xref: /openbsd/sys/dev/ic/smc83c170.c (revision 3836e7c7)
1 /*	$OpenBSD: smc83c170.c,v 1.32 2024/11/05 18:58:59 miod Exp $	*/
2 /*	$NetBSD: smc83c170.c,v 1.59 2005/02/27 00:27:02 perry Exp $	*/
3 
4 /*-
5  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Device driver for the Standard Microsystems Corp. 83C170
36  * Ethernet PCI Integrated Controller (EPIC/100).
37  */
38 
39 #include "bpfilter.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/timeout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 
52 #include <net/if.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/if_ether.h>
56 
57 #include <net/if_media.h>
58 
59 #if NBPFILTER > 0
60 #include <net/bpf.h>
61 #endif
62 
63 #include <machine/bus.h>
64 #include <machine/intr.h>
65 
66 #include <dev/mii/miivar.h>
67 #include <dev/mii/lxtphyreg.h>
68 
69 #include <dev/ic/smc83c170reg.h>
70 #include <dev/ic/smc83c170var.h>
71 
72 void	epic_start(struct ifnet *);
73 void	epic_watchdog(struct ifnet *);
74 int	epic_ioctl(struct ifnet *, u_long, caddr_t);
75 int	epic_init(struct ifnet *);
76 void	epic_stop(struct ifnet *, int);
77 
78 void	epic_reset(struct epic_softc *);
79 void	epic_rxdrain(struct epic_softc *);
80 int	epic_add_rxbuf(struct epic_softc *, int);
81 void	epic_read_eeprom(struct epic_softc *, int, int, u_int16_t *);
82 void	epic_set_mchash(struct epic_softc *);
83 void	epic_fixup_clock_source(struct epic_softc *);
84 int	epic_mii_read(struct device *, int, int);
85 void	epic_mii_write(struct device *, int, int, int);
86 int	epic_mii_wait(struct epic_softc *, u_int32_t);
87 void	epic_tick(void *);
88 
89 void	epic_statchg(struct device *);
90 int	epic_mediachange(struct ifnet *);
91 void	epic_mediastatus(struct ifnet *, struct ifmediareq *);
92 
93 struct cfdriver epic_cd = {
94 	NULL, "epic", DV_IFNET
95 };
96 
97 #define	INTMASK	(INTSTAT_FATAL_INT | INTSTAT_TXU | \
98 	    INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
99 
100 int	epic_copy_small = 0;
101 
102 #define	ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
103 
104 /*
105  * Attach an EPIC interface to the system.
106  */
107 void
epic_attach(struct epic_softc * sc,const char * intrstr)108 epic_attach(struct epic_softc *sc, const char *intrstr)
109 {
110 	bus_space_tag_t st = sc->sc_st;
111 	bus_space_handle_t sh = sc->sc_sh;
112 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
113 	int rseg, error, miiflags;
114 	u_int i;
115 	bus_dma_segment_t seg;
116 	u_int8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
117 	u_int16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
118 	char *nullbuf;
119 
120 	timeout_set(&sc->sc_mii_timeout, epic_tick, sc);
121 
122 	/*
123 	 * Allocate the control data structures, and create and load the
124 	 * DMA map for it.
125 	 */
126 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
127 	    sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
128 	    &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
129 		printf(": unable to allocate control data, error = %d\n",
130 		    error);
131 		goto fail_0;
132 	}
133 
134 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
135 	    sizeof(struct epic_control_data) + ETHER_PAD_LEN,
136 	    (caddr_t *)&sc->sc_control_data,
137 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
138 		printf(": unable to map control data, error = %d\n", error);
139 		goto fail_1;
140 	}
141 	nullbuf =
142 	    (char *)sc->sc_control_data + sizeof(struct epic_control_data);
143 	memset(nullbuf, 0, ETHER_PAD_LEN);
144 
145 	if ((error = bus_dmamap_create(sc->sc_dmat,
146 	    sizeof(struct epic_control_data), 1,
147 	    sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
148 	    &sc->sc_cddmamap)) != 0) {
149 		printf(": unable to create control data DMA map, error = %d\n",
150 		    error);
151 		goto fail_2;
152 	}
153 
154 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
155 	    sc->sc_control_data, sizeof(struct epic_control_data), NULL,
156 	    BUS_DMA_NOWAIT)) != 0) {
157 		printf(": unable to load control data DMA map, error = %d\n",
158 		    error);
159 		goto fail_3;
160 	}
161 
162 	/*
163 	 * Create the transmit buffer DMA maps.
164 	 */
165 	for (i = 0; i < EPIC_NTXDESC; i++) {
166 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
167 		    EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
168 		    &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
169 			printf(": unable to create tx DMA map %d, error = %d\n",
170 			    i, error);
171 			goto fail_4;
172 		}
173 	}
174 
175 	/*
176 	 * Create the receive buffer DMA maps.
177 	 */
178 	for (i = 0; i < EPIC_NRXDESC; i++) {
179 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
180 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
181 		    &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
182 			printf(": unable to create rx DMA map %d, error = %d\n",
183 			    i, error);
184 			goto fail_5;
185 		}
186 		EPIC_DSRX(sc, i)->ds_mbuf = NULL;
187 	}
188 
189 	/*
190 	 * create and map the pad buffer
191 	 */
192 	if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
193 	    ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
194 		printf(": unable to create pad buffer DMA map, error = %d\n",
195 		    error);
196 		goto fail_5;
197 	}
198 
199 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
200 	    nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
201 		printf(": unable to load pad buffer DMA map, error = %d\n",
202 		    error);
203 		goto fail_6;
204 	}
205 	bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
206 	    BUS_DMASYNC_PREWRITE);
207 
208 	/*
209 	 * Bring the chip out of low-power mode and reset it to a known state.
210 	 */
211 	bus_space_write_4(st, sh, EPIC_GENCTL, 0);
212 	epic_reset(sc);
213 
214 	/*
215 	 * Read the Ethernet address from the EEPROM.
