xref: /netbsd/sys/dev/ic/elink3.c (revision 0756da24)
1 /*	$NetBSD: elink3.c,v 1.153 2021/10/11 02:42:46 rin Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
35  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by Herb Peyerl.
49  * 4. The name of Herb Peyerl may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.153 2021/10/11 02:42:46 rin Exp $");
66 
67 #include "opt_inet.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/callout.h>
72 #include <sys/kernel.h>
73 #include <sys/mbuf.h>
74 #include <sys/socket.h>
75 #include <sys/ioctl.h>
76 #include <sys/errno.h>
77 #include <sys/syslog.h>
78 #include <sys/select.h>
79 #include <sys/device.h>
80 #include <sys/rndsource.h>
81 
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_ether.h>
85 #include <net/if_media.h>
86 #include <net/bpf.h>
87 
88 #include <sys/cpu.h>
89 #include <sys/bus.h>
90 #include <sys/intr.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/ic/elink3var.h>
97 #include <dev/ic/elink3reg.h>
98 
99 #ifdef DEBUG
100 int epdebug = 0;
101 #endif
102 
103 /*
104  * XXX endian workaround for big-endian CPUs  with pcmcia:
105  * if stream methods for bus_space_multi are not provided, define them
106  * using non-stream bus_space_{read,write}_multi_.
107  * Assumes host CPU is same endian-ness as bus.
108  */
109 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
110 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
111 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
112 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
113 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
114 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
115 
116 /*
117  * Structure to map media-present bits in boards to ifmedia codes and
118  * printable media names. Used for table-driven ifmedia initialization.
119  */
120 struct ep_media {
121 	int	epm_mpbit;		/* media present bit */
122 	const char *epm_name;		/* name of medium */
123 	int	epm_ifmedia;		/* ifmedia word for medium */
124 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
125 };
126 
127 /*
128  * Media table for the Demon/Vortex/Boomerang chipsets.
129  *
130  * Note that MII on the Demon and Vortex (3c59x) indicates an external
131  * MII connector (for connecting an external PHY) ... I think.  Treat
132  * it as `manual' on these chips.
133  *
134  * Any Boomerang (3c90x) chips with MII really do have an internal
135  * MII and real PHYs attached; no `native' media.
136  */
137 const struct ep_media ep_vortex_media[] = {
138 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER | IFM_10_T,
139 	  ELINKMEDIA_10BASE_T },
140 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER | IFM_10_T | IFM_FDX,
141 	  ELINKMEDIA_10BASE_T },
142 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER | IFM_10_5,
143 	  ELINKMEDIA_AUI },
144 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER | IFM_10_2,
145 	  ELINKMEDIA_10BASE_2 },
146 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER | IFM_100_TX,
147 	  ELINKMEDIA_100BASE_TX },
148 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER | IFM_100_TX|IFM_FDX,
149 	  ELINKMEDIA_100BASE_TX },
150 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER | IFM_100_FX,
151 	  ELINKMEDIA_100BASE_FX },
152 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER | IFM_MANUAL,
153 	  ELINKMEDIA_MII },
154 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER | IFM_100_T4,
155 	  ELINKMEDIA_100BASE_T4 },
156 	{ 0,			NULL,		0,
157 	  0 },
158 };
159 
160 /*
161  * Media table for the older 3Com Etherlink III chipset, used
162  * in the 3c509, 3c579, and 3c589.
163  */
164 const struct ep_media ep_509_media[] = {
165 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER | IFM_10_T,
166 	  ELINKMEDIA_10BASE_T },
167 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER | IFM_10_5,
168 	  ELINKMEDIA_AUI },
169 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER | IFM_10_2,
170 	  ELINKMEDIA_10BASE_2 },
171 	{ 0,			NULL,		0,
172 	  0 },
173 };
174 
175 void	ep_internalconfig(struct ep_softc *sc);
176 void	ep_vortex_probemedia(struct ep_softc *sc);
177 void	ep_509_probemedia(struct ep_softc *sc);
178 
179 static void eptxstat(struct ep_softc *);
180 static int epstatus(struct ep_softc *);
181 int	epinit(struct ifnet *);
182 void	epstop(struct ifnet *, int);
183 int	epioctl(struct ifnet *, u_long, void *);
184 void	epstart(struct ifnet *);
185 void	epwatchdog(struct ifnet *);
186 void	epreset(struct ep_softc *);
187 static bool epshutdown(device_t, int);
188 void	epread(struct ep_softc *);
189 struct mbuf *epget(struct ep_softc *, int);
190 void	epmbuffill(void *);
191 void	epmbufempty(struct ep_softc *);
192 void	epsetfilter(struct ep_softc *);
193 void	ep_roadrunner_mii_enable(struct ep_softc *);
194 void	epsetmedia(struct ep_softc *);
195 
196 /* ifmedia callbacks */
197 int	ep_media_change(struct ifnet *ifp);
198 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
199 
200 /* MII callbacks */
201 int	ep_mii_readreg(device_t, int, int, uint16_t *);
202 int	ep_mii_writereg(device_t, int, int, uint16_t);
203 void	ep_statchg(struct ifnet *);
204 
205 void	ep_tick(void *);
206 
207 static int epbusyeeprom(struct ep_softc *);
208 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
209 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
210 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
211 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
212 static inline int ep_w1_reg(struct ep_softc *, int);
213 
214 /*
215  * MII bit-bang glue.
216  */
217 u_int32_t ep_mii_bitbang_read(device_t);
218 void ep_mii_bitbang_write(device_t, u_int32_t);
219 
220 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
221 	ep_mii_bitbang_read,
222 	ep_mii_bitbang_write,
223 	{
224 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
225 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
226 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
227 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
228 		0,			/* MII_BIT_DIR_PHY_HOST */
229 	}
230 };
231 
232 /*
233  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
234  * Window 1 registers offset!
235  */
236 static inline int
ep_w1_reg(struct ep_softc * sc,int reg)237 ep_w1_reg(struct ep_softc *sc, int reg)
238 {
239 
240 	switch (sc->ep_chipset) {
241 	case ELINK_CHIPSET_CORKSCREW:
242 		return (reg + 0x10);
243 
244 	case ELINK_CHIPSET_ROADRUNNER:
245 		switch (reg) {
246 		case ELINK_W1_FREE_TX:
247 		case ELINK_W1_RUNNER_RDCTL:
248 		case ELINK_W1_RUNNER_WRCTL:
249 			return (reg);
250 		}
251 		return (reg + 0x10);
252 	}
253 
254 	return (reg);
255 }
256 
257 /*
258  * Wait for any pending reset to complete.
259  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
260  * but older hardware doesn't implement it and we must delay.
261  */
262 static inline void
ep_finish_reset(bus_space_tag_t iot,bus_space_handle_t ioh)263 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
264 {
265 	int i;
266 
267 	for (i = 0; i < 10000; i++) {
268 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
269 		    COMMAND_IN_PROGRESS) == 0)
270 			break;
271 		DELAY(10);
272 	}
273 }
274 
275 /*
276  * Issue a (reset) command, and be sure it has completed.
277  * Used for global reset, TX_RESET, RX_RESET.
278  */
279 static inline void
ep_reset_cmd(struct ep_softc * sc,u_int cmd,u_int arg)280 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
281 {
282 	bus_space_tag_t iot = sc->sc_iot;
283 	bus_space_handle_t ioh = sc->sc_ioh;
284 
285 	bus_space_write_2(iot, ioh, cmd, arg);
286 	ep_finish_reset(iot, ioh);
287 }
288 
289 
290 static inline void
ep_discard_rxtop(bus_space_tag_t iot,bus_space_handle_t ioh)291 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
292 {
293 	int i;
294 
295 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
296 
297         /*
298 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
299 	 * every received packet (adding latency and  limiting pkt-recv rate).
300 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
301 	 * is about right.
302 	 */
303 	for (i = 0; i < 8000; i++) {
304 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
305 		    COMMAND_IN_PROGRESS) == 0)
306 		    return;
307 	}
308 
309 	/*  Didn't complete in a hurry. Do DELAY()s. */
310 	ep_finish_reset(iot, ioh);
311 }
312 
313 /*
314  * Back-end attach and configure.
