xref: /linux/crypto/ecc.c (revision 01474b70)
1 /*
2  * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
3  * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met:
8  *  * Redistributions of source code must retain the above copyright
9  *   notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18  * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <crypto/ecc_curve.h>
28 #include <linux/module.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/swab.h>
32 #include <linux/fips.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/rng.h>
35 #include <crypto/internal/ecc.h>
36 #include <asm/unaligned.h>
37 #include <linux/ratelimit.h>
38 
39 #include "ecc_curve_defs.h"
40 
41 typedef struct {
42 	u64 m_low;
43 	u64 m_high;
44 } uint128_t;
45 
46 /* Returns curv25519 curve param */
ecc_get_curve25519(void)47 const struct ecc_curve *ecc_get_curve25519(void)
48 {
49 	return &ecc_25519;
50 }
51 EXPORT_SYMBOL(ecc_get_curve25519);
52 
ecc_get_curve(unsigned int curve_id)53 const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
54 {
55 	switch (curve_id) {
56 	/* In FIPS mode only allow P256 and higher */
57 	case ECC_CURVE_NIST_P192:
58 		return fips_enabled ? NULL : &nist_p192;
59 	case ECC_CURVE_NIST_P256:
60 		return &nist_p256;
61 	case ECC_CURVE_NIST_P384:
62 		return &nist_p384;
63 	case ECC_CURVE_NIST_P521:
64 		return &nist_p521;
65 	default:
66 		return NULL;
67 	}
68 }
69 EXPORT_SYMBOL(ecc_get_curve);
70 
ecc_alloc_digits_space(unsigned int ndigits)71 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
72 {
73 	size_t len = ndigits * sizeof(u64);
74 
75 	if (!len)
76 		return NULL;
77 
78 	return kmalloc(len, GFP_KERNEL);
79 }
80 
ecc_free_digits_space(u64 * space)81 static void ecc_free_digits_space(u64 *space)
82 {
83 	kfree_sensitive(space);
84 }
85 
ecc_alloc_point(unsigned int ndigits)86 struct ecc_point *ecc_alloc_point(unsigned int ndigits)
87 {
88 	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
89 
90 	if (!p)
91 		return NULL;
92 
93 	p->x = ecc_alloc_digits_space(ndigits);
94 	if (!p->x)
95 		goto err_alloc_x;
96 
97 	p->y = ecc_alloc_digits_space(ndigits);
98 	if (!p->y)
99 		goto err_alloc_y;
100 
101 	p->ndigits = ndigits;
102 
103 	return p;
104 
105 err_alloc_y:
106 	ecc_free_digits_space(p->x);
107 err_alloc_x:
108 	kfree(p);
109 	return NULL;
110 }
111 EXPORT_SYMBOL(ecc_alloc_point);
112 
ecc_free_point(struct ecc_point * p)113 void ecc_free_point(struct ecc_point *p)
114 {
115 	if (!p)
116 		return;
117 
118 	kfree_sensitive(p->x);
119 	kfree_sensitive(p->y);
120 	kfree_sensitive(p);
121 }
122 EXPORT_SYMBOL(ecc_free_point);
123 
vli_clear(u64 * vli,unsigned int ndigits)124 static void vli_clear(u64 *vli, unsigned int ndigits)
125 {
126 	int i;
127 
128 	for (i = 0; i < ndigits; i++)
129 		vli[i] = 0;
130 }
131 
132 /* Returns true if vli == 0, false otherwise. */
vli_is_zero(const u64 * vli,unsigned int ndigits)133 bool vli_is_zero(const u64 *vli, unsigned int ndigits)
134 {
135 	int i;
136 
137 	for (i = 0; i < ndigits; i++) {
138 		if (vli[i])
139 			return false;
140 	}
141 
142 	return true;
143 }
144 EXPORT_SYMBOL(vli_is_zero);
145 
146 /* Returns nonzero if bit of vli is set. */
vli_test_bit(const u64 * vli,unsigned int bit)147 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
148 {
149 	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
150 }
151 
vli_is_negative(const u64 * vli,unsigned int ndigits)152 static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
153 {
154 	return vli_test_bit(vli, ndigits * 64 - 1);
155 }
156 
157 /* Counts the number of 64-bit "digits" in vli. */
vli_num_digits(const u64 * vli,unsigned int ndigits)158 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
159 {
160 	int i;
161 
162 	/* Search from the end until we find a non-zero digit.
163 	 * We do it in reverse because we expect that most digits will
164 	 * be nonzero.
165 	 */
166 	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
167 
168 	return (i + 1);
169 }
170 
171 /* Counts the number of bits required for vli. */
vli_num_bits(const u64 * vli,unsigned int ndigits)172 unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
173 {
174 	unsigned int i, num_digits;
175 	u64 digit;
176 
177 	num_digits = vli_num_digits(vli, ndigits);
178 	if (num_digits == 0)
179 		return 0;
180 
181 	digit = vli[num_digits - 1];
182 	for (i = 0; digit; i++)
183 		digit >>= 1;
184 
185 	return ((num_digits - 1) * 64 + i);
186 }
187 EXPORT_SYMBOL(vli_num_bits);
188 
189 /* Set dest from unaligned bit string src. */
vli_from_be64(u64 * dest,const void * src,unsigned int ndigits)190 void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
191 {
192 	int i;
193 	const u64 *from = src;
194 
195 	for (i = 0; i < ndigits; i++)
196 		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
197 }
198 EXPORT_SYMBOL(vli_from_be64);
199 
vli_from_le64(u64 * dest,const void * src,unsigned int ndigits)200 void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
201 {
202 	int i;
203 	const u64 *from = src;
204 
205 	for (i = 0; i < ndigits; i++)
206 		dest[i] = get_unaligned_le64(&from[i]);
207 }
208 EXPORT_SYMBOL(vli_from_le64);
209 
210 /* Sets dest = src. */
vli_set(u64 * dest,const u64 * src,unsigned int ndigits)211 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
212 {
213 	int i;
214 
215 	for (i = 0; i < ndigits; i++)
216 		dest[i] = src[i];
217 }
218 
219 /* Returns sign of left - right. */
vli_cmp(const u64 * left,const u64 * right,unsigned int ndigits)220 int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
221 {
222 	int i;
223 
224 	for (i = ndigits - 1; i >= 0; i--) {
225 		if (left[i] > right[i])
226 			return 1;
227 		else if (left[i] < right[i])
228 			return -1;
229 	}
230 
231 	return 0;
232 }
233 EXPORT_SYMBOL(vli_cmp);
234 
235 /* Computes result = in << c, returning carry. Can modify in place
236  * (if result == in). 0 < shift < 64.
