xref: /linux/drivers/of/fdt.c (revision 54c180e7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/acpi.h>
12 #include <linux/crash_dump.h>
13 #include <linux/crc32.h>
14 #include <linux/kernel.h>
15 #include <linux/initrd.h>
16 #include <linux/memblock.h>
17 #include <linux/mutex.h>
18 #include <linux/of.h>
19 #include <linux/of_fdt.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by
37  * cmd_dt_S_dtb in scripts/Makefile.lib
38  */
39 extern uint8_t __dtb_empty_root_begin[];
40 extern uint8_t __dtb_empty_root_end[];
41 
42 /*
43  * of_fdt_limit_memory - limit the number of regions in the /memory node
44  * @limit: maximum entries
45  *
46  * Adjust the flattened device tree to have at most 'limit' number of
47  * memory entries in the /memory node. This function may be called
48  * any time after initial_boot_param is set.
49  */
of_fdt_limit_memory(int limit)50 void __init of_fdt_limit_memory(int limit)
51 {
52 	int memory;
53 	int len;
54 	const void *val;
55 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
56 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
57 	const __be32 *addr_prop;
58 	const __be32 *size_prop;
59 	int root_offset;
60 	int cell_size;
61 
62 	root_offset = fdt_path_offset(initial_boot_params, "/");
63 	if (root_offset < 0)
64 		return;
65 
66 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
67 				"#address-cells", NULL);
68 	if (addr_prop)
69 		nr_address_cells = fdt32_to_cpu(*addr_prop);
70 
71 	size_prop = fdt_getprop(initial_boot_params, root_offset,
72 				"#size-cells", NULL);
73 	if (size_prop)
74 		nr_size_cells = fdt32_to_cpu(*size_prop);
75 
76 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
77 
78 	memory = fdt_path_offset(initial_boot_params, "/memory");
79 	if (memory > 0) {
80 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
81 		if (len > limit*cell_size) {
82 			len = limit*cell_size;
83 			pr_debug("Limiting number of entries to %d\n", limit);
84 			fdt_setprop(initial_boot_params, memory, "reg", val,
85 					len);
86 		}
87 	}
88 }
89 
of_fdt_device_is_available(const void * blob,unsigned long node)90 bool of_fdt_device_is_available(const void *blob, unsigned long node)
91 {
92 	const char *status = fdt_getprop(blob, node, "status", NULL);
93 
94 	if (!status)
95 		return true;
96 
97 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
98 		return true;
99 
100 	return false;
101 }
102 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)103 static void *unflatten_dt_alloc(void **mem, unsigned long size,
104 				       unsigned long align)
105 {
106 	void *res;
107 
108 	*mem = PTR_ALIGN(*mem, align);
109 	res = *mem;
110 	*mem += size;
111 
112 	return res;
113 }
114 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)115 static void populate_properties(const void *blob,
116 				int offset,
117 				void **mem,
118 				struct device_node *np,
119 				const char *nodename,
120 				bool dryrun)
121 {
122 	struct property *pp, **pprev = NULL;
123 	int cur;
124 	bool has_name = false;
125 
126 	pprev = &np->properties;
127 	for (cur = fdt_first_property_offset(blob, offset);
128 	     cur >= 0;
129 	     cur = fdt_next_property_offset(blob, cur)) {
130 		const __be32 *val;
131 		const char *pname;
132 		u32 sz;
133 
134 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
135 		if (!val) {
136 			pr_warn("Cannot locate property at 0x%x\n", cur);
137 			continue;
138 		}
139 
140 		if (!pname) {
141 			pr_warn("Cannot find property name at 0x%x\n", cur);
142 			continue;
143 		}
144 
145 		if (!strcmp(pname, "name"))
146 			has_name = true;
147 
148 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
149 					__alignof__(struct property));
150 		if (dryrun)
151 			continue;
152 
153 		/* We accept flattened tree phandles either in
154 		 * ePAPR-style "phandle" properties, or the
155 		 * legacy "linux,phandle" properties.  If both
156 		 * appear and have different values, things
157 		 * will get weird. Don't do that.
