xref: /linux/fs/ecryptfs/main.c (revision f700b719)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2003 Erez Zadok
6  * Copyright (C) 2001-2003 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Tyler Hicks <code@tyhicks.com>
11  */
12 
13 #include <linux/dcache.h>
14 #include <linux/file.h>
15 #include <linux/module.h>
16 #include <linux/namei.h>
17 #include <linux/skbuff.h>
18 #include <linux/mount.h>
19 #include <linux/pagemap.h>
20 #include <linux/key.h>
21 #include <linux/parser.h>
22 #include <linux/fs_stack.h>
23 #include <linux/slab.h>
24 #include <linux/magic.h>
25 #include "ecryptfs_kernel.h"
26 
27 /*
28  * Module parameter that defines the ecryptfs_verbosity level.
29  */
30 int ecryptfs_verbosity = 0;
31 
32 module_param(ecryptfs_verbosity, int, 0);
33 MODULE_PARM_DESC(ecryptfs_verbosity,
34 		 "Initial verbosity level (0 or 1; defaults to "
35 		 "0, which is Quiet)");
36 
37 /*
38  * Module parameter that defines the number of message buffer elements
39  */
40 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
41 
42 module_param(ecryptfs_message_buf_len, uint, 0);
43 MODULE_PARM_DESC(ecryptfs_message_buf_len,
44 		 "Number of message buffer elements");
45 
46 /*
47  * Module parameter that defines the maximum guaranteed amount of time to wait
48  * for a response from ecryptfsd.  The actual sleep time will be, more than
49  * likely, a small amount greater than this specified value, but only less if
50  * the message successfully arrives.
51  */
52 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
53 
54 module_param(ecryptfs_message_wait_timeout, long, 0);
55 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
56 		 "Maximum number of seconds that an operation will "
57 		 "sleep while waiting for a message response from "
58 		 "userspace");
59 
60 /*
61  * Module parameter that is an estimate of the maximum number of users
62  * that will be concurrently using eCryptfs. Set this to the right
63  * value to balance performance and memory use.
64  */
65 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
66 
67 module_param(ecryptfs_number_of_users, uint, 0);
68 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
69 		 "concurrent users of eCryptfs");
70 
__ecryptfs_printk(const char * fmt,...)71 void __ecryptfs_printk(const char *fmt, ...)
72 {
73 	va_list args;
74 	va_start(args, fmt);
75 	if (fmt[1] == '7') { /* KERN_DEBUG */
76 		if (ecryptfs_verbosity >= 1)
77 			vprintk(fmt, args);
78 	} else
79 		vprintk(fmt, args);
80 	va_end(args);
81 }
82 
83 /*
84  * ecryptfs_init_lower_file
85  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
86  *                   the lower dentry and the lower mount set
87  *
88  * eCryptfs only ever keeps a single open file for every lower
89  * inode. All I/O operations to the lower inode occur through that
90  * file. When the first eCryptfs dentry that interposes with the first
91  * lower dentry for that inode is created, this function creates the
92  * lower file struct and associates it with the eCryptfs
93  * inode. When all eCryptfs files associated with the inode are released, the
94  * file is closed.
95  *
96  * The lower file will be opened with read/write permissions, if
97  * possible. Otherwise, it is opened read-only.
98  *
99  * This function does nothing if a lower file is already
100  * associated with the eCryptfs inode.
