	void	chu_audio_receive (struct recvbuf *rbufp);
426 #endif /* HAVE_AUDIO */
427 #ifdef ICOM
428 static	int	chu_newchan	(struct peer *, double);
429 #endif /* ICOM */
430 static	void	chu_serial_receive (struct recvbuf *rbufp);
431 
432 /*
433  * Global variables
434  */
435 static char hexchar[] = "0123456789abcdef_*=";
436 
437 #ifdef ICOM
438 /*
439  * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
440  * transmits on USB with carrier so we can use AM and the narrow SSB
441  * filter.
442  */
443 static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */
444 #endif /* ICOM */
445 
446 /*
447  * Transfer vector
448  */
449 struct	refclock refclock_chu = {
450 	chu_start,		/* start up driver */
451 	chu_shutdown,		/* shut down driver */
452 	chu_poll,		/* transmit poll message */
453 	noentry,		/* not used (old chu_control) */
454 	noentry,		/* initialize driver (not used) */
455 	noentry,		/* not used (old chu_buginfo) */
456 	chu_second		/* housekeeping timer */
457 };
458 
459 
460 /*
461  * chu_start - open the devices and initialize data for processing
462  */
463 static int
chu_start(int unit,struct peer * peer)464 chu_start(
465 	int	unit,		/* instance number (not used) */
466 	struct peer *peer	/* peer structure pointer */
467 	)
468 {
469 	struct chuunit *up;
470 	struct refclockproc *pp;
471 	char device[20];	/* device name */
472 	int	fd;		/* file descriptor */
473 #ifdef ICOM
474 	int	temp;
475 #endif /* ICOM */
476 #ifdef HAVE_AUDIO
477 	int	fd_audio;	/* audio port file descriptor */
478 	int	i;		/* index */
479 	double	step;		/* codec adjustment */
480 
481 	/*
482 	 * Open audio device. Don't complain if not there.
483 	 */
484 	fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
485 
486 #ifdef DEBUG
487 	if (fd_audio >= 0 && debug)
488 		audio_show();
489 #endif
490 
491 	/*
492 	 * If audio is unavailable, Open serial port in raw mode.
493 	 */
494 	if (fd_audio >= 0) {
495 		fd = fd_audio;
496 	} else {
497 		snprintf(device, sizeof(device), DEVICE, unit);
498 		fd = refclock_open(device, SPEED232, LDISC_RAW);
499 	}
500 #else /* HAVE_AUDIO */
501 
502 	/*
503 	 * Open serial port in raw mode.
504 	 */
505 	snprintf(device, sizeof(device), DEVICE, unit);
506 	fd = refclock_open(device, SPEED232, LDISC_RAW);
507 #endif /* HAVE_AUDIO */
508 
509 	if (fd < 0)
510 		return (0);
511 
512 	/*
513 	 * Allocate and initialize unit structure
514 	 */
515 	up = emalloc_zero(sizeof(*up));
516 	pp = peer->procptr;
517 	pp->unitptr = up;
518 	pp->io.clock_recv = chu_receive;
519 	pp->io.srcclock = peer;
520 	pp->io.datalen = 0;
521 	pp->io.fd = fd;
522 	if (!io_addclock(&pp->io)) {
523 		close(fd);
524 		pp->io.fd = -1;
525 		free(up);
526 		pp->unitptr = NULL;
527 		return (0);
528 	}
529 
530 	/*
531 	 * Initialize miscellaneous variables
532 	 */
533 	peer->precision = PRECISION;
534 	pp->clockdesc = DESCRIPTION;
535 	strlcpy(up->ident, "CHU", sizeof(up->ident));
536 	memcpy(&pp->refid, up->ident, 4);
537 	DTOLFP(CHAR, &up->charstamp);
538 #ifdef HAVE_AUDIO
539 
540 	/*
541 	 * The companded samples are encoded sign-magnitude. The table
542 	 * contains all the 256 values in the interest of speed. We do
543 	 * this even if the audio codec is not available. C'est la lazy.