315  */
316 int
epconfig(struct ep_softc * sc,u_short chipset,u_int8_t * enaddr)317 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
318 {
319 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
320 	bus_space_tag_t iot = sc->sc_iot;
321 	bus_space_handle_t ioh = sc->sc_ioh;
322 	struct mii_data *mii = &sc->sc_mii;
323 	u_int16_t i;
324 	u_int8_t myla[ETHER_ADDR_LEN];
325 
326 	callout_init(&sc->sc_mii_callout, 0);
327 	callout_setfunc(&sc->sc_mii_callout, ep_tick, sc);
328 
329 	callout_init(&sc->sc_mbuf_callout, 0);
330 	callout_setfunc(&sc->sc_mbuf_callout, epmbuffill, sc);
331 
332 	sc->ep_chipset = chipset;
333 
334 	/*
335 	 * We could have been groveling around in other register
336 	 * windows in the front-end; make sure we're in window 0
337 	 * to read the EEPROM.
338 	 */
339 	GO_WINDOW(0);
340 
341 	if (enaddr == NULL) {
342 		/*
343 		 * Read the station address from the eeprom.
344 		 */
345 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
346 			u_int16_t x = ep_read_eeprom(sc, i);
347 			myla[(i << 1)] = x >> 8;
348 			myla[(i << 1) + 1] = x;
349 		}
350 		enaddr = myla;
351 	}
352 
353 	/*
354 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
355 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
356 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
357 	 * packet length.
358 	 * Commands to these cards implicitly upshift a packet size
359 	 * or threshold by 2 bits.
360 	 * To detect  cards with large-packet support, we probe by setting
361 	 * the transmit threshold register, then change windows and
362 	 * read back the threshold register directly, and see if the
363 	 * threshold value was shifted or not.
364 	 */
365 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
366 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
367 	GO_WINDOW(5);
368 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
369 	GO_WINDOW(1);
370 	switch (i) {
371 	case ELINK_LARGEWIN_PROBE:
372 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
373 		sc->ep_pktlenshift = 0;
374 		break;
375 
376 	case (ELINK_LARGEWIN_PROBE << 2):
377 		sc->ep_pktlenshift = 2;
378 		break;
379 
380 	default:
381 		aprint_error_dev(sc->sc_dev,
382 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
383 		    "Interface disabled\n",
384 		    ELINK_LARGEWIN_PROBE, (int) i);
385 		return (1);
386 	}
387 
388 	/*
389 	 * Ensure Tx-available interrupts are enabled for
390 	 * start the interface.
391 	 * XXX should be in epinit()?
392 	 */
393 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
394 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
395 
396 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
397 	ifp->if_softc = sc;
398 	ifp->if_start = epstart;
399 	ifp->if_ioctl = epioctl;
400 	ifp->if_watchdog = epwatchdog;
401 	ifp->if_init = epinit;
402 	ifp->if_stop = epstop;
403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
404 	IFQ_SET_READY(&ifp->if_snd);
405 
406 	if_attach(ifp);
407 	ether_ifattach(ifp, enaddr);
408 
409 	/*
410 	 * Finish configuration:
411 	 * determine chipset if the front-end couldn't do so,
412 	 * show board details, set media.
413 	 */
414 
415 	/*
416 	 * Print RAM size.  We also print the Ethernet address in here.
417 	 * It's extracted from the ifp, so we have to make sure it's
418 	 * been attached first.
419 	 */
420 	ep_internalconfig(sc);
421 	GO_WINDOW(0);
422 
423 	/*
424 	 * Display some additional information, if pertinent.
425 	 */
426 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
427 		aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
428 
429 	/*
430 	 * Initialize our media structures and MII info.  We'll
431 	 * probe the MII if we discover that we have one.
432 	 */
433 	mii->mii_ifp = ifp;
434 	mii->mii_readreg = ep_mii_readreg;
435 	mii->mii_writereg = ep_mii_writereg;
436 	mii->mii_statchg = ep_statchg;
437 	sc->sc_ethercom.ec_mii = mii;
438 	ifmedia_init(&mii->mii_media, IFM_IMASK, ep_media_change,
439 	    ep_media_status);
440 
441 	/*
442 	 * All CORKSCREW chips have MII.
443 	 */
444 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
445 		sc->ep_flags |= ELINK_FLAGS_MII;
446 
447 	/*
448 	 * Now, determine which media we have.
449 	 */
450 	switch (sc->ep_chipset) {
451 	case ELINK_CHIPSET_ROADRUNNER:
452 		if (sc->ep_flags & ELINK_FLAGS_MII) {
453 			ep_roadrunner_mii_enable(sc);
454 			GO_WINDOW(0);
455 		}
456 		/* FALLTHROUGH */
457 
458 	case ELINK_CHIPSET_CORKSCREW:
459 	case ELINK_CHIPSET_BOOMERANG:
460 		/*
461 		 * If the device has MII, probe it.  We won't be using
462 		 * any `native' media in this case, only PHYs.  If
463 		 * we don't, just treat the Boomerang like the Vortex.
464 		 */
465 		if (sc->ep_flags & ELINK_FLAGS_MII) {
466 			mii_attach(sc->sc_dev, mii, 0xffffffff,
467 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
468 			if (LIST_FIRST(&mii->mii_phys) == NULL) {
469 				ifmedia_add(&mii->mii_media,
470 				    IFM_ETHER | IFM_NONE, 0, NULL);
471 				ifmedia_set(&mii->mii_media,
472 				    IFM_ETHER | IFM_NONE);
473 			} else {
474 				ifmedia_set(&mii->mii_media,
475 				    IFM_ETHER | IFM_AUTO);
476 			}
477 			break;
478 		}
479 		/* FALLTHROUGH */
480 
481 	case ELINK_CHIPSET_VORTEX:
482 		ep_vortex_probemedia(sc);
483 		break;
484 
485 	default:
486 		ep_509_probemedia(sc);
487 		break;
488 	}
489 
490 	GO_WINDOW(1);		/* Window 1 is operating window */
491 
492 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
493 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
494 
495 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
496 
497 	/*  Establish callback to reset card when we reboot. */
498 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
499 		pmf_class_network_register(sc->sc_dev, ifp);
500 	else
501 		aprint_error_dev(sc->sc_dev,
502 		    "couldn't establish power handler\n");
503 
504 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
505 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
506 
507 	/* The attach is successful. */
508 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
509 	return (0);
510 }
511 
512 
513 /*
514  * Show interface-model-independent info from window 3
515  * internal-configuration register.
516  */
517 void
ep_internalconfig(struct ep_softc * sc)518 ep_internalconfig(struct ep_softc *sc)
519 {
520 	bus_space_tag_t iot = sc->sc_iot;
521 	bus_space_handle_t ioh = sc->sc_ioh;
522 
523 	u_int config0;
524 	u_int config1;
525 
526 	int  ram_size, ram_width, ram_split;
527 	/*
528 	 * NVRAM buffer Rx:Tx config names for busmastering cards
529 	 * (Demon, Vortex, and later).
530 	 */
531 	const char *const onboard_ram_config[] = {
532 		"5:3", "3:1", "1:1", "3:5" };
533 
534 	GO_WINDOW(3);
535 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
536 	config1 = (u_int)bus_space_read_2(iot, ioh,
537 	    ELINK_W3_INTERNAL_CONFIG + 2);
538 	GO_WINDOW(0);
539 
540 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
541 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
542 
543 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
544 
545 	aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
546 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
547 	       8 << ram_size,
548 	       (ram_width) ? "word" : "byte",
549 	       onboard_ram_config[ram_split]);
550 }
551 
552 
553 /*
554  * Find supported media on 3c509-generation hardware that doesn't have
555  * a "reset_options" register in window 3.
556  * Use the config_cntrl register  in window 0 instead.
557  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
558  * that implement  CONFIG_CTRL.  We don't have a good way to set the
559  * default active medium; punt to ifconfig  instead.
