1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
10 //  implementations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Analysis/AnalysisDeclContext.h"
23 #include "clang/Basic/LLVM.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
35 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include <cassert>
40 #include <optional>
41 #include <tuple>
42 
43 using namespace clang;
44 using namespace ento;
45 
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
49 
anchor()50 void SValBuilder::anchor() {}
51 
SValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)52 SValBuilder::SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
53                          ProgramStateManager &stateMgr)
54     : Context(context), BasicVals(context, alloc),
55       SymMgr(context, BasicVals, alloc), MemMgr(context, alloc),
56       StateMgr(stateMgr),
57       AnOpts(
58           stateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions()),
59       ArrayIndexTy(context.LongLongTy),
60       ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}
61 
makeZeroVal(QualType type)62 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
63   if (Loc::isLocType(type))
64     return makeNullWithType(type);
65 
66   if (type->isIntegralOrEnumerationType())
67     return makeIntVal(0, type);
68 
69   if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
70       type->isAnyComplexType())
71     return makeCompoundVal(type, BasicVals.getEmptySValList());
72 
73   // FIXME: Handle floats.
74   return UnknownVal();
75 }
76 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)77 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
78                                           BinaryOperator::Opcode op,
79                                           const llvm::APSInt &rhs,
80                                           QualType type) {
81   // The Environment ensures we always get a persistent APSInt in
82   // BasicValueFactory, so we don't need to get the APSInt from
83   // BasicValueFactory again.
84   assert(lhs);
85   assert(!Loc::isLocType(type));
86   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
87 }
88 
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)89 nonloc::SymbolVal SValBuilder::makeNonLoc(const llvm::APSInt &lhs,
90                                           BinaryOperator::Opcode op,
91                                           const SymExpr *rhs, QualType type) {
92   assert(rhs);
93   assert(!Loc::isLocType(type));
94   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
95 }
96 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)97 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
98                                           BinaryOperator::Opcode op,
99                                           const SymExpr *rhs, QualType type) {
100   assert(lhs && rhs);
101   assert(!Loc::isLocType(type));
102   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
103 }
104 
makeNonLoc(const SymExpr * operand,UnaryOperator::Opcode op,QualType type)105 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
106                                QualType type) {
107   assert(operand);
108   assert(!Loc::isLocType(type));
109   return nonloc::SymbolVal(SymMgr.getUnarySymExpr(operand, op, type));
110 }
111 
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)112 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *operand,
113                                           QualType fromTy, QualType toTy) {
114   assert(operand);
115   assert(!Loc::isLocType(toTy));
116   if (fromTy == toTy)
117     return operand;
118   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
119 }
120 
convertToArrayIndex(SVal val)121 SVal SValBuilder::convertToArrayIndex(SVal val) {
122   if (val.isUnknownOrUndef())
123     return val;
124 
125   // Common case: we have an appropriately sized integer.
126   if (std::optional<nonloc::ConcreteInt> CI =
127           val.getAs<nonloc::ConcreteInt>()) {
128     const llvm::APSInt& I = CI->getValue();
129     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
130       return val;
131   }
132 
133   return evalCast(val, ArrayIndexTy, QualType{});
134 }
135 
makeBoolVal(const CXXBoolLiteralExpr * boolean)136 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
137   return makeTruthVal(boolean->getValue());
138 }
139 
140 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)141 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
142   QualType T = region->getValueType();
143 
144   if (T->isNullPtrType())
145     return makeZeroVal(T);
146 
147   if (!SymbolManager::canSymbolicate(T))
148     return UnknownVal();
149 
150   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
151 
152   if (Loc::isLocType(T))
153     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
154 
155   return nonloc::SymbolVal(sym);
156 }
157 
conjureSymbolVal(const void * SymbolTag,const Expr * Ex,const LocationContext * LCtx,unsigned Count)158 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
159                                                    const Expr *Ex,
160                                                    const LocationContext *LCtx,
161                                                    unsigned Count) {
162   QualType T = Ex->getType();
163 
164   if (T->isNullPtrType())
165     return makeZeroVal(T);
166 
167   // Compute the type of the result. If the expression is not an R-value, the
168   // result should be a location.