101  *
102  * Returns zero on success; non-zero otherwise
103  */
ecryptfs_init_lower_file(struct dentry * dentry,struct file ** lower_file)104 static int ecryptfs_init_lower_file(struct dentry *dentry,
105 				    struct file **lower_file)
106 {
107 	const struct cred *cred = current_cred();
108 	const struct path *path = ecryptfs_dentry_to_lower_path(dentry);
109 	int rc;
110 
111 	rc = ecryptfs_privileged_open(lower_file, path->dentry, path->mnt,
112 				      cred);
113 	if (rc) {
114 		printk(KERN_ERR "Error opening lower file "
115 		       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
116 		       "rc = [%d]\n", path->dentry, path->mnt, rc);
117 		(*lower_file) = NULL;
118 	}
119 	return rc;
120 }
121 
ecryptfs_get_lower_file(struct dentry * dentry,struct inode * inode)122 int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
123 {
124 	struct ecryptfs_inode_info *inode_info;
125 	int count, rc = 0;
126 
127 	inode_info = ecryptfs_inode_to_private(inode);
128 	mutex_lock(&inode_info->lower_file_mutex);
129 	count = atomic_inc_return(&inode_info->lower_file_count);
130 	if (WARN_ON_ONCE(count < 1))
131 		rc = -EINVAL;
132 	else if (count == 1) {
133 		rc = ecryptfs_init_lower_file(dentry,
134 					      &inode_info->lower_file);
135 		if (rc)
136 			atomic_set(&inode_info->lower_file_count, 0);
137 	}
138 	mutex_unlock(&inode_info->lower_file_mutex);
139 	return rc;
140 }
141 
ecryptfs_put_lower_file(struct inode * inode)142 void ecryptfs_put_lower_file(struct inode *inode)
143 {
144 	struct ecryptfs_inode_info *inode_info;
145 
146 	inode_info = ecryptfs_inode_to_private(inode);
147 	if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
148 				      &inode_info->lower_file_mutex)) {
149 		filemap_write_and_wait(inode->i_mapping);
150 		fput(inode_info->lower_file);
151 		inode_info->lower_file = NULL;
152 		mutex_unlock(&inode_info->lower_file_mutex);
153 	}
154 }
155 
156 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
157        ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
158        ecryptfs_opt_ecryptfs_key_bytes,
159        ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
160        ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
161        ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
162        ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only,
163        ecryptfs_opt_check_dev_ruid,
164        ecryptfs_opt_err };
165 
166 static const match_table_t tokens = {
167 	{ecryptfs_opt_sig, "sig=%s"},
168 	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
169 	{ecryptfs_opt_cipher, "cipher=%s"},
170 	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
171 	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
172 	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
173 	{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
174 	{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
175 	{ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
176 	{ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
177 	{ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
178 	{ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
179 	{ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"},
180 	{ecryptfs_opt_check_dev_ruid, "ecryptfs_check_dev_ruid"},
181 	{ecryptfs_opt_err, NULL}
182 };
183 
ecryptfs_init_global_auth_toks(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)184 static int ecryptfs_init_global_auth_toks(
185 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
186 {
187 	struct ecryptfs_global_auth_tok *global_auth_tok;
188 	struct ecryptfs_auth_tok *auth_tok;
189 	int rc = 0;
190 
191 	list_for_each_entry(global_auth_tok,
192 			    &mount_crypt_stat->global_auth_tok_list,
193 			    mount_crypt_stat_list) {
194 		rc = ecryptfs_keyring_auth_tok_for_sig(
195 			&global_auth_tok->global_auth_tok_key, &auth_tok,
196 			global_auth_tok->sig);
197 		if (rc) {
198 			printk(KERN_ERR "Could not find valid key in user "
199 			       "session keyring for sig specified in mount "
200 			       "option: [%s]\n", global_auth_tok->sig);
201 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
202 			goto out;
203 		} else {
204 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
205 			up_write(&(global_auth_tok->global_auth_tok_key)->sem);
206 		}
207 	}
208 out:
209 	return rc;
210 }
211 
ecryptfs_init_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)212 static void ecryptfs_init_mount_crypt_stat(
213 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
214 {
215 	memset((void *)mount_crypt_stat, 0,
216 	       sizeof(struct ecryptfs_mount_crypt_stat));
217 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
218 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
219 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
220 }
221 
222 /**
223  * ecryptfs_parse_options
224  * @sbi: The ecryptfs super block
225  * @options: The options passed to the kernel
226  * @check_ruid: set to 1 if device uid should be checked against the ruid
227  *
228  * Parse mount options:
229  * debug=N 	   - ecryptfs_verbosity level for debug output
230  * sig=XXX	   - description(signature) of the key to use
231  *
232  * Returns the dentry object of the lower-level (lower/interposed)
233  * directory; We want to mount our stackable file system on top of
234  * that lower directory.