560  */
561 void
ep_509_probemedia(struct ep_softc * sc)562 ep_509_probemedia(struct ep_softc *sc)
563 {
564 	bus_space_tag_t iot = sc->sc_iot;
565 	bus_space_handle_t ioh = sc->sc_ioh;
566 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
567 	u_int16_t ep_w0_config, port;
568 	const struct ep_media *epm;
569 	const char *sep = "", *defmedianame = NULL;
570 	int defmedia = 0;
571 
572 	GO_WINDOW(0);
573 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
574 
575 	aprint_normal_dev(sc->sc_dev, "");
576 
577 	/* Sanity check that there are any media! */
578 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
579 		aprint_error("no media present!\n");
580 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
581 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
582 		return;
583 	}
584 
585 	/*
586 	 * Get the default media from the EEPROM.
587 	 */
588 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
589 
590 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
591 
592 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
593 		if (ep_w0_config & epm->epm_mpbit) {
594 			/*
595 			 * This simple test works because 509 chipsets
596 			 * don't do full-duplex.
597 			 */
598 			if (epm->epm_epmedia == port || defmedia == 0) {
599 				defmedia = epm->epm_ifmedia;
600 				defmedianame = epm->epm_name;
601 			}
602 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
603 			    NULL);
604 			PRINT(epm->epm_name);
605 		}
606 	}
607 
608 #undef PRINT
609 
610 #ifdef DIAGNOSTIC
611 	if (defmedia == 0)
612 		panic("ep_509_probemedia: impossible");
613 #endif
614 
615 	aprint_normal(" (default %s)\n", defmedianame);
616 	ifmedia_set(ifm, defmedia);
617 }
618 
619 /*
620  * Find media present on large-packet-capable elink3 devices.
621  * Show onboard configuration of large-packet-capable elink3 devices
622  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
623  * Use media and card-version info in window 3 instead.
624  */
625 void
ep_vortex_probemedia(struct ep_softc * sc)626 ep_vortex_probemedia(struct ep_softc *sc)
627 {
628 	bus_space_tag_t iot = sc->sc_iot;
629 	bus_space_handle_t ioh = sc->sc_ioh;
630 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
631 	const struct ep_media *epm;
632 	u_int config1;
633 	int reset_options;
634 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
635 	int defmedia = 0;
636 	const char *sep = "", *defmedianame = NULL;
637 
638 	GO_WINDOW(3);
639 	config1 = (u_int)bus_space_read_2(iot, ioh,
640 	    ELINK_W3_INTERNAL_CONFIG + 2);
641 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
642 	GO_WINDOW(0);
643 
644 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
645 
646 	aprint_normal_dev(sc->sc_dev, "");
647 
648 	/* Sanity check that there are any media! */
649 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
650 		aprint_error("no media present!\n");
651 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
652 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
653 		return;
654 	}
655 
656 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
657 
658 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
659 		if (reset_options & epm->epm_mpbit) {
660 			/*
661 			 * Default media is a little more complicated
662 			 * on the Vortex.  We support full-duplex which
663 			 * uses the same reset options bit.
664 			 *
665 			 * XXX Check EEPROM for default to FDX?
666 			 */
667 			if (epm->epm_epmedia == default_media) {
668 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
669 					defmedia = epm->epm_ifmedia;
670 					defmedianame = epm->epm_name;
671 				}
672 			} else if (defmedia == 0) {
673 				defmedia = epm->epm_ifmedia;
674 				defmedianame = epm->epm_name;
675 			}
676 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
677 			    NULL);
678 			PRINT(epm->epm_name);
679 		}
680 	}
681 
682 #undef PRINT
683 
684 #ifdef DIAGNOSTIC
685 	if (defmedia == 0)
686 		panic("ep_vortex_probemedia: impossible");
687 #endif
688 
689 	aprint_normal(" (default %s)\n", defmedianame);
690 	ifmedia_set(ifm, defmedia);
691 }
692 
693 /*
694  * One second timer, used to tick the MII.
695  */
696 void
ep_tick(void * arg)697 ep_tick(void *arg)
698 {
699 	struct ep_softc *sc = arg;
700 	int s;
701 
702 #ifdef DIAGNOSTIC
703 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
704 		panic("ep_tick");
705 #endif
706 
707 	if (!device_is_active(sc->sc_dev))
708 		return;
709 
710 	s = splnet();
711 	mii_tick(&sc->sc_mii);
712 	splx(s);
713 
714 	callout_schedule(&sc->sc_mii_callout, hz);
715 }
716 
717 /*
718  * Bring device up.
719  *
720  * The order in here seems important. Otherwise we may not receive
721  * interrupts. ?!
722  */
723 int
epinit(struct ifnet * ifp)724 epinit(struct ifnet *ifp)
725 {
726 	struct ep_softc *sc = ifp->if_softc;
727 	bus_space_tag_t iot = sc->sc_iot;
728 	bus_space_handle_t ioh = sc->sc_ioh;
729 	int i, error;
730 	const u_int8_t *addr;
731 
732 	if (!sc->enabled && (error = epenable(sc)) != 0)
733 		return (error);
734 
735 	/* Make sure any pending reset has completed before touching board */
736 	ep_finish_reset(iot, ioh);
737 
738 	/*
739 	 * Cancel any pending I/O.
740 	 */
741 	epstop(ifp, 0);
742 
743 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
744 	    && sc->bustype != ELINK_BUS_MCA) {
745 		GO_WINDOW(0);
746 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
747 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
748 		    ENABLE_DRQ_IRQ);
749 	}
750 
751 	if (sc->bustype == ELINK_BUS_PCMCIA) {
752 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
753 	}
754 
755 	GO_WINDOW(2);
756 	/* Reload the ether_addr. */
757 	addr = CLLADDR(ifp->if_sadl);
758 	for (i = 0; i < 6; i += 2)
759 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
760 		    (addr[i] << 0) | (addr[i + 1] << 8));
761 
762 	/*
763 	 * Reset the station-address receive filter.
764 	 * A bug workaround for busmastering (Vortex, Demon) cards.
765 	 */
766 	for (i = 0; i < 6; i += 2)
767 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
768 
769 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
770 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
771 
772 	GO_WINDOW(1);		/* Window 1 is operating window */
773 	for (i = 0; i < 31; i++)
774 		(void)bus_space_read_2(iot, ioh,
775 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
776 
777 	/* Set threshold for Tx-space available interrupt. */
778 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
779 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
780 
781 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
782 		/*
783 		 * Enable options in the PCMCIA LAN COR register, via
784 		 * RoadRunner Window 1.
785 		 *
786 		 * XXX MAGIC CONSTANTS!
787 		 */
788 		u_int16_t cor;
789 
790 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
791 
792 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
793 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
794 			cor |= 0x10;
795 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
796 			cor |= 0x20;
797 		bus_space_write_2(iot, ioh, 0, cor);
798 
799 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
800 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
801 
802 		if (sc->ep_flags & ELINK_FLAGS_MII) {
803 			ep_roadrunner_mii_enable(sc);
804 			GO_WINDOW(1);
805 		}
806 	}
807 
808 	/* Enable interrupts. */
809 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
810 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
811 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
812 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
813 
814 	/*
815 	 * Attempt to get rid of any stray interrupts that occurred during
816 	 * configuration.  On the i386 this isn't possible because one may
817 	 * already be queued.  However, a single stray interrupt is
818 	 * unimportant.
819 	 */
820 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
821 
822 	epsetfilter(sc);
823 	epsetmedia(sc);
824 
825 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
826 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
827 
828 	epmbuffill(sc);
829 
830 	/* Interface is now `running', with no output active. */
831 	ifp->if_flags |= IFF_RUNNING;
832 	ifp->if_flags &= ~IFF_OACTIVE;
833 
834 	if (sc->ep_flags & ELINK_FLAGS_MII) {
835 		/* Start the one second clock. */
836 		callout_schedule(&sc->sc_mii_callout, hz);
837 	}
838 
839 	/* Attempt to start output, if any. */
840 	epstart(ifp);
841 
842 	return (0);
843 }
844 
845 
846 /*
847  * Set multicast receive filter.