169   QualType ExType = Ex->getType();
170   if (Ex->isGLValue())
171     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
172 
173   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
174 }
175 
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)176 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
177                                                    const Expr *expr,
178                                                    const LocationContext *LCtx,
179                                                    QualType type,
180                                                    unsigned count) {
181   if (type->isNullPtrType())
182     return makeZeroVal(type);
183 
184   if (!SymbolManager::canSymbolicate(type))
185     return UnknownVal();
186 
187   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
188 
189   if (Loc::isLocType(type))
190     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
191 
192   return nonloc::SymbolVal(sym);
193 }
194 
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)195 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
196                                                    const LocationContext *LCtx,
197                                                    QualType type,
198                                                    unsigned visitCount) {
199   if (type->isNullPtrType())
200     return makeZeroVal(type);
201 
202   if (!SymbolManager::canSymbolicate(type))
203     return UnknownVal();
204 
205   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
206 
207   if (Loc::isLocType(type))
208     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
209 
210   return nonloc::SymbolVal(sym);
211 }
212 
213 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)214 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
215                                       const LocationContext *LCtx,
216                                       unsigned VisitCount) {
217   QualType T = E->getType();
218   return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount);
219 }
220 
221 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,QualType type,unsigned VisitCount)222 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
223                                       const LocationContext *LCtx,
224                                       QualType type, unsigned VisitCount) {
225   assert(Loc::isLocType(type));
226   assert(SymbolManager::canSymbolicate(type));
227   if (type->isNullPtrType())
228     return makeZeroVal(type);
229 
230   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount);
231   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
232 }
233 
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,const LocationContext * LCtx,unsigned count)234 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
235                                               const MemRegion *region,
236                                               const Expr *expr, QualType type,
237                                               const LocationContext *LCtx,
238                                               unsigned count) {
239   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
240 
241   SymbolRef sym =
242       SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
243 
244   if (Loc::isLocType(type))
245     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
246 
247   return nonloc::SymbolVal(sym);
248 }
249 
250 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)251 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
252                                              const TypedValueRegion *region) {
253   QualType T = region->getValueType();
254 
255   if (T->isNullPtrType())
256     return makeZeroVal(T);
257 
258   if (!SymbolManager::canSymbolicate(T))
259     return UnknownVal();
260 
261   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
262 
263   if (Loc::isLocType(T))
264     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
265 
266   return nonloc::SymbolVal(sym);
267 }
268 
getMemberPointer(const NamedDecl * ND)269 DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) {
270   assert(!ND || (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(ND)));
271 
272   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) {
273     // Sema treats pointers to static member functions as have function pointer
274     // type, so return a function pointer for the method.
275     // We don't need to play a similar trick for static member fields
276     // because these are represented as plain VarDecls and not FieldDecls
277     // in the AST.
278     if (MD->isStatic())
279       return getFunctionPointer(MD);
280   }
281 
282   return nonloc::PointerToMember(ND);
283 }
284 
getFunctionPointer(const FunctionDecl * func)285 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
286   return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
287 }
288 
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext,unsigned blockCount)289 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
290                                          CanQualType locTy,
291                                          const LocationContext *locContext,
292                                          unsigned blockCount) {
293   const BlockCodeRegion *BC =
294     MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
295   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
296                                                         blockCount);
297   return loc::MemRegionVal(BD);
298 }
299 
300 std::optional<loc::MemRegionVal>
getCastedMemRegionVal(const MemRegion * R,QualType Ty)301 SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) {
302   if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty))
303     return loc::MemRegionVal(*OptR);
304   return std::nullopt;
305 }
306 
307 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)308 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
309                                           const StackFrameContext *SFC) {
310   return loc::MemRegionVal(
311       getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
312 }
313 
314 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)315 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
316                                           const StackFrameContext *SFC) {
317   const Type *T = D->getTypeForDecl();
318   QualType PT = getContext().getPointerType(QualType(T, 0));
319   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
320 }
321 
getConstantVal(const Expr * E)322 std::optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
323   E = E->IgnoreParens();
324 
325   switch (E->getStmtClass()) {
326   // Handle expressions that we treat differently from the AST's constant
327   // evaluator.
328   case Stmt::AddrLabelExprClass:
329     return makeLoc(cast<AddrLabelExpr>(E));
330 
331   case Stmt::CXXScalarValueInitExprClass:
332   case Stmt::ImplicitValueInitExprClass:
333     return makeZeroVal(E->getType());
334 
335   case Stmt::ObjCStringLiteralClass: {
336     const auto *SL = cast<ObjCStringLiteral>(E);
337     return makeLoc(getRegionManager().getObjCStringRegion(SL));
338   }
339 
340   case Stmt::StringLiteralClass: {
341     const auto *SL = cast<StringLiteral>(E);
342     return makeLoc(getRegionManager().getStringRegion(SL));
343   }
344 
345   case Stmt::PredefinedExprClass: {
346     const auto *PE = cast<PredefinedExpr>(E);
347     assert(PE->getFunctionName() &&
348            "Since we analyze only instantiated functions, PredefinedExpr "
349            "should have a function name.");
350     return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName()));
351   }
352 
353   // Fast-path some expressions to avoid the overhead of going through the AST's
354   // constant evaluator
355   case Stmt::CharacterLiteralClass: {
356     const auto *C = cast<CharacterLiteral>(E);
357     return makeIntVal(C->getValue(), C->getType());
358   }
359 
360   case Stmt::CXXBoolLiteralExprClass:
361     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
362 
363   case Stmt::TypeTraitExprClass: {
364     const auto *TE = cast<TypeTraitExpr>(E);
365     return makeTruthVal(TE->getValue(), TE->getType());
366   }
367 
368   case Stmt::IntegerLiteralClass:
369     return makeIntVal(cast<IntegerLiteral>(E));
370 
371   case Stmt::ObjCBoolLiteralExprClass:
372     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
373 
374   case Stmt::CXXNullPtrLiteralExprClass:
375     return makeNullWithType(E->getType());
376 
377   case Stmt::CStyleCastExprClass:
378   case Stmt::CXXFunctionalCastExprClass:
379   case Stmt::CXXConstCastExprClass:
380   case Stmt::CXXReinterpretCastExprClass:
381   case Stmt::CXXStaticCastExprClass:
382   case Stmt::ImplicitCastExprClass: {
383     const auto *CE = cast<CastExpr>(E);
384     switch (CE->getCastKind()) {
385     default:
386       break;
387     case CK_ArrayToPointerDecay:
388     case CK_IntegralToPointer:
389     case CK_NoOp:
390     case CK_BitCast: {
391       const Expr *SE = CE->getSubExpr();
392       std::optional<SVal> Val = getConstantVal(SE);
393       if (!Val)
394         return std::nullopt;
395       return evalCast(*Val, CE->getType(), SE->getType());
396     }
397     }
398     // FALLTHROUGH
399     [[fallthrough]];
400   }
401 
402   // If we don't have a special case, fall back to the AST's constant evaluator.
