1 // jar_xm.h
2 //
3 // ORIGINAL LICENSE - FOR LIBXM:
4 //
5 // Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com>
6 // Contributor: Dan Spencer <dan@atomicpotato.net>
7 // Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com>
8 // This program is free software. It comes without any warranty, to the
9 // extent permitted by applicable law. You can redistribute it and/or
10 // modify it under the terms of the Do What The Fuck You Want To Public
11 // License, Version 2, as published by Sam Hocevar. See
12 // http://sam.zoy.org/wtfpl/COPYING for more details.
13 //
14 // HISTORY:
15 //   v0.1.0 2016-02-22  jar_xm.h - development by Joshua Reisenauer, MAR 2016
16 //   v0.2.1 2021-03-07  m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling)
17 //   v0.2.2 2021-03-09  m4ntr0n1c: Add complete debug solution (raylib.h must be included)
18 //   v0.2.3 2021-03-11  m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop
19 //   v0.2.4 2021-03-17  m4ntr0n1c: Sanitize code for readability
20 //   v0.2.5 2021-03-22  m4ntr0n1c: Minor adjustments
21 //   v0.2.6 2021-04-01  m4ntr0n1c: Minor fixes and optimisation
22 //   v0.3.0 2021-04-03  m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code
23 //   v0.3.1 2021-04-04  m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments
24 //
25 // USAGE:
26 //
27 // In ONE source file, put:
28 //
29 //    #define JAR_XM_IMPLEMENTATION
30 //    #include "jar_xm.h"
31 //
32 // Other source files should just include jar_xm.h
33 //
34 // SAMPLE CODE:
35 //
36 // jar_xm_context_t *musicptr;
37 // float musicBuffer[48000 / 60];
38 // int intro_load(void)
39 // {
40 //     jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM");
41 //     return 1;
42 // }
43 // int intro_unload(void)
44 // {
45 //     jar_xm_free_context(musicptr);
46 //     return 1;
47 // }
48 // int intro_tick(long counter)
49 // {
50 //     jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2);
51 //     if(IsKeyDown(KEY_ENTER))
52 //         return 1;
53 //     return 0;
54 // }
55 //
56 #ifndef INCLUDE_JAR_XM_H
57 #define INCLUDE_JAR_XM_H
58 
59 #include <stdint.h>
60 
61 #define JAR_XM_DEBUG 0
62 #define JAR_XM_DEFENSIVE 1
63 #define JAR_XM_RAYLIB 1 // set to 0 to disable the RayLib visualizer extension
64 
65 // Allow custom memory allocators
66 #ifndef JARXM_MALLOC
67     #define JARXM_MALLOC(sz)    malloc(sz)
68 #endif
69 #ifndef JARXM_FREE
70     #define JARXM_FREE(p)       free(p)
71 #endif
72 
73 //-------------------------------------------------------------------------------
74 struct jar_xm_context_s;
75 typedef struct jar_xm_context_s jar_xm_context_t;
76 
77 #ifdef __cplusplus
78 extern "C" {
79 #endif
80 
81 //** Create a XM context.
82 // * @param moddata the contents of the module
83 // * @param rate play rate in Hz, recommended value of 48000
84 // * @returns 0 on success
85 // * @returns 1 if module data is not sane
86 // * @returns 2 if memory allocation failed
87 // * @returns 3 unable to open input file
88 // * @returns 4 fseek() failed
89 // * @returns 5 fread() failed
90 // * @returns 6 unkown error
91 // * @deprecated This function is unsafe!
92 // * @see jar_xm_create_context_safe()
93 int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename);
94 
95 //** Create a XM context.
96 // * @param moddata the contents of the module
97 // * @param rate play rate in Hz, recommended value of 48000
98 // * @returns 0 on success
99 // * @returns 1 if module data is not sane
100 // * @returns 2 if memory allocation failed
101 // * @deprecated This function is unsafe!
102 // * @see jar_xm_create_context_safe()
103 int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate);
104 
105 //** Create a XM context.
106 // * @param moddata the contents of the module
107 // * @param moddata_length the length of the contents of the module, in bytes
108 // * @param rate play rate in Hz, recommended value of 48000
109 // * @returns 0 on success
110 // * @returns 1 if module data is not sane
111 // * @returns 2 if memory allocation failed
112 int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate);
113 
114 //** Free a XM context created by jar_xm_create_context(). */
115 void jar_xm_free_context(jar_xm_context_t* ctx);
116 
117 //** Play the module and put the sound samples in an output buffer.
118 // * @param output buffer of 2*numsamples elements (A left and right value for each sample)
119 // * @param numsamples number of samples to generate
120 void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples);
121 
122 //** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer.
123 // * @param output buffer of 2*numsamples elements (A left and right value for each sample)
124 // * @param numsamples number of samples to generate
jar_xm_generate_samples_16bit(jar_xm_context_t * ctx,short * output,size_t numsamples)125 void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) {
126     float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
127     jar_xm_generate_samples(ctx, musicBuffer, numsamples);
128 
129     if(output){
130         for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int
131     }
132     JARXM_FREE(musicBuffer);
133 }
134 
135 //** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer.
136 // * @param output buffer of 2*numsamples elements (A left and right value for each sample)
137 // * @param numsamples number of samples to generate
jar_xm_generate_samples_8bit(jar_xm_context_t * ctx,char * output,size_t numsamples)138 void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) {
139     float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
140     jar_xm_generate_samples(ctx, musicBuffer, numsamples);
141 
142     if(output){
143         for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit
144     }
145     JARXM_FREE(musicBuffer);
146 }
147 
148 //** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count().
149 // * @param loopcnt maximum number of loops. Use 0 to loop indefinitely.
150 void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt);
151 
152 //** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc.
153 uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx);
154 
155 //** Mute or unmute a channel.
156 // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
157 // * @return whether the channel was muted.
158 bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool);
159 
160 //** Mute or unmute an instrument.
161 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
162 // * @return whether the instrument was muted.
163 bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool);
164 
165 //** Get the module name as a NUL-terminated string.
166 const char* jar_xm_get_module_name(jar_xm_context_t* ctx);
167 
168 //** Get the tracker name as a NUL-terminated string.
169 const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx);
170 
171 //** Get the number of channels.
172 uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx);
173 
174 //** Get the module length (in patterns).
175 uint16_t jar_xm_get_module_length(jar_xm_context_t*);
176 
177 //** Get the number of patterns.
178 uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx);
179 
180 //** Get the number of rows of a pattern.
181 // * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1.
182 uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t);
183 
184 //** Get the number of instruments.
185 uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx);
186 
187 //** Get the number of samples of an instrument.
188 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
189 uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t);
190 
191 //** Get the current module speed.
192 // * @param bpm will receive the current BPM
193 // * @param tempo will receive the current tempo (ticks per line)
194 void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo);
195 
196 //** Get the current position in the module being played.
197 // * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table)
198 // * @param pattern if not NULL, will receive the current pattern number
199 // * @param row if not NULL, will receive the current row
200 // * @param samples if not NULL, will receive the total number of
201 // * generated samples (divide by sample rate to get seconds of generated audio)
202 void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples);
203 
204 //** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel.
205 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
206 uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t);
207 
208 //** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel.
209 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
210 // * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1.
211 uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample);
212 
213 //** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel.
214 // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
215 uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t);
216 
217 //** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples.
218 // * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass.
219 // * @note This function is very slow and should only be run once, if at all.
220 uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx);
221 
222 #ifdef __cplusplus
223 }
224 #endif
225 //-------------------------------------------------------------------------------
226 
227 #ifdef JAR_XM_IMPLEMENTATION
228 
229 #include <math.h>
230 #include <stdio.h>
231 #include <stdlib.h>
232 #include <limits.h>
233 #include <string.h>
234 
235 #if JAR_XM_DEBUG            //JAR_XM_DEBUG defined as 0
236 #include <stdio.h>
237 #define DEBUG(fmt, ...) do {                                        \
238         fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__);    \
239         fflush(stderr);                                                \
240     } while(0)
241 #else
242 #define DEBUG(...)