158 		 */
159 		if (!strcmp(pname, "phandle") ||
160 		    !strcmp(pname, "linux,phandle")) {
161 			if (!np->phandle)
162 				np->phandle = be32_to_cpup(val);
163 		}
164 
165 		/* And we process the "ibm,phandle" property
166 		 * used in pSeries dynamic device tree
167 		 * stuff
168 		 */
169 		if (!strcmp(pname, "ibm,phandle"))
170 			np->phandle = be32_to_cpup(val);
171 
172 		pp->name   = (char *)pname;
173 		pp->length = sz;
174 		pp->value  = (__be32 *)val;
175 		*pprev     = pp;
176 		pprev      = &pp->next;
177 	}
178 
179 	/* With version 0x10 we may not have the name property,
180 	 * recreate it here from the unit name if absent
181 	 */
182 	if (!has_name) {
183 		const char *p = nodename, *ps = p, *pa = NULL;
184 		int len;
185 
186 		while (*p) {
187 			if ((*p) == '@')
188 				pa = p;
189 			else if ((*p) == '/')
190 				ps = p + 1;
191 			p++;
192 		}
193 
194 		if (pa < ps)
195 			pa = p;
196 		len = (pa - ps) + 1;
197 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
198 					__alignof__(struct property));
199 		if (!dryrun) {
200 			pp->name   = "name";
201 			pp->length = len;
202 			pp->value  = pp + 1;
203 			*pprev     = pp;
204 			memcpy(pp->value, ps, len - 1);
205 			((char *)pp->value)[len - 1] = 0;
206 			pr_debug("fixed up name for %s -> %s\n",
207 				 nodename, (char *)pp->value);
208 		}
209 	}
210 }
211 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)212 static int populate_node(const void *blob,
213 			  int offset,
214 			  void **mem,
215 			  struct device_node *dad,
216 			  struct device_node **pnp,
217 			  bool dryrun)
218 {
219 	struct device_node *np;
220 	const char *pathp;
221 	int len;
222 
223 	pathp = fdt_get_name(blob, offset, &len);
224 	if (!pathp) {
225 		*pnp = NULL;
226 		return len;
227 	}
228 
229 	len++;
230 
231 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
232 				__alignof__(struct device_node));
233 	if (!dryrun) {
234 		char *fn;
235 		of_node_init(np);
236 		np->full_name = fn = ((char *)np) + sizeof(*np);
237 
238 		memcpy(fn, pathp, len);
239 
240 		if (dad != NULL) {
241 			np->parent = dad;
242 			np->sibling = dad->child;
243 			dad->child = np;
244 		}
245 	}
246 
247 	populate_properties(blob, offset, mem, np, pathp, dryrun);
248 	if (!dryrun) {
249 		np->name = of_get_property(np, "name", NULL);
250 		if (!np->name)
251 			np->name = "<NULL>";
252 	}
253 
254 	*pnp = np;
255 	return 0;
256 }
257 
reverse_nodes(struct device_node * parent)258 static void reverse_nodes(struct device_node *parent)
259 {
260 	struct device_node *child, *next;
261 
262 	/* In-depth first */
263 	child = parent->child;
264 	while (child) {
265 		reverse_nodes(child);
266 
267 		child = child->sibling;
268 	}
269 
270 	/* Reverse the nodes in the child list */
271 	child = parent->child;
272 	parent->child = NULL;
273 	while (child) {
274 		next = child->sibling;
275 
276 		child->sibling = parent->child;
277 		parent->child = child;
278 		child = next;
279 	}
280 }
281 
282 /**
283  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
284  * @blob: The parent device tree blob
285  * @mem: Memory chunk to use for allocating device nodes and properties
286  * @dad: Parent struct device_node
287  * @nodepp: The device_node tree created by the call
288  *
289  * Return: The size of unflattened device tree or error code
290  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)291 static int unflatten_dt_nodes(const void *blob,
292 			      void *mem,
293 			      struct device_node *dad,
294 			      struct device_node **nodepp)
295 {
296 	struct device_node *root;
297 	int offset = 0, depth = 0, initial_depth = 0;
298 #define FDT_MAX_DEPTH	64
299 	struct device_node *nps[FDT_MAX_DEPTH];
300 	void *base = mem;
301 	bool dryrun = !base;
302 	int ret;
303 
304 	if (nodepp)
305 		*nodepp = NULL;
306 
307 	/*
308 	 * We're unflattening device sub-tree if @dad is valid. There are
309 	 * possibly multiple nodes in the first level of depth. We need
310 	 * set @depth to 1 to make fdt_next_node() happy as it bails
311 	 * immediately when negative @depth is found. Otherwise, the device
312 	 * nodes except the first one won't be unflattened successfully.