216 	 */
217 	epic_read_eeprom(sc, 0, (sizeof(myea) / sizeof(myea[0])), myea);
218 	for (i = 0; i < sizeof(myea)/ sizeof(myea[0]); i++) {
219 		enaddr[i * 2]     = myea[i] & 0xff;
220 		enaddr[i * 2 + 1] = myea[i] >> 8;
221 	}
222 
223 	/*
224 	 * ...and the device name.
225 	 */
226 	epic_read_eeprom(sc, 0x2c, (sizeof(mydevname) / sizeof(mydevname[0])),
227 	    mydevname);
228 	for (i = 0; i < sizeof(mydevname) / sizeof(mydevname[0]); i++) {
229 		devname[i * 2]     = mydevname[i] & 0xff;
230 		devname[i * 2 + 1] = mydevname[i] >> 8;
231 	}
232 
233 	devname[sizeof(devname) - 1] = ' ';
234 	for (i = sizeof(devname) - 1; devname[i] == ' '; i--) {
235 		devname[i] = '\0';
236 		if (i == 0)
237 			break;
238 	}
239 
240 	printf(", %s : %s, address %s\n", devname, intrstr,
241 	    ether_sprintf(enaddr));
242 
243 	miiflags = 0;
244 	if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
245 		miiflags |= MIIF_HAVEFIBER;
246 
247 	/*
248 	 * Initialize our media structures and probe the MII.
249 	 */
250 	sc->sc_mii.mii_ifp = ifp;
251 	sc->sc_mii.mii_readreg = epic_mii_read;
252 	sc->sc_mii.mii_writereg = epic_mii_write;
253 	sc->sc_mii.mii_statchg = epic_statchg;
254 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
255 	    epic_mediastatus);
256 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
257 	    MII_OFFSET_ANY, miiflags);
258 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
259 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
260 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
261 	} else
262 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
263 
264 	if (sc->sc_hwflags & EPIC_HAS_BNC) {
265 		/* use the next free media instance */
266 		sc->sc_serinst = sc->sc_mii.mii_instance++;
267 		ifmedia_add(&sc->sc_mii.mii_media,
268 			    IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0,
269 					 sc->sc_serinst),
270 			    0, NULL);
271 	} else
272 		sc->sc_serinst = -1;
273 
274 	bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
275 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
276 	ifp->if_softc = sc;
277 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
278 	ifp->if_ioctl = epic_ioctl;
279 	ifp->if_start = epic_start;
280 	ifp->if_watchdog = epic_watchdog;
281 	ifq_init_maxlen(&ifp->if_snd, EPIC_NTXDESC - 1);
282 
283 	ifp->if_capabilities = IFCAP_VLAN_MTU;
284 
285 	/*
286 	 * Attach the interface.
287 	 */
288 	if_attach(ifp);
289 	ether_ifattach(ifp);
290 	return;
291 
292 	/*
293 	 * Free any resources we've allocated during the failed attach
294 	 * attempt.  Do this in reverse order and fall through.
295 	 */
296  fail_6:
297 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
298  fail_5:
299 	for (i = 0; i < EPIC_NRXDESC; i++) {
300 		if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
301 			bus_dmamap_destroy(sc->sc_dmat,
302 			    EPIC_DSRX(sc, i)->ds_dmamap);
303 	}
304  fail_4:
305 	for (i = 0; i < EPIC_NTXDESC; i++) {
306 		if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
307 			bus_dmamap_destroy(sc->sc_dmat,
308 			    EPIC_DSTX(sc, i)->ds_dmamap);
309 	}
310 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
311  fail_3:
312 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
313  fail_2:
314 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
315 	    sizeof(struct epic_control_data));
316  fail_1:
317 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
318  fail_0:
319 	return;
320 }
321 
322 /*
323  * Start packet transmission on the interface.
324  * [ifnet interface function]
325  */
326 void
epic_start(struct ifnet * ifp)327 epic_start(struct ifnet *ifp)
328 {
329 	struct epic_softc *sc = ifp->if_softc;
330 	struct mbuf *m0, *m;
331 	struct epic_txdesc *txd;
332 	struct epic_descsoft *ds;
333 	struct epic_fraglist *fr;
334 	bus_dmamap_t dmamap;
335 	int error, firsttx, nexttx, opending, seg;
336 	u_int len;
337 
338 	/*
339 	 * Remember the previous txpending and the first transmit
340 	 * descriptor we use.
341 	 */
342 	opending = sc->sc_txpending;
343 	firsttx = EPIC_NEXTTX(sc->sc_txlast);
344 
345 	/*
346 	 * Loop through the send queue, setting up transmit descriptors
347 	 * until we drain the queue, or use up all available transmit
348 	 * descriptors.
349 	 */
350 	while (sc->sc_txpending < EPIC_NTXDESC) {
351 		/*
352 		 * Grab a packet off the queue.
353 		 */
354 		m0 = ifq_deq_begin(&ifp->if_snd);
355 		if (m0 == NULL)
356 			break;
357 		m = NULL;
358 
359 		/*
360 		 * Get the last and next available transmit descriptor.
361 		 */
362 		nexttx = EPIC_NEXTTX(sc->sc_txlast);
363 		txd = EPIC_CDTX(sc, nexttx);
364 		fr = EPIC_CDFL(sc, nexttx);
365 		ds = EPIC_DSTX(sc, nexttx);
366 		dmamap = ds->ds_dmamap;
367 
368 		/*
369 		 * Load the DMA map.  If this fails, the packet either
370 		 * didn't fit in the allotted number of frags, or we were
371 		 * short on resources.  In this case, we'll copy and try
372 		 * again.