544 	 */
545 	up->fd_audio = fd_audio;
546 	up->gain = 127;
547 	up->comp[0] = up->comp[OFFSET] = 0.;
548 	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
549 	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
550 	step = 2.;
551 	for (i = 3; i < OFFSET; i++) {
552 		up->comp[i] = up->comp[i - 1] + step;
553 		up->comp[OFFSET + i] = -up->comp[i];
554                 if (i % 16 == 0)
555                 	step *= 2.;
556 	}
557 	DTOLFP(1. / SECOND, &up->tick);
558 #endif /* HAVE_AUDIO */
559 #ifdef ICOM
560 	temp = 0;
561 #ifdef DEBUG
562 	if (debug > 1)
563 		temp = P_TRACE;
564 #endif
565 	if (peer->ttl > 0) {
566 		if (peer->ttl & 0x80)
567 			up->fd_icom = icom_init("/dev/icom", B1200,
568 			    temp);
569 		else
570 			up->fd_icom = icom_init("/dev/icom", B9600,
571 			    temp);
572 	}
573 	if (up->fd_icom > 0) {
574 		if (chu_newchan(peer, 0) != 0) {
575 			msyslog(LOG_NOTICE, "icom: radio not found");
576 			close(up->fd_icom);
577 			up->fd_icom = 0;
578 		} else {
579 			msyslog(LOG_NOTICE, "icom: autotune enabled");
580 		}
581 	}
582 #endif /* ICOM */
583 	return (1);
584 }
585 
586 
587 /*
588  * chu_shutdown - shut down the clock
589  */
590 static void
chu_shutdown(int unit,struct peer * peer)591 chu_shutdown(
592 	int	unit,		/* instance number (not used) */
593 	struct peer *peer	/* peer structure pointer */
594 	)
595 {
596 	struct chuunit *up;
597 	struct refclockproc *pp;
598 
599 	pp = peer->procptr;
600 	up = pp->unitptr;
601 	if (up == NULL)
602 		return;
603 
604 	io_closeclock(&pp->io);
605 #ifdef ICOM
606 	if (up->fd_icom > 0)
607 		close(up->fd_icom);
608 #endif /* ICOM */
609 	free(up);
610 }
611 
612 
613 /*
614  * chu_receive - receive data from the audio or serial device
615  */
616 static void
chu_receive(struct recvbuf * rbufp)617 chu_receive(
618 	struct recvbuf *rbufp	/* receive buffer structure pointer */
619 	)
620 {
621 #ifdef HAVE_AUDIO
622 	struct chuunit *up;
623 	struct refclockproc *pp;
624 	struct peer *peer;
625 
626 	peer = rbufp->recv_peer;
627 	pp = peer->procptr;
628 	up = pp->unitptr;
629 
630 	/*
631 	 * If the audio codec is warmed up, the buffer contains codec
632 	 * samples which need to be demodulated and decoded into CHU
633 	 * characters using the software UART. Otherwise, the buffer
634 	 * contains CHU characters from the serial port, so the software
635 	 * UART is bypassed. In this case the CPU will probably run a
636 	 * few degrees cooler.
637 	 */
638 	if (up->fd_audio > 0)
639 		chu_audio_receive(rbufp);
640 	else
641 		chu_serial_receive(rbufp);
642 #else
643 	chu_serial_receive(rbufp);
644 #endif /* HAVE_AUDIO */
645 }
646 
647 
648 #ifdef HAVE_AUDIO
649 /*
650  * chu_audio_receive - receive data from the audio device
651  */
652 static void
chu_audio_receive(struct recvbuf * rbufp)653 chu_audio_receive(
654 	struct recvbuf *rbufp	/* receive buffer structure pointer */
655 	)
656 {
657 	struct chuunit *up;
658 	struct refclockproc *pp;
659 	struct peer *peer;
660 
661 	double	sample;		/* codec sample */
662 	u_char	*dpt;		/* buffer pointer */
663 	int	bufcnt;		/* buffer counter */
664 	l_fp	ltemp;		/* l_fp temp */
665 
666 	peer = rbufp->recv_peer;
667 	pp = peer->procptr;
668 	up = pp->unitptr;
669 
670 	/*
671 	 * Main loop - read until there ain't no more. Note codec
672 	 * samples are bit-inverted.
673 	 */
674 	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
675 	L_SUB(&rbufp->recv_time, &ltemp);
676 	up->timestamp = rbufp->recv_time;
677 	dpt = rbufp->recv_buffer;
678 	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
679 		sample = up->comp[~*dpt++ & 0xff];
680 
681 		/*
682 		 * Clip noise spikes greater than MAXAMP. If no clips,
683 		 * increase the gain a tad; if the clips are too high,
684 		 * decrease a tad.
685 		 */
686 		if (sample > MAXAMP) {
687 			sample = MAXAMP;
688 			up->clipcnt++;
689 		} else if (sample < -MAXAMP) {
690 			sample = -MAXAMP;
691 			up->clipcnt++;
692 		}
693 		chu_rf(peer, sample);
694 		L_ADD(&up->timestamp, &up->tick);
695 
696 		/*
697 		 * Once each second ride gain.
698 		 */
699 		up->seccnt = (up->seccnt + 1) % SECOND;
700 		if (up->seccnt == 0) {
701 			chu_gain(peer);
702 		}
703 	}
704 
705 	/*
706 	 * Set the input port and monitor gain for the next buffer.
707 	 */
708 	if (pp->sloppyclockflag & CLK_FLAG2)
709 		up->port = 2;
710 	else
711 		up->port = 1;
712 	if (pp->sloppyclockflag & CLK_FLAG3)
713 		up->mongain = MONGAIN;
714 	else
715 		up->mongain = 0;
716 }
717 
718 
719 /*
720  * chu_rf - filter and demodulate the FSK signal
721  *
722  * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
723  * and space 2025 Hz. It uses a bandpass filter followed by a soft
724  * limiter, FM discriminator and lowpass filter. A maximum-likelihood
725  * decoder samples the baseband signal at eight times the baud rate and
726  * detects the start bit of each character.
727  *
728  * The filters are built for speed, which explains the rather clumsy
729  * code. Hopefully, the compiler will efficiently implement the move-
730  * and-muiltiply-and-add operations.
731  */
732 static void
chu_rf(struct peer * peer,double sample)733 chu_rf(
734 	struct peer *peer,	/* peer structure pointer */
735 	double	sample		/* analog sample */
736 	)
737 {
738 	struct refclockproc *pp;
739 	struct chuunit *up;
740 	struct surv *sp;
741 
742 	/*
743 	 * Local variables
744 	 */
745 	double	signal;		/* bandpass signal */
746 	double	limit;		/* limiter signal */
747 	double	disc;		/* discriminator signal */
748 	double	lpf;		/* lowpass signal */
749 	double	dist;		/* UART signal distance */
750 	int	i, j;
751 
752 	pp = peer->procptr;
753 	up = pp->unitptr;
754 
755 	/*
756 	 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
757 	 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
758 	 * phase delay 0.24 ms.