243 #endif
244 
245 #if jar_xm_BIG_ENDIAN
246 #error "Big endian platforms are not yet supported, sorry"
247 /* Make sure the compiler stops, even if #error is ignored */
248 extern int __fail[-1];
249 #endif
250 
251 /* ----- XM constants ----- */
252 #define SAMPLE_NAME_LENGTH 22
253 #define INSTRUMENT_NAME_LENGTH 22
254 #define MODULE_NAME_LENGTH 20
255 #define TRACKER_NAME_LENGTH 20
256 #define PATTERN_ORDER_TABLE_LENGTH 256
257 #define NUM_NOTES 96 // from 1 to 96, where 1 = C-0
258 #define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max
259 #define MAX_NUM_ROWS 256
260 
261 #define jar_xm_SAMPLE_RAMPING_POINTS 8
262 
263 /* ----- Data types ----- */
264 
265 enum jar_xm_waveform_type_e {
266     jar_xm_SINE_WAVEFORM = 0,
267     jar_xm_RAMP_DOWN_WAVEFORM = 1,
268     jar_xm_SQUARE_WAVEFORM = 2,
269     jar_xm_RANDOM_WAVEFORM = 3,
270     jar_xm_RAMP_UP_WAVEFORM = 4,
271 };
272 typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t;
273 
274 enum jar_xm_loop_type_e {
275     jar_xm_NO_LOOP,
276     jar_xm_FORWARD_LOOP,
277     jar_xm_PING_PONG_LOOP,
278 };
279 typedef enum jar_xm_loop_type_e jar_xm_loop_type_t;
280 
281 enum jar_xm_frequency_type_e {
282     jar_xm_LINEAR_FREQUENCIES,
283     jar_xm_AMIGA_FREQUENCIES,
284 };
285 typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t;
286 
287 struct jar_xm_envelope_point_s {
288     uint16_t frame;
289     uint16_t value;
290 };
291 typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t;
292 
293 struct jar_xm_envelope_s {
294     jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS];
295     uint8_t num_points;
296     uint8_t sustain_point;
297     uint8_t loop_start_point;
298     uint8_t loop_end_point;
299     bool enabled;
300     bool sustain_enabled;
301     bool loop_enabled;
302 };
303 typedef struct jar_xm_envelope_s jar_xm_envelope_t;
304 
305 struct jar_xm_sample_s {
306     char name[SAMPLE_NAME_LENGTH + 1];
307     int8_t bits; /* Either 8 or 16 */
308     int8_t stereo;
309     uint32_t length;
310     uint32_t loop_start;
311     uint32_t loop_length;
312     uint32_t loop_end;
313     float volume;
314     int8_t finetune;
315     jar_xm_loop_type_t loop_type;
316     float panning;
317     int8_t relative_note;
318     uint64_t latest_trigger;
319 
320     float* data;
321  };
322  typedef struct jar_xm_sample_s jar_xm_sample_t;
323 
324  struct jar_xm_instrument_s {
325      char name[INSTRUMENT_NAME_LENGTH + 1];
326      uint16_t num_samples;
327      uint8_t sample_of_notes[NUM_NOTES];
328      jar_xm_envelope_t volume_envelope;
329      jar_xm_envelope_t panning_envelope;
330      jar_xm_waveform_type_t vibrato_type;
331      uint8_t vibrato_sweep;
332      uint8_t vibrato_depth;
333      uint8_t vibrato_rate;
334      uint16_t volume_fadeout;
335      uint64_t latest_trigger;
336      bool muted;
337 
338      jar_xm_sample_t* samples;
339  };
340  typedef struct jar_xm_instrument_s jar_xm_instrument_t;
341 
342  struct jar_xm_pattern_slot_s {
343      uint8_t note; /* 1-96, 97 = Key Off note */
344      uint8_t instrument; /* 1-128 */
345      uint8_t volume_column;
346      uint8_t effect_type;
347      uint8_t effect_param;
348  };
349  typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t;
350 
351  struct jar_xm_pattern_s {
352      uint16_t num_rows;
353      jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */
354  };
355  typedef struct jar_xm_pattern_s jar_xm_pattern_t;
356 
357  struct jar_xm_module_s {
358      char name[MODULE_NAME_LENGTH + 1];
359      char trackername[TRACKER_NAME_LENGTH + 1];
360      uint16_t length;
361      uint16_t restart_position;
362      uint16_t num_channels;
363      uint16_t num_patterns;
364      uint16_t num_instruments;
365      uint16_t linear_interpolation;
366      uint16_t ramping;
367      jar_xm_frequency_type_t frequency_type;
368      uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH];
369 
370      jar_xm_pattern_t* patterns;
371      jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */
372  };
373  typedef struct jar_xm_module_s jar_xm_module_t;
374 
375  struct jar_xm_channel_context_s {
376      float note;
377      float orig_note; /* The original note before effect modifications, as read in the pattern. */
378      jar_xm_instrument_t* instrument; /* Could be NULL */
379      jar_xm_sample_t* sample; /* Could be NULL */
380      jar_xm_pattern_slot_t* current;
381 
382      float sample_position;
383      float period;
384      float frequency;
385      float step;
386      bool ping; /* For ping-pong samples: true is -->, false is <-- */
387 
388      float volume; /* Ideally between 0 (muted) and 1 (loudest) */
389      float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */
390 
391      uint16_t autovibrato_ticks;
392 
393      bool sustained;
394      float fadeout_volume;
395      float volume_envelope_volume;
396      float panning_envelope_panning;
397      uint16_t volume_envelope_frame_count;
398      uint16_t panning_envelope_frame_count;
399 
400      float autovibrato_note_offset;
401 
402      bool arp_in_progress;
403      uint8_t arp_note_offset;
404      uint8_t volume_slide_param;
405      uint8_t fine_volume_slide_param;
406      uint8_t global_volume_slide_param;
407      uint8_t panning_slide_param;
408      uint8_t portamento_up_param;
409      uint8_t portamento_down_param;
410      uint8_t fine_portamento_up_param;
411      uint8_t fine_portamento_down_param;
412      uint8_t extra_fine_portamento_up_param;
413      uint8_t extra_fine_portamento_down_param;
414      uint8_t tone_portamento_param;
415      float tone_portamento_target_period;
416      uint8_t multi_retrig_param;
417      uint8_t note_delay_param;
418      uint8_t pattern_loop_origin; /* Where to restart a E6y loop */
419      uint8_t pattern_loop_count; /* How many loop passes have been done */
420      bool vibrato_in_progress;
421      jar_xm_waveform_type_t vibrato_waveform;
422      bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */
423      uint8_t vibrato_param;
424      uint16_t vibrato_ticks; /* Position in the waveform */
425      float vibrato_note_offset;
426      jar_xm_waveform_type_t tremolo_waveform;
427      bool tremolo_waveform_retrigger;
428      uint8_t tremolo_param;
429      uint8_t tremolo_ticks;
430      float tremolo_volume;
431      uint8_t tremor_param;
432      bool tremor_on;
433 
434      uint64_t latest_trigger;
435      bool muted;
436 
437      //* These values are updated at the end of each tick, to save a couple of float operations on every generated sample.
438      float target_panning;
439      float target_volume;
440 
441      unsigned long frame_count;
442      float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS];
443      float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS];
444      float curr_left;
445      float curr_right;
446 
447      float actual_panning;
448      float actual_volume;
449  };
450  typedef struct jar_xm_channel_context_s jar_xm_channel_context_t;
451 
452  struct jar_xm_context_s {
453      void* allocated_memory;
454      jar_xm_module_t module;
455      uint32_t rate;
456 
457      uint16_t default_tempo; // Number of ticks per row
458      uint16_t default_bpm;
459      float default_global_volume;
460 
461      uint16_t tempo; // Number of ticks per row
462      uint16_t bpm;
463      float global_volume;
464 
465      float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */
466      float panning_ramp; /* Same for panning. */
467 
468      uint8_t current_table_index;
469      uint8_t current_row;
470      uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */
471      float remaining_samples_in_tick;
472      uint64_t generated_samples;
473 
474      bool position_jump;
475      bool pattern_break;
476      uint8_t jump_dest;
477      uint8_t jump_row;
478 
479      uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */
480 
481      uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */
482      uint8_t loop_count;
483      uint8_t max_loop_count;
484 
485      jar_xm_channel_context_t* channels;
486 };
487 
488 #if JAR_XM_DEFENSIVE
489 
490 //** Check the module data for errors/inconsistencies.
491 // * @returns 0 if everything looks OK. Module should be safe to load.
492 int jar_xm_check_sanity_preload(const char*, size_t);
493 
494 //** Check a loaded module for errors/inconsistencies.
495 // * @returns 0 if everything looks OK.
496 int jar_xm_check_sanity_postload(jar_xm_context_t*);
497 
498 #endif
499 
500 //** Get the number of bytes needed to store the module data in a dynamically allocated blank context.
501 // * Things that are dynamically allocated:
502 // * - sample data
503 // * - sample structures in instruments
504 // * - pattern data
505 // * - row loop count arrays
506 // * - pattern structures in module
507 // * - instrument structures in module
508 // * - channel contexts
509 // * - context structure itself
510 // * @returns 0 if everything looks OK.
511 size_t jar_xm_get_memory_needed_for_context(const char*, size_t);
512 
513 //** Populate the context from module data.
514 // * @returns pointer to the memory pool
515 char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*);
516 
jar_xm_create_context(jar_xm_context_t ** ctxp,const char * moddata,uint32_t rate)517 int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) {
518     return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate);
519 }
520 
521 #define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1))
522 #define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1))
jar_xm_create_context_safe(jar_xm_context_t ** ctxp,const char * moddata,size_t moddata_length,uint32_t rate)523 int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) {
524 #if JAR_XM_DEFENSIVE
525     int ret;
526 #endif
527     size_t bytes_needed;
528     char* mempool;
529     jar_xm_context_t* ctx;
530 
531 #if JAR_XM_DEFENSIVE
532     if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) {
533         DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret);
534         return 1;
535     }
536 #endif
537 
538     bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length);
539     mempool = JARXM_MALLOC(bytes_needed);
540     if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */
541         DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool);
542         return 2;
543     }
544 
545     /* Initialize most of the fields to 0, 0.f, NULL or false depending on type */
546     memset(mempool, 0, bytes_needed);
547 
548     ctx = (*ctxp = (jar_xm_context_t *)mempool);
549     ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */
550     mempool += sizeof(jar_xm_context_t);
551 
552     ctx->rate = rate;
553     mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool);
554     mempool = ALIGN_PTR(mempool, 16);
555 
556     ctx->channels = (jar_xm_channel_context_t*)mempool;
557     mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t);
558     mempool = ALIGN_PTR(mempool, 16);
559 
560     ctx->default_global_volume = 1.f;
561     ctx->global_volume = ctx->default_global_volume;
562 
563     ctx->volume_ramp = (1.f / 128.f);
564     ctx->panning_ramp = (1.f / 128.f);
565 
566     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
567         jar_xm_channel_context_t *ch = ctx->channels + i;
568         ch->ping = true;
569         ch->vibrato_waveform = jar_xm_SINE_WAVEFORM;
570         ch->vibrato_waveform_retrigger = true;
571         ch->tremolo_waveform = jar_xm_SINE_WAVEFORM;
572         ch->tremolo_waveform_retrigger = true;
573         ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f;
574         ch->panning = ch->panning_envelope_panning = .5f;
575         ch->actual_volume = .0f;
576         ch->actual_panning = .5f;
577     }
578 
579     mempool = ALIGN_PTR(mempool, 16);
580     ctx->row_loop_count = (uint8_t *)mempool;
581     mempool += MAX_NUM_ROWS * sizeof(uint8_t);
582 
583 #if JAR_XM_DEFENSIVE
584     if((ret = jar_xm_check_sanity_postload(ctx))) {   DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret);
585         jar_xm_free_context(ctx);
586         return 1;
587     }
588 #endif
589 
590     return 0;
591 }
592 
jar_xm_free_context(jar_xm_context_t * ctx)593 void jar_xm_free_context(jar_xm_context_t *ctx) {
594     if (ctx != NULL) {   JARXM_FREE(ctx->allocated_memory); }
595 }
596 
jar_xm_set_max_loop_count(jar_xm_context_t * ctx,uint8_t loopcnt)597 void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) {
598     ctx->max_loop_count = loopcnt;
599 }
600 
jar_xm_get_loop_count(jar_xm_context_t * ctx)601 uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) {
602     return ctx->loop_count;
603 }
604 
jar_xm_mute_channel(jar_xm_context_t * ctx,uint16_t channel,bool mute)605 bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) {
606     bool old = ctx->channels[channel - 1].muted;
607     ctx->channels[channel - 1].muted = mute;
608     return old;
609 }
610 
jar_xm_mute_instrument(jar_xm_context_t * ctx,uint16_t instr,bool mute)611 bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) {
612     bool old = ctx->module.instruments[instr - 1].muted;
613     ctx->module.instruments[instr - 1].muted = mute;
614     return old;
615 }
616 
jar_xm_get_module_name(jar_xm_context_t * ctx)617 const char* jar_xm_get_module_name(jar_xm_context_t *ctx) {
618     return ctx->module.name;
619 }
620 
jar_xm_get_tracker_name(jar_xm_context_t * ctx)621 const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) {
622     return ctx->module.trackername;
623 }
624 
jar_xm_get_number_of_channels(jar_xm_context_t * ctx)625 uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) {
626     return ctx->module.num_channels;
627 }
628 
jar_xm_get_module_length(jar_xm_context_t * ctx)629 uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) {
630     return ctx->module.length;
631 }
632 
jar_xm_get_number_of_patterns(jar_xm_context_t * ctx)633 uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) {
634     return ctx->module.num_patterns;
635 }
636 
jar_xm_get_number_of_rows(jar_xm_context_t * ctx,uint16_t pattern)637 uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) {
638     return ctx->module.patterns[pattern].num_rows;
639 }
640 
jar_xm_get_number_of_instruments(jar_xm_context_t * ctx)641 uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) {
642     return ctx->module.num_instruments;
643 }
644 
jar_xm_get_number_of_samples(jar_xm_context_t * ctx,uint16_t instrument)645 uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) {
646     return ctx->module.instruments[instrument - 1].num_samples;
647 }
648 
jar_xm_get_playing_speed(jar_xm_context_t * ctx,uint16_t * bpm,uint16_t * tempo)649 void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) {
650     if(bpm) *bpm = ctx->bpm;
651     if(tempo) *tempo = ctx->tempo;
652 }
653 
jar_xm_get_position(jar_xm_context_t * ctx,uint8_t * pattern_index,uint8_t * pattern,uint8_t * row,uint64_t * samples)654 void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) {
655     if(pattern_index) *pattern_index = ctx->current_table_index;
656     if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index];
657     if(row) *row = ctx->current_row;
658     if(samples) *samples = ctx->generated_samples;
659 }
660 
jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t * ctx,uint16_t instr)661 uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) {
662     return ctx->module.instruments[instr - 1].latest_trigger;
663 }
664 
jar_xm_get_latest_trigger_of_sample(jar_xm_context_t * ctx,uint16_t instr,uint16_t sample)665 uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) {
666     return ctx->module.instruments[instr - 1].samples[sample].latest_trigger;
667 }
668 
jar_xm_get_latest_trigger_of_channel(jar_xm_context_t * ctx,uint16_t chn)669 uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) {
670     return ctx->channels[chn - 1].latest_trigger;
671 }
672 
673 //* .xm files are little-endian. (XXX: Are they really?)