313 	 */
314 	if (dad)
315 		depth = initial_depth = 1;
316 
317 	root = dad;
318 	nps[depth] = dad;
319 
320 	for (offset = 0;
321 	     offset >= 0 && depth >= initial_depth;
322 	     offset = fdt_next_node(blob, offset, &depth)) {
323 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
324 			continue;
325 
326 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
327 		    !of_fdt_device_is_available(blob, offset))
328 			continue;
329 
330 		ret = populate_node(blob, offset, &mem, nps[depth],
331 				   &nps[depth+1], dryrun);
332 		if (ret < 0)
333 			return ret;
334 
335 		if (!dryrun && nodepp && !*nodepp)
336 			*nodepp = nps[depth+1];
337 		if (!dryrun && !root)
338 			root = nps[depth+1];
339 	}
340 
341 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
342 		pr_err("Error %d processing FDT\n", offset);
343 		return -EINVAL;
344 	}
345 
346 	/*
347 	 * Reverse the child list. Some drivers assumes node order matches .dts
348 	 * node order
349 	 */
350 	if (!dryrun)
351 		reverse_nodes(root);
352 
353 	return mem - base;
354 }
355 
356 /**
357  * __unflatten_device_tree - create tree of device_nodes from flat blob
358  * @blob: The blob to expand
359  * @dad: Parent device node
360  * @mynodes: The device_node tree created by the call
361  * @dt_alloc: An allocator that provides a virtual address to memory
362  * for the resulting tree
363  * @detached: if true set OF_DETACHED on @mynodes
364  *
365  * unflattens a device-tree, creating the tree of struct device_node. It also
366  * fills the "name" and "type" pointers of the nodes so the normal device-tree
367  * walking functions can be used.
368  *
369  * Return: NULL on failure or the memory chunk containing the unflattened
370  * device tree on success.
371  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)372 void *__unflatten_device_tree(const void *blob,
373 			      struct device_node *dad,
374 			      struct device_node **mynodes,
375 			      void *(*dt_alloc)(u64 size, u64 align),
376 			      bool detached)
377 {
378 	int size;
379 	void *mem;
380 	int ret;
381 
382 	if (mynodes)
383 		*mynodes = NULL;
384 
385 	pr_debug(" -> unflatten_device_tree()\n");
386 
387 	if (!blob) {
388 		pr_debug("No device tree pointer\n");
389 		return NULL;
390 	}
391 
392 	pr_debug("Unflattening device tree:\n");
393 	pr_debug("magic: %08x\n", fdt_magic(blob));
394 	pr_debug("size: %08x\n", fdt_totalsize(blob));
395 	pr_debug("version: %08x\n", fdt_version(blob));
396 
397 	if (fdt_check_header(blob)) {
398 		pr_err("Invalid device tree blob header\n");
399 		return NULL;
400 	}
401 
402 	/* First pass, scan for size */
403 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
404 	if (size <= 0)
405 		return NULL;
406 
407 	size = ALIGN(size, 4);
408 	pr_debug("  size is %d, allocating...\n", size);
409 
410 	/* Allocate memory for the expanded device tree */
411 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
412 	if (!mem)
413 		return NULL;
414 
415 	memset(mem, 0, size);
416 
417 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
418 
419 	pr_debug("  unflattening %p...\n", mem);
420 
421 	/* Second pass, do actual unflattening */
422 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
423 
424 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
425 		pr_warn("End of tree marker overwritten: %08x\n",
426 			be32_to_cpup(mem + size));
427 
428 	if (ret <= 0)
429 		return NULL;
430 
431 	if (detached && mynodes && *mynodes) {
432 		of_node_set_flag(*mynodes, OF_DETACHED);
433 		pr_debug("unflattened tree is detached\n");
434 	}
435 
436 	pr_debug(" <- unflatten_device_tree()\n");
437 	return mem;
438 }
439 
kernel_tree_alloc(u64 size,u64 align)440 static void *kernel_tree_alloc(u64 size, u64 align)
441 {
442 	return kzalloc(size, GFP_KERNEL);
443 }
444 
445 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
446 
447 /**
448  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
449  * @blob: Flat device tree blob
450  * @dad: Parent device node
451  * @mynodes: The device tree created by the call
452  *
453  * unflattens the device-tree passed by the firmware, creating the
454  * tree of struct device_node. It also fills the "name" and "type"
455  * pointers of the nodes so the normal device-tree walking functions
456  * can be used.
457  *
458  * Return: NULL on failure or the memory chunk containing the unflattened
459  * device tree on success.
460  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)461 void *of_fdt_unflatten_tree(const unsigned long *blob,
462 			    struct device_node *dad,
463 			    struct device_node **mynodes)
464 {
465 	void *mem;
466 
467 	mutex_lock(&of_fdt_unflatten_mutex);
468 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
469 				      true);
470 	mutex_unlock(&of_fdt_unflatten_mutex);
471 
472 	return mem;
473 }
474 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
475 
476 /* Everything below here references initial_boot_params directly. */
477 int __initdata dt_root_addr_cells;
478 int __initdata dt_root_size_cells;
479 
480 void *initial_boot_params __ro_after_init;
481 
482 #ifdef CONFIG_OF_EARLY_FLATTREE
483 
484 static u32 of_fdt_crc32;
485 
486 /*
487  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
488  *
489  * This function reserves the memory occupied by an elf core header
490  * described in the device tree. This region contains all the
491  * information about primary kernel's core image and is used by a dump
492  * capture kernel to access the system memory on primary kernel.
