1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InterCheckerAPI.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <functional>
30 #include <optional>
31
32 using namespace clang;
33 using namespace ento;
34 using namespace std::placeholders;
35
36 namespace {
37 struct AnyArgExpr {
38 // FIXME: Remove constructor in C++17 to turn it into an aggregate.
AnyArgExpr__anonb040ba6a0111::AnyArgExpr39 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex)
40 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {}
41 const Expr *Expression;
42 unsigned ArgumentIndex;
43 };
44
45 struct SourceArgExpr : AnyArgExpr {
46 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17.
47 };
48
49 struct DestinationArgExpr : AnyArgExpr {
50 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
51 };
52
53 struct SizeArgExpr : AnyArgExpr {
54 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
55 };
56
57 using ErrorMessage = SmallString<128>;
58 enum class AccessKind { write, read };
59
createOutOfBoundErrorMsg(StringRef FunctionDescription,AccessKind Access)60 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
61 AccessKind Access) {
62 ErrorMessage Message;
63 llvm::raw_svector_ostream Os(Message);
64
65 // Function classification like: Memory copy function
66 Os << toUppercase(FunctionDescription.front())
67 << &FunctionDescription.data()[1];
68
69 if (Access == AccessKind::write) {
70 Os << " overflows the destination buffer";
71 } else { // read access
72 Os << " accesses out-of-bound array element";
73 }
74
75 return Message;
76 }
77
78 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
79
80 enum class CharKind { Regular = 0, Wide };
81 constexpr CharKind CK_Regular = CharKind::Regular;
82 constexpr CharKind CK_Wide = CharKind::Wide;
83
getCharPtrType(ASTContext & Ctx,CharKind CK)84 static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) {
85 return Ctx.getPointerType(CK == CharKind::Regular ? Ctx.CharTy
86 : Ctx.WideCharTy);
87 }
88
89 class CStringChecker : public Checker< eval::Call,
90 check::PreStmt<DeclStmt>,
91 check::LiveSymbols,
92 check::DeadSymbols,
93 check::RegionChanges
94 > {
95 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
96 BT_NotCString, BT_AdditionOverflow, BT_UninitRead;
97
98 mutable const char *CurrentFunctionDescription;
99
100 public:
101 /// The filter is used to filter out the diagnostics which are not enabled by
102 /// the user.
103 struct CStringChecksFilter {
104 bool CheckCStringNullArg = false;
105 bool CheckCStringOutOfBounds = false;
106 bool CheckCStringBufferOverlap = false;
107 bool CheckCStringNotNullTerm = false;
108 bool CheckCStringUninitializedRead = false;
109
110 CheckerNameRef CheckNameCStringNullArg;
111 CheckerNameRef CheckNameCStringOutOfBounds;
112 CheckerNameRef CheckNameCStringBufferOverlap;
113 CheckerNameRef CheckNameCStringNotNullTerm;
114 CheckerNameRef CheckNameCStringUninitializedRead;
115 };
116
117 CStringChecksFilter Filter;
118
getTag()119 static void *getTag() { static int tag; return &tag; }
120
121 bool evalCall(const CallEvent &Call, CheckerContext &C) const;
122 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
123 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
124 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
125
126 ProgramStateRef
127 checkRegionChanges(ProgramStateRef state,
128 const InvalidatedSymbols *,
129 ArrayRef<const MemRegion *> ExplicitRegions,
130 ArrayRef<const MemRegion *> Regions,
131 const LocationContext *LCtx,
132 const CallEvent *Call) const;
133
134 using FnCheck = std::function<void(const CStringChecker *, CheckerContext &,
135 const CallExpr *)>;
136
137 CallDescriptionMap<FnCheck> Callbacks = {
138 {{CDF_MaybeBuiltin, {"memcpy"}, 3},
139 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Regular)},
140 {{CDF_MaybeBuiltin, {"wmemcpy"}, 3},
141 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Wide)},
142 {{CDF_MaybeBuiltin, {"mempcpy"}, 3},
143 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Regular)},
144 {{CDF_None, {"wmempcpy"}, 3},
145 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Wide)},
146 {{CDF_MaybeBuiltin, {"memcmp"}, 3},
147 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
148 {{CDF_MaybeBuiltin, {"wmemcmp"}, 3},
149 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Wide)},
150 {{CDF_MaybeBuiltin, {"memmove"}, 3},
151 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Regular)},
152 {{CDF_MaybeBuiltin, {"wmemmove"}, 3},
153 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Wide)},
154 {{CDF_MaybeBuiltin, {"memset"}, 3}, &CStringChecker::evalMemset},
155 {{CDF_MaybeBuiltin, {"explicit_memset"}, 3}, &CStringChecker::evalMemset},
156 {{CDF_MaybeBuiltin, {"strcpy"}, 2}, &CStringChecker::evalStrcpy},
157 {{CDF_MaybeBuiltin, {"strncpy"}, 3}, &CStringChecker::evalStrncpy},
158 {{CDF_MaybeBuiltin, {"stpcpy"}, 2}, &CStringChecker::evalStpcpy},
159 {{CDF_MaybeBuiltin, {"strlcpy"}, 3}, &CStringChecker::evalStrlcpy},
160 {{CDF_MaybeBuiltin, {"strcat"}, 2}, &CStringChecker::evalStrcat},
161 {{CDF_MaybeBuiltin, {"strncat"}, 3}, &CStringChecker::evalStrncat},
162 {{CDF_MaybeBuiltin, {"strlcat"}, 3}, &CStringChecker::evalStrlcat},
163 {{CDF_MaybeBuiltin, {"strlen"}, 1}, &CStringChecker::evalstrLength},
164 {{CDF_MaybeBuiltin, {"wcslen"}, 1}, &CStringChecker::evalstrLength},
165 {{CDF_MaybeBuiltin, {"strnlen"}, 2}, &CStringChecker::evalstrnLength},
166 {{CDF_MaybeBuiltin, {"wcsnlen"}, 2}, &CStringChecker::evalstrnLength},
167 {{CDF_MaybeBuiltin, {"strcmp"}, 2}, &CStringChecker::evalStrcmp},
168 {{CDF_MaybeBuiltin, {"strncmp"}, 3}, &CStringChecker::evalStrncmp},
169 {{CDF_MaybeBuiltin, {"strcasecmp"}, 2}, &CStringChecker::evalStrcasecmp},
170 {{CDF_MaybeBuiltin, {"strncasecmp"}, 3},
171 &CStringChecker::evalStrncasecmp},
172 {{CDF_MaybeBuiltin, {"strsep"}, 2}, &CStringChecker::evalStrsep},
173 {{CDF_MaybeBuiltin, {"bcopy"}, 3}, &CStringChecker::evalBcopy},
174 {{CDF_MaybeBuiltin, {"bcmp"}, 3},
175 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
176 {{CDF_MaybeBuiltin, {"bzero"}, 2}, &CStringChecker::evalBzero},
177 {{CDF_MaybeBuiltin, {"explicit_bzero"}, 2}, &CStringChecker::evalBzero},
178 };
179
180 // These require a bit of special handling.
181 CallDescription StdCopy{{"std", "copy"}, 3},
182 StdCopyBackward{{"std", "copy_backward"}, 3};
183
184 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
185 void evalMemcpy(CheckerContext &C, const CallExpr *CE, CharKind CK) const;
186 void evalMempcpy(CheckerContext &C, const CallExpr *CE, CharKind CK) const;
187 void evalMemmove(CheckerContext &C, const CallExpr *CE, CharKind CK) const;
188 void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
189 void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
190 ProgramStateRef state, SizeArgExpr Size,
191 DestinationArgExpr Dest, SourceArgExpr Source,
192 bool Restricted, bool IsMempcpy, CharKind CK) const;
193
194 void evalMemcmp(CheckerContext &C, const CallExpr *CE, CharKind CK) const;
195
196 void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
197 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
198 void evalstrLengthCommon(CheckerContext &C,
199 const CallExpr *CE,
200 bool IsStrnlen = false) const;
201
202 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
203 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
204 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
205 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
206 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
207 bool IsBounded, ConcatFnKind appendK,
208 bool returnPtr = true) const;
209
210 void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
211 void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
212 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
213
214 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
215 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
216 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
217 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
218 void evalStrcmpCommon(CheckerContext &C,
219 const CallExpr *CE,
220 bool IsBounded = false,
221 bool IgnoreCase = false) const;
222
223 void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
224
225 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
226 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
227 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
228 void evalMemset(CheckerContext &C, const CallExpr *CE) const;
229 void evalBzero(CheckerContext &C, const CallExpr *CE) const;
230
231 // Utility methods
232 std::pair<ProgramStateRef , ProgramStateRef >
233 static assumeZero(CheckerContext &C,
234 ProgramStateRef state, SVal V, QualType Ty);
235
236 static ProgramStateRef setCStringLength(ProgramStateRef state,
237 const MemRegion *MR,
238 SVal strLength);
239 static SVal getCStringLengthForRegion(CheckerContext &C,
240 ProgramStateRef &state,
241 const Expr *Ex,
242 const MemRegion *MR,
243 bool hypothetical);
244 SVal getCStringLength(CheckerContext &C,
245 ProgramStateRef &state,
246 const Expr *Ex,
247 SVal Buf,
248 bool hypothetical = false) const;
249
250 const StringLiteral *getCStringLiteral(CheckerContext &C,
251 ProgramStateRef &state,
252 const Expr *expr,
253 SVal val) const;
254
255 static ProgramStateRef InvalidateBuffer(CheckerContext &C,
256 ProgramStateRef state,
257 const Expr *Ex, SVal V,
258 bool IsSourceBuffer,
259 const Expr *Size);
260
261 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
262 const MemRegion *MR);
263
264 static bool memsetAux(const Expr *DstBuffer, SVal CharE,
265 const Expr *Size, CheckerContext &C,
266 ProgramStateRef &State);
267
268 // Re-usable checks
269 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
270 AnyArgExpr Arg, SVal l) const;
271 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
272 AnyArgExpr Buffer, SVal Element,
273 AccessKind Access,
274 CharKind CK = CharKind::Regular) const;
275 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
276 AnyArgExpr Buffer, SizeArgExpr Size,
277 AccessKind Access,
278 CharKind CK = CharKind::Regular) const;
279 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
280 SizeArgExpr Size, AnyArgExpr First,
281 AnyArgExpr Second,
282 CharKind CK = CharKind::Regular) const;
283 void emitOverlapBug(CheckerContext &C,
284 ProgramStateRef state,
285 const Stmt *First,
286 const Stmt *Second) const;
287
288 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
289 StringRef WarningMsg) const;
290 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
291 const Stmt *S, StringRef WarningMsg) const;
292 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
293 const Stmt *S, StringRef WarningMsg) const;
294 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
295 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State,
296 const Expr *E) const;
297 ProgramStateRef checkAdditionOverflow(CheckerContext &C,
298 ProgramStateRef state,
299 NonLoc left,
300 NonLoc right) const;
301
302 // Return true if the destination buffer of the copy function may be in bound.