848  * elink3 hardware has no selective multicast filter in hardware.
849  * Enable reception of all multicasts and filter in software.
850  */
851 void
epsetfilter(struct ep_softc * sc)852 epsetfilter(struct ep_softc *sc)
853 {
854 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
855 
856 	GO_WINDOW(1);		/* Window 1 is operating window */
857 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
858 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
859 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
860 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
861 }
862 
863 int
ep_media_change(struct ifnet * ifp)864 ep_media_change(struct ifnet *ifp)
865 {
866 	struct ep_softc *sc = ifp->if_softc;
867 
868 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
869 		epreset(sc);
870 
871 	return (0);
872 }
873 
874 /*
875  * Reset and enable the MII on the RoadRunner.
876  */
877 void
ep_roadrunner_mii_enable(struct ep_softc * sc)878 ep_roadrunner_mii_enable(struct ep_softc *sc)
879 {
880 	bus_space_tag_t iot = sc->sc_iot;
881 	bus_space_handle_t ioh = sc->sc_ioh;
882 
883 	GO_WINDOW(3);
884 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
885 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
886 	delay(1000);
887 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
888 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_MII_RESET |
889 	    ELINK_RUNNER_ENABLE_MII);
890 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
891 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
892 	delay(1000);
893 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
894 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
895 }
896 
897 /*
898  * Set the card to use the specified media.
899  */
900 void
epsetmedia(struct ep_softc * sc)901 epsetmedia(struct ep_softc *sc)
902 {
903 	bus_space_tag_t iot = sc->sc_iot;
904 	bus_space_handle_t ioh = sc->sc_ioh;
905 
906 	/* Turn everything off.  First turn off linkbeat and UTP. */
907 	GO_WINDOW(4);
908 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
909 
910 	/* Turn off coax */
911 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
912 	delay(1000);
913 
914 	/*
915 	 * If the device has MII, select it, and then tell the
916 	 * PHY which media to use.
917 	 */
918 	if (sc->ep_flags & ELINK_FLAGS_MII) {
919 		int config0, config1;
920 
921 		GO_WINDOW(3);
922 
923 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
924 			int resopt;
925 
926 			resopt = bus_space_read_2(iot, ioh,
927 			    ELINK_W3_RESET_OPTIONS);
928 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
929 			    resopt | ELINK_RUNNER_ENABLE_MII);
930 		}
931 
932 		config0 = (u_int)bus_space_read_2(iot, ioh,
933 		    ELINK_W3_INTERNAL_CONFIG);
934 		config1 = (u_int)bus_space_read_2(iot, ioh,
935 		    ELINK_W3_INTERNAL_CONFIG + 2);
936 
937 		config1 = config1 & ~CONFIG_MEDIAMASK;
938 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
939 
940 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
941 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
942 		    config1);
943 		GO_WINDOW(1);	/* back to operating window */
944 
945 		mii_mediachg(&sc->sc_mii);
946 		return;
947 	}
948 
949 	/*
950 	 * Now turn on the selected media/transceiver.
951 	 */
952 	GO_WINDOW(4);
953 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
954 	case IFM_10_T:
955 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
956 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
957 		break;
958 
959 	case IFM_10_2:
960 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
961 		DELAY(1000);	/* 50ms not enmough? */
962 		break;
963 
964 	case IFM_100_TX:
965 	case IFM_100_FX:
966 	case IFM_100_T4:		/* XXX check documentation */
967 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
968 		    LINKBEAT_ENABLE);
969 		DELAY(1000);	/* not strictly necessary? */
970 		break;
971 
972 	case IFM_10_5:
973 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
974 		    SQE_ENABLE);
975 		DELAY(1000);	/* not strictly necessary? */
976 		break;
977 
978 	case IFM_MANUAL:
979 		/*
980 		 * Nothing to do here; we are actually enabling the
981 		 * external PHY on the MII port.
982 		 */
983 		break;
984 
985 	case IFM_NONE:
986 		printf("%s: interface disabled\n", device_xname(sc->sc_dev));
987 		return;
988 
989 	default:
990 		panic("epsetmedia: impossible");
991 	}
992 
993 	/*
994 	 * Tell the chip which port to use.
995 	 */
996 	switch (sc->ep_chipset) {
997 	case ELINK_CHIPSET_VORTEX:
998 	case ELINK_CHIPSET_BOOMERANG:
999 	    {
1000 		int mctl, config0, config1;
1001 
1002 		GO_WINDOW(3);
1003 		config0 = (u_int)bus_space_read_2(iot, ioh,
1004 		    ELINK_W3_INTERNAL_CONFIG);
1005 		config1 = (u_int)bus_space_read_2(iot, ioh,
1006 		    ELINK_W3_INTERNAL_CONFIG + 2);
1007 
1008 		config1 = config1 & ~CONFIG_MEDIAMASK;
1009 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1010 		    CONFIG_MEDIAMASK_SHIFT);
1011 
1012 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1013 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1014 		    config1);
1015 
1016 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1017 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1018 			mctl |= MAC_CONTROL_FDX;
1019 		else
1020 			mctl &= ~MAC_CONTROL_FDX;
1021 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1022 		break;
1023 	    }
1024 	default:
1025 	    {
1026 		int w0_addr_cfg;
1027 
1028 		GO_WINDOW(0);
1029 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1030 		w0_addr_cfg &= 0x3fff;
1031 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1032 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1033 		DELAY(1000);
1034 		break;
1035 	    }
1036 	}
1037 
1038 	GO_WINDOW(1);		/* Window 1 is operating window */
1039 }
1040 
1041 /*
1042  * Get currently-selected media from card.
1043  * (if_media callback, may be called before interface is brought up).
1044  */
1045 void
ep_media_status(struct ifnet * ifp,struct ifmediareq * req)1046 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
1047 {
1048 	struct ep_softc *sc = ifp->if_softc;
1049 	bus_space_tag_t iot = sc->sc_iot;
1050 	bus_space_handle_t ioh = sc->sc_ioh;
1051 
1052 	if (sc->enabled == 0) {
1053 		req->ifm_active = IFM_ETHER | IFM_NONE;
1054 		req->ifm_status = 0;
1055 		return;
1056 	}
1057 
1058 	/*
1059 	 * If we have MII, go ask the PHY what's going on.
1060 	 */
1061 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1062 		mii_pollstat(&sc->sc_mii);
1063 		req->ifm_active = sc->sc_mii.mii_media_active;
1064 		req->ifm_status = sc->sc_mii.mii_media_status;
1065 		return;
1066 	}
1067 
1068 	/*
1069 	 * Ok, at this point we claim that our active media is
1070 	 * the currently selected media.  We'll update our status
1071 	 * if our chipset allows us to detect link.
1072 	 */
1073 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1074 	req->ifm_status = 0;
1075 
1076 	switch (sc->ep_chipset) {
1077 	case ELINK_CHIPSET_VORTEX:
1078 	case ELINK_CHIPSET_BOOMERANG:
1079 		GO_WINDOW(4);
1080 		req->ifm_status = IFM_AVALID;
1081 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1082 		    LINKBEAT_DETECT)
1083 			req->ifm_status |= IFM_ACTIVE;
1084 		GO_WINDOW(1);	/* back to operating window */
1085 		break;
1086 	}
1087 }
1088 
1089 
1090 
1091 /*
1092  * Start outputting on the interface.
1093  * Always called as splnet().
