1 /*
2 * jchuff.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2006-2019 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains Huffman entropy encoding routines.
10 * Both sequential and progressive modes are supported in this single module.
11 *
12 * Much of the complexity here has to do with supporting output suspension.
13 * If the data destination module demands suspension, we want to be able to
14 * back up to the start of the current MCU. To do this, we copy state
15 * variables into local working storage, and update them back to the
16 * permanent JPEG objects only upon successful completion of an MCU.
17 *
18 * We do not support output suspension for the progressive JPEG mode, since
19 * the library currently does not allow multiple-scan files to be written
20 * with output suspension.
21 */
22
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26
27
28 /* The legal range of a DCT coefficient is
29 * -1024 .. +1023 for 8-bit data;
30 * -16384 .. +16383 for 12-bit data.
31 * Hence the magnitude should always fit in 10 or 14 bits respectively.
32 */
33
34 #if BITS_IN_JSAMPLE == 8
35 #define MAX_COEF_BITS 10
36 #else
37 #define MAX_COEF_BITS 14
38 #endif
39
40 /* Derived data constructed for each Huffman table */
41
42 typedef struct {
43 unsigned int ehufco[256]; /* code for each symbol */
44 char ehufsi[256]; /* length of code for each symbol */
45 /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
46 } c_derived_tbl;
47
48
49 /* Expanded entropy encoder object for Huffman encoding.
50 *
51 * The savable_state subrecord contains fields that change within an MCU,
52 * but must not be updated permanently until we complete the MCU.
53 */
54
55 typedef struct {
56 INT32 put_buffer; /* current bit-accumulation buffer */
57 int put_bits; /* # of bits now in it */
58 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
59 } savable_state;
60
61 /* This macro is to work around compilers with missing or broken
62 * structure assignment. You'll need to fix this code if you have
63 * such a compiler and you change MAX_COMPS_IN_SCAN.
64 */
65
66 #ifndef NO_STRUCT_ASSIGN
67 #define ASSIGN_STATE(dest,src) ((dest) = (src))
68 #else
69 #if MAX_COMPS_IN_SCAN == 4
70 #define ASSIGN_STATE(dest,src) \
71 ((dest).put_buffer = (src).put_buffer, \
72 (dest).put_bits = (src).put_bits, \
73 (dest).last_dc_val[0] = (src).last_dc_val[0], \
74 (dest).last_dc_val[1] = (src).last_dc_val[1], \
75 (dest).last_dc_val[2] = (src).last_dc_val[2], \
76 (dest).last_dc_val[3] = (src).last_dc_val[3])
77 #endif
78 #endif
79
80
81 typedef struct {
82 struct jpeg_entropy_encoder pub; /* public fields */
83
84 savable_state saved; /* Bit buffer & DC state at start of MCU */
85
86 /* These fields are NOT loaded into local working state. */
87 unsigned int restarts_to_go; /* MCUs left in this restart interval */
88 int next_restart_num; /* next restart number to write (0-7) */
89
90 /* Pointers to derived tables (these workspaces have image lifespan) */
91 c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
92 c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
93
94 /* Statistics tables for optimization */
95 long * dc_count_ptrs[NUM_HUFF_TBLS];
96 long * ac_count_ptrs[NUM_HUFF_TBLS];
97
98 /* Following fields used only in progressive mode */
99
100 /* Mode flag: TRUE for optimization, FALSE for actual data output */
101 boolean gather_statistics;
102
103 /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
104 */
105 JOCTET * next_output_byte; /* => next byte to write in buffer */
106 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
107 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
108
109 /* Coding status for AC components */
110 int ac_tbl_no; /* the table number of the single component */
111 unsigned int EOBRUN; /* run length of EOBs */
112 unsigned int BE; /* # of buffered correction bits before MCU */
113 char * bit_buffer; /* buffer for correction bits (1 per char) */
114 /* packing correction bits tightly would save some space but cost time... */
115 } huff_entropy_encoder;
116
117 typedef huff_entropy_encoder * huff_entropy_ptr;
118
119 /* Working state while writing an MCU (sequential mode).
120 * This struct contains all the fields that are needed by subroutines.
121 */
122
123 typedef struct {
124 JOCTET * next_output_byte; /* => next byte to write in buffer */
125 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
126 savable_state cur; /* Current bit buffer & DC state */
127 j_compress_ptr cinfo; /* dump_buffer needs access to this */
128 } working_state;
129
130 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
131 * buffer can hold. Larger sizes may slightly improve compression, but
132 * 1000 is already well into the realm of overkill.
133 * The minimum safe size is 64 bits.
134 */
135
136 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
137
138 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
139 * We assume that int right shift is unsigned if INT32 right shift is,
140 * which should be safe.
141 */
142
143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
144 #define ISHIFT_TEMPS int ishift_temp;
145 #define IRIGHT_SHIFT(x,shft) \
146 ((ishift_temp = (x)) < 0 ? \
147 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
148 (ishift_temp >> (shft)))
149 #else
150 #define ISHIFT_TEMPS
151 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
152 #endif
153
154
155 /*
156 * Compute the derived values for a Huffman table.
157 * This routine also performs some validation checks on the table.
158 */
159
160 LOCAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)161 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
162 c_derived_tbl ** pdtbl)
163 {
164 JHUFF_TBL *htbl;
165 c_derived_tbl *dtbl;
166 int p, i, l, lastp, si, maxsymbol;
167 char huffsize[257];
168 unsigned int huffcode[257];
169 unsigned int code;
170
171 /* Note that huffsize[] and huffcode[] are filled in code-length order,
172 * paralleling the order of the symbols themselves in htbl->huffval[].
173 */
174
175 /* Find the input Huffman table */
176 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
177 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
178 htbl =
179 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
180 if (htbl == NULL)
181 htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno);
182
183 /* Allocate a workspace if we haven't already done so. */
184 if (*pdtbl == NULL)
185 *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small)
186 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl));
187 dtbl = *pdtbl;
188
189 /* Figure C.1: make table of Huffman code length for each symbol */
190
191 p = 0;
192 for (l = 1; l <= 16; l++) {
193 i = (int) htbl->bits[l];
194 if (i < 0 || p + i > 256) /* protect against table overrun */
195 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
196 while (i--)
197 huffsize[p++] = (char) l;
198 }
199 huffsize[p] = 0;
200 lastp = p;
201
202 /* Figure C.2: generate the codes themselves */
203 /* We also validate that the counts represent a legal Huffman code tree. */
204
205 code = 0;
206 si = huffsize[0];
207 p = 0;
208 while (huffsize[p]) {
209 while (((int) huffsize[p]) == si) {
210 huffcode[p++] = code;
211 code++;
212 }
213 /* code is now 1 more than the last code used for codelength si; but
214 * it must still fit in si bits, since no code is allowed to be all ones.