237  */
vli_lshift(u64 * result,const u64 * in,unsigned int shift,unsigned int ndigits)238 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
239 		      unsigned int ndigits)
240 {
241 	u64 carry = 0;
242 	int i;
243 
244 	for (i = 0; i < ndigits; i++) {
245 		u64 temp = in[i];
246 
247 		result[i] = (temp << shift) | carry;
248 		carry = temp >> (64 - shift);
249 	}
250 
251 	return carry;
252 }
253 
254 /* Computes vli = vli >> 1. */
vli_rshift1(u64 * vli,unsigned int ndigits)255 static void vli_rshift1(u64 *vli, unsigned int ndigits)
256 {
257 	u64 *end = vli;
258 	u64 carry = 0;
259 
260 	vli += ndigits;
261 
262 	while (vli-- > end) {
263 		u64 temp = *vli;
264 		*vli = (temp >> 1) | carry;
265 		carry = temp << 63;
266 	}
267 }
268 
269 /* Computes result = left + right, returning carry. Can modify in place. */
vli_add(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)270 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
271 		   unsigned int ndigits)
272 {
273 	u64 carry = 0;
274 	int i;
275 
276 	for (i = 0; i < ndigits; i++) {
277 		u64 sum;
278 
279 		sum = left[i] + right[i] + carry;
280 		if (sum != left[i])
281 			carry = (sum < left[i]);
282 
283 		result[i] = sum;
284 	}
285 
286 	return carry;
287 }
288 
289 /* Computes result = left + right, returning carry. Can modify in place. */
vli_uadd(u64 * result,const u64 * left,u64 right,unsigned int ndigits)290 static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
291 		    unsigned int ndigits)
292 {
293 	u64 carry = right;
294 	int i;
295 
296 	for (i = 0; i < ndigits; i++) {
297 		u64 sum;
298 
299 		sum = left[i] + carry;
300 		if (sum != left[i])
301 			carry = (sum < left[i]);
302 		else
303 			carry = !!carry;
304 
305 		result[i] = sum;
306 	}
307 
308 	return carry;
309 }
310 
311 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_sub(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)312 u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
313 		   unsigned int ndigits)
314 {
315 	u64 borrow = 0;
316 	int i;
317 
318 	for (i = 0; i < ndigits; i++) {
319 		u64 diff;
320 
321 		diff = left[i] - right[i] - borrow;
322 		if (diff != left[i])
323 			borrow = (diff > left[i]);
324 
325 		result[i] = diff;
326 	}
327 
328 	return borrow;
329 }
330 EXPORT_SYMBOL(vli_sub);
331 
332 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_usub(u64 * result,const u64 * left,u64 right,unsigned int ndigits)333 static u64 vli_usub(u64 *result, const u64 *left, u64 right,
334 	     unsigned int ndigits)
335 {
336 	u64 borrow = right;
337 	int i;
338 
339 	for (i = 0; i < ndigits; i++) {
340 		u64 diff;
341 
342 		diff = left[i] - borrow;
343 		if (diff != left[i])
344 			borrow = (diff > left[i]);
345 
346 		result[i] = diff;
347 	}
348 
349 	return borrow;
350 }
351 
mul_64_64(u64 left,u64 right)352 static uint128_t mul_64_64(u64 left, u64 right)
353 {
354 	uint128_t result;
355 #if defined(CONFIG_ARCH_SUPPORTS_INT128)
356 	unsigned __int128 m = (unsigned __int128)left * right;
357 
358 	result.m_low  = m;
359 	result.m_high = m >> 64;
360 #else
361 	u64 a0 = left & 0xffffffffull;
362 	u64 a1 = left >> 32;
363 	u64 b0 = right & 0xffffffffull;
364 	u64 b1 = right >> 32;
365 	u64 m0 = a0 * b0;
366 	u64 m1 = a0 * b1;
367 	u64 m2 = a1 * b0;
368 	u64 m3 = a1 * b1;
369 
370 	m2 += (m0 >> 32);
371 	m2 += m1;
372 
373 	/* Overflow */
374 	if (m2 < m1)
375 		m3 += 0x100000000ull;
376 
377 	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
378 	result.m_high = m3 + (m2 >> 32);
379 #endif
380 	return result;
381 }
382 
add_128_128(uint128_t a,uint128_t b)383 static uint128_t add_128_128(uint128_t a, uint128_t b)
384 {
385 	uint128_t result;
386 
387 	result.m_low = a.m_low + b.m_low;
388 	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
389 
390 	return result;
391 }
392 
vli_mult(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)393 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
394 		     unsigned int ndigits)
395 {
396 	uint128_t r01 = { 0, 0 };
397 	u64 r2 = 0;
398 	unsigned int i, k;
399 
400 	/* Compute each digit of result in sequence, maintaining the
401 	 * carries.
402 	 */
403 	for (k = 0; k < ndigits * 2 - 1; k++) {
404 		unsigned int min;
405 
406 		if (k < ndigits)
407 			min = 0;
408 		else
409 			min = (k + 1) - ndigits;
410 
411 		for (i = min; i <= k && i < ndigits; i++) {
412 			uint128_t product;
413 
414 			product = mul_64_64(left[i], right[k - i]);
415 
416 			r01 = add_128_128(r01, product);
417 			r2 += (r01.m_high < product.m_high);
418 		}
419 
420 		result[k] = r01.m_low;
421 		r01.m_low = r01.m_high;
422 		r01.m_high = r2;
423 		r2 = 0;
424 	}
425 
426 	result[ndigits * 2 - 1] = r01.m_low;
427 }
428 
429 /* Compute product = left * right, for a small right value. */
vli_umult(u64 * result,const u64 * left,u32 right,unsigned int ndigits)430 static void vli_umult(u64 *result, const u64 *left, u32 right,
431 		      unsigned int ndigits)
432 {
433 	uint128_t r01 = { 0 };
434 	unsigned int k;
435 
436 	for (k = 0; k < ndigits; k++) {
437 		uint128_t product;
438 
439 		product = mul_64_64(left[k], right);
440 		r01 = add_128_128(r01, product);
441 		/* no carry */
442 		result[k] = r01.m_low;
443 		r01.m_low = r01.m_high;
444 		r01.m_high = 0;
445 	}
446 	result[k] = r01.m_low;
447 	for (++k; k < ndigits * 2; k++)
448 		result[k] = 0;
449 }
450 
vli_square(u64 * result,const u64 * left,unsigned int ndigits)451 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
452 {
453 	uint128_t r01 = { 0, 0 };
454 	u64 r2 = 0;
455 	int i, k;
456 
457 	for (k = 0; k < ndigits * 2 - 1; k++) {
458 		unsigned int min;
459 
460 		if (k < ndigits)
461 			min = 0;
462 		else
463 			min = (k + 1) - ndigits;
464 
465 		for (i = min; i <= k && i <= k - i; i++) {
466 			uint128_t product;
467 
468 			product = mul_64_64(left[i], left[k - i]);
469 
470 			if (i < k - i) {
471 				r2 += product.m_high >> 63;
472 				product.m_high = (product.m_high << 1) |
473 						 (product.m_low >> 63);
474 				product.m_low <<= 1;
475 			}
476 
477 			r01 = add_128_128(r01, product);
478 			r2 += (r01.m_high < product.m_high);
479 		}
480 
481 		result[k] = r01.m_low;
482 		r01.m_low = r01.m_high;
483 		r01.m_high = r2;
484 		r2 = 0;
485 	}
486 
487 	result[ndigits * 2 - 1] = r01.m_low;
488 }
489 
490 /* Computes result = (left + right) % mod.
491  * Assumes that left < mod and right < mod, result != mod.
492  */
vli_mod_add(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)493 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
494 			const u64 *mod, unsigned int ndigits)
495 {
496 	u64 carry;
497 
498 	carry = vli_add(result, left, right, ndigits);
499 
500 	/* result > mod (result = mod + remainder), so subtract mod to
501 	 * get remainder.
502 	 */
503 	if (carry || vli_cmp(result, mod, ndigits) >= 0)
504 		vli_sub(result, result, mod, ndigits);
505 }
506 
507 /* Computes result = (left - right) % mod.
508  * Assumes that left < mod and right < mod, result != mod.
