1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static CharUnits
ComputeNonVirtualBaseClassOffset(ASTContext & Context,const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)32 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
33                                  const CXXRecordDecl *DerivedClass,
34                                  CastExpr::path_const_iterator Start,
35                                  CastExpr::path_const_iterator End) {
36   CharUnits Offset = CharUnits::Zero();
37 
38   const CXXRecordDecl *RD = DerivedClass;
39 
40   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41     const CXXBaseSpecifier *Base = *I;
42     assert(!Base->isVirtual() && "Should not see virtual bases here!");
43 
44     // Get the layout.
45     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46 
47     const CXXRecordDecl *BaseDecl =
48       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49 
50     // Add the offset.
51     Offset += Layout.getBaseClassOffset(BaseDecl);
52 
53     RD = BaseDecl;
54   }
55 
56   return Offset;
57 }
58 
59 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61                                    CastExpr::path_const_iterator PathBegin,
62                                    CastExpr::path_const_iterator PathEnd) {
63   assert(PathBegin != PathEnd && "Base path should not be empty!");
64 
65   CharUnits Offset =
66     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
67                                      PathBegin, PathEnd);
68   if (Offset.isZero())
69     return nullptr;
70 
71   llvm::Type *PtrDiffTy =
72   Types.ConvertType(getContext().getPointerDiffType());
73 
74   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
75 }
76 
77 /// Gets the address of a direct base class within a complete object.
78 /// This should only be used for (1) non-virtual bases or (2) virtual bases
79 /// when the type is known to be complete (e.g. in complete destructors).
80 ///
81 /// The object pointed to by 'This' is assumed to be non-null.
82 llvm::Value *
GetAddressOfDirectBaseInCompleteClass(llvm::Value * This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
84                                                    const CXXRecordDecl *Derived,
85                                                    const CXXRecordDecl *Base,
86                                                    bool BaseIsVirtual) {
87   // 'this' must be a pointer (in some address space) to Derived.
88   assert(This->getType()->isPointerTy() &&
89          cast<llvm::PointerType>(This->getType())->getElementType()
90            == ConvertType(Derived));
91 
92   // Compute the offset of the virtual base.
93   CharUnits Offset;
94   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
95   if (BaseIsVirtual)
96     Offset = Layout.getVBaseClassOffset(Base);
97   else
98     Offset = Layout.getBaseClassOffset(Base);
99 
100   // Shift and cast down to the base type.
101   // TODO: for complete types, this should be possible with a GEP.
102   llvm::Value *V = This;
103   if (Offset.isPositive()) {
104     V = Builder.CreateBitCast(V, Int8PtrTy);
105     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
106   }
107   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
108 
109   return V;
110 }
111 
112 static llvm::Value *
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,llvm::Value * ptr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset)113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
114                                 CharUnits nonVirtualOffset,
115                                 llvm::Value *virtualOffset) {
116   // Assert that we have something to do.
117   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
118 
119   // Compute the offset from the static and dynamic components.
120   llvm::Value *baseOffset;
121   if (!nonVirtualOffset.isZero()) {
122     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
123                                         nonVirtualOffset.getQuantity());
124     if (virtualOffset) {
125       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
126     }
127   } else {
128     baseOffset = virtualOffset;
129   }
130 
131   // Apply the base offset.
132   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
133   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
134   return ptr;
135 }
136 
GetAddressOfBaseClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue,SourceLocation Loc)137 llvm::Value *CodeGenFunction::GetAddressOfBaseClass(
138     llvm::Value *Value, const CXXRecordDecl *Derived,
139     CastExpr::path_const_iterator PathBegin,
140     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
141     SourceLocation Loc) {
142   assert(PathBegin != PathEnd && "Base path should not be empty!");
143 
144   CastExpr::path_const_iterator Start = PathBegin;
145   const CXXRecordDecl *VBase = nullptr;
146 
147   // Sema has done some convenient canonicalization here: if the
148   // access path involved any virtual steps, the conversion path will
149   // *start* with a step down to the correct virtual base subobject,
150   // and hence will not require any further steps.
151   if ((*Start)->isVirtual()) {
152     VBase =
153       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
154     ++Start;
155   }
156 
157   // Compute the static offset of the ultimate destination within its
158   // allocating subobject (the virtual base, if there is one, or else
159   // the "complete" object that we see).
160   CharUnits NonVirtualOffset =
161     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
162                                      Start, PathEnd);
163 
164   // If there's a virtual step, we can sometimes "devirtualize" it.
165   // For now, that's limited to when the derived type is final.
166   // TODO: "devirtualize" this for accesses to known-complete objects.
167   if (VBase && Derived->hasAttr<FinalAttr>()) {
168     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
169     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
170     NonVirtualOffset += vBaseOffset;
171     VBase = nullptr; // we no longer have a virtual step
172   }
173 
174   // Get the base pointer type.
175   llvm::Type *BasePtrTy =
176     ConvertType((PathEnd[-1])->getType())->getPointerTo();
177 
178   QualType DerivedTy = getContext().getRecordType(Derived);
179   CharUnits DerivedAlign = getContext().getTypeAlignInChars(DerivedTy);
180 
181   // If the static offset is zero and we don't have a virtual step,
182   // just do a bitcast; null checks are unnecessary.
183   if (NonVirtualOffset.isZero() && !VBase) {
184     if (sanitizePerformTypeCheck()) {
185       EmitTypeCheck(TCK_Upcast, Loc, Value, DerivedTy, DerivedAlign,
186                     !NullCheckValue);
187     }
188     return Builder.CreateBitCast(Value, BasePtrTy);
189   }
190 
191   llvm::BasicBlock *origBB = nullptr;
192   llvm::BasicBlock *endBB = nullptr;
193 
194   // Skip over the offset (and the vtable load) if we're supposed to
195   // null-check the pointer.
196   if (NullCheckValue) {
197     origBB = Builder.GetInsertBlock();
198     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
199     endBB = createBasicBlock("cast.end");
200 
201     llvm::Value *isNull = Builder.CreateIsNull(Value);
202     Builder.CreateCondBr(isNull, endBB, notNullBB);
203     EmitBlock(notNullBB);
204   }
205 
206   if (sanitizePerformTypeCheck()) {
207     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, Value,
208                   DerivedTy, DerivedAlign, true);
209   }
210 
211   // Compute the virtual offset.
212   llvm::Value *VirtualOffset = nullptr;
213   if (VBase) {
214     VirtualOffset =
215       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
216   }
217 
218   // Apply both offsets.
219   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
220                                           NonVirtualOffset,
221                                           VirtualOffset);
222 
223   // Cast to the destination type.
224   Value = Builder.CreateBitCast(Value, BasePtrTy);
225 
226   // Build a phi if we needed a null check.
227   if (NullCheckValue) {
228     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
229     Builder.CreateBr(endBB);
230     EmitBlock(endBB);
231 
232     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
233     PHI->addIncoming(Value, notNullBB);
234     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
235     Value = PHI;
236   }
237 
238   return Value;
239 }
240 
241 llvm::Value *
GetAddressOfDerivedClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)242 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
243                                           const CXXRecordDecl *Derived,
244                                         CastExpr::path_const_iterator PathBegin,
245                                           CastExpr::path_const_iterator PathEnd,
246                                           bool NullCheckValue) {
247   assert(PathBegin != PathEnd && "Base path should not be empty!");
248 
249   QualType DerivedTy =
250     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
251   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
252 
253   llvm::Value *NonVirtualOffset =
254     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
255 
256   if (!NonVirtualOffset) {
257     // No offset, we can just cast back.
258     return Builder.CreateBitCast(Value, DerivedPtrTy);
259   }
260 
261   llvm::BasicBlock *CastNull = nullptr;
262   llvm::BasicBlock *CastNotNull = nullptr;
263   llvm::BasicBlock *CastEnd = nullptr;
264 
265   if (NullCheckValue) {
266     CastNull = createBasicBlock("cast.null");
267     CastNotNull = createBasicBlock("cast.notnull");
268     CastEnd = createBasicBlock("cast.end");
269 
270     llvm::Value *IsNull = Builder.CreateIsNull(Value);
271     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
272     EmitBlock(CastNotNull);
273   }
274 
275   // Apply the offset.
276   Value = Builder.CreateBitCast(Value, Int8PtrTy);
277   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
278                             "sub.ptr");
279 
280   // Just cast.
281   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
282 
283   if (NullCheckValue) {
284     Builder.CreateBr(CastEnd);
285     EmitBlock(CastNull);
286     Builder.CreateBr(CastEnd);
287     EmitBlock(CastEnd);
288 
289     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
290     PHI->addIncoming(Value, CastNotNull);
291     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
292                      CastNull);
293     Value = PHI;
294   }
295 
296   return Value;
297 }
298 
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)299 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
300                                               bool ForVirtualBase,
301                                               bool Delegating) {
302   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
303     // This constructor/destructor does not need a VTT parameter.