759 	 */
760 	signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
761 	signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
762 	signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
763 	signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
764 	signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
765 	signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
766 	signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
767 	signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
768 	up->bpf[0] = sample - signal;
769 	signal = up->bpf[0] * 6.176213e-03
770 	    + up->bpf[1] * 3.156599e-03
771 	    + up->bpf[2] * 7.567487e-03
772 	    + up->bpf[3] * 4.344580e-03
773 	    + up->bpf[4] * 1.190128e-02
774 	    + up->bpf[5] * 4.344580e-03
775 	    + up->bpf[6] * 7.567487e-03
776 	    + up->bpf[7] * 3.156599e-03
777 	    + up->bpf[8] * 6.176213e-03;
778 
779 	up->monitor = signal / 4.;	/* note monitor after filter */
780 
781 	/*
782 	 * Soft limiter/discriminator. The 11-sample discriminator lag
783 	 * interval corresponds to three cycles of 2125 Hz, which
784 	 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
785 	 * Hz. The discriminator output varies +-0.5 interval for input
786 	 * frequency 2025-2225 Hz. However, we don't get to sample at
787 	 * this frequency, so the discriminator output is biased. Life
788 	 * at 8000 Hz sucks.
789 	 */
790 	limit = signal;
791 	if (limit > LIMIT)
792 		limit = LIMIT;
793 	else if (limit < -LIMIT)
794 		limit = -LIMIT;
795 	disc = up->disc[up->discptr] * -limit;
796 	up->disc[up->discptr] = limit;
797 	up->discptr = (up->discptr + 1 ) % LAG;
798 	if (disc >= 0)
799 		disc = SQRT(disc);
800 	else
801 		disc = -SQRT(-disc);
802 
803 	/*
804 	 * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
805 	 */
806 	lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
807 	lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
808 	lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
809 	lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
810 	lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
811 	lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
812 	lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
813 	lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
814 	lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
815 	lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
816 	lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
817 	lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
818 	lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
819 	lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
820 	lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
821 	lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
822 	lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
823 	lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
824 	lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
825 	lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
826 	lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
827 	lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
828 	lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
829 	lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
830 	lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
831 	lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
832 	lpf += up->lpf[0] = disc * 2.538771e-02;
833 
834 	/*
835 	 * Maximum-likelihood decoder. The UART updates each of the
836 	 * eight survivors and determines the span, slice level and
837 	 * tentative decoded character. Valid 11-bit characters are
838 	 * framed so that bit 10 and bit 11 (stop bits) are mark and bit
839 	 * 1 (start bit) is space. When a valid character is found, the
840 	 * survivor with maximum distance determines the final decoded
841 	 * character.
842 	 */
843 	up->baud += 1. / SECOND;
844 	if (up->baud > 1. / (BAUD * 8.)) {
845 		up->baud -= 1. / (BAUD * 8.);
846 		up->decptr = (up->decptr + 1) % 8;
847 		sp = &up->surv[up->decptr];
848 		sp->cstamp = up->timestamp;
849 		chu_uart(sp, -lpf * AGAIN);
850 		if (up->dbrk > 0) {
851 			up->dbrk--;
852 			if (up->dbrk > 0)
853 				return;
854 
855 			up->decpha = up->decptr;
856 		}
857 		if (up->decptr != up->decpha)
858 			return;
859 
860 		dist = 0;
861 		j = -1;
862 		for (i = 0; i < 8; i++) {
863 
864 			/*
865 			 * The timestamp is taken at the last bit, so
866 			 * for correct decoding we reqire sufficient
867 			 * span and correct start bit and two stop bits.
868 			 */
869 			if ((up->surv[i].uart & 0x601) != 0x600 ||
870 			    up->surv[i].span < SPAN)
871 				continue;
872 
873 			if (up->surv[i].dist > dist) {
874 				dist = up->surv[i].dist;
875 				j = i;
876 			}
877 		}
878 		if (j < 0)
879 			return;
880 
881 		/*
882 		 * Process the character, then blank the decoder until
883 		 * the end of the next character.This sets the decoding
884 		 * phase of the entire burst from the phase of the first
885 		 * character.
886 		 */
887 		up->maxsignal = up->surv[j].span;
888 		chu_decode(peer, (up->surv[j].uart >> 1) & 0xff,
889 		    up->surv[j].cstamp);
890 		up->dbrk = 88;
891 	}
892 }
893 
894 
895 /*
896  * chu_uart - maximum-likelihood UART
897  *
898  * This routine updates a shift register holding the last 11 envelope
899  * samples. It then computes the slice level and span over these samples
900  * and determines the tentative data bits and distance. The calling
901  * program selects over the last eight survivors the one with maximum
902  * distance to determine the decoded character.
903  */
904 static void
chu_uart(struct surv * sp,double sample)905 chu_uart(
906 	struct surv *sp,	/* survivor structure pointer */
907 	double	sample		/* baseband signal */
908 	)
909 {
910 	double	es_max, es_min;	/* max/min envelope */
911 	double	slice;		/* slice level */
912 	double	dist;		/* distance */
913 	double	dtemp;
914 	int	i;
915 
916 	/*
917 	 * Save the sample and shift right. At the same time, measure
918 	 * the maximum and minimum over all eleven samples.