235  *
236  * The signature of the key to use must be the description of a key
237  * already in the keyring. Mounting will fail if the key can not be
238  * found.
239  *
240  * Returns zero on success; non-zero on error
241  */
ecryptfs_parse_options(struct ecryptfs_sb_info * sbi,char * options,uid_t * check_ruid)242 static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options,
243 				  uid_t *check_ruid)
244 {
245 	char *p;
246 	int rc = 0;
247 	int sig_set = 0;
248 	int cipher_name_set = 0;
249 	int fn_cipher_name_set = 0;
250 	int cipher_key_bytes;
251 	int cipher_key_bytes_set = 0;
252 	int fn_cipher_key_bytes;
253 	int fn_cipher_key_bytes_set = 0;
254 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
255 		&sbi->mount_crypt_stat;
256 	substring_t args[MAX_OPT_ARGS];
257 	int token;
258 	char *sig_src;
259 	char *cipher_name_src;
260 	char *fn_cipher_name_src;
261 	char *fnek_src;
262 	char *cipher_key_bytes_src;
263 	char *fn_cipher_key_bytes_src;
264 	u8 cipher_code;
265 
266 	*check_ruid = 0;
267 
268 	if (!options) {
269 		rc = -EINVAL;
270 		goto out;
271 	}
272 	ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
273 	while ((p = strsep(&options, ",")) != NULL) {
274 		if (!*p)
275 			continue;
276 		token = match_token(p, tokens, args);
277 		switch (token) {
278 		case ecryptfs_opt_sig:
279 		case ecryptfs_opt_ecryptfs_sig:
280 			sig_src = args[0].from;
281 			rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
282 							  sig_src, 0);
283 			if (rc) {
284 				printk(KERN_ERR "Error attempting to register "
285 				       "global sig; rc = [%d]\n", rc);
286 				goto out;
287 			}
288 			sig_set = 1;
289 			break;
290 		case ecryptfs_opt_cipher:
291 		case ecryptfs_opt_ecryptfs_cipher:
292 			cipher_name_src = args[0].from;
293 			strscpy(mount_crypt_stat->global_default_cipher_name,
294 				cipher_name_src);
295 			cipher_name_set = 1;
296 			break;
297 		case ecryptfs_opt_ecryptfs_key_bytes:
298 			cipher_key_bytes_src = args[0].from;
299 			cipher_key_bytes =
300 				(int)simple_strtol(cipher_key_bytes_src,
301 						   &cipher_key_bytes_src, 0);
302 			mount_crypt_stat->global_default_cipher_key_size =
303 				cipher_key_bytes;
304 			cipher_key_bytes_set = 1;
305 			break;
306 		case ecryptfs_opt_passthrough:
307 			mount_crypt_stat->flags |=
308 				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
309 			break;
310 		case ecryptfs_opt_xattr_metadata:
311 			mount_crypt_stat->flags |=
312 				ECRYPTFS_XATTR_METADATA_ENABLED;
313 			break;
314 		case ecryptfs_opt_encrypted_view:
315 			mount_crypt_stat->flags |=
316 				ECRYPTFS_XATTR_METADATA_ENABLED;
317 			mount_crypt_stat->flags |=
318 				ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
319 			break;
320 		case ecryptfs_opt_fnek_sig:
321 			fnek_src = args[0].from;
322 			strscpy(mount_crypt_stat->global_default_fnek_sig,
323 				fnek_src);
324 			rc = ecryptfs_add_global_auth_tok(
325 				mount_crypt_stat,
326 				mount_crypt_stat->global_default_fnek_sig,
327 				ECRYPTFS_AUTH_TOK_FNEK);
328 			if (rc) {
329 				printk(KERN_ERR "Error attempting to register "
330 				       "global fnek sig [%s]; rc = [%d]\n",
331 				       mount_crypt_stat->global_default_fnek_sig,
332 				       rc);
333 				goto out;
334 			}
335 			mount_crypt_stat->flags |=
336 				(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
337 				 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
338 			break;