304     return nullptr;
305   }
306 
307   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
308   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
309 
310   llvm::Value *VTT;
311 
312   uint64_t SubVTTIndex;
313 
314   if (Delegating) {
315     // If this is a delegating constructor call, just load the VTT.
316     return LoadCXXVTT();
317   } else if (RD == Base) {
318     // If the record matches the base, this is the complete ctor/dtor
319     // variant calling the base variant in a class with virtual bases.
320     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
321            "doing no-op VTT offset in base dtor/ctor?");
322     assert(!ForVirtualBase && "Can't have same class as virtual base!");
323     SubVTTIndex = 0;
324   } else {
325     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
326     CharUnits BaseOffset = ForVirtualBase ?
327       Layout.getVBaseClassOffset(Base) :
328       Layout.getBaseClassOffset(Base);
329 
330     SubVTTIndex =
331       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
332     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
333   }
334 
335   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
336     // A VTT parameter was passed to the constructor, use it.
337     VTT = LoadCXXVTT();
338     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
339   } else {
340     // We're the complete constructor, so get the VTT by name.
341     VTT = CGM.getVTables().GetAddrOfVTT(RD);
342     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
343   }
344 
345   return VTT;
346 }
347 
348 namespace {
349   /// Call the destructor for a direct base class.
350   struct CallBaseDtor : EHScopeStack::Cleanup {
351     const CXXRecordDecl *BaseClass;
352     bool BaseIsVirtual;
CallBaseDtor__anon05f423a90111::CallBaseDtor353     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
354       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
355 
Emit__anon05f423a90111::CallBaseDtor356     void Emit(CodeGenFunction &CGF, Flags flags) override {
357       const CXXRecordDecl *DerivedClass =
358         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
359 
360       const CXXDestructorDecl *D = BaseClass->getDestructor();
361       llvm::Value *Addr =
362         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
363                                                   DerivedClass, BaseClass,
364                                                   BaseIsVirtual);
365       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
366                                 /*Delegating=*/false, Addr);
367     }
368   };
369 
370   /// A visitor which checks whether an initializer uses 'this' in a
371   /// way which requires the vtable to be properly set.
372   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
373     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
374 
375     bool UsesThis;
376 
DynamicThisUseChecker__anon05f423a90111::DynamicThisUseChecker377     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
378 
379     // Black-list all explicit and implicit references to 'this'.
380     //
381     // Do we need to worry about external references to 'this' derived
382     // from arbitrary code?  If so, then anything which runs arbitrary
383     // external code might potentially access the vtable.
VisitCXXThisExpr__anon05f423a90111::DynamicThisUseChecker384     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
385   };
386 }
387 
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)388 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
389   DynamicThisUseChecker Checker(C);
390   Checker.Visit(const_cast<Expr*>(Init));
391   return Checker.UsesThis;
392 }
393 
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit,CXXCtorType CtorType)394 static void EmitBaseInitializer(CodeGenFunction &CGF,
395                                 const CXXRecordDecl *ClassDecl,
396                                 CXXCtorInitializer *BaseInit,
397                                 CXXCtorType CtorType) {
398   assert(BaseInit->isBaseInitializer() &&
399          "Must have base initializer!");
400 
401   llvm::Value *ThisPtr = CGF.LoadCXXThis();
402 
403   const Type *BaseType = BaseInit->getBaseClass();
404   CXXRecordDecl *BaseClassDecl =
405     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
406 
407   bool isBaseVirtual = BaseInit->isBaseVirtual();
408 
409   // The base constructor doesn't construct virtual bases.
410   if (CtorType == Ctor_Base && isBaseVirtual)
411     return;
412 
413   // If the initializer for the base (other than the constructor
414   // itself) accesses 'this' in any way, we need to initialize the
415   // vtables.
416   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
417     CGF.InitializeVTablePointers(ClassDecl);
418 
419   // We can pretend to be a complete class because it only matters for
420   // virtual bases, and we only do virtual bases for complete ctors.
421   llvm::Value *V =
422     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
423                                               BaseClassDecl,
424                                               isBaseVirtual);
425   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
426   AggValueSlot AggSlot =
427     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
428                           AggValueSlot::IsDestructed,
429                           AggValueSlot::DoesNotNeedGCBarriers,
430                           AggValueSlot::IsNotAliased);
431 
432   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
433 
434   if (CGF.CGM.getLangOpts().Exceptions &&
435       !BaseClassDecl->hasTrivialDestructor())
436     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
437                                           isBaseVirtual);
438 }
439 
EmitAggMemberInitializer(CodeGenFunction & CGF,LValue LHS,Expr * Init,llvm::Value * ArrayIndexVar,QualType T,ArrayRef<VarDecl * > ArrayIndexes,unsigned Index)440 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
441                                      LValue LHS,
442                                      Expr *Init,
443                                      llvm::Value *ArrayIndexVar,
444                                      QualType T,
445                                      ArrayRef<VarDecl *> ArrayIndexes,
446                                      unsigned Index) {
447   if (Index == ArrayIndexes.size()) {
448     LValue LV = LHS;
449 
450     if (ArrayIndexVar) {
451       // If we have an array index variable, load it and use it as an offset.
452       // Then, increment the value.
453       llvm::Value *Dest = LHS.getAddress();
454       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
455       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
456       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
457       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
458       CGF.Builder.CreateStore(Next, ArrayIndexVar);
459 
460       // Update the LValue.
461       LV.setAddress(Dest);
462       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
463       LV.setAlignment(std::min(Align, LV.getAlignment()));
464     }
465 
466     switch (CGF.getEvaluationKind(T)) {
467     case TEK_Scalar:
468       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
469       break;
470     case TEK_Complex:
471       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
472       break;
473     case TEK_Aggregate: {
474       AggValueSlot Slot =
475         AggValueSlot::forLValue(LV,
476                                 AggValueSlot::IsDestructed,
477                                 AggValueSlot::DoesNotNeedGCBarriers,
478                                 AggValueSlot::IsNotAliased);
479 
480       CGF.EmitAggExpr(Init, Slot);
481       break;
482     }
483     }
484 
485     return;
486   }
487 
488   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
489   assert(Array && "Array initialization without the array type?");
490   llvm::Value *IndexVar
491     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
492   assert(IndexVar && "Array index variable not loaded");
493 
494   // Initialize this index variable to zero.
495   llvm::Value* Zero
496     = llvm::Constant::getNullValue(
497                               CGF.ConvertType(CGF.getContext().getSizeType()));
498   CGF.Builder.CreateStore(Zero, IndexVar);
499 
500   // Start the loop with a block that tests the condition.
501   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
502   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
503 
504   CGF.EmitBlock(CondBlock);
505 
506   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
507   // Generate: if (loop-index < number-of-elements) fall to the loop body,
508   // otherwise, go to the block after the for-loop.
509   uint64_t NumElements = Array->getSize().getZExtValue();
510   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
511   llvm::Value *NumElementsPtr =
512     llvm::ConstantInt::get(Counter->getType(), NumElements);
513   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
514                                                   "isless");
515 
516   // If the condition is true, execute the body.
517   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
518 
519   CGF.EmitBlock(ForBody);
520   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
521 
522   // Inside the loop body recurse to emit the inner loop or, eventually, the
523   // constructor call.
524   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
525                            Array->getElementType(), ArrayIndexes, Index + 1);
526 
527   CGF.EmitBlock(ContinueBlock);
528 
529   // Emit the increment of the loop counter.
530   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
531   Counter = CGF.Builder.CreateLoad(IndexVar);
532   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
533   CGF.Builder.CreateStore(NextVal, IndexVar);
534 
535   // Finally, branch back up to the condition for the next iteration.
536   CGF.EmitBranch(CondBlock);
537 
538   // Emit the fall-through block.
539   CGF.EmitBlock(AfterFor, true);
540 }
541 
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)542 static void EmitMemberInitializer(CodeGenFunction &CGF,
543                                   const CXXRecordDecl *ClassDecl,
544                                   CXXCtorInitializer *MemberInit,
545                                   const CXXConstructorDecl *Constructor,
546                                   FunctionArgList &Args) {
547   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
548   assert(MemberInit->isAnyMemberInitializer() &&
549          "Must have member initializer!");
550   assert(MemberInit->getInit() && "Must have initializer!");
551 
552   // non-static data member initializers.
553   FieldDecl *Field = MemberInit->getAnyMember();
554   QualType FieldType = Field->getType();
555 
556   llvm::Value *ThisPtr = CGF.LoadCXXThis();
557   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
558   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
559 
560   if (MemberInit->isIndirectMemberInitializer()) {
561     // If we are initializing an anonymous union field, drill down to
562     // the field.
563     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
564     for (const auto *I : IndirectField->chain())
565       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
566     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
567   } else {
568     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
569   }
570 
571   // Special case: if we are in a copy or move constructor, and we are copying
572   // an array of PODs or classes with trivial copy constructors, ignore the
573   // AST and perform the copy we know is equivalent.
574   // FIXME: This is hacky at best... if we had a bit more explicit information
575   // in the AST, we could generalize it more easily.
