1 /* SPARC-specific support for 64-bit ELF
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005 Free Software Foundation, Inc.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20 
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28 
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31 
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33    section can represent up to two relocs, we must tell the user to allocate
34    more space.  */
35 
36 static long
elf64_sparc_get_reloc_upper_bound(bfd * abfd ATTRIBUTE_UNUSED,asection * sec)37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39   return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41 
42 static long
elf64_sparc_get_dynamic_reloc_upper_bound(bfd * abfd)43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45   return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47 
48 /* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
49    them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
50    has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
51    for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
52 
53 static bfd_boolean
elf64_sparc_slurp_one_reloc_table(bfd * abfd,asection * asect,Elf_Internal_Shdr * rel_hdr,asymbol ** symbols,bfd_boolean dynamic)54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 				   Elf_Internal_Shdr *rel_hdr,
56 				   asymbol **symbols, bfd_boolean dynamic)
57 {
58   PTR allocated = NULL;
59   bfd_byte *native_relocs;
60   arelent *relent;
61   unsigned int i;
62   int entsize;
63   bfd_size_type count;
64   arelent *relents;
65 
66   allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
67   if (allocated == NULL)
68     goto error_return;
69 
70   if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71       || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72     goto error_return;
73 
74   native_relocs = (bfd_byte *) allocated;
75 
76   relents = asect->relocation + canon_reloc_count (asect);
77 
78   entsize = rel_hdr->sh_entsize;
79   BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80 
81   count = rel_hdr->sh_size / entsize;
82 
83   for (i = 0, relent = relents; i < count;
84        i++, relent++, native_relocs += entsize)
85     {
86       Elf_Internal_Rela rela;
87       unsigned int r_type;
88 
89       bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90 
91       /* The address of an ELF reloc is section relative for an object
92 	 file, and absolute for an executable file or shared library.
93 	 The address of a normal BFD reloc is always section relative,
94 	 and the address of a dynamic reloc is absolute..  */
95       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 	relent->address = rela.r_offset;
97       else
98 	relent->address = rela.r_offset - asect->vma;
99 
100       if (ELF64_R_SYM (rela.r_info) == 0)
101 	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
102       else
103 	{
104 	  asymbol **ps, *s;
105 
106 	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
107 	  s = *ps;
108 
109 	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
110 	  if ((s->flags & BSF_SECTION_SYM) == 0)
111 	    relent->sym_ptr_ptr = ps;
112 	  else
113 	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
114 	}
115 
116       relent->addend = rela.r_addend;
117 
118       r_type = ELF64_R_TYPE_ID (rela.r_info);
119       if (r_type == R_SPARC_OLO10)
120 	{
121 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
122 	  relent[1].address = relent->address;
123 	  relent++;
124 	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
125 	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
126 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
127 	}
128       else
129 	relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
130     }
131 
132   canon_reloc_count (asect) += relent - relents;
133 
134   if (allocated != NULL)
135     free (allocated);
136 
137   return TRUE;
138 
139  error_return:
140   if (allocated != NULL)
141     free (allocated);
142   return FALSE;
143 }
144 
145 /* Read in and swap the external relocs.  */
146 
147 static bfd_boolean
elf64_sparc_slurp_reloc_table(bfd * abfd,asection * asect,asymbol ** symbols,bfd_boolean dynamic)148 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
149 			       asymbol **symbols, bfd_boolean dynamic)
150 {
151   struct bfd_elf_section_data * const d = elf_section_data (asect);
152   Elf_Internal_Shdr *rel_hdr;
153   Elf_Internal_Shdr *rel_hdr2;
154   bfd_size_type amt;
155 
156   if (asect->relocation != NULL)
157     return TRUE;
158 
159   if (! dynamic)
160     {
161       if ((asect->flags & SEC_RELOC) == 0
162 	  || asect->reloc_count == 0)
163 	return TRUE;
164 
165       rel_hdr = &d->rel_hdr;
166       rel_hdr2 = d->rel_hdr2;
167 
168       BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
169 		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
170     }
171   else
172     {
173       /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
174 	 case because relocations against this section may use the
175 	 dynamic symbol table, and in that case bfd_section_from_shdr
176 	 in elf.c does not update the RELOC_COUNT.  */