493  */
fdt_reserve_elfcorehdr(void)494 static void __init fdt_reserve_elfcorehdr(void)
495 {
496 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
497 		return;
498 
499 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
500 		pr_warn("elfcorehdr is overlapped\n");
501 		return;
502 	}
503 
504 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
505 
506 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
507 		elfcorehdr_size >> 10, elfcorehdr_addr);
508 }
509 
510 /**
511  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
512  *
513  * This function grabs memory from early allocator for device exclusive use
514  * defined in device tree structures. It should be called by arch specific code
515  * once the early allocator (i.e. memblock) has been fully activated.
516  */
early_init_fdt_scan_reserved_mem(void)517 void __init early_init_fdt_scan_reserved_mem(void)
518 {
519 	int n;
520 	u64 base, size;
521 
522 	if (!initial_boot_params)
523 		return;
524 
525 	fdt_scan_reserved_mem();
526 	fdt_reserve_elfcorehdr();
527 
528 	/* Process header /memreserve/ fields */
529 	for (n = 0; ; n++) {
530 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
531 		if (!size)
532 			break;
533 		memblock_reserve(base, size);
534 	}
535 
536 	fdt_init_reserved_mem();
537 }
538 
539 /**
540  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
541  */
early_init_fdt_reserve_self(void)542 void __init early_init_fdt_reserve_self(void)
543 {
544 	if (!initial_boot_params)
545 		return;
546 
547 	/* Reserve the dtb region */
548 	memblock_reserve(__pa(initial_boot_params),
549 			 fdt_totalsize(initial_boot_params));
550 }
551 
552 /**
553  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
554  * @it: callback function
555  * @data: context data pointer
556  *
557  * This function is used to scan the flattened device-tree, it is
558  * used to extract the memory information at boot before we can
559  * unflatten the tree
560  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)561 int __init of_scan_flat_dt(int (*it)(unsigned long node,
562 				     const char *uname, int depth,
563 				     void *data),
564 			   void *data)
565 {
566 	const void *blob = initial_boot_params;
567 	const char *pathp;
568 	int offset, rc = 0, depth = -1;
569 
570 	if (!blob)
571 		return 0;
572 
573 	for (offset = fdt_next_node(blob, -1, &depth);
574 	     offset >= 0 && depth >= 0 && !rc;
575 	     offset = fdt_next_node(blob, offset, &depth)) {
576 
577 		pathp = fdt_get_name(blob, offset, NULL);
578 		rc = it(offset, pathp, depth, data);
579 	}
580 	return rc;
581 }
582 
583 /**
584  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
585  * @parent: parent node
586  * @it: callback function
587  * @data: context data pointer
588  *
589  * This function is used to scan sub-nodes of a node.
590  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)591 int __init of_scan_flat_dt_subnodes(unsigned long parent,
592 				    int (*it)(unsigned long node,
593 					      const char *uname,
594 					      void *data),
595 				    void *data)
596 {
597 	const void *blob = initial_boot_params;
598 	int node;
599 
600 	fdt_for_each_subnode(node, blob, parent) {
601 		const char *pathp;
602 		int rc;
603 
604 		pathp = fdt_get_name(blob, node, NULL);
605 		rc = it(node, pathp, data);
606 		if (rc)
607 			return rc;
608 	}
609 	return 0;
610 }
611 
612 /**
613  * of_get_flat_dt_subnode_by_name - get the subnode by given name
614  *
615  * @node: the parent node
616  * @uname: the name of subnode
617  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
618  */
619 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)620 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
621 {
622 	return fdt_subnode_offset(initial_boot_params, node, uname);
623 }
624 
625 /*
626  * of_get_flat_dt_root - find the root node in the flat blob
627  */
of_get_flat_dt_root(void)628 unsigned long __init of_get_flat_dt_root(void)
629 {
630 	return 0;
631 }
632 
633 /*
634  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
635  *
636  * This function can be used within scan_flattened_dt callback to get
637  * access to properties
638  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)639 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
640 				       int *size)
641 {
642 	return fdt_getprop(initial_boot_params, node, name, size);
643 }
644 
645 /**
646  * of_fdt_is_compatible - Return true if given node from the given blob has
647  * compat in its compatible list
648  * @blob: A device tree blob
649  * @node: node to test
650  * @compat: compatible string to compare with compatible list.
651  *
652  * Return: a non-zero value on match with smaller values returned for more
653  * specific compatible values.