1094  */
1095 void
epstart(struct ifnet * ifp)1096 epstart(struct ifnet *ifp)
1097 {
1098 	struct ep_softc *sc = ifp->if_softc;
1099 	bus_space_tag_t iot = sc->sc_iot;
1100 	bus_space_handle_t ioh = sc->sc_ioh;
1101 	struct mbuf *m, *m0;
1102 	int sh, len, pad;
1103 	bus_size_t txreg;
1104 
1105 	/* Don't transmit if interface is busy or not running */
1106 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1107 		return;
1108 
1109 startagain:
1110 	/* Sneak a peek at the next packet */
1111 	IFQ_POLL(&ifp->if_snd, m0);
1112 	if (m0 == 0)
1113 		return;
1114 
1115 	/* We need to use m->m_pkthdr.len, so require the header */
1116 	if ((m0->m_flags & M_PKTHDR) == 0)
1117 		panic("epstart: no header mbuf");
1118 	len = m0->m_pkthdr.len;
1119 
1120 	pad = (4 - len) & 3;
1121 
1122 	/*
1123 	 * The 3c509 automatically pads short packets to minimum ethernet
1124 	 * length, but we drop packets that are too large. Perhaps we should
1125 	 * truncate them instead?
1126 	 */
1127 	if (len + pad > ETHER_MAX_LEN) {
1128 		/* packet is obviously too large: toss it */
1129 		if_statinc(ifp, if_oerrors);
1130 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1131 		m_freem(m0);
1132 		goto readcheck;
1133 	}
1134 
1135 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1136 	    len + pad + 4) {
1137 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1138 		    SET_TX_AVAIL_THRESH |
1139 		    ((len + pad + 4) >> sc->ep_pktlenshift));
1140 		/* not enough room in FIFO */
1141 		ifp->if_flags |= IFF_OACTIVE;
1142 		return;
1143 	} else {
1144 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1145 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1146 	}
1147 
1148 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1149 	if (m0 == 0)		/* not really needed */
1150 		return;
1151 
1152 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1153 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1154 
1155 	bpf_mtap(ifp, m0, BPF_D_OUT);
1156 
1157 	/*
1158 	 * Do the output at a high interrupt priority level so that an
1159 	 * interrupt from another device won't cause a FIFO underrun.
1160 	 * We choose splsched() since that blocks essentially everything
1161 	 * except for interrupts from serial devices (which typically
1162 	 * lose data if their interrupt isn't serviced fast enough).
1163 	 *
1164 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1165 	 */
1166 	sh = splsched();
1167 
1168 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1169 
1170 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1171 		/*
1172 		 * Prime the FIFO buffer counter (number of 16-bit
1173 		 * words about to be written to the FIFO).
1174 		 *
1175 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1176 		 * COUNTER IS NON-ZERO!
1177 		 */
1178 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1179 		    (len + pad) >> 1);
1180 	}
1181 
1182 	bus_space_write_2(iot, ioh, txreg, len);
1183 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1184 	if (ELINK_IS_BUS_32(sc->bustype)) {
1185 		for (m = m0; m;) {
1186 			if (m->m_len > 3) {
1187 				/* align our reads from core */
1188 				if (mtod(m, u_long) & 3) {
1189 					u_long count =
1190 					    4 - (mtod(m, u_long) & 3);
1191 					bus_space_write_multi_1(iot, ioh,
1192 					    txreg, mtod(m, u_int8_t *), count);
1193 					m->m_data =
1194 					    (void *)(mtod(m, u_long) + count);
1195 					m->m_len -= count;
1196 				}
1197 				bus_space_write_multi_stream_4(iot, ioh,
1198 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1199 				m->m_data = (void *)(mtod(m, u_long) +
1200 					(u_long)(m->m_len & ~3));
1201 				m->m_len -= m->m_len & ~3;
1202 			}
1203 			if (m->m_len) {
1204 				bus_space_write_multi_1(iot, ioh,
1205 				    txreg, mtod(m, u_int8_t *), m->m_len);
1206 			}
1207 			m = m0 = m_free(m);
1208 		}
1209 	} else {
1210 		for (m = m0; m;) {
1211 			if (m->m_len > 1) {
1212 				if (mtod(m, u_long) & 1) {
1213 					bus_space_write_1(iot, ioh,
1214 					    txreg, *(mtod(m, u_int8_t *)));
1215 					m->m_data =
1216 					    (void *)(mtod(m, u_long) + 1);
1217 					m->m_len -= 1;
1218 				}
1219 				bus_space_write_multi_stream_2(iot, ioh,
1220 				    txreg, mtod(m, u_int16_t *),
1221 				    m->m_len >> 1);
1222 			}
1223 			if (m->m_len & 1) {
1224 				bus_space_write_1(iot, ioh, txreg,
1225 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
1226 			}
1227 			m = m0 = m_free(m);
1228 		}
1229 	}
1230 	while (pad--)
1231 		bus_space_write_1(iot, ioh, txreg, 0);
1232 
1233 	splx(sh);
1234 
1235 	if_statinc(ifp, if_opackets);
1236 
1237 readcheck:
1238 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1239 	    ERR_INCOMPLETE) == 0) {
1240 		/* We received a complete packet. */
1241 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1242 
1243 		if ((status & INTR_LATCH) == 0) {
1244 			/*
1245 			 * No interrupt, read the packet and continue
1246 			 * Is  this supposed to happen? Is my motherboard
1247 			 * completely busted?
1248 			 */
1249 			epread(sc);
1250 		} else {
1251 			/* Got an interrupt, return so that it gets serviced. */
1252 			return;
1253 		}
1254 	} else {
1255 		/* Check if we are stuck and reset [see XXX comment] */
1256 		if (epstatus(sc)) {
1257 			if (ifp->if_flags & IFF_DEBUG)
1258 				printf("%s: adapter reset\n",
1259 				    device_xname(sc->sc_dev));
1260 			epreset(sc);
1261 		}
1262 	}
1263 
1264 	goto startagain;
1265 }
1266 
1267 
1268 /*
1269  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1270  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1271  *	We detect this situation and we reset the adapter.
1272  *	It happens at times when there is a lot of broadcast traffic
1273  *	on the cable (once in a blue moon).
1274  */
1275 static int
epstatus(struct ep_softc * sc)1276 epstatus(struct ep_softc *sc)
1277 {
1278 	bus_space_tag_t iot = sc->sc_iot;
1279 	bus_space_handle_t ioh = sc->sc_ioh;
1280 	u_int16_t fifost;
1281 
1282 	/*
1283 	 * Check the FIFO status and act accordingly
1284 	 */
1285 	GO_WINDOW(4);
1286 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1287 	GO_WINDOW(1);
1288 
1289 	if (fifost & FIFOS_RX_UNDERRUN) {
1290 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1291 			printf("%s: RX underrun\n", device_xname(sc->sc_dev));
1292 		epreset(sc);
1293 		return 0;
1294 	}
1295 
1296 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1297 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1298 			printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
1299 		return 1;
1300 	}
1301 
1302 	if (fifost & FIFOS_RX_OVERRUN) {
1303 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1304 			printf("%s: RX overrun\n", device_xname(sc->sc_dev));
1305 		return 1;
1306 	}
1307 
1308 	if (fifost & FIFOS_TX_OVERRUN) {
1309 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1310 			printf("%s: TX overrun\n", device_xname(sc->sc_dev));
1311 		epreset(sc);
1312 		return 0;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 
1319 static void
eptxstat(struct ep_softc * sc)1320 eptxstat(struct ep_softc *sc)
1321 {
1322 	bus_space_tag_t iot = sc->sc_iot;
1323 	bus_space_handle_t ioh = sc->sc_ioh;
1324 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1325 	int i;
1326 
1327 	/*
1328 	 * We need to read+write TX_STATUS until we get a 0 status
1329 	 * in order to turn off the interrupt flag.