674 
675 //* Bound reader macros.
676 //* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes.
677 #define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0)
678 #define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8))
679 #define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16))
680 #define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset)
681 
memcpy_pad(void * dst,size_t dst_len,const void * src,size_t src_len,size_t offset)682 static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) {
683     uint8_t *dst_c = dst;
684     const uint8_t *src_c = src;
685 
686     /* how many bytes can be copied without overrunning `src` */
687     size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0;
688     copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes;
689 
690     memcpy(dst_c, src_c + offset, copy_bytes);
691     /* padded bytes */
692     memset(dst_c + copy_bytes, 0, dst_len - copy_bytes);
693 }
694 
695 #if JAR_XM_DEFENSIVE
696 
jar_xm_check_sanity_preload(const char * module,size_t module_length)697 int jar_xm_check_sanity_preload(const char* module, size_t module_length) {
698     if(module_length < 60) { return 4; }
699     if(memcmp("Extended Module: ", module, 17) != 0) { return 1; }
700     if(module[37] != 0x1A) { return 2; }
701     if(module[59] != 0x01 || module[58] != 0x04) { return 3; }  /* Not XM 1.04 */
702     return 0;
703 }
704 
jar_xm_check_sanity_postload(jar_xm_context_t * ctx)705 int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) {
706     /* Check the POT */
707     for(uint8_t i = 0; i < ctx->module.length; ++i) {
708         if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) {
709             if(i+1 == ctx->module.length && ctx->module.length > 1) {
710                 DEBUG("trimming invalid POT at pos %X", i);
711                 --ctx->module.length;
712             } else {
713                 DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]);
714                 return 1;
715             }
716         }
717     }
718 
719     return 0;
720 }
721 
722 #endif
723 
jar_xm_get_memory_needed_for_context(const char * moddata,size_t moddata_length)724 size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) {
725     size_t memory_needed = 0;
726     size_t offset = 60; /* 60 = Skip the first header */
727     uint16_t num_channels;
728     uint16_t num_patterns;
729     uint16_t num_instruments;
730 
731     /* Read the module header */
732     num_channels = READ_U16(offset + 8);
733     num_patterns = READ_U16(offset + 10);
734     memory_needed += num_patterns * sizeof(jar_xm_pattern_t);
735     memory_needed  = ALIGN(memory_needed, 16);
736     num_instruments = READ_U16(offset + 12);
737     memory_needed += num_instruments * sizeof(jar_xm_instrument_t);
738     memory_needed  = ALIGN(memory_needed, 16);
739     memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */
740 
741     offset += READ_U32(offset); /* Header size */
742 
743     /* Read pattern headers */
744     for(uint16_t i = 0; i < num_patterns; ++i) {
745         uint16_t num_rows;
746         num_rows = READ_U16(offset + 5);
747         memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t);
748         offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */
749     }
750     memory_needed  = ALIGN(memory_needed, 16);
751 
752     /* Read instrument headers */
753     for(uint16_t i = 0; i < num_instruments; ++i) {
754         uint16_t num_samples;
755         uint32_t sample_header_size = 0;
756         uint32_t sample_size_aggregate = 0;
757         num_samples = READ_U16(offset + 27);
758         memory_needed += num_samples * sizeof(jar_xm_sample_t);
759         if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); }
760 
761         offset += READ_U32(offset);  /* Instrument header size */
762         for(uint16_t j = 0; j < num_samples; ++j) {
763             uint32_t sample_size;
764             uint8_t flags;
765             sample_size = READ_U32(offset);
766             flags = READ_U8(offset + 14);
767             sample_size_aggregate += sample_size;
768 
769             if(flags & (1 << 4)) {  /* 16 bit sample */
770                 memory_needed += sample_size * (sizeof(float) >> 1);
771             } else {  /* 8 bit sample */
772                 memory_needed += sample_size * sizeof(float);
773             }
774             offset += sample_header_size;
775         }
776         offset += sample_size_aggregate;
777     }
778 
779     memory_needed += num_channels * sizeof(jar_xm_channel_context_t);
780     memory_needed += sizeof(jar_xm_context_t);
781     return memory_needed;
782 }
783 
jar_xm_load_module(jar_xm_context_t * ctx,const char * moddata,size_t moddata_length,char * mempool)784 char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) {
785     size_t offset = 0;
786     jar_xm_module_t* mod = &(ctx->module);
787 
788     /* Read XM header */
789     READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH);
790     READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH);
791     offset += 60;
792 
793     /* Read module header */
794     uint32_t header_size = READ_U32(offset);
795     mod->length = READ_U16(offset + 4);
796     mod->restart_position = READ_U16(offset + 6);
797     mod->num_channels = READ_U16(offset + 8);
798     mod->num_patterns = READ_U16(offset + 10);
799     mod->num_instruments = READ_U16(offset + 12);
800     mod->patterns = (jar_xm_pattern_t*)mempool;
801     mod->linear_interpolation = 0; // Linear interpolation can be set after loading
802     mod->ramping = 1; // ramping can be set after loading
803     mempool += mod->num_patterns * sizeof(jar_xm_pattern_t);
804     mempool = ALIGN_PTR(mempool, 16);
805     mod->instruments = (jar_xm_instrument_t*)mempool;
806     mempool += mod->num_instruments * sizeof(jar_xm_instrument_t);
807     mempool = ALIGN_PTR(mempool, 16);
808     uint16_t flags = READ_U32(offset + 14);
809     mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES;
810     ctx->default_tempo = READ_U16(offset + 16);
811     ctx->default_bpm = READ_U16(offset + 18);
812     ctx->tempo =ctx->default_tempo;
813     ctx->bpm = ctx->default_bpm;
814 
815     READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH);
816     offset += header_size;
817 
818     /* Read patterns */
819     for(uint16_t i = 0; i < mod->num_patterns; ++i) {
820         uint16_t packed_patterndata_size = READ_U16(offset + 7);
821         jar_xm_pattern_t* pat = mod->patterns + i;
822         pat->num_rows = READ_U16(offset + 5);
823         pat->slots = (jar_xm_pattern_slot_t*)mempool;
824         mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t);
825         offset += READ_U32(offset); /* Pattern header length */
826 
827         if(packed_patterndata_size == 0) {    /* No pattern data is present */
828             memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels);
829         } else {
830             /* This isn't your typical for loop */
831             for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) {
832                 uint8_t note = READ_U8(offset + j);
833                 jar_xm_pattern_slot_t* slot = pat->slots + k;
834                 if(note & (1 << 7)) {
835                     /* MSB is set, this is a compressed packet */
836                     ++j;
837                     if(note & (1 << 0)) {    /* Note follows */
838                         slot->note = READ_U8(offset + j);
839                         ++j;
840                     } else {
841                         slot->note = 0;
842                     }
843                     if(note & (1 << 1)) {    /* Instrument follows */
844                         slot->instrument = READ_U8(offset + j);
845                         ++j;
846                     } else {
847                         slot->instrument = 0;
848                     }
849                     if(note & (1 << 2)) {    /* Volume column follows */
850                         slot->volume_column = READ_U8(offset + j);
851                         ++j;
852                     } else {
853                         slot->volume_column = 0;
854                     }
855                     if(note & (1 << 3)) {    /* Effect follows */
856                         slot->effect_type = READ_U8(offset + j);
857                         ++j;
858                     } else {
859                         slot->effect_type = 0;
860                     }
861                     if(note & (1 << 4)) {    /* Effect parameter follows */
862                         slot->effect_param = READ_U8(offset + j);
863                         ++j;
864                     } else {
865                         slot->effect_param = 0;
866                     }
867                 } else {    /* Uncompressed packet */
868                     slot->note = note;
869                     slot->instrument = READ_U8(offset + j + 1);
870                     slot->volume_column = READ_U8(offset + j + 2);
871                     slot->effect_type = READ_U8(offset + j + 3);
872                     slot->effect_param = READ_U8(offset + j + 4);
873                     j += 5;
874                 }
875             }
876         }
877 
878         offset += packed_patterndata_size;
879     }
880     mempool = ALIGN_PTR(mempool, 16);
881 
882     /* Read instruments */
883     for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) {
884         uint32_t sample_header_size = 0;
885         jar_xm_instrument_t* instr = mod->instruments + i;
886 
887         READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH);
888         instr->num_samples = READ_U16(offset + 27);
889 
890         if(instr->num_samples > 0) {
891             /* Read extra header properties */
892             sample_header_size = READ_U32(offset + 29);
893             READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES);
894 
895             instr->volume_envelope.num_points = READ_U8(offset + 225);
896             instr->panning_envelope.num_points = READ_U8(offset + 226);
897 
898             for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) {
899                 instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j);
900                 instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2);
901             }
902 
903             for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) {
904                 instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j);
905                 instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2);
906             }
907 
908             instr->volume_envelope.sustain_point = READ_U8(offset + 227);
909             instr->volume_envelope.loop_start_point = READ_U8(offset + 228);
910             instr->volume_envelope.loop_end_point = READ_U8(offset + 229);
911             instr->panning_envelope.sustain_point = READ_U8(offset + 230);
912             instr->panning_envelope.loop_start_point = READ_U8(offset + 231);
913             instr->panning_envelope.loop_end_point = READ_U8(offset + 232);
914 
915             uint8_t flags = READ_U8(offset + 233);
916             instr->volume_envelope.enabled = flags & (1 << 0);
917             instr->volume_envelope.sustain_enabled = flags & (1 << 1);
918             instr->volume_envelope.loop_enabled = flags & (1 << 2);
919 
920             flags = READ_U8(offset + 234);
921             instr->panning_envelope.enabled = flags & (1 << 0);
922             instr->panning_envelope.sustain_enabled = flags & (1 << 1);
923             instr->panning_envelope.loop_enabled = flags & (1 << 2);
924             instr->vibrato_type = READ_U8(offset + 235);
925             if(instr->vibrato_type == 2) {
926                 instr->vibrato_type = 1;
927             } else if(instr->vibrato_type == 1) {
928                 instr->vibrato_type = 2;
929             }
930             instr->vibrato_sweep = READ_U8(offset + 236);
931             instr->vibrato_depth = READ_U8(offset + 237);
932             instr->vibrato_rate = READ_U8(offset + 238);
933             instr->volume_fadeout = READ_U16(offset + 239);
934             instr->samples = (jar_xm_sample_t*)mempool;
935             mempool += instr->num_samples * sizeof(jar_xm_sample_t);
936         } else {
937             instr->samples = NULL;
938         }
939 
940         /* Instrument header size */
941         offset += READ_U32(offset);
942 
943         for(int j = 0; j < instr->num_samples; ++j) {
944             /* Read sample header */
945             jar_xm_sample_t* sample = instr->samples + j;
946 
947             sample->length = READ_U32(offset);
948             sample->loop_start = READ_U32(offset + 4);
949             sample->loop_length = READ_U32(offset + 8);
950             sample->loop_end = sample->loop_start + sample->loop_length;
951             sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f;
952             if (sample->volume > 1.0f) {sample->volume = 1.f;};
953             sample->finetune = (int8_t)READ_U8(offset + 13);
954 
955             uint8_t flags = READ_U8(offset + 14);
956             switch (flags & 3) {
957             case 2:
958             case 3:
959                 sample->loop_type = jar_xm_PING_PONG_LOOP;
960             case 1:
961                 sample->loop_type = jar_xm_FORWARD_LOOP;
962                 break;
963             default:
964                 sample->loop_type = jar_xm_NO_LOOP;
965                 break;
966             };
967             sample->bits = (flags & 0x10) ? 16 : 8;