576   const ConstantArrayType *Array
577     = CGF.getContext().getAsConstantArrayType(FieldType);
578   if (Array && Constructor->isDefaulted() &&
579       Constructor->isCopyOrMoveConstructor()) {
580     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
581     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
582     if (BaseElementTy.isPODType(CGF.getContext()) ||
583         (CE && CE->getConstructor()->isTrivial())) {
584       unsigned SrcArgIndex =
585           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
586       llvm::Value *SrcPtr
587         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
588       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
589       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
590 
591       // Copy the aggregate.
592       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
593                             LHS.isVolatileQualified());
594       return;
595     }
596   }
597 
598   ArrayRef<VarDecl *> ArrayIndexes;
599   if (MemberInit->getNumArrayIndices())
600     ArrayIndexes = MemberInit->getArrayIndexes();
601   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
602 }
603 
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init,ArrayRef<VarDecl * > ArrayIndexes)604 void CodeGenFunction::EmitInitializerForField(
605     FieldDecl *Field, LValue LHS, Expr *Init,
606     ArrayRef<VarDecl *> ArrayIndexes) {
607   QualType FieldType = Field->getType();
608   switch (getEvaluationKind(FieldType)) {
609   case TEK_Scalar:
610     if (LHS.isSimple()) {
611       EmitExprAsInit(Init, Field, LHS, false);
612     } else {
613       RValue RHS = RValue::get(EmitScalarExpr(Init));
614       EmitStoreThroughLValue(RHS, LHS);
615     }
616     break;
617   case TEK_Complex:
618     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
619     break;
620   case TEK_Aggregate: {
621     llvm::Value *ArrayIndexVar = nullptr;
622     if (ArrayIndexes.size()) {
623       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
624 
625       // The LHS is a pointer to the first object we'll be constructing, as
626       // a flat array.
627       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
628       llvm::Type *BasePtr = ConvertType(BaseElementTy);
629       BasePtr = llvm::PointerType::getUnqual(BasePtr);
630       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
631                                                        BasePtr);
632       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
633 
634       // Create an array index that will be used to walk over all of the
635       // objects we're constructing.
636       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
637       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
638       Builder.CreateStore(Zero, ArrayIndexVar);
639 
640 
641       // Emit the block variables for the array indices, if any.
642       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
643         EmitAutoVarDecl(*ArrayIndexes[I]);
644     }
645 
646     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
647                              ArrayIndexes, 0);
648   }
649   }
650 
651   // Ensure that we destroy this object if an exception is thrown
652   // later in the constructor.
653   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
654   if (needsEHCleanup(dtorKind))
655     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
656 }
657 
658 /// Checks whether the given constructor is a valid subject for the
659 /// complete-to-base constructor delegation optimization, i.e.
660 /// emitting the complete constructor as a simple call to the base
661 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)662 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
663 
664   // Currently we disable the optimization for classes with virtual
665   // bases because (1) the addresses of parameter variables need to be
666   // consistent across all initializers but (2) the delegate function
667   // call necessarily creates a second copy of the parameter variable.
668   //
669   // The limiting example (purely theoretical AFAIK):
670   //   struct A { A(int &c) { c++; } };
671   //   struct B : virtual A {
672   //     B(int count) : A(count) { printf("%d\n", count); }
673   //   };
674   // ...although even this example could in principle be emitted as a
675   // delegation since the address of the parameter doesn't escape.
676   if (Ctor->getParent()->getNumVBases()) {
677     // TODO: white-list trivial vbase initializers.  This case wouldn't
678     // be subject to the restrictions below.
679 
680     // TODO: white-list cases where:
681     //  - there are no non-reference parameters to the constructor
682     //  - the initializers don't access any non-reference parameters
683     //  - the initializers don't take the address of non-reference
684     //    parameters
685     //  - etc.
686     // If we ever add any of the above cases, remember that:
687     //  - function-try-blocks will always blacklist this optimization
688     //  - we need to perform the constructor prologue and cleanup in
689     //    EmitConstructorBody.
690 
691     return false;
692   }
693 
694   // We also disable the optimization for variadic functions because
695   // it's impossible to "re-pass" varargs.
696   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
697     return false;
698 
699   // FIXME: Decide if we can do a delegation of a delegating constructor.
700   if (Ctor->isDelegatingConstructor())
701     return false;
702 
703   return true;
704 }
705 
706 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
707 // to poison the extra field paddings inserted under
708 // -fsanitize-address-field-padding=1|2.
EmitAsanPrologueOrEpilogue(bool Prologue)709 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
710   ASTContext &Context = getContext();
711   const CXXRecordDecl *ClassDecl =
712       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
713                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
714   if (!ClassDecl->mayInsertExtraPadding()) return;
715 
716   struct SizeAndOffset {
717     uint64_t Size;
718     uint64_t Offset;
719   };
720 
721   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
722   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
723 
724   // Populate sizes and offsets of fields.
725   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
726   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
727     SSV[i].Offset =
728         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
729 
730   size_t NumFields = 0;
731   for (const auto *Field : ClassDecl->fields()) {
732     const FieldDecl *D = Field;
733     std::pair<CharUnits, CharUnits> FieldInfo =
734         Context.getTypeInfoInChars(D->getType());
735     CharUnits FieldSize = FieldInfo.first;
736     assert(NumFields < SSV.size());
737     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
738     NumFields++;
739   }
740   assert(NumFields == SSV.size());
741   if (SSV.size() <= 1) return;
742 
743   // We will insert calls to __asan_* run-time functions.
744   // LLVM AddressSanitizer pass may decide to inline them later.
745   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
746   llvm::FunctionType *FTy =
747       llvm::FunctionType::get(CGM.VoidTy, Args, false);
748   llvm::Constant *F = CGM.CreateRuntimeFunction(
749       FTy, Prologue ? "__asan_poison_intra_object_redzone"
750                     : "__asan_unpoison_intra_object_redzone");
751 
752   llvm::Value *ThisPtr = LoadCXXThis();
753   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
754   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
755   // For each field check if it has sufficient padding,
756   // if so (un)poison it with a call.
757   for (size_t i = 0; i < SSV.size(); i++) {
758     uint64_t AsanAlignment = 8;
759     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
760     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
761     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
762     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
763         (NextField % AsanAlignment) != 0)
764       continue;
765     Builder.CreateCall2(
766         F, Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
767         Builder.getIntN(PtrSize, PoisonSize));
768   }
769 }
770 
771 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)772 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
773   EmitAsanPrologueOrEpilogue(true);
774   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
775   CXXCtorType CtorType = CurGD.getCtorType();
776 
777   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
778           CtorType == Ctor_Complete) &&
779          "can only generate complete ctor for this ABI");
780 
781   // Before we go any further, try the complete->base constructor
782   // delegation optimization.
783   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
784       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
785     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
786     return;
787   }
788 
789   const FunctionDecl *Definition = 0;
790   Stmt *Body = Ctor->getBody(Definition);
791   assert(Definition == Ctor && "emitting wrong constructor body");
792 
793   // Enter the function-try-block before the constructor prologue if
794   // applicable.
795   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
796   if (IsTryBody)
797     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
798 
799   RegionCounter Cnt = getPGORegionCounter(Body);
800   Cnt.beginRegion(Builder);
801 
802   RunCleanupsScope RunCleanups(*this);
803 
804   // TODO: in restricted cases, we can emit the vbase initializers of
805   // a complete ctor and then delegate to the base ctor.
806 
807   // Emit the constructor prologue, i.e. the base and member
808   // initializers.
809   EmitCtorPrologue(Ctor, CtorType, Args);
810 
811   // Emit the body of the statement.
812   if (IsTryBody)
813     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
814   else if (Body)
815     EmitStmt(Body);
816 
817   // Emit any cleanup blocks associated with the member or base
818   // initializers, which includes (along the exceptional path) the
819   // destructors for those members and bases that were fully
820   // constructed.
821   RunCleanups.ForceCleanup();
822 
823   if (IsTryBody)
824     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
825 }
826 
827 namespace {
828   /// RAII object to indicate that codegen is copying the value representation
829   /// instead of the object representation. Useful when copying a struct or
830   /// class which has uninitialized members and we're only performing
831   /// lvalue-to-rvalue conversion on the object but not its members.
832   class CopyingValueRepresentation {
833   public:
CopyingValueRepresentation(CodeGenFunction & CGF)834     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
835         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
836       CGF.SanOpts.set(SanitizerKind::Bool, false);
837       CGF.SanOpts.set(SanitizerKind::Enum, false);
838     }
~CopyingValueRepresentation()839     ~CopyingValueRepresentation() {
840       CGF.SanOpts = OldSanOpts;
841     }
842   private:
843     CodeGenFunction &CGF;
844     SanitizerSet OldSanOpts;
845   };
846 }
847 
848 namespace {
849   class FieldMemcpyizer {
850   public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)851     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
852                     const VarDecl *SrcRec)
853       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
854         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
855         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
856         LastFieldOffset(0), LastAddedFieldIndex(0) {}
857 
isMemcpyableField(FieldDecl * F) const858     bool isMemcpyableField(FieldDecl *F) const {
859       // Never memcpy fields when we are adding poisoned paddings.