373 		 */
374 		if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
375 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
376 		    (m0->m_pkthdr.len < ETHER_PAD_LEN &&
377 		    dmamap-> dm_nsegs == EPIC_NFRAGS)) {
378 			if (error == 0)
379 				bus_dmamap_unload(sc->sc_dmat, dmamap);
380 
381 			MGETHDR(m, M_DONTWAIT, MT_DATA);
382 			if (m == NULL) {
383 				ifq_deq_rollback(&ifp->if_snd, m0);
384 				break;
385 			}
386 			if (m0->m_pkthdr.len > MHLEN) {
387 				MCLGET(m, M_DONTWAIT);
388 				if ((m->m_flags & M_EXT) == 0) {
389 					m_freem(m);
390 					ifq_deq_rollback(&ifp->if_snd, m0);
391 					break;
392 				}
393 			}
394 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
395 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
396 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
397 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
398 			if (error) {
399 				ifq_deq_rollback(&ifp->if_snd, m0);
400 				break;
401 			}
402 		}
403 		ifq_deq_commit(&ifp->if_snd, m0);
404 		if (m != NULL) {
405 			m_freem(m0);
406 			m0 = m;
407 		}
408 
409 		/* Initialize the fraglist. */
410 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
411 			fr->ef_frags[seg].ef_addr =
412 			    dmamap->dm_segs[seg].ds_addr;
413 			fr->ef_frags[seg].ef_length =
414 			    dmamap->dm_segs[seg].ds_len;
415 		}
416 		len = m0->m_pkthdr.len;
417 		if (len < ETHER_PAD_LEN) {
418 			fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
419 			fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
420 			len = ETHER_PAD_LEN;
421 			seg++;
422 		}
423 		fr->ef_nfrags = seg;
424 
425 		EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
426 
427 		/* Sync the DMA map. */
428 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
429 		    BUS_DMASYNC_PREWRITE);
430 
431 		/*
432 		 * Store a pointer to the packet so we can free it later.
433 		 */
434 		ds->ds_mbuf = m0;
435 
436 		/*
437 		 * Fill in the transmit descriptor.
438 		 */
439 		txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
440 
441 		/*
442 		 * If this is the first descriptor we're enqueueing,
443 		 * don't give it to the EPIC yet.  That could cause
444 		 * a race condition.  We'll do it below.
445 		 */
446 		if (nexttx == firsttx)
447 			txd->et_txstatus = TXSTAT_TXLENGTH(len);
448 		else
449 			txd->et_txstatus =
450 			    TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
451 
452 		EPIC_CDTXSYNC(sc, nexttx,
453 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
454 
455 		/* Advance the tx pointer. */
456 		sc->sc_txpending++;
457 		sc->sc_txlast = nexttx;
458 
459 #if NBPFILTER > 0
460 		/*
461 		 * Pass the packet to any BPF listeners.
462 		 */
463 		if (ifp->if_bpf)
464 			bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
465 #endif
466 	}
467 
468 	if (sc->sc_txpending == EPIC_NTXDESC) {
469 		/* No more slots left; notify upper layer. */
470 		ifq_set_oactive(&ifp->if_snd);
471 	}
472 
473 	if (sc->sc_txpending != opending) {
474 		/*
475 		 * We enqueued packets.  If the transmitter was idle,
476 		 * reset the txdirty pointer.
477 		 */
478 		if (opending == 0)
479 			sc->sc_txdirty = firsttx;
480 
481 		/*
482 		 * Cause a transmit interrupt to happen on the
483 		 * last packet we enqueued.
484 		 */
485 		EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
486 		EPIC_CDTXSYNC(sc, sc->sc_txlast,
487 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
488 
489 		/*
490 		 * The entire packet chain is set up.  Give the
491 		 * first descriptor to the EPIC now.
492 		 */
493 		EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
494 		EPIC_CDTXSYNC(sc, firsttx,
495 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
496 
497 		/* Start the transmitter. */
498 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
499 		    COMMAND_TXQUEUED);
500 
501 		/* Set a watchdog timer in case the chip flakes out. */
502 		ifp->if_timer = 5;
503 	}
504 }
505 
506 /*
507  * Watchdog timer handler.
508  * [ifnet interface function]
509  */
510 void
epic_watchdog(struct ifnet * ifp)511 epic_watchdog(struct ifnet *ifp)
512 {
513 	struct epic_softc *sc = ifp->if_softc;
514 
515 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
516 	ifp->if_oerrors++;
517 
518 	(void) epic_init(ifp);
519 }
520 
521 /*
522  * Handle control requests from the operator.
523  * [ifnet interface function]
524  */
525 int
epic_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)526 epic_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
527 {
528 	struct epic_softc *sc = ifp->if_softc;
529 	struct ifreq *ifr = (struct ifreq *)data;
530 	int s, error = 0;
531 
532 	s = splnet();
533 
534 	switch (cmd) {
535 	case SIOCSIFADDR:
536 		ifp->if_flags |= IFF_UP;
537 		epic_init(ifp);
538 		break;
539 
540 	case SIOCSIFFLAGS:
541 		/*
542 		 * If interface is marked up and not running, then start it.
543 		 * If it is marked down and running, stop it.
544 		 * XXX If it's up then re-initialize it. This is so flags
545 		 * such as IFF_PROMISC are handled.
546 		 */
547 		if (ifp->if_flags & IFF_UP)
548 			epic_init(ifp);
549 		else if (ifp->if_flags & IFF_RUNNING)
550 			epic_stop(ifp, 1);
551 		break;
552 
553 	case SIOCSIFMEDIA:
554 	case SIOCGIFMEDIA:
555 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
556 		break;
557 
558 	default:
559 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
560 	}
561 
562 	if (error == ENETRESET) {
563 		if (ifp->if_flags & IFF_RUNNING) {
564 			mii_pollstat(&sc->sc_mii);
565 			epic_set_mchash(sc);
566 		}
567 		error = 0;
568 	}
569 
570 	splx(s);
571 	return (error);
572 }
573 
574 /*
575  * Interrupt handler.