509  */
vli_mod_sub(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)510 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
511 			const u64 *mod, unsigned int ndigits)
512 {
513 	u64 borrow = vli_sub(result, left, right, ndigits);
514 
515 	/* In this case, p_result == -diff == (max int) - diff.
516 	 * Since -x % d == d - x, we can get the correct result from
517 	 * result + mod (with overflow).
518 	 */
519 	if (borrow)
520 		vli_add(result, result, mod, ndigits);
521 }
522 
523 /*
524  * Computes result = product % mod
525  * for special form moduli: p = 2^k-c, for small c (note the minus sign)
526  *
527  * References:
528  * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
529  * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
530  * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
531  */
vli_mmod_special(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)532 static void vli_mmod_special(u64 *result, const u64 *product,
533 			      const u64 *mod, unsigned int ndigits)
534 {
535 	u64 c = -mod[0];
536 	u64 t[ECC_MAX_DIGITS * 2];
537 	u64 r[ECC_MAX_DIGITS * 2];
538 
539 	vli_set(r, product, ndigits * 2);
540 	while (!vli_is_zero(r + ndigits, ndigits)) {
541 		vli_umult(t, r + ndigits, c, ndigits);
542 		vli_clear(r + ndigits, ndigits);
543 		vli_add(r, r, t, ndigits * 2);
544 	}
545 	vli_set(t, mod, ndigits);
546 	vli_clear(t + ndigits, ndigits);
547 	while (vli_cmp(r, t, ndigits * 2) >= 0)
548 		vli_sub(r, r, t, ndigits * 2);
549 	vli_set(result, r, ndigits);
550 }
551 
552 /*
553  * Computes result = product % mod
554  * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
555  * where k-1 does not fit into qword boundary by -1 bit (such as 255).
556 
557  * References (loosely based on):
558  * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
559  * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
560  * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
561  *
562  * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
563  * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
564  * Algorithm 10.25 Fast reduction for special form moduli
565  */
vli_mmod_special2(u64 * result,const u64 * product,const u64 * mod,unsigned int ndigits)566 static void vli_mmod_special2(u64 *result, const u64 *product,
567 			       const u64 *mod, unsigned int ndigits)
568 {
569 	u64 c2 = mod[0] * 2;
570 	u64 q[ECC_MAX_DIGITS];
571 	u64 r[ECC_MAX_DIGITS * 2];
572 	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
573 	int carry; /* last bit that doesn't fit into q */
574 	int i;
575 
576 	vli_set(m, mod, ndigits);
577 	vli_clear(m + ndigits, ndigits);
578 
579 	vli_set(r, product, ndigits);
580 	/* q and carry are top bits */
581 	vli_set(q, product + ndigits, ndigits);
582 	vli_clear(r + ndigits, ndigits);
583 	carry = vli_is_negative(r, ndigits);
584 	if (carry)
585 		r[ndigits - 1] &= (1ull << 63) - 1;
586 	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
587 		u64 qc[ECC_MAX_DIGITS * 2];
588 
589 		vli_umult(qc, q, c2, ndigits);
590 		if (carry)
591 			vli_uadd(qc, qc, mod[0], ndigits * 2);
592 		vli_set(q, qc + ndigits, ndigits);
593 		vli_clear(qc + ndigits, ndigits);
594 		carry = vli_is_negative(qc, ndigits);
595 		if (carry)
596 			qc[ndigits - 1] &= (1ull << 63) - 1;
597 		if (i & 1)
598 			vli_sub(r, r, qc, ndigits * 2);
599 		else
600 			vli_add(r, r, qc, ndigits * 2);
601 	}
602 	while (vli_is_negative(r, ndigits * 2))
603 		vli_add(r, r, m, ndigits * 2);
604 	while (vli_cmp(r, m, ndigits * 2) >= 0)
605 		vli_sub(r, r, m, ndigits * 2);
606 
607 	vli_set(result, r, ndigits);
608 }
609 
610 /*
611  * Computes result = product % mod, where product is 2N words long.
612  * Reference: Ken MacKay's micro-ecc.
613  * Currently only designed to work for curve_p or curve_n.
614  */
vli_mmod_slow(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)615 static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
616 			  unsigned int ndigits)
617 {
618 	u64 mod_m[2 * ECC_MAX_DIGITS];
619 	u64 tmp[2 * ECC_MAX_DIGITS];
620 	u64 *v[2] = { tmp, product };
621 	u64 carry = 0;
622 	unsigned int i;
623 	/* Shift mod so its highest set bit is at the maximum position. */
624 	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
625 	int word_shift = shift / 64;
626 	int bit_shift = shift % 64;
627 
628 	vli_clear(mod_m, word_shift);
629 	if (bit_shift > 0) {
630 		for (i = 0; i < ndigits; ++i) {
631 			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
632 			carry = mod[i] >> (64 - bit_shift);
633 		}
634 	} else
635 		vli_set(mod_m + word_shift, mod, ndigits);
636 
637 	for (i = 1; shift >= 0; --shift) {
638 		u64 borrow = 0;
639 		unsigned int j;
640 
641 		for (j = 0; j < ndigits * 2; ++j) {
642 			u64 diff = v[i][j] - mod_m[j] - borrow;
643 
644 			if (diff != v[i][j])
645 				borrow = (diff > v[i][j]);
646 			v[1 - i][j] = diff;
647 		}
648 		i = !(i ^ borrow); /* Swap the index if there was no borrow */
649 		vli_rshift1(mod_m, ndigits);
650 		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
651 		vli_rshift1(mod_m + ndigits, ndigits);
652 	}
653 	vli_set(result, v[i], ndigits);
654 }
655 
656 /* Computes result = product % mod using Barrett's reduction with precomputed
657  * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
658  * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
659  * boundary.
660  *
661  * Reference:
662  * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
663  * 2.4.1 Barrett's algorithm. Algorithm 2.5.
664  */
vli_mmod_barrett(u64 * result,u64 * product,const u64 * mod,unsigned int ndigits)665 static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
666 			     unsigned int ndigits)
667 {
668 	u64 q[ECC_MAX_DIGITS * 2];
669 	u64 r[ECC_MAX_DIGITS * 2];
670 	const u64 *mu = mod + ndigits;
671 
672 	vli_mult(q, product + ndigits, mu, ndigits);
673 	if (mu[ndigits])
674 		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
675 	vli_mult(r, mod, q + ndigits, ndigits);
676 	vli_sub(r, product, r, ndigits * 2);
677 	while (!vli_is_zero(r + ndigits, ndigits) ||
678 	       vli_cmp(r, mod, ndigits) != -1) {
679 		u64 carry;
680 
681 		carry = vli_sub(r, r, mod, ndigits);
682 		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
683 	}
684 	vli_set(result, r, ndigits);
685 }
686 
687 /* Computes p_result = p_product % curve_p.