860       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
861         return false;
862       Qualifiers Qual = F->getType().getQualifiers();
863       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
864         return false;
865       return true;
866     }
867 
addMemcpyableField(FieldDecl * F)868     void addMemcpyableField(FieldDecl *F) {
869       if (!FirstField)
870         addInitialField(F);
871       else
872         addNextField(F);
873     }
874 
getMemcpySize(uint64_t FirstByteOffset) const875     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
876       unsigned LastFieldSize =
877         LastField->isBitField() ?
878           LastField->getBitWidthValue(CGF.getContext()) :
879           CGF.getContext().getTypeSize(LastField->getType());
880       uint64_t MemcpySizeBits =
881         LastFieldOffset + LastFieldSize - FirstByteOffset +
882         CGF.getContext().getCharWidth() - 1;
883       CharUnits MemcpySize =
884         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
885       return MemcpySize;
886     }
887 
emitMemcpy()888     void emitMemcpy() {
889       // Give the subclass a chance to bail out if it feels the memcpy isn't
890       // worth it (e.g. Hasn't aggregated enough data).
891       if (!FirstField) {
892         return;
893       }
894 
895       CharUnits Alignment;
896 
897       uint64_t FirstByteOffset;
898       if (FirstField->isBitField()) {
899         const CGRecordLayout &RL =
900           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
901         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
902         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
903         // FirstFieldOffset is not appropriate for bitfields,
904         // it won't tell us what the storage offset should be and thus might not
905         // be properly aligned.
906         //
907         // Instead calculate the storage offset using the offset of the field in
908         // the struct type.
909         const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
910         FirstByteOffset =
911             DL.getStructLayout(RL.getLLVMType())
912                 ->getElementOffsetInBits(RL.getLLVMFieldNo(FirstField));
913       } else {
914         Alignment = CGF.getContext().getDeclAlign(FirstField);
915         FirstByteOffset = FirstFieldOffset;
916       }
917 
918       assert((CGF.getContext().toCharUnitsFromBits(FirstByteOffset) %
919               Alignment) == 0 && "Bad field alignment.");
920 
921       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
922       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
923       llvm::Value *ThisPtr = CGF.LoadCXXThis();
924       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
925       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
926       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
927       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
928       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
929 
930       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
931                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
932                    MemcpySize, Alignment);
933       reset();
934     }
935 
reset()936     void reset() {
937       FirstField = nullptr;
938     }
939 
940   protected:
941     CodeGenFunction &CGF;
942     const CXXRecordDecl *ClassDecl;
943 
944   private:
945 
emitMemcpyIR(llvm::Value * DestPtr,llvm::Value * SrcPtr,CharUnits Size,CharUnits Alignment)946     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
947                       CharUnits Size, CharUnits Alignment) {
948       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
949       llvm::Type *DBP =
950         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
951       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
952 
953       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
954       llvm::Type *SBP =
955         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
956       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
957 
958       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
959                                Alignment.getQuantity());
960     }
961 
addInitialField(FieldDecl * F)962     void addInitialField(FieldDecl *F) {
963         FirstField = F;
964         LastField = F;
965         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
966         LastFieldOffset = FirstFieldOffset;
967         LastAddedFieldIndex = F->getFieldIndex();
968         return;
969       }
970 
addNextField(FieldDecl * F)971     void addNextField(FieldDecl *F) {
972       // For the most part, the following invariant will hold:
973       //   F->getFieldIndex() == LastAddedFieldIndex + 1
974       // The one exception is that Sema won't add a copy-initializer for an
975       // unnamed bitfield, which will show up here as a gap in the sequence.
976       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
977              "Cannot aggregate fields out of order.");
978       LastAddedFieldIndex = F->getFieldIndex();
979 
980       // The 'first' and 'last' fields are chosen by offset, rather than field
981       // index. This allows the code to support bitfields, as well as regular
982       // fields.
983       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
984       if (FOffset < FirstFieldOffset) {
985         FirstField = F;
986         FirstFieldOffset = FOffset;
987       } else if (FOffset > LastFieldOffset) {
988         LastField = F;
989         LastFieldOffset = FOffset;
990       }
991     }
992 
993     const VarDecl *SrcRec;
994     const ASTRecordLayout &RecLayout;
995     FieldDecl *FirstField;
996     FieldDecl *LastField;
997     uint64_t FirstFieldOffset, LastFieldOffset;
998     unsigned LastAddedFieldIndex;
999   };
1000 
1001   class ConstructorMemcpyizer : public FieldMemcpyizer {
1002   private:
1003 
1004     /// Get source argument for copy constructor. Returns null if not a copy
1005     /// constructor.
getTrivialCopySource(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1006     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1007                                                const CXXConstructorDecl *CD,
1008                                                FunctionArgList &Args) {
1009       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1010         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1011       return nullptr;
1012     }
1013 
1014     // Returns true if a CXXCtorInitializer represents a member initialization
1015     // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const1016     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1017       if (!MemcpyableCtor)
1018         return false;
1019       FieldDecl *Field = MemberInit->getMember();
1020       assert(Field && "No field for member init.");
1021       QualType FieldType = Field->getType();
1022       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1023 
1024       // Bail out on non-POD, not-trivially-constructable members.
1025       if (!(CE && CE->getConstructor()->isTrivial()) &&
1026           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1027             FieldType->isReferenceType()))
1028         return false;
1029 
1030       // Bail out on volatile fields.
1031       if (!isMemcpyableField(Field))
1032         return false;
1033 
1034       // Otherwise we're good.
1035       return true;
1036     }
1037 
1038   public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1039     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1040                           FunctionArgList &Args)
1041       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1042         ConstructorDecl(CD),
1043         MemcpyableCtor(CD->isDefaulted() &&
1044                        CD->isCopyOrMoveConstructor() &&
1045                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1046         Args(Args) { }
1047 
addMemberInitializer(CXXCtorInitializer * MemberInit)1048     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1049       if (isMemberInitMemcpyable(MemberInit)) {
1050         AggregatedInits.push_back(MemberInit);
1051         addMemcpyableField(MemberInit->getMember());
1052       } else {
1053         emitAggregatedInits();
1054         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1055                               ConstructorDecl, Args);
1056       }
1057     }
1058 
emitAggregatedInits()1059     void emitAggregatedInits() {
1060       if (AggregatedInits.size() <= 1) {
1061         // This memcpy is too small to be worthwhile. Fall back on default
1062         // codegen.
1063         if (!AggregatedInits.empty()) {
1064           CopyingValueRepresentation CVR(CGF);
1065           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1066                                 AggregatedInits[0], ConstructorDecl, Args);
1067         }
1068         reset();
1069         return;
1070       }
1071 
1072       pushEHDestructors();
1073       emitMemcpy();
1074       AggregatedInits.clear();
1075     }
1076 
pushEHDestructors()1077     void pushEHDestructors() {
1078       llvm::Value *ThisPtr = CGF.LoadCXXThis();
1079       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1080       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
1081 
1082       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1083         QualType FieldType = AggregatedInits[i]->getMember()->getType();
1084         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1085         if (CGF.needsEHCleanup(dtorKind))
1086           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
1087       }
1088     }
1089 
finish()1090     void finish() {
1091       emitAggregatedInits();
1092     }
1093 
1094   private:
1095     const CXXConstructorDecl *ConstructorDecl;
1096     bool MemcpyableCtor;
1097     FunctionArgList &Args;
1098     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1099   };
1100 
1101   class AssignmentMemcpyizer : public FieldMemcpyizer {
1102   private:
1103 
1104     // Returns the memcpyable field copied by the given statement, if one
1105     // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1106     FieldDecl *getMemcpyableField(Stmt *S) {
1107       if (!AssignmentsMemcpyable)
1108         return nullptr;
1109       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1110         // Recognise trivial assignments.