339 		case ecryptfs_opt_fn_cipher:
340 			fn_cipher_name_src = args[0].from;
341 			strscpy(mount_crypt_stat->global_default_fn_cipher_name,
342 				fn_cipher_name_src);
343 			fn_cipher_name_set = 1;
344 			break;
345 		case ecryptfs_opt_fn_cipher_key_bytes:
346 			fn_cipher_key_bytes_src = args[0].from;
347 			fn_cipher_key_bytes =
348 				(int)simple_strtol(fn_cipher_key_bytes_src,
349 						   &fn_cipher_key_bytes_src, 0);
350 			mount_crypt_stat->global_default_fn_cipher_key_bytes =
351 				fn_cipher_key_bytes;
352 			fn_cipher_key_bytes_set = 1;
353 			break;
354 		case ecryptfs_opt_unlink_sigs:
355 			mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
356 			break;
357 		case ecryptfs_opt_mount_auth_tok_only:
358 			mount_crypt_stat->flags |=
359 				ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
360 			break;
361 		case ecryptfs_opt_check_dev_ruid:
362 			*check_ruid = 1;
363 			break;
364 		case ecryptfs_opt_err:
365 		default:
366 			printk(KERN_WARNING
367 			       "%s: eCryptfs: unrecognized option [%s]\n",
368 			       __func__, p);
369 		}
370 	}
371 	if (!sig_set) {
372 		rc = -EINVAL;
373 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
374 				"auth tok signature as a mount "
375 				"parameter; see the eCryptfs README\n");
376 		goto out;
377 	}
378 	if (!cipher_name_set) {
379 		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
380 
381 		BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
382 		strcpy(mount_crypt_stat->global_default_cipher_name,
383 		       ECRYPTFS_DEFAULT_CIPHER);
384 	}
385 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
386 	    && !fn_cipher_name_set)
387 		strcpy(mount_crypt_stat->global_default_fn_cipher_name,
388 		       mount_crypt_stat->global_default_cipher_name);
389 	if (!cipher_key_bytes_set)
390 		mount_crypt_stat->global_default_cipher_key_size = 0;
391 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
392 	    && !fn_cipher_key_bytes_set)
393 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
394 			mount_crypt_stat->global_default_cipher_key_size;
395 
396 	cipher_code = ecryptfs_code_for_cipher_string(
397 		mount_crypt_stat->global_default_cipher_name,
398 		mount_crypt_stat->global_default_cipher_key_size);
399 	if (!cipher_code) {
400 		ecryptfs_printk(KERN_ERR,
401 				"eCryptfs doesn't support cipher: %s\n",
402 				mount_crypt_stat->global_default_cipher_name);
403 		rc = -EINVAL;
404 		goto out;
405 	}
406 
407 	mutex_lock(&key_tfm_list_mutex);
408 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
409 				 NULL)) {
410 		rc = ecryptfs_add_new_key_tfm(
411 			NULL, mount_crypt_stat->global_default_cipher_name,
412 			mount_crypt_stat->global_default_cipher_key_size);
413 		if (rc) {
414 			printk(KERN_ERR "Error attempting to initialize "
415 			       "cipher with name = [%s] and key size = [%td]; "
416 			       "rc = [%d]\n",
417 			       mount_crypt_stat->global_default_cipher_name,
418 			       mount_crypt_stat->global_default_cipher_key_size,
419 			       rc);
420 			rc = -EINVAL;
421 			mutex_unlock(&key_tfm_list_mutex);
422 			goto out;
423 		}
424 	}
425 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
426 	    && !ecryptfs_tfm_exists(
427 		    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
428 		rc = ecryptfs_add_new_key_tfm(
429 			NULL, mount_crypt_stat->global_default_fn_cipher_name,
430 			mount_crypt_stat->global_default_fn_cipher_key_bytes);
431 		if (rc) {