1330 	 */
1331 	while ((i = bus_space_read_2(iot, ioh,
1332 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1333 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1334 		    0x0);
1335 
1336 		if (i & TXS_JABBER) {
1337 			if_statinc(ifp, if_oerrors);
1338 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1339 				printf("%s: jabber (%x)\n",
1340 				       device_xname(sc->sc_dev), i);
1341 			epreset(sc);
1342 		} else if (i & TXS_UNDERRUN) {
1343 			if_statinc(ifp, if_oerrors);
1344 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1345 				printf("%s: fifo underrun (%x) @%d\n",
1346 				       device_xname(sc->sc_dev), i,
1347 				       sc->tx_start_thresh);
1348 			if (sc->tx_succ_ok < 100)
1349 				    sc->tx_start_thresh = uimin(ETHER_MAX_LEN,
1350 					    sc->tx_start_thresh + 20);
1351 			sc->tx_succ_ok = 0;
1352 			epreset(sc);
1353 		} else if (i & TXS_MAX_COLLISION) {
1354 			if_statinc(ifp, if_collisions);
1355 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1356 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1357 		} else
1358 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1359 	}
1360 }
1361 
1362 int
epintr(void * arg)1363 epintr(void *arg)
1364 {
1365 	struct ep_softc *sc = arg;
1366 	bus_space_tag_t iot = sc->sc_iot;
1367 	bus_space_handle_t ioh = sc->sc_ioh;
1368 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1369 	u_int16_t status;
1370 	int ret = 0;
1371 
1372 	if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
1373 		return (0);
1374 
1375 
1376 	for (;;) {
1377 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1378 
1379 		if ((status & WATCHED_INTERRUPTS) == 0) {
1380 			if ((status & INTR_LATCH) == 0) {
1381 #if 0
1382 				printf("%s: intr latch cleared\n",
1383 				       device_xname(sc->sc_dev));
1384 #endif
1385 				break;
1386 			}
1387 		}
1388 
1389 		ret = 1;
1390 
1391 		/*
1392 		 * Acknowledge any interrupts.  It's important that we do this
1393 		 * first, since there would otherwise be a race condition.
1394 		 * Due to the i386 interrupt queueing, we may get spurious
1395 		 * interrupts occasionally.
1396 		 */
1397 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1398 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
1399 
1400 #if 0
1401 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1402 
1403 		printf("%s: intr%s%s%s%s\n", device_xname(sc->sc_dev),
1404 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
1405 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
1406 		       (status & TX_AVAIL)?" TX_AVAIL":"",
1407 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
1408 #endif
1409 
1410 		if (status & RX_COMPLETE) {
1411 			epread(sc);
1412 		}
1413 		if (status & TX_AVAIL) {
1414 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1415 			epstart(&sc->sc_ethercom.ec_if);
1416 		}
1417 		if (status & CARD_FAILURE) {
1418 			printf("%s: adapter failure (%x)\n",
1419 			    device_xname(sc->sc_dev), status);
1420 #if 1
1421 			epinit(ifp);
1422 #else
1423 			epreset(sc);
1424 #endif
1425 			return (1);
1426 		}
1427 		if (status & TX_COMPLETE) {
1428 			eptxstat(sc);
1429 			epstart(ifp);
1430 		}
1431 
1432 		if (status)
1433 			rnd_add_uint32(&sc->rnd_source, status);
1434 	}
1435 
1436 	/* no more interrupts */
1437 	return (ret);
1438 }
1439 
1440 void
epread(struct ep_softc * sc)1441 epread(struct ep_softc *sc)
1442 {
1443 	bus_space_tag_t iot = sc->sc_iot;
1444 	bus_space_handle_t ioh = sc->sc_ioh;
1445 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1446 	struct mbuf *m;
1447 	int len;
1448 
1449 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1450 
1451 again:
1452 	if (ifp->if_flags & IFF_DEBUG) {
1453 		int err = len & ERR_MASK;
1454 		const char *s = NULL;
1455 
1456 		if (len & ERR_INCOMPLETE)
1457 			s = "incomplete packet";
1458 		else if (err == ERR_OVERRUN)
1459 			s = "packet overrun";
1460 		else if (err == ERR_RUNT)
1461 			s = "runt packet";
1462 		else if (err == ERR_ALIGNMENT)
1463 			s = "bad alignment";
1464 		else if (err == ERR_CRC)
1465 			s = "bad crc";
1466 		else if (err == ERR_OVERSIZE)
1467 			s = "oversized packet";
1468 		else if (err == ERR_DRIBBLE)
1469 			s = "dribble bits";
1470 
1471 		if (s)
1472 			printf("%s: %s\n", device_xname(sc->sc_dev), s);
1473 	}
1474 
1475 	if (len & ERR_INCOMPLETE)
1476 		return;
1477 
1478 	if (len & ERR_RX) {
1479 		if_statinc(ifp, if_ierrors);
1480 		goto abort;
1481 	}
1482 
1483 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1484 
1485 	/* Pull packet off interface. */
1486 	m = epget(sc, len);
1487 	if (m == 0) {
1488 		if_statinc(ifp, if_ierrors);
1489 		goto abort;
1490 	}
1491 
1492 	if_percpuq_enqueue(ifp->if_percpuq, m);
1493 
1494 	/*
1495 	 * In periods of high traffic we can actually receive enough
1496 	 * packets so that the fifo overrun bit will be set at this point,
1497 	 * even though we just read a packet. In this case we
1498 	 * are not going to receive any more interrupts. We check for
1499 	 * this condition and read again until the fifo is not full.
1500 	 * We could simplify this test by not using epstatus(), but
1501 	 * rechecking the RX_STATUS register directly. This test could
1502 	 * result in unnecessary looping in cases where there is a new
1503 	 * packet but the fifo is not full, but it will not fix the
1504 	 * stuck behavior.
1505 	 *
1506 	 * Even with this improvement, we still get packet overrun errors
1507 	 * which are hurting performance. Maybe when I get some more time
1508 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1509 	 */
1510 	if (epstatus(sc)) {
1511 		len = bus_space_read_2(iot, ioh,
1512 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1513 		/* Check if we are stuck and reset [see XXX comment] */
1514 		if (len & ERR_INCOMPLETE) {
1515 			if (ifp->if_flags & IFF_DEBUG)
1516 				printf("%s: adapter reset\n",
1517 				    device_xname(sc->sc_dev));
1518 			epreset(sc);
1519 			return;
1520 		}
1521 		goto again;
1522 	}
1523 
1524 	return;
1525 
1526 abort:
1527 	ep_discard_rxtop(iot, ioh);
1528 
1529 }
1530 
1531 struct mbuf *
epget(struct ep_softc * sc,int totlen)1532 epget(struct ep_softc *sc, int totlen)
1533 {
1534 	bus_space_tag_t iot = sc->sc_iot;
1535 	bus_space_handle_t ioh = sc->sc_ioh;
1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1537 	struct mbuf *m;
1538 	bus_size_t rxreg;
1539 	int len, remaining;
1540 	int s;
1541 	void *newdata;
1542 	u_long offset;
1543 
1544 	m = sc->mb[sc->next_mb];
1545 	sc->mb[sc->next_mb] = 0;
1546 	if (m == 0) {
1547 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1548 		if (m == 0)
1549 			return 0;
1550 	} else {
1551 		/* If the queue is no longer full, refill. */
1552 		if (sc->last_mb == sc->next_mb)
1553 			callout_schedule(&sc->sc_mbuf_callout, 1);
1554 
1555 		/* Convert one of our saved mbuf's. */
1556 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1557 		m->m_data = m->m_pktdat;
1558 		m->m_flags = M_PKTHDR;
1559 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1560 	}
1561 	m_set_rcvif(m, ifp);
1562 	m->m_pkthdr.len = totlen;
1563 	len = MHLEN;
1564 
1565 	/*
1566 	 * Allocate big enough space to hold whole packet, to avoid
1567 	 * allocating new mbufs on splsched().
1568 	 */
1569 	if (totlen + ALIGNBYTES > len) {
1570 		if (totlen + ALIGNBYTES > MCLBYTES) {
1571 			len = ALIGN(totlen + ALIGNBYTES);
1572 			MEXTMALLOC(m, len, M_DONTWAIT);
1573 		} else {
1574 			len = MCLBYTES;
1575 			MCLGET(m, M_DONTWAIT);
1576 		}
1577 		if ((m->m_flags & M_EXT) == 0) {
1578 			m_free(m);
1579 			return 0;
1580 		}
1581 	}
1582 
1583 	/* align the struct ip header */
1584 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1585 	    - sizeof(struct ether_header);
1586 	m->m_data = newdata;
1587 	m->m_len = totlen;
1588 
1589 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1590 	remaining = totlen;
1591 	offset = mtod(m, u_long);
1592 
1593 	/*
1594 	 * We read the packet at a high interrupt priority level so that
1595 	 * an interrupt from another device won't cause the card's packet
1596 	 * buffer to overflow.  We choose splsched() since that blocks
1597 	 * essentially everything except for interrupts from serial
1598 	 * devices (which typically lose data if their interrupt isn't
1599 	 * serviced fast enough).