1111         if (BO->getOpcode() != BO_Assign)
1112           return nullptr;
1113         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1114         if (!ME)
1115           return nullptr;
1116         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1117         if (!Field || !isMemcpyableField(Field))
1118           return nullptr;
1119         Stmt *RHS = BO->getRHS();
1120         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1121           RHS = EC->getSubExpr();
1122         if (!RHS)
1123           return nullptr;
1124         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1125         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1126           return nullptr;
1127         return Field;
1128       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1129         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1130         if (!(MD && (MD->isCopyAssignmentOperator() ||
1131                        MD->isMoveAssignmentOperator()) &&
1132               MD->isTrivial()))
1133           return nullptr;
1134         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1135         if (!IOA)
1136           return nullptr;
1137         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1138         if (!Field || !isMemcpyableField(Field))
1139           return nullptr;
1140         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1141         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1142           return nullptr;
1143         return Field;
1144       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1145         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1146         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1147           return nullptr;
1148         Expr *DstPtr = CE->getArg(0);
1149         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1150           DstPtr = DC->getSubExpr();
1151         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1152         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1153           return nullptr;
1154         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1155         if (!ME)
1156           return nullptr;
1157         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1158         if (!Field || !isMemcpyableField(Field))
1159           return nullptr;
1160         Expr *SrcPtr = CE->getArg(1);
1161         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1162           SrcPtr = SC->getSubExpr();
1163         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1164         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1165           return nullptr;
1166         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1167         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1168           return nullptr;
1169         return Field;
1170       }
1171 
1172       return nullptr;
1173     }
1174 
1175     bool AssignmentsMemcpyable;
1176     SmallVector<Stmt*, 16> AggregatedStmts;
1177 
1178   public:
1179 
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1180     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1181                          FunctionArgList &Args)
1182       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1183         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1184       assert(Args.size() == 2);
1185     }
1186 
emitAssignment(Stmt * S)1187     void emitAssignment(Stmt *S) {
1188       FieldDecl *F = getMemcpyableField(S);
1189       if (F) {
1190         addMemcpyableField(F);
1191         AggregatedStmts.push_back(S);
1192       } else {
1193         emitAggregatedStmts();
1194         CGF.EmitStmt(S);
1195       }
1196     }
1197 
emitAggregatedStmts()1198     void emitAggregatedStmts() {
1199       if (AggregatedStmts.size() <= 1) {
1200         if (!AggregatedStmts.empty()) {
1201           CopyingValueRepresentation CVR(CGF);
1202           CGF.EmitStmt(AggregatedStmts[0]);
1203         }
1204         reset();
1205       }
1206 
1207       emitMemcpy();
1208       AggregatedStmts.clear();
1209     }
1210 
finish()1211     void finish() {
1212       emitAggregatedStmts();
1213     }
1214   };
1215 
1216 }
1217 
1218 /// EmitCtorPrologue - This routine generates necessary code to initialize
1219 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1220 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1221                                        CXXCtorType CtorType,
1222                                        FunctionArgList &Args) {
1223   if (CD->isDelegatingConstructor())
1224     return EmitDelegatingCXXConstructorCall(CD, Args);
1225 
1226   const CXXRecordDecl *ClassDecl = CD->getParent();
1227 
1228   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1229                                           E = CD->init_end();
1230 
1231   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1232   if (ClassDecl->getNumVBases() &&
1233       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1234     // The ABIs that don't have constructor variants need to put a branch
1235     // before the virtual base initialization code.
1236     BaseCtorContinueBB =
1237       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1238     assert(BaseCtorContinueBB);
1239   }
1240 
1241   // Virtual base initializers first.
1242   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1243     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1244   }
1245 
1246   if (BaseCtorContinueBB) {
1247     // Complete object handler should continue to the remaining initializers.
1248     Builder.CreateBr(BaseCtorContinueBB);
1249     EmitBlock(BaseCtorContinueBB);
1250   }
1251 
1252   // Then, non-virtual base initializers.
1253   for (; B != E && (*B)->isBaseInitializer(); B++) {
1254     assert(!(*B)->isBaseVirtual());
1255     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1256   }
1257 
1258   InitializeVTablePointers(ClassDecl);
1259 
1260   // And finally, initialize class members.
1261   FieldConstructionScope FCS(*this, CXXThisValue);
1262   ConstructorMemcpyizer CM(*this, CD, Args);
1263   for (; B != E; B++) {
1264     CXXCtorInitializer *Member = (*B);
1265     assert(!Member->isBaseInitializer());
1266     assert(Member->isAnyMemberInitializer() &&
1267            "Delegating initializer on non-delegating constructor");
1268     CM.addMemberInitializer(Member);
1269   }
1270   CM.finish();
1271 }
1272 
1273 static bool
1274 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1275 
1276 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1277 HasTrivialDestructorBody(ASTContext &Context,
1278                          const CXXRecordDecl *BaseClassDecl,
1279                          const CXXRecordDecl *MostDerivedClassDecl)
1280 {
1281   // If the destructor is trivial we don't have to check anything else.
1282   if (BaseClassDecl->hasTrivialDestructor())
1283     return true;
1284 
1285   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1286     return false;
1287 
1288   // Check fields.
1289   for (const auto *Field : BaseClassDecl->fields())
1290     if (!FieldHasTrivialDestructorBody(Context, Field))
1291       return false;
1292 
1293   // Check non-virtual bases.
1294   for (const auto &I : BaseClassDecl->bases()) {
1295     if (I.isVirtual())
1296       continue;
1297 
1298     const CXXRecordDecl *NonVirtualBase =
1299       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1300     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1301                                   MostDerivedClassDecl))
1302       return false;
1303   }
1304 
1305   if (BaseClassDecl == MostDerivedClassDecl) {
1306     // Check virtual bases.
1307     for (const auto &I : BaseClassDecl->vbases()) {
1308       const CXXRecordDecl *VirtualBase =
1309         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1310       if (!HasTrivialDestructorBody(Context, VirtualBase,
1311                                     MostDerivedClassDecl))
1312         return false;
1313     }
1314   }
1315 
1316   return true;
1317 }
1318 
1319 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1320 FieldHasTrivialDestructorBody(ASTContext &Context,
1321                               const FieldDecl *Field)
1322 {
1323   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1324 
1325   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1326   if (!RT)
1327     return true;
1328 
1329   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1330   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1331 }
1332 
1333 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1334 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(ASTContext & Context,const CXXDestructorDecl * Dtor)1335 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1336                                                const CXXDestructorDecl *Dtor) {
1337   if (!Dtor->hasTrivialBody())
1338     return false;
1339 
1340   // Check the fields.
1341   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1342   for (const auto *Field : ClassDecl->fields())
1343     if (!FieldHasTrivialDestructorBody(Context, Field))
1344       return false;
1345 
1346   return true;
1347 }
1348 
1349 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1350 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1351   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1352   CXXDtorType DtorType = CurGD.getDtorType();
1353 
1354   // The call to operator delete in a deleting destructor happens
1355   // outside of the function-try-block, which means it's always
1356   // possible to delegate the destructor body to the complete
1357   // destructor.  Do so.
1358   if (DtorType == Dtor_Deleting) {
1359     EnterDtorCleanups(Dtor, Dtor_Deleting);
1360     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1361                           /*Delegating=*/false, LoadCXXThis());
1362     PopCleanupBlock();
1363     return;
1364   }
1365 
1366   Stmt *Body = Dtor->getBody();
1367 
1368   // If the body is a function-try-block, enter the try before
1369   // anything else.
1370   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1371   if (isTryBody)
1372     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1373   EmitAsanPrologueOrEpilogue(false);
1374 
1375   // Enter the epilogue cleanups.
1376   RunCleanupsScope DtorEpilogue(*this);
1377 
1378   // If this is the complete variant, just invoke the base variant;
1379   // the epilogue will destruct the virtual bases.  But we can't do
1380   // this optimization if the body is a function-try-block, because
1381   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1382   // always delegate because we might not have a definition in this TU.
1383   switch (DtorType) {
1384   case Dtor_Comdat:
1385     llvm_unreachable("not expecting a COMDAT");
1386 
1387   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1388 
1389   case Dtor_Complete:
1390     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1391            "can't emit a dtor without a body for non-Microsoft ABIs");
1392 
1393     // Enter the cleanup scopes for virtual bases.
1394     EnterDtorCleanups(Dtor, Dtor_Complete);
1395 
1396     if (!isTryBody) {
1397       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1398                             /*Delegating=*/false, LoadCXXThis());
1399       break;
1400     }
1401     // Fallthrough: act like we're in the base variant.
1402 
1403   case Dtor_Base:
1404     assert(Body);
1405 
1406     RegionCounter Cnt = getPGORegionCounter(Body);
1407     Cnt.beginRegion(Builder);
1408 
1409     // Enter the cleanup scopes for fields and non-virtual bases.
1410     EnterDtorCleanups(Dtor, Dtor_Base);
1411 
1412     // Initialize the vtable pointers before entering the body.
1413     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1414         InitializeVTablePointers(Dtor->getParent());
1415 
1416     if (isTryBody)
1417       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1418     else if (Body)
1419       EmitStmt(Body);
1420     else {
1421       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1422       // nothing to do besides what's in the epilogue
1423     }
1424     // -fapple-kext must inline any call to this dtor into
1425     // the caller's body.
1426     if (getLangOpts().AppleKext)
1427       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1428     break;
1429   }
1430 
1431   // Jump out through the epilogue cleanups.
1432   DtorEpilogue.ForceCleanup();
1433 
1434   // Exit the try if applicable.
1435   if (isTryBody)
1436     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1437 }
1438 
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1439 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1440   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1441   const Stmt *RootS = AssignOp->getBody();
1442   assert(isa<CompoundStmt>(RootS) &&
1443          "Body of an implicit assignment operator should be compound stmt.");
1444   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1445 
1446   LexicalScope Scope(*this, RootCS->getSourceRange());
1447 
1448   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1449   for (auto *I : RootCS->body())
1450     AM.emitAssignment(I);
1451   AM.finish();
1452 }
1453 
1454 namespace {
1455   /// Call the operator delete associated with the current destructor.