177       if (asect->size == 0)
178 	return TRUE;
179 
180       rel_hdr = &d->this_hdr;
181       asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
182       rel_hdr2 = NULL;
183     }
184 
185   amt = asect->reloc_count;
186   amt *= 2 * sizeof (arelent);
187   asect->relocation = (arelent *) bfd_alloc (abfd, amt);
188   if (asect->relocation == NULL)
189     return FALSE;
190 
191   /* The elf64_sparc_slurp_one_reloc_table routine increments
192      canon_reloc_count.  */
193   canon_reloc_count (asect) = 0;
194 
195   if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
196 					  dynamic))
197     return FALSE;
198 
199   if (rel_hdr2
200       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
201 					     dynamic))
202     return FALSE;
203 
204   return TRUE;
205 }
206 
207 /* Canonicalize the relocs.  */
208 
209 static long
elf64_sparc_canonicalize_reloc(bfd * abfd,sec_ptr section,arelent ** relptr,asymbol ** symbols)210 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
211 				arelent **relptr, asymbol **symbols)
212 {
213   arelent *tblptr;
214   unsigned int i;
215   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
216 
217   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
218     return -1;
219 
220   tblptr = section->relocation;
221   for (i = 0; i < canon_reloc_count (section); i++)
222     *relptr++ = tblptr++;
223 
224   *relptr = NULL;
225 
226   return canon_reloc_count (section);
227 }
228 
229 
230 /* Canonicalize the dynamic relocation entries.  Note that we return
231    the dynamic relocations as a single block, although they are
232    actually associated with particular sections; the interface, which
233    was designed for SunOS style shared libraries, expects that there
234    is only one set of dynamic relocs.  Any section that was actually
235    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
236    the dynamic symbol table, is considered to be a dynamic reloc
237    section.  */
238 
239 static long
elf64_sparc_canonicalize_dynamic_reloc(bfd * abfd,arelent ** storage,asymbol ** syms)240 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
241 					asymbol **syms)
242 {
243   asection *s;
244   long ret;
245 
246   if (elf_dynsymtab (abfd) == 0)
247     {
248       bfd_set_error (bfd_error_invalid_operation);
249       return -1;
250     }
251 
252   ret = 0;
253   for (s = abfd->sections; s != NULL; s = s->next)
254     {
255       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
256 	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
257 	{
258 	  arelent *p;
259 	  long count, i;
260 
261 	  if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
262 	    return -1;
263 	  count = canon_reloc_count (s);
264 	  p = s->relocation;
265 	  for (i = 0; i < count; i++)
266 	    *storage++ = p++;
267 	  ret += count;
268 	}
269     }
270 
271   *storage = NULL;
272 
273   return ret;
274 }
275 
276 /* Write out the relocs.  */
277 
278 static void
elf64_sparc_write_relocs(bfd * abfd,asection * sec,PTR data)279 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
280 {
281   bfd_boolean *failedp = (bfd_boolean *) data;
282   Elf_Internal_Shdr *rela_hdr;
283   bfd_vma addr_offset;
284   Elf64_External_Rela *outbound_relocas, *src_rela;
285   unsigned int idx, count;
286   asymbol *last_sym = 0;
287   int last_sym_idx = 0;
288 
289   /* If we have already failed, don't do anything.  */
290   if (*failedp)
291     return;
292 
293   if ((sec->flags & SEC_RELOC) == 0)
294     return;
295 
296   /* The linker backend writes the relocs out itself, and sets the
297      reloc_count field to zero to inhibit writing them here.  Also,
298      sometimes the SEC_RELOC flag gets set even when there aren't any
299      relocs.  */
300   if (sec->reloc_count == 0)
301     return;
302 
303   /* We can combine two relocs that refer to the same address
304      into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
305      latter is R_SPARC_13 with no associated symbol.  */
306   count = 0;
307   for (idx = 0; idx < sec->reloc_count; idx++)
308     {
309       bfd_vma addr;
310 
311       ++count;
312 
313       addr = sec->orelocation[idx]->address;
314       if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
315 	  && idx < sec->reloc_count - 1)
316 	{
317 	  arelent *r = sec->orelocation[idx + 1];
318 
319 	  if (r->howto->type == R_SPARC_13
320 	      && r->address == addr
321 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
322 	      && (*r->sym_ptr_ptr)->value == 0)
323 	    ++idx;
324 	}
325     }
326 
327   rela_hdr = &elf_section_data (sec)->rel_hdr;
328 
329   rela_hdr->sh_size = rela_hdr->sh_entsize * count;
330   rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
331   if (rela_hdr->contents == NULL)
332     {
333       *failedp = TRUE;
334       return;
335     }
336 
337   /* Figure out whether the relocations are RELA or REL relocations.  */
338   if (rela_hdr->sh_type != SHT_RELA)
339     abort ();
340 
341   /* The address of an ELF reloc is section relative for an object
342      file, and absolute for an executable file or shared library.