654  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)655 static int of_fdt_is_compatible(const void *blob,
656 		      unsigned long node, const char *compat)
657 {
658 	const char *cp;
659 	int cplen;
660 	unsigned long l, score = 0;
661 
662 	cp = fdt_getprop(blob, node, "compatible", &cplen);
663 	if (cp == NULL)
664 		return 0;
665 	while (cplen > 0) {
666 		score++;
667 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
668 			return score;
669 		l = strlen(cp) + 1;
670 		cp += l;
671 		cplen -= l;
672 	}
673 
674 	return 0;
675 }
676 
677 /**
678  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
679  * @node: node to test
680  * @compat: compatible string to compare with compatible list.
681  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)682 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
683 {
684 	return of_fdt_is_compatible(initial_boot_params, node, compat);
685 }
686 
687 /*
688  * of_flat_dt_match - Return true if node matches a list of compatible values
689  */
of_flat_dt_match(unsigned long node,const char * const * compat)690 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
691 {
692 	unsigned int tmp, score = 0;
693 
694 	if (!compat)
695 		return 0;
696 
697 	while (*compat) {
698 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
699 		if (tmp && (score == 0 || (tmp < score)))
700 			score = tmp;
701 		compat++;
702 	}
703 
704 	return score;
705 }
706 
707 /*
708  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
709  */
of_get_flat_dt_phandle(unsigned long node)710 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
711 {
712 	return fdt_get_phandle(initial_boot_params, node);
713 }
714 
of_flat_dt_get_machine_name(void)715 const char * __init of_flat_dt_get_machine_name(void)
716 {
717 	const char *name;
718 	unsigned long dt_root = of_get_flat_dt_root();
719 
720 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
721 	if (!name)
722 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
723 	return name;
724 }
725 
726 /**
727  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
728  *
729  * @default_match: A machine specific ptr to return in case of no match.
730  * @get_next_compat: callback function to return next compatible match table.
731  *
732  * Iterate through machine match tables to find the best match for the machine
733  * compatible string in the FDT.
734  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))735 const void * __init of_flat_dt_match_machine(const void *default_match,
736 		const void * (*get_next_compat)(const char * const**))
737 {
738 	const void *data = NULL;
739 	const void *best_data = default_match;
740 	const char *const *compat;
741 	unsigned long dt_root;
742 	unsigned int best_score = ~1, score = 0;
743 
744 	dt_root = of_get_flat_dt_root();
745 	while ((data = get_next_compat(&compat))) {
746 		score = of_flat_dt_match(dt_root, compat);
747 		if (score > 0 && score < best_score) {
748 			best_data = data;
749 			best_score = score;
750 		}
751 	}
752 	if (!best_data) {
753 		const char *prop;
754 		int size;
755 
756 		pr_err("\n unrecognized device tree list:\n[ ");
757 
758 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
759 		if (prop) {
760 			while (size > 0) {
761 				printk("'%s' ", prop);
762 				size -= strlen(prop) + 1;
763 				prop += strlen(prop) + 1;
764 			}
765 		}
766 		printk("]\n\n");
767 		return NULL;
768 	}
769 
770 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
771 
772 	return best_data;
773 }
774 
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)775 static void __early_init_dt_declare_initrd(unsigned long start,
776 					   unsigned long end)
777 {
778 	/*
779 	 * __va() is not yet available this early on some platforms. In that
780 	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
781 	 * and does the VA conversion itself.
782 	 */
783 	if (!IS_ENABLED(CONFIG_ARM64) &&
784 	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
785 		initrd_start = (unsigned long)__va(start);
786 		initrd_end = (unsigned long)__va(end);
787 		initrd_below_start_ok = 1;
788 	}
789 }
790 
791 /**
792  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
793  * @node: reference to node containing initrd location ('chosen')
794  */
early_init_dt_check_for_initrd(unsigned long node)795 static void __init early_init_dt_check_for_initrd(unsigned long node)
796 {
797 	u64 start, end;
798 	int len;
799 	const __be32 *prop;
800 
801 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
802 		return;
803 
804 	pr_debug("Looking for initrd properties... ");
805 
806 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
807 	if (!prop)
808 		return;
809 	start = of_read_number(prop, len/4);
810 
811 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
812 	if (!prop)
813 		return;
814 	end = of_read_number(prop, len/4);
815 	if (start > end)
816 		return;
817 
818 	__early_init_dt_declare_initrd(start, end);
819 	phys_initrd_start = start;
820 	phys_initrd_size = end - start;
821 
822 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
823 }
824 
825 /**
826  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
827  * tree
828  * @node: reference to node containing elfcorehdr location ('chosen')
829  */
early_init_dt_check_for_elfcorehdr(unsigned long node)830 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
831 {
832 	const __be32 *prop;
833 	int len;
834 
835 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
836 		return;
837 
838 	pr_debug("Looking for elfcorehdr property... ");
839 
840 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
841 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
842 		return;
843 
844 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
845 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
846 
847 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
848 		 elfcorehdr_addr, elfcorehdr_size);
849 }
850 
851 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
852 
853 /*
854  * The main usage of linux,usable-memory-range is for crash dump kernel.