403   default: {
404     // Don't try to come up with a value for materialized temporaries.
405     if (E->isGLValue())
406       return std::nullopt;
407 
408     ASTContext &Ctx = getContext();
409     Expr::EvalResult Result;
410     if (E->EvaluateAsInt(Result, Ctx))
411       return makeIntVal(Result.Val.getInt());
412 
413     if (Loc::isLocType(E->getType()))
414       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
415         return makeNullWithType(E->getType());
416 
417     return std::nullopt;
418   }
419   }
420 }
421 
makeSymExprValNN(BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)422 SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
423                                    NonLoc LHS, NonLoc RHS,
424                                    QualType ResultTy) {
425   SymbolRef symLHS = LHS.getAsSymbol();
426   SymbolRef symRHS = RHS.getAsSymbol();
427 
428   // TODO: When the Max Complexity is reached, we should conjure a symbol
429   // instead of generating an Unknown value and propagate the taint info to it.
430   const unsigned MaxComp = AnOpts.MaxSymbolComplexity;
431 
432   if (symLHS && symRHS &&
433       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
434     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
435 
436   if (symLHS && symLHS->computeComplexity() < MaxComp)
437     if (std::optional<nonloc::ConcreteInt> rInt =
438             RHS.getAs<nonloc::ConcreteInt>())
439       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
440 
441   if (symRHS && symRHS->computeComplexity() < MaxComp)
442     if (std::optional<nonloc::ConcreteInt> lInt =
443             LHS.getAs<nonloc::ConcreteInt>())
444       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
445 
446   return UnknownVal();
447 }
448 
evalMinus(NonLoc X)449 SVal SValBuilder::evalMinus(NonLoc X) {
450   switch (X.getSubKind()) {
451   case nonloc::ConcreteIntKind:
452     return makeIntVal(-X.castAs<nonloc::ConcreteInt>().getValue());
453   case nonloc::SymbolValKind:
454     return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Minus,
455                       X.getType(Context));
456   default:
457     return UnknownVal();
458   }
459 }
460 
evalComplement(NonLoc X)461 SVal SValBuilder::evalComplement(NonLoc X) {
462   switch (X.getSubKind()) {
463   case nonloc::ConcreteIntKind:
464     return makeIntVal(~X.castAs<nonloc::ConcreteInt>().getValue());
465   case nonloc::SymbolValKind:
466     return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Not,
467                       X.getType(Context));
468   default:
469     return UnknownVal();
470   }
471 }
472 
evalUnaryOp(ProgramStateRef state,UnaryOperator::Opcode opc,SVal operand,QualType type)473 SVal SValBuilder::evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
474                  SVal operand, QualType type) {
475   auto OpN = operand.getAs<NonLoc>();
476   if (!OpN)
477     return UnknownVal();
478 
479   if (opc == UO_Minus)
480     return evalMinus(*OpN);
481   if (opc == UO_Not)
482     return evalComplement(*OpN);
483   llvm_unreachable("Unexpected unary operator");
484 }
485 
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)486 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
487                             SVal lhs, SVal rhs, QualType type) {
488   if (lhs.isUndef() || rhs.isUndef())
489     return UndefinedVal();
490 
491   if (lhs.isUnknown() || rhs.isUnknown())
492     return UnknownVal();
493 
494   if (isa<nonloc::LazyCompoundVal>(lhs) || isa<nonloc::LazyCompoundVal>(rhs)) {
495     return UnknownVal();
496   }
497 
498   if (op == BinaryOperatorKind::BO_Cmp) {
499     // We can't reason about C++20 spaceship operator yet.