303 // Expects SVal of Size to be positive and unsigned.
304 // Expects SVal of FirstBuf to be a FieldRegion.
305 static bool IsFirstBufInBound(CheckerContext &C,
306 ProgramStateRef state,
307 const Expr *FirstBuf,
308 const Expr *Size);
309 };
310
311 } //end anonymous namespace
312
REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength,const MemRegion *,SVal)313 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
314
315 //===----------------------------------------------------------------------===//
316 // Individual checks and utility methods.
317 //===----------------------------------------------------------------------===//
318
319 std::pair<ProgramStateRef , ProgramStateRef >
320 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
321 QualType Ty) {
322 std::optional<DefinedSVal> val = V.getAs<DefinedSVal>();
323 if (!val)
324 return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
325
326 SValBuilder &svalBuilder = C.getSValBuilder();
327 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
328 return state->assume(svalBuilder.evalEQ(state, *val, zero));
329 }
330
checkNonNull(CheckerContext & C,ProgramStateRef State,AnyArgExpr Arg,SVal l) const331 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
332 ProgramStateRef State,
333 AnyArgExpr Arg, SVal l) const {
334 // If a previous check has failed, propagate the failure.
335 if (!State)
336 return nullptr;
337
338 ProgramStateRef stateNull, stateNonNull;
339 std::tie(stateNull, stateNonNull) =
340 assumeZero(C, State, l, Arg.Expression->getType());
341
342 if (stateNull && !stateNonNull) {
343 if (Filter.CheckCStringNullArg) {
344 SmallString<80> buf;
345 llvm::raw_svector_ostream OS(buf);
346 assert(CurrentFunctionDescription);
347 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
348 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
349 << CurrentFunctionDescription;
350
351 emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
352 }
353 return nullptr;
354 }
355
356 // From here on, assume that the value is non-null.
357 assert(stateNonNull);
358 return stateNonNull;
359 }
360
361 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
CheckLocation(CheckerContext & C,ProgramStateRef state,AnyArgExpr Buffer,SVal Element,AccessKind Access,CharKind CK) const362 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
363 ProgramStateRef state,
364 AnyArgExpr Buffer, SVal Element,
365 AccessKind Access,
366 CharKind CK) const {
367
368 // If a previous check has failed, propagate the failure.
369 if (!state)
370 return nullptr;
371
372 // Check for out of bound array element access.
373 const MemRegion *R = Element.getAsRegion();
374 if (!R)
375 return state;
376
377 const auto *ER = dyn_cast<ElementRegion>(R);
378 if (!ER)
379 return state;
380
381 SValBuilder &svalBuilder = C.getSValBuilder();
382 ASTContext &Ctx = svalBuilder.getContext();
383
384 // Get the index of the accessed element.
385 NonLoc Idx = ER->getIndex();
386
387 if (CK == CharKind::Regular) {
388 if (ER->getValueType() != Ctx.CharTy)
389 return state;
390 } else {
391 if (ER->getValueType() != Ctx.WideCharTy)
392 return state;
393
394 QualType SizeTy = Ctx.getSizeType();
395 NonLoc WideSize =
396 svalBuilder
397 .makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(),
398 SizeTy)
399 .castAs<NonLoc>();
400 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Mul, Idx, WideSize, SizeTy);
401 if (Offset.isUnknown())
402 return state;
403 Idx = Offset.castAs<NonLoc>();
404 }
405
406 // Get the size of the array.
407 const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
408 DefinedOrUnknownSVal Size =
409 getDynamicExtent(state, superReg, C.getSValBuilder());
410
411 ProgramStateRef StInBound, StOutBound;
412 std::tie(StInBound, StOutBound) = state->assumeInBoundDual(Idx, Size);
413 if (StOutBound && !StInBound) {
414 // These checks are either enabled by the CString out-of-bounds checker
415 // explicitly or implicitly by the Malloc checker.
416 // In the latter case we only do modeling but do not emit warning.
417 if (!Filter.CheckCStringOutOfBounds)
418 return nullptr;
419
420 // Emit a bug report.
421 ErrorMessage Message =
422 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
423 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
424 return nullptr;
425 }
426
427 // Ensure that we wouldn't read uninitialized value.
428 if (Access == AccessKind::read) {
429 if (Filter.CheckCStringUninitializedRead &&
430 StInBound->getSVal(ER).isUndef()) {
431 emitUninitializedReadBug(C, StInBound, Buffer.Expression);
432 return nullptr;
433 }
434 }
435
436 // Array bound check succeeded. From this point forward the array bound
437 // should always succeed.
438 return StInBound;
439 }
440
441 ProgramStateRef
CheckBufferAccess(CheckerContext & C,ProgramStateRef State,AnyArgExpr Buffer,SizeArgExpr Size,AccessKind Access,CharKind CK) const442 CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
443 AnyArgExpr Buffer, SizeArgExpr Size,
444 AccessKind Access, CharKind CK) const {
445 // If a previous check has failed, propagate the failure.
446 if (!State)
447 return nullptr;
448
449 SValBuilder &svalBuilder = C.getSValBuilder();
450 ASTContext &Ctx = svalBuilder.getContext();
451
452 QualType SizeTy = Size.Expression->getType();
453 QualType PtrTy = getCharPtrType(Ctx, CK);
454
455 // Check that the first buffer is non-null.
456 SVal BufVal = C.getSVal(Buffer.Expression);
457 State = checkNonNull(C, State, Buffer, BufVal);
458 if (!State)
459 return nullptr;
460
461 // If out-of-bounds checking is turned off, skip the rest.
462 if (!Filter.CheckCStringOutOfBounds)
463 return State;
464
465 // Get the access length and make sure it is known.
466 // FIXME: This assumes the caller has already checked that the access length
467 // is positive. And that it's unsigned.
468 SVal LengthVal = C.getSVal(Size.Expression);
469 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
470 if (!Length)
471 return State;
472
473 // Compute the offset of the last element to be accessed: size-1.
474 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
475 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
476 if (Offset.isUnknown())
477 return nullptr;
478 NonLoc LastOffset = Offset.castAs<NonLoc>();
479
480 // Check that the first buffer is sufficiently long.
481 SVal BufStart =
482 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
483 if (std::optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
484
485 SVal BufEnd =
486 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
487 State = CheckLocation(C, State, Buffer, BufEnd, Access, CK);
488
489 // If the buffer isn't large enough, abort.
490 if (!State)
491 return nullptr;
492 }
493
494 // Large enough or not, return this state!
495 return State;
496 }
497
CheckOverlap(CheckerContext & C,ProgramStateRef state,SizeArgExpr Size,AnyArgExpr First,AnyArgExpr Second,CharKind CK) const498 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
499 ProgramStateRef state,
500 SizeArgExpr Size, AnyArgExpr First,
501 AnyArgExpr Second,
502 CharKind CK) const {
503 if (!Filter.CheckCStringBufferOverlap)
504 return state;
505
506 // Do a simple check for overlap: if the two arguments are from the same
507 // buffer, see if the end of the first is greater than the start of the second
508 // or vice versa.
509
510 // If a previous check has failed, propagate the failure.
511 if (!state)
512 return nullptr;
513
514 ProgramStateRef stateTrue, stateFalse;
515
516 // Assume different address spaces cannot overlap.
517 if (First.Expression->getType()->getPointeeType().getAddressSpace() !=
518 Second.Expression->getType()->getPointeeType().getAddressSpace())
519 return state;
520
521 // Get the buffer values and make sure they're known locations.
522 const LocationContext *LCtx = C.getLocationContext();
523 SVal firstVal = state->getSVal(First.Expression, LCtx);
524 SVal secondVal = state->getSVal(Second.Expression, LCtx);
525
526 std::optional<Loc> firstLoc = firstVal.getAs<Loc>();
527 if (!firstLoc)
528 return state;
529
530 std::optional<Loc> secondLoc = secondVal.getAs<Loc>();
531 if (!secondLoc)
532 return state;
533
534 // Are the two values the same?
535 SValBuilder &svalBuilder = C.getSValBuilder();
536 std::tie(stateTrue, stateFalse) =
537 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
538
539 if (stateTrue && !stateFalse) {
540 // If the values are known to be equal, that's automatically an overlap.
541 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
542 return nullptr;
543 }
544
545 // assume the two expressions are not equal.
546 assert(stateFalse);
547 state = stateFalse;
548
549 // Which value comes first?
550 QualType cmpTy = svalBuilder.getConditionType();
551 SVal reverse =
552 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
553 std::optional<DefinedOrUnknownSVal> reverseTest =
554 reverse.getAs<DefinedOrUnknownSVal>();
555 if (!reverseTest)
556 return state;
557
558 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
559 if (stateTrue) {
560 if (stateFalse) {
561 // If we don't know which one comes first, we can't perform this test.
562 return state;
563 } else {
564 // Switch the values so that firstVal is before secondVal.
565 std::swap(firstLoc, secondLoc);
566
567 // Switch the Exprs as well, so that they still correspond.
568 std::swap(First, Second);
569 }
570 }
571
572 // Get the length, and make sure it too is known.
573 SVal LengthVal = state->getSVal(Size.Expression, LCtx);
574 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
575 if (!Length)
576 return state;
577
578 // Convert the first buffer's start address to char*.
579 // Bail out if the cast fails.
580 ASTContext &Ctx = svalBuilder.getContext();
581 QualType CharPtrTy = getCharPtrType(Ctx, CK);
582 SVal FirstStart =
583 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
584 std::optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
585 if (!FirstStartLoc)
586 return state;
587
588 // Compute the end of the first buffer. Bail out if THAT fails.
589 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
590 *Length, CharPtrTy);
591 std::optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
592 if (!FirstEndLoc)
593 return state;
594
595 // Is the end of the first buffer past the start of the second buffer?