343      The address of a BFD reloc is always section relative.  */
344   addr_offset = 0;
345   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
346     addr_offset = sec->vma;
347 
348   /* orelocation has the data, reloc_count has the count...  */
349   outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
350   src_rela = outbound_relocas;
351 
352   for (idx = 0; idx < sec->reloc_count; idx++)
353     {
354       Elf_Internal_Rela dst_rela;
355       arelent *ptr;
356       asymbol *sym;
357       int n;
358 
359       ptr = sec->orelocation[idx];
360       sym = *ptr->sym_ptr_ptr;
361       if (sym == last_sym)
362 	n = last_sym_idx;
363       else if (bfd_is_abs_section (sym->section) && sym->value == 0)
364 	n = STN_UNDEF;
365       else
366 	{
367 	  last_sym = sym;
368 	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
369 	  if (n < 0)
370 	    {
371 	      *failedp = TRUE;
372 	      return;
373 	    }
374 	  last_sym_idx = n;
375 	}
376 
377       if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
378 	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
379 	  && ! _bfd_elf_validate_reloc (abfd, ptr))
380 	{
381 	  *failedp = TRUE;
382 	  return;
383 	}
384 
385       if (ptr->howto->type == R_SPARC_LO10
386 	  && idx < sec->reloc_count - 1)
387 	{
388 	  arelent *r = sec->orelocation[idx + 1];
389 
390 	  if (r->howto->type == R_SPARC_13
391 	      && r->address == ptr->address
392 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
393 	      && (*r->sym_ptr_ptr)->value == 0)
394 	    {
395 	      idx++;
396 	      dst_rela.r_info
397 		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
398 						      R_SPARC_OLO10));
399 	    }
400 	  else
401 	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
402 	}
403       else
404 	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
405 
406       dst_rela.r_offset = ptr->address + addr_offset;
407       dst_rela.r_addend = ptr->addend;
408 
409       bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
410       ++src_rela;
411     }
412 }
413 
414 /* Hook called by the linker routine which adds symbols from an object
415    file.  We use it for STT_REGISTER symbols.  */
416 
417 static bfd_boolean
elf64_sparc_add_symbol_hook(bfd * abfd,struct bfd_link_info * info,Elf_Internal_Sym * sym,const char ** namep,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp ATTRIBUTE_UNUSED,bfd_vma * valp ATTRIBUTE_UNUSED)418 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
419 			     Elf_Internal_Sym *sym, const char **namep,
420 			     flagword *flagsp ATTRIBUTE_UNUSED,
421 			     asection **secp ATTRIBUTE_UNUSED,
422 			     bfd_vma *valp ATTRIBUTE_UNUSED)
423 {
424   static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
425 
426   if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
427     {
428       int reg;
429       struct _bfd_sparc_elf_app_reg *p;
430 
431       reg = (int)sym->st_value;
432       switch (reg & ~1)
433 	{
434 	case 2: reg -= 2; break;
435 	case 6: reg -= 4; break;
436 	default:
437           (*_bfd_error_handler)
438             (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
439              abfd);
440 	  return FALSE;
441 	}
442 
443       if (info->hash->creator != abfd->xvec
444 	  || (abfd->flags & DYNAMIC) != 0)
445         {
446 	  /* STT_REGISTER only works when linking an elf64_sparc object.