919 	 */
920 	es_max = -1e6;
921 	es_min = 1e6;
922 	sp->shift[0] = sample;
923 	for (i = 11; i > 0; i--) {
924 		sp->shift[i] = sp->shift[i - 1];
925 		if (sp->shift[i] > es_max)
926 			es_max = sp->shift[i];
927 		if (sp->shift[i] < es_min)
928 			es_min = sp->shift[i];
929 	}
930 
931 	/*
932 	 * Determine the span as the maximum less the minimum and the
933 	 * slice level as the minimum plus a fraction of the span. Note
934 	 * the slight bias toward mark to correct for the modem tendency
935 	 * to make more mark than space errors. Compute the distance on
936 	 * the assumption the last two bits must be mark, the first
937 	 * space and the rest either mark or space.
938 	 */
939 	sp->span = es_max - es_min;
940 	slice = es_min + .45 * sp->span;
941 	dist = 0;
942 	sp->uart = 0;
943 	for (i = 1; i < 12; i++) {
944 		sp->uart <<= 1;
945 		dtemp = sp->shift[i];
946 		if (dtemp > slice)
947 			sp->uart |= 0x1;
948 		if (i == 1 || i == 2) {
949 			dist += dtemp - es_min;
950 		} else if (i == 11) {
951 			dist += es_max - dtemp;
952 		} else {
953 			if (dtemp > slice)
954 				dist += dtemp - es_min;
955 			else
956 				dist += es_max - dtemp;
957 		}
958 	}
959 	sp->dist = dist / (11 * sp->span);
960 }
961 #endif /* HAVE_AUDIO */
962 
963 
964 /*
965  * chu_serial_receive - receive data from the serial device
966  */
967 static void
chu_serial_receive(struct recvbuf * rbufp)968 chu_serial_receive(
969 	struct recvbuf *rbufp	/* receive buffer structure pointer */
970 	)
971 {
972 	struct peer *peer;
973 
974 	u_char	*dpt;		/* receive buffer pointer */
975 
976 	peer = rbufp->recv_peer;
977 
978 	dpt = (u_char *)&rbufp->recv_space;
979 	chu_decode(peer, *dpt, rbufp->recv_time);
980 }
981 
982 
983 /*
984  * chu_decode - decode the character data
985  */
986 static void
chu_decode(struct peer * peer,int hexhex,l_fp cstamp)987 chu_decode(
988 	struct peer *peer,	/* peer structure pointer */
989 	int	hexhex,		/* data character */
990 	l_fp	cstamp		/* data character timestamp */
991 	)
992 {
993 	struct refclockproc *pp;
994 	struct chuunit *up;
995 
996 	l_fp	tstmp;		/* timestamp temp */
997 	double	dtemp;
998 
999 	pp = peer->procptr;
1000 	up = pp->unitptr;
1001 
1002 	/*
1003 	 * If the interval since the last character is greater than the
1004 	 * longest burst, process the last burst and start a new one. If
1005 	 * the interval is less than this but greater than two
1006 	 * characters, consider this a noise burst and reject it.
1007 	 */
1008 	tstmp = up->timestamp;
1009 	if (L_ISZERO(&up->laststamp))
1010 		up->laststamp = up->timestamp;
1011 	L_SUB(&tstmp, &up->laststamp);
1012 	up->laststamp = up->timestamp;
1013 	LFPTOD(&tstmp, dtemp);
1014 	if (dtemp > BURST * CHAR) {
1015 		chu_burst(peer);
1016 		up->ndx = 0;
1017 	} else if (dtemp > 2.5 * CHAR) {
1018 		up->ndx = 0;
1019 	}
1020 
1021 	/*
1022 	 * Append the character to the current burst and append the
1023 	 * character timestamp to the timestamp list.
1024 	 */
1025 	if (up->ndx < BURST) {
1026 		up->cbuf[up->ndx] = hexhex & 0xff;
1027 		up->cstamp[up->ndx] = cstamp;
1028 		up->ndx++;
1029 
1030 	}
1031 }
1032 
1033 
1034 /*
1035  * chu_burst - search for valid burst format
1036  */
1037 static void
chu_burst(struct peer * peer)1038 chu_burst(
1039 	struct peer *peer
1040 	)
1041 {
1042 	struct chuunit *up;
1043 	struct refclockproc *pp;
1044 
1045 	int	i;
1046 
1047 	pp = peer->procptr;
1048 	up = pp->unitptr;
1049 
1050 	/*
1051 	 * Correlate a block of five characters with the next block of
1052 	 * five characters. The burst distance is defined as the number
1053 	 * of bits that match in the two blocks for format A and that
1054 	 * match the inverse for format B.
1055 	 */
1056 	if (up->ndx < MINCHARS) {
1057 		up->status |= RUNT;
1058 		return;
1059 	}
1060 	up->burdist = 0;
1061 	for (i = 0; i < 5 && i < up->ndx - 5; i++)
1062 		up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
1063 
1064 	/*
1065 	 * If the burst distance is at least MINDIST, this must be a
1066 	 * format A burst; if the value is not greater than -MINDIST, it
1067 	 * must be a format B burst. If the B burst is perfect, we
1068 	 * believe it; otherwise, it is a noise burst and of no use to
1069 	 * anybody.
1070 	 */
1071 	if (up->burdist >= MINDIST) {
1072 		chu_a(peer, up->ndx);
1073 	} else if (up->burdist <= -MINDIST) {
1074 		chu_b(peer, up->ndx);
1075 	} else {
1076 		up->status |= NOISE;
1077 		return;
1078 	}
1079 
1080 	/*
1081 	 * If this is a valid burst, wait a guard time of ten seconds to
1082 	 * allow for more bursts, then arm the poll update routine to
1083 	 * process the minute. Don't do this if this is called from the
1084 	 * timer interrupt routine.