596 SVal Overlap =
597 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
598 std::optional<DefinedOrUnknownSVal> OverlapTest =
599 Overlap.getAs<DefinedOrUnknownSVal>();
600 if (!OverlapTest)
601 return state;
602
603 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
604
605 if (stateTrue && !stateFalse) {
606 // Overlap!
607 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
608 return nullptr;
609 }
610
611 // assume the two expressions don't overlap.
612 assert(stateFalse);
613 return stateFalse;
614 }
615
emitOverlapBug(CheckerContext & C,ProgramStateRef state,const Stmt * First,const Stmt * Second) const616 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
617 const Stmt *First, const Stmt *Second) const {
618 ExplodedNode *N = C.generateErrorNode(state);
619 if (!N)
620 return;
621
622 if (!BT_Overlap)
623 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
624 categories::UnixAPI, "Improper arguments"));
625
626 // Generate a report for this bug.
627 auto report = std::make_unique<PathSensitiveBugReport>(
628 *BT_Overlap, "Arguments must not be overlapping buffers", N);
629 report->addRange(First->getSourceRange());
630 report->addRange(Second->getSourceRange());
631
632 C.emitReport(std::move(report));
633 }
634
emitNullArgBug(CheckerContext & C,ProgramStateRef State,const Stmt * S,StringRef WarningMsg) const635 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
636 const Stmt *S, StringRef WarningMsg) const {
637 if (ExplodedNode *N = C.generateErrorNode(State)) {
638 if (!BT_Null)
639 BT_Null.reset(new BuiltinBug(
640 Filter.CheckNameCStringNullArg, categories::UnixAPI,
641 "Null pointer argument in call to byte string function"));
642
643 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
644 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
645 Report->addRange(S->getSourceRange());
646 if (const auto *Ex = dyn_cast<Expr>(S))
647 bugreporter::trackExpressionValue(N, Ex, *Report);
648 C.emitReport(std::move(Report));
649 }
650 }
651
emitUninitializedReadBug(CheckerContext & C,ProgramStateRef State,const Expr * E) const652 void CStringChecker::emitUninitializedReadBug(CheckerContext &C,
653 ProgramStateRef State,
654 const Expr *E) const {
655 if (ExplodedNode *N = C.generateErrorNode(State)) {
656 const char *Msg =
657 "Bytes string function accesses uninitialized/garbage values";
658 if (!BT_UninitRead)
659 BT_UninitRead.reset(
660 new BuiltinBug(Filter.CheckNameCStringUninitializedRead,
661 "Accessing unitialized/garbage values", Msg));
662
663 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_UninitRead.get());
664
665 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
666 Report->addRange(E->getSourceRange());
667 bugreporter::trackExpressionValue(N, E, *Report);
668 C.emitReport(std::move(Report));
669 }
670 }
671
emitOutOfBoundsBug(CheckerContext & C,ProgramStateRef State,const Stmt * S,StringRef WarningMsg) const672 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
673 ProgramStateRef State, const Stmt *S,
674 StringRef WarningMsg) const {
675 if (ExplodedNode *N = C.generateErrorNode(State)) {
676 if (!BT_Bounds)
677 BT_Bounds.reset(new BuiltinBug(
678 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
679 : Filter.CheckNameCStringNullArg,
680 "Out-of-bound array access",
681 "Byte string function accesses out-of-bound array element"));
682
683 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
684
685 // FIXME: It would be nice to eventually make this diagnostic more clear,
686 // e.g., by referencing the original declaration or by saying *why* this
687 // reference is outside the range.
688 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
689 Report->addRange(S->getSourceRange());
690 C.emitReport(std::move(Report));
691 }
692 }
693
emitNotCStringBug(CheckerContext & C,ProgramStateRef State,const Stmt * S,StringRef WarningMsg) const694 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
695 const Stmt *S,
696 StringRef WarningMsg) const {
697 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
698 if (!BT_NotCString)
699 BT_NotCString.reset(new BuiltinBug(
700 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
701 "Argument is not a null-terminated string."));
702
703 auto Report =
704 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
705
706 Report->addRange(S->getSourceRange());
707 C.emitReport(std::move(Report));
708 }
709 }
710
emitAdditionOverflowBug(CheckerContext & C,ProgramStateRef State) const711 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
712 ProgramStateRef State) const {
713 if (ExplodedNode *N = C.generateErrorNode(State)) {
714 if (!BT_AdditionOverflow)
715 BT_AdditionOverflow.reset(
716 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
717 "Sum of expressions causes overflow."));
718
719 // This isn't a great error message, but this should never occur in real
720 // code anyway -- you'd have to create a buffer longer than a size_t can
721 // represent, which is sort of a contradiction.
722 const char *WarningMsg =
723 "This expression will create a string whose length is too big to "
724 "be represented as a size_t";
725
726 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow,
727 WarningMsg, N);
728 C.emitReport(std::move(Report));
729 }
730 }
731
checkAdditionOverflow(CheckerContext & C,ProgramStateRef state,NonLoc left,NonLoc right) const732 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
733 ProgramStateRef state,
734 NonLoc left,
735 NonLoc right) const {
736 // If out-of-bounds checking is turned off, skip the rest.
737 if (!Filter.CheckCStringOutOfBounds)
738 return state;
739
740 // If a previous check has failed, propagate the failure.
741 if (!state)
742 return nullptr;
743
744 SValBuilder &svalBuilder = C.getSValBuilder();
745 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
746
747 QualType sizeTy = svalBuilder.getContext().getSizeType();
748 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
749 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
750
751 SVal maxMinusRight;
752 if (isa<nonloc::ConcreteInt>(right)) {
753 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
754 sizeTy);
755 } else {
756 // Try switching the operands. (The order of these two assignments is
757 // important!)
758 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
759 sizeTy);
760 left = right;
761 }
762
763 if (std::optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
764 QualType cmpTy = svalBuilder.getConditionType();
765 // If left > max - right, we have an overflow.
766 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
767 *maxMinusRightNL, cmpTy);
768
769 ProgramStateRef stateOverflow, stateOkay;
770 std::tie(stateOverflow, stateOkay) =
771 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
772
773 if (stateOverflow && !stateOkay) {
774 // We have an overflow. Emit a bug report.
775 emitAdditionOverflowBug(C, stateOverflow);
776 return nullptr;
777 }
778
779 // From now on, assume an overflow didn't occur.
780 assert(stateOkay);
781 state = stateOkay;
782 }
783
784 return state;
785 }
786
setCStringLength(ProgramStateRef state,const MemRegion * MR,SVal strLength)787 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
788 const MemRegion *MR,
789 SVal strLength) {
790 assert(!strLength.isUndef() && "Attempt to set an undefined string length");
791
792 MR = MR->StripCasts();
793
794 switch (MR->getKind()) {
795 case MemRegion::StringRegionKind:
796 // FIXME: This can happen if we strcpy() into a string region. This is
797 // undefined [C99 6.4.5p6], but we should still warn about it.
798 return state;
799
800 case MemRegion::SymbolicRegionKind:
801 case MemRegion::AllocaRegionKind:
802 case MemRegion::NonParamVarRegionKind:
803 case MemRegion::ParamVarRegionKind:
804 case MemRegion::FieldRegionKind:
805 case MemRegion::ObjCIvarRegionKind:
806 // These are the types we can currently track string lengths for.
807 break;
808
809 case MemRegion::ElementRegionKind:
810 // FIXME: Handle element regions by upper-bounding the parent region's
811 // string length.
812 return state;
813
814 default:
815 // Other regions (mostly non-data) can't have a reliable C string length.
816 // For now, just ignore the change.
817 // FIXME: These are rare but not impossible. We should output some kind of
818 // warning for things like strcpy((char[]){'a', 0}, "b");
819 return state;
820 }
821
822 if (strLength.isUnknown())
823 return state->remove<CStringLength>(MR);
824
825 return state->set<CStringLength>(MR, strLength);
826 }
827
getCStringLengthForRegion(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,const MemRegion * MR,bool hypothetical)828 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
829 ProgramStateRef &state,
830 const Expr *Ex,
831 const MemRegion *MR,
832 bool hypothetical) {
833 if (!hypothetical) {
834 // If there's a recorded length, go ahead and return it.
835 const SVal *Recorded = state->get<CStringLength>(MR);
836 if (Recorded)
837 return *Recorded;
838 }
839
840 // Otherwise, get a new symbol and update the state.
841 SValBuilder &svalBuilder = C.getSValBuilder();
842 QualType sizeTy = svalBuilder.getContext().getSizeType();
843 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
844 MR, Ex, sizeTy,
845 C.getLocationContext(),
846 C.blockCount());
847
848 if (!hypothetical) {
849 if (std::optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
850 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
851 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
852 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
853 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
854 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
855 fourInt);
856 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
857 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
858 maxLength, sizeTy);
859 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
860 }
861 state = state->set<CStringLength>(MR, strLength);
862 }
863
864 return strLength;
865 }
866
getCStringLength(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,SVal Buf,bool hypothetical) const867 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
868 const Expr *Ex, SVal Buf,
869 bool hypothetical) const {
870 const MemRegion *MR = Buf.getAsRegion();
871 if (!MR) {
872 // If we can't get a region, see if it's something we /know/ isn't a
873 // C string. In the context of locations, the only time we can issue such
874 // a warning is for labels.
875 if (std::optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
876 if (Filter.CheckCStringNotNullTerm) {
877 SmallString<120> buf;
878 llvm::raw_svector_ostream os(buf);
879 assert(CurrentFunctionDescription);
880 os << "Argument to " << CurrentFunctionDescription
881 << " is the address of the label '" << Label->getLabel()->getName()
882 << "', which is not a null-terminated string";
883
884 emitNotCStringBug(C, state, Ex, os.str());
885 }
886 return UndefinedVal();
887 }
888
889 // If it's not a region and not a label, give up.
890 return UnknownVal();
891 }
892
893 // If we have a region, strip casts from it and see if we can figure out
894 // its length. For anything we can't figure out, just return UnknownVal.
895 MR = MR->StripCasts();
896
897 switch (MR->getKind()) {
898 case MemRegion::StringRegionKind: {
899 // Modifying the contents of string regions is undefined [C99 6.4.5p6],
900 // so we can assume that the byte length is the correct C string length.