447 	     If STT_REGISTER comes from a dynamic object, don't put it into
448 	     the output bfd.  The dynamic linker will recheck it.  */
449 	  *namep = NULL;
450 	  return TRUE;
451         }
452 
453       p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
454 
455       if (p->name != NULL && strcmp (p->name, *namep))
456 	{
457           (*_bfd_error_handler)
458             (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
459              abfd, p->abfd, (int) sym->st_value,
460              **namep ? *namep : "#scratch",
461              *p->name ? p->name : "#scratch");
462 	  return FALSE;
463 	}
464 
465       if (p->name == NULL)
466 	{
467 	  if (**namep)
468 	    {
469 	      struct elf_link_hash_entry *h;
470 
471 	      h = (struct elf_link_hash_entry *)
472 		bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
473 
474 	      if (h != NULL)
475 		{
476 		  unsigned char type = h->type;
477 
478 		  if (type > STT_FUNC)
479 		    type = 0;
480 		  (*_bfd_error_handler)
481 		    (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
482 		     abfd, p->abfd, *namep, stt_types[type]);
483 		  return FALSE;
484 		}
485 
486 	      p->name = bfd_hash_allocate (&info->hash->table,
487 					   strlen (*namep) + 1);
488 	      if (!p->name)
489 		return FALSE;
490 
491 	      strcpy (p->name, *namep);
492 	    }
493 	  else
494 	    p->name = "";
495 	  p->bind = ELF_ST_BIND (sym->st_info);
496 	  p->abfd = abfd;
497 	  p->shndx = sym->st_shndx;
498 	}
499       else
500 	{
501 	  if (p->bind == STB_WEAK
502 	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
503 	    {
504 	      p->bind = STB_GLOBAL;
505 	      p->abfd = abfd;
506 	    }
507 	}
508       *namep = NULL;
509       return TRUE;
510     }
511   else if (*namep && **namep
512 	   && info->hash->creator == abfd->xvec)
513     {
514       int i;
515       struct _bfd_sparc_elf_app_reg *p;
516 
517       p = _bfd_sparc_elf_hash_table(info)->app_regs;
518       for (i = 0; i < 4; i++, p++)
519 	if (p->name != NULL && ! strcmp (p->name, *namep))
520 	  {
521 	    unsigned char type = ELF_ST_TYPE (sym->st_info);
522 
523 	    if (type > STT_FUNC)
524 	      type = 0;
525 	    (*_bfd_error_handler)
526 	      (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
527 	       abfd, p->abfd, *namep, stt_types[type]);
528 	    return FALSE;
529 	  }
530     }
531   return TRUE;
532 }
533 
534 /* This function takes care of emitting STT_REGISTER symbols
535    which we cannot easily keep in the symbol hash table.  */
536 
537 static bfd_boolean
elf64_sparc_output_arch_syms(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info,PTR finfo,bfd_boolean (* func)(PTR,const char *,Elf_Internal_Sym *,asection *,struct elf_link_hash_entry *))538 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
539 			      struct bfd_link_info *info,
540 			      PTR finfo, bfd_boolean (*func) (PTR, const char *,
541 							      Elf_Internal_Sym *,
542 							      asection *,
543 							      struct elf_link_hash_entry *))
544 {
545   int reg;
546   struct _bfd_sparc_elf_app_reg *app_regs =
547     _bfd_sparc_elf_hash_table(info)->app_regs;
548   Elf_Internal_Sym sym;
549 
550   /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
551      at the end of the dynlocal list, so they came at the end of the local
552      symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
553      to back up symtab->sh_info.  */
554   if (elf_hash_table (info)->dynlocal)
555     {
556       bfd * dynobj = elf_hash_table (info)->dynobj;
557       asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
558       struct elf_link_local_dynamic_entry *e;
559 