215 */
216 if (((INT32) code) >= (((INT32) 1) << si))
217 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
218 code <<= 1;
219 si++;
220 }
221
222 /* Figure C.3: generate encoding tables */
223 /* These are code and size indexed by symbol value */
224
225 /* Set all codeless symbols to have code length 0;
226 * this lets us detect duplicate VAL entries here, and later
227 * allows emit_bits to detect any attempt to emit such symbols.
228 */
229 MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
230
231 /* This is also a convenient place to check for out-of-range
232 * and duplicated VAL entries. We allow 0..255 for AC symbols
233 * but only 0..15 for DC. (We could constrain them further
234 * based on data depth and mode, but this seems enough.)
235 */
236 maxsymbol = isDC ? 15 : 255;
237
238 for (p = 0; p < lastp; p++) {
239 i = htbl->huffval[p];
240 if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
241 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
242 dtbl->ehufco[i] = huffcode[p];
243 dtbl->ehufsi[i] = huffsize[p];
244 }
245 }
246
247
248 /* Outputting bytes to the file.
249 * NB: these must be called only when actually outputting,
250 * that is, entropy->gather_statistics == FALSE.
251 */
252
253 /* Emit a byte, taking 'action' if must suspend. */
254 #define emit_byte_s(state,val,action) \
255 { *(state)->next_output_byte++ = (JOCTET) (val); \
256 if (--(state)->free_in_buffer == 0) \
257 if (! dump_buffer_s(state)) \
258 { action; } }
259
260 /* Emit a byte */
261 #define emit_byte_e(entropy,val) \
262 { *(entropy)->next_output_byte++ = (JOCTET) (val); \
263 if (--(entropy)->free_in_buffer == 0) \
264 dump_buffer_e(entropy); }
265
266
267 LOCAL(boolean)
dump_buffer_s(working_state * state)268 dump_buffer_s (working_state * state)
269 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
270 {
271 struct jpeg_destination_mgr * dest = state->cinfo->dest;
272
273 if (! (*dest->empty_output_buffer) (state->cinfo))
274 return FALSE;
275 /* After a successful buffer dump, must reset buffer pointers */
276 state->next_output_byte = dest->next_output_byte;
277 state->free_in_buffer = dest->free_in_buffer;
278 return TRUE;
279 }
280
281
282 LOCAL(void)
dump_buffer_e(huff_entropy_ptr entropy)283 dump_buffer_e (huff_entropy_ptr entropy)
284 /* Empty the output buffer; we do not support suspension in this case. */
285 {
286 struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
287
288 if (! (*dest->empty_output_buffer) (entropy->cinfo))
289 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
290 /* After a successful buffer dump, must reset buffer pointers */
291 entropy->next_output_byte = dest->next_output_byte;
292 entropy->free_in_buffer = dest->free_in_buffer;
293 }
294
295
296 /* Outputting bits to the file */
297
298 /* Only the right 24 bits of put_buffer are used; the valid bits are
299 * left-justified in this part. At most 16 bits can be passed to emit_bits
300 * in one call, and we never retain more than 7 bits in put_buffer
301 * between calls, so 24 bits are sufficient.
302 */
303
304 INLINE
LOCAL(boolean)305 LOCAL(boolean)
306 emit_bits_s (working_state * state, unsigned int code, int size)
307 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
308 {
309 /* This routine is heavily used, so it's worth coding tightly. */
310 register INT32 put_buffer;
311 register int put_bits;
312
313 /* if size is 0, caller used an invalid Huffman table entry */
314 if (size == 0)
315 ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
316
317 /* mask off any extra bits in code */
318 put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
319
320 /* new number of bits in buffer */
321 put_bits = size + state->cur.put_bits;
322
323 put_buffer <<= 24 - put_bits; /* align incoming bits */
324
325 /* and merge with old buffer contents */
326 put_buffer |= state->cur.put_buffer;
327
328 while (put_bits >= 8) {
329 int c = (int) ((put_buffer >> 16) & 0xFF);
330
331 emit_byte_s(state, c, return FALSE);
332 if (c == 0xFF) { /* need to stuff a zero byte? */
333 emit_byte_s(state, 0, return FALSE);
334 }
335 put_buffer <<= 8;
336 put_bits -= 8;
337 }
338
339 state->cur.put_buffer = put_buffer; /* update state variables */
340 state->cur.put_bits = put_bits;
341
342 return TRUE;
343 }
344
345
346 INLINE
LOCAL(void)347 LOCAL(void)
348 emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size)
349 /* Emit some bits, unless we are in gather mode */
350 {
351 /* This routine is heavily used, so it's worth coding tightly. */
352 register INT32 put_buffer;
353 register int put_bits;
354
355 /* if size is 0, caller used an invalid Huffman table entry */
356 if (size == 0)
357 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
358
359 if (entropy->gather_statistics)
360 return; /* do nothing if we're only getting stats */
361
362 /* mask off any extra bits in code */
363 put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1);
364
365 /* new number of bits in buffer */
366 put_bits = size + entropy->saved.put_bits;
367
368 put_buffer <<= 24 - put_bits; /* align incoming bits */
369
370 /* and merge with old buffer contents */
371 put_buffer |= entropy->saved.put_buffer;
372
373 while (put_bits >= 8) {
374 int c = (int) ((put_buffer >> 16) & 0xFF);
375
376 emit_byte_e(entropy, c);
377 if (c == 0xFF) { /* need to stuff a zero byte? */
378 emit_byte_e(entropy, 0);
379 }
380 put_buffer <<= 8;
381 put_bits -= 8;
382 }
383
384 entropy->saved.put_buffer = put_buffer; /* update variables */
385 entropy->saved.put_bits = put_bits;
386 }
387
388
389 LOCAL(boolean)
flush_bits_s(working_state * state)390 flush_bits_s (working_state * state)
391 {
392 if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */
393 return FALSE;
394 state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
395 state->cur.put_bits = 0;
396 return TRUE;
397 }
398
399
400 LOCAL(void)
flush_bits_e(huff_entropy_ptr entropy)401 flush_bits_e (huff_entropy_ptr entropy)
402 {
403 emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */
404 entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */
405 entropy->saved.put_bits = 0;
406 }
407
408
409 /*
410 * Emit (or just count) a Huffman symbol.