901 SValBuilder &svalBuilder = C.getSValBuilder();
902 QualType sizeTy = svalBuilder.getContext().getSizeType();
903 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
904 return svalBuilder.makeIntVal(strLit->getLength(), sizeTy);
905 }
906 case MemRegion::SymbolicRegionKind:
907 case MemRegion::AllocaRegionKind:
908 case MemRegion::NonParamVarRegionKind:
909 case MemRegion::ParamVarRegionKind:
910 case MemRegion::FieldRegionKind:
911 case MemRegion::ObjCIvarRegionKind:
912 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
913 case MemRegion::CompoundLiteralRegionKind:
914 // FIXME: Can we track this? Is it necessary?
915 return UnknownVal();
916 case MemRegion::ElementRegionKind:
917 // FIXME: How can we handle this? It's not good enough to subtract the
918 // offset from the base string length; consider "123\x00567" and &a[5].
919 return UnknownVal();
920 default:
921 // Other regions (mostly non-data) can't have a reliable C string length.
922 // In this case, an error is emitted and UndefinedVal is returned.
923 // The caller should always be prepared to handle this case.
924 if (Filter.CheckCStringNotNullTerm) {
925 SmallString<120> buf;
926 llvm::raw_svector_ostream os(buf);
927
928 assert(CurrentFunctionDescription);
929 os << "Argument to " << CurrentFunctionDescription << " is ";
930
931 if (SummarizeRegion(os, C.getASTContext(), MR))
932 os << ", which is not a null-terminated string";
933 else
934 os << "not a null-terminated string";
935
936 emitNotCStringBug(C, state, Ex, os.str());
937 }
938 return UndefinedVal();
939 }
940 }
941
getCStringLiteral(CheckerContext & C,ProgramStateRef & state,const Expr * expr,SVal val) const942 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
943 ProgramStateRef &state, const Expr *expr, SVal val) const {
944
945 // Get the memory region pointed to by the val.
946 const MemRegion *bufRegion = val.getAsRegion();
947 if (!bufRegion)
948 return nullptr;
949
950 // Strip casts off the memory region.
951 bufRegion = bufRegion->StripCasts();
952
953 // Cast the memory region to a string region.
954 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
955 if (!strRegion)
956 return nullptr;
957
958 // Return the actual string in the string region.
959 return strRegion->getStringLiteral();
960 }
961
IsFirstBufInBound(CheckerContext & C,ProgramStateRef state,const Expr * FirstBuf,const Expr * Size)962 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
963 ProgramStateRef state,
964 const Expr *FirstBuf,
965 const Expr *Size) {
966 // If we do not know that the buffer is long enough we return 'true'.
967 // Otherwise the parent region of this field region would also get
968 // invalidated, which would lead to warnings based on an unknown state.
969
970 // Originally copied from CheckBufferAccess and CheckLocation.
971 SValBuilder &svalBuilder = C.getSValBuilder();
972 ASTContext &Ctx = svalBuilder.getContext();
973 const LocationContext *LCtx = C.getLocationContext();
974
975 QualType sizeTy = Size->getType();
976 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
977 SVal BufVal = state->getSVal(FirstBuf, LCtx);
978
979 SVal LengthVal = state->getSVal(Size, LCtx);
980 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
981 if (!Length)
982 return true; // cf top comment.
983
984 // Compute the offset of the last element to be accessed: size-1.
985 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
986 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
987 if (Offset.isUnknown())
988 return true; // cf top comment
989 NonLoc LastOffset = Offset.castAs<NonLoc>();
990
991 // Check that the first buffer is sufficiently long.
992 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
993 std::optional<Loc> BufLoc = BufStart.getAs<Loc>();
994 if (!BufLoc)
995 return true; // cf top comment.
996
997 SVal BufEnd =
998 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
999
1000 // Check for out of bound array element access.
1001 const MemRegion *R = BufEnd.getAsRegion();
1002 if (!R)
1003 return true; // cf top comment.
1004
1005 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
1006 if (!ER)
1007 return true; // cf top comment.
1008
1009 // FIXME: Does this crash when a non-standard definition
1010 // of a library function is encountered?
1011 assert(ER->getValueType() == C.getASTContext().CharTy &&
1012 "IsFirstBufInBound should only be called with char* ElementRegions");
1013
1014 // Get the size of the array.
1015 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
1016 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder);
1017
1018 // Get the index of the accessed element.
1019 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
1020
1021 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true);
1022
1023 return static_cast<bool>(StInBound);
1024 }
1025
InvalidateBuffer(CheckerContext & C,ProgramStateRef state,const Expr * E,SVal V,bool IsSourceBuffer,const Expr * Size)1026 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
1027 ProgramStateRef state,
1028 const Expr *E, SVal V,
1029 bool IsSourceBuffer,
1030 const Expr *Size) {
1031 std::optional<Loc> L = V.getAs<Loc>();
1032 if (!L)
1033 return state;
1034
1035 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
1036 // some assumptions about the value that CFRefCount can't. Even so, it should
1037 // probably be refactored.
1038 if (std::optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
1039 const MemRegion *R = MR->getRegion()->StripCasts();
1040
1041 // Are we dealing with an ElementRegion? If so, we should be invalidating
1042 // the super-region.
1043 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1044 R = ER->getSuperRegion();
1045 // FIXME: What about layers of ElementRegions?
1046 }
1047
1048 // Invalidate this region.
1049 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1050
1051 bool CausesPointerEscape = false;
1052 RegionAndSymbolInvalidationTraits ITraits;
1053 // Invalidate and escape only indirect regions accessible through the source
1054 // buffer.
1055 if (IsSourceBuffer) {
1056 ITraits.setTrait(R->getBaseRegion(),
1057 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1058 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1059 CausesPointerEscape = true;
1060 } else {
1061 const MemRegion::Kind& K = R->getKind();
1062 if (K == MemRegion::FieldRegionKind)
1063 if (Size && IsFirstBufInBound(C, state, E, Size)) {
1064 // If destination buffer is a field region and access is in bound,
1065 // do not invalidate its super region.
1066 ITraits.setTrait(
1067 R,
1068 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1069 }
1070 }
1071
1072 return state->invalidateRegions(R, E, C.blockCount(), LCtx,
1073 CausesPointerEscape, nullptr, nullptr,
1074 &ITraits);
1075 }
1076
1077 // If we have a non-region value by chance, just remove the binding.
1078 // FIXME: is this necessary or correct? This handles the non-Region
1079 // cases. Is it ever valid to store to these?
1080 return state->killBinding(*L);
1081 }
1082
SummarizeRegion(raw_ostream & os,ASTContext & Ctx,const MemRegion * MR)1083 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
1084 const MemRegion *MR) {
1085 switch (MR->getKind()) {
1086 case MemRegion::FunctionCodeRegionKind: {
1087 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
1088 os << "the address of the function '" << *FD << '\'';
1089 else
1090 os << "the address of a function";
1091 return true;
1092 }
1093 case MemRegion::BlockCodeRegionKind:
1094 os << "block text";
1095 return true;
1096 case MemRegion::BlockDataRegionKind:
1097 os << "a block";
1098 return true;
1099 case MemRegion::CXXThisRegionKind:
1100 case MemRegion::CXXTempObjectRegionKind:
1101 os << "a C++ temp object of type "
1102 << cast<TypedValueRegion>(MR)->getValueType();
1103 return true;
1104 case MemRegion::NonParamVarRegionKind:
1105 os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType();
1106 return true;
1107 case MemRegion::ParamVarRegionKind:
1108 os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType();
1109 return true;
1110 case MemRegion::FieldRegionKind:
1111 os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType();
1112 return true;
1113 case MemRegion::ObjCIvarRegionKind:
1114 os << "an instance variable of type "
1115 << cast<TypedValueRegion>(MR)->getValueType();
1116 return true;
1117 default:
1118 return false;
1119 }
1120 }
1121
memsetAux(const Expr * DstBuffer,SVal CharVal,const Expr * Size,CheckerContext & C,ProgramStateRef & State)1122 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1123 const Expr *Size, CheckerContext &C,
1124 ProgramStateRef &State) {
1125 SVal MemVal = C.getSVal(DstBuffer);
1126 SVal SizeVal = C.getSVal(Size);
1127 const MemRegion *MR = MemVal.getAsRegion();
1128 if (!MR)
1129 return false;
1130
1131 // We're about to model memset by producing a "default binding" in the Store.
1132 // Our current implementation - RegionStore - doesn't support default bindings
1133 // that don't cover the whole base region. So we should first get the offset
1134 // and the base region to figure out whether the offset of buffer is 0.
1135 RegionOffset Offset = MR->getAsOffset();
1136 const MemRegion *BR = Offset.getRegion();
1137
1138 std::optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1139 if (!SizeNL)
1140 return false;
1141
1142 SValBuilder &svalBuilder = C.getSValBuilder();
1143 ASTContext &Ctx = C.getASTContext();
1144
1145 // void *memset(void *dest, int ch, size_t count);
1146 // For now we can only handle the case of offset is 0 and concrete char value.
1147 if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1148 Offset.getOffset() == 0) {
1149 // Get the base region's size.
1150 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
1151
1152 ProgramStateRef StateWholeReg, StateNotWholeReg;
1153 std::tie(StateWholeReg, StateNotWholeReg) =
1154 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1155
1156 // With the semantic of 'memset()', we should convert the CharVal to
1157 // unsigned char.
1158 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1159
1160 ProgramStateRef StateNullChar, StateNonNullChar;
1161 std::tie(StateNullChar, StateNonNullChar) =
1162 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1163
1164 if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1165 !StateNonNullChar) {
1166 // If the 'memset()' acts on the whole region of destination buffer and
1167 // the value of the second argument of 'memset()' is zero, bind the second
1168 // argument's value to the destination buffer with 'default binding'.
1169 // FIXME: Since there is no perfect way to bind the non-zero character, we
1170 // can only deal with zero value here. In the future, we need to deal with
1171 // the binding of non-zero value in the case of whole region.
1172 State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1173 C.getLocationContext());
1174 } else {
1175 // If the destination buffer's extent is not equal to the value of
1176 // third argument, just invalidate buffer.
1177 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1178 /*IsSourceBuffer*/ false, Size);
1179 }
1180
1181 if (StateNullChar && !StateNonNullChar) {
1182 // If the value of the second argument of 'memset()' is zero, set the
1183 // string length of destination buffer to 0 directly.
1184 State = setCStringLength(State, MR,
1185 svalBuilder.makeZeroVal(Ctx.getSizeType()));
1186 } else if (!StateNullChar && StateNonNullChar) {
1187 SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1188 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1189 C.getLocationContext(), C.blockCount());
1190
1191 // If the value of second argument is not zero, then the string length
1192 // is at least the size argument.