576  */
577 int
epic_intr(void * arg)578 epic_intr(void *arg)
579 {
580 	struct epic_softc *sc = arg;
581 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
582 	struct epic_rxdesc *rxd;
583 	struct epic_txdesc *txd;
584 	struct epic_descsoft *ds;
585 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
586 	struct mbuf *m;
587 	u_int32_t intstat, rxstatus, txstatus;
588 	int i, claimed = 0;
589 	u_int len;
590 
591 	/*
592 	 * Get the interrupt status from the EPIC.
593 	 */
594 	intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
595 	if ((intstat & INTSTAT_INT_ACTV) == 0)
596 		return (claimed);
597 
598 	claimed = 1;
599 
600 	/*
601 	 * Acknowledge the interrupt.
602 	 */
603 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
604 	    intstat & INTMASK);
605 
606 	/*
607 	 * Check for receive interrupts.
608 	 */
609 	if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
610 		for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
611 			rxd = EPIC_CDRX(sc, i);
612 			ds = EPIC_DSRX(sc, i);
613 
614 			EPIC_CDRXSYNC(sc, i,
615 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
616 
617 			rxstatus = rxd->er_rxstatus;
618 			if (rxstatus & ER_RXSTAT_OWNER) {
619 				/*
620 				 * We have processed all of the
621 				 * receive buffers.
622 				 */
623 				break;
624 			}
625 
626 			/*
627 			 * Make sure the packet arrived intact.  If an error
628 			 * occurred, update stats and reset the descriptor.
629 			 * The buffer will be reused the next time the
630 			 * descriptor comes up in the ring.
631 			 */
632 			if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
633 				if (rxstatus & ER_RXSTAT_CRCERROR)
634 					printf("%s: CRC error\n",
635 					    sc->sc_dev.dv_xname);
636 				if (rxstatus & ER_RXSTAT_ALIGNERROR)
637 					printf("%s: alignment error\n",
638 					    sc->sc_dev.dv_xname);
639 				ifp->if_ierrors++;
640 				EPIC_INIT_RXDESC(sc, i);
641 				continue;
642 			}
643 
644 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
645 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
646 
647 			/*
648 			 * The EPIC includes the CRC with every packet;
649 			 * trim it.
650 			 */
651 			len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
652 
653 			if (len < sizeof(struct ether_header)) {
654 				/*
655 				 * Runt packet; drop it now.
656 				 */
657 				ifp->if_ierrors++;
658 				EPIC_INIT_RXDESC(sc, i);
659 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
660 				    ds->ds_dmamap->dm_mapsize,
661 				    BUS_DMASYNC_PREREAD);
662 				continue;
663 			}
664 
665 			/*
666 			 * If the packet is small enough to fit in a
667 			 * single header mbuf, allocate one and copy
668 			 * the data into it.  This greatly reduces
669 			 * memory consumption when we receive lots
670 			 * of small packets.
671 			 *
672 			 * Otherwise, we add a new buffer to the receive
673 			 * chain.  If this fails, we drop the packet and
674 			 * recycle the old buffer.
675 			 */
676 			if (epic_copy_small != 0 && len <= MHLEN) {
677 				MGETHDR(m, M_DONTWAIT, MT_DATA);
678 				if (m == NULL)
679 					goto dropit;
680 				memcpy(mtod(m, caddr_t),
681 				    mtod(ds->ds_mbuf, caddr_t), len);
682 				EPIC_INIT_RXDESC(sc, i);
683 				bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
684 				    ds->ds_dmamap->dm_mapsize,
685 				    BUS_DMASYNC_PREREAD);
686 			} else {
687 				m = ds->ds_mbuf;
688 				if (epic_add_rxbuf(sc, i) != 0) {
689  dropit:
690 					ifp->if_ierrors++;
691 					EPIC_INIT_RXDESC(sc, i);
692 					bus_dmamap_sync(sc->sc_dmat,
693 					    ds->ds_dmamap, 0,
694 					    ds->ds_dmamap->dm_mapsize,
695 					    BUS_DMASYNC_PREREAD);
696 					continue;
697 				}
698 			}
699 
700 			m->m_pkthdr.len = m->m_len = len;
701 
702 			ml_enqueue(&ml, m);
703 		}
704 
705 		/* Update the receive pointer. */
706 		sc->sc_rxptr = i;
707 
708 		/*
709 		 * Check for receive queue underflow.
710 		 */
711 		if (intstat & INTSTAT_RQE) {
712 			printf("%s: receiver queue empty\n",
713 			    sc->sc_dev.dv_xname);
714 			/*
715 			 * Ring is already built; just restart the
716 			 * receiver.
717 			 */
718 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
719 			    EPIC_CDRXADDR(sc, sc->sc_rxptr));
720 			bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
721 			    COMMAND_RXQUEUED | COMMAND_START_RX);
722 		}
723 	}
724 
725 	if_input(ifp, &ml);
726 
727 	/*
728 	 * Check for transmission complete interrupts.
729 	 */
730 	if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
731 		ifq_clr_oactive(&ifp->if_snd);
732 		for (i = sc->sc_txdirty; sc->sc_txpending != 0;
733 		     i = EPIC_NEXTTX(i), sc->sc_txpending--) {
734 			txd = EPIC_CDTX(sc, i);
735 			ds = EPIC_DSTX(sc, i);
736 
737 			EPIC_CDTXSYNC(sc, i,
738 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
739 
740 			txstatus = txd->et_txstatus;
741 			if (txstatus & ET_TXSTAT_OWNER)
742 				break;
743 
744 			EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
745 
746 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
747 			    0, ds->ds_dmamap->dm_mapsize,
748 			    BUS_DMASYNC_POSTWRITE);
749 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
750 			m_freem(ds->ds_mbuf);
751 			ds->ds_mbuf = NULL;
752 
753 			/*
754 			 * Check for errors and collisions.
755 			 */
756 			if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
757 				ifp->if_oerrors++;
758 			ifp->if_collisions +=
759 			    TXSTAT_COLLISIONS(txstatus);
760 			if (txstatus & ET_TXSTAT_CARSENSELOST)
761 				printf("%s: lost carrier\n",
762 				    sc->sc_dev.dv_xname);
763 		}
764 
765 		/* Update the dirty transmit buffer pointer. */
766 		sc->sc_txdirty = i;
767 
768 		/*
769 		 * Cancel the watchdog timer if there are no pending
770 		 * transmissions.