411 */
412
413 INLINE
LOCAL(void)414 LOCAL(void)
415 emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
416 {
417 if (entropy->gather_statistics)
418 entropy->dc_count_ptrs[tbl_no][symbol]++;
419 else {
420 c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no];
421 emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
422 }
423 }
424
425
426 INLINE
LOCAL(void)427 LOCAL(void)
428 emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol)
429 {
430 if (entropy->gather_statistics)
431 entropy->ac_count_ptrs[tbl_no][symbol]++;
432 else {
433 c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no];
434 emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
435 }
436 }
437
438
439 /*
440 * Emit bits from a correction bit buffer.
441 */
442
443 LOCAL(void)
emit_buffered_bits(huff_entropy_ptr entropy,char * bufstart,unsigned int nbits)444 emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart,
445 unsigned int nbits)
446 {
447 if (entropy->gather_statistics)
448 return; /* no real work */
449
450 while (nbits > 0) {
451 emit_bits_e(entropy, (unsigned int) (*bufstart), 1);
452 bufstart++;
453 nbits--;
454 }
455 }
456
457
458 /*
459 * Emit any pending EOBRUN symbol.
460 */
461
462 LOCAL(void)
emit_eobrun(huff_entropy_ptr entropy)463 emit_eobrun (huff_entropy_ptr entropy)
464 {
465 register int temp, nbits;
466
467 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
468 temp = entropy->EOBRUN;
469 nbits = 0;
470 while ((temp >>= 1))
471 nbits++;
472 /* safety check: shouldn't happen given limited correction-bit buffer */
473 if (nbits > 14)
474 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
475
476 emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
477 if (nbits)
478 emit_bits_e(entropy, entropy->EOBRUN, nbits);
479
480 entropy->EOBRUN = 0;
481
482 /* Emit any buffered correction bits */
483 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
484 entropy->BE = 0;
485 }
486 }
487
488
489 /*
490 * Emit a restart marker & resynchronize predictions.
491 */
492
493 LOCAL(boolean)
emit_restart_s(working_state * state,int restart_num)494 emit_restart_s (working_state * state, int restart_num)
495 {
496 int ci;
497
498 if (! flush_bits_s(state))
499 return FALSE;
500
501 emit_byte_s(state, 0xFF, return FALSE);
502 emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE);
503
504 /* Re-initialize DC predictions to 0 */
505 for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
506 state->cur.last_dc_val[ci] = 0;
507
508 /* The restart counter is not updated until we successfully write the MCU. */
509
510 return TRUE;
511 }
512
513
514 LOCAL(void)
emit_restart_e(huff_entropy_ptr entropy,int restart_num)515 emit_restart_e (huff_entropy_ptr entropy, int restart_num)
516 {
517 int ci;
518
519 emit_eobrun(entropy);
520
521 if (! entropy->gather_statistics) {
522 flush_bits_e(entropy);
523 emit_byte_e(entropy, 0xFF);
524 emit_byte_e(entropy, JPEG_RST0 + restart_num);
525 }
526
527 if (entropy->cinfo->Ss == 0) {
528 /* Re-initialize DC predictions to 0 */
529 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
530 entropy->saved.last_dc_val[ci] = 0;
531 } else {
532 /* Re-initialize all AC-related fields to 0 */
533 entropy->EOBRUN = 0;
534 entropy->BE = 0;
535 }
536 }
537
538
539 /*
540 * MCU encoding for DC initial scan (either spectral selection,
541 * or first pass of successive approximation).
542 */
543
544 METHODDEF(boolean)
encode_mcu_DC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)545 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
546 {
547 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
548 register int temp, temp2;
549 register int nbits;
550 int blkn, ci, tbl;
551 ISHIFT_TEMPS
552
553 entropy->next_output_byte = cinfo->dest->next_output_byte;
554 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
555
556 /* Emit restart marker if needed */
557 if (cinfo->restart_interval)
558 if (entropy->restarts_to_go == 0)
559 emit_restart_e(entropy, entropy->next_restart_num);
560
561 /* Encode the MCU data blocks */
562 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563 ci = cinfo->MCU_membership[blkn];
564 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
565
566 /* Compute the DC value after the required point transform by Al.
567 * This is simply an arithmetic right shift.
568 */
569 temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
570
571 /* DC differences are figured on the point-transformed values. */
572 temp2 = temp - entropy->saved.last_dc_val[ci];
573 entropy->saved.last_dc_val[ci] = temp;
574
575 /* Encode the DC coefficient difference per section G.1.2.1 */
576 temp = temp2;
577 if (temp < 0) {
578 temp = -temp; /* temp is abs value of input */
579 /* For a negative input, want temp2 = bitwise complement of abs(input) */
580 /* This code assumes we are on a two's complement machine */
581 temp2--;
582 }
583
584 /* Find the number of bits needed for the magnitude of the coefficient */
585 nbits = 0;
586 while (temp) {
587 nbits++;
588 temp >>= 1;
589 }
590 /* Check for out-of-range coefficient values.
591 * Since we're encoding a difference, the range limit is twice as much.
592 */
593 if (nbits > MAX_COEF_BITS+1)
594 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
595
596 /* Count/emit the Huffman-coded symbol for the number of bits */
597 emit_dc_symbol(entropy, tbl, nbits);
598
599 /* Emit that number of bits of the value, if positive, */
600 /* or the complement of its magnitude, if negative. */
601 if (nbits) /* emit_bits rejects calls with size 0 */
602 emit_bits_e(entropy, (unsigned int) temp2, nbits);
603 }
604
605 cinfo->dest->next_output_byte = entropy->next_output_byte;
606 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
607
608 /* Update restart-interval state too */
609 if (cinfo->restart_interval) {
610 if (entropy->restarts_to_go == 0) {
611 entropy->restarts_to_go = cinfo->restart_interval;
612 entropy->next_restart_num++;
613 entropy->next_restart_num &= 7;
614 }
615 entropy->restarts_to_go--;
616 }
617
618 return TRUE;
619 }
620
621
622 /*
623 * MCU encoding for AC initial scan (either spectral selection,
624 * or first pass of successive approximation).
625 */
626
627 METHODDEF(boolean)
encode_mcu_AC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)628 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
629 {
630 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
631 const int * natural_order;
632 JBLOCKROW block;
633 register int temp, temp2;
634 register int nbits;
635 register int r, k;
636 int Se, Al;
637
638 entropy->next_output_byte = cinfo->dest->next_output_byte;
639 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
640
641 /* Emit restart marker if needed */
642 if (cinfo->restart_interval)
643 if (entropy->restarts_to_go == 0)
644 emit_restart_e(entropy, entropy->next_restart_num);
645
646 Se = cinfo->Se;
647 Al = cinfo->Al;
648 natural_order = cinfo->natural_order;
649
650 /* Encode the MCU data block */
651 block = MCU_data[0];
652
653 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
654
655 r = 0; /* r = run length of zeros */
656
657 for (k = cinfo->Ss; k <= Se; k++) {
658 if ((temp = (*block)[natural_order[k]]) == 0) {
659 r++;
660 continue;
661 }
662 /* We must apply the point transform by Al. For AC coefficients this
663 * is an integer division with rounding towards 0. To do this portably
664 * in C, we shift after obtaining the absolute value; so the code is
665 * interwoven with finding the abs value (temp) and output bits (temp2).