1600 	 *
1601 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1602 	 */
1603 	s = splsched();
1604 
1605 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1606 		/*
1607 		 * Prime the FIFO buffer counter (number of 16-bit
1608 		 * words about to be read from the FIFO).
1609 		 *
1610 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1611 		 * COUNTER IS NON-ZERO!
1612 		 */
1613 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1614 	}
1615 
1616 	if (ELINK_IS_BUS_32(sc->bustype)) {
1617 		/*
1618 		 * Read bytes up to the point where we are aligned.
1619 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
1620 		 * here because we're later reading 4-byte chunks.)
1621 		 */
1622 		if ((remaining > 3) && (offset & 3)) {
1623 			int count = (4 - (offset & 3));
1624 			bus_space_read_multi_1(iot, ioh,
1625 			    rxreg, (u_int8_t *) offset, count);
1626 			offset += count;
1627 			remaining -= count;
1628 		}
1629 		if (remaining > 3) {
1630 			bus_space_read_multi_stream_4(iot, ioh,
1631 			    rxreg, (u_int32_t *) offset,
1632 				    remaining >> 2);
1633 			offset += remaining & ~3;
1634 			remaining &= 3;
1635 		}
1636 		if (remaining) {
1637 			bus_space_read_multi_1(iot, ioh,
1638 			    rxreg, (u_int8_t *) offset, remaining);
1639 		}
1640 	} else {
1641 		/* (offset & 1) == 0 since IP header is aligned */
1642 		if (remaining > 1) {
1643 			bus_space_read_multi_stream_2(iot, ioh,
1644 			    rxreg, (u_int16_t *) offset,
1645 			    remaining >> 1);
1646 			offset += remaining & ~1;
1647 		}
1648 		if (remaining & 1) {
1649 			*(uint8_t *)offset =
1650 			    bus_space_read_1(iot, ioh, rxreg);
1651 		}
1652 	}
1653 
1654 	ep_discard_rxtop(iot, ioh);
1655 
1656 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1657 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1658 	splx(s);
1659 
1660 	return (m);
1661 }
1662 
1663 int
epioctl(struct ifnet * ifp,u_long cmd,void * data)1664 epioctl(struct ifnet *ifp, u_long cmd, void *data)
1665 {
1666 	struct ep_softc *sc = ifp->if_softc;
1667 	int s, error = 0;
1668 
1669 	s = splnet();
1670 
1671 	switch (cmd) {
1672 	case SIOCADDMULTI:
1673 	case SIOCDELMULTI:
1674 		if (sc->enabled == 0) {
1675 			error = EIO;
1676 			break;
1677 		}
1678 
1679 		/* FALLTHROUGH */
1680 	default:
1681 		error = ether_ioctl(ifp, cmd, data);
1682 
1683 		if (error == ENETRESET) {
1684 			/*
1685 			 * Multicast list has changed; set the hardware filter
1686 			 * accordingly.
1687 			 */
1688 			if (ifp->if_flags & IFF_RUNNING)
1689 				epreset(sc);
1690 			error = 0;
1691 		}
1692 		break;
1693 	}
1694 
1695 	splx(s);
1696 	return (error);
1697 }
1698 
1699 void
epreset(struct ep_softc * sc)1700 epreset(struct ep_softc *sc)
1701 {
1702 	int s;
1703 
1704 	s = splnet();
1705 	epinit(&sc->sc_ethercom.ec_if);
1706 	splx(s);
1707 }
1708 
1709 void
epwatchdog(struct ifnet * ifp)1710 epwatchdog(struct ifnet *ifp)
1711 {
1712 	struct ep_softc *sc = ifp->if_softc;
1713 
1714 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1715 	if_statinc(ifp, if_oerrors);
1716 
1717 	epreset(sc);
1718 }
1719 
1720 void
epstop(struct ifnet * ifp,int disable)1721 epstop(struct ifnet *ifp, int disable)
1722 {
1723 	struct ep_softc *sc = ifp->if_softc;
1724 	bus_space_tag_t iot = sc->sc_iot;
1725 	bus_space_handle_t ioh = sc->sc_ioh;
1726 
1727 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1728 		/* Stop the one second clock. */
1729 		callout_stop(&sc->sc_mbuf_callout);
1730 
1731 		/* Down the MII. */
1732 		mii_down(&sc->sc_mii);
1733 	}
1734 
1735 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1736 		/*
1737 		 * Clear the FIFO buffer count, thus halting
1738 		 * any currently-running transactions.
1739 		 */
1740 		GO_WINDOW(1);		/* sanity */
1741 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1742 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1743 	}
1744 
1745 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1746 	ep_discard_rxtop(iot, ioh);
1747 
1748 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1749 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1750 
1751 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1752 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1753 
1754 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1755 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1756 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1757 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1758 
1759 	epmbufempty(sc);
1760 
1761 	if (disable)
1762 		epdisable(sc);
1763 
1764 	ifp->if_flags &= ~IFF_RUNNING;
1765 }
1766 
1767 
1768 /*
1769  * Before reboots, reset card completely.
1770  */
1771 static bool
epshutdown(device_t self,int howto)1772 epshutdown(device_t self, int howto)
1773 {
1774 	struct ep_softc *sc = device_private(self);
1775 	int s = splnet();
1776 
1777 	if (sc->enabled) {
1778 		epstop(&sc->sc_ethercom.ec_if, 0);
1779 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1780 		epdisable(sc);
1781 		sc->enabled = 0;
1782 	}
1783 	splx(s);
1784 
1785 	return true;
1786 }
1787 
1788 /*
1789  * We get eeprom data from the id_port given an offset into the
1790  * eeprom.  Basically; after the ID_sequence is sent to all of
1791  * the cards; they enter the ID_CMD state where they will accept
1792  * command requests. 0x80-0xbf loads the eeprom data.  We then
1793  * read the port 16 times and with every read; the cards check
1794  * for contention (ie: if one card writes a 0 bit and another
1795  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1796  * each card compares the data on the bus; if there is a difference
1797  * then that card goes into ID_WAIT state again). In the meantime;
1798  * one bit of data is returned in the AX register which is conveniently
1799  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
1800  * bit of data with each read.
1801  *
1802  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1803  */
1804 u_int16_t
epreadeeprom(bus_space_tag_t iot,bus_space_handle_t ioh,int offset)1805 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1806 {
1807 	u_int16_t data = 0;
1808 	int i;
1809 
1810 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1811 	delay(1000);
1812 	for (i = 0; i < 16; i++)
1813 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1814 	return (data);
1815 }
1816 
1817 static int
epbusyeeprom(struct ep_softc * sc)1818 epbusyeeprom(struct ep_softc *sc)
1819 {
1820 	bus_space_tag_t iot = sc->sc_iot;
1821 	bus_space_handle_t ioh = sc->sc_ioh;
1822 	bus_size_t eecmd;
1823 	int i = 100, j;
1824 	uint16_t busybit;
1825 
1826 	if (sc->bustype == ELINK_BUS_PCMCIA) {
1827 		delay(1000);
1828 		return 0;
1829 	}
1830 
1831 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1832 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1833 		busybit = CORK_EEPROM_BUSY;
1834 	} else {
1835 		eecmd = ELINK_W0_EEPROM_COMMAND;
1836 		busybit = EEPROM_BUSY;
1837 	}
1838 
1839 	j = 0;		/* bad GCC flow analysis */
1840 	while (i--) {
1841 		j = bus_space_read_2(iot, ioh, eecmd);
1842 		if (j & busybit)
1843 			delay(100);
1844 		else
1845 			break;
1846 	}
1847 	if (i == 0) {
1848 		aprint_normal("\n");
1849 		aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
1850 		return (1);
1851 	}
1852 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1853 	    (j & EEPROM_TST_MODE) != 0) {
1854 		/* XXX PnP mode? */
1855 		printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
1856 		return (1);
1857 	}
1858 	return (0);
1859 }
1860 
1861 u_int16_t
ep_read_eeprom(struct ep_softc * sc,u_int16_t offset)1862 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1863 {
1864 	bus_size_t eecmd, eedata;
1865 	u_int16_t readcmd;
1866 
1867 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1868 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1869 		eedata = CORK_ASIC_EEPROM_DATA;
1870 	} else {
1871 		eecmd = ELINK_W0_EEPROM_COMMAND;
1872 		eedata = ELINK_W0_EEPROM_DATA;
1873 	}
1874 
1875 	/*
1876 	 * RoadRunner has a larger EEPROM, so a different read command
1877 	 * is required.