1085 	 */
1086 	if (peer->outdate != current_time)
1087 		peer->nextdate = current_time + 10;
1088 }
1089 
1090 
1091 /*
1092  * chu_b - decode format B burst
1093  */
1094 static void
chu_b(struct peer * peer,int nchar)1095 chu_b(
1096 	struct peer *peer,
1097 	int	nchar
1098 	)
1099 {
1100 	struct	refclockproc *pp;
1101 	struct	chuunit *up;
1102 
1103 	u_char	code[11];	/* decoded timecode */
1104 	char	tbuf[80];	/* trace buffer */
1105 	char *	p;
1106 	size_t	chars;
1107 	size_t	cb;
1108 	int	i;
1109 
1110 	pp = peer->procptr;
1111 	up = pp->unitptr;
1112 
1113 	/*
1114 	 * In a format B burst, a character is considered valid only if
1115 	 * the first occurence matches the last occurence. The burst is
1116 	 * considered valid only if all characters are valid; that is,
1117 	 * only if the distance is 40. Note that once a valid frame has
1118 	 * been found errors are ignored.
1119 	 */
1120 	snprintf(tbuf, sizeof(tbuf), "chuB %04x %4.0f %2d %2d ",
1121 		 up->status, up->maxsignal, nchar, -up->burdist);
1122 	cb = sizeof(tbuf);
1123 	p = tbuf;
1124 	for (i = 0; i < nchar; i++) {
1125 		chars = strlen(p);
1126 		if (cb < chars + 1) {
1127 			msyslog(LOG_ERR, "chu_b() fatal out buffer");
1128 			exit(1);
1129 		}
1130 		cb -= chars;
1131 		p += chars;
1132 		snprintf(p, cb, "%02x", up->cbuf[i]);
1133 	}
1134 	if (pp->sloppyclockflag & CLK_FLAG4)
1135 		record_clock_stats(&peer->srcadr, tbuf);
1136 #ifdef DEBUG
1137 	if (debug)
1138 		printf("%s\n", tbuf);
1139 #endif
1140 	if (up->burdist > -40) {
1141 		up->status |= BFRAME;
1142 		return;
1143 	}
1144 
1145 	/*
1146 	 * Convert the burst data to internal format. Don't bother with
1147 	 * the timestamps.
1148 	 */
1149 	for (i = 0; i < 5; i++) {
1150 		code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1151 		code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1152 		    4) & 0xf];
1153 	}
1154 	if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1155 	    &pp->year, &up->tai, &up->dst) != 5) {
1156 		up->status |= BFORMAT;
1157 		return;
1158 	}
1159 	up->status |= BVALID;
1160 	if (up->leap & 0x8)
1161 		up->dut = -up->dut;
1162 }
1163 
1164 
1165 /*
1166  * chu_a - decode format A burst
1167  */
1168 static void
chu_a(struct peer * peer,int nchar)1169 chu_a(
1170 	struct peer *peer,
1171 	int nchar
1172 	)
1173 {
1174 	struct refclockproc *pp;
1175 	struct chuunit *up;
1176 
1177 	char	tbuf[80];	/* trace buffer */
1178 	char *	p;
1179 	size_t	chars;
1180 	size_t	cb;
1181 	l_fp	offset;		/* timestamp offset */
1182 	int	val;		/* distance */
1183 	int	temp;
1184 	int	i, j, k;
1185 
1186 	pp = peer->procptr;
1187 	up = pp->unitptr;
1188 
1189 	/*
1190 	 * Determine correct burst phase. There are three cases
1191 	 * corresponding to in-phase, one character early or one
1192 	 * character late. These cases are distinguished by the position
1193 	 * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
1194 	 * positions 4 and 9. The correct phase is when the distance
1195 	 * relative to the framing digits is maximum. The burst is valid
1196 	 * only if the maximum distance is at least MINSYNC.
1197 	 */
1198 	up->syndist = k = 0;
1199 	// val = -16;
1200 	for (i = -1; i < 2; i++) {
1201 		temp = up->cbuf[i + 4] & 0xf;
1202 		if (i >= 0)
1203 			temp |= (up->cbuf[i] & 0xf) << 4;
1204 		val = chu_dist(temp, 0x63);
1205 		temp = (up->cbuf[i + 5] & 0xf) << 4;
1206 		if (i + 9 < nchar)
1207 			temp |= up->cbuf[i + 9] & 0xf;
1208 		val += chu_dist(temp, 0x63);
1209 		if (val > up->syndist) {
1210 			up->syndist = val;
1211 			k = i;
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * Extract the second number; it must be in the range 2 through
1217 	 * 9 and the two repititions must be the same.