666 */
667 if (temp < 0) {
668 temp = -temp; /* temp is abs value of input */
669 temp >>= Al; /* apply the point transform */
670 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
671 temp2 = ~temp;
672 } else {
673 temp >>= Al; /* apply the point transform */
674 temp2 = temp;
675 }
676 /* Watch out for case that nonzero coef is zero after point transform */
677 if (temp == 0) {
678 r++;
679 continue;
680 }
681
682 /* Emit any pending EOBRUN */
683 if (entropy->EOBRUN > 0)
684 emit_eobrun(entropy);
685 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
686 while (r > 15) {
687 emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
688 r -= 16;
689 }
690
691 /* Find the number of bits needed for the magnitude of the coefficient */
692 nbits = 1; /* there must be at least one 1 bit */
693 while ((temp >>= 1))
694 nbits++;
695 /* Check for out-of-range coefficient values */
696 if (nbits > MAX_COEF_BITS)
697 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
698
699 /* Count/emit Huffman symbol for run length / number of bits */
700 emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
701
702 /* Emit that number of bits of the value, if positive, */
703 /* or the complement of its magnitude, if negative. */
704 emit_bits_e(entropy, (unsigned int) temp2, nbits);
705
706 r = 0; /* reset zero run length */
707 }
708
709 if (r > 0) { /* If there are trailing zeroes, */
710 entropy->EOBRUN++; /* count an EOB */
711 if (entropy->EOBRUN == 0x7FFF)
712 emit_eobrun(entropy); /* force it out to avoid overflow */
713 }
714
715 cinfo->dest->next_output_byte = entropy->next_output_byte;
716 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
717
718 /* Update restart-interval state too */
719 if (cinfo->restart_interval) {
720 if (entropy->restarts_to_go == 0) {
721 entropy->restarts_to_go = cinfo->restart_interval;
722 entropy->next_restart_num++;
723 entropy->next_restart_num &= 7;
724 }
725 entropy->restarts_to_go--;
726 }
727
728 return TRUE;
729 }
730
731
732 /*
733 * MCU encoding for DC successive approximation refinement scan.
734 * Note: we assume such scans can be multi-component,
735 * although the spec is not very clear on the point.
736 */
737
738 METHODDEF(boolean)
encode_mcu_DC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)739 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
740 {
741 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
742 int Al, blkn;
743
744 entropy->next_output_byte = cinfo->dest->next_output_byte;
745 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
746
747 /* Emit restart marker if needed */
748 if (cinfo->restart_interval)
749 if (entropy->restarts_to_go == 0)
750 emit_restart_e(entropy, entropy->next_restart_num);
751
752 Al = cinfo->Al;
753
754 /* Encode the MCU data blocks */
755 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
756 /* We simply emit the Al'th bit of the DC coefficient value. */
757 emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1);
758 }
759
760 cinfo->dest->next_output_byte = entropy->next_output_byte;
761 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
762
763 /* Update restart-interval state too */
764 if (cinfo->restart_interval) {
765 if (entropy->restarts_to_go == 0) {
766 entropy->restarts_to_go = cinfo->restart_interval;
767 entropy->next_restart_num++;
768 entropy->next_restart_num &= 7;
769 }
770 entropy->restarts_to_go--;
771 }
772
773 return TRUE;
774 }
775
776
777 /*
778 * MCU encoding for AC successive approximation refinement scan.
779 */
780
781 METHODDEF(boolean)
encode_mcu_AC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)782 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
783 {
784 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
785 const int * natural_order;
786 JBLOCKROW block;
787 register int temp;
788 register int r, k;
789 int Se, Al;
790 int EOB;
791 char *BR_buffer;
792 unsigned int BR;
793 int absvalues[DCTSIZE2];
794
795 entropy->next_output_byte = cinfo->dest->next_output_byte;
796 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
797
798 /* Emit restart marker if needed */
799 if (cinfo->restart_interval)
800 if (entropy->restarts_to_go == 0)
801 emit_restart_e(entropy, entropy->next_restart_num);
802
803 Se = cinfo->Se;
804 Al = cinfo->Al;
805 natural_order = cinfo->natural_order;
806
807 /* Encode the MCU data block */
808 block = MCU_data[0];
809
810 /* It is convenient to make a pre-pass to determine the transformed
811 * coefficients' absolute values and the EOB position.
812 */
813 EOB = 0;
814 for (k = cinfo->Ss; k <= Se; k++) {
815 temp = (*block)[natural_order[k]];
816 /* We must apply the point transform by Al. For AC coefficients this
817 * is an integer division with rounding towards 0. To do this portably
818 * in C, we shift after obtaining the absolute value.
819 */
820 if (temp < 0)
821 temp = -temp; /* temp is abs value of input */
822 temp >>= Al; /* apply the point transform */
823 absvalues[k] = temp; /* save abs value for main pass */
824 if (temp == 1)
825 EOB = k; /* EOB = index of last newly-nonzero coef */
826 }
827
828 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
829
830 r = 0; /* r = run length of zeros */
831 BR = 0; /* BR = count of buffered bits added now */
832 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
833
834 for (k = cinfo->Ss; k <= Se; k++) {
835 if ((temp = absvalues[k]) == 0) {
836 r++;
837 continue;
838 }
839
840 /* Emit any required ZRLs, but not if they can be folded into EOB */
841 while (r > 15 && k <= EOB) {
842 /* emit any pending EOBRUN and the BE correction bits */
843 emit_eobrun(entropy);
844 /* Emit ZRL */
845 emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0);
846 r -= 16;
847 /* Emit buffered correction bits that must be associated with ZRL */
848 emit_buffered_bits(entropy, BR_buffer, BR);
849 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
850 BR = 0;
851 }
852
853 /* If the coef was previously nonzero, it only needs a correction bit.
854 * NOTE: a straight translation of the spec's figure G.7 would suggest
855 * that we also need to test r > 15. But if r > 15, we can only get here
856 * if k > EOB, which implies that this coefficient is not 1.