432 			printk(KERN_ERR "Error attempting to initialize "
433 			       "cipher with name = [%s] and key size = [%td]; "
434 			       "rc = [%d]\n",
435 			       mount_crypt_stat->global_default_fn_cipher_name,
436 			       mount_crypt_stat->global_default_fn_cipher_key_bytes,
437 			       rc);
438 			rc = -EINVAL;
439 			mutex_unlock(&key_tfm_list_mutex);
440 			goto out;
441 		}
442 	}
443 	mutex_unlock(&key_tfm_list_mutex);
444 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
445 	if (rc)
446 		printk(KERN_WARNING "One or more global auth toks could not "
447 		       "properly register; rc = [%d]\n", rc);
448 out:
449 	return rc;
450 }
451 
452 struct kmem_cache *ecryptfs_sb_info_cache;
453 static struct file_system_type ecryptfs_fs_type;
454 
455 /*
456  * ecryptfs_mount
457  * @fs_type: The filesystem type that the superblock should belong to
458  * @flags: The flags associated with the mount
459  * @dev_name: The path to mount over
460  * @raw_data: The options passed into the kernel
461  */
ecryptfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * raw_data)462 static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags,
463 			const char *dev_name, void *raw_data)
464 {
465 	struct super_block *s;
466 	struct ecryptfs_sb_info *sbi;
467 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
468 	struct ecryptfs_dentry_info *root_info;
469 	const char *err = "Getting sb failed";
470 	struct inode *inode;
471 	struct path path;
472 	uid_t check_ruid;
473 	int rc;
474 
475 	sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
476 	if (!sbi) {
477 		rc = -ENOMEM;
478 		goto out;
479 	}
480 
481 	if (!dev_name) {
482 		rc = -EINVAL;
483 		err = "Device name cannot be null";
484 		goto out;
485 	}
486 
487 	rc = ecryptfs_parse_options(sbi, raw_data, &check_ruid);
488 	if (rc) {
489 		err = "Error parsing options";
490 		goto out;
491 	}
492 	mount_crypt_stat = &sbi->mount_crypt_stat;
493 
494 	s = sget(fs_type, NULL, set_anon_super, flags, NULL);
495 	if (IS_ERR(s)) {
496 		rc = PTR_ERR(s);
497 		goto out;
498 	}
499 
500 	rc = super_setup_bdi(s);
501 	if (rc)
502 		goto out1;
503 
504 	ecryptfs_set_superblock_private(s, sbi);
505 
506 	/* ->kill_sb() will take care of sbi after that point */
507 	sbi = NULL;
508 	s->s_op = &ecryptfs_sops;
509 	s->s_xattr = ecryptfs_xattr_handlers;
510 	s->s_d_op = &ecryptfs_dops;
511 
512 	err = "Reading sb failed";
513 	rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
514 	if (rc) {
515 		ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
516 		goto out1;
517 	}
518 	if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
519 		rc = -EINVAL;
520 		printk(KERN_ERR "Mount on filesystem of type "
521 			"eCryptfs explicitly disallowed due to "
522 			"known incompatibilities\n");
523 		goto out_free;
524 	}
525 
526 	if (is_idmapped_mnt(path.mnt)) {
527 		rc = -EINVAL;
528 		printk(KERN_ERR "Mounting on idmapped mounts currently disallowed\n");
529 		goto out_free;
530 	}
531 
532 	if (check_ruid && !uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
533 		rc = -EPERM;
534 		printk(KERN_ERR "Mount of device (uid: %d) not owned by "
535 		       "requested user (uid: %d)\n",
536 			i_uid_read(d_inode(path.dentry)),
537 			from_kuid(&init_user_ns, current_uid()));
538 		goto out_free;
539 	}
540 
541 	ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
542 
543 	/**
544 	 * Set the POSIX ACL flag based on whether they're enabled in the lower
545 	 * mount.