771 		 */
772 		if (sc->sc_txpending == 0)
773 			ifp->if_timer = 0;
774 
775 		/*
776 		 * Kick the transmitter after a DMA underrun.
777 		 */
778 		if (intstat & INTSTAT_TXU) {
779 			printf("%s: transmit underrun\n", sc->sc_dev.dv_xname);
780 			bus_space_write_4(sc->sc_st, sc->sc_sh,
781 			    EPIC_COMMAND, COMMAND_TXUGO);
782 			if (sc->sc_txpending)
783 				bus_space_write_4(sc->sc_st, sc->sc_sh,
784 				    EPIC_COMMAND, COMMAND_TXQUEUED);
785 		}
786 
787 		/*
788 		 * Try to get more packets going.
789 		 */
790 		epic_start(ifp);
791 	}
792 
793 	/*
794 	 * Check for fatal interrupts.
795 	 */
796 	if (intstat & INTSTAT_FATAL_INT) {
797 		if (intstat & INTSTAT_PTA)
798 			printf("%s: PCI target abort error\n",
799 			    sc->sc_dev.dv_xname);
800 		else if (intstat & INTSTAT_PMA)
801 			printf("%s: PCI master abort error\n",
802 			    sc->sc_dev.dv_xname);
803 		else if (intstat & INTSTAT_APE)
804 			printf("%s: PCI address parity error\n",
805 			    sc->sc_dev.dv_xname);
806 		else if (intstat & INTSTAT_DPE)
807 			printf("%s: PCI data parity error\n",
808 			    sc->sc_dev.dv_xname);
809 		else
810 			printf("%s: unknown fatal error\n",
811 			    sc->sc_dev.dv_xname);
812 		(void) epic_init(ifp);
813 	}
814 
815 	return (claimed);
816 }
817 
818 /*
819  * One second timer, used to tick the MII.
820  */
821 void
epic_tick(void * arg)822 epic_tick(void *arg)
823 {
824 	struct epic_softc *sc = arg;
825 	int s;
826 
827 	s = splnet();
828 	mii_tick(&sc->sc_mii);
829 	splx(s);
830 
831 	timeout_add_sec(&sc->sc_mii_timeout, 1);
832 }
833 
834 /*
835  * Fixup the clock source on the EPIC.
836  */
837 void
epic_fixup_clock_source(struct epic_softc * sc)838 epic_fixup_clock_source(struct epic_softc *sc)
839 {
840 	int i;
841 
842 	/*
843 	 * According to SMC Application Note 7-15, the EPIC's clock
844 	 * source is incorrect following a reset.  This manifests itself
845 	 * as failure to recognize when host software has written to
846 	 * a register on the EPIC.  The appnote recommends issuing at
847 	 * least 16 consecutive writes to the CLOCK TEST bit to correctly
848 	 * configure the clock source.
849 	 */
850 	for (i = 0; i < 16; i++)
851 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
852 		    TEST_CLOCKTEST);
853 }
854 
855 /*
856  * Perform a soft reset on the EPIC.
857  */
858 void
epic_reset(struct epic_softc * sc)859 epic_reset(struct epic_softc *sc)
860 {
861 
862 	epic_fixup_clock_source(sc);
863 
864 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
865 	delay(100);
866 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
867 	delay(100);
868 
869 	epic_fixup_clock_source(sc);
870 }
871 
872 /*
873  * Initialize the interface.  Must be called at splnet().
874  */
875 int
epic_init(struct ifnet * ifp)876 epic_init(struct ifnet *ifp)
877 {
878 	struct epic_softc *sc = ifp->if_softc;
879 	bus_space_tag_t st = sc->sc_st;
880 	bus_space_handle_t sh = sc->sc_sh;
881 	struct epic_txdesc *txd;
882 	struct epic_descsoft *ds;
883 	u_int32_t genctl, reg0;
884 	int i, error = 0;
885 
886 	/*
887 	 * Cancel any pending I/O.
888 	 */
889 	epic_stop(ifp, 0);
890 
891 	/*
892 	 * Reset the EPIC to a known state.
893 	 */
894 	epic_reset(sc);
895 
896 	/*
897 	 * Magical mystery initialization.
898 	 */
899 	bus_space_write_4(st, sh, EPIC_TXTEST, 0);
900 
901 	/*
902 	 * Initialize the EPIC genctl register:
903 	 *
904 	 *	- 64 byte receive FIFO threshold
905 	 *	- automatic advance to next receive frame
906 	 */
907 	genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
908 #if BYTE_ORDER == BIG_ENDIAN
909 	genctl |= GENCTL_BIG_ENDIAN;
910 #endif
911 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
912 
913 	/*
914 	 * Reset the MII bus and PHY.
915 	 */
916 	reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
917 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
918 	bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
919 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
920 	delay(100);
921 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
922 	delay(1000);
923 	bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
924 
925 	/*
926 	 * Initialize Ethernet address.
927 	 */
928 	reg0 = sc->sc_arpcom.ac_enaddr[1] << 8 | sc->sc_arpcom.ac_enaddr[0];
929 	bus_space_write_4(st, sh, EPIC_LAN0, reg0);
930 	reg0 = sc->sc_arpcom.ac_enaddr[3] << 8 | sc->sc_arpcom.ac_enaddr[2];
931 	bus_space_write_4(st, sh, EPIC_LAN1, reg0);
932 	reg0 = sc->sc_arpcom.ac_enaddr[5] << 8 | sc->sc_arpcom.ac_enaddr[4];
933 	bus_space_write_4(st, sh, EPIC_LAN2, reg0);
934 
935 	/*
936 	 * Initialize receive control.  Remember the external buffer
937 	 * size setting.