857 */
858 if (temp > 1) {
859 /* The correction bit is the next bit of the absolute value. */
860 BR_buffer[BR++] = (char) (temp & 1);
861 continue;
862 }
863
864 /* Emit any pending EOBRUN and the BE correction bits */
865 emit_eobrun(entropy);
866
867 /* Count/emit Huffman symbol for run length / number of bits */
868 emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
869
870 /* Emit output bit for newly-nonzero coef */
871 temp = ((*block)[natural_order[k]] < 0) ? 0 : 1;
872 emit_bits_e(entropy, (unsigned int) temp, 1);
873
874 /* Emit buffered correction bits that must be associated with this code */
875 emit_buffered_bits(entropy, BR_buffer, BR);
876 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
877 BR = 0;
878 r = 0; /* reset zero run length */
879 }
880
881 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
882 entropy->EOBRUN++; /* count an EOB */
883 entropy->BE += BR; /* concat my correction bits to older ones */
884 /* We force out the EOB if we risk either:
885 * 1. overflow of the EOB counter;
886 * 2. overflow of the correction bit buffer during the next MCU.
887 */
888 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
889 emit_eobrun(entropy);
890 }
891
892 cinfo->dest->next_output_byte = entropy->next_output_byte;
893 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
894
895 /* Update restart-interval state too */
896 if (cinfo->restart_interval) {
897 if (entropy->restarts_to_go == 0) {
898 entropy->restarts_to_go = cinfo->restart_interval;
899 entropy->next_restart_num++;
900 entropy->next_restart_num &= 7;
901 }
902 entropy->restarts_to_go--;
903 }
904
905 return TRUE;
906 }
907
908
909 /* Encode a single block's worth of coefficients */
910
911 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)912 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
913 c_derived_tbl *dctbl, c_derived_tbl *actbl)
914 {
915 register int temp, temp2;
916 register int nbits;
917 register int r, k;
918 int Se = state->cinfo->lim_Se;
919 const int * natural_order = state->cinfo->natural_order;
920
921 /* Encode the DC coefficient difference per section F.1.2.1 */
922
923 temp = temp2 = block[0] - last_dc_val;
924
925 if (temp < 0) {
926 temp = -temp; /* temp is abs value of input */
927 /* For a negative input, want temp2 = bitwise complement of abs(input) */
928 /* This code assumes we are on a two's complement machine */
929 temp2--;
930 }
931
932 /* Find the number of bits needed for the magnitude of the coefficient */
933 nbits = 0;
934 while (temp) {
935 nbits++;
936 temp >>= 1;
937 }
938 /* Check for out-of-range coefficient values.
939 * Since we're encoding a difference, the range limit is twice as much.
940 */
941 if (nbits > MAX_COEF_BITS+1)
942 ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
943
944 /* Emit the Huffman-coded symbol for the number of bits */
945 if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
946 return FALSE;
947
948 /* Emit that number of bits of the value, if positive, */
949 /* or the complement of its magnitude, if negative. */
950 if (nbits) /* emit_bits rejects calls with size 0 */
951 if (! emit_bits_s(state, (unsigned int) temp2, nbits))
952 return FALSE;
953
954 /* Encode the AC coefficients per section F.1.2.2 */
955
956 r = 0; /* r = run length of zeros */
957
958 for (k = 1; k <= Se; k++) {
959 if ((temp2 = block[natural_order[k]]) == 0) {
960 r++;
961 } else {
962 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
963 while (r > 15) {
964 if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
965 return FALSE;
966 r -= 16;
967 }
968
969 temp = temp2;
970 if (temp < 0) {
971 temp = -temp; /* temp is abs value of input */
972 /* This code assumes we are on a two's complement machine */
973 temp2--;
974 }
975
976 /* Find the number of bits needed for the magnitude of the coefficient */
977 nbits = 1; /* there must be at least one 1 bit */
978 while ((temp >>= 1))
979 nbits++;
980 /* Check for out-of-range coefficient values */
981 if (nbits > MAX_COEF_BITS)
982 ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
983
984 /* Emit Huffman symbol for run length / number of bits */
985 temp = (r << 4) + nbits;
986 if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp]))
987 return FALSE;
988
989 /* Emit that number of bits of the value, if positive, */
990 /* or the complement of its magnitude, if negative. */
991 if (! emit_bits_s(state, (unsigned int) temp2, nbits))
992 return FALSE;
993
994 r = 0;
995 }
996 }
997
998 /* If the last coef(s) were zero, emit an end-of-block code */
999 if (r > 0)
1000 if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0]))
1001 return FALSE;
1002
1003 return TRUE;
1004 }
1005
1006
1007 /*
1008 * Encode and output one MCU's worth of Huffman-compressed coefficients.
1009 */
1010
1011 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)1012 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
1013 {
1014 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1015 working_state state;
1016 int blkn, ci;
1017 jpeg_component_info * compptr;
1018
1019 /* Load up working state */
1020 state.next_output_byte = cinfo->dest->next_output_byte;
1021 state.free_in_buffer = cinfo->dest->free_in_buffer;
1022 ASSIGN_STATE(state.cur, entropy->saved);
1023 state.cinfo = cinfo;
1024
1025 /* Emit restart marker if needed */
1026 if (cinfo->restart_interval) {
1027 if (entropy->restarts_to_go == 0)
1028 if (! emit_restart_s(&state, entropy->next_restart_num))
1029 return FALSE;
1030 }
1031
1032 /* Encode the MCU data blocks */
1033 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1034 ci = cinfo->MCU_membership[blkn];
1035 compptr = cinfo->cur_comp_info[ci];
1036 if (! encode_one_block(&state,
1037 MCU_data[blkn][0], state.cur.last_dc_val[ci],
1038 entropy->dc_derived_tbls[compptr->dc_tbl_no],
1039 entropy->ac_derived_tbls[compptr->ac_tbl_no]))
1040 return FALSE;
1041 /* Update last_dc_val */
1042 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
1043 }
1044
1045 /* Completed MCU, so update state */
1046 cinfo->dest->next_output_byte = state.next_output_byte;
1047 cinfo->dest->free_in_buffer = state.free_in_buffer;
1048 ASSIGN_STATE(entropy->saved, state.cur);
1049
1050 /* Update restart-interval state too */
1051 if (cinfo->restart_interval) {
1052 if (entropy->restarts_to_go == 0) {
1053 entropy->restarts_to_go = cinfo->restart_interval;
1054 entropy->next_restart_num++;
1055 entropy->next_restart_num &= 7;
1056 }
1057 entropy->restarts_to_go--;
1058 }
1059
1060 return TRUE;
1061 }
1062
1063
1064 /*
1065 * Finish up at the end of a Huffman-compressed scan.