688  * See algorithm 5 and 6 from
689  * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
690  */
vli_mmod_fast_192(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)691 static void vli_mmod_fast_192(u64 *result, const u64 *product,
692 			      const u64 *curve_prime, u64 *tmp)
693 {
694 	const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS;
695 	int carry;
696 
697 	vli_set(result, product, ndigits);
698 
699 	vli_set(tmp, &product[3], ndigits);
700 	carry = vli_add(result, result, tmp, ndigits);
701 
702 	tmp[0] = 0;
703 	tmp[1] = product[3];
704 	tmp[2] = product[4];
705 	carry += vli_add(result, result, tmp, ndigits);
706 
707 	tmp[0] = tmp[1] = product[5];
708 	tmp[2] = 0;
709 	carry += vli_add(result, result, tmp, ndigits);
710 
711 	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
712 		carry -= vli_sub(result, result, curve_prime, ndigits);
713 }
714 
715 /* Computes result = product % curve_prime
716  * from http://www.nsa.gov/ia/_files/nist-routines.pdf
717  */
vli_mmod_fast_256(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)718 static void vli_mmod_fast_256(u64 *result, const u64 *product,
719 			      const u64 *curve_prime, u64 *tmp)
720 {
721 	int carry;
722 	const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS;
723 
724 	/* t */
725 	vli_set(result, product, ndigits);
726 
727 	/* s1 */
728 	tmp[0] = 0;
729 	tmp[1] = product[5] & 0xffffffff00000000ull;
730 	tmp[2] = product[6];
731 	tmp[3] = product[7];
732 	carry = vli_lshift(tmp, tmp, 1, ndigits);
733 	carry += vli_add(result, result, tmp, ndigits);
734 
735 	/* s2 */
736 	tmp[1] = product[6] << 32;
737 	tmp[2] = (product[6] >> 32) | (product[7] << 32);
738 	tmp[3] = product[7] >> 32;
739 	carry += vli_lshift(tmp, tmp, 1, ndigits);
740 	carry += vli_add(result, result, tmp, ndigits);
741 
742 	/* s3 */
743 	tmp[0] = product[4];
744 	tmp[1] = product[5] & 0xffffffff;
745 	tmp[2] = 0;
746 	tmp[3] = product[7];
747 	carry += vli_add(result, result, tmp, ndigits);
748 
749 	/* s4 */
750 	tmp[0] = (product[4] >> 32) | (product[5] << 32);
751 	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
752 	tmp[2] = product[7];
753 	tmp[3] = (product[6] >> 32) | (product[4] << 32);
754 	carry += vli_add(result, result, tmp, ndigits);
755 
756 	/* d1 */
757 	tmp[0] = (product[5] >> 32) | (product[6] << 32);
758 	tmp[1] = (product[6] >> 32);
759 	tmp[2] = 0;
760 	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
761 	carry -= vli_sub(result, result, tmp, ndigits);
762 
763 	/* d2 */
764 	tmp[0] = product[6];
765 	tmp[1] = product[7];
766 	tmp[2] = 0;
767 	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
768 	carry -= vli_sub(result, result, tmp, ndigits);
769 
770 	/* d3 */
771 	tmp[0] = (product[6] >> 32) | (product[7] << 32);
772 	tmp[1] = (product[7] >> 32) | (product[4] << 32);
773 	tmp[2] = (product[4] >> 32) | (product[5] << 32);
774 	tmp[3] = (product[6] << 32);
775 	carry -= vli_sub(result, result, tmp, ndigits);
776 
777 	/* d4 */
778 	tmp[0] = product[7];
779 	tmp[1] = product[4] & 0xffffffff00000000ull;
780 	tmp[2] = product[5];
781 	tmp[3] = product[6] & 0xffffffff00000000ull;
782 	carry -= vli_sub(result, result, tmp, ndigits);
783 
784 	if (carry < 0) {
785 		do {
786 			carry += vli_add(result, result, curve_prime, ndigits);
787 		} while (carry < 0);
788 	} else {
789 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
790 			carry -= vli_sub(result, result, curve_prime, ndigits);
791 	}
792 }
793 
794 #define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
795 #define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
796 #define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
797 
798 /* Computes result = product % curve_prime
799  * from "Mathematical routines for the NIST prime elliptic curves"
800  */
vli_mmod_fast_384(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)801 static void vli_mmod_fast_384(u64 *result, const u64 *product,
802 				const u64 *curve_prime, u64 *tmp)
803 {
804 	int carry;
805 	const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS;
806 
807 	/* t */
808 	vli_set(result, product, ndigits);
809 
810 	/* s1 */
811 	tmp[0] = 0;		// 0 || 0
812 	tmp[1] = 0;		// 0 || 0
813 	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
814 	tmp[3] = product[11]>>32;	// 0 ||a23
815 	tmp[4] = 0;		// 0 || 0
816 	tmp[5] = 0;		// 0 || 0
817 	carry = vli_lshift(tmp, tmp, 1, ndigits);
818 	carry += vli_add(result, result, tmp, ndigits);
819 
820 	/* s2 */
821 	tmp[0] = product[6];	//a13||a12
822 	tmp[1] = product[7];	//a15||a14
823 	tmp[2] = product[8];	//a17||a16
824 	tmp[3] = product[9];	//a19||a18
825 	tmp[4] = product[10];	//a21||a20
826 	tmp[5] = product[11];	//a23||a22
827 	carry += vli_add(result, result, tmp, ndigits);
828 
829 	/* s3 */
830 	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
831 	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
832 	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
833 	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
834 	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
835 	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
836 	carry += vli_add(result, result, tmp, ndigits);
837 
838 	/* s4 */
839 	tmp[0] = AND64H(product[11]);	//a23|| 0
840 	tmp[1] = (product[10]<<32);	//a20|| 0
841 	tmp[2] = product[6];	//a13||a12
842 	tmp[3] = product[7];	//a15||a14
843 	tmp[4] = product[8];	//a17||a16
844 	tmp[5] = product[9];	//a19||a18
845 	carry += vli_add(result, result, tmp, ndigits);
846 
847 	/* s5 */
848 	tmp[0] = 0;		//  0|| 0
849 	tmp[1] = 0;		//  0|| 0
850 	tmp[2] = product[10];	//a21||a20
851 	tmp[3] = product[11];	//a23||a22
852 	tmp[4] = 0;		//  0|| 0
853 	tmp[5] = 0;		//  0|| 0
854 	carry += vli_add(result, result, tmp, ndigits);
855 
856 	/* s6 */
857 	tmp[0] = AND64L(product[10]);	// 0 ||a20
858 	tmp[1] = AND64H(product[10]);	//a21|| 0
859 	tmp[2] = product[11];	//a23||a22
860 	tmp[3] = 0;		// 0 || 0
861 	tmp[4] = 0;		// 0 || 0
862 	tmp[5] = 0;		// 0 || 0
863 	carry += vli_add(result, result, tmp, ndigits);
864 
865 	/* d1 */
866 	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
867 	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
868 	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
869 	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
870 	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
871 	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
872 	carry -= vli_sub(result, result, tmp, ndigits);
873 
874 	/* d2 */
875 	tmp[0] = (product[10]<<32);	//a20|| 0
876 	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
877 	tmp[2] = (product[11]>>32);	// 0 ||a23
878 	tmp[3] = 0;		// 0 || 0
879 	tmp[4] = 0;		// 0 || 0
880 	tmp[5] = 0;		// 0 || 0
881 	carry -= vli_sub(result, result, tmp, ndigits);
882 
883 	/* d3 */
884 	tmp[0] = 0;		// 0 || 0
885 	tmp[1] = AND64H(product[11]);	//a23|| 0
886 	tmp[2] = product[11]>>32;	// 0 ||a23
887 	tmp[3] = 0;		// 0 || 0
888 	tmp[4] = 0;		// 0 || 0
889 	tmp[5] = 0;		// 0 || 0
890 	carry -= vli_sub(result, result, tmp, ndigits);
891 
892 	if (carry < 0) {
893 		do {
894 			carry += vli_add(result, result, curve_prime, ndigits);
895 		} while (carry < 0);
896 	} else {
897 		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
898 			carry -= vli_sub(result, result, curve_prime, ndigits);
899 	}
900 
901 }
902 
903 #undef SL32OR32
904 #undef AND64H
905 #undef AND64L
906 
907 /*
908  * Computes result = product % curve_prime
909  * from "Recommendations for Discrete Logarithm-Based Cryptography:
910  *       Elliptic Curve Domain Parameters" section G.1.4
911  */
vli_mmod_fast_521(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)912 static void vli_mmod_fast_521(u64 *result, const u64 *product,
913 			      const u64 *curve_prime, u64 *tmp)
914 {
915 	const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS;
916 	size_t i;
917 
918 	/* Initialize result with lowest 521 bits from product */
919 	vli_set(result, product, ndigits);
920 	result[8] &= 0x1ff;
921 
922 	for (i = 0; i < ndigits; i++)
923 		tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55);
924 	tmp[8] &= 0x1ff;
925 
926 	vli_mod_add(result, result, tmp, curve_prime, ndigits);
927 }
928 
929 /* Computes result = product % curve_prime for different curve_primes.