1193 SVal NewStrLenGESize = svalBuilder.evalBinOp(
1194 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1195
1196 State = setCStringLength(
1197 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1198 MR, NewStrLen);
1199 }
1200 } else {
1201 // If the offset is not zero and char value is not concrete, we can do
1202 // nothing but invalidate the buffer.
1203 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1204 /*IsSourceBuffer*/ false, Size);
1205 }
1206 return true;
1207 }
1208
1209 //===----------------------------------------------------------------------===//
1210 // evaluation of individual function calls.
1211 //===----------------------------------------------------------------------===//
1212
evalCopyCommon(CheckerContext & C,const CallExpr * CE,ProgramStateRef state,SizeArgExpr Size,DestinationArgExpr Dest,SourceArgExpr Source,bool Restricted,bool IsMempcpy,CharKind CK) const1213 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE,
1214 ProgramStateRef state, SizeArgExpr Size,
1215 DestinationArgExpr Dest,
1216 SourceArgExpr Source, bool Restricted,
1217 bool IsMempcpy, CharKind CK) const {
1218 CurrentFunctionDescription = "memory copy function";
1219
1220 // See if the size argument is zero.
1221 const LocationContext *LCtx = C.getLocationContext();
1222 SVal sizeVal = state->getSVal(Size.Expression, LCtx);
1223 QualType sizeTy = Size.Expression->getType();
1224
1225 ProgramStateRef stateZeroSize, stateNonZeroSize;
1226 std::tie(stateZeroSize, stateNonZeroSize) =
1227 assumeZero(C, state, sizeVal, sizeTy);
1228
1229 // Get the value of the Dest.
1230 SVal destVal = state->getSVal(Dest.Expression, LCtx);
1231
1232 // If the size is zero, there won't be any actual memory access, so
1233 // just bind the return value to the destination buffer and return.
1234 if (stateZeroSize && !stateNonZeroSize) {
1235 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1236 C.addTransition(stateZeroSize);
1237 return;
1238 }
1239
1240 // If the size can be nonzero, we have to check the other arguments.
1241 if (stateNonZeroSize) {
1242 state = stateNonZeroSize;
1243
1244 // Ensure the destination is not null. If it is NULL there will be a
1245 // NULL pointer dereference.
1246 state = checkNonNull(C, state, Dest, destVal);
1247 if (!state)
1248 return;
1249
1250 // Get the value of the Src.
1251 SVal srcVal = state->getSVal(Source.Expression, LCtx);
1252
1253 // Ensure the source is not null. If it is NULL there will be a
1254 // NULL pointer dereference.
1255 state = checkNonNull(C, state, Source, srcVal);
1256 if (!state)
1257 return;
1258
1259 // Ensure the accesses are valid and that the buffers do not overlap.
1260 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, CK);
1261 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, CK);
1262
1263 if (Restricted)
1264 state = CheckOverlap(C, state, Size, Dest, Source, CK);
1265
1266 if (!state)
1267 return;
1268
1269 // If this is mempcpy, get the byte after the last byte copied and
1270 // bind the expr.
1271 if (IsMempcpy) {
1272 // Get the byte after the last byte copied.
1273 SValBuilder &SvalBuilder = C.getSValBuilder();
1274 ASTContext &Ctx = SvalBuilder.getContext();
1275 QualType CharPtrTy = getCharPtrType(Ctx, CK);
1276 SVal DestRegCharVal =
1277 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
1278 SVal lastElement = C.getSValBuilder().evalBinOp(
1279 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
1280 // If we don't know how much we copied, we can at least
1281 // conjure a return value for later.
1282 if (lastElement.isUnknown())
1283 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1284 C.blockCount());
1285
1286 // The byte after the last byte copied is the return value.
1287 state = state->BindExpr(CE, LCtx, lastElement);
1288 } else {
1289 // All other copies return the destination buffer.
1290 // (Well, bcopy() has a void return type, but this won't hurt.)
1291 state = state->BindExpr(CE, LCtx, destVal);
1292 }
1293
1294 // Invalidate the destination (regular invalidation without pointer-escaping
1295 // the address of the top-level region).
1296 // FIXME: Even if we can't perfectly model the copy, we should see if we
1297 // can use LazyCompoundVals to copy the source values into the destination.
1298 // This would probably remove any existing bindings past the end of the
1299 // copied region, but that's still an improvement over blank invalidation.
1300 state =
1301 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression),
1302 /*IsSourceBuffer*/ false, Size.Expression);
1303
1304 // Invalidate the source (const-invalidation without const-pointer-escaping
1305 // the address of the top-level region).
1306 state = InvalidateBuffer(C, state, Source.Expression,
1307 C.getSVal(Source.Expression),
1308 /*IsSourceBuffer*/ true, nullptr);
1309
1310 C.addTransition(state);
1311 }
1312 }
1313
evalMemcpy(CheckerContext & C,const CallExpr * CE,CharKind CK) const1314 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE,
1315 CharKind CK) const {
1316 // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1317 // The return value is the address of the destination buffer.
1318 DestinationArgExpr Dest = {CE->getArg(0), 0};
1319 SourceArgExpr Src = {CE->getArg(1), 1};
1320 SizeArgExpr Size = {CE->getArg(2), 2};
1321
1322 ProgramStateRef State = C.getState();
1323
1324 constexpr bool IsRestricted = true;
1325 constexpr bool IsMempcpy = false;
1326 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy, CK);
1327 }
1328
evalMempcpy(CheckerContext & C,const CallExpr * CE,CharKind CK) const1329 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE,
1330 CharKind CK) const {
1331 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1332 // The return value is a pointer to the byte following the last written byte.
1333 DestinationArgExpr Dest = {CE->getArg(0), 0};
1334 SourceArgExpr Src = {CE->getArg(1), 1};
1335 SizeArgExpr Size = {CE->getArg(2), 2};
1336
1337 constexpr bool IsRestricted = true;
1338 constexpr bool IsMempcpy = true;
1339 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy,
1340 CK);
1341 }
1342
evalMemmove(CheckerContext & C,const CallExpr * CE,CharKind CK) const1343 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE,
1344 CharKind CK) const {
1345 // void *memmove(void *dst, const void *src, size_t n);
1346 // The return value is the address of the destination buffer.
1347 DestinationArgExpr Dest = {CE->getArg(0), 0};
1348 SourceArgExpr Src = {CE->getArg(1), 1};
1349 SizeArgExpr Size = {CE->getArg(2), 2};
1350
1351 constexpr bool IsRestricted = false;
1352 constexpr bool IsMempcpy = false;
1353 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy,
1354 CK);
1355 }
1356
evalBcopy(CheckerContext & C,const CallExpr * CE) const1357 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1358 // void bcopy(const void *src, void *dst, size_t n);
1359 SourceArgExpr Src(CE->getArg(0), 0);
1360 DestinationArgExpr Dest = {CE->getArg(1), 1};
1361 SizeArgExpr Size = {CE->getArg(2), 2};
1362
1363 constexpr bool IsRestricted = false;
1364 constexpr bool IsMempcpy = false;
1365 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy,
1366 CharKind::Regular);
1367 }
1368
evalMemcmp(CheckerContext & C,const CallExpr * CE,CharKind CK) const1369 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE,
1370 CharKind CK) const {
1371 // int memcmp(const void *s1, const void *s2, size_t n);
1372 CurrentFunctionDescription = "memory comparison function";
1373
1374 AnyArgExpr Left = {CE->getArg(0), 0};
1375 AnyArgExpr Right = {CE->getArg(1), 1};
1376 SizeArgExpr Size = {CE->getArg(2), 2};
1377
1378 ProgramStateRef State = C.getState();
1379 SValBuilder &Builder = C.getSValBuilder();
1380 const LocationContext *LCtx = C.getLocationContext();
1381
1382 // See if the size argument is zero.
1383 SVal sizeVal = State->getSVal(Size.Expression, LCtx);
1384 QualType sizeTy = Size.Expression->getType();
1385
1386 ProgramStateRef stateZeroSize, stateNonZeroSize;
1387 std::tie(stateZeroSize, stateNonZeroSize) =
1388 assumeZero(C, State, sizeVal, sizeTy);
1389
1390 // If the size can be zero, the result will be 0 in that case, and we don't
1391 // have to check either of the buffers.
1392 if (stateZeroSize) {
1393 State = stateZeroSize;
1394 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1395 C.addTransition(State);
1396 }
1397
1398 // If the size can be nonzero, we have to check the other arguments.
1399 if (stateNonZeroSize) {
1400 State = stateNonZeroSize;
1401 // If we know the two buffers are the same, we know the result is 0.
1402 // First, get the two buffers' addresses. Another checker will have already
1403 // made sure they're not undefined.
1404 DefinedOrUnknownSVal LV =
1405 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1406 DefinedOrUnknownSVal RV =
1407 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1408
1409 // See if they are the same.
1410 ProgramStateRef SameBuffer, NotSameBuffer;
1411 std::tie(SameBuffer, NotSameBuffer) =
1412 State->assume(Builder.evalEQ(State, LV, RV));
1413
1414 // If the two arguments are the same buffer, we know the result is 0,
1415 // and we only need to check one size.
1416 if (SameBuffer && !NotSameBuffer) {
1417 State = SameBuffer;
1418 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1419 if (State) {
1420 State =
1421 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1422 C.addTransition(State);
1423 }
1424 return;
1425 }
1426
1427 // If the two arguments might be different buffers, we have to check
1428 // the size of both of them.
1429 assert(NotSameBuffer);
1430 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read, CK);
1431 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read, CK);
1432 if (State) {
1433 // The return value is the comparison result, which we don't know.
1434 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1435 State = State->BindExpr(CE, LCtx, CmpV);
1436 C.addTransition(State);
1437 }
1438 }
1439 }
1440
evalstrLength(CheckerContext & C,const CallExpr * CE) const1441 void CStringChecker::evalstrLength(CheckerContext &C,
1442 const CallExpr *CE) const {
1443 // size_t strlen(const char *s);
1444 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1445 }
1446
evalstrnLength(CheckerContext & C,const CallExpr * CE) const1447 void CStringChecker::evalstrnLength(CheckerContext &C,
1448 const CallExpr *CE) const {
1449 // size_t strnlen(const char *s, size_t maxlen);
1450 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1451 }
1452
evalstrLengthCommon(CheckerContext & C,const CallExpr * CE,bool IsStrnlen) const1453 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1454 bool IsStrnlen) const {
1455 CurrentFunctionDescription = "string length function";
1456 ProgramStateRef state = C.getState();
1457 const LocationContext *LCtx = C.getLocationContext();
1458
1459 if (IsStrnlen) {
1460 const Expr *maxlenExpr = CE->getArg(1);
1461 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1462
1463 ProgramStateRef stateZeroSize, stateNonZeroSize;
1464 std::tie(stateZeroSize, stateNonZeroSize) =
1465 assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1466
1467 // If the size can be zero, the result will be 0 in that case, and we don't
1468 // have to check the string itself.