546 	 */
547 	s->s_flags = flags & ~SB_POSIXACL;
548 	s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
549 
550 	/**
551 	 * Force a read-only eCryptfs mount when:
552 	 *   1) The lower mount is ro
553 	 *   2) The ecryptfs_encrypted_view mount option is specified
554 	 */
555 	if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
556 		s->s_flags |= SB_RDONLY;
557 
558 	s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
559 	s->s_blocksize = path.dentry->d_sb->s_blocksize;
560 	s->s_magic = ECRYPTFS_SUPER_MAGIC;
561 	s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
562 
563 	rc = -EINVAL;
564 	if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
565 		pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
566 		goto out_free;
567 	}
568 
569 	inode = ecryptfs_get_inode(d_inode(path.dentry), s);
570 	rc = PTR_ERR(inode);
571 	if (IS_ERR(inode))
572 		goto out_free;
573 
574 	s->s_root = d_make_root(inode);
575 	if (!s->s_root) {
576 		rc = -ENOMEM;
577 		goto out_free;
578 	}
579 
580 	rc = -ENOMEM;
581 	root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
582 	if (!root_info)
583 		goto out_free;
584 
585 	/* ->kill_sb() will take care of root_info */
586 	ecryptfs_set_dentry_private(s->s_root, root_info);
587 	root_info->lower_path = path;
588 
589 	s->s_flags |= SB_ACTIVE;
590 	return dget(s->s_root);
591 
592 out_free:
593 	path_put(&path);
594 out1:
595 	deactivate_locked_super(s);
596 out:
597 	if (sbi) {
598 		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
599 		kmem_cache_free(ecryptfs_sb_info_cache, sbi);
600 	}
601 	printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
602 	return ERR_PTR(rc);
603 }
604 
605 /**
606  * ecryptfs_kill_block_super
607  * @sb: The ecryptfs super block
608  *
609  * Used to bring the superblock down and free the private data.
610  */
ecryptfs_kill_block_super(struct super_block * sb)611 static void ecryptfs_kill_block_super(struct super_block *sb)
612 {
613 	struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
614 	kill_anon_super(sb);
615 	if (!sb_info)
616 		return;
617 	ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
618 	kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
619 }
620 
621 static struct file_system_type ecryptfs_fs_type = {
622 	.owner = THIS_MODULE,
623 	.name = "ecryptfs",
624 	.mount = ecryptfs_mount,
625 	.kill_sb = ecryptfs_kill_block_super,
626 	.fs_flags = 0
627 };
628 MODULE_ALIAS_FS("ecryptfs");
629 
630 /*
631  * inode_info_init_once
632  *
633  * Initializes the ecryptfs_inode_info_cache when it is created
634  */
635 static void
inode_info_init_once(void * vptr)636 inode_info_init_once(void *vptr)
637 {
638 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
639 
640 	inode_init_once(&ei->vfs_inode);
641 }
642 
643 static struct ecryptfs_cache_info {
644 	struct kmem_cache **cache;
645 	const char *name;
646 	size_t size;
647 	slab_flags_t flags;
648 	void (*ctor)(void *obj);
649 } ecryptfs_cache_infos[] = {
650 	{
651 		.cache = &ecryptfs_auth_tok_list_item_cache,
652 		.name = "ecryptfs_auth_tok_list_item",
653 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
654 	},
655 	{
656 		.cache = &ecryptfs_file_info_cache,
657 		.name = "ecryptfs_file_cache",