968             sample->stereo = (flags & 0x20) ? 1 : 0;
969             sample->panning = (float)READ_U8(offset + 15) / 255.f;
970             sample->relative_note = (int8_t)READ_U8(offset + 16);
971             READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH);
972             sample->data = (float*)mempool;
973             if(sample->bits == 16) {
974                 /* 16 bit sample */
975                 mempool += sample->length * (sizeof(float) >> 1);
976                 sample->loop_start >>= 1;
977                 sample->loop_length >>= 1;
978                 sample->loop_end >>= 1;
979                 sample->length >>= 1;
980             } else {
981                 /* 8 bit sample */
982                 mempool += sample->length * sizeof(float);
983             }
984             // Adjust loop points to reflect half of the reported length (stereo)
985             if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) {
986                 div_t lstart = div(READ_U32(offset + 4), 2);
987                 sample->loop_start = lstart.quot;
988                 div_t llength = div(READ_U32(offset + 8), 2);
989                 sample->loop_length = llength.quot;
990                 sample->loop_end = sample->loop_start + sample->loop_length;
991             };
992 
993             offset += sample_header_size;
994         }
995 
996         // Read all samples and convert them to float values
997         for(int j = 0; j < instr->num_samples; ++j) {
998             /* Read sample data */
999             jar_xm_sample_t* sample = instr->samples + j;
1000             int length = sample->length;
1001             if (sample->stereo) {
1002                 // Since it is stereo, we cut the sample in half (treated as single channel)
1003                 div_t result = div(sample->length, 2);
1004                 if(sample->bits == 16) {
1005                     int16_t v = 0;
1006                     for(int k = 0; k < length; ++k) {
1007                         if (k == result.quot) { v = 0;};
1008                         v = v + (int16_t)READ_U16(offset + (k << 1));
1009                         sample->data[k] = (float) v / 32768.f ;//* sign;
1010                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
1011                     }
1012                     offset += sample->length << 1;
1013                 } else {
1014                     int8_t v = 0;
1015                     for(int k = 0; k < length; ++k) {
1016                         if (k == result.quot) { v = 0;};
1017                         v = v + (int8_t)READ_U8(offset + k);
1018                         sample->data[k] = (float)v  / 128.f ;//* sign;
1019                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
1020                     }
1021                     offset += sample->length;
1022                 };
1023                 sample->length = result.quot;
1024             } else {
1025                 if(sample->bits == 16) {
1026                     int16_t v = 0;
1027                     for(int k = 0; k < length; ++k) {
1028                         v = v + (int16_t)READ_U16(offset + (k << 1));
1029                         sample->data[k] = (float) v / 32768.f ;//* sign;
1030                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
1031                     }
1032                     offset += sample->length << 1;
1033                 } else {
1034                     int8_t v = 0;
1035                     for(int k = 0; k < length; ++k) {
1036                         v = v + (int8_t)READ_U8(offset + k);
1037                         sample->data[k] = (float)v  / 128.f ;//* sign;
1038                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
1039                     }
1040                     offset += sample->length;
1041                 }
1042             }
1043         };
1044     };
1045     return mempool;
1046 };
1047 
1048 //-------------------------------------------------------------------------------
1049 //THE FOLLOWING IS FOR PLAYING
1050 static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t);
1051 static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*);
1052 static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
1053 static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
1054 static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
1055 static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*);
1056 static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float);
1057 static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t);
1058 static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t);
1059 
1060 static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t);
1061 static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*);
1062 static void jar_xm_envelopes(jar_xm_channel_context_t*);
1063 
1064 static float jar_xm_linear_period(float);
1065 static float jar_xm_linear_frequency(float);
1066 static float jar_xm_amiga_period(float);
1067 static float jar_xm_amiga_frequency(float);
1068 static float jar_xm_period(jar_xm_context_t*, float);
1069 static float jar_xm_frequency(jar_xm_context_t*, float, float);
1070 static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*);
1071 
1072 static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*);
1073 static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags);
1074 static void jar_xm_cut_note(jar_xm_channel_context_t*);
1075 static void jar_xm_key_off(jar_xm_channel_context_t*);
1076 
1077 static void jar_xm_post_pattern_change(jar_xm_context_t*);
1078 static void jar_xm_row(jar_xm_context_t*);
1079 static void jar_xm_tick(jar_xm_context_t*);
1080 
1081 static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int);
1082 static void jar_xm_mixdown(jar_xm_context_t*, float*, float*);
1083 
1084 #define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0)
1085 #define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1)
1086 #define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2)
1087 
1088                                             // C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3
1089 static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017,  961,  907, 856 };
1090 
1091                                             // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
1092 static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f };
1093 
1094                                             // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
1095 static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f };
1096 
1097 #define jar_xm_CLAMP_UP1F(vol, limit) do {            \
1098         if((vol) > (limit)) (vol) = (limit);    \
1099     } while(0)
1100 #define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f)
1101 
1102 #define jar_xm_CLAMP_DOWN1F(vol, limit) do {        \
1103         if((vol) < (limit)) (vol) = (limit);    \
1104     } while(0)
1105 #define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f)
1106 
1107 #define jar_xm_CLAMP2F(vol, up, down) do {            \
1108         if((vol) > (up)) (vol) = (up);            \
1109         else if((vol) < (down)) (vol) = (down); \
1110     } while(0)
1111 #define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f)
1112 
1113 #define jar_xm_SLIDE_TOWARDS(val, goal, incr) do {        \
1114         if((val) > (goal)) {                        \
1115             (val) -= (incr);                        \
1116             jar_xm_CLAMP_DOWN1F((val), (goal));            \
1117         } else if((val) < (goal)) {                    \
1118             (val) += (incr);                        \
1119             jar_xm_CLAMP_UP1F((val), (goal));            \
1120         }                                            \
1121     } while(0)
1122 
1123 #define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u)))
1124 #define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u)))
1125 
1126 #define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \
1127                                  || (s)->effect_type == 5 \
1128                                  || ((s)->volume_column >> 4) == 0xF)
1129 #define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \
1130                           && (s)->effect_param != 0)
1131 #define HAS_VIBRATO(s) ((s)->effect_type == 4 \
1132                          || (s)->effect_param == 6 \
1133                          || ((s)->volume_column >> 4) == 0xB)
1134 #define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97)
1135 #define NOTE_OFF 97
1136 
jar_xm_waveform(jar_xm_waveform_type_t waveform,uint8_t step)1137 static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) {
1138     static unsigned int next_rand = 24492;
1139     step %= 0x40;
1140     switch(waveform) {
1141     case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */
1142         return -sinf(2.f * 3.141592f * (float)step / (float)0x40);
1143     case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */
1144         return (float)(0x20 - step) / 0x20;
1145     case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */
1146         return (step >= 0x20) ? 1.f : -1.f;
1147     case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */
1148         next_rand = next_rand * 1103515245 + 12345;
1149         return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f;
1150     case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */
1151         return (float)(step - 0x20) / 0x20;
1152     default:
1153         break;
1154     }
1155     return .0f;
1156 }
1157 
jar_xm_autovibrato(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch)1158 static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
1159     if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return;
1160     jar_xm_instrument_t* instr = ch->instrument;
1161     float sweep = 1.f;
1162     if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); }
1163     unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2;
1164     ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep;
1165     jar_xm_update_frequency(ctx, ch);
1166 }
1167 
jar_xm_vibrato(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch,uint8_t param,uint16_t pos)1168 static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
1169     unsigned int step = pos * (param >> 4);
1170     ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF;
1171     jar_xm_update_frequency(ctx, ch);
1172 }
1173 
jar_xm_tremolo(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch,uint8_t param,uint16_t pos)1174 static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
1175     unsigned int step = pos * (param >> 4);
1176     ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF;
1177 }
1178 
jar_xm_arpeggio(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch,uint8_t param,uint16_t tick)1179 static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) {
1180     switch(tick % 3) {
1181     case 0:
1182         ch->arp_in_progress = false;
1183         ch->arp_note_offset = 0;
1184         break;
1185     case 2:
1186         ch->arp_in_progress = true;
1187         ch->arp_note_offset = param >> 4;
1188         break;
1189     case 1:
1190         ch->arp_in_progress = true;
1191         ch->arp_note_offset = param & 0x0F;
1192         break;
1193     }
1194     jar_xm_update_frequency(ctx, ch);
1195 }
1196 
jar_xm_tone_portamento(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch)1197 static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
1198     /* 3xx called without a note, wait until we get an actual target note. */
1199     if(ch->tone_portamento_target_period == 0.f) return;  /* no value, exit */
1200     if(ch->period != ch->tone_portamento_target_period) {
1201         jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param);
1202         jar_xm_update_frequency(ctx, ch);
1203     }
1204 }
1205 
jar_xm_pitch_slide(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch,float period_offset)1206 static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) {
1207     /* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear™. */
1208     if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; }
1209     ch->period += period_offset;
1210     jar_xm_CLAMP_DOWN(ch->period);
1211     /* XXX: upper bound of period ? */
1212     jar_xm_update_frequency(ctx, ch);
1213 }
1214 
jar_xm_panning_slide(jar_xm_channel_context_t * ch,uint8_t rawval)1215 static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
1216     if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;};
1217     if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;};
1218 };
1219 
jar_xm_volume_slide(jar_xm_channel_context_t * ch,uint8_t rawval)1220 static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
1221     if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;};
1222     if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;};
1223 };
1224 
jar_xm_envelope_lerp(jar_xm_envelope_point_t * a,jar_xm_envelope_point_t * b,uint16_t pos)1225 static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) {
1226     /* Linear interpolation between two envelope points */
1227     if(pos <= a->frame) return a->value;
1228     else if(pos >= b->frame) return b->value;
1229     else {
1230         float p = (float)(pos - a->frame) / (float)(b->frame - a->frame);
1231         return a->value * (1 - p) + b->value * p;
1232     }
1233 }
1234 
jar_xm_post_pattern_change(jar_xm_context_t * ctx)1235 static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) {
1236     /* Loop if necessary */