500     //
501     // FIXME: Support C++20 spaceship operator.
502     //        The main problem here is that the result is not integer.
503     return UnknownVal();
504   }
505 
506   if (std::optional<Loc> LV = lhs.getAs<Loc>()) {
507     if (std::optional<Loc> RV = rhs.getAs<Loc>())
508       return evalBinOpLL(state, op, *LV, *RV, type);
509 
510     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
511   }
512 
513   if (const std::optional<Loc> RV = rhs.getAs<Loc>()) {
514     const auto IsCommutative = [](BinaryOperatorKind Op) {
515       return Op == BO_Mul || Op == BO_Add || Op == BO_And || Op == BO_Xor ||
516              Op == BO_Or;
517     };
518 
519     if (IsCommutative(op)) {
520       // Swap operands.
521       return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
522     }
523 
524     // If the right operand is a concrete int location then we have nothing
525     // better but to treat it as a simple nonloc.
526     if (auto RV = rhs.getAs<loc::ConcreteInt>()) {
527       const nonloc::ConcreteInt RhsAsLoc = makeIntVal(RV->getValue());
528       return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), RhsAsLoc, type);
529     }
530   }
531 
532   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
533                      type);
534 }
535 
areEqual(ProgramStateRef state,SVal lhs,SVal rhs)536 ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
537                                         SVal rhs) {
538   return state->isNonNull(evalEQ(state, lhs, rhs));
539 }
540 
evalEQ(ProgramStateRef state,SVal lhs,SVal rhs)541 SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
542   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
543 }
544 
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)545 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
546                                          DefinedOrUnknownSVal lhs,
547                                          DefinedOrUnknownSVal rhs) {
548   return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
549       .castAs<DefinedOrUnknownSVal>();
550 }
551 
552 /// Recursively check if the pointer types are equal modulo const, volatile,
553 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
554 /// Assumes the input types are canonical.
shouldBeModeledWithNoOp(ASTContext & Context,QualType ToTy,QualType FromTy)555 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
556                                                          QualType FromTy) {
557   while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
558     Qualifiers Quals1, Quals2;
559     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
560     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
561 
562     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
563     // spaces) are identical.
564     Quals1.removeCVRQualifiers();
565     Quals2.removeCVRQualifiers();
566     if (Quals1 != Quals2)
567       return false;
568   }
569 
570   // If we are casting to void, the 'From' value can be used to represent the
571   // 'To' value.
572   //
573   // FIXME: Doing this after unwrapping the types doesn't make any sense. A
574   // cast from 'int**' to 'void**' is not special in the way that a cast from
575   // 'int*' to 'void*' is.
576   if (ToTy->isVoidType())
577     return true;
578 
579   if (ToTy != FromTy)
580     return false;
581 
582   return true;
583 }
584 
585 // Handles casts of type CK_IntegralCast.
586 // At the moment, this function will redirect to evalCast, except when the range
587 // of the original value is known to be greater than the max of the target type.
evalIntegralCast(ProgramStateRef state,SVal val,QualType castTy,QualType originalTy)588 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
589                                    QualType castTy, QualType originalTy) {
590   // No truncations if target type is big enough.
591   if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
592     return evalCast(val, castTy, originalTy);
593 
594   SymbolRef se = val.getAsSymbol();
595   if (!se) // Let evalCast handle non symbolic expressions.
596     return evalCast(val, castTy, originalTy);
597 
598   // Find the maximum value of the target type.
599   APSIntType ToType(getContext().getTypeSize(castTy),
600                     castTy->isUnsignedIntegerType());
601   llvm::APSInt ToTypeMax = ToType.getMaxValue();
602   NonLoc ToTypeMaxVal =
603       makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
604                                         : ToTypeMax.getSExtValue(),
605                  castTy)
606           .castAs<NonLoc>();
607   // Check the range of the symbol being casted against the maximum value of the
608   // target type.
609   NonLoc FromVal = val.castAs<NonLoc>();
610   QualType CmpTy = getConditionType();
611   NonLoc CompVal =
612       evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
613   ProgramStateRef IsNotTruncated, IsTruncated;
614   std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
615   if (!IsNotTruncated && IsTruncated) {
616     // Symbol is truncated so we evaluate it as a cast.
617     return makeNonLoc(se, originalTy, castTy);
618   }
619   return evalCast(val, castTy, originalTy);
620 }
621 
622 //===----------------------------------------------------------------------===//
623 // Cast method.