560       for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
561 	if (e->input_indx == -1)
562 	  break;
563       if (e)
564 	{
565 	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
566 	    = e->dynindx;
567 	}
568     }
569 
570   if (info->strip == strip_all)
571     return TRUE;
572 
573   for (reg = 0; reg < 4; reg++)
574     if (app_regs [reg].name != NULL)
575       {
576 	if (info->strip == strip_some
577 	    && bfd_hash_lookup (info->keep_hash,
578 				app_regs [reg].name,
579 				FALSE, FALSE) == NULL)
580 	  continue;
581 
582 	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
583 	sym.st_size = 0;
584 	sym.st_other = 0;
585 	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
586 	sym.st_shndx = app_regs [reg].shndx;
587 	if (! (*func) (finfo, app_regs [reg].name, &sym,
588 		       sym.st_shndx == SHN_ABS
589 			 ? bfd_abs_section_ptr : bfd_und_section_ptr,
590 		       NULL))
591 	  return FALSE;
592       }
593 
594   return TRUE;
595 }
596 
597 static int
elf64_sparc_get_symbol_type(Elf_Internal_Sym * elf_sym,int type)598 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
599 {
600   if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
601     return STT_REGISTER;
602   else
603     return type;
604 }
605 
606 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
607    even in SHN_UNDEF section.  */
608 
609 static void
elf64_sparc_symbol_processing(bfd * abfd ATTRIBUTE_UNUSED,asymbol * asym)610 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
611 {
612   elf_symbol_type *elfsym;
613 
614   elfsym = (elf_symbol_type *) asym;
615   if (elfsym->internal_elf_sym.st_info
616       == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
617     {
618       asym->flags |= BSF_GLOBAL;
619     }
620 }
621 
622 
623 /* Functions for dealing with the e_flags field.  */
624 
625 /* Merge backend specific data from an object file to the output
626    object file when linking.  */
627 
628 static bfd_boolean
elf64_sparc_merge_private_bfd_data(bfd * ibfd,bfd * obfd)629 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
630 {
631   bfd_boolean error;
632   flagword new_flags, old_flags;
633   int new_mm, old_mm;
634 
635   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
636       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
637     return TRUE;
638 
639   new_flags = elf_elfheader (ibfd)->e_flags;
640   old_flags = elf_elfheader (obfd)->e_flags;
641 
642   if (!elf_flags_init (obfd))   /* First call, no flags set */
643     {
644       elf_flags_init (obfd) = TRUE;
645       elf_elfheader (obfd)->e_flags = new_flags;
646     }
647 
648   else if (new_flags == old_flags)      /* Compatible flags are ok */
649     ;
650 
651   else                                  /* Incompatible flags */
652     {
653       error = FALSE;
654 
655 #define EF_SPARC_ISA_EXTENSIONS \
656   (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
657 
658       if ((ibfd->flags & DYNAMIC) != 0)
659 	{
660 	  /* We don't want dynamic objects memory ordering and
661 	     architecture to have any role. That's what dynamic linker
662 	     should do.  */
663 	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
664 	  new_flags |= (old_flags
665 			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
666 	}
667       else
668 	{
669 	  /* Choose the highest architecture requirements.  */
670 	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
671 	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
672 	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
673 	      && (old_flags & EF_SPARC_HAL_R1))
674 	    {
675 	      error = TRUE;
676 	      (*_bfd_error_handler)