1878 	 */
1879 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1880 		readcmd = READ_EEPROM_RR;
1881 	else
1882 		readcmd = READ_EEPROM;
1883 
1884 	if (epbusyeeprom(sc))
1885 		return (0);		/* XXX why is eeprom busy? */
1886 
1887 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1888 
1889 	if (epbusyeeprom(sc))
1890 		return (0);		/* XXX why is eeprom busy? */
1891 
1892 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1893 }
1894 
1895 void
epmbuffill(void * v)1896 epmbuffill(void *v)
1897 {
1898 	struct ep_softc *sc = v;
1899 	struct mbuf *m;
1900 	int s, i;
1901 
1902 	s = splnet();
1903 	i = sc->last_mb;
1904 	do {
1905 		if (sc->mb[i] == 0) {
1906 			MGET(m, M_DONTWAIT, MT_DATA);
1907 			if (m == 0)
1908 				break;
1909 			sc->mb[i] = m;
1910 		}
1911 		i = (i + 1) % MAX_MBS;
1912 	} while (i != sc->next_mb);
1913 	sc->last_mb = i;
1914 	/* If the queue was not filled, try again. */
1915 	if (sc->last_mb != sc->next_mb)
1916 		callout_schedule(&sc->sc_mbuf_callout, 1);
1917 	splx(s);
1918 }
1919 
1920 void
epmbufempty(struct ep_softc * sc)1921 epmbufempty(struct ep_softc *sc)
1922 {
1923 	int s, i;
1924 
1925 	s = splnet();
1926 	for (i = 0; i < MAX_MBS; i++) {
1927 		if (sc->mb[i]) {
1928 			m_freem(sc->mb[i]);
1929 			sc->mb[i] = NULL;
1930 		}
1931 	}
1932 	sc->last_mb = sc->next_mb = 0;
1933 	callout_stop(&sc->sc_mbuf_callout);
1934 	splx(s);
1935 }
1936 
1937 int
epenable(struct ep_softc * sc)1938 epenable(struct ep_softc *sc)
1939 {
1940 
1941 	if (sc->enabled == 0 && sc->enable != NULL) {
1942 		if ((*sc->enable)(sc) != 0) {
1943 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1944 			return (EIO);
1945 		}
1946 	}
1947 
1948 	sc->enabled = 1;
1949 	return (0);
1950 }
1951 
1952 void
epdisable(struct ep_softc * sc)1953 epdisable(struct ep_softc *sc)
1954 {
1955 
1956 	if (sc->enabled != 0 && sc->disable != NULL) {
1957 		(*sc->disable)(sc);
1958 		sc->enabled = 0;
1959 	}
1960 }
1961 
1962 /*
1963  * ep_activate:
1964  *
1965  *	Handle device activation/deactivation requests.
1966  */
1967 int
ep_activate(device_t self,enum devact act)1968 ep_activate(device_t self, enum devact act)
1969 {
1970 	struct ep_softc *sc = device_private(self);
1971 
1972 	switch (act) {
1973 	case DVACT_DEACTIVATE:
1974 		if_deactivate(&sc->sc_ethercom.ec_if);
1975 		return 0;
1976 	default:
1977 		return EOPNOTSUPP;
1978 	}
1979 }
1980 
1981 /*
1982  * ep_detach:
1983  *
1984  *	Detach a elink3 interface.
1985  */
1986 int
ep_detach(device_t self,int flags)1987 ep_detach(device_t self, int flags)
1988 {
1989 	struct ep_softc *sc = device_private(self);
1990 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1991 
1992 	/* Succeed now if there's no work to do. */
1993 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
1994 		return (0);
1995 
1996 	epdisable(sc);
1997 
1998 	callout_stop(&sc->sc_mii_callout);
1999 	callout_stop(&sc->sc_mbuf_callout);
2000 
2001 	if (sc->ep_flags & ELINK_FLAGS_MII) {
2002 		/* Detach all PHYs */
2003 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2004 	}
2005 
2006 	rnd_detach_source(&sc->rnd_source);
2007 	ether_ifdetach(ifp);
2008 	if_detach(ifp);
2009 
2010 	/* Delete all remaining media. */
2011 	ifmedia_fini(&sc->sc_mii.mii_media);
2012 
2013 	pmf_device_deregister(sc->sc_dev);
2014 
2015 	return (0);
2016 }
2017 
2018 u_int32_t
ep_mii_bitbang_read(device_t self)2019 ep_mii_bitbang_read(device_t self)
2020 {
2021 	struct ep_softc *sc = device_private(self);
2022 
2023 	/* We're already in Window 4. */
2024 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2025 	    ELINK_W4_BOOM_PHYSMGMT));
2026 }
2027 
2028 void
ep_mii_bitbang_write(device_t self,u_int32_t val)2029 ep_mii_bitbang_write(device_t self, u_int32_t val)
2030 {
2031 	struct ep_softc *sc = device_private(self);
2032 
2033 	/* We're already in Window 4. */
2034 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2035 	    ELINK_W4_BOOM_PHYSMGMT, val);
2036 }
2037 
2038 int
ep_mii_readreg(device_t self,int phy,int reg,uint16_t * val)2039 ep_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2040 {
2041 	struct ep_softc *sc = device_private(self);
2042 	int rv;
2043 
2044 	GO_WINDOW(4);
2045 
2046 	rv = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg, val);
2047 
2048 	GO_WINDOW(1);
2049 
2050 	return rv;
2051 }
2052 
2053 int
ep_mii_writereg(device_t self,int phy,int reg,uint16_t val)2054 ep_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2055 {
2056 	struct ep_softc *sc = device_private(self);
2057 	int rv;
2058 
2059 	GO_WINDOW(4);
2060 
2061 	rv = mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2062 
2063 	GO_WINDOW(1);
2064 
2065 	return rv;
2066 }
2067 
2068 void
ep_statchg(struct ifnet * ifp)2069 ep_statchg(struct ifnet *ifp)
2070 {
2071 	struct ep_softc *sc = ifp->if_softc;
2072 	bus_space_tag_t iot = sc->sc_iot;
2073 	bus_space_handle_t ioh = sc->sc_ioh;
2074 	int mctl;
2075 
2076 	GO_WINDOW(3);
2077 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2078 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2079 		mctl |= MAC_CONTROL_FDX;
2080 	else
2081 		mctl &= ~MAC_CONTROL_FDX;
2082 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2083 	GO_WINDOW(1);	/* back to operating window */
2084 }
2085 
2086 void
ep_power(int why,void * arg)2087 ep_power(int why, void *arg)
2088 {
2089 	struct ep_softc *sc = arg;
2090 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2091 	int s;
2092 
2093 	s = splnet();
2094 	switch (why) {
2095 	case PWR_SUSPEND:
2096 	case PWR_STANDBY:
2097 		epstop(ifp, 1);
2098 		break;
2099 	case PWR_RESUME:
2100 		if (ifp->if_flags & IFF_UP) {
2101 			(void)epinit(ifp);
2102 		}
2103 		break;
2104 	case PWR_SOFTSUSPEND:
2105 	case PWR_SOFTSTANDBY:
2106 	case PWR_SOFTRESUME:
2107 		break;
2108 	}
2109 	splx(s);
2110 }
2111