1218 	 */
1219 	temp = (up->cbuf[k + 4] >> 4) & 0xf;
1220 	if (temp < 2 || temp > 9 || k + 9 >= nchar || temp !=
1221 	    ((up->cbuf[k + 9] >> 4) & 0xf))
1222 		temp = 0;
1223 	snprintf(tbuf, sizeof(tbuf),
1224 		 "chuA %04x %4.0f %2d %2d %2d %2d %1d ", up->status,
1225 		 up->maxsignal, nchar, up->burdist, k, up->syndist,
1226 		 temp);
1227 	cb = sizeof(tbuf);
1228 	p = tbuf;
1229 	for (i = 0; i < nchar; i++) {
1230 		chars = strlen(p);
1231 		if (cb < chars + 1) {
1232 			msyslog(LOG_ERR, "chu_a() fatal out buffer");
1233 			exit(1);
1234 		}
1235 		cb -= chars;
1236 		p += chars;
1237 		snprintf(p, cb, "%02x", up->cbuf[i]);
1238 	}
1239 	if (pp->sloppyclockflag & CLK_FLAG4)
1240 		record_clock_stats(&peer->srcadr, tbuf);
1241 #ifdef DEBUG
1242 	if (debug)
1243 		printf("%s\n", tbuf);
1244 #endif
1245 	if (up->syndist < MINSYNC) {
1246 		up->status |= AFRAME;
1247 		return;
1248 	}
1249 
1250 	/*
1251 	 * A valid burst requires the first seconds number to match the
1252 	 * last seconds number. If so, the burst timestamps are
1253 	 * corrected to the current minute and saved for later
1254 	 * processing. In addition, the seconds decode is advanced from
1255 	 * the previous burst to the current one.
1256 	 */
1257 	if (temp == 0) {
1258 		up->status |= AFORMAT;
1259 	} else {
1260 		up->status |= AVALID;
1261 		up->second = pp->second = 30 + temp;
1262 		offset.l_ui = 30 + temp;
1263 		offset.l_uf = 0;
1264 		i = 0;
1265 		if (k < 0)
1266 			offset = up->charstamp;
1267 		else if (k > 0)
1268 			i = 1;
1269 		for (; i < nchar && (i - 10) < k; i++) {
1270 			up->tstamp[up->ntstamp] = up->cstamp[i];
1271 			L_SUB(&up->tstamp[up->ntstamp], &offset);
1272 			L_ADD(&offset, &up->charstamp);
1273 			if (up->ntstamp < MAXSTAGE - 1)
1274 				up->ntstamp++;
1275 		}
1276 		while (temp > up->prevsec) {
1277 			for (j = 15; j > 0; j--) {
1278 				up->decode[9][j] = up->decode[9][j - 1];
1279 				up->decode[19][j] =
1280 				    up->decode[19][j - 1];
1281 			}
1282 			up->decode[9][j] = up->decode[19][j] = 0;
1283 			up->prevsec++;
1284 		}
1285 	}
1286 
1287 	/*
1288 	 * Stash the data in the decoding matrix.
1289 	 */
1290 	i = -(2 * k);
1291 	for (j = 0; j < nchar; j++) {
1292 		if (i < 0 || i > 18) {
1293 			i += 2;
1294 			continue;
1295 		}
1296 		up->decode[i][up->cbuf[j] & 0xf]++;
1297 		i++;
1298 		up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1299 		i++;
1300 	}
1301 	up->burstcnt++;
1302 }
1303 
1304 
1305 /*
1306  * chu_poll - called by the transmit procedure
1307  */
1308 static void
chu_poll(int unit,struct peer * peer)1309 chu_poll(
1310 	int unit,
1311 	struct peer *peer	/* peer structure pointer */
1312 	)
1313 {
1314 	struct refclockproc *pp;
1315 
1316 	pp = peer->procptr;
1317 	pp->polls++;
1318 }
1319 
1320 
1321 /*
1322  * chu_second - process minute data
1323  */
1324 static void
chu_second(int unit,struct peer * peer)1325 chu_second(
1326 	int unit,
1327 	struct peer *peer	/* peer structure pointer */
1328 	)
1329 {
1330 	struct refclockproc *pp;
1331 	struct chuunit *up;
1332 	l_fp	offset;
1333 	char	synchar, qual, leapchar;
1334 	int	minset, i;
1335 	double	dtemp;
1336 
1337 	pp = peer->procptr;
1338 	up = pp->unitptr;
1339 
1340 	/*
1341 	 * This routine is called once per minute to process the
1342 	 * accumulated burst data. We do a bit of fancy footwork so that
1343 	 * this doesn't run while burst data are being accumulated.
1344 	 */
1345 	up->second = (up->second + 1) % 60;
1346 	if (up->second != 0)
1347 		return;
1348 
1349 	/*
1350 	 * Process the last burst, if still in the burst buffer.
1351 	 * If the minute contains a valid B frame with sufficient A
1352 	 * frame metric, it is considered valid. However, the timecode
1353 	 * is sent to clockstats even if invalid.
1354 	 */
1355 	chu_burst(peer);
1356 	minset = ((current_time - peer->update) + 30) / 60;
1357 	dtemp = chu_major(peer);
1358 	qual = 0;
1359 	if (up->status & (BFRAME | AFRAME))
1360 		qual |= SYNERR;
1361 	if (up->status & (BFORMAT | AFORMAT))
1362 		qual |= FMTERR;
1363 	if (up->status & DECODE)
1364 		qual |= DECERR;
1365 	if (up->status & STAMP)
1366 		qual |= TSPERR;
1367 	if (up->status & BVALID && dtemp >= MINMETRIC)
1368 		up->status |= INSYNC;
1369 	synchar = leapchar = ' ';
1370 	if (!(up->status & INSYNC)) {
1371 		pp->leap = LEAP_NOTINSYNC;
1372 		synchar = '?';
1373 	} else if (up->leap & 0x2) {
1374 		pp->leap = LEAP_ADDSECOND;
1375 		leapchar = 'L';
1376 	} else if (up->leap & 0x4) {
1377 		pp->leap = LEAP_DELSECOND;
1378 		leapchar = 'l';
1379 	} else {
1380 		pp->leap = LEAP_NOWARNING;
1381 	}
1382 	snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
1383 	    "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
1384 	    synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1385 	    pp->second, leapchar, up->dst, up->dut, minset, up->gain,
1386 	    up->ident, dtemp, up->ntstamp);
1387 	pp->lencode = strlen(pp->a_lastcode);
1388 
1389 	/*
1390 	 * If in sync and the signal metric is above threshold, the
1391 	 * timecode is ipso fatso valid and can be selected to
1392 	 * discipline the clock.