624 // `evalCast` and its helper `EvalCastVisitor`
625 //===----------------------------------------------------------------------===//
626 
627 namespace {
628 class EvalCastVisitor : public SValVisitor<EvalCastVisitor, SVal> {
629 private:
630   SValBuilder &VB;
631   ASTContext &Context;
632   QualType CastTy, OriginalTy;
633 
634 public:
EvalCastVisitor(SValBuilder & VB,QualType CastTy,QualType OriginalTy)635   EvalCastVisitor(SValBuilder &VB, QualType CastTy, QualType OriginalTy)
636       : VB(VB), Context(VB.getContext()), CastTy(CastTy),
637         OriginalTy(OriginalTy) {}
638 
Visit(SVal V)639   SVal Visit(SVal V) {
640     if (CastTy.isNull())
641       return V;
642 
643     CastTy = Context.getCanonicalType(CastTy);
644 
645     const bool IsUnknownOriginalType = OriginalTy.isNull();
646     if (!IsUnknownOriginalType) {
647       OriginalTy = Context.getCanonicalType(OriginalTy);
648 
649       if (CastTy == OriginalTy)
650         return V;
651 
652       // FIXME: Move this check to the most appropriate
653       // evalCastKind/evalCastSubKind function. For const casts, casts to void,
654       // just propagate the value.
655       if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType())
656         if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy),
657                                     Context.getPointerType(OriginalTy)))
658           return V;
659     }
660     return SValVisitor::Visit(V);
661   }
VisitUndefinedVal(UndefinedVal V)662   SVal VisitUndefinedVal(UndefinedVal V) { return V; }
VisitUnknownVal(UnknownVal V)663   SVal VisitUnknownVal(UnknownVal V) { return V; }
VisitLocConcreteInt(loc::ConcreteInt V)664   SVal VisitLocConcreteInt(loc::ConcreteInt V) {
665     // Pointer to bool.
666     if (CastTy->isBooleanType())
667       return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
668 
669     // Pointer to integer.
670     if (CastTy->isIntegralOrEnumerationType()) {
671       llvm::APSInt Value = V.getValue();
672       VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
673       return VB.makeIntVal(Value);
674     }
675 
676     // Pointer to any pointer.
677     if (Loc::isLocType(CastTy)) {
678       llvm::APSInt Value = V.getValue();
679       VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
680       return loc::ConcreteInt(VB.getBasicValueFactory().getValue(Value));
681     }
682 
683     // Pointer to whatever else.
684     return UnknownVal();
685   }
VisitLocGotoLabel(loc::GotoLabel V)686   SVal VisitLocGotoLabel(loc::GotoLabel V) {
687     // Pointer to bool.
688     if (CastTy->isBooleanType())
689       // Labels are always true.
690       return VB.makeTruthVal(true, CastTy);
691 
692     // Pointer to integer.
693     if (CastTy->isIntegralOrEnumerationType()) {
694       const unsigned BitWidth = Context.getIntWidth(CastTy);
695       return VB.makeLocAsInteger(V, BitWidth);
696     }
697 
698     const bool IsUnknownOriginalType = OriginalTy.isNull();
699     if (!IsUnknownOriginalType) {
700       // Array to pointer.
701       if (isa<ArrayType>(OriginalTy))
702         if (CastTy->isPointerType() || CastTy->isReferenceType())
703           return UnknownVal();
704     }
705 
706     // Pointer to any pointer.
707     if (Loc::isLocType(CastTy))
708       return V;
709 
710     // Pointer to whatever else.
711     return UnknownVal();
712   }
VisitLocMemRegionVal(loc::MemRegionVal V)713   SVal VisitLocMemRegionVal(loc::MemRegionVal V) {
714     // Pointer to bool.
715     if (CastTy->isBooleanType()) {
716       const MemRegion *R = V.getRegion();
717       if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
718         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
719           if (FD->isWeak())
720             // FIXME: Currently we are using an extent symbol here,
721             // because there are no generic region address metadata
722             // symbols to use, only content metadata.
723             return nonloc::SymbolVal(
724                 VB.getSymbolManager().getExtentSymbol(FTR));
725 
726       if (const SymbolicRegion *SymR = R->getSymbolicBase()) {
727         SymbolRef Sym = SymR->getSymbol();
728         QualType Ty = Sym->getType();
729         // This change is needed for architectures with varying
730         // pointer widths. See the amdgcn opencl reproducer with
731         // this change as an example: solver-sym-simplification-ptr-bool.cl
732         if (!Ty->isReferenceType())
733           return VB.makeNonLoc(
734               Sym, BO_NE, VB.getBasicValueFactory().getZeroWithTypeSize(Ty),
735               CastTy);
736       }
737       // Non-symbolic memory regions are always true.
738       return VB.makeTruthVal(true, CastTy);
739     }
740 
741     const bool IsUnknownOriginalType = OriginalTy.isNull();
742     // Try to cast to array
743     const auto *ArrayTy =
744         IsUnknownOriginalType
745             ? nullptr
746             : dyn_cast<ArrayType>(OriginalTy.getCanonicalType());
747 
748     // Pointer to integer.
749     if (CastTy->isIntegralOrEnumerationType()) {
750       SVal Val = V;
751       // Array to integer.