855  * Originally, the number of usable-memory regions is one. Now there may
856  * be two regions, low region and high region.
857  * To make compatibility with existing user-space and older kdump, the low
858  * region is always the last range of linux,usable-memory-range if exist.
859  */
860 #define MAX_USABLE_RANGES		2
861 
862 /**
863  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
864  * location from flat tree
865  */
early_init_dt_check_for_usable_mem_range(void)866 void __init early_init_dt_check_for_usable_mem_range(void)
867 {
868 	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
869 	const __be32 *prop, *endp;
870 	int len, i;
871 	unsigned long node = chosen_node_offset;
872 
873 	if ((long)node < 0)
874 		return;
875 
876 	pr_debug("Looking for usable-memory-range property... ");
877 
878 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
879 	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
880 		return;
881 
882 	endp = prop + (len / sizeof(__be32));
883 	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
884 		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
885 		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
886 
887 		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
888 			 i, &rgn[i].base, &rgn[i].size);
889 	}
890 
891 	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
892 	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
893 		memblock_add(rgn[i].base, rgn[i].size);
894 }
895 
896 #ifdef CONFIG_SERIAL_EARLYCON
897 
early_init_dt_scan_chosen_stdout(void)898 int __init early_init_dt_scan_chosen_stdout(void)
899 {
900 	int offset;
901 	const char *p, *q, *options = NULL;
902 	int l;
903 	const struct earlycon_id *match;
904 	const void *fdt = initial_boot_params;
905 	int ret;
906 
907 	offset = fdt_path_offset(fdt, "/chosen");
908 	if (offset < 0)
909 		offset = fdt_path_offset(fdt, "/chosen@0");
910 	if (offset < 0)
911 		return -ENOENT;
912 
913 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
914 	if (!p)
915 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
916 	if (!p || !l)
917 		return -ENOENT;
918 
919 	q = strchrnul(p, ':');
920 	if (*q != '\0')
921 		options = q + 1;
922 	l = q - p;
923 
924 	/* Get the node specified by stdout-path */
925 	offset = fdt_path_offset_namelen(fdt, p, l);
926 	if (offset < 0) {
927 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
928 		return 0;
929 	}
930 
931 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
932 		if (!match->compatible[0])
933 			continue;
934 
935 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
936 			continue;
937 
938 		ret = of_setup_earlycon(match, offset, options);
939 		if (!ret || ret == -EALREADY)
940 			return 0;
941 	}
942 	return -ENODEV;
943 }
944 #endif
945 
946 /*
947  * early_init_dt_scan_root - fetch the top level address and size cells
948  */
early_init_dt_scan_root(void)949 int __init early_init_dt_scan_root(void)
950 {
951 	const __be32 *prop;
952 	const void *fdt = initial_boot_params;
953 	int node = fdt_path_offset(fdt, "/");
954 
955 	if (node < 0)
956 		return -ENODEV;
957 
958 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
959 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
960 
961 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
962 	if (prop)
963 		dt_root_size_cells = be32_to_cpup(prop);
964 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
965 
966 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
967 	if (prop)
968 		dt_root_addr_cells = be32_to_cpup(prop);
969 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
970 
971 	return 0;
972 }
973 
dt_mem_next_cell(int s,const __be32 ** cellp)974 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
975 {
976 	const __be32 *p = *cellp;
977 
978 	*cellp = p + s;
979 	return of_read_number(p, s);
980 }
981 
982 /*
983  * early_init_dt_scan_memory - Look for and parse memory nodes
984  */
early_init_dt_scan_memory(void)985 int __init early_init_dt_scan_memory(void)
986 {
987 	int node, found_memory = 0;
988 	const void *fdt = initial_boot_params;
989 
990 	fdt_for_each_subnode(node, fdt, 0) {
991 		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
992 		const __be32 *reg, *endp;
993 		int l;
994 		bool hotpluggable;
995 
996 		/* We are scanning "memory" nodes only */
997 		if (type == NULL || strcmp(type, "memory") != 0)
998 			continue;
999 
1000 		if (!of_fdt_device_is_available(fdt, node))
1001 			continue;
1002 
1003 		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1004 		if (reg == NULL)
1005 			reg = of_get_flat_dt_prop(node, "reg", &l);
1006 		if (reg == NULL)
1007 			continue;
1008 
1009 		endp = reg + (l / sizeof(__be32));
1010 		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1011 