938 	 */
939 	reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
940 	    (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
941 	reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
942 	if (ifp->if_flags & IFF_PROMISC)
943 		reg0 |= RXCON_PROMISCMODE;
944 	bus_space_write_4(st, sh, EPIC_RXCON, reg0);
945 
946 	/* Set the current media. */
947 	epic_mediachange(ifp);
948 
949 	/* Set up the multicast hash table. */
950 	epic_set_mchash(sc);
951 
952 	/*
953 	 * Initialize the transmit descriptor ring.  txlast is initialized
954 	 * to the end of the list so that it will wrap around to the first
955 	 * descriptor when the first packet is transmitted.
956 	 */
957 	for (i = 0; i < EPIC_NTXDESC; i++) {
958 		txd = EPIC_CDTX(sc, i);
959 		memset(txd, 0, sizeof(struct epic_txdesc));
960 		txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
961 		txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
962 		EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
963 	}
964 	sc->sc_txpending = 0;
965 	sc->sc_txdirty = 0;
966 	sc->sc_txlast = EPIC_NTXDESC - 1;
967 
968 	/*
969 	 * Initialize the receive descriptor ring.
970 	 */
971 	for (i = 0; i < EPIC_NRXDESC; i++) {
972 		ds = EPIC_DSRX(sc, i);
973 		if (ds->ds_mbuf == NULL) {
974 			if ((error = epic_add_rxbuf(sc, i)) != 0) {
975 				printf("%s: unable to allocate or map rx "
976 				    "buffer %d error = %d\n",
977 				    sc->sc_dev.dv_xname, i, error);
978 				/*
979 				 * XXX Should attempt to run with fewer receive
980 				 * XXX buffers instead of just failing.
981 				 */
982 				epic_rxdrain(sc);
983 				goto out;
984 			}
985 		} else
986 			EPIC_INIT_RXDESC(sc, i);
987 	}
988 	sc->sc_rxptr = 0;
989 
990 	/*
991 	 * Initialize the interrupt mask and enable interrupts.
992 	 */
993 	bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
994 	bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
995 
996 	/*
997 	 * Give the transmit and receive rings to the EPIC.
998 	 */
999 	bus_space_write_4(st, sh, EPIC_PTCDAR,
1000 	    EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1001 	bus_space_write_4(st, sh, EPIC_PRCDAR,
1002 	    EPIC_CDRXADDR(sc, sc->sc_rxptr));
1003 
1004 	/*
1005 	 * Set the EPIC in motion.
1006 	 */
1007 	bus_space_write_4(st, sh, EPIC_COMMAND,
1008 	    COMMAND_RXQUEUED | COMMAND_START_RX);
1009 
1010 	/*
1011 	 * ...all done!
1012 	 */
1013 	ifp->if_flags |= IFF_RUNNING;
1014 	ifq_clr_oactive(&ifp->if_snd);
1015 
1016 	/*
1017 	 * Start the one second clock.
1018 	 */
1019 	timeout_add_sec(&sc->sc_mii_timeout, 1);
1020 
1021 	/*
1022 	 * Attempt to start output on the interface.
1023 	 */
1024 	epic_start(ifp);
1025 
1026  out:
1027 	if (error)
1028 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1029 	return (error);
1030 }
1031 
1032 /*
1033  * Drain the receive queue.
1034  */
1035 void
epic_rxdrain(struct epic_softc * sc)1036 epic_rxdrain(struct epic_softc *sc)
1037 {
1038 	struct epic_descsoft *ds;
1039 	int i;
1040 
1041 	for (i = 0; i < EPIC_NRXDESC; i++) {
1042 		ds = EPIC_DSRX(sc, i);
1043 		if (ds->ds_mbuf != NULL) {
1044 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1045 			m_freem(ds->ds_mbuf);
1046 			ds->ds_mbuf = NULL;
1047 		}
1048 	}
1049 }
1050 
1051 /*
1052  * Stop transmission on the interface.
1053  */
1054 void
epic_stop(struct ifnet * ifp,int disable)1055 epic_stop(struct ifnet *ifp, int disable)
1056 {
1057 	struct epic_softc *sc = ifp->if_softc;
1058 	bus_space_tag_t st = sc->sc_st;
1059 	bus_space_handle_t sh = sc->sc_sh;
1060 	struct epic_descsoft *ds;
1061 	u_int32_t reg;
1062 	int i;
1063 
1064 	/*
1065 	 * Stop the one second clock.
1066 	 */
1067 	timeout_del(&sc->sc_mii_timeout);
1068 
1069 	/*
1070 	 * Mark the interface down and cancel the watchdog timer.
1071 	 */
1072 	ifp->if_flags &= ~IFF_RUNNING;
1073 	ifq_clr_oactive(&ifp->if_snd);
1074 	ifp->if_timer = 0;
1075 
1076 	/* Down the MII. */
1077 	mii_down(&sc->sc_mii);
1078 
1079 	/* Paranoia... */
1080 	epic_fixup_clock_source(sc);
1081 
1082 	/*
1083 	 * Disable interrupts.
1084 	 */
1085 	reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1086 	bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1087 	bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1088 
1089 	/*
1090 	 * Stop the DMA engine and take the receiver off-line.
1091 	 */
1092 	bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1093 	    COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1094 
1095 	/*
1096 	 * Release any queued transmit buffers.
1097 	 */
1098 	for (i = 0; i < EPIC_NTXDESC; i++) {
1099 		ds = EPIC_DSTX(sc, i);
1100 		if (ds->ds_mbuf != NULL) {
1101 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1102 			m_freem(ds->ds_mbuf);
1103 			ds->ds_mbuf = NULL;
1104 		}
1105 	}
1106 
1107 	if (disable)
1108 		epic_rxdrain(sc);
1109 }
1110 
1111 /*
1112  * Read the EPIC Serial EEPROM.