752       if (ArrayTy) {
753         // We will always decay to a pointer.
754         QualType ElemTy = ArrayTy->getElementType();
755         Val = VB.getStateManager().ArrayToPointer(V, ElemTy);
756         // FIXME: Keep these here for now in case we decide soon that we
757         // need the original decayed type.
758         //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
759         //    QualType pointerTy = C.getPointerType(elemTy);
760       }
761       const unsigned BitWidth = Context.getIntWidth(CastTy);
762       return VB.makeLocAsInteger(Val.castAs<Loc>(), BitWidth);
763     }
764 
765     // Pointer to pointer.
766     if (Loc::isLocType(CastTy)) {
767 
768       if (IsUnknownOriginalType) {
769         // When retrieving symbolic pointer and expecting a non-void pointer,
770         // wrap them into element regions of the expected type if necessary.
771         // It is necessary to make sure that the retrieved value makes sense,
772         // because there's no other cast in the AST that would tell us to cast
773         // it to the correct pointer type. We might need to do that for non-void
774         // pointers as well.
775         // FIXME: We really need a single good function to perform casts for us
776         // correctly every time we need it.
777         const MemRegion *R = V.getRegion();
778         if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) {
779           if (const auto *SR = dyn_cast<SymbolicRegion>(R)) {
780             QualType SRTy = SR->getSymbol()->getType();
781 
782             auto HasSameUnqualifiedPointeeType = [](QualType ty1,
783                                                     QualType ty2) {
784               return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
785                      ty2->getPointeeType().getCanonicalType().getTypePtr();
786             };
787             if (!HasSameUnqualifiedPointeeType(SRTy, CastTy)) {
788               if (auto OptMemRegV = VB.getCastedMemRegionVal(SR, CastTy))
789                 return *OptMemRegV;
790             }
791           }
792         }
793         // Next fixes pointer dereference using type different from its initial
794         // one. See PR37503 and PR49007 for details.
795         if (const auto *ER = dyn_cast<ElementRegion>(R)) {
796           if (auto OptMemRegV = VB.getCastedMemRegionVal(ER, CastTy))
797             return *OptMemRegV;
798         }
799 
800         return V;
801       }
802 
803       if (OriginalTy->isIntegralOrEnumerationType() ||
804           OriginalTy->isBlockPointerType() ||
805           OriginalTy->isFunctionPointerType())
806         return V;
807 
808       // Array to pointer.
809       if (ArrayTy) {
810         // Are we casting from an array to a pointer?  If so just pass on
811         // the decayed value.
812         if (CastTy->isPointerType() || CastTy->isReferenceType()) {
813           // We will always decay to a pointer.
814           QualType ElemTy = ArrayTy->getElementType();
815           return VB.getStateManager().ArrayToPointer(V, ElemTy);
816         }
817         // Are we casting from an array to an integer?  If so, cast the decayed
818         // pointer value to an integer.
819         assert(CastTy->isIntegralOrEnumerationType());
820       }
821 
822       // Other pointer to pointer.
823       assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
824              CastTy->isReferenceType());
825 
826       // We get a symbolic function pointer for a dereference of a function
827       // pointer, but it is of function type. Example:
828 
829       //  struct FPRec {
830       //    void (*my_func)(int * x);
831       //  };
832       //
833       //  int bar(int x);
834       //
835       //  int f1_a(struct FPRec* foo) {
836       //    int x;
837       //    (*foo->my_func)(&x);
838       //    return bar(x)+1; // no-warning
839       //  }
840 
841       // Get the result of casting a region to a different type.
842       const MemRegion *R = V.getRegion();
843       if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
844         return *OptMemRegV;
845     }
846 
847     // Pointer to whatever else.
848     // FIXME: There can be gross cases where one casts the result of a
849     // function (that returns a pointer) to some other value that happens to
850     // fit within that pointer value.  We currently have no good way to model
851     // such operations.  When this happens, the underlying operation is that
852     // the caller is reasoning about bits.  Conceptually we are layering a
853     // "view" of a location on top of those bits.  Perhaps we need to be more
854     // lazy about mutual possible views, even on an SVal?  This may be
855     // necessary for bit-level reasoning as well.
856     return UnknownVal();
857   }
VisitNonLocCompoundVal(nonloc::CompoundVal V)858   SVal VisitNonLocCompoundVal(nonloc::CompoundVal V) {
859     // Compound to whatever.
860     return UnknownVal();
861   }
VisitNonLocConcreteInt(nonloc::ConcreteInt V)862   SVal VisitNonLocConcreteInt(nonloc::ConcreteInt V) {
863     auto CastedValue = [V, this]() {
864       llvm::APSInt Value = V.getValue();
865       VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
866       return Value;
867     };
868 
869     // Integer to bool.
870     if (CastTy->isBooleanType())
871       return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
872 
873     // Integer to pointer.