677 		(_("%B: linking UltraSPARC specific with HAL specific code"),
678 		 ibfd);
679 	    }
680 	  /* Choose the most restrictive memory ordering.  */
681 	  old_mm = (old_flags & EF_SPARCV9_MM);
682 	  new_mm = (new_flags & EF_SPARCV9_MM);
683 	  old_flags &= ~EF_SPARCV9_MM;
684 	  new_flags &= ~EF_SPARCV9_MM;
685 	  if (new_mm < old_mm)
686 	    old_mm = new_mm;
687 	  old_flags |= old_mm;
688 	  new_flags |= old_mm;
689 	}
690 
691       /* Warn about any other mismatches */
692       if (new_flags != old_flags)
693         {
694           error = TRUE;
695           (*_bfd_error_handler)
696             (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
697              ibfd, (long) new_flags, (long) old_flags);
698         }
699 
700       elf_elfheader (obfd)->e_flags = old_flags;
701 
702       if (error)
703         {
704           bfd_set_error (bfd_error_bad_value);
705           return FALSE;
706         }
707     }
708   return TRUE;
709 }
710 
711 /* MARCO: Set the correct entry size for the .stab section.  */
712 
713 static bfd_boolean
elf64_sparc_fake_sections(bfd * abfd ATTRIBUTE_UNUSED,Elf_Internal_Shdr * hdr ATTRIBUTE_UNUSED,asection * sec)714 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
715 			   Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
716 			   asection *sec)
717 {
718   const char *name;
719 
720   name = bfd_get_section_name (abfd, sec);
721 
722   if (strcmp (name, ".stab") == 0)
723     {
724       /* Even in the 64bit case the stab entries are only 12 bytes long.  */
725       elf_section_data (sec)->this_hdr.sh_entsize = 12;
726     }
727 
728   return TRUE;
729 }
730 
731 /* Print a STT_REGISTER symbol to file FILE.  */
732 
733 static const char *
elf64_sparc_print_symbol_all(bfd * abfd ATTRIBUTE_UNUSED,PTR filep,asymbol * symbol)734 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
735 			      asymbol *symbol)
736 {
737   FILE *file = (FILE *) filep;
738   int reg, type;
739 
740   if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
741       != STT_REGISTER)
742     return NULL;
743 
744   reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
745   type = symbol->flags;
746   fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
747 		 ((type & BSF_LOCAL)
748 		  ? (type & BSF_GLOBAL) ? '!' : 'l'
749 	          : (type & BSF_GLOBAL) ? 'g' : ' '),
750 	         (type & BSF_WEAK) ? 'w' : ' ');
751   if (symbol->name == NULL || symbol->name [0] == '\0')
752     return "#scratch";
753   else
754     return symbol->name;
755 }
756 
757 static enum elf_reloc_type_class
elf64_sparc_reloc_type_class(const Elf_Internal_Rela * rela)758 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
759 {
760   switch ((int) ELF64_R_TYPE (rela->r_info))
761     {
762     case R_SPARC_RELATIVE:
763       return reloc_class_relative;
764     case R_SPARC_JMP_SLOT:
765       return reloc_class_plt;
766     case R_SPARC_COPY:
767       return reloc_class_copy;
768     default:
769       return reloc_class_normal;
770     }
771 }
772 
773 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
774    standard ELF, because R_SPARC_OLO10 has secondary addend in
775    ELF64_R_TYPE_DATA field.  This structure is used to redirect the
776    relocation handling routines.  */
777 
778 const struct elf_size_info elf64_sparc_size_info =
779 {
780   sizeof (Elf64_External_Ehdr),
781   sizeof (Elf64_External_Phdr),
782   sizeof (Elf64_External_Shdr),
783   sizeof (Elf64_External_Rel),
784   sizeof (Elf64_External_Rela),
785   sizeof (Elf64_External_Sym),
786   sizeof (Elf64_External_Dyn),
787   sizeof (Elf_External_Note),
788   4,		/* hash-table entry size.  */
789   /* Internal relocations per external relocations.