1113  */
1114 void
epic_read_eeprom(struct epic_softc * sc,int word,int wordcnt,u_int16_t * data)1115 epic_read_eeprom(struct epic_softc *sc, int word, int wordcnt, u_int16_t *data)
1116 {
1117 	bus_space_tag_t st = sc->sc_st;
1118 	bus_space_handle_t sh = sc->sc_sh;
1119 	u_int16_t reg;
1120 	int i, x;
1121 
1122 #define	EEPROM_WAIT_READY(st, sh) \
1123 	while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1124 		/* nothing */
1125 
1126 	/*
1127 	 * Enable the EEPROM.
1128 	 */
1129 	bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1130 	EEPROM_WAIT_READY(st, sh);
1131 
1132 	for (i = 0; i < wordcnt; i++) {
1133 		/* Send CHIP SELECT for one clock tick. */
1134 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1135 		EEPROM_WAIT_READY(st, sh);
1136 
1137 		/* Shift in the READ opcode. */
1138 		for (x = 3; x > 0; x--) {
1139 			reg = EECTL_ENABLE|EECTL_EECS;
1140 			if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1141 				reg |= EECTL_EEDI;
1142 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1143 			EEPROM_WAIT_READY(st, sh);
1144 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1145 			EEPROM_WAIT_READY(st, sh);
1146 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1147 			EEPROM_WAIT_READY(st, sh);
1148 		}
1149 
1150 		/* Shift in address. */
1151 		for (x = 6; x > 0; x--) {
1152 			reg = EECTL_ENABLE|EECTL_EECS;
1153 			if ((word + i) & (1 << (x - 1)))
1154 				reg |= EECTL_EEDI;
1155 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1156 			EEPROM_WAIT_READY(st, sh);
1157 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1158 			EEPROM_WAIT_READY(st, sh);
1159 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1160 			EEPROM_WAIT_READY(st, sh);
1161 		}
1162 
1163 		/* Shift out data. */
1164 		reg = EECTL_ENABLE|EECTL_EECS;
1165 		data[i] = 0;
1166 		for (x = 16; x > 0; x--) {
1167 			bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1168 			EEPROM_WAIT_READY(st, sh);
1169 			if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1170 				data[i] |= (1 << (x - 1));
1171 			bus_space_write_4(st, sh, EPIC_EECTL, reg);
1172 			EEPROM_WAIT_READY(st, sh);
1173 		}
1174 
1175 		/* Clear CHIP SELECT. */
1176 		bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1177 		EEPROM_WAIT_READY(st, sh);
1178 	}
1179 
1180 	/*
1181 	 * Disable the EEPROM.
1182 	 */
1183 	bus_space_write_4(st, sh, EPIC_EECTL, 0);
1184 
1185 #undef EEPROM_WAIT_READY
1186 }
1187 
1188 /*
1189  * Add a receive buffer to the indicated descriptor.
1190  */
1191 int
epic_add_rxbuf(struct epic_softc * sc,int idx)1192 epic_add_rxbuf(struct epic_softc *sc, int idx)
1193 {
1194 	struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1195 	struct mbuf *m;
1196 	int error;
1197 
1198 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1199 	if (m == NULL)
1200 		return (ENOBUFS);
1201 
1202 	MCLGET(m, M_DONTWAIT);
1203 	if ((m->m_flags & M_EXT) == 0) {
1204 		m_freem(m);
1205 		return (ENOBUFS);
1206 	}
1207 
1208 	if (ds->ds_mbuf != NULL)
1209 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1210 
1211 	ds->ds_mbuf = m;
1212 
1213 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1214 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1215 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1216 	if (error) {
1217 		printf("%s: can't load rx DMA map %d, error = %d\n",
1218 		    sc->sc_dev.dv_xname, idx, error);
1219 		panic("epic_add_rxbuf");	/* XXX */
1220 	}
1221 
1222 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1223 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1224 
1225 	EPIC_INIT_RXDESC(sc, idx);
1226 
1227 	return (0);
1228 }
1229 
1230 /*
1231  * Set the EPIC multicast hash table.
1232  *
1233  * NOTE: We rely on a recently-updated mii_media_active here!
1234  */
1235 void
epic_set_mchash(struct epic_softc * sc)1236 epic_set_mchash(struct epic_softc *sc)
1237 {
1238 	struct arpcom *ac = &sc->sc_arpcom;
1239 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1240 	struct ether_multi *enm;
1241 	struct ether_multistep step;
1242 	u_int32_t hash, mchash[4];
1243 
1244 	/*
1245 	 * Set up the multicast address filter by passing all multicast
1246 	 * addresses through a CRC generator, and then using the low-order
1247 	 * 6 bits as an index into the 64 bit multicast hash table (only
1248 	 * the lower 16 bits of each 32 bit multicast hash register are
1249 	 * valid).  The high order bits select the register, while the
1250 	 * rest of the bits select the bit within the register.
1251 	 */
1252 
1253 	if (ifp->if_flags & IFF_PROMISC)
1254 		goto allmulti;
1255 
1256 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1257 		/* XXX hardware bug in 10Mbps mode. */
1258 		goto allmulti;
1259 	}
1260 
1261 	if (ac->ac_multirangecnt > 0)
1262 		goto allmulti;
1263 
1264 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1265 
1266 	ETHER_FIRST_MULTI(step, ac, enm);
1267 	while (enm != NULL) {
1268 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1269 		hash >>= 26;
1270 
1271 		/* Set the corresponding bit in the hash table. */
1272 		mchash[hash >> 4] |= 1 << (hash & 0xf);
1273 
1274 		ETHER_NEXT_MULTI(step, enm);
1275 	}
1276 
1277 	ifp->if_flags &= ~IFF_ALLMULTI;
1278 	goto sethash;
1279 
1280  allmulti:
1281 	ifp->if_flags |= IFF_ALLMULTI;
1282 	mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1283 
1284  sethash:
1285 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1286 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1287 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1288 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1289 }
1290 
1291 /*
1292  * Wait for the MII to become ready.