930  *
931  * Note that curve_primes are distinguished just by heuristic check and
932  * not by complete conformance check.
933  */
vli_mmod_fast(u64 * result,u64 * product,const struct ecc_curve * curve)934 static bool vli_mmod_fast(u64 *result, u64 *product,
935 			  const struct ecc_curve *curve)
936 {
937 	u64 tmp[2 * ECC_MAX_DIGITS];
938 	const u64 *curve_prime = curve->p;
939 	const unsigned int ndigits = curve->g.ndigits;
940 
941 	/* All NIST curves have name prefix 'nist_' */
942 	if (strncmp(curve->name, "nist_", 5) != 0) {
943 		/* Try to handle Pseudo-Marsenne primes. */
944 		if (curve_prime[ndigits - 1] == -1ull) {
945 			vli_mmod_special(result, product, curve_prime,
946 					 ndigits);
947 			return true;
948 		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
949 			   curve_prime[ndigits - 2] == 0) {
950 			vli_mmod_special2(result, product, curve_prime,
951 					  ndigits);
952 			return true;
953 		}
954 		vli_mmod_barrett(result, product, curve_prime, ndigits);
955 		return true;
956 	}
957 
958 	switch (ndigits) {
959 	case ECC_CURVE_NIST_P192_DIGITS:
960 		vli_mmod_fast_192(result, product, curve_prime, tmp);
961 		break;
962 	case ECC_CURVE_NIST_P256_DIGITS:
963 		vli_mmod_fast_256(result, product, curve_prime, tmp);
964 		break;
965 	case ECC_CURVE_NIST_P384_DIGITS:
966 		vli_mmod_fast_384(result, product, curve_prime, tmp);
967 		break;
968 	case ECC_CURVE_NIST_P521_DIGITS:
969 		vli_mmod_fast_521(result, product, curve_prime, tmp);
970 		break;
971 	default:
972 		pr_err_ratelimited("ecc: unsupported digits size!\n");
973 		return false;
974 	}
975 
976 	return true;
977 }
978 
979 /* Computes result = (left * right) % mod.
980  * Assumes that mod is big enough curve order.
981  */
vli_mod_mult_slow(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)982 void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
983 		       const u64 *mod, unsigned int ndigits)
984 {
985 	u64 product[ECC_MAX_DIGITS * 2];
986 
987 	vli_mult(product, left, right, ndigits);
988 	vli_mmod_slow(result, product, mod, ndigits);
989 }
990 EXPORT_SYMBOL(vli_mod_mult_slow);
991 
992 /* Computes result = (left * right) % curve_prime. */
vli_mod_mult_fast(u64 * result,const u64 * left,const u64 * right,const struct ecc_curve * curve)993 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
994 			      const struct ecc_curve *curve)
995 {
996 	u64 product[2 * ECC_MAX_DIGITS];
997 
998 	vli_mult(product, left, right, curve->g.ndigits);
999 	vli_mmod_fast(result, product, curve);
1000 }
1001 
1002 /* Computes result = left^2 % curve_prime. */
vli_mod_square_fast(u64 * result,const u64 * left,const struct ecc_curve * curve)1003 static void vli_mod_square_fast(u64 *result, const u64 *left,
1004 				const struct ecc_curve *curve)
1005 {
1006 	u64 product[2 * ECC_MAX_DIGITS];
1007 
1008 	vli_square(product, left, curve->g.ndigits);
1009 	vli_mmod_fast(result, product, curve);
1010 }
1011 
1012 #define EVEN(vli) (!(vli[0] & 1))
1013 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1014  * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1015  * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1016  */
vli_mod_inv(u64 * result,const u64 * input,const u64 * mod,unsigned int ndigits)1017 void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
1018 			unsigned int ndigits)
1019 {
1020 	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1021 	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
1022 	u64 carry;
1023 	int cmp_result;
1024 
1025 	if (vli_is_zero(input, ndigits)) {
1026 		vli_clear(result, ndigits);
1027 		return;
1028 	}
1029 
1030 	vli_set(a, input, ndigits);
1031 	vli_set(b, mod, ndigits);
1032 	vli_clear(u, ndigits);
1033 	u[0] = 1;
1034 	vli_clear(v, ndigits);
1035 
1036 	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1037 		carry = 0;
1038 
1039 		if (EVEN(a)) {
1040 			vli_rshift1(a, ndigits);
1041 
1042 			if (!EVEN(u))
1043 				carry = vli_add(u, u, mod, ndigits);
1044 
1045 			vli_rshift1(u, ndigits);
1046 			if (carry)
1047 				u[ndigits - 1] |= 0x8000000000000000ull;
1048 		} else if (EVEN(b)) {
1049 			vli_rshift1(b, ndigits);
1050 
1051 			if (!EVEN(v))
1052 				carry = vli_add(v, v, mod, ndigits);
1053 
1054 			vli_rshift1(v, ndigits);
1055 			if (carry)
1056 				v[ndigits - 1] |= 0x8000000000000000ull;
1057 		} else if (cmp_result > 0) {
1058 			vli_sub(a, a, b, ndigits);
1059 			vli_rshift1(a, ndigits);
1060 
1061 			if (vli_cmp(u, v, ndigits) < 0)
1062 				vli_add(u, u, mod, ndigits);
1063 
1064 			vli_sub(u, u, v, ndigits);
1065 			if (!EVEN(u))
1066 				carry = vli_add(u, u, mod, ndigits);
1067 
1068 			vli_rshift1(u, ndigits);
1069 			if (carry)
1070 				u[ndigits - 1] |= 0x8000000000000000ull;
1071 		} else {
1072 			vli_sub(b, b, a, ndigits);
1073 			vli_rshift1(b, ndigits);
1074 
1075 			if (vli_cmp(v, u, ndigits) < 0)
1076 				vli_add(v, v, mod, ndigits);
1077 
1078 			vli_sub(v, v, u, ndigits);
1079 			if (!EVEN(v))
1080 				carry = vli_add(v, v, mod, ndigits);
1081 
1082 			vli_rshift1(v, ndigits);
1083 			if (carry)
1084 				v[ndigits - 1] |= 0x8000000000000000ull;
1085 		}
1086 	}
1087 
1088 	vli_set(result, u, ndigits);
1089 }
1090 EXPORT_SYMBOL(vli_mod_inv);
1091 
1092 /* ------ Point operations ------ */
1093 
1094 /* Returns true if p_point is the point at infinity, false otherwise. */
ecc_point_is_zero(const struct ecc_point * point)1095 bool ecc_point_is_zero(const struct ecc_point *point)
1096 {
1097 	return (vli_is_zero(point->x, point->ndigits) &&
1098 		vli_is_zero(point->y, point->ndigits));
1099 }
1100 EXPORT_SYMBOL(ecc_point_is_zero);
1101 
1102 /* Point multiplication algorithm using Montgomery's ladder with co-Z
1103  * coordinates. From https://eprint.iacr.org/2011/338.pdf
1104  */
1105 
1106 /* Double in place */
ecc_point_double_jacobian(u64 * x1,u64 * y1,u64 * z1,const struct ecc_curve * curve)1107 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1108 					const struct ecc_curve *curve)
1109 {
1110 	/* t1 = x, t2 = y, t3 = z */
1111 	u64 t4[ECC_MAX_DIGITS];
1112 	u64 t5[ECC_MAX_DIGITS];
1113 	const u64 *curve_prime = curve->p;