1456   struct CallDtorDelete : EHScopeStack::Cleanup {
CallDtorDelete__anon05f423a90411::CallDtorDelete1457     CallDtorDelete() {}
1458 
Emit__anon05f423a90411::CallDtorDelete1459     void Emit(CodeGenFunction &CGF, Flags flags) override {
1460       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1461       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1462       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1463                          CGF.getContext().getTagDeclType(ClassDecl));
1464     }
1465   };
1466 
1467   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1468     llvm::Value *ShouldDeleteCondition;
1469   public:
CallDtorDeleteConditional__anon05f423a90411::CallDtorDeleteConditional1470     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1471       : ShouldDeleteCondition(ShouldDeleteCondition) {
1472       assert(ShouldDeleteCondition != nullptr);
1473     }
1474 
Emit__anon05f423a90411::CallDtorDeleteConditional1475     void Emit(CodeGenFunction &CGF, Flags flags) override {
1476       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1477       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1478       llvm::Value *ShouldCallDelete
1479         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1480       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1481 
1482       CGF.EmitBlock(callDeleteBB);
1483       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1484       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1485       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1486                          CGF.getContext().getTagDeclType(ClassDecl));
1487       CGF.Builder.CreateBr(continueBB);
1488 
1489       CGF.EmitBlock(continueBB);
1490     }
1491   };
1492 
1493   class DestroyField  : public EHScopeStack::Cleanup {
1494     const FieldDecl *field;
1495     CodeGenFunction::Destroyer *destroyer;
1496     bool useEHCleanupForArray;
1497 
1498   public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1499     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1500                  bool useEHCleanupForArray)
1501       : field(field), destroyer(destroyer),
1502         useEHCleanupForArray(useEHCleanupForArray) {}
1503 
Emit(CodeGenFunction & CGF,Flags flags)1504     void Emit(CodeGenFunction &CGF, Flags flags) override {
1505       // Find the address of the field.
1506       llvm::Value *thisValue = CGF.LoadCXXThis();
1507       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1508       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1509       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1510       assert(LV.isSimple());
1511 
1512       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1513                       flags.isForNormalCleanup() && useEHCleanupForArray);
1514     }
1515   };
1516 }
1517 
1518 /// \brief Emit all code that comes at the end of class's
1519 /// destructor. This is to call destructors on members and base classes
1520 /// in reverse order of their construction.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1521 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1522                                         CXXDtorType DtorType) {
1523   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1524          "Should not emit dtor epilogue for non-exported trivial dtor!");
1525 
1526   // The deleting-destructor phase just needs to call the appropriate
1527   // operator delete that Sema picked up.
1528   if (DtorType == Dtor_Deleting) {
1529     assert(DD->getOperatorDelete() &&
1530            "operator delete missing - EnterDtorCleanups");
1531     if (CXXStructorImplicitParamValue) {
1532       // If there is an implicit param to the deleting dtor, it's a boolean
1533       // telling whether we should call delete at the end of the dtor.
1534       EHStack.pushCleanup<CallDtorDeleteConditional>(
1535           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1536     } else {
1537       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1538     }
1539     return;
1540   }
1541 
1542   const CXXRecordDecl *ClassDecl = DD->getParent();
1543 
1544   // Unions have no bases and do not call field destructors.
1545   if (ClassDecl->isUnion())
1546     return;
1547 
1548   // The complete-destructor phase just destructs all the virtual bases.
1549   if (DtorType == Dtor_Complete) {
1550 
1551     // We push them in the forward order so that they'll be popped in
1552     // the reverse order.
1553     for (const auto &Base : ClassDecl->vbases()) {
1554       CXXRecordDecl *BaseClassDecl
1555         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1556 
1557       // Ignore trivial destructors.
1558       if (BaseClassDecl->hasTrivialDestructor())
1559         continue;
1560 
1561       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1562                                         BaseClassDecl,
1563                                         /*BaseIsVirtual*/ true);
1564     }
1565 
1566     return;
1567   }
1568 
1569   assert(DtorType == Dtor_Base);
1570 
1571   // Destroy non-virtual bases.
1572   for (const auto &Base : ClassDecl->bases()) {
1573     // Ignore virtual bases.
1574     if (Base.isVirtual())
1575       continue;
1576 
1577     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1578 
1579     // Ignore trivial destructors.
1580     if (BaseClassDecl->hasTrivialDestructor())
1581       continue;
1582 
1583     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1584                                       BaseClassDecl,
1585                                       /*BaseIsVirtual*/ false);
1586   }
1587 
1588   // Destroy direct fields.
1589   for (const auto *Field : ClassDecl->fields()) {
1590     QualType type = Field->getType();
1591     QualType::DestructionKind dtorKind = type.isDestructedType();
1592     if (!dtorKind) continue;
1593 
1594     // Anonymous union members do not have their destructors called.
1595     const RecordType *RT = type->getAsUnionType();
1596     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1597 
1598     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1599     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1600                                       getDestroyer(dtorKind),
1601                                       cleanupKind & EHCleanup);
1602   }
1603 }
1604 
1605 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1606 /// constructor for each of several members of an array.
1607 ///
1608 /// \param ctor the constructor to call for each element
1609 /// \param arrayType the type of the array to initialize
1610 /// \param arrayBegin an arrayType*
1611 /// \param zeroInitialize true if each element should be
1612 ///   zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ConstantArrayType * arrayType,llvm::Value * arrayBegin,const CXXConstructExpr * E,bool zeroInitialize)1613 void CodeGenFunction::EmitCXXAggrConstructorCall(
1614     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1615     llvm::Value *arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1616   QualType elementType;
1617   llvm::Value *numElements =
1618     emitArrayLength(arrayType, elementType, arrayBegin);
1619 
1620   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1621 }
1622 
1623 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1624 /// constructor for each of several members of an array.
1625 ///
1626 /// \param ctor the constructor to call for each element
1627 /// \param numElements the number of elements in the array;
1628 ///   may be zero
1629 /// \param arrayBegin a T*, where T is the type constructed by ctor
1630 /// \param zeroInitialize true if each element should be
1631 ///   zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,llvm::Value * arrayBegin,const CXXConstructExpr * E,bool zeroInitialize)1632 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1633                                                  llvm::Value *numElements,
1634                                                  llvm::Value *arrayBegin,
1635                                                  const CXXConstructExpr *E,
1636                                                  bool zeroInitialize) {
1637 
1638   // It's legal for numElements to be zero.  This can happen both
1639   // dynamically, because x can be zero in 'new A[x]', and statically,
1640   // because of GCC extensions that permit zero-length arrays.  There
1641   // are probably legitimate places where we could assume that this
1642   // doesn't happen, but it's not clear that it's worth it.
1643   llvm::BranchInst *zeroCheckBranch = nullptr;
1644 
1645   // Optimize for a constant count.
1646   llvm::ConstantInt *constantCount
1647     = dyn_cast<llvm::ConstantInt>(numElements);
1648   if (constantCount) {
1649     // Just skip out if the constant count is zero.
1650     if (constantCount->isZero()) return;
1651 
1652   // Otherwise, emit the check.
1653   } else {
1654     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1655     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1656     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1657     EmitBlock(loopBB);
1658   }
1659 
1660   // Find the end of the array.
1661   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1662                                                     "arrayctor.end");
1663 
1664   // Enter the loop, setting up a phi for the current location to initialize.
1665   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1666   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1667   EmitBlock(loopBB);
1668   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1669                                          "arrayctor.cur");
1670   cur->addIncoming(arrayBegin, entryBB);
1671 
1672   // Inside the loop body, emit the constructor call on the array element.
1673 
1674   QualType type = getContext().getTypeDeclType(ctor->getParent());
1675 
1676   // Zero initialize the storage, if requested.
1677   if (zeroInitialize)
1678     EmitNullInitialization(cur, type);
1679 
1680   // C++ [class.temporary]p4:
1681   // There are two contexts in which temporaries are destroyed at a different
1682   // point than the end of the full-expression. The first context is when a
1683   // default constructor is called to initialize an element of an array.
1684   // If the constructor has one or more default arguments, the destruction of
1685   // every temporary created in a default argument expression is sequenced
1686   // before the construction of the next array element, if any.
1687 
1688   {
1689     RunCleanupsScope Scope(*this);
1690 
1691     // Evaluate the constructor and its arguments in a regular
1692     // partial-destroy cleanup.
1693     if (getLangOpts().Exceptions &&
1694         !ctor->getParent()->hasTrivialDestructor()) {
1695       Destroyer *destroyer = destroyCXXObject;
1696       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1697     }
1698 
1699     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1700                            /*Delegating=*/false, cur, E);
1701   }
1702 
1703   // Go to the next element.
1704   llvm::Value *next =
1705     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1706                               "arrayctor.next");
1707   cur->addIncoming(next, Builder.GetInsertBlock());
1708 
1709   // Check whether that's the end of the loop.