874     if (CastTy->isIntegralOrEnumerationType())
875       return VB.makeIntVal(CastedValue());
876 
877     // Integer to pointer.
878     if (Loc::isLocType(CastTy))
879       return VB.makeIntLocVal(CastedValue());
880 
881     // Pointer to whatever else.
882     return UnknownVal();
883   }
VisitNonLocLazyCompoundVal(nonloc::LazyCompoundVal V)884   SVal VisitNonLocLazyCompoundVal(nonloc::LazyCompoundVal V) {
885     // LazyCompound to whatever.
886     return UnknownVal();
887   }
VisitNonLocLocAsInteger(nonloc::LocAsInteger V)888   SVal VisitNonLocLocAsInteger(nonloc::LocAsInteger V) {
889     Loc L = V.getLoc();
890 
891     // Pointer as integer to bool.
892     if (CastTy->isBooleanType())
893       // Pass to Loc function.
894       return Visit(L);
895 
896     const bool IsUnknownOriginalType = OriginalTy.isNull();
897     // Pointer as integer to pointer.
898     if (!IsUnknownOriginalType && Loc::isLocType(CastTy) &&
899         OriginalTy->isIntegralOrEnumerationType()) {
900       if (const MemRegion *R = L.getAsRegion())
901         if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
902           return *OptMemRegV;
903       return L;
904     }
905 
906     // Pointer as integer with region to integer/pointer.
907     const MemRegion *R = L.getAsRegion();
908     if (!IsUnknownOriginalType && R) {
909       if (CastTy->isIntegralOrEnumerationType())
910         return VisitLocMemRegionVal(loc::MemRegionVal(R));
911 
912       if (Loc::isLocType(CastTy)) {
913         assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
914                CastTy->isReferenceType());
915         // Delegate to store manager to get the result of casting a region to a
916         // different type. If the MemRegion* returned is NULL, this expression
917         // Evaluates to UnknownVal.
918         if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
919           return *OptMemRegV;
920       }
921     } else {
922       if (Loc::isLocType(CastTy)) {
923         if (IsUnknownOriginalType)
924           return VisitLocMemRegionVal(loc::MemRegionVal(R));
925         return L;
926       }
927 
928       SymbolRef SE = nullptr;
929       if (R) {
930         if (const SymbolicRegion *SR =
931                 dyn_cast<SymbolicRegion>(R->StripCasts())) {
932           SE = SR->getSymbol();
933         }
934       }
935 
936       if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) {
937         // FIXME: Correctly support promotions/truncations.
938         const unsigned CastSize = Context.getIntWidth(CastTy);
939         if (CastSize == V.getNumBits())
940           return V;
941 
942         return VB.makeLocAsInteger(L, CastSize);
943       }
944     }
945 
946     // Pointer as integer to whatever else.
947     return UnknownVal();
948   }
VisitNonLocSymbolVal(nonloc::SymbolVal V)949   SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
950     SymbolRef SE = V.getSymbol();
951 
952     const bool IsUnknownOriginalType = OriginalTy.isNull();
953     // Symbol to bool.
954     if (!IsUnknownOriginalType && CastTy->isBooleanType()) {
955       // Non-float to bool.
956       if (Loc::isLocType(OriginalTy) ||
957           OriginalTy->isIntegralOrEnumerationType() ||
958           OriginalTy->isMemberPointerType()) {
959         BasicValueFactory &BVF = VB.getBasicValueFactory();
960         return VB.makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy);
961       }
962     } else {
963       // Symbol to integer, float.
964       QualType T = Context.getCanonicalType(SE->getType());
965 
966       // Produce SymbolCast if CastTy and T are different integers.
967       // NOTE: In the end the type of SymbolCast shall be equal to CastTy.
968       if (T->isIntegralOrUnscopedEnumerationType() &&
969           CastTy->isIntegralOrUnscopedEnumerationType()) {
970         AnalyzerOptions &Opts = VB.getStateManager()
971                                     .getOwningEngine()
972                                     .getAnalysisManager()
973                                     .getAnalyzerOptions();
974         // If appropriate option is disabled, ignore the cast.
975         // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default.
976         if (!Opts.ShouldSupportSymbolicIntegerCasts)
977           return V;
978         return simplifySymbolCast(V, CastTy);
979       }
980       if (!Loc::isLocType(CastTy))
981         if (!IsUnknownOriginalType || !CastTy->isFloatingType() ||
982             T->isFloatingType())
983           return VB.makeNonLoc(SE, T, CastTy);
984     }
985 
986     // Symbol to pointer and whatever else.
987     return UnknownVal();
988   }
VisitNonLocPointerToMember(nonloc::PointerToMember V)989   SVal VisitNonLocPointerToMember(nonloc::PointerToMember V) {
990     // Member pointer to whatever.
991     return V;
992   }
993 
994   /// Reduce cast expression by removing redundant intermediate casts.