1393 	 */
1394 	if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) &&
1395 	    dtemp > MINMETRIC) {
1396 		if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1397 		    up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1398 			up->errflg = CEVNT_BADTIME;
1399 		} else {
1400 			offset.l_uf = 0;
1401 			for (i = 0; i < up->ntstamp; i++)
1402 				refclock_process_offset(pp, offset,
1403 				up->tstamp[i], PDELAY +
1404 				    pp->fudgetime1);
1405 			pp->lastref = up->timestamp;
1406 			refclock_receive(peer);
1407 		}
1408 	}
1409 	if (dtemp > 0)
1410 		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1411 #ifdef DEBUG
1412 	if (debug)
1413 		printf("chu: timecode %d %s\n", pp->lencode,
1414 		    pp->a_lastcode);
1415 #endif
1416 #ifdef ICOM
1417 	chu_newchan(peer, dtemp);
1418 #endif /* ICOM */
1419 	chu_clear(peer);
1420 	if (up->errflg)
1421 		refclock_report(peer, up->errflg);
1422 	up->errflg = 0;
1423 }
1424 
1425 
1426 /*
1427  * chu_major - majority decoder
1428  */
1429 static double
chu_major(struct peer * peer)1430 chu_major(
1431 	struct peer *peer	/* peer structure pointer */
1432 	)
1433 {
1434 	struct refclockproc *pp;
1435 	struct chuunit *up;
1436 
1437 	u_char	code[11];	/* decoded timecode */
1438 	int	metric;		/* distance metric */
1439 	int	val1;		/* maximum distance */
1440 	int	synchar;	/* stray cat */
1441 	int	temp;
1442 	int	i, j, k;
1443 
1444 	pp = peer->procptr;
1445 	up = pp->unitptr;
1446 
1447 	/*
1448 	 * Majority decoder. Each burst encodes two replications at each
1449 	 * digit position in the timecode. Each row of the decoding
1450 	 * matrix encodes the number of occurences of each digit found
1451 	 * at the corresponding position. The maximum over all
1452 	 * occurrences at each position is the distance for this
1453 	 * position and the corresponding digit is the maximum-
1454 	 * likelihood candidate. If the distance is not more than half
1455 	 * the total number of occurences, a majority has not been found
1456 	 * and the data are discarded. The decoding distance is defined
1457 	 * as the sum of the distances over the first nine digits. The
1458 	 * tenth digit varies over the seconds, so we don't count it.
1459 	 */
1460 	metric = 0;
1461 	for (i = 0; i < 9; i++) {
1462 		val1 = 0;
1463 		k = 0;
1464 		for (j = 0; j < 16; j++) {
1465 			temp = up->decode[i][j] + up->decode[i + 10][j];
1466 			if (temp > val1) {
1467 				val1 = temp;
1468 				k = j;
1469 			}
1470 		}
1471 		if (val1 <= up->burstcnt)
1472 			up->status |= DECODE;
1473 		metric += val1;
1474 		code[i] = hexchar[k];
1475 	}
1476 
1477 	/*
1478 	 * Compute the timecode timestamp from the days, hours and
1479 	 * minutes of the timecode. Use clocktime() for the aggregate
1480 	 * minutes and the minute offset computed from the burst
1481 	 * seconds. Note that this code relies on the filesystem time
1482 	 * for the years and does not use the years of the timecode.
1483 	 */
1484 	if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1485 	    &pp->hour, &pp->minute) != 4)
1486 		up->status |= DECODE;
1487 	if (up->ntstamp < MINSTAMP)
1488 		up->status |= STAMP;
1489 	return (metric);
1490 }
1491 
1492 
1493 /*
1494  * chu_clear - clear decoding matrix
1495  */
1496 static void
chu_clear(struct peer * peer)1497 chu_clear(
1498 	struct peer *peer	/* peer structure pointer */
1499 	)
1500 {
1501 	struct refclockproc *pp;
1502 	struct chuunit *up;
1503 	int	i, j;
1504 
1505 	pp = peer->procptr;
1506 	up = pp->unitptr;
1507 
1508 	/*
1509 	 * Clear stuff for the minute.
1510 	 */
1511 	up->ndx = up->prevsec = 0;
1512 	up->burstcnt = up->ntstamp = 0;
1513 	up->status &= INSYNC | METRIC;
1514 	for (i = 0; i < 20; i++) {
1515 		for (j = 0; j < 16; j++)
1516 			up->decode[i][j] = 0;
1517 	}
1518 }
1519 
1520 #ifdef ICOM
1521 /*
1522  * chu_newchan - called once per minute to find the best channel;
1523  * returns zero on success, nonzero if ICOM error.