1066 */
1067
1068 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)1069 finish_pass_huff (j_compress_ptr cinfo)
1070 {
1071 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1072 working_state state;
1073
1074 if (cinfo->progressive_mode) {
1075 entropy->next_output_byte = cinfo->dest->next_output_byte;
1076 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
1077
1078 /* Flush out any buffered data */
1079 emit_eobrun(entropy);
1080 flush_bits_e(entropy);
1081
1082 cinfo->dest->next_output_byte = entropy->next_output_byte;
1083 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
1084 } else {
1085 /* Load up working state ... flush_bits needs it */
1086 state.next_output_byte = cinfo->dest->next_output_byte;
1087 state.free_in_buffer = cinfo->dest->free_in_buffer;
1088 ASSIGN_STATE(state.cur, entropy->saved);
1089 state.cinfo = cinfo;
1090
1091 /* Flush out the last data */
1092 if (! flush_bits_s(&state))
1093 ERREXIT(cinfo, JERR_CANT_SUSPEND);
1094
1095 /* Update state */
1096 cinfo->dest->next_output_byte = state.next_output_byte;
1097 cinfo->dest->free_in_buffer = state.free_in_buffer;
1098 ASSIGN_STATE(entropy->saved, state.cur);
1099 }
1100 }
1101
1102
1103 /*
1104 * Huffman coding optimization.
1105 *
1106 * We first scan the supplied data and count the number of uses of each symbol
1107 * that is to be Huffman-coded. (This process MUST agree with the code above.)
1108 * Then we build a Huffman coding tree for the observed counts.
1109 * Symbols which are not needed at all for the particular image are not
1110 * assigned any code, which saves space in the DHT marker as well as in
1111 * the compressed data.
1112 */
1113
1114
1115 /* Process a single block's worth of coefficients */
1116
1117 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])1118 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
1119 long dc_counts[], long ac_counts[])
1120 {
1121 register int temp;
1122 register int nbits;
1123 register int r, k;
1124 int Se = cinfo->lim_Se;
1125 const int * natural_order = cinfo->natural_order;
1126
1127 /* Encode the DC coefficient difference per section F.1.2.1 */
1128
1129 temp = block[0] - last_dc_val;
1130 if (temp < 0)
1131 temp = -temp;
1132
1133 /* Find the number of bits needed for the magnitude of the coefficient */
1134 nbits = 0;
1135 while (temp) {
1136 nbits++;
1137 temp >>= 1;
1138 }
1139 /* Check for out-of-range coefficient values.
1140 * Since we're encoding a difference, the range limit is twice as much.
1141 */
1142 if (nbits > MAX_COEF_BITS+1)
1143 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1144
1145 /* Count the Huffman symbol for the number of bits */
1146 dc_counts[nbits]++;
1147
1148 /* Encode the AC coefficients per section F.1.2.2 */
1149
1150 r = 0; /* r = run length of zeros */
1151
1152 for (k = 1; k <= Se; k++) {
1153 if ((temp = block[natural_order[k]]) == 0) {
1154 r++;
1155 } else {
1156 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
1157 while (r > 15) {
1158 ac_counts[0xF0]++;
1159 r -= 16;
1160 }
1161
1162 /* Find the number of bits needed for the magnitude of the coefficient */
1163 if (temp < 0)
1164 temp = -temp;
1165
1166 /* Find the number of bits needed for the magnitude of the coefficient */
1167 nbits = 1; /* there must be at least one 1 bit */
1168 while ((temp >>= 1))
1169 nbits++;
1170 /* Check for out-of-range coefficient values */
1171 if (nbits > MAX_COEF_BITS)
1172 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
1173
1174 /* Count Huffman symbol for run length / number of bits */
1175 ac_counts[(r << 4) + nbits]++;
1176
1177 r = 0;
1178 }
1179 }
1180
1181 /* If the last coef(s) were zero, emit an end-of-block code */
1182 if (r > 0)
1183 ac_counts[0]++;
1184 }
1185
1186
1187 /*
1188 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
1189 * No data is actually output, so no suspension return is possible.
1190 */
1191
1192 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)1193 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
1194 {
1195 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1196 int blkn, ci;
1197 jpeg_component_info * compptr;
1198
1199 /* Take care of restart intervals if needed */
1200 if (cinfo->restart_interval) {
1201 if (entropy->restarts_to_go == 0) {
1202 /* Re-initialize DC predictions to 0 */
1203 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
1204 entropy->saved.last_dc_val[ci] = 0;
1205 /* Update restart state */
1206 entropy->restarts_to_go = cinfo->restart_interval;
1207 }
1208 entropy->restarts_to_go--;
1209 }
1210
1211 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1212 ci = cinfo->MCU_membership[blkn];
1213 compptr = cinfo->cur_comp_info[ci];
1214 htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
1215 entropy->dc_count_ptrs[compptr->dc_tbl_no],
1216 entropy->ac_count_ptrs[compptr->ac_tbl_no]);
1217 entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
1218 }
1219
1220 return TRUE;
1221 }
1222
1223
1224 /*
1225 * Generate the best Huffman code table for the given counts, fill htbl.
1226 *
1227 * The JPEG standard requires that no symbol be assigned a codeword of all
1228 * one bits (so that padding bits added at the end of a compressed segment
1229 * can't look like a valid code). Because of the canonical ordering of
1230 * codewords, this just means that there must be an unused slot in the
1231 * longest codeword length category. Section K.2 of the JPEG spec suggests
1232 * reserving such a slot by pretending that symbol 256 is a valid symbol
1233 * with count 1. In theory that's not optimal; giving it count zero but
1234 * including it in the symbol set anyway should give a better Huffman code.
1235 * But the theoretically better code actually seems to come out worse in
1236 * practice, because it produces more all-ones bytes (which incur stuffed
1237 * zero bytes in the final file). In any case the difference is tiny.
1238 *
1239 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
1240 * If some symbols have a very small but nonzero probability, the Huffman tree
1241 * must be adjusted to meet the code length restriction. We currently use
1242 * the adjustment method suggested in JPEG section K.2. This method is *not*
1243 * optimal; it may not choose the best possible limited-length code. But
1244 * typically only very-low-frequency symbols will be given less-than-optimal
1245 * lengths, so the code is almost optimal. Experimental comparisons against
1246 * an optimal limited-length-code algorithm indicate that the difference is
1247 * microscopic --- usually less than a hundredth of a percent of total size.