1114 	const unsigned int ndigits = curve->g.ndigits;
1115 
1116 	if (vli_is_zero(z1, ndigits))
1117 		return;
1118 
1119 	/* t4 = y1^2 */
1120 	vli_mod_square_fast(t4, y1, curve);
1121 	/* t5 = x1*y1^2 = A */
1122 	vli_mod_mult_fast(t5, x1, t4, curve);
1123 	/* t4 = y1^4 */
1124 	vli_mod_square_fast(t4, t4, curve);
1125 	/* t2 = y1*z1 = z3 */
1126 	vli_mod_mult_fast(y1, y1, z1, curve);
1127 	/* t3 = z1^2 */
1128 	vli_mod_square_fast(z1, z1, curve);
1129 
1130 	/* t1 = x1 + z1^2 */
1131 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1132 	/* t3 = 2*z1^2 */
1133 	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1134 	/* t3 = x1 - z1^2 */
1135 	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1136 	/* t1 = x1^2 - z1^4 */
1137 	vli_mod_mult_fast(x1, x1, z1, curve);
1138 
1139 	/* t3 = 2*(x1^2 - z1^4) */
1140 	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1141 	/* t1 = 3*(x1^2 - z1^4) */
1142 	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1143 	if (vli_test_bit(x1, 0)) {
1144 		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1145 
1146 		vli_rshift1(x1, ndigits);
1147 		x1[ndigits - 1] |= carry << 63;
1148 	} else {
1149 		vli_rshift1(x1, ndigits);
1150 	}
1151 	/* t1 = 3/2*(x1^2 - z1^4) = B */
1152 
1153 	/* t3 = B^2 */
1154 	vli_mod_square_fast(z1, x1, curve);
1155 	/* t3 = B^2 - A */
1156 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1157 	/* t3 = B^2 - 2A = x3 */
1158 	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1159 	/* t5 = A - x3 */
1160 	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1161 	/* t1 = B * (A - x3) */
1162 	vli_mod_mult_fast(x1, x1, t5, curve);
1163 	/* t4 = B * (A - x3) - y1^4 = y3 */
1164 	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1165 
1166 	vli_set(x1, z1, ndigits);
1167 	vli_set(z1, y1, ndigits);
1168 	vli_set(y1, t4, ndigits);
1169 }
1170 
1171 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(u64 * x1,u64 * y1,u64 * z,const struct ecc_curve * curve)1172 static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
1173 {
1174 	u64 t1[ECC_MAX_DIGITS];
1175 
1176 	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1177 	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1178 	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1179 	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1180 }
1181 
1182 /* P = (x1, y1) => 2P, (x2, y2) => P' */
xycz_initial_double(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * p_initial_z,const struct ecc_curve * curve)1183 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1184 				u64 *p_initial_z, const struct ecc_curve *curve)
1185 {
1186 	u64 z[ECC_MAX_DIGITS];
1187 	const unsigned int ndigits = curve->g.ndigits;
1188 
1189 	vli_set(x2, x1, ndigits);
1190 	vli_set(y2, y1, ndigits);
1191 
1192 	vli_clear(z, ndigits);
1193 	z[0] = 1;
1194 
1195 	if (p_initial_z)
1196 		vli_set(z, p_initial_z, ndigits);
1197 
1198 	apply_z(x1, y1, z, curve);
1199 
1200 	ecc_point_double_jacobian(x1, y1, z, curve);
1201 
1202 	apply_z(x2, y2, z, curve);
1203 }
1204 
1205 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1206  * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1207  * or P => P', Q => P + Q
1208  */
xycz_add(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1209 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1210 			const struct ecc_curve *curve)
1211 {
1212 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1213 	u64 t5[ECC_MAX_DIGITS];
1214 	const u64 *curve_prime = curve->p;
1215 	const unsigned int ndigits = curve->g.ndigits;
1216 
1217 	/* t5 = x2 - x1 */
1218 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1219 	/* t5 = (x2 - x1)^2 = A */
1220 	vli_mod_square_fast(t5, t5, curve);
1221 	/* t1 = x1*A = B */
1222 	vli_mod_mult_fast(x1, x1, t5, curve);
1223 	/* t3 = x2*A = C */
1224 	vli_mod_mult_fast(x2, x2, t5, curve);
1225 	/* t4 = y2 - y1 */
1226 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1227 	/* t5 = (y2 - y1)^2 = D */
1228 	vli_mod_square_fast(t5, y2, curve);
1229 
1230 	/* t5 = D - B */
1231 	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1232 	/* t5 = D - B - C = x3 */
1233 	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1234 	/* t3 = C - B */
1235 	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1236 	/* t2 = y1*(C - B) */
1237 	vli_mod_mult_fast(y1, y1, x2, curve);
1238 	/* t3 = B - x3 */
1239 	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1240 	/* t4 = (y2 - y1)*(B - x3) */
1241 	vli_mod_mult_fast(y2, y2, x2, curve);
1242 	/* t4 = y3 */
1243 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1244 
1245 	vli_set(x2, t5, ndigits);
1246 }
1247 
1248 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1249  * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1250  * or P => P - Q, Q => P + Q
1251  */
xycz_add_c(u64 * x1,u64 * y1,u64 * x2,u64 * y2,const struct ecc_curve * curve)1252 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1253 			const struct ecc_curve *curve)
1254 {
1255 	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1256 	u64 t5[ECC_MAX_DIGITS];
1257 	u64 t6[ECC_MAX_DIGITS];
1258 	u64 t7[ECC_MAX_DIGITS];
1259 	const u64 *curve_prime = curve->p;
1260 	const unsigned int ndigits = curve->g.ndigits;
1261 
1262 	/* t5 = x2 - x1 */
1263 	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1264 	/* t5 = (x2 - x1)^2 = A */
1265 	vli_mod_square_fast(t5, t5, curve);
1266 	/* t1 = x1*A = B */
1267 	vli_mod_mult_fast(x1, x1, t5, curve);
1268 	/* t3 = x2*A = C */
1269 	vli_mod_mult_fast(x2, x2, t5, curve);
1270 	/* t4 = y2 + y1 */
1271 	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1272 	/* t4 = y2 - y1 */
1273 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1274 
1275 	/* t6 = C - B */
1276 	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1277 	/* t2 = y1 * (C - B) */
1278 	vli_mod_mult_fast(y1, y1, t6, curve);
1279 	/* t6 = B + C */
1280 	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1281 	/* t3 = (y2 - y1)^2 */
1282 	vli_mod_square_fast(x2, y2, curve);
1283 	/* t3 = x3 */
1284 	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1285 
1286 	/* t7 = B - x3 */