1237     if(ctx->current_table_index >= ctx->module.length) {
1238         ctx->current_table_index = ctx->module.restart_position;
1239         ctx->tempo =ctx->default_tempo; // reset to file default value
1240         ctx->bpm = ctx->default_bpm; // reset to file default value
1241         ctx->global_volume = ctx->default_global_volume; // reset to file default value
1242     }
1243 }
1244 
jar_xm_linear_period(float note)1245 static float jar_xm_linear_period(float note) {
1246     return 7680.f - note * 64.f;
1247 }
1248 
jar_xm_linear_frequency(float period)1249 static float jar_xm_linear_frequency(float period) {
1250     return 8363.f * powf(2.f, (4608.f - period) / 768.f);
1251 }
1252 
jar_xm_amiga_period(float note)1253 static float jar_xm_amiga_period(float note) {
1254     unsigned int intnote = note;
1255     uint8_t a = intnote % 12;
1256     int8_t octave = note / 12.f - 2;
1257     uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1];
1258     if(octave > 0) {
1259         p1 >>= octave;
1260         p2 >>= octave;
1261     } else if(octave < 0) {
1262         p1 <<= -octave;
1263         p2 <<= -octave;
1264     }
1265     return jar_xm_LERP(p1, p2, note - intnote);
1266 }
1267 
jar_xm_amiga_frequency(float period)1268 static float jar_xm_amiga_frequency(float period) {
1269     if(period == .0f) return .0f;
1270     return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */
1271 }
1272 
jar_xm_period(jar_xm_context_t * ctx,float note)1273 static float jar_xm_period(jar_xm_context_t* ctx, float note) {
1274     switch(ctx->module.frequency_type) {
1275     case jar_xm_LINEAR_FREQUENCIES:
1276         return jar_xm_linear_period(note);
1277     case jar_xm_AMIGA_FREQUENCIES:
1278         return jar_xm_amiga_period(note);
1279     }
1280     return .0f;
1281 }
1282 
jar_xm_frequency(jar_xm_context_t * ctx,float period,float note_offset)1283 static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) {
1284     switch(ctx->module.frequency_type) {
1285     case jar_xm_LINEAR_FREQUENCIES:
1286         return jar_xm_linear_frequency(period - 64.f * note_offset);
1287     case jar_xm_AMIGA_FREQUENCIES:
1288         if(note_offset == 0) { return jar_xm_amiga_frequency(period); };
1289         int8_t octave;
1290         float  note;
1291         uint16_t p1, p2;
1292         uint8_t a = octave = 0;
1293 
1294         /* Find the octave of the current period */
1295         if(period > amiga_frequencies[0]) {
1296             --octave;
1297             while(period > (amiga_frequencies[0] << -octave)) --octave;
1298         } else if(period < amiga_frequencies[12]) {
1299             ++octave;
1300             while(period < (amiga_frequencies[12] >> octave)) ++octave;
1301         }
1302 
1303         /* Find the smallest note closest to the current period */
1304         for(uint8_t i = 0; i < 12; ++i) {
1305             p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1];
1306             if(octave > 0) {
1307                 p1 >>= octave;
1308                 p2 >>= octave;
1309             } else if(octave < 0) {
1310                 p1 <<= (-octave);
1311                 p2 <<= (-octave);
1312             }
1313             if(p2 <= period && period <= p1) {
1314                 a = i;
1315                 break;
1316             }
1317         }
1318         if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); }
1319         note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period);
1320         return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset));
1321     }
1322 
1323     return .0f;
1324 }
1325 
jar_xm_update_frequency(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch)1326 static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
1327     ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : (  ch->vibrato_note_offset + ch->autovibrato_note_offset ))  );
1328     ch->step = ch->frequency / ctx->rate;
1329 }
1330 
jar_xm_handle_note_and_instrument(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch,jar_xm_pattern_slot_t * s)1331 static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) {
1332     jar_xm_module_t* mod = &(ctx->module);
1333     if(s->instrument > 0) {
1334         if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) {  /* Tone portamento in effect */
1335             jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
1336         } else if(s->instrument > ctx->module.num_instruments) {    /* Invalid instrument, Cut current note */
1337             jar_xm_cut_note(ch);
1338             ch->instrument = NULL;
1339             ch->sample = NULL;
1340         } else {
1341             ch->instrument = ctx->module.instruments + (s->instrument - 1);
1342             if(s->note == 0 && ch->sample != NULL) {  /* Ghost instrument, trigger note */
1343                 /* Sample position is kept, but envelopes are reset */
1344                 jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
1345             }
1346         }
1347     }
1348 
1349     if(NOTE_IS_VALID(s->note)) {
1350         // note value is s->note -1
1351         jar_xm_instrument_t* instr = ch->instrument;
1352         if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) {
1353             /* Tone portamento in effect */
1354             ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
1355             ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note);
1356         } else if(instr == NULL || ch->instrument->num_samples == 0) {   /* Issue on instrument */
1357             jar_xm_cut_note(ch);
1358         } else {
1359             if(instr->sample_of_notes[s->note - 1] < instr->num_samples) {
1360                 if (mod->ramping) {
1361                     for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) {
1362                         jar_xm_next_of_sample(ctx, ch, i);
1363                     }
1364                     ch->frame_count = 0;
1365                 };
1366                 ch->sample = instr->samples + instr->sample_of_notes[s->note - 1];
1367                 ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
1368                 if(s->instrument > 0) {
1369                     jar_xm_trigger_note(ctx, ch, 0);
1370                 } else {  /* Ghost note: keep old volume */
1371                     jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME);
1372                 }
1373             } else {
1374                 jar_xm_cut_note(ch);
1375             }
1376         }
1377     } else if(s->note == NOTE_OFF) {
1378         jar_xm_key_off(ch);
1379     }
1380 
1381     // Interpret Effect column
1382     switch(s->effect_type) {
1383     case 1: /* 1xx: Portamento up */
1384         if(s->effect_param > 0) {    ch->portamento_up_param = s->effect_param; }
1385         break;
1386     case 2: /* 2xx: Portamento down */
1387         if(s->effect_param > 0) {    ch->portamento_down_param = s->effect_param; }
1388         break;
1389     case 3: /* 3xx: Tone portamento */
1390         if(s->effect_param > 0) {    ch->tone_portamento_param = s->effect_param; }
1391         break;
1392     case 4: /* 4xy: Vibrato */
1393         if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); }  /* Set vibrato depth */
1394         if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); }   /* Set vibrato speed */
1395         break;
1396     case 5: /* 5xy: Tone portamento + Volume slide */
1397         if(s->effect_param > 0) {  ch->volume_slide_param = s->effect_param; }
1398         break;
1399     case 6: /* 6xy: Vibrato + Volume slide */
1400         if(s->effect_param > 0) {    ch->volume_slide_param = s->effect_param; }
1401         break;
1402     case 7: /* 7xy: Tremolo */
1403         if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */
1404         if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); }  /* Set tremolo speed */
1405         break;
1406     case 8: /* 8xx: Set panning */
1407         ch->panning = (float)s->effect_param / 255.f;
1408         break;
1409     case 9: /* 9xx: Sample offset */
1410         if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) {
1411             uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8);
1412             switch (ch->sample->loop_type) {
1413             case jar_xm_NO_LOOP:
1414                 if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */
1415                     ch->sample_position = -1;
1416                 } else {
1417                     ch->sample_position = final_offset;
1418                 }
1419                 break;
1420             case jar_xm_FORWARD_LOOP:
1421                 if (final_offset >= ch->sample->loop_end) {
1422                     ch->sample_position -= ch->sample->loop_length;
1423                 } else if(final_offset >= ch->sample->length) {
1424                     ch->sample_position = ch->sample->loop_start;
1425                 } else {
1426                     ch->sample_position = final_offset;
1427                 }
1428                 break;
1429             case jar_xm_PING_PONG_LOOP:
1430                 if(final_offset >= ch->sample->loop_end) {
1431                     ch->ping = false;
1432                     ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
1433                 } else if(final_offset >= ch->sample->length) {
1434                     ch->ping = false;
1435                     ch->sample_position -= ch->sample->length - 1;
1436                 } else {
1437                     ch->sample_position = final_offset;
1438                 };
1439                 break;
1440             }
1441         }
1442         break;
1443     case 0xA: /* Axy: Volume slide */
1444         if(s->effect_param > 0) {    ch->volume_slide_param = s->effect_param; }
1445         break;
1446     case 0xB: /* Bxx: Position jump */
1447         if(s->effect_param < ctx->module.length) {
1448             ctx->position_jump = true;
1449             ctx->jump_dest = s->effect_param;
1450         }
1451         break;
1452     case 0xC: /* Cxx: Set volume */
1453         ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
1454         break;
1455     case 0xD: /* Dxx: Pattern break */
1456         /* Jump after playing this line */
1457         ctx->pattern_break = true;
1458         ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F);
1459         break;
1460     case 0xE: /* EXy: Extended command */
1461         switch(s->effect_param >> 4) {
1462         case 1: /* E1y: Fine portamento up */
1463             if(s->effect_param & 0x0F) {    ch->fine_portamento_up_param = s->effect_param & 0x0F; }
1464             jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param);
1465             break;
1466         case 2: /* E2y: Fine portamento down */
1467             if(s->effect_param & 0x0F) {    ch->fine_portamento_down_param = s->effect_param & 0x0F; }
1468             jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param);
1469             break;
1470         case 4: /* E4y: Set vibrato control */
1471             ch->vibrato_waveform = s->effect_param & 3;
1472             ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1);
1473             break;
1474         case 5: /* E5y: Set finetune */
1475             if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) {
1476                 ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f;
1477                 ch->period = jar_xm_period(ctx, ch->note);
1478                 jar_xm_update_frequency(ctx, ch);
1479             }
1480             break;
1481         case 6: /* E6y: Pattern loop */
1482             if(s->effect_param & 0x0F) {
1483                 if((s->effect_param & 0x0F) == ch->pattern_loop_count) {   /* Loop is over */
1484                     ch->pattern_loop_count = 0;
1485                     ctx->position_jump = false;
1486                 } else {    /* Jump to the beginning of the loop */
1487                     ch->pattern_loop_count++;
1488                     ctx->position_jump = true;
1489                     ctx->jump_row = ch->pattern_loop_origin;
1490                     ctx->jump_dest = ctx->current_table_index;
1491                 }
1492             } else {
1493                 ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */
1494                 ctx->jump_row = ch->pattern_loop_origin;    /* Replicate FT2 E60 bug */
1495             }
1496             break;
1497         case 7: /* E7y: Set tremolo control */
1498             ch->tremolo_waveform = s->effect_param & 3;
1499             ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1);
1500             break;
1501         case 0xA: /* EAy: Fine volume slide up */
1502             if(s->effect_param & 0x0F) {   ch->fine_volume_slide_param = s->effect_param & 0x0F; }
1503             jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4);
1504             break;
1505         case 0xB: /* EBy: Fine volume slide down */
1506             if(s->effect_param & 0x0F) {   ch->fine_volume_slide_param = s->effect_param & 0x0F; }
1507             jar_xm_volume_slide(ch, ch->fine_volume_slide_param);
1508             break;
1509         case 0xD: /* EDy: Note delay */
1510             /* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠ 0) does not. */
1511             if(s->note == 0 && s->instrument == 0) {
1512                 unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME;
1513                 if(ch->current->effect_param & 0x0F) {
1514                     ch->note = ch->orig_note;
1515                     jar_xm_trigger_note(ctx, ch, flags);