1248 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
1249 */
1250
1251 LOCAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])1252 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
1253 {
1254 #define MAX_CLEN 32 /* assumed maximum initial code length */
1255 UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
1256 int codesize[257]; /* codesize[k] = code length of symbol k */
1257 int others[257]; /* next symbol in current branch of tree */
1258 int c1, c2, i, j;
1259 UINT8 *p;
1260 long v;
1261
1262 freq[256] = 1; /* make sure 256 has a nonzero count */
1263 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
1264 * that no real symbol is given code-value of all ones, because 256
1265 * will be placed last in the largest codeword category.
1266 * In the symbol list build procedure this element serves as sentinel
1267 * for the zero run loop.
1268 */
1269
1270 #ifndef DONT_USE_FANCY_HUFF_OPT
1271
1272 /* Build list of symbols sorted in order of descending frequency */
1273 /* This approach has several benefits (thank to John Korejwa for the idea):
1274 * 1.
1275 * If a codelength category is split during the length limiting procedure
1276 * below, the feature that more frequent symbols are assigned shorter
1277 * codewords remains valid for the adjusted code.
1278 * 2.
1279 * To reduce consecutive ones in a Huffman data stream (thus reducing the
1280 * number of stuff bytes in JPEG) it is preferable to follow 0 branches
1281 * (and avoid 1 branches) as much as possible. This is easily done by
1282 * assigning symbols to leaves of the Huffman tree in order of decreasing
1283 * frequency, with no secondary sort based on codelengths.
1284 * 3.
1285 * The symbol list can be built independently from the assignment of code
1286 * lengths by the Huffman procedure below.
1287 * Note: The symbol list build procedure must be performed first, because
1288 * the Huffman procedure assigning the codelengths clobbers the frequency
1289 * counts!
1290 */
1291
1292 /* Here we use the others array as a linked list of nonzero frequencies
1293 * to be sorted. Already sorted elements are removed from the list.
1294 */
1295
1296 /* Building list */
1297
1298 /* This item does not correspond to a valid symbol frequency and is used
1299 * as starting index.
1300 */
1301 j = 256;
1302
1303 for (i = 0;; i++) {
1304 if (freq[i] == 0) /* skip zero frequencies */
1305 continue;
1306 if (i > 255)
1307 break;
1308 others[j] = i; /* this symbol value */
1309 j = i; /* previous symbol value */
1310 }
1311 others[j] = -1; /* mark end of list */
1312
1313 /* Sorting list */
1314
1315 p = htbl->huffval;
1316 while ((c1 = others[256]) >= 0) {
1317 v = freq[c1];
1318 i = c1; /* first symbol value */
1319 j = 256; /* pseudo symbol value for starting index */
1320 while ((c2 = others[c1]) >= 0) {
1321 if (freq[c2] > v) {
1322 v = freq[c2];
1323 i = c2; /* this symbol value */
1324 j = c1; /* previous symbol value */
1325 }
1326 c1 = c2;
1327 }
1328 others[j] = others[i]; /* remove this symbol i from list */
1329 *p++ = (UINT8) i;
1330 }
1331
1332 #endif /* DONT_USE_FANCY_HUFF_OPT */
1333
1334 /* This algorithm is explained in section K.2 of the JPEG standard */
1335
1336 MEMZERO(bits, SIZEOF(bits));
1337 MEMZERO(codesize, SIZEOF(codesize));
1338 for (i = 0; i < 257; i++)
1339 others[i] = -1; /* init links to empty */
1340
1341 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
1342
1343 for (;;) {
1344 /* Find the smallest nonzero frequency, set c1 = its symbol */
1345 /* In case of ties, take the larger symbol number */
1346 c1 = -1;
1347 v = 1000000000L;
1348 for (i = 0; i <= 256; i++) {
1349 if (freq[i] && freq[i] <= v) {
1350 v = freq[i];
1351 c1 = i;
1352 }
1353 }
1354
1355 /* Find the next smallest nonzero frequency, set c2 = its symbol */
1356 /* In case of ties, take the larger symbol number */
1357 c2 = -1;
1358 v = 1000000000L;
1359 for (i = 0; i <= 256; i++) {
1360 if (freq[i] && freq[i] <= v && i != c1) {
1361 v = freq[i];
1362 c2 = i;
1363 }
1364 }
1365
1366 /* Done if we've merged everything into one frequency */
1367 if (c2 < 0)
1368 break;
1369
1370 /* Else merge the two counts/trees */
1371 freq[c1] += freq[c2];
1372 freq[c2] = 0;
1373
1374 /* Increment the codesize of everything in c1's tree branch */
1375 codesize[c1]++;
1376 while (others[c1] >= 0) {
1377 c1 = others[c1];
1378 codesize[c1]++;
1379 }
1380
1381 others[c1] = c2; /* chain c2 onto c1's tree branch */
1382
1383 /* Increment the codesize of everything in c2's tree branch */
1384 codesize[c2]++;
1385 while (others[c2] >= 0) {
1386 c2 = others[c2];
1387 codesize[c2]++;
1388 }
1389 }
1390
1391 /* Now count the number of symbols of each code length */
1392 for (i = 0; i <= 256; i++) {
1393 if (codesize[i]) {
1394 /* The JPEG standard seems to think that this can't happen, */
1395 /* but I'm paranoid... */
1396 if (codesize[i] > MAX_CLEN)
1397 ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
1398
1399 bits[codesize[i]]++;
1400 }
1401 }
1402
1403 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1404 * Huffman procedure assigned any such lengths, we must adjust the coding.
1405 * Here is what the JPEG spec says about how this next bit works:
1406 * Since symbols are paired for the longest Huffman code, the symbols are
1407 * removed from this length category two at a time. The prefix for the pair
1408 * (which is one bit shorter) is allocated to one of the pair; then,
1409 * skipping the BITS entry for that prefix length, a code word from the next
1410 * shortest nonzero BITS entry is converted into a prefix for two code words
1411 * one bit longer.
1412 */
1413
1414 for (i = MAX_CLEN; i > 16; i--) {
1415 while (bits[i] > 0) {
1416 j = i - 2; /* find length of new prefix to be used */
1417 while (bits[j] == 0) {
1418 if (j == 0)
1419 ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS);
1420 j--;
1421 }
1422
1423 bits[i] -= 2; /* remove two symbols */
1424 bits[i-1]++; /* one goes in this length */
1425 bits[j+1] += 2; /* two new symbols in this length */
1426 bits[j]--; /* symbol of this length is now a prefix */
1427 }
1428 }
1429
1430 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1431 while (bits[i] == 0) /* find largest codelength still in use */
1432 i--;
1433 bits[i]--;
1434
1435 /* Return final symbol counts (only for lengths 0..16) */
1436 MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
1437
1438 #ifdef DONT_USE_FANCY_HUFF_OPT
1439
1440 /* Return a list of the symbols sorted by code length */
1441 /* Note: Due to the codelength changes made above, it can happen
1442 * that more frequent symbols are assigned longer codewords.