1287 	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1288 	/* t4 = (y2 - y1)*(B - x3) */
1289 	vli_mod_mult_fast(y2, y2, t7, curve);
1290 	/* t4 = y3 */
1291 	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1292 
1293 	/* t7 = (y2 + y1)^2 = F */
1294 	vli_mod_square_fast(t7, t5, curve);
1295 	/* t7 = x3' */
1296 	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1297 	/* t6 = x3' - B */
1298 	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1299 	/* t6 = (y2 + y1)*(x3' - B) */
1300 	vli_mod_mult_fast(t6, t6, t5, curve);
1301 	/* t2 = y3' */
1302 	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1303 
1304 	vli_set(x1, t7, ndigits);
1305 }
1306 
ecc_point_mult(struct ecc_point * result,const struct ecc_point * point,const u64 * scalar,u64 * initial_z,const struct ecc_curve * curve,unsigned int ndigits)1307 static void ecc_point_mult(struct ecc_point *result,
1308 			   const struct ecc_point *point, const u64 *scalar,
1309 			   u64 *initial_z, const struct ecc_curve *curve,
1310 			   unsigned int ndigits)
1311 {
1312 	/* R0 and R1 */
1313 	u64 rx[2][ECC_MAX_DIGITS];
1314 	u64 ry[2][ECC_MAX_DIGITS];
1315 	u64 z[ECC_MAX_DIGITS];
1316 	u64 sk[2][ECC_MAX_DIGITS];
1317 	u64 *curve_prime = curve->p;
1318 	int i, nb;
1319 	int num_bits;
1320 	int carry;
1321 
1322 	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1323 	vli_add(sk[1], sk[0], curve->n, ndigits);
1324 	scalar = sk[!carry];
1325 	if (curve->nbits == 521)	/* NIST P521 */
1326 		num_bits = curve->nbits + 2;
1327 	else
1328 		num_bits = sizeof(u64) * ndigits * 8 + 1;
1329 
1330 	vli_set(rx[1], point->x, ndigits);
1331 	vli_set(ry[1], point->y, ndigits);
1332 
1333 	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
1334 
1335 	for (i = num_bits - 2; i > 0; i--) {
1336 		nb = !vli_test_bit(scalar, i);
1337 		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1338 		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1339 	}
1340 
1341 	nb = !vli_test_bit(scalar, 0);
1342 	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1343 
1344 	/* Find final 1/Z value. */
1345 	/* X1 - X0 */
1346 	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1347 	/* Yb * (X1 - X0) */
1348 	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1349 	/* xP * Yb * (X1 - X0) */
1350 	vli_mod_mult_fast(z, z, point->x, curve);
1351 
1352 	/* 1 / (xP * Yb * (X1 - X0)) */
1353 	vli_mod_inv(z, z, curve_prime, point->ndigits);
1354 
1355 	/* yP / (xP * Yb * (X1 - X0)) */
1356 	vli_mod_mult_fast(z, z, point->y, curve);
1357 	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1358 	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1359 	/* End 1/Z calculation */
1360 
1361 	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1362 
1363 	apply_z(rx[0], ry[0], z, curve);
1364 
1365 	vli_set(result->x, rx[0], ndigits);
1366 	vli_set(result->y, ry[0], ndigits);
1367 }
1368 
1369 /* Computes R = P + Q mod p */
ecc_point_add(const struct ecc_point * result,const struct ecc_point * p,const struct ecc_point * q,const struct ecc_curve * curve)1370 static void ecc_point_add(const struct ecc_point *result,
1371 		   const struct ecc_point *p, const struct ecc_point *q,
1372 		   const struct ecc_curve *curve)
1373 {
1374 	u64 z[ECC_MAX_DIGITS];
1375 	u64 px[ECC_MAX_DIGITS];
1376 	u64 py[ECC_MAX_DIGITS];
1377 	unsigned int ndigits = curve->g.ndigits;
1378 
1379 	vli_set(result->x, q->x, ndigits);
1380 	vli_set(result->y, q->y, ndigits);
1381 	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1382 	vli_set(px, p->x, ndigits);
1383 	vli_set(py, p->y, ndigits);
1384 	xycz_add(px, py, result->x, result->y, curve);
1385 	vli_mod_inv(z, z, curve->p, ndigits);
1386 	apply_z(result->x, result->y, z, curve);
1387 }
1388 
1389 /* Computes R = u1P + u2Q mod p using Shamir's trick.
1390  * Based on: Kenneth MacKay's micro-ecc (2014).
1391  */
ecc_point_mult_shamir(const struct ecc_point * result,const u64 * u1,const struct ecc_point * p,const u64 * u2,const struct ecc_point * q,const struct ecc_curve * curve)1392 void ecc_point_mult_shamir(const struct ecc_point *result,
1393 			   const u64 *u1, const struct ecc_point *p,
1394 			   const u64 *u2, const struct ecc_point *q,
1395 			   const struct ecc_curve *curve)
1396 {
1397 	u64 z[ECC_MAX_DIGITS];
1398 	u64 sump[2][ECC_MAX_DIGITS];
1399 	u64 *rx = result->x;
1400 	u64 *ry = result->y;
1401 	unsigned int ndigits = curve->g.ndigits;
1402 	unsigned int num_bits;
1403 	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1404 	const struct ecc_point *points[4];
1405 	const struct ecc_point *point;
1406 	unsigned int idx;
1407 	int i;
1408 
1409 	ecc_point_add(&sum, p, q, curve);
1410 	points[0] = NULL;
1411 	points[1] = p;
1412 	points[2] = q;
1413 	points[3] = &sum;
1414 
1415 	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1416 	i = num_bits - 1;
1417 	idx = !!vli_test_bit(u1, i);
1418 	idx |= (!!vli_test_bit(u2, i)) << 1;
1419 	point = points[idx];
1420 
1421 	vli_set(rx, point->x, ndigits);
1422 	vli_set(ry, point->y, ndigits);
1423 	vli_clear(z + 1, ndigits - 1);
1424 	z[0] = 1;
1425 
1426 	for (--i; i >= 0; i--) {
1427 		ecc_point_double_jacobian(rx, ry, z, curve);
1428 		idx = !!vli_test_bit(u1, i);
1429 		idx |= (!!vli_test_bit(u2, i)) << 1;
1430 		point = points[idx];
1431 		if (point) {
1432 			u64 tx[ECC_MAX_DIGITS];
1433 			u64 ty[ECC_MAX_DIGITS];
1434 			u64 tz[ECC_MAX_DIGITS];
1435 
1436 			vli_set(tx, point->x, ndigits);
1437 			vli_set(ty, point->y, ndigits);
1438 			apply_z(tx, ty, z, curve);
1439 			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1440 			xycz_add(tx, ty, rx, ry, curve);
1441 			vli_mod_mult_fast(z, z, tz, curve);
1442 		}
1443 	}
1444 	vli_mod_inv(z, z, curve->p, ndigits);
1445 	apply_z(rx, ry, z, curve);
1446 }
1447 EXPORT_SYMBOL(ecc_point_mult_shamir);
1448 
1449 /*
1450  * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5.
1451  * Whereas A.4.2 results in an integer in the interval [1, n-1], this function
1452  * ensures that the integer is in the range of [2, n-3]. We are slightly
1453  * stricter because of the currently used scalar multiplication algorithm.