658 		.size = sizeof(struct ecryptfs_file_info),
659 	},
660 	{
661 		.cache = &ecryptfs_dentry_info_cache,
662 		.name = "ecryptfs_dentry_info_cache",
663 		.size = sizeof(struct ecryptfs_dentry_info),
664 	},
665 	{
666 		.cache = &ecryptfs_inode_info_cache,
667 		.name = "ecryptfs_inode_cache",
668 		.size = sizeof(struct ecryptfs_inode_info),
669 		.flags = SLAB_ACCOUNT,
670 		.ctor = inode_info_init_once,
671 	},
672 	{
673 		.cache = &ecryptfs_sb_info_cache,
674 		.name = "ecryptfs_sb_cache",
675 		.size = sizeof(struct ecryptfs_sb_info),
676 	},
677 	{
678 		.cache = &ecryptfs_header_cache,
679 		.name = "ecryptfs_headers",
680 		.size = PAGE_SIZE,
681 	},
682 	{
683 		.cache = &ecryptfs_xattr_cache,
684 		.name = "ecryptfs_xattr_cache",
685 		.size = PAGE_SIZE,
686 	},
687 	{
688 		.cache = &ecryptfs_key_record_cache,
689 		.name = "ecryptfs_key_record_cache",
690 		.size = sizeof(struct ecryptfs_key_record),
691 	},
692 	{
693 		.cache = &ecryptfs_key_sig_cache,
694 		.name = "ecryptfs_key_sig_cache",
695 		.size = sizeof(struct ecryptfs_key_sig),
696 	},
697 	{
698 		.cache = &ecryptfs_global_auth_tok_cache,
699 		.name = "ecryptfs_global_auth_tok_cache",
700 		.size = sizeof(struct ecryptfs_global_auth_tok),
701 	},
702 	{
703 		.cache = &ecryptfs_key_tfm_cache,
704 		.name = "ecryptfs_key_tfm_cache",
705 		.size = sizeof(struct ecryptfs_key_tfm),
706 	},
707 };
708 
ecryptfs_free_kmem_caches(void)709 static void ecryptfs_free_kmem_caches(void)
710 {
711 	int i;
712 
713 	/*
714 	 * Make sure all delayed rcu free inodes are flushed before we
715 	 * destroy cache.
716 	 */
717 	rcu_barrier();
718 
719 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
720 		struct ecryptfs_cache_info *info;
721 
722 		info = &ecryptfs_cache_infos[i];
723 		kmem_cache_destroy(*(info->cache));
724 	}
725 }
726 
727 /**
728  * ecryptfs_init_kmem_caches
729  *
730  * Returns zero on success; non-zero otherwise
731  */
ecryptfs_init_kmem_caches(void)732 static int ecryptfs_init_kmem_caches(void)
733 {
734 	int i;
735 
736 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
737 		struct ecryptfs_cache_info *info;
738 
739 		info = &ecryptfs_cache_infos[i];
740 		*(info->cache) = kmem_cache_create(info->name, info->size, 0,
741 				SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
742 		if (!*(info->cache)) {
743 			ecryptfs_free_kmem_caches();
744 			ecryptfs_printk(KERN_WARNING, "%s: "
745 					"kmem_cache_create failed\n",
746 					info->name);
747 			return -ENOMEM;
748 		}
749 	}
750 	return 0;
751 }
752 
753 static struct kobject *ecryptfs_kobj;
754 
version_show(struct kobject * kobj,struct kobj_attribute * attr,char * buff)755 static ssize_t version_show(struct kobject *kobj,
756 			    struct kobj_attribute *attr, char *buff)
757 {
758 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
759 }
760 
761 static struct kobj_attribute version_attr = __ATTR_RO(version);
762 
763 static struct attribute *attributes[] = {
764 	&version_attr.attr,
765 	NULL,
766 };
767 
768 static const struct attribute_group attr_group = {
769 	.attrs = attributes,
770 };
771 
do_sysfs_registration(void)772 static int do_sysfs_registration(void)
773 {
774 	int rc;
775 
776 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
777 	if (!ecryptfs_kobj) {