995   /// E.g.
996   /// - (char)(short)(int x) -> (char)(int x)
997   /// - (int)(int x) -> int x
998   ///
999   /// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol
1000   /// that is applicable for cast operation.
1001   /// \param CastTy -- QualType, which `V` shall be cast to.
1002   /// \return SVal with simplified cast expression.
1003   /// \note: Currently only support integral casts.
simplifySymbolCast(nonloc::SymbolVal V,QualType CastTy)1004   nonloc::SymbolVal simplifySymbolCast(nonloc::SymbolVal V, QualType CastTy) {
1005     // We use seven conditions to recognize a simplification case.
1006     // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type -
1007     // `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g.
1008     // (char)(short)(uint x)
1009     //      ( sC )( sT  )( uR  x)
1010     //
1011     // C === R (the same type)
1012     //  (char)(char x) -> (char x)
1013     //  (long)(long x) -> (long x)
1014     // Note: Comparisons operators below are for bit width.
1015     // C == T
1016     //  (short)(short)(int x) -> (short)(int x)
1017     //  (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int))
1018     //  (long)(ullong)(char x) -> (long)(char x) (sizeof(long) ==
1019     //  sizeof(ullong))
1020     // C < T
1021     //  (short)(int)(char x) -> (short)(char x)
1022     //  (char)(int)(short x) -> (char)(short x)
1023     //  (short)(int)(short x) -> (short x)
1024     // C > T > uR
1025     //  (int)(short)(uchar x) -> (int)(uchar x)
1026     //  (uint)(short)(uchar x) -> (uint)(uchar x)
1027     //  (int)(ushort)(uchar x) -> (int)(uchar x)
1028     // C > sT > sR
1029     //  (int)(short)(char x) -> (int)(char x)
1030     //  (uint)(short)(char x) -> (uint)(char x)
1031     // C > sT == sR
1032     //  (int)(char)(char x) -> (int)(char x)
1033     //  (uint)(short)(short x) -> (uint)(short x)
1034     // C > uT == uR
1035     //  (int)(uchar)(uchar x) -> (int)(uchar x)
1036     //  (uint)(ushort)(ushort x) -> (uint)(ushort x)
1037     //  (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) ==
1038     //  sizeof(uint))
1039 
1040     SymbolRef SE = V.getSymbol();
1041     QualType T = Context.getCanonicalType(SE->getType());
1042 
1043     if (T == CastTy)
1044       return V;
1045 
1046     if (!isa<SymbolCast>(SE))
1047       return VB.makeNonLoc(SE, T, CastTy);
1048 
1049     SymbolRef RootSym = cast<SymbolCast>(SE)->getOperand();
1050     QualType RT = RootSym->getType().getCanonicalType();
1051 
1052     // FIXME support simplification from non-integers.
1053     if (!RT->isIntegralOrEnumerationType())
1054       return VB.makeNonLoc(SE, T, CastTy);
1055 
1056     BasicValueFactory &BVF = VB.getBasicValueFactory();
1057     APSIntType CTy = BVF.getAPSIntType(CastTy);
1058     APSIntType TTy = BVF.getAPSIntType(T);
1059 
1060     const auto WC = CTy.getBitWidth();
1061     const auto WT = TTy.getBitWidth();
1062 
1063     if (WC <= WT) {
1064       const bool isSameType = (RT == CastTy);
1065       if (isSameType)
1066         return nonloc::SymbolVal(RootSym);
1067       return VB.makeNonLoc(RootSym, RT, CastTy);
1068     }
1069 
1070     APSIntType RTy = BVF.getAPSIntType(RT);
1071     const auto WR = RTy.getBitWidth();
1072     const bool UT = TTy.isUnsigned();
1073     const bool UR = RTy.isUnsigned();
1074 
1075     if (((WT > WR) && (UR || !UT)) || ((WT == WR) && (UT == UR)))
1076       return VB.makeNonLoc(RootSym, RT, CastTy);
1077 
1078     return VB.makeNonLoc(SE, T, CastTy);
1079   }
1080 };
1081 } // end anonymous namespace
1082 
1083 /// Cast a given SVal to another SVal using given QualType's.
1084 /// \param V -- SVal that should be casted.
1085 /// \param CastTy -- QualType that V should be casted according to.
1086 /// \param OriginalTy -- QualType which is associated to V. It provides
1087 /// additional information about what type the cast performs from.
1088 /// \returns the most appropriate casted SVal.
1089 /// Note: Many cases don't use an exact OriginalTy. It can be extracted
1090 /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
1091 /// It can be crucial in certain cases and generates different results.
1092 /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
1093 /// only. This behavior is uncertain and should be improved.
evalCast(SVal V,QualType CastTy,QualType OriginalTy)1094 SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) {
1095   EvalCastVisitor TRV{*this, CastTy, OriginalTy};
1096   return TRV.Visit(V);
1097 }
1098