1293  */
1294 int
epic_mii_wait(struct epic_softc * sc,u_int32_t rw)1295 epic_mii_wait(struct epic_softc *sc, u_int32_t rw)
1296 {
1297 	int i;
1298 
1299 	for (i = 0; i < 50; i++) {
1300 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1301 		    == 0)
1302 			break;
1303 		delay(2);
1304 	}
1305 	if (i == 50) {
1306 		printf("%s: MII timed out\n", sc->sc_dev.dv_xname);
1307 		return (1);
1308 	}
1309 
1310 	return (0);
1311 }
1312 
1313 /*
1314  * Read from the MII.
1315  */
1316 int
epic_mii_read(struct device * self,int phy,int reg)1317 epic_mii_read(struct device *self, int phy, int reg)
1318 {
1319 	struct epic_softc *sc = (struct epic_softc *)self;
1320 
1321 	if (epic_mii_wait(sc, MMCTL_WRITE))
1322 		return (0);
1323 
1324 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1325 	    MMCTL_ARG(phy, reg, MMCTL_READ));
1326 
1327 	if (epic_mii_wait(sc, MMCTL_READ))
1328 		return (0);
1329 
1330 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1331 	    MMDATA_MASK);
1332 }
1333 
1334 /*
1335  * Write to the MII.
1336  */
1337 void
epic_mii_write(struct device * self,int phy,int reg,int val)1338 epic_mii_write(struct device *self, int phy, int reg, int val)
1339 {
1340 	struct epic_softc *sc = (struct epic_softc *)self;
1341 
1342 	if (epic_mii_wait(sc, MMCTL_WRITE))
1343 		return;
1344 
1345 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1346 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1347 	    MMCTL_ARG(phy, reg, MMCTL_WRITE));
1348 }
1349 
1350 /*
1351  * Callback from PHY when media changes.
1352  */
1353 void
epic_statchg(struct device * self)1354 epic_statchg(struct device *self)
1355 {
1356 	struct epic_softc *sc = (struct epic_softc *)self;
1357 	u_int32_t txcon, miicfg;
1358 
1359 	/*
1360 	 * Update loopback bits in TXCON to reflect duplex mode.
1361 	 */
1362 	txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1363 	if (sc->sc_mii.mii_media_active & IFM_FDX)
1364 		txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1365 	else
1366 		txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1367 	bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1368 
1369 	/* On some cards we need manually set fullduplex led */
1370 	if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1371 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1372 		if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1373 			miicfg |= MIICFG_ENABLE;
1374 		else
1375 			miicfg &= ~MIICFG_ENABLE;
1376 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1377 	}
1378 
1379 	/*
1380 	 * There is a multicast filter bug in 10Mbps mode.  Kick the
1381 	 * multicast filter in case the speed changed.
1382 	 */
1383 	epic_set_mchash(sc);
1384 }
1385 
1386 /*
1387  * Callback from ifmedia to request current media status.
1388  */
1389 void
epic_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)1390 epic_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1391 {
1392 	struct epic_softc *sc = ifp->if_softc;
1393 
1394 	mii_pollstat(&sc->sc_mii);
1395 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1396 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1397 }
1398 
1399 /*
1400  * Callback from ifmedia to request new media setting.
1401  */
1402 int
epic_mediachange(struct ifnet * ifp)1403 epic_mediachange(struct ifnet *ifp)
1404 {
1405 	struct epic_softc *sc = ifp->if_softc;
1406 	struct mii_data *mii = &sc->sc_mii;
1407 	struct ifmedia *ifm = &mii->mii_media;
1408 	uint64_t media = ifm->ifm_cur->ifm_media;
1409 	u_int32_t miicfg;
1410 	struct mii_softc *miisc;
1411 	int cfg;
1412 
1413 	if (!(ifp->if_flags & IFF_UP))
1414 		return (0);
1415 
1416 	if (IFM_INST(media) != sc->sc_serinst) {
1417 		/* If we're not selecting serial interface, select MII mode */
1418 #ifdef EPICMEDIADEBUG
1419 		printf("%s: parallel mode\n", ifp->if_xname);
1420 #endif
1421 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1422 		miicfg &= ~MIICFG_SERMODEENA;
1423 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1424 	}
1425 
1426 	mii_mediachg(mii);
1427 
1428 	if (IFM_INST(media) == sc->sc_serinst) {
1429 		/* select serial interface */
1430 #ifdef EPICMEDIADEBUG
1431 		printf("%s: serial mode\n", ifp->if_xname);
1432 #endif
1433 		miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1434 		miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1435 		bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1436 
1437 		/* There is no driver to fill this */
1438 		mii->mii_media_active = media;
1439 		mii->mii_media_status = 0;
1440 
1441 		epic_statchg(&sc->sc_dev);
1442 		return (0);
1443 	}
1444 
1445 	/* Lookup selected PHY */
1446 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1447 		if (IFM_INST(media) == miisc->mii_inst)
1448 			break;
1449 	}
1450 	if (!miisc) {
1451 		printf("epic_mediachange: can't happen\n"); /* ??? panic */
1452 		return (0);
1453 	}
1454 #ifdef EPICMEDIADEBUG
1455 	printf("%s: using phy %s\n", ifp->if_xname,
1456 	       miisc->mii_dev.dv_xname);
1457 #endif
1458 
1459 	if (miisc->mii_flags & MIIF_HAVEFIBER) {
1460 		/* XXX XXX assume it's a Level1 - should check */
1461 
1462 		/* We have to powerup fiber transceivers */
1463 		cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1464 		if (IFM_SUBTYPE(media) == IFM_100_FX) {
1465 #ifdef EPICMEDIADEBUG
1466 			printf("%s: power up fiber\n", ifp->if_xname);
1467 #endif
1468 			cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1469 		} else {
1470 #ifdef EPICMEDIADEBUG
1471 			printf("%s: power down fiber\n", ifp->if_xname);
1472 #endif
1473 			cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1474 		}
1475 		PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1476 	}
1477 
1478 	return (0);
1479 }
1480