1516                 } else {
1517                     jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION );
1518                 }
1519             }
1520             break;
1521 
1522         case 0xE: /* EEy: Pattern delay */
1523             ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo;
1524             break;
1525         default:
1526             break;
1527         }
1528         break;
1529 
1530     case 0xF: /* Fxx: Set tempo/BPM */
1531         if(s->effect_param > 0) {
1532             if(s->effect_param <= 0x1F) {  // First 32 possible values adjust the ticks (goes into tempo)
1533                 ctx->tempo = s->effect_param;
1534             } else {                       //32 and greater values adjust the BPM
1535                 ctx->bpm = s->effect_param;
1536             }
1537         }
1538         break;
1539 
1540     case 16: /* Gxx: Set global volume */
1541         ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
1542         break;
1543     case 17: /* Hxy: Global volume slide */
1544         if(s->effect_param > 0) {    ch->global_volume_slide_param = s->effect_param; }
1545         break;
1546     case 21: /* Lxx: Set envelope position */
1547         ch->volume_envelope_frame_count = s->effect_param;
1548         ch->panning_envelope_frame_count = s->effect_param;
1549         break;
1550     case 25: /* Pxy: Panning slide */
1551         if(s->effect_param > 0) {   ch->panning_slide_param = s->effect_param; }
1552         break;
1553     case 27: /* Rxy: Multi retrig note */
1554         if(s->effect_param > 0) {
1555             if((s->effect_param >> 4) == 0) {    /* Keep previous x value */
1556                 ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F);
1557             } else {
1558                 ch->multi_retrig_param = s->effect_param;
1559             }
1560         }
1561         break;
1562     case 29: /* Txy: Tremor */
1563         if(s->effect_param > 0) { ch->tremor_param = s->effect_param; }  /* Tremor x and y params are not separately kept in memory, unlike Rxy */
1564         break;
1565     case 33: /* Xxy: Extra stuff */
1566         switch(s->effect_param >> 4) {
1567         case 1: /* X1y: Extra fine portamento up */
1568             if(s->effect_param & 0x0F) {    ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; }
1569             jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param);
1570             break;
1571         case 2: /* X2y: Extra fine portamento down */
1572             if(s->effect_param & 0x0F) {   ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; }
1573             jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param);
1574             break;
1575         default:
1576             break;
1577         }
1578         break;
1579     default:
1580         break;
1581     }
1582 }
1583 
jar_xm_trigger_note(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch,unsigned int flags)1584 static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) {
1585     if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) {
1586         ch->sample_position = 0.f;
1587         ch->ping = true;
1588     };
1589 
1590     if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) {
1591        if(ch->sample != NULL) {
1592         ch->volume = ch->sample->volume;
1593         };
1594     };
1595     ch->panning = ch->sample->panning;
1596     ch->sustained = true;
1597     ch->fadeout_volume = ch->volume_envelope_volume = 1.0f;
1598     ch->panning_envelope_panning = .5f;
1599     ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0;
1600     ch->vibrato_note_offset = 0.f;
1601     ch->tremolo_volume = 0.f;
1602     ch->tremor_on = false;
1603     ch->autovibrato_ticks = 0;
1604 
1605     if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */
1606     if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; }
1607     if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) {
1608         ch->period = jar_xm_period(ctx, ch->note);
1609         jar_xm_update_frequency(ctx, ch);
1610     }
1611     ch->latest_trigger = ctx->generated_samples;
1612     if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; }
1613     if(ch->sample != NULL) {     ch->sample->latest_trigger = ctx->generated_samples; }
1614 }
1615 
jar_xm_cut_note(jar_xm_channel_context_t * ch)1616 static void jar_xm_cut_note(jar_xm_channel_context_t* ch) {
1617     ch->volume = .0f; /* NB: this is not the same as Key Off */
1618 //    ch->curr_left = .0f;
1619 //    ch->curr_right = .0f;
1620 }
1621 
jar_xm_key_off(jar_xm_channel_context_t * ch)1622 static void jar_xm_key_off(jar_xm_channel_context_t* ch) {
1623     ch->sustained = false; /* Key Off */
1624     if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */
1625 }
1626 
jar_xm_row(jar_xm_context_t * ctx)1627 static void jar_xm_row(jar_xm_context_t* ctx) {
1628     if(ctx->position_jump) {
1629         ctx->current_table_index = ctx->jump_dest;
1630         ctx->current_row = ctx->jump_row;
1631         ctx->position_jump = false;
1632         ctx->pattern_break = false;
1633         ctx->jump_row = 0;
1634         jar_xm_post_pattern_change(ctx);
1635     } else if(ctx->pattern_break) {
1636         ctx->current_table_index++;
1637         ctx->current_row = ctx->jump_row;
1638         ctx->pattern_break = false;
1639         ctx->jump_row = 0;
1640         jar_xm_post_pattern_change(ctx);
1641     }
1642     jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
1643     bool in_a_loop = false;
1644 
1645     /* Read notes information for all channels into temporary pattern slot */
1646     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
1647         jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i;
1648         jar_xm_channel_context_t* ch = ctx->channels + i;
1649         ch->current = s;
1650         // If there is no note delay effect (0xED) then...
1651         if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) {
1652             //********** Process the channel slot information **********
1653             jar_xm_handle_note_and_instrument(ctx, ch, s);
1654         } else {
1655             // read the note delay information
1656             ch->note_delay_param = s->effect_param & 0x0F;
1657         }
1658         if(!in_a_loop && ch->pattern_loop_count > 0) {
1659             // clarify if in a loop or not
1660             in_a_loop = true;
1661         }
1662     }
1663 
1664     if(!in_a_loop) {
1665         /* No E6y loop is in effect (or we are in the first pass) */
1666         ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++);
1667     }
1668 
1669     /// Move to next row
1670     ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */
1671     if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) {
1672         ctx->current_table_index++;
1673         ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */
1674         ctx->jump_row = 0;
1675         jar_xm_post_pattern_change(ctx);
1676     }
1677 }
1678 
jar_xm_envelope_tick(jar_xm_channel_context_t * ch,jar_xm_envelope_t * env,uint16_t * counter,float * outval)1679 static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) {
1680     if(env->num_points < 2) {
1681         if(env->num_points == 1) {
1682             *outval = (float)env->points[0].value / (float)0x40;
1683             if(*outval > 1) { *outval = 1; };
1684         } else {;
1685             return;
1686         };
1687     } else {
1688         if(env->loop_enabled) {
1689             uint16_t loop_start = env->points[env->loop_start_point].frame;
1690             uint16_t loop_end = env->points[env->loop_end_point].frame;
1691             uint16_t loop_length = loop_end - loop_start;
1692             if(*counter >= loop_end) { *counter -= loop_length; };
1693         };
1694         for(uint8_t j = 0; j < (env->num_points - 1); ++j) {
1695             if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) {
1696                 *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40;
1697                 break;
1698             };
1699         };
1700         /* Make sure it is safe to increment frame count */
1701         if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; };
1702     };
1703 };
1704 
jar_xm_envelopes(jar_xm_channel_context_t * ch)1705 static void jar_xm_envelopes(jar_xm_channel_context_t *ch) {
1706     if(ch->instrument != NULL) {
1707         if(ch->instrument->volume_envelope.enabled) {
1708             if(!ch->sustained) {
1709                 ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f;
1710                 jar_xm_CLAMP_DOWN(ch->fadeout_volume);
1711             };
1712             jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume));
1713         };
1714         if(ch->instrument->panning_envelope.enabled) {
1715             jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning));
1716         };
1717     };
1718 };
1719 
jar_xm_tick(jar_xm_context_t * ctx)1720 static void jar_xm_tick(jar_xm_context_t* ctx) {
1721     if(ctx->current_tick == 0) {
1722         jar_xm_row(ctx);        // We have processed all ticks and we run the row
1723     }
1724 
1725     jar_xm_module_t* mod = &(ctx->module);
1726     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
1727         jar_xm_channel_context_t* ch = ctx->channels + i;
1728         jar_xm_envelopes(ch);
1729         jar_xm_autovibrato(ctx, ch);
1730         if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) {
1731             ch->arp_in_progress = false;
1732             ch->arp_note_offset = 0;
1733             jar_xm_update_frequency(ctx, ch);
1734         }
1735         if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) {
1736             ch->vibrato_in_progress = false;
1737             ch->vibrato_note_offset = 0.f;
1738             jar_xm_update_frequency(ctx, ch);
1739         }
1740 
1741         // Effects in volumne column mostly handled on a per tick basis
1742         switch(ch->current->volume_column & 0xF0) {
1743         case 0x50: // Checks for volume = 64
1744             if(ch->current->volume_column != 0x50) break;
1745         case 0x10: // Set volume 0-15
1746         case 0x20: // Set volume 16-32
1747         case 0x30: // Set volume 32-48
1748         case 0x40: // Set volume 48-64
1749             ch->volume = (float)(ch->current->volume_column - 16) / 64.0f;
1750             break;
1751         case 0x60: // Volume slide down
1752             jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
1753             break;
1754         case 0x70: // Volume slide up
1755             jar_xm_volume_slide(ch, ch->current->volume_column << 4);
1756             break;
1757         case 0x80: // Fine volume slide down
1758             jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
1759             break;
1760         case 0x90: // Fine volume slide up
1761             jar_xm_volume_slide(ch, ch->current->volume_column << 4);
1762             break;
1763         case 0xA0: // Set vibrato speed
1764             ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4);
1765             break;
1766         case 0xB0: // Vibrato
1767             ch->vibrato_in_progress = false;
1768             jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
1769             break;
1770         case 0xC0: // Set panning
1771             if(!ctx->current_tick ) {
1772                 ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f;
1773             }
1774             break;
1775         case 0xD0: // Panning slide left
1776             jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F);
1777             break;
1778         case 0xE0: // Panning slide right
1779             jar_xm_panning_slide(ch, ch->current->volume_column << 4);
1780             break;
1781         case 0xF0: // Tone portamento
1782             if(!ctx->current_tick ) {
1783                 if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); }
1784             };
1785             jar_xm_tone_portamento(ctx, ch);
1786             break;
1787         default:
1788             break;
1789         }
1790 
1791         // Only some standard effects handled on a per tick basis
1792         // see jar_xm_handle_note_and_instrument for all effects handling on a per row basis
1793         switch(ch->current->effect_type) {
1794         case 0: /* 0xy: Arpeggio */
1795             if(ch->current->effect_param > 0) {
1796                 char arp_offset = ctx->tempo % 3;
1797                 switch(arp_offset) {
1798                 case 2: /* 0 -> x -> 0 -> y -> x -> … */
1799                     if(ctx->current_tick == 1) {
1800                         ch->arp_in_progress = true;
1801                         ch->arp_note_offset = ch->current->effect_param >> 4;
1802                         jar_xm_update_frequency(ctx, ch);
1803                         break;
1804                     }
1805                     /* No break here, this is intended */
1806                 case 1: /* 0 -> 0 -> y -> x -> … */
1807                     if(ctx->current_tick == 0) {
1808                         ch->arp_in_progress = false;
1809                         ch->arp_note_offset = 0;
1810                         jar_xm_update_frequency(ctx, ch);
1811                         break;
1812                     }
1813                     /* No break here, this is intended */
1814                 case 0: /* 0 -> y -> x -> … */
1815                     jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset);
1816                 default:
1817                     break;