1469 if (stateZeroSize) {
1470 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1471 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1472 C.addTransition(stateZeroSize);
1473 }
1474
1475 // If the size is GUARANTEED to be zero, we're done!
1476 if (!stateNonZeroSize)
1477 return;
1478
1479 // Otherwise, record the assumption that the size is nonzero.
1480 state = stateNonZeroSize;
1481 }
1482
1483 // Check that the string argument is non-null.
1484 AnyArgExpr Arg = {CE->getArg(0), 0};
1485 SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
1486 state = checkNonNull(C, state, Arg, ArgVal);
1487
1488 if (!state)
1489 return;
1490
1491 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
1492
1493 // If the argument isn't a valid C string, there's no valid state to
1494 // transition to.
1495 if (strLength.isUndef())
1496 return;
1497
1498 DefinedOrUnknownSVal result = UnknownVal();
1499
1500 // If the check is for strnlen() then bind the return value to no more than
1501 // the maxlen value.
1502 if (IsStrnlen) {
1503 QualType cmpTy = C.getSValBuilder().getConditionType();
1504
1505 // It's a little unfortunate to be getting this again,
1506 // but it's not that expensive...
1507 const Expr *maxlenExpr = CE->getArg(1);
1508 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1509
1510 std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1511 std::optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1512
1513 if (strLengthNL && maxlenValNL) {
1514 ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1515
1516 // Check if the strLength is greater than the maxlen.
1517 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1518 C.getSValBuilder()
1519 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1520 .castAs<DefinedOrUnknownSVal>());
1521
1522 if (stateStringTooLong && !stateStringNotTooLong) {
1523 // If the string is longer than maxlen, return maxlen.
1524 result = *maxlenValNL;
1525 } else if (stateStringNotTooLong && !stateStringTooLong) {
1526 // If the string is shorter than maxlen, return its length.
1527 result = *strLengthNL;
1528 }
1529 }
1530
1531 if (result.isUnknown()) {
1532 // If we don't have enough information for a comparison, there's
1533 // no guarantee the full string length will actually be returned.
1534 // All we know is the return value is the min of the string length
1535 // and the limit. This is better than nothing.
1536 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1537 C.blockCount());
1538 NonLoc resultNL = result.castAs<NonLoc>();
1539
1540 if (strLengthNL) {
1541 state = state->assume(C.getSValBuilder().evalBinOpNN(
1542 state, BO_LE, resultNL, *strLengthNL, cmpTy)
1543 .castAs<DefinedOrUnknownSVal>(), true);
1544 }
1545
1546 if (maxlenValNL) {
1547 state = state->assume(C.getSValBuilder().evalBinOpNN(
1548 state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1549 .castAs<DefinedOrUnknownSVal>(), true);
1550 }
1551 }
1552
1553 } else {
1554 // This is a plain strlen(), not strnlen().
1555 result = strLength.castAs<DefinedOrUnknownSVal>();
1556
1557 // If we don't know the length of the string, conjure a return
1558 // value, so it can be used in constraints, at least.
1559 if (result.isUnknown()) {
1560 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1561 C.blockCount());
1562 }
1563 }
1564
1565 // Bind the return value.
1566 assert(!result.isUnknown() && "Should have conjured a value by now");
1567 state = state->BindExpr(CE, LCtx, result);
1568 C.addTransition(state);
1569 }
1570
evalStrcpy(CheckerContext & C,const CallExpr * CE) const1571 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1572 // char *strcpy(char *restrict dst, const char *restrict src);
1573 evalStrcpyCommon(C, CE,
1574 /* ReturnEnd = */ false,
1575 /* IsBounded = */ false,
1576 /* appendK = */ ConcatFnKind::none);
1577 }
1578
evalStrncpy(CheckerContext & C,const CallExpr * CE) const1579 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1580 // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1581 evalStrcpyCommon(C, CE,
1582 /* ReturnEnd = */ false,
1583 /* IsBounded = */ true,
1584 /* appendK = */ ConcatFnKind::none);
1585 }
1586
evalStpcpy(CheckerContext & C,const CallExpr * CE) const1587 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1588 // char *stpcpy(char *restrict dst, const char *restrict src);
1589 evalStrcpyCommon(C, CE,
1590 /* ReturnEnd = */ true,
1591 /* IsBounded = */ false,
1592 /* appendK = */ ConcatFnKind::none);
1593 }
1594
evalStrlcpy(CheckerContext & C,const CallExpr * CE) const1595 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1596 // size_t strlcpy(char *dest, const char *src, size_t size);
1597 evalStrcpyCommon(C, CE,
1598 /* ReturnEnd = */ true,
1599 /* IsBounded = */ true,
1600 /* appendK = */ ConcatFnKind::none,
1601 /* returnPtr = */ false);
1602 }
1603
evalStrcat(CheckerContext & C,const CallExpr * CE) const1604 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1605 // char *strcat(char *restrict s1, const char *restrict s2);
1606 evalStrcpyCommon(C, CE,
1607 /* ReturnEnd = */ false,
1608 /* IsBounded = */ false,
1609 /* appendK = */ ConcatFnKind::strcat);
1610 }
1611
evalStrncat(CheckerContext & C,const CallExpr * CE) const1612 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1613 // char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1614 evalStrcpyCommon(C, CE,
1615 /* ReturnEnd = */ false,
1616 /* IsBounded = */ true,
1617 /* appendK = */ ConcatFnKind::strcat);
1618 }
1619
evalStrlcat(CheckerContext & C,const CallExpr * CE) const1620 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1621 // size_t strlcat(char *dst, const char *src, size_t size);
1622 // It will append at most size - strlen(dst) - 1 bytes,
1623 // NULL-terminating the result.
1624 evalStrcpyCommon(C, CE,
1625 /* ReturnEnd = */ false,
1626 /* IsBounded = */ true,
1627 /* appendK = */ ConcatFnKind::strlcat,
1628 /* returnPtr = */ false);
1629 }
1630
evalStrcpyCommon(CheckerContext & C,const CallExpr * CE,bool ReturnEnd,bool IsBounded,ConcatFnKind appendK,bool returnPtr) const1631 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1632 bool ReturnEnd, bool IsBounded,
1633 ConcatFnKind appendK,
1634 bool returnPtr) const {
1635 if (appendK == ConcatFnKind::none)
1636 CurrentFunctionDescription = "string copy function";
1637 else
1638 CurrentFunctionDescription = "string concatenation function";
1639
1640 ProgramStateRef state = C.getState();
1641 const LocationContext *LCtx = C.getLocationContext();
1642
1643 // Check that the destination is non-null.
1644 DestinationArgExpr Dst = {CE->getArg(0), 0};
1645 SVal DstVal = state->getSVal(Dst.Expression, LCtx);
1646 state = checkNonNull(C, state, Dst, DstVal);
1647 if (!state)
1648 return;
1649
1650 // Check that the source is non-null.
1651 SourceArgExpr srcExpr = {CE->getArg(1), 1};
1652 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
1653 state = checkNonNull(C, state, srcExpr, srcVal);
1654 if (!state)
1655 return;
1656
1657 // Get the string length of the source.
1658 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
1659 std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1660
1661 // Get the string length of the destination buffer.
1662 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
1663 std::optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1664
1665 // If the source isn't a valid C string, give up.
1666 if (strLength.isUndef())
1667 return;
1668
1669 SValBuilder &svalBuilder = C.getSValBuilder();
1670 QualType cmpTy = svalBuilder.getConditionType();
1671 QualType sizeTy = svalBuilder.getContext().getSizeType();
1672
1673 // These two values allow checking two kinds of errors:
1674 // - actual overflows caused by a source that doesn't fit in the destination
1675 // - potential overflows caused by a bound that could exceed the destination
1676 SVal amountCopied = UnknownVal();
1677 SVal maxLastElementIndex = UnknownVal();
1678 const char *boundWarning = nullptr;
1679
1680 // FIXME: Why do we choose the srcExpr if the access has no size?
1681 // Note that the 3rd argument of the call would be the size parameter.
1682 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex};
1683 state = CheckOverlap(
1684 C, state,
1685 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst,
1686 srcExpr);
1687
1688 if (!state)
1689 return;
1690
1691 // If the function is strncpy, strncat, etc... it is bounded.
1692 if (IsBounded) {
1693 // Get the max number of characters to copy.
1694 SizeArgExpr lenExpr = {CE->getArg(2), 2};
1695 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
1696
1697 // Protect against misdeclared strncpy().
1698 lenVal =
1699 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
1700
1701 std::optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1702
1703 // If we know both values, we might be able to figure out how much
1704 // we're copying.
1705 if (strLengthNL && lenValNL) {
1706 switch (appendK) {
1707 case ConcatFnKind::none:
1708 case ConcatFnKind::strcat: {
1709 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1710 // Check if the max number to copy is less than the length of the src.
1711 // If the bound is equal to the source length, strncpy won't null-
1712 // terminate the result!
1713 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1714 svalBuilder
1715 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1716 .castAs<DefinedOrUnknownSVal>());
1717
1718 if (stateSourceTooLong && !stateSourceNotTooLong) {
1719 // Max number to copy is less than the length of the src, so the
1720 // actual strLength copied is the max number arg.
1721 state = stateSourceTooLong;
1722 amountCopied = lenVal;
1723
1724 } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1725 // The source buffer entirely fits in the bound.
1726 state = stateSourceNotTooLong;
1727 amountCopied = strLength;
1728 }
1729 break;
1730 }
1731 case ConcatFnKind::strlcat:
1732 if (!dstStrLengthNL)
1733 return;
1734
1735 // amountCopied = min (size - dstLen - 1 , srcLen)
1736 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1737 *dstStrLengthNL, sizeTy);
1738 if (!isa<NonLoc>(freeSpace))
1739 return;
1740 freeSpace =
1741 svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1742 svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1743 std::optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1744
1745 // While unlikely, it is possible that the subtraction is
1746 // too complex to compute, let's check whether it succeeded.