1443 */
1444 p = htbl->huffval;
1445 for (i = 1; i <= MAX_CLEN; i++) {
1446 for (j = 0; j <= 255; j++) {
1447 if (codesize[j] == i) {
1448 *p++ = (UINT8) j;
1449 }
1450 }
1451 }
1452
1453 #endif /* DONT_USE_FANCY_HUFF_OPT */
1454
1455 /* Set sent_table FALSE so updated table will be written to JPEG file. */
1456 htbl->sent_table = FALSE;
1457 }
1458
1459
1460 /*
1461 * Finish up a statistics-gathering pass and create the new Huffman tables.
1462 */
1463
1464 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)1465 finish_pass_gather (j_compress_ptr cinfo)
1466 {
1467 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1468 int ci, tbl;
1469 jpeg_component_info * compptr;
1470 JHUFF_TBL **htblptr;
1471 boolean did_dc[NUM_HUFF_TBLS];
1472 boolean did_ac[NUM_HUFF_TBLS];
1473
1474 if (cinfo->progressive_mode)
1475 /* Flush out buffered data (all we care about is counting the EOB symbol) */
1476 emit_eobrun(entropy);
1477
1478 /* It's important not to apply jpeg_gen_optimal_table more than once
1479 * per table, because it clobbers the input frequency counts!
1480 */
1481 MEMZERO(did_dc, SIZEOF(did_dc));
1482 MEMZERO(did_ac, SIZEOF(did_ac));
1483
1484 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1485 compptr = cinfo->cur_comp_info[ci];
1486 /* DC needs no table for refinement scan */
1487 if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1488 tbl = compptr->dc_tbl_no;
1489 if (! did_dc[tbl]) {
1490 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
1491 if (*htblptr == NULL)
1492 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1493 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]);
1494 did_dc[tbl] = TRUE;
1495 }
1496 }
1497 /* AC needs no table when not present */
1498 if (cinfo->Se) {
1499 tbl = compptr->ac_tbl_no;
1500 if (! did_ac[tbl]) {
1501 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
1502 if (*htblptr == NULL)
1503 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
1504 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]);
1505 did_ac[tbl] = TRUE;
1506 }
1507 }
1508 }
1509 }
1510
1511
1512 /*
1513 * Initialize for a Huffman-compressed scan.
1514 * If gather_statistics is TRUE, we do not output anything during the scan,
1515 * just count the Huffman symbols used and generate Huffman code tables.
1516 */
1517
1518 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)1519 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
1520 {
1521 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1522 int ci, tbl;
1523 jpeg_component_info * compptr;
1524
1525 if (gather_statistics)
1526 entropy->pub.finish_pass = finish_pass_gather;
1527 else
1528 entropy->pub.finish_pass = finish_pass_huff;
1529
1530 if (cinfo->progressive_mode) {
1531 entropy->cinfo = cinfo;
1532 entropy->gather_statistics = gather_statistics;
1533
1534 /* We assume jcmaster.c already validated the scan parameters. */
1535
1536 /* Select execution routine */
1537 if (cinfo->Ah == 0) {
1538 if (cinfo->Ss == 0)
1539 entropy->pub.encode_mcu = encode_mcu_DC_first;
1540 else
1541 entropy->pub.encode_mcu = encode_mcu_AC_first;
1542 } else {
1543 if (cinfo->Ss == 0)
1544 entropy->pub.encode_mcu = encode_mcu_DC_refine;
1545 else {
1546 entropy->pub.encode_mcu = encode_mcu_AC_refine;
1547 /* AC refinement needs a correction bit buffer */
1548 if (entropy->bit_buffer == NULL)
1549 entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small)
1550 ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char));
1551 }
1552 }
1553
1554 /* Initialize AC stuff */
1555 entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no;
1556 entropy->EOBRUN = 0;
1557 entropy->BE = 0;
1558 } else {
1559 if (gather_statistics)
1560 entropy->pub.encode_mcu = encode_mcu_gather;
1561 else
1562 entropy->pub.encode_mcu = encode_mcu_huff;
1563 }
1564
1565 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1566 compptr = cinfo->cur_comp_info[ci];
1567 /* DC needs no table for refinement scan */
1568 if (cinfo->Ss == 0 && cinfo->Ah == 0) {
1569 tbl = compptr->dc_tbl_no;
1570 if (gather_statistics) {
1571 /* Check for invalid table index */
1572 /* (make_c_derived_tbl does this in the other path) */
1573 if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1574 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1575 /* Allocate and zero the statistics tables */
1576 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
1577 if (entropy->dc_count_ptrs[tbl] == NULL)
1578 entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
1579 ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
1580 MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long));
1581 } else {
1582 /* Compute derived values for Huffman tables */
1583 /* We may do this more than once for a table, but it's not expensive */
1584 jpeg_make_c_derived_tbl(cinfo, TRUE, tbl,
1585 & entropy->dc_derived_tbls[tbl]);
1586 }
1587 /* Initialize DC predictions to 0 */
1588 entropy->saved.last_dc_val[ci] = 0;
1589 }
1590 /* AC needs no table when not present */
1591 if (cinfo->Se) {
1592 tbl = compptr->ac_tbl_no;
1593 if (gather_statistics) {
1594 if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
1595 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
1596 if (entropy->ac_count_ptrs[tbl] == NULL)
1597 entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small)
1598 ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long));
1599 MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long));
1600 } else {
1601 jpeg_make_c_derived_tbl(cinfo, FALSE, tbl,
1602 & entropy->ac_derived_tbls[tbl]);
1603 }
1604 }
1605 }
1606
1607 /* Initialize bit buffer to empty */
1608 entropy->saved.put_buffer = 0;
1609 entropy->saved.put_bits = 0;
1610
1611 /* Initialize restart stuff */
1612 entropy->restarts_to_go = cinfo->restart_interval;
1613 entropy->next_restart_num = 0;
1614 }
1615
1616
1617 /*
1618 * Module initialization routine for Huffman entropy encoding.
1619 */
1620
1621 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)1622 jinit_huff_encoder (j_compress_ptr cinfo)
1623 {
1624 huff_entropy_ptr entropy;
1625 int i;
1626
1627 entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small)
1628 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder));
1629 cinfo->entropy = &entropy->pub;
1630 entropy->pub.start_pass = start_pass_huff;
1631
1632 /* Mark tables unallocated */
1633 for (i = 0; i < NUM_HUFF_TBLS; i++) {
1634 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1635 entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1636 }
1637
1638 if (cinfo->progressive_mode)
1639 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
1640 }
1641