1818                 }
1819             }
1820             break;
1821 
1822         case 1: /* 1xx: Portamento up */
1823             if(ctx->current_tick == 0) break;
1824             jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param);
1825             break;
1826         case 2: /* 2xx: Portamento down */
1827             if(ctx->current_tick == 0) break;
1828             jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param);
1829             break;
1830         case 3: /* 3xx: Tone portamento */
1831             if(ctx->current_tick == 0) break;
1832             jar_xm_tone_portamento(ctx, ch);
1833             break;
1834         case 4: /* 4xy: Vibrato */
1835             if(ctx->current_tick == 0) break;
1836             ch->vibrato_in_progress = true;
1837             jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
1838             break;
1839         case 5: /* 5xy: Tone portamento + Volume slide */
1840             if(ctx->current_tick == 0) break;
1841             jar_xm_tone_portamento(ctx, ch);
1842             jar_xm_volume_slide(ch, ch->volume_slide_param);
1843             break;
1844         case 6: /* 6xy: Vibrato + Volume slide */
1845             if(ctx->current_tick == 0) break;
1846             ch->vibrato_in_progress = true;
1847             jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
1848             jar_xm_volume_slide(ch, ch->volume_slide_param);
1849             break;
1850         case 7: /* 7xy: Tremolo */
1851             if(ctx->current_tick == 0) break;
1852             jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++);
1853             break;
1854         case 8: /* 8xy: Set panning */
1855             break;
1856         case 9: /* 9xy: Sample offset */
1857             break;
1858         case 0xA: /* Axy: Volume slide */
1859             if(ctx->current_tick == 0) break;
1860             jar_xm_volume_slide(ch, ch->volume_slide_param);
1861             break;
1862         case 0xE: /* EXy: Extended command */
1863             switch(ch->current->effect_param >> 4) {
1864             case 0x9: /* E9y: Retrigger note */
1865                 if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) {
1866                     if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) {
1867                         jar_xm_trigger_note(ctx, ch, 0);
1868                         jar_xm_envelopes(ch);
1869                     }
1870                 }
1871                 break;
1872             case 0xC: /* ECy: Note cut */
1873                 if((ch->current->effect_param & 0x0F) == ctx->current_tick) {
1874                     jar_xm_cut_note(ch);
1875                 }
1876                 break;
1877             case 0xD: /* EDy: Note delay */
1878                 if(ch->note_delay_param == ctx->current_tick) {
1879                     jar_xm_handle_note_and_instrument(ctx, ch, ch->current);
1880                     jar_xm_envelopes(ch);
1881                 }
1882                 break;
1883             default:
1884                 break;
1885             }
1886             break;
1887         case 16: /* Fxy: Set tempo/BPM */
1888             break;
1889         case 17: /* Hxy: Global volume slide */
1890             if(ctx->current_tick == 0) break;
1891             if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */
1892             if(ch->global_volume_slide_param & 0xF0) {    /* Global slide up */
1893                 float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40;
1894                 ctx->global_volume += f;
1895                 jar_xm_CLAMP_UP(ctx->global_volume);
1896             } else {                                      /* Global slide down */
1897                 float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40;
1898                 ctx->global_volume -= f;
1899                 jar_xm_CLAMP_DOWN(ctx->global_volume);
1900             };
1901             break;
1902 
1903         case 20: /* Kxx: Key off */
1904             if(ctx->current_tick == ch->current->effect_param) {     jar_xm_key_off(ch); };
1905             break;
1906         case 21: /* Lxx: Set envelope position */
1907             break;
1908         case 25: /* Pxy: Panning slide */
1909             if(ctx->current_tick == 0) break;
1910             jar_xm_panning_slide(ch, ch->panning_slide_param);
1911             break;
1912         case 27: /* Rxy: Multi retrig note */
1913             if(ctx->current_tick == 0) break;
1914             if(((ch->multi_retrig_param) & 0x0F) == 0) break;
1915             if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) {
1916                 float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4]
1917                     + multi_retrig_add[ch->multi_retrig_param >> 4];
1918                 jar_xm_CLAMP(v);
1919                 jar_xm_trigger_note(ctx, ch, 0);
1920                 ch->volume = v;
1921             };
1922             break;
1923 
1924         case 29: /* Txy: Tremor */
1925             if(ctx->current_tick == 0) break;
1926             ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4)  );
1927             break;
1928         default:
1929             break;
1930         };
1931 
1932         float panning, volume;
1933         panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f;
1934         if(ch->tremor_on) {
1935             volume = .0f;
1936         } else {
1937             volume = ch->volume + ch->tremolo_volume;
1938             jar_xm_CLAMP(volume);
1939             volume *= ch->fadeout_volume * ch->volume_envelope_volume;
1940         };
1941 
1942         if (mod->ramping) {
1943             ch->target_panning = panning;
1944             ch->target_volume = volume;
1945         } else {
1946             ch->actual_panning = panning;
1947             ch->actual_volume = volume;
1948         };
1949     };
1950 
1951     ctx->current_tick++; // ok so we understand that ticks increment within the row
1952     if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) {
1953         // This means it reached the end of the row and we reset
1954         ctx->current_tick = 0;
1955         ctx->extra_ticks = 0;
1956     };
1957 
1958     // Number of ticks / second = BPM * 0.4
1959     ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f);
1960 };
1961 
jar_xm_next_of_sample(jar_xm_context_t * ctx,jar_xm_channel_context_t * ch,int previous)1962 static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) {
1963     jar_xm_module_t* mod = &(ctx->module);
1964 
1965 //    ch->curr_left = 0.f;
1966 //    ch->curr_right = 0.f;
1967     if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
1968         ch->curr_left = 0.f;
1969         ch->curr_right = 0.f;
1970         if (mod->ramping) {
1971             if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
1972                 if (previous > -1) {
1973                     ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
1974                     ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
1975                 } else {
1976                     ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
1977                     ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
1978                 };
1979             };
1980         };
1981         return;
1982     };
1983     if(ch->sample->length == 0) {
1984         return;
1985     };
1986 
1987     float t = 0.f;
1988     uint32_t b = 0;
1989     if(mod->linear_interpolation) {
1990         b = ch->sample_position + 1;
1991         t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */
1992     };
1993 
1994     float u_left, u_right;
1995     u_left = ch->sample->data[(uint32_t)ch->sample_position];
1996     if (ch->sample->stereo) {
1997         u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length];
1998     } else {
1999         u_right = u_left;
2000     };
2001     float v_left = 0.f, v_right = 0.f;
2002     switch(ch->sample->loop_type) {
2003     case jar_xm_NO_LOOP:
2004         if(mod->linear_interpolation) {
2005             v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f;
2006             if (ch->sample->stereo) {
2007                 v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f;
2008             } else {
2009                 v_right = v_left;
2010             };
2011         };
2012         ch->sample_position += ch->step;
2013         if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample
2014         break;
2015     case jar_xm_FORWARD_LOOP:
2016         if(mod->linear_interpolation) {
2017             v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ];
2018             if (ch->sample->stereo) {
2019                 v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length];
2020             } else {
2021                 v_right = v_left;
2022             };
2023         };
2024         ch->sample_position += ch->step;
2025         if (ch->sample_position >= ch->sample->loop_end) {
2026             ch->sample_position -= ch->sample->loop_length;
2027         };
2028         if(ch->sample_position >= ch->sample->length) {
2029             ch->sample_position = ch->sample->loop_start;
2030         };
2031         break;
2032     case jar_xm_PING_PONG_LOOP:
2033         if(ch->ping) {
2034             if(mod->linear_interpolation) {
2035                 v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b];
2036                 if (ch->sample->stereo) {
2037                     v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length];
2038                 } else {
2039                     v_right = v_left;
2040                 };
2041             };
2042             ch->sample_position += ch->step;
2043             if(ch->sample_position >= ch->sample->loop_end) {
2044                 ch->ping = false;
2045                 ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
2046             };
2047             if(ch->sample_position >= ch->sample->length) {
2048                 ch->ping = false;
2049                 ch->sample_position -= ch->sample->length - 1;
2050             };
2051         } else {
2052             if(mod->linear_interpolation) {
2053                 v_left = u_left;
2054                 v_right = u_right;
2055                 u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2];
2056                 if (ch->sample->stereo) {
2057                     u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2];
2058                 } else {
2059                     u_right = u_left;
2060                 };
2061             };
2062             ch->sample_position -= ch->step;
2063             if(ch->sample_position <= ch->sample->loop_start) {
2064                 ch->ping = true;
2065                 ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position;
2066             };
2067             if (ch->sample_position <= .0f) {
2068                 ch->ping = true;
2069                 ch->sample_position = .0f;
2070             };
2071         };
2072         break;
2073 
2074     default:
2075         v_left = .0f;
2076         v_right = .0f;
2077         break;
2078     };
2079 
2080     float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left;
2081     float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right;
2082 
2083     if (mod->ramping) {
2084         if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
2085             /* Smoothly transition between old and new sample. */
2086             if (previous > -1) {
2087                 ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
2088                 ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
2089             } else {
2090                 ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
2091                 ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
2092             };
2093         };
2094     };
2095 
2096     if (previous > -1) {
2097         ch->end_of_previous_sample_left[previous] = endval_left;
2098         ch->end_of_previous_sample_right[previous] = endval_right;
2099     } else {
2100         ch->curr_left = endval_left;
2101         ch->curr_right = endval_right;
2102     };
2103 };
2104 
2105 // gather all channel audio into stereo float
jar_xm_mixdown(jar_xm_context_t * ctx,float * left,float * right)2106 static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) {
2107     jar_xm_module_t* mod = &(ctx->module);
2108 
2109     if(ctx->remaining_samples_in_tick <= 0) {
2110         jar_xm_tick(ctx);
2111     };
2112     ctx->remaining_samples_in_tick--;
2113     *left = 0.f;
2114     *right = 0.f;
2115     if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; }
2116 
2117     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
2118         jar_xm_channel_context_t* ch = ctx->channels + i;
2119         if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) {
2120             jar_xm_next_of_sample(ctx, ch, -1);
2121             if(!ch->muted && !ch->instrument->muted) {
2122                 *left  += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning);
2123                 *right += ch->curr_right * ch->actual_volume * ch->actual_panning;
2124             };
2125 
2126             if (mod->ramping) {
2127                 ch->frame_count++;
2128                 jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp);
2129                 jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp);
2130             };
2131         };
2132     };
2133     if (ctx->global_volume != 1.0f) {
2134         *left *= ctx->global_volume;