1747 if (!freeSpaceNL)
1748 return;
1749 SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1750 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1751
1752 ProgramStateRef TrueState, FalseState;
1753 std::tie(TrueState, FalseState) =
1754 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1755
1756 // srcStrLength <= size - dstStrLength -1
1757 if (TrueState && !FalseState) {
1758 amountCopied = strLength;
1759 }
1760
1761 // srcStrLength > size - dstStrLength -1
1762 if (!TrueState && FalseState) {
1763 amountCopied = freeSpace;
1764 }
1765
1766 if (TrueState && FalseState)
1767 amountCopied = UnknownVal();
1768 break;
1769 }
1770 }
1771 // We still want to know if the bound is known to be too large.
1772 if (lenValNL) {
1773 switch (appendK) {
1774 case ConcatFnKind::strcat:
1775 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1776
1777 // Get the string length of the destination. If the destination is
1778 // memory that can't have a string length, we shouldn't be copying
1779 // into it anyway.
1780 if (dstStrLength.isUndef())
1781 return;
1782
1783 if (dstStrLengthNL) {
1784 maxLastElementIndex = svalBuilder.evalBinOpNN(
1785 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1786
1787 boundWarning = "Size argument is greater than the free space in the "
1788 "destination buffer";
1789 }
1790 break;
1791 case ConcatFnKind::none:
1792 case ConcatFnKind::strlcat:
1793 // For strncpy and strlcat, this is just checking
1794 // that lenVal <= sizeof(dst).
1795 // (Yes, strncpy and strncat differ in how they treat termination.
1796 // strncat ALWAYS terminates, but strncpy doesn't.)
1797
1798 // We need a special case for when the copy size is zero, in which
1799 // case strncpy will do no work at all. Our bounds check uses n-1
1800 // as the last element accessed, so n == 0 is problematic.
1801 ProgramStateRef StateZeroSize, StateNonZeroSize;
1802 std::tie(StateZeroSize, StateNonZeroSize) =
1803 assumeZero(C, state, *lenValNL, sizeTy);
1804
1805 // If the size is known to be zero, we're done.
1806 if (StateZeroSize && !StateNonZeroSize) {
1807 if (returnPtr) {
1808 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1809 } else {
1810 if (appendK == ConcatFnKind::none) {
1811 // strlcpy returns strlen(src)
1812 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
1813 } else {
1814 // strlcat returns strlen(src) + strlen(dst)
1815 SVal retSize = svalBuilder.evalBinOp(
1816 state, BO_Add, strLength, dstStrLength, sizeTy);
1817 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
1818 }
1819 }
1820 C.addTransition(StateZeroSize);
1821 return;
1822 }
1823
1824 // Otherwise, go ahead and figure out the last element we'll touch.
1825 // We don't record the non-zero assumption here because we can't
1826 // be sure. We won't warn on a possible zero.
1827 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1828 maxLastElementIndex =
1829 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1830 boundWarning = "Size argument is greater than the length of the "
1831 "destination buffer";
1832 break;
1833 }
1834 }
1835 } else {
1836 // The function isn't bounded. The amount copied should match the length
1837 // of the source buffer.
1838 amountCopied = strLength;
1839 }
1840
1841 assert(state);
1842
1843 // This represents the number of characters copied into the destination
1844 // buffer. (It may not actually be the strlen if the destination buffer
1845 // is not terminated.)
1846 SVal finalStrLength = UnknownVal();
1847 SVal strlRetVal = UnknownVal();
1848
1849 if (appendK == ConcatFnKind::none && !returnPtr) {
1850 // strlcpy returns the sizeof(src)
1851 strlRetVal = strLength;
1852 }
1853
1854 // If this is an appending function (strcat, strncat...) then set the
1855 // string length to strlen(src) + strlen(dst) since the buffer will
1856 // ultimately contain both.
1857 if (appendK != ConcatFnKind::none) {
1858 // Get the string length of the destination. If the destination is memory
1859 // that can't have a string length, we shouldn't be copying into it anyway.
1860 if (dstStrLength.isUndef())
1861 return;
1862
1863 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1864 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1865 *dstStrLengthNL, sizeTy);
1866 }
1867
1868 std::optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1869
1870 // If we know both string lengths, we might know the final string length.
1871 if (amountCopiedNL && dstStrLengthNL) {
1872 // Make sure the two lengths together don't overflow a size_t.
1873 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1874 if (!state)
1875 return;
1876
1877 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1878 *dstStrLengthNL, sizeTy);
1879 }
1880
1881 // If we couldn't get a single value for the final string length,
1882 // we can at least bound it by the individual lengths.
1883 if (finalStrLength.isUnknown()) {
1884 // Try to get a "hypothetical" string length symbol, which we can later
1885 // set as a real value if that turns out to be the case.
1886 finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1887 assert(!finalStrLength.isUndef());
1888
1889 if (std::optional<NonLoc> finalStrLengthNL =
1890 finalStrLength.getAs<NonLoc>()) {
1891 if (amountCopiedNL && appendK == ConcatFnKind::none) {
1892 // we overwrite dst string with the src
1893 // finalStrLength >= srcStrLength
1894 SVal sourceInResult = svalBuilder.evalBinOpNN(
1895 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1896 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1897 true);
1898 if (!state)
1899 return;
1900 }
1901
1902 if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1903 // we extend the dst string with the src
1904 // finalStrLength >= dstStrLength
1905 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1906 *finalStrLengthNL,
1907 *dstStrLengthNL,
1908 cmpTy);
1909 state =
1910 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1911 if (!state)
1912 return;
1913 }
1914 }
1915 }
1916
1917 } else {
1918 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1919 // the final string length will match the input string length.
1920 finalStrLength = amountCopied;
1921 }
1922
1923 SVal Result;
1924
1925 if (returnPtr) {
1926 // The final result of the function will either be a pointer past the last
1927 // copied element, or a pointer to the start of the destination buffer.
1928 Result = (ReturnEnd ? UnknownVal() : DstVal);
1929 } else {
1930 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
1931 //strlcpy, strlcat
1932 Result = strlRetVal;
1933 else
1934 Result = finalStrLength;
1935 }
1936
1937 assert(state);
1938
1939 // If the destination is a MemRegion, try to check for a buffer overflow and
1940 // record the new string length.
1941 if (std::optional<loc::MemRegionVal> dstRegVal =
1942 DstVal.getAs<loc::MemRegionVal>()) {
1943 QualType ptrTy = Dst.Expression->getType();
1944
1945 // If we have an exact value on a bounded copy, use that to check for
1946 // overflows, rather than our estimate about how much is actually copied.
1947 if (std::optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1948 SVal maxLastElement =
1949 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
1950
1951 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
1952 if (!state)
1953 return;
1954 }
1955
1956 // Then, if the final length is known...
1957 if (std::optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1958 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1959 *knownStrLength, ptrTy);
1960
1961 // ...and we haven't checked the bound, we'll check the actual copy.
1962 if (!boundWarning) {
1963 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
1964 if (!state)
1965 return;
1966 }
1967
1968 // If this is a stpcpy-style copy, the last element is the return value.
1969 if (returnPtr && ReturnEnd)
1970 Result = lastElement;
1971 }
1972
1973 // Invalidate the destination (regular invalidation without pointer-escaping
1974 // the address of the top-level region). This must happen before we set the
1975 // C string length because invalidation will clear the length.
1976 // FIXME: Even if we can't perfectly model the copy, we should see if we
1977 // can use LazyCompoundVals to copy the source values into the destination.
1978 // This would probably remove any existing bindings past the end of the
1979 // string, but that's still an improvement over blank invalidation.
1980 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal,
1981 /*IsSourceBuffer*/ false, nullptr);
1982
1983 // Invalidate the source (const-invalidation without const-pointer-escaping
1984 // the address of the top-level region).
1985 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal,
1986 /*IsSourceBuffer*/ true, nullptr);
1987
1988 // Set the C string length of the destination, if we know it.
1989 if (IsBounded && (appendK == ConcatFnKind::none)) {
1990 // strncpy is annoying in that it doesn't guarantee to null-terminate
1991 // the result string. If the original string didn't fit entirely inside
1992 // the bound (including the null-terminator), we don't know how long the
1993 // result is.
1994 if (amountCopied != strLength)
1995 finalStrLength = UnknownVal();
1996 }
1997 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1998 }
1999
2000 assert(state);
2001
2002 if (returnPtr) {
2003 // If this is a stpcpy-style copy, but we were unable to check for a buffer
2004 // overflow, we still need a result. Conjure a return value.
2005 if (ReturnEnd && Result.isUnknown()) {
2006 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2007 }
2008 }
2009 // Set the return value.
2010 state = state->BindExpr(CE, LCtx, Result);
2011 C.addTransition(state);
2012 }
2013
evalStrcmp(CheckerContext & C,const CallExpr * CE) const2014 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
2015 //int strcmp(const char *s1, const char *s2);
2016 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
2017 }
2018
evalStrncmp(CheckerContext & C,const CallExpr * CE) const2019 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
2020 //int strncmp(const char *s1, const char *s2, size_t n);
2021 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
2022 }
2023
evalStrcasecmp(CheckerContext & C,const CallExpr * CE) const2024 void CStringChecker::evalStrcasecmp(CheckerContext &C,
2025 const CallExpr *CE) const {
2026 //int strcasecmp(const char *s1, const char *s2);
2027 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
2028 }
2029
evalStrncasecmp(CheckerContext & C,const CallExpr * CE) const2030 void CStringChecker::evalStrncasecmp(CheckerContext &C,
2031 const CallExpr *CE) const {
2032 //int strncasecmp(const char *s1, const char *s2, size_t n);
2033 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
2034 }
2035
evalStrcmpCommon(CheckerContext & C,const CallExpr * CE,bool IsBounded,bool IgnoreCase) const2036 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
2037 bool IsBounded, bool IgnoreCase) const {
2038 CurrentFunctionDescription = "string comparison function";
2039 ProgramStateRef state = C.getState();
2040 const LocationContext *LCtx = C.getLocationContext();
2041
2042 // Check that the first string is non-null
2043 AnyArgExpr Left = {CE->getArg(0), 0};
2044 SVal LeftVal = state->getSVal(Left.Expression, LCtx);
2045 state = checkNonNull(C, state, Left, LeftVal);
2046 if (!state)
2047 return;
2048
2049 // Check that the second string is non-null.