1012 		pr_debug("memory scan node %s, reg size %d,\n",
1013 			 fdt_get_name(fdt, node, NULL), l);
1014 
1015 		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1016 			u64 base, size;
1017 
1018 			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1019 			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1020 
1021 			if (size == 0)
1022 				continue;
1023 			pr_debug(" - %llx, %llx\n", base, size);
1024 
1025 			early_init_dt_add_memory_arch(base, size);
1026 
1027 			found_memory = 1;
1028 
1029 			if (!hotpluggable)
1030 				continue;
1031 
1032 			if (memblock_mark_hotplug(base, size))
1033 				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1034 					base, base + size);
1035 		}
1036 	}
1037 	return found_memory;
1038 }
1039 
early_init_dt_scan_chosen(char * cmdline)1040 int __init early_init_dt_scan_chosen(char *cmdline)
1041 {
1042 	int l, node;
1043 	const char *p;
1044 	const void *rng_seed;
1045 	const void *fdt = initial_boot_params;
1046 
1047 	node = fdt_path_offset(fdt, "/chosen");
1048 	if (node < 0)
1049 		node = fdt_path_offset(fdt, "/chosen@0");
1050 	if (node < 0)
1051 		/* Handle the cmdline config options even if no /chosen node */
1052 		goto handle_cmdline;
1053 
1054 	chosen_node_offset = node;
1055 
1056 	early_init_dt_check_for_initrd(node);
1057 	early_init_dt_check_for_elfcorehdr(node);
1058 
1059 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1060 	if (rng_seed && l > 0) {
1061 		add_bootloader_randomness(rng_seed, l);
1062 
1063 		/* try to clear seed so it won't be found. */
1064 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1065 
1066 		/* update CRC check value */
1067 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1068 				fdt_totalsize(initial_boot_params));
1069 	}
1070 
1071 	/* Retrieve command line */
1072 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1073 	if (p != NULL && l > 0)
1074 		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1075 
1076 handle_cmdline:
1077 	/*
1078 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1079 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1080 	 * is set in which case we override whatever was found earlier.
1081 	 */
1082 #ifdef CONFIG_CMDLINE
1083 #if defined(CONFIG_CMDLINE_EXTEND)
1084 	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1085 	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1086 #elif defined(CONFIG_CMDLINE_FORCE)
1087 	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1088 #else
1089 	/* No arguments from boot loader, use kernel's  cmdl*/
1090 	if (!((char *)cmdline)[0])
1091 		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1092 #endif
1093 #endif /* CONFIG_CMDLINE */
1094 
1095 	pr_debug("Command line is: %s\n", (char *)cmdline);
1096 
1097 	return 0;
1098 }
1099 
1100 #ifndef MIN_MEMBLOCK_ADDR
1101 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1102 #endif
1103 #ifndef MAX_MEMBLOCK_ADDR
1104 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1105 #endif
1106 
early_init_dt_add_memory_arch(u64 base,u64 size)1107 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1108 {
1109 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1110 
1111 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1112 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1113 			base, base + size);
1114 		return;
1115 	}
1116 
1117 	if (!PAGE_ALIGNED(base)) {
1118 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1119 		base = PAGE_ALIGN(base);
1120 	}
1121 	size &= PAGE_MASK;
1122 
1123 	if (base > MAX_MEMBLOCK_ADDR) {
1124 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1125 			base, base + size);
1126 		return;
1127 	}
1128 
1129 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1130 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1131 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1132 		size = MAX_MEMBLOCK_ADDR - base + 1;
1133 	}
1134 
1135 	if (base + size < phys_offset) {
1136 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1137 			base, base + size);
1138 		return;
1139 	}
1140 	if (base < phys_offset) {
1141 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1142 			base, phys_offset);
1143 		size -= phys_offset - base;
1144 		base = phys_offset;
1145 	}
1146 	memblock_add(base, size);
1147 }
1148 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1149 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1150 {
1151 	void *ptr = memblock_alloc(size, align);
1152 
1153 	if (!ptr)
1154 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1155 		      __func__, size, align);
1156 
1157 	return ptr;
1158 }
1159 
early_init_dt_verify(void * params)1160 bool __init early_init_dt_verify(void *params)
1161 {
1162 	if (!params)
1163 		return false;
1164 