1454  */
__ecc_is_key_valid(const struct ecc_curve * curve,const u64 * private_key,unsigned int ndigits)1455 static int __ecc_is_key_valid(const struct ecc_curve *curve,
1456 			      const u64 *private_key, unsigned int ndigits)
1457 {
1458 	u64 one[ECC_MAX_DIGITS] = { 1, };
1459 	u64 res[ECC_MAX_DIGITS];
1460 
1461 	if (!private_key)
1462 		return -EINVAL;
1463 
1464 	if (curve->g.ndigits != ndigits)
1465 		return -EINVAL;
1466 
1467 	/* Make sure the private key is in the range [2, n-3]. */
1468 	if (vli_cmp(one, private_key, ndigits) != -1)
1469 		return -EINVAL;
1470 	vli_sub(res, curve->n, one, ndigits);
1471 	vli_sub(res, res, one, ndigits);
1472 	if (vli_cmp(res, private_key, ndigits) != 1)
1473 		return -EINVAL;
1474 
1475 	return 0;
1476 }
1477 
ecc_is_key_valid(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,unsigned int private_key_len)1478 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1479 		     const u64 *private_key, unsigned int private_key_len)
1480 {
1481 	int nbytes;
1482 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1483 
1484 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1485 
1486 	if (private_key_len != nbytes)
1487 		return -EINVAL;
1488 
1489 	return __ecc_is_key_valid(curve, private_key, ndigits);
1490 }
1491 EXPORT_SYMBOL(ecc_is_key_valid);
1492 
1493 /*
1494  * ECC private keys are generated using the method of rejection sampling,
1495  * equivalent to that described in FIPS 186-5, Appendix A.2.2.
1496  *
1497  * This method generates a private key uniformly distributed in the range
1498  * [2, n-3].
1499  */
ecc_gen_privkey(unsigned int curve_id,unsigned int ndigits,u64 * private_key)1500 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits,
1501 		    u64 *private_key)
1502 {
1503 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1504 	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1505 	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1506 	int err;
1507 
1508 	/*
1509 	 * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5,
1510 	 * section 6.1.1.
1511 	 */
1512 	if (nbits < 224)
1513 		return -EINVAL;
1514 
1515 	/*
1516 	 * FIPS 186-5 recommends that the private key should be obtained from a
1517 	 * RBG with a security strength equal to or greater than the security
1518 	 * strength associated with N.
1519 	 *
1520 	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1521 	 * ECC is 256 (N >= 512).
1522 	 *
1523 	 * This condition is met by the default RNG because it selects a favored
1524 	 * DRBG with a security strength of 256.
1525 	 */
1526 	if (crypto_get_default_rng())
1527 		return -EFAULT;
1528 
1529 	/* Step 3: obtain N returned_bits from the DRBG. */
1530 	err = crypto_rng_get_bytes(crypto_default_rng,
1531 				   (u8 *)private_key, nbytes);
1532 	crypto_put_default_rng();
1533 	if (err)
1534 		return err;
1535 
1536 	/* Step 4: make sure the private key is in the valid range. */
1537 	if (__ecc_is_key_valid(curve, private_key, ndigits))
1538 		return -EINVAL;
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL(ecc_gen_privkey);
1543 
ecc_make_pub_key(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,u64 * public_key)1544 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1545 		     const u64 *private_key, u64 *public_key)
1546 {
1547 	int ret = 0;
1548 	struct ecc_point *pk;
1549 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1550 
1551 	if (!private_key) {
1552 		ret = -EINVAL;
1553 		goto out;
1554 	}
1555 
1556 	pk = ecc_alloc_point(ndigits);
1557 	if (!pk) {
1558 		ret = -ENOMEM;
1559 		goto out;
1560 	}
1561 
1562 	ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits);
1563 
1564 	/* SP800-56A rev 3 5.6.2.1.3 key check */
1565 	if (ecc_is_pubkey_valid_full(curve, pk)) {
1566 		ret = -EAGAIN;
1567 		goto err_free_point;
1568 	}
1569 
1570 	ecc_swap_digits(pk->x, public_key, ndigits);
1571 	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1572 
1573 err_free_point:
1574 	ecc_free_point(pk);
1575 out:
1576 	return ret;
1577 }
1578 EXPORT_SYMBOL(ecc_make_pub_key);
1579 
1580 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
ecc_is_pubkey_valid_partial(const struct ecc_curve * curve,struct ecc_point * pk)1581 int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1582 				struct ecc_point *pk)
1583 {
1584 	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1585 
1586 	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1587 		return -EINVAL;
1588 
1589 	/* Check 1: Verify key is not the zero point. */
1590 	if (ecc_point_is_zero(pk))
1591 		return -EINVAL;
1592 
1593 	/* Check 2: Verify key is in the range [1, p-1]. */
1594 	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1595 		return -EINVAL;
1596 	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1597 		return -EINVAL;
1598 
1599 	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1600 	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1601 	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1602 	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1603 	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1604 	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1605 	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1606 	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1607 		return -EINVAL;
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1612 
1613 /* SP800-56A section 5.6.2.3.3 full verification */
ecc_is_pubkey_valid_full(const struct ecc_curve * curve,struct ecc_point * pk)1614 int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1615 			     struct ecc_point *pk)
1616 {
1617 	struct ecc_point *nQ;
1618 
1619 	/* Checks 1 through 3 */
1620 	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1621 
1622 	if (ret)
1623 		return ret;
1624 
1625 	/* Check 4: Verify that nQ is the zero point. */
1626 	nQ = ecc_alloc_point(pk->ndigits);
1627 	if (!nQ)
1628 		return -ENOMEM;
1629 
1630 	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1631 	if (!ecc_point_is_zero(nQ))
1632 		ret = -EINVAL;
1633 
1634 	ecc_free_point(nQ);
1635 
1636 	return ret;
1637 }
1638 EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1639 
crypto_ecdh_shared_secret(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,const u64 * public_key,u64 * secret)1640 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1641 			      const u64 *private_key, const u64 *public_key,
1642 			      u64 *secret)
1643 {
1644 	int ret = 0;
1645 	struct ecc_point *product, *pk;
1646 	u64 rand_z[ECC_MAX_DIGITS];
1647 	unsigned int nbytes;
1648 	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1649 
1650 	if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) {
1651 		ret = -EINVAL;
1652 		goto out;
1653 	}
1654 
1655 	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1656 
1657 	get_random_bytes(rand_z, nbytes);
1658 
1659 	pk = ecc_alloc_point(ndigits);
1660 	if (!pk) {
1661 		ret = -ENOMEM;
1662 		goto out;
1663 	}
1664 
1665 	ecc_swap_digits(public_key, pk->x, ndigits);
1666 	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1667 	ret = ecc_is_pubkey_valid_partial(curve, pk);
1668 	if (ret)
1669 		goto err_alloc_product;
1670 
1671 	product = ecc_alloc_point(ndigits);
1672 	if (!product) {
1673 		ret = -ENOMEM;
1674 		goto err_alloc_product;
1675 	}
1676 
1677 	ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits);
1678 
1679 	if (ecc_point_is_zero(product)) {
1680 		ret = -EFAULT;
1681 		goto err_validity;
1682 	}
1683 
1684 	ecc_swap_digits(product->x, secret, ndigits);
1685 
1686 err_validity:
1687 	memzero_explicit(rand_z, sizeof(rand_z));
1688 	ecc_free_point(product);
1689 err_alloc_product:
1690 	ecc_free_point(pk);
1691 out:
1692 	return ret;
1693 }
1694 EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1695 
1696 MODULE_LICENSE("Dual BSD/GPL");
1697