1710   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1711   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1712   Builder.CreateCondBr(done, contBB, loopBB);
1713 
1714   // Patch the earlier check to skip over the loop.
1715   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1716 
1717   EmitBlock(contBB);
1718 }
1719 
destroyCXXObject(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1720 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1721                                        llvm::Value *addr,
1722                                        QualType type) {
1723   const RecordType *rtype = type->castAs<RecordType>();
1724   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1725   const CXXDestructorDecl *dtor = record->getDestructor();
1726   assert(!dtor->isTrivial());
1727   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1728                             /*Delegating=*/false, addr);
1729 }
1730 
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This,const CXXConstructExpr * E)1731 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1732                                              CXXCtorType Type,
1733                                              bool ForVirtualBase,
1734                                              bool Delegating, llvm::Value *This,
1735                                              const CXXConstructExpr *E) {
1736   // If this is a trivial constructor, just emit what's needed.
1737   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) {
1738     if (E->getNumArgs() == 0) {
1739       // Trivial default constructor, no codegen required.
1740       assert(D->isDefaultConstructor() &&
1741              "trivial 0-arg ctor not a default ctor");
1742       return;
1743     }
1744 
1745     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1746     assert(D->isCopyOrMoveConstructor() &&
1747            "trivial 1-arg ctor not a copy/move ctor");
1748 
1749     const Expr *Arg = E->getArg(0);
1750     QualType Ty = Arg->getType();
1751     llvm::Value *Src = EmitLValue(Arg).getAddress();
1752     EmitAggregateCopy(This, Src, Ty);
1753     return;
1754   }
1755 
1756   // C++11 [class.mfct.non-static]p2:
1757   //   If a non-static member function of a class X is called for an object that
1758   //   is not of type X, or of a type derived from X, the behavior is undefined.
1759   // FIXME: Provide a source location here.
1760   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1761                 getContext().getRecordType(D->getParent()));
1762 
1763   CallArgList Args;
1764 
1765   // Push the this ptr.
1766   Args.add(RValue::get(This), D->getThisType(getContext()));
1767 
1768   // Add the rest of the user-supplied arguments.
1769   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1770   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getConstructor());
1771 
1772   // Insert any ABI-specific implicit constructor arguments.
1773   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1774       *this, D, Type, ForVirtualBase, Delegating, Args);
1775 
1776   // Emit the call.
1777   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
1778   const CGFunctionInfo &Info =
1779       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1780   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1781 }
1782 
1783 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,llvm::Value * This,llvm::Value * Src,const CXXConstructExpr * E)1784 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1785                                         llvm::Value *This, llvm::Value *Src,
1786                                         const CXXConstructExpr *E) {
1787   if (D->isTrivial() &&
1788       !D->getParent()->mayInsertExtraPadding()) {
1789     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1790     assert(D->isCopyOrMoveConstructor() &&
1791            "trivial 1-arg ctor not a copy/move ctor");
1792     EmitAggregateCopy(This, Src, E->arg_begin()->getType());
1793     return;
1794   }
1795   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
1796   assert(D->isInstance() &&
1797          "Trying to emit a member call expr on a static method!");
1798 
1799   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1800 
1801   CallArgList Args;
1802 
1803   // Push the this ptr.
1804   Args.add(RValue::get(This), D->getThisType(getContext()));
1805 
1806   // Push the src ptr.
1807   QualType QT = *(FPT->param_type_begin());
1808   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1809   Src = Builder.CreateBitCast(Src, t);
1810   Args.add(RValue::get(Src), QT);
1811 
1812   // Skip over first argument (Src).
1813   EmitCallArgs(Args, FPT, E->arg_begin() + 1, E->arg_end(), E->getConstructor(),
1814                /*ParamsToSkip*/ 1);
1815 
1816   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1817            Callee, ReturnValueSlot(), Args, D);
1818 }
1819 
1820 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)1821 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1822                                                 CXXCtorType CtorType,
1823                                                 const FunctionArgList &Args,
1824                                                 SourceLocation Loc) {
1825   CallArgList DelegateArgs;
1826 
1827   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1828   assert(I != E && "no parameters to constructor");
1829 
1830   // this
1831   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1832   ++I;
1833 
1834   // vtt
1835   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1836                                          /*ForVirtualBase=*/false,
1837                                          /*Delegating=*/true)) {
1838     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1839     DelegateArgs.add(RValue::get(VTT), VoidPP);
1840 
1841     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1842       assert(I != E && "cannot skip vtt parameter, already done with args");
1843       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1844       ++I;
1845     }
1846   }
1847 
1848   // Explicit arguments.
1849   for (; I != E; ++I) {
1850     const VarDecl *param = *I;
1851     // FIXME: per-argument source location
1852     EmitDelegateCallArg(DelegateArgs, param, Loc);
1853   }
1854 
1855   llvm::Value *Callee =
1856       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
1857   EmitCall(CGM.getTypes()
1858                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
1859            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1860 }
1861 
1862 namespace {
1863   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1864     const CXXDestructorDecl *Dtor;
1865     llvm::Value *Addr;
1866     CXXDtorType Type;
1867 
CallDelegatingCtorDtor__anon05f423a90511::CallDelegatingCtorDtor1868     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1869                            CXXDtorType Type)
1870       : Dtor(D), Addr(Addr), Type(Type) {}
1871 
Emit__anon05f423a90511::CallDelegatingCtorDtor1872     void Emit(CodeGenFunction &CGF, Flags flags) override {
1873       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1874                                 /*Delegating=*/true, Addr);
1875     }
1876   };
1877 }
1878 
1879 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)1880 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1881                                                   const FunctionArgList &Args) {
1882   assert(Ctor->isDelegatingConstructor());
1883 
1884   llvm::Value *ThisPtr = LoadCXXThis();
1885 
1886   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1887   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1888   AggValueSlot AggSlot =
1889     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1890                           AggValueSlot::IsDestructed,
1891                           AggValueSlot::DoesNotNeedGCBarriers,
1892                           AggValueSlot::IsNotAliased);
1893 
1894   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1895 
1896   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1897   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1898     CXXDtorType Type =
1899       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1900 
1901     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1902                                                 ClassDecl->getDestructor(),
1903                                                 ThisPtr, Type);
1904   }
1905 }
1906 
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This)1907 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1908                                             CXXDtorType Type,
1909                                             bool ForVirtualBase,
1910                                             bool Delegating,
1911                                             llvm::Value *This) {
1912   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1913                                      Delegating, This);
1914 }
1915 
1916 namespace {
1917   struct CallLocalDtor : EHScopeStack::Cleanup {
1918     const CXXDestructorDecl *Dtor;
1919     llvm::Value *Addr;
1920 
CallLocalDtor__anon05f423a90611::CallLocalDtor1921     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1922       : Dtor(D), Addr(Addr) {}
1923 
Emit__anon05f423a90611::CallLocalDtor1924     void Emit(CodeGenFunction &CGF, Flags flags) override {
1925       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1926                                 /*ForVirtualBase=*/false,
1927                                 /*Delegating=*/false, Addr);
1928     }
1929   };
1930 }
1931 
PushDestructorCleanup(const CXXDestructorDecl * D,llvm::Value * Addr)1932 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1933                                             llvm::Value *Addr) {
1934   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1935 }
1936 
PushDestructorCleanup(QualType T,llvm::Value * Addr)1937 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1938   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1939   if (!ClassDecl) return;
1940   if (ClassDecl->hasTrivialDestructor()) return;
1941 
1942   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1943   assert(D && D->isUsed() && "destructor not marked as used!");
1944   PushDestructorCleanup(D, Addr);
1945 }
1946 
1947 void
InitializeVTablePointer(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,const CXXRecordDecl * VTableClass)1948 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1949                                          const CXXRecordDecl *NearestVBase,
1950                                          CharUnits OffsetFromNearestVBase,
1951                                          const CXXRecordDecl *VTableClass) {
1952   // Compute the address point.
1953   bool NeedsVirtualOffset;
1954   llvm::Value *VTableAddressPoint =
1955       CGM.getCXXABI().getVTableAddressPointInStructor(
1956           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1957   if (!VTableAddressPoint)
1958     return;
1959 
1960   // Compute where to store the address point.
1961   llvm::Value *VirtualOffset = nullptr;
1962   CharUnits NonVirtualOffset = CharUnits::Zero();
1963 
1964   if (NeedsVirtualOffset) {
1965     // We need to use the virtual base offset offset because the virtual base
1966     // might have a different offset in the most derived class.
1967     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1968                                                               LoadCXXThis(),
1969                                                               VTableClass,
1970                                                               NearestVBase);
1971     NonVirtualOffset = OffsetFromNearestVBase;
1972   } else {
1973     // We can just use the base offset in the complete class.
1974     NonVirtualOffset = Base.getBaseOffset();
1975   }
1976 
1977   // Apply the offsets.
1978   llvm::Value *VTableField = LoadCXXThis();
1979 
1980   if (!NonVirtualOffset.isZero() || VirtualOffset)
1981     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1982                                                   NonVirtualOffset,
1983                                                   VirtualOffset);
1984 
1985   // Finally, store the address point. Use the same LLVM types as the field to
1986   // support optimization.