2135         *right *= ctx->global_volume;
2136     };
2137 
2138     // experimental
2139 //    float counter = (float)ctx->generated_samples * 0.0001f
2140 //    *left = tan(&left + sin(counter));
2141 //    *right = tan(&right + cos(counter));
2142 
2143     // apply brick wall limiter when audio goes beyond bounderies
2144     if(*left < -1.0)  {*left = -1.0;}  else if(*left > 1.0)  {*left = 1.0;};
2145     if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;};
2146 };
2147 
jar_xm_generate_samples(jar_xm_context_t * ctx,float * output,size_t numsamples)2148 void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) {
2149     if(ctx && output) {
2150         ctx->generated_samples += numsamples;
2151         for(size_t i = 0; i < numsamples; i++) {
2152             jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1));
2153         };
2154     };
2155 };
2156 
jar_xm_get_remaining_samples(jar_xm_context_t * ctx)2157 uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) {
2158     uint64_t total = 0;
2159     uint8_t currentLoopCount = jar_xm_get_loop_count(ctx);
2160     jar_xm_set_max_loop_count(ctx, 0);
2161     while(jar_xm_get_loop_count(ctx) == currentLoopCount) {
2162         total += ctx->remaining_samples_in_tick;
2163         ctx->remaining_samples_in_tick = 0;
2164         jar_xm_tick(ctx);
2165     }
2166     ctx->loop_count = currentLoopCount;
2167     return total;
2168 }
2169 
2170 //--------------------------------------------
2171 //FILE LOADER - TODO - NEEDS TO BE CLEANED UP
2172 //--------------------------------------------
2173 #undef DEBUG
2174 #define DEBUG(...) do {      \
2175         fprintf(stderr, __VA_ARGS__); \
2176         fflush(stderr); \
2177     } while(0)
2178 
2179 #define DEBUG_ERR(...) do {      \
2180         fprintf(stderr, __VA_ARGS__); \
2181         fflush(stderr); \
2182     } while(0)
2183 
2184 #define FATAL(...) do {      \
2185         fprintf(stderr, __VA_ARGS__); \
2186         fflush(stderr); \
2187         exit(1); \
2188     } while(0)
2189 
2190 #define FATAL_ERR(...) do {      \
2191         fprintf(stderr, __VA_ARGS__); \
2192         fflush(stderr); \
2193         exit(1); \
2194     } while(0)
2195 
2196 
jar_xm_create_context_from_file(jar_xm_context_t ** ctx,uint32_t rate,const char * filename)2197 int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) {
2198     FILE* xmf;
2199     int size;
2200     int ret;
2201 
2202     xmf = fopen(filename, "rb");
2203     if(xmf == NULL) {
2204         DEBUG_ERR("Could not open input file");
2205         *ctx = NULL;
2206         return 3;
2207     }
2208 
2209     fseek(xmf, 0, SEEK_END);
2210     size = ftell(xmf);
2211     rewind(xmf);
2212     if(size == -1) {
2213         fclose(xmf);
2214         DEBUG_ERR("fseek() failed");
2215         *ctx = NULL;
2216         return 4;
2217     }
2218 
2219     char* data = JARXM_MALLOC(size + 1);
2220     if(!data || fread(data, 1, size, xmf) < size) {
2221         fclose(xmf);
2222         DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed");
2223         JARXM_FREE(data);
2224         *ctx = NULL;
2225         return 5;
2226     }
2227 
2228     fclose(xmf);
2229 
2230     ret = jar_xm_create_context_safe(ctx, data, size, rate);
2231     JARXM_FREE(data);
2232 
2233     switch(ret) {
2234     case 0:
2235         break;
2236     case 1:        DEBUG("could not create context: module is not sane\n");
2237         *ctx = NULL;
2238         return 1;
2239         break;
2240     case 2:        FATAL("could not create context: malloc failed\n");
2241         return 2;
2242         break;
2243     default:       FATAL("could not create context: unknown error\n");
2244         return 6;
2245         break;
2246     }
2247 
2248     return 0;
2249 }
2250 
2251 // not part of the original library
jar_xm_reset(jar_xm_context_t * ctx)2252 void jar_xm_reset(jar_xm_context_t* ctx) {
2253     for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
2254         jar_xm_cut_note(&ctx->channels[i]);
2255     }
2256     ctx->current_row = 0;
2257     ctx->current_table_index = 0;
2258     ctx->current_tick = 0;
2259     ctx->tempo =ctx->default_tempo; // reset to file default value
2260     ctx->bpm = ctx->default_bpm; // reset to file default value
2261     ctx->global_volume = ctx->default_global_volume; // reset to file default value
2262 }
2263 
2264 
jar_xm_flip_linear_interpolation(jar_xm_context_t * ctx)2265 void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) {
2266     if (ctx->module.linear_interpolation) {
2267         ctx->module.linear_interpolation = 0;
2268     } else {
2269         ctx->module.linear_interpolation = 1;
2270     }
2271 }
2272 
jar_xm_table_jump(jar_xm_context_t * ctx,int table_ptr)2273 void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) {
2274     for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
2275         jar_xm_cut_note(&ctx->channels[i]);
2276     }
2277     ctx->current_row = 0;
2278     ctx->current_tick = 0;
2279     if(table_ptr > 0 && table_ptr < ctx->module.length) {
2280         ctx->current_table_index = table_ptr;
2281         ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track
2282     } else {
2283         ctx->current_table_index = 0;
2284         ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track
2285         ctx->tempo =ctx->default_tempo; // reset to file default value
2286         ctx->bpm = ctx->default_bpm; // reset to file default value
2287         ctx->global_volume = ctx->default_global_volume; // reset to file default value
2288     };
2289 }
2290 
2291 
2292 // TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... )
xm_note_chr(int number)2293 const char* xm_note_chr(int number) {
2294     if (number == NOTE_OFF) {
2295         return "==";
2296     };
2297     number = number % 12;
2298     switch(number) {
2299     case 1: return "C-";
2300     case 2: return "C#";
2301     case 3: return "D-";
2302     case 4: return "D#";
2303     case 5: return "E-";
2304     case 6: return "F-";
2305     case 7: return "F#";
2306     case 8: return "G-";
2307     case 9: return "G#";
2308     case 10: return "A-";
2309     case 11: return "A#";
2310     case 12: return "B-";
2311     };
2312     return "??";
2313 };
2314 
xm_octave_chr(int number)2315 const char* xm_octave_chr(int number) {
2316     if (number == NOTE_OFF) {
2317         return "=";
2318     };
2319 
2320     int number2 = number - number % 12;
2321     int result = floor(number2 / 12) + 1;
2322     switch(result) {
2323     case 1: return "1";
2324     case 2: return "2";
2325     case 3: return "3";
2326     case 4: return "4";
2327     case 5: return "5";
2328     case 6: return "6";
2329     case 7: return "7";
2330     case 8: return "8";
2331     default: return "?"; /* UNKNOWN */
2332     };
2333 
2334 };
2335 
2336 // TRANSLATE NOTE EFFECT CODE INTO USER VALUE
xm_effect_chr(int fx)2337 const char* xm_effect_chr(int fx) {
2338     switch(fx) {
2339     case 0: return "0";  /* ZERO = NO EFFECT */
2340     case 1: return "1";  /* 1xx: Portamento up */
2341     case 2: return "2";  /* 2xx: Portamento down */
2342     case 3: return "3";  /* 3xx: Tone portamento */
2343     case 4: return "4";  /* 4xy: Vibrato */
2344     case 5: return "5";  /* 5xy: Tone portamento + Volume slide */
2345     case 6: return "6";  /* 6xy: Vibrato + Volume slide */
2346     case 7: return "7";  /* 7xy: Tremolo */
2347     case 8: return "8";  /* 8xx: Set panning */
2348     case 9: return "9";  /* 9xx: Sample offset */
2349     case 0xA: return "A";/* Axy: Volume slide */
2350     case 0xB: return "B";/* Bxx: Position jump */
2351     case 0xC: return "C";/* Cxx: Set volume */
2352     case 0xD: return "D";/* Dxx: Pattern break */
2353     case 0xE: return "E";/* EXy: Extended command */
2354     case 0xF: return "F";/* Fxx: Set tempo/BPM */
2355     case 16: return "G"; /* Gxx: Set global volume */
2356     case 17: return "H"; /* Hxy: Global volume slide */
2357     case 21: return "L"; /* Lxx: Set envelope position */
2358     case 25: return "P"; /* Pxy: Panning slide */
2359     case 27: return "R"; /* Rxy: Multi retrig note */
2360     case 29: return "T"; /* Txy: Tremor */
2361     case 33: return "X"; /* Xxy: Extra stuff */
2362     default: return "?"; /* UNKNOWN */
2363     };
2364 }
2365 
2366 #ifdef JAR_XM_RAYLIB
2367 
2368 #include "raylib.h" // Need RayLib API calls for the DEBUG display
2369 
jar_xm_debug(jar_xm_context_t * ctx)2370 void jar_xm_debug(jar_xm_context_t *ctx) {
2371     int size=40;
2372     int x = 0, y = 0;
2373 
2374     // DEBUG VARIABLES
2375     y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index),       x, y, size, WHITE);
2376     y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]),   x, y, size, WHITE);
2377     y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump),             x, y, size, WHITE);
2378     y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest),                 x, y, size, WHITE);
2379     y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break),             x, y, size, WHITE);
2380     y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row),               x, y, size, WHITE);
2381     y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row),                  x, y, size, WHITE);
2382     y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count),            x, y, size, WHITE);
2383     y += size; DrawText(TextFormat("LCT     = %i", ctx->loop_count),                x, y, size, WHITE);
2384     y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count),            x, y, size, WHITE);
2385     x = size * 12; y = 0;
2386 
2387     y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick),              x, y, size, WHITE);
2388     y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks),               x, y, size, WHITE);
2389     y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo),                     x, y, size, ORANGE);
2390     y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE);
2391     y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples),         x, y, size, WHITE);
2392     y += size * 7;
2393 
2394     x = 0;
2395     size=16;
2396     // TIMELINE OF MODULE
2397     for (int i=0; i < ctx->module.length; i++) {
2398         if (i == ctx->jump_dest) {
2399             if (ctx->position_jump) {
2400                 DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD);
2401             } else {
2402                 DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN);
2403             };
2404         };
2405         if (i == ctx->current_table_index) {
2406 //            DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE);
2407             DrawRectangle(i * size * 2, y, size * 2, size, RED);
2408             DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW);
2409         } else {
2410             DrawRectangle(i * size * 2, y, size * 2, size, ORANGE);
2411         };
2412         DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE);
2413     };
2414     y += size;
2415 
2416     jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
2417 
2418     /* DISPLAY CURRENTLY PLAYING PATTERN */
2419 
2420     x += 2 * size;
2421     for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
2422         DrawRectangle(x, y, 8 * size, size, PURPLE);
2423         DrawText("N", x, y, size, YELLOW);
2424         DrawText("I", x + size * 2, y, size, YELLOW);
2425         DrawText("V", x + size * 4, y, size, YELLOW);
2426         DrawText("FX", x + size * 6, y, size, YELLOW);
2427         x += 9 * size;
2428     };
2429     x += size;
2430     for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) {
2431         y += size;
2432         x = 0;
2433         if (j >=0 && j < (cur->num_rows)) {
2434             DrawRectangle(x, y, size * 2, size, BROWN);
2435             DrawText(TextFormat("%02X",j), x, y, size, WHITE);
2436             x += 2 * size;
2437             for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
2438                 if (j==(ctx->current_row)) {
2439                     DrawRectangle(x, y, 8 * size, size, DARKGREEN);
2440                 } else {
2441                     DrawRectangle(x, y, 8 * size, size, DARKGRAY);
2442                 };
2443                 jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i;
2444            //     jar_xm_channel_context_t *ch = ctx->channels + i;
2445                 if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);};
2446                 if (s->instrument > 0) {
2447                     DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE);
2448                     if (s->volume_column == 0) {
2449                         DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW);
2450                     };
2451                 } else {
2452                     DrawText("..", x + size * 2, y, size, GRAY);
2453                     if (s->volume_column == 0) {
2454                         DrawText("..", x + size * 4, y, size, GRAY);
2455                     };
2456                 };
2457                 if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);};
2458                 if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);};
2459                 x += 9 * size;
2460             };
2461         };
2462     };
2463 
2464 }
2465 #endif // RayLib extension
2466 
2467 #endif//end of JAR_XM_IMPLEMENTATION
2468 //-------------------------------------------------------------------------------
2469 
2470 #endif//end of INCLUDE_JAR_XM_H
2471