1165 	/* check device tree validity */
1166 	if (fdt_check_header(params))
1167 		return false;
1168 
1169 	/* Setup flat device-tree pointer */
1170 	initial_boot_params = params;
1171 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1172 				fdt_totalsize(initial_boot_params));
1173 	return true;
1174 }
1175 
1176 
early_init_dt_scan_nodes(void)1177 void __init early_init_dt_scan_nodes(void)
1178 {
1179 	int rc;
1180 
1181 	/* Initialize {size,address}-cells info */
1182 	early_init_dt_scan_root();
1183 
1184 	/* Retrieve various information from the /chosen node */
1185 	rc = early_init_dt_scan_chosen(boot_command_line);
1186 	if (rc)
1187 		pr_warn("No chosen node found, continuing without\n");
1188 
1189 	/* Setup memory, calling early_init_dt_add_memory_arch */
1190 	early_init_dt_scan_memory();
1191 
1192 	/* Handle linux,usable-memory-range property */
1193 	early_init_dt_check_for_usable_mem_range();
1194 }
1195 
early_init_dt_scan(void * params)1196 bool __init early_init_dt_scan(void *params)
1197 {
1198 	bool status;
1199 
1200 	status = early_init_dt_verify(params);
1201 	if (!status)
1202 		return false;
1203 
1204 	early_init_dt_scan_nodes();
1205 	return true;
1206 }
1207 
copy_device_tree(void * fdt)1208 static void *__init copy_device_tree(void *fdt)
1209 {
1210 	int size;
1211 	void *dt;
1212 
1213 	size = fdt_totalsize(fdt);
1214 	dt = early_init_dt_alloc_memory_arch(size,
1215 					     roundup_pow_of_two(FDT_V17_SIZE));
1216 
1217 	if (dt)
1218 		memcpy(dt, fdt, size);
1219 
1220 	return dt;
1221 }
1222 
1223 /**
1224  * unflatten_device_tree - create tree of device_nodes from flat blob
1225  *
1226  * unflattens the device-tree passed by the firmware, creating the
1227  * tree of struct device_node. It also fills the "name" and "type"
1228  * pointers of the nodes so the normal device-tree walking functions
1229  * can be used.
1230  */
unflatten_device_tree(void)1231 void __init unflatten_device_tree(void)
1232 {
1233 	void *fdt = initial_boot_params;
1234 
1235 	/* Don't use the bootloader provided DTB if ACPI is enabled */
1236 	if (!acpi_disabled)
1237 		fdt = NULL;
1238 
1239 	/*
1240 	 * Populate an empty root node when ACPI is enabled or bootloader
1241 	 * doesn't provide one.
1242 	 */
1243 	if (!fdt) {
1244 		fdt = (void *) __dtb_empty_root_begin;
1245 		/* fdt_totalsize() will be used for copy size */
1246 		if (fdt_totalsize(fdt) >
1247 		    __dtb_empty_root_end - __dtb_empty_root_begin) {
1248 			pr_err("invalid size in dtb_empty_root\n");
1249 			return;
1250 		}
1251 		of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt));
1252 		fdt = copy_device_tree(fdt);
1253 	}
1254 
1255 	__unflatten_device_tree(fdt, NULL, &of_root,
1256 				early_init_dt_alloc_memory_arch, false);
1257 
1258 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1259 	of_alias_scan(early_init_dt_alloc_memory_arch);
1260 
1261 	unittest_unflatten_overlay_base();
1262 }
1263 
1264 /**
1265  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1266  *
1267  * Copies and unflattens the device-tree passed by the firmware, creating the
1268  * tree of struct device_node. It also fills the "name" and "type"
1269  * pointers of the nodes so the normal device-tree walking functions
1270  * can be used. This should only be used when the FDT memory has not been
1271  * reserved such is the case when the FDT is built-in to the kernel init
1272  * section. If the FDT memory is reserved already then unflatten_device_tree
1273  * should be used instead.
1274  */
unflatten_and_copy_device_tree(void)1275 void __init unflatten_and_copy_device_tree(void)
1276 {
1277 	if (initial_boot_params)
1278 		initial_boot_params = copy_device_tree(initial_boot_params);
1279 
1280 	unflatten_device_tree();
1281 }
1282 
1283 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1284 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1285 			       struct bin_attribute *bin_attr,
1286 			       char *buf, loff_t off, size_t count)
1287 {
1288 	memcpy(buf, initial_boot_params + off, count);
1289 	return count;
1290 }
1291 
of_fdt_raw_init(void)1292 static int __init of_fdt_raw_init(void)
1293 {
1294 	static struct bin_attribute of_fdt_raw_attr =
1295 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1296 
1297 	if (!initial_boot_params)
1298 		return 0;
1299 
1300 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1301 				     fdt_totalsize(initial_boot_params))) {
1302 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1303 		return 0;
1304 	}
1305 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1306 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1307 }
1308 late_initcall(of_fdt_raw_init);
1309 #endif
1310 
1311 #endif /* CONFIG_OF_EARLY_FLATTREE */
1312