790      For link purposes we use just 1 internal per
791      1 external, for assembly and slurp symbol table
792      we use 2.  */
793   1,
794   64,		/* arch_size.  */
795   3,		/* log_file_align.  */
796   ELFCLASS64,
797   EV_CURRENT,
798   bfd_elf64_write_out_phdrs,
799   bfd_elf64_write_shdrs_and_ehdr,
800   elf64_sparc_write_relocs,
801   bfd_elf64_swap_symbol_in,
802   bfd_elf64_swap_symbol_out,
803   elf64_sparc_slurp_reloc_table,
804   bfd_elf64_slurp_symbol_table,
805   bfd_elf64_swap_dyn_in,
806   bfd_elf64_swap_dyn_out,
807   bfd_elf64_swap_reloc_in,
808   bfd_elf64_swap_reloc_out,
809   bfd_elf64_swap_reloca_in,
810   bfd_elf64_swap_reloca_out
811 };
812 
813 #define TARGET_BIG_SYM	bfd_elf64_sparc_vec
814 #define TARGET_BIG_NAME	"elf64-sparc"
815 #define ELF_ARCH	bfd_arch_sparc
816 #define ELF_MAXPAGESIZE 0x100000
817 
818 /* This is the official ABI value.  */
819 #define ELF_MACHINE_CODE EM_SPARCV9
820 
821 /* This is the value that we used before the ABI was released.  */
822 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
823 
824 #define elf_backend_reloc_type_class \
825   elf64_sparc_reloc_type_class
826 #define bfd_elf64_get_reloc_upper_bound \
827   elf64_sparc_get_reloc_upper_bound
828 #define bfd_elf64_get_dynamic_reloc_upper_bound \
829   elf64_sparc_get_dynamic_reloc_upper_bound
830 #define bfd_elf64_canonicalize_reloc \
831   elf64_sparc_canonicalize_reloc
832 #define bfd_elf64_canonicalize_dynamic_reloc \
833   elf64_sparc_canonicalize_dynamic_reloc
834 #define elf_backend_add_symbol_hook \
835   elf64_sparc_add_symbol_hook
836 #define elf_backend_get_symbol_type \
837   elf64_sparc_get_symbol_type
838 #define elf_backend_symbol_processing \
839   elf64_sparc_symbol_processing
840 #define elf_backend_print_symbol_all \
841   elf64_sparc_print_symbol_all
842 #define elf_backend_output_arch_syms \
843   elf64_sparc_output_arch_syms
844 #define bfd_elf64_bfd_merge_private_bfd_data \
845   elf64_sparc_merge_private_bfd_data
846 #define elf_backend_fake_sections \
847   elf64_sparc_fake_sections
848 #define elf_backend_size_info \
849   elf64_sparc_size_info
850 
851 #define elf_backend_plt_sym_val	\
852   _bfd_sparc_elf_plt_sym_val
853 #define bfd_elf64_bfd_link_hash_table_create \
854   _bfd_sparc_elf_link_hash_table_create
855 #define elf_info_to_howto \
856   _bfd_sparc_elf_info_to_howto
857 #define elf_backend_copy_indirect_symbol \
858   _bfd_sparc_elf_copy_indirect_symbol
859 #define bfd_elf64_bfd_reloc_type_lookup \
860   _bfd_sparc_elf_reloc_type_lookup
861 #define bfd_elf64_bfd_relax_section \
862   _bfd_sparc_elf_relax_section
863 #define bfd_elf64_new_section_hook \
864   _bfd_sparc_elf_new_section_hook
865 
866 #define elf_backend_create_dynamic_sections \
867   _bfd_sparc_elf_create_dynamic_sections
868 #define elf_backend_check_relocs \
869   _bfd_sparc_elf_check_relocs
870 #define elf_backend_adjust_dynamic_symbol \
871   _bfd_sparc_elf_adjust_dynamic_symbol
872 #define elf_backend_omit_section_dynsym \
873   _bfd_sparc_elf_omit_section_dynsym
874 #define elf_backend_size_dynamic_sections \
875   _bfd_sparc_elf_size_dynamic_sections
876 #define elf_backend_relocate_section \
877   _bfd_sparc_elf_relocate_section
878 #define elf_backend_finish_dynamic_symbol \
879   _bfd_sparc_elf_finish_dynamic_symbol
880 #define elf_backend_finish_dynamic_sections \
881   _bfd_sparc_elf_finish_dynamic_sections
882 
883 #define bfd_elf64_mkobject \
884   _bfd_sparc_elf_mkobject
885 #define elf_backend_object_p \
886   _bfd_sparc_elf_object_p
887 #define elf_backend_gc_mark_hook \
888   _bfd_sparc_elf_gc_mark_hook
889 #define elf_backend_gc_sweep_hook \
890   _bfd_sparc_elf_gc_sweep_hook
891 
892 #define elf_backend_can_gc_sections 1
893 #define elf_backend_can_refcount 1
894 #define elf_backend_want_got_plt 0
895 #define elf_backend_plt_readonly 0
896 #define elf_backend_want_plt_sym 1
897 #define elf_backend_got_header_size 8
898 #define elf_backend_rela_normal 1
899 
900 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
901 #define elf_backend_plt_alignment 8
902 
903 #include "elf64-target.h"
904