1524  */
1525 static int
chu_newchan(struct peer * peer,double met)1526 chu_newchan(
1527 	struct peer *peer,
1528 	double	met
1529 	)
1530 {
1531 	struct chuunit *up;
1532 	struct refclockproc *pp;
1533 	struct xmtr *sp;
1534 	int	rval;
1535 	double	metric;
1536 	int	i;
1537 
1538 	pp = peer->procptr;
1539 	up = pp->unitptr;
1540 
1541 	/*
1542 	 * The radio can be tuned to three channels: 0 (3330 kHz), 1
1543 	 * (7850 kHz) and 2 (14670 kHz). There are five one-minute
1544 	 * dwells in each cycle. During the first dwell the radio is
1545 	 * tuned to one of the three channels to measure the channel
1546 	 * metric. The channel is selected as the one least recently
1547 	 * measured. During the remaining four dwells the radio is tuned
1548 	 * to the channel with the highest channel metric.
1549 	 */
1550 	if (up->fd_icom <= 0)
1551 		return (0);
1552 
1553 	/*
1554 	 * Update the current channel metric and age of all channels.
1555 	 * Scan all channels for the highest metric.
1556 	 */
1557 	sp = &up->xmtr[up->chan];
1558 	sp->metric -= sp->integ[sp->iptr];
1559 	sp->integ[sp->iptr] = met;
1560 	sp->metric += sp->integ[sp->iptr];
1561 	sp->probe = 0;
1562 	sp->iptr = (sp->iptr + 1) % ISTAGE;
1563 	metric = 0;
1564 	for (i = 0; i < NCHAN; i++) {
1565 		up->xmtr[i].probe++;
1566 		if (up->xmtr[i].metric > metric) {
1567 			up->status |= METRIC;
1568 			metric = up->xmtr[i].metric;
1569 			up->chan = i;
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * Start the next dwell. If the first dwell or no stations have
1575 	 * been heard, continue round-robin scan.
1576 	 */
1577 	up->dwell = (up->dwell + 1) % DWELL;
1578 	if (up->dwell == 0 || metric == 0) {
1579 		rval = 0;
1580 		for (i = 0; i < NCHAN; i++) {
1581 			if (up->xmtr[i].probe > rval) {
1582 				rval = up->xmtr[i].probe;
1583 				up->chan = i;
1584 			}
1585 		}
1586 	}
1587 
1588 	/* Retune the radio at each dwell in case somebody nudges the
1589 	 * tuning knob.
1590 	 */
1591 	rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] +
1592 	    TUNE);
1593 	snprintf(up->ident, sizeof(up->ident), "CHU%d", up->chan);
1594 	memcpy(&pp->refid, up->ident, 4);
1595 	memcpy(&peer->refid, up->ident, 4);
1596 	if (metric == 0 && up->status & METRIC) {
1597 		up->status &= ~METRIC;
1598 		refclock_report(peer, CEVNT_PROP);
1599 	}
1600 	return (rval);
1601 }
1602 #endif /* ICOM */
1603 
1604 
1605 /*
1606  * chu_dist - determine the distance of two octet arguments
1607  */
1608 static int
chu_dist(int x,int y)1609 chu_dist(
1610 	int	x,		/* an octet of bits */
1611 	int	y		/* another octet of bits */
1612 	)
1613 {
1614 	int	val;		/* bit count */
1615 	int	temp;
1616 	int	i;
1617 
1618 	/*
1619 	 * The distance is determined as the weight of the exclusive OR
1620 	 * of the two arguments. The weight is determined by the number
1621 	 * of one bits in the result. Each one bit increases the weight,
1622 	 * while each zero bit decreases it.
1623 	 */
1624 	temp = x ^ y;
1625 	val = 0;
1626 	for (i = 0; i < 8; i++) {
1627 		if ((temp & 0x1) == 0)
1628 			val++;
1629 		else
1630 			val--;
1631 		temp >>= 1;
1632 	}
1633 	return (val);
1634 }
1635 
1636 
1637 #ifdef HAVE_AUDIO
1638 /*
1639  * chu_gain - adjust codec gain
1640  *
1641  * This routine is called at the end of each second. During the second
1642  * the number of signal clips above the MAXAMP threshold (6000). If
1643  * there are no clips, the gain is bumped up; if there are more than
1644  * MAXCLP clips (100), it is bumped down. The decoder is relatively
1645  * insensitive to amplitude, so this crudity works just peachy. The
1646  * routine also jiggles the input port and selectively mutes the
1647  */
1648 static void
chu_gain(struct peer * peer)1649 chu_gain(
1650 	struct peer *peer	/* peer structure pointer */
1651 	)
1652 {
1653 	struct refclockproc *pp;
1654 	struct chuunit *up;
1655 
1656 	pp = peer->procptr;
1657 	up = pp->unitptr;
1658 
1659 	/*
1660 	 * Apparently, the codec uses only the high order bits of the
1661 	 * gain control field. Thus, it may take awhile for changes to
1662 	 * wiggle the hardware bits.
1663 	 */
1664 	if (up->clipcnt == 0) {
1665 		up->gain += 4;
1666 		if (up->gain > MAXGAIN)
1667 			up->gain = MAXGAIN;
1668 	} else if (up->clipcnt > MAXCLP) {
1669 		up->gain -= 4;
1670 		if (up->gain < 0)
1671 			up->gain = 0;
1672 	}
1673 	audio_gain(up->gain, up->mongain, up->port);
1674 	up->clipcnt = 0;
1675 }
1676 #endif /* HAVE_AUDIO */
1677 
1678 
1679 #else
1680 NONEMPTY_TRANSLATION_UNIT
1681 #endif /* REFCLOCK */
1682