778 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
779 		rc = -ENOMEM;
780 		goto out;
781 	}
782 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
783 	if (rc) {
784 		printk(KERN_ERR
785 		       "Unable to create ecryptfs version attributes\n");
786 		kobject_put(ecryptfs_kobj);
787 	}
788 out:
789 	return rc;
790 }
791 
do_sysfs_unregistration(void)792 static void do_sysfs_unregistration(void)
793 {
794 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
795 	kobject_put(ecryptfs_kobj);
796 }
797 
ecryptfs_init(void)798 static int __init ecryptfs_init(void)
799 {
800 	int rc;
801 
802 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
803 		rc = -EINVAL;
804 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
805 				"larger than the host's page size, and so "
806 				"eCryptfs cannot run on this system. The "
807 				"default eCryptfs extent size is [%u] bytes; "
808 				"the page size is [%lu] bytes.\n",
809 				ECRYPTFS_DEFAULT_EXTENT_SIZE,
810 				(unsigned long)PAGE_SIZE);
811 		goto out;
812 	}
813 	rc = ecryptfs_init_kmem_caches();
814 	if (rc) {
815 		printk(KERN_ERR
816 		       "Failed to allocate one or more kmem_cache objects\n");
817 		goto out;
818 	}
819 	rc = do_sysfs_registration();
820 	if (rc) {
821 		printk(KERN_ERR "sysfs registration failed\n");
822 		goto out_free_kmem_caches;
823 	}
824 	rc = ecryptfs_init_kthread();
825 	if (rc) {
826 		printk(KERN_ERR "%s: kthread initialization failed; "
827 		       "rc = [%d]\n", __func__, rc);
828 		goto out_do_sysfs_unregistration;
829 	}
830 	rc = ecryptfs_init_messaging();
831 	if (rc) {
832 		printk(KERN_ERR "Failure occurred while attempting to "
833 				"initialize the communications channel to "
834 				"ecryptfsd\n");
835 		goto out_destroy_kthread;
836 	}
837 	rc = ecryptfs_init_crypto();
838 	if (rc) {
839 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
840 		       "rc = [%d]\n", rc);
841 		goto out_release_messaging;
842 	}
843 	rc = register_filesystem(&ecryptfs_fs_type);
844 	if (rc) {
845 		printk(KERN_ERR "Failed to register filesystem\n");
846 		goto out_destroy_crypto;
847 	}
848 	if (ecryptfs_verbosity > 0)
849 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
850 			"will be written to the syslog!\n", ecryptfs_verbosity);
851 
852 	goto out;
853 out_destroy_crypto:
854 	ecryptfs_destroy_crypto();
855 out_release_messaging:
856 	ecryptfs_release_messaging();
857 out_destroy_kthread:
858 	ecryptfs_destroy_kthread();
859 out_do_sysfs_unregistration:
860 	do_sysfs_unregistration();
861 out_free_kmem_caches:
862 	ecryptfs_free_kmem_caches();
863 out:
864 	return rc;
865 }
866 
ecryptfs_exit(void)867 static void __exit ecryptfs_exit(void)
868 {
869 	int rc;
870 
871 	rc = ecryptfs_destroy_crypto();
872 	if (rc)
873 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
874 		       "rc = [%d]\n", rc);
875 	ecryptfs_release_messaging();
876 	ecryptfs_destroy_kthread();
877 	do_sysfs_unregistration();
878 	unregister_filesystem(&ecryptfs_fs_type);
879 	ecryptfs_free_kmem_caches();
880 }
881 
882 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
883 MODULE_DESCRIPTION("eCryptfs");
884 
885 MODULE_LICENSE("GPL");
886 
887 module_init(ecryptfs_init)
888 module_exit(ecryptfs_exit)
889