1987   llvm::Type *VTablePtrTy =
1988       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
1989           ->getPointerTo()
1990           ->getPointerTo();
1991   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
1992   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
1993   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1994   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1995 }
1996 
1997 void
InitializeVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases)1998 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1999                                           const CXXRecordDecl *NearestVBase,
2000                                           CharUnits OffsetFromNearestVBase,
2001                                           bool BaseIsNonVirtualPrimaryBase,
2002                                           const CXXRecordDecl *VTableClass,
2003                                           VisitedVirtualBasesSetTy& VBases) {
2004   // If this base is a non-virtual primary base the address point has already
2005   // been set.
2006   if (!BaseIsNonVirtualPrimaryBase) {
2007     // Initialize the vtable pointer for this base.
2008     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
2009                             VTableClass);
2010   }
2011 
2012   const CXXRecordDecl *RD = Base.getBase();
2013 
2014   // Traverse bases.
2015   for (const auto &I : RD->bases()) {
2016     CXXRecordDecl *BaseDecl
2017       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2018 
2019     // Ignore classes without a vtable.
2020     if (!BaseDecl->isDynamicClass())
2021       continue;
2022 
2023     CharUnits BaseOffset;
2024     CharUnits BaseOffsetFromNearestVBase;
2025     bool BaseDeclIsNonVirtualPrimaryBase;
2026 
2027     if (I.isVirtual()) {
2028       // Check if we've visited this virtual base before.
2029       if (!VBases.insert(BaseDecl).second)
2030         continue;
2031 
2032       const ASTRecordLayout &Layout =
2033         getContext().getASTRecordLayout(VTableClass);
2034 
2035       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2036       BaseOffsetFromNearestVBase = CharUnits::Zero();
2037       BaseDeclIsNonVirtualPrimaryBase = false;
2038     } else {
2039       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2040 
2041       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2042       BaseOffsetFromNearestVBase =
2043         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2044       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2045     }
2046 
2047     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
2048                              I.isVirtual() ? BaseDecl : NearestVBase,
2049                              BaseOffsetFromNearestVBase,
2050                              BaseDeclIsNonVirtualPrimaryBase,
2051                              VTableClass, VBases);
2052   }
2053 }
2054 
InitializeVTablePointers(const CXXRecordDecl * RD)2055 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2056   // Ignore classes without a vtable.
2057   if (!RD->isDynamicClass())
2058     return;
2059 
2060   // Initialize the vtable pointers for this class and all of its bases.
2061   VisitedVirtualBasesSetTy VBases;
2062   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
2063                            /*NearestVBase=*/nullptr,
2064                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2065                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
2066 
2067   if (RD->getNumVBases())
2068     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2069 }
2070 
GetVTablePtr(llvm::Value * This,llvm::Type * Ty)2071 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
2072                                            llvm::Type *Ty) {
2073   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
2074   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2075   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
2076   return VTable;
2077 }
2078 
2079 
2080 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2081 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)2082 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2083   while (true) {
2084     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2085       E = PE->getSubExpr();
2086       continue;
2087     }
2088 
2089     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2090       if (CE->getCastKind() == CK_NoOp) {
2091         E = CE->getSubExpr();
2092         continue;
2093       }
2094     }
2095     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2096       if (UO->getOpcode() == UO_Extension) {
2097         E = UO->getSubExpr();
2098         continue;
2099       }
2100     }
2101     return E;
2102   }
2103 }
2104 
2105 bool
CanDevirtualizeMemberFunctionCall(const Expr * Base,const CXXMethodDecl * MD)2106 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2107                                                    const CXXMethodDecl *MD) {
2108   // When building with -fapple-kext, all calls must go through the vtable since
2109   // the kernel linker can do runtime patching of vtables.
2110   if (getLangOpts().AppleKext)
2111     return false;
2112 
2113   // If the most derived class is marked final, we know that no subclass can
2114   // override this member function and so we can devirtualize it. For example:
2115   //
2116   // struct A { virtual void f(); }
2117   // struct B final : A { };
2118   //
2119   // void f(B *b) {
2120   //   b->f();
2121   // }
2122   //
2123   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2124   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2125     return true;
2126 
2127   // If the member function is marked 'final', we know that it can't be
2128   // overridden and can therefore devirtualize it.
2129   if (MD->hasAttr<FinalAttr>())
2130     return true;
2131 
2132   // Similarly, if the class itself is marked 'final' it can't be overridden
2133   // and we can therefore devirtualize the member function call.
2134   if (MD->getParent()->hasAttr<FinalAttr>())
2135     return true;
2136 
2137   Base = skipNoOpCastsAndParens(Base);
2138   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2139     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2140       // This is a record decl. We know the type and can devirtualize it.
2141       return VD->getType()->isRecordType();
2142     }
2143 
2144     return false;
2145   }
2146 
2147   // We can devirtualize calls on an object accessed by a class member access
2148   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2149   // a derived class object constructed in the same location.
2150   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2151     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2152       return VD->getType()->isRecordType();
2153 
2154   // We can always devirtualize calls on temporary object expressions.
2155   if (isa<CXXConstructExpr>(Base))
2156     return true;
2157 
2158   // And calls on bound temporaries.
2159   if (isa<CXXBindTemporaryExpr>(Base))
2160     return true;
2161 
2162   // Check if this is a call expr that returns a record type.
2163   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2164     return CE->getCallReturnType()->isRecordType();
2165 
2166   // We can't devirtualize the call.
2167   return false;
2168 }
2169 
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2170 void CodeGenFunction::EmitForwardingCallToLambda(
2171                                       const CXXMethodDecl *callOperator,
2172                                       CallArgList &callArgs) {
2173   // Get the address of the call operator.
2174   const CGFunctionInfo &calleeFnInfo =
2175     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2176   llvm::Value *callee =
2177     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2178                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2179 
2180   // Prepare the return slot.
2181   const FunctionProtoType *FPT =
2182     callOperator->getType()->castAs<FunctionProtoType>();
2183   QualType resultType = FPT->getReturnType();
2184   ReturnValueSlot returnSlot;
2185   if (!resultType->isVoidType() &&
2186       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2187       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2188     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2189 
2190   // We don't need to separately arrange the call arguments because
2191   // the call can't be variadic anyway --- it's impossible to forward
2192   // variadic arguments.
2193 
2194   // Now emit our call.
2195   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2196                        callArgs, callOperator);
2197 
2198   // If necessary, copy the returned value into the slot.
2199   if (!resultType->isVoidType() && returnSlot.isNull())
2200     EmitReturnOfRValue(RV, resultType);
2201   else
2202     EmitBranchThroughCleanup(ReturnBlock);
2203 }
2204 
EmitLambdaBlockInvokeBody()2205 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2206   const BlockDecl *BD = BlockInfo->getBlockDecl();
2207   const VarDecl *variable = BD->capture_begin()->getVariable();
2208   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2209 
2210   // Start building arguments for forwarding call
2211   CallArgList CallArgs;
2212 
2213   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2214   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2215   CallArgs.add(RValue::get(ThisPtr), ThisType);
2216 
2217   // Add the rest of the parameters.
2218   for (auto param : BD->params())
2219     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2220 
2221   assert(!Lambda->isGenericLambda() &&
2222             "generic lambda interconversion to block not implemented");
2223   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2224 }
2225 
EmitLambdaToBlockPointerBody(FunctionArgList & Args)2226 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2227   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2228     // FIXME: Making this work correctly is nasty because it requires either
2229     // cloning the body of the call operator or making the call operator forward.
2230     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2231     return;
2232   }
2233 
2234   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2235 }
2236 
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2237 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2238   const CXXRecordDecl *Lambda = MD->getParent();
2239 
2240   // Start building arguments for forwarding call
2241   CallArgList CallArgs;
2242 
2243   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2244   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2245   CallArgs.add(RValue::get(ThisPtr), ThisType);
2246 
2247   // Add the rest of the parameters.
2248   for (auto Param : MD->params())
2249     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2250 
2251   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2252   // For a generic lambda, find the corresponding call operator specialization
2253   // to which the call to the static-invoker shall be forwarded.
2254   if (Lambda->isGenericLambda()) {
2255     assert(MD->isFunctionTemplateSpecialization());
2256     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2257     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2258     void *InsertPos = nullptr;
2259     FunctionDecl *CorrespondingCallOpSpecialization =
2260         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2261     assert(CorrespondingCallOpSpecialization);
2262     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2263   }
2264   EmitForwardingCallToLambda(CallOp, CallArgs);
2265 }
2266 
EmitLambdaStaticInvokeFunction(const CXXMethodDecl * MD)2267 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2268   if (MD->isVariadic()) {
2269     // FIXME: Making this work correctly is nasty because it requires either
2270     // cloning the body of the call operator or making the call operator forward.
2271     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2272     return;
2273   }
2274 
2275   EmitLambdaDelegatingInvokeBody(MD);
2276 }
2277