2050 AnyArgExpr Right = {CE->getArg(1), 1};
2051 SVal RightVal = state->getSVal(Right.Expression, LCtx);
2052 state = checkNonNull(C, state, Right, RightVal);
2053 if (!state)
2054 return;
2055
2056 // Get the string length of the first string or give up.
2057 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
2058 if (LeftLength.isUndef())
2059 return;
2060
2061 // Get the string length of the second string or give up.
2062 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
2063 if (RightLength.isUndef())
2064 return;
2065
2066 // If we know the two buffers are the same, we know the result is 0.
2067 // First, get the two buffers' addresses. Another checker will have already
2068 // made sure they're not undefined.
2069 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
2070 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
2071
2072 // See if they are the same.
2073 SValBuilder &svalBuilder = C.getSValBuilder();
2074 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
2075 ProgramStateRef StSameBuf, StNotSameBuf;
2076 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
2077
2078 // If the two arguments might be the same buffer, we know the result is 0,
2079 // and we only need to check one size.
2080 if (StSameBuf) {
2081 StSameBuf = StSameBuf->BindExpr(CE, LCtx,
2082 svalBuilder.makeZeroVal(CE->getType()));
2083 C.addTransition(StSameBuf);
2084
2085 // If the two arguments are GUARANTEED to be the same, we're done!
2086 if (!StNotSameBuf)
2087 return;
2088 }
2089
2090 assert(StNotSameBuf);
2091 state = StNotSameBuf;
2092
2093 // At this point we can go about comparing the two buffers.
2094 // For now, we only do this if they're both known string literals.
2095
2096 // Attempt to extract string literals from both expressions.
2097 const StringLiteral *LeftStrLiteral =
2098 getCStringLiteral(C, state, Left.Expression, LeftVal);
2099 const StringLiteral *RightStrLiteral =
2100 getCStringLiteral(C, state, Right.Expression, RightVal);
2101 bool canComputeResult = false;
2102 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
2103 C.blockCount());
2104
2105 if (LeftStrLiteral && RightStrLiteral) {
2106 StringRef LeftStrRef = LeftStrLiteral->getString();
2107 StringRef RightStrRef = RightStrLiteral->getString();
2108
2109 if (IsBounded) {
2110 // Get the max number of characters to compare.
2111 const Expr *lenExpr = CE->getArg(2);
2112 SVal lenVal = state->getSVal(lenExpr, LCtx);
2113
2114 // If the length is known, we can get the right substrings.
2115 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2116 // Create substrings of each to compare the prefix.
2117 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
2118 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
2119 canComputeResult = true;
2120 }
2121 } else {
2122 // This is a normal, unbounded strcmp.
2123 canComputeResult = true;
2124 }
2125
2126 if (canComputeResult) {
2127 // Real strcmp stops at null characters.
2128 size_t s1Term = LeftStrRef.find('\0');
2129 if (s1Term != StringRef::npos)
2130 LeftStrRef = LeftStrRef.substr(0, s1Term);
2131
2132 size_t s2Term = RightStrRef.find('\0');
2133 if (s2Term != StringRef::npos)
2134 RightStrRef = RightStrRef.substr(0, s2Term);
2135
2136 // Use StringRef's comparison methods to compute the actual result.
2137 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
2138 : LeftStrRef.compare(RightStrRef);
2139
2140 // The strcmp function returns an integer greater than, equal to, or less
2141 // than zero, [c11, p7.24.4.2].
2142 if (compareRes == 0) {
2143 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2144 }
2145 else {
2146 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2147 // Constrain strcmp's result range based on the result of StringRef's
2148 // comparison methods.
2149 BinaryOperatorKind op = (compareRes > 0) ? BO_GT : BO_LT;
2150 SVal compareWithZero =
2151 svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2152 svalBuilder.getConditionType());
2153 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2154 state = state->assume(compareWithZeroVal, true);
2155 }
2156 }
2157 }
2158
2159 state = state->BindExpr(CE, LCtx, resultVal);
2160
2161 // Record this as a possible path.
2162 C.addTransition(state);
2163 }
2164
evalStrsep(CheckerContext & C,const CallExpr * CE) const2165 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2166 // char *strsep(char **stringp, const char *delim);
2167 // Verify whether the search string parameter matches the return type.
2168 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0};
2169
2170 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
2171 if (CharPtrTy.isNull() ||
2172 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2173 return;
2174
2175 CurrentFunctionDescription = "strsep()";
2176 ProgramStateRef State = C.getState();
2177 const LocationContext *LCtx = C.getLocationContext();
2178
2179 // Check that the search string pointer is non-null (though it may point to
2180 // a null string).
2181 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
2182 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2183 if (!State)
2184 return;
2185
2186 // Check that the delimiter string is non-null.
2187 AnyArgExpr DelimStr = {CE->getArg(1), 1};
2188 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
2189 State = checkNonNull(C, State, DelimStr, DelimStrVal);
2190 if (!State)
2191 return;
2192
2193 SValBuilder &SVB = C.getSValBuilder();
2194 SVal Result;
2195 if (std::optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2196 // Get the current value of the search string pointer, as a char*.
2197 Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2198
2199 // Invalidate the search string, representing the change of one delimiter
2200 // character to NUL.
2201 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result,
2202 /*IsSourceBuffer*/ false, nullptr);
2203
2204 // Overwrite the search string pointer. The new value is either an address
2205 // further along in the same string, or NULL if there are no more tokens.
2206 State = State->bindLoc(*SearchStrLoc,
2207 SVB.conjureSymbolVal(getTag(),
2208 CE,
2209 LCtx,
2210 CharPtrTy,
2211 C.blockCount()),
2212 LCtx);
2213 } else {
2214 assert(SearchStrVal.isUnknown());
2215 // Conjure a symbolic value. It's the best we can do.
2216 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2217 }
2218
2219 // Set the return value, and finish.
2220 State = State->BindExpr(CE, LCtx, Result);
2221 C.addTransition(State);
2222 }
2223
2224 // These should probably be moved into a C++ standard library checker.
evalStdCopy(CheckerContext & C,const CallExpr * CE) const2225 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2226 evalStdCopyCommon(C, CE);
2227 }
2228
evalStdCopyBackward(CheckerContext & C,const CallExpr * CE) const2229 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2230 const CallExpr *CE) const {
2231 evalStdCopyCommon(C, CE);
2232 }
2233
evalStdCopyCommon(CheckerContext & C,const CallExpr * CE) const2234 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2235 const CallExpr *CE) const {
2236 if (!CE->getArg(2)->getType()->isPointerType())
2237 return;
2238
2239 ProgramStateRef State = C.getState();
2240
2241 const LocationContext *LCtx = C.getLocationContext();
2242
2243 // template <class _InputIterator, class _OutputIterator>
2244 // _OutputIterator
2245 // copy(_InputIterator __first, _InputIterator __last,
2246 // _OutputIterator __result)
2247
2248 // Invalidate the destination buffer
2249 const Expr *Dst = CE->getArg(2);
2250 SVal DstVal = State->getSVal(Dst, LCtx);
2251 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2252 /*Size=*/nullptr);
2253
2254 SValBuilder &SVB = C.getSValBuilder();
2255
2256 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2257 State = State->BindExpr(CE, LCtx, ResultVal);
2258
2259 C.addTransition(State);
2260 }
2261
evalMemset(CheckerContext & C,const CallExpr * CE) const2262 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2263 // void *memset(void *s, int c, size_t n);
2264 CurrentFunctionDescription = "memory set function";
2265
2266 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2267 AnyArgExpr CharE = {CE->getArg(1), 1};
2268 SizeArgExpr Size = {CE->getArg(2), 2};
2269
2270 ProgramStateRef State = C.getState();
2271
2272 // See if the size argument is zero.
2273 const LocationContext *LCtx = C.getLocationContext();
2274 SVal SizeVal = C.getSVal(Size.Expression);
2275 QualType SizeTy = Size.Expression->getType();
2276
2277 ProgramStateRef ZeroSize, NonZeroSize;
2278 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
2279
2280 // Get the value of the memory area.
2281 SVal BufferPtrVal = C.getSVal(Buffer.Expression);
2282
2283 // If the size is zero, there won't be any actual memory access, so
2284 // just bind the return value to the buffer and return.
2285 if (ZeroSize && !NonZeroSize) {
2286 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal);
2287 C.addTransition(ZeroSize);
2288 return;
2289 }
2290
2291 // Ensure the memory area is not null.
2292 // If it is NULL there will be a NULL pointer dereference.
2293 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
2294 if (!State)
2295 return;
2296
2297 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2298 if (!State)
2299 return;
2300
2301 // According to the values of the arguments, bind the value of the second
2302 // argument to the destination buffer and set string length, or just
2303 // invalidate the destination buffer.
2304 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
2305 Size.Expression, C, State))
2306 return;
2307
2308 State = State->BindExpr(CE, LCtx, BufferPtrVal);
2309 C.addTransition(State);
2310 }
2311
evalBzero(CheckerContext & C,const CallExpr * CE) const2312 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2313 CurrentFunctionDescription = "memory clearance function";
2314
2315 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2316 SizeArgExpr Size = {CE->getArg(1), 1};
2317 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2318
2319 ProgramStateRef State = C.getState();
2320
2321 // See if the size argument is zero.
2322 SVal SizeVal = C.getSVal(Size.Expression);
2323 QualType SizeTy = Size.Expression->getType();
2324
2325 ProgramStateRef StateZeroSize, StateNonZeroSize;
2326 std::tie(StateZeroSize, StateNonZeroSize) =
2327 assumeZero(C, State, SizeVal, SizeTy);
2328
2329 // If the size is zero, there won't be any actual memory access,
2330 // In this case we just return.
2331 if (StateZeroSize && !StateNonZeroSize) {
2332 C.addTransition(StateZeroSize);
2333 return;
2334 }
2335
2336 // Get the value of the memory area.
2337 SVal MemVal = C.getSVal(Buffer.Expression);
2338
2339 // Ensure the memory area is not null.
2340 // If it is NULL there will be a NULL pointer dereference.
2341 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
2342 if (!State)
2343 return;
2344
2345 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2346 if (!State)
2347 return;
2348
2349 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
2350 return;
2351
2352 C.addTransition(State);
2353 }
2354
2355 //===----------------------------------------------------------------------===//
2356 // The driver method, and other Checker callbacks.
2357 //===----------------------------------------------------------------------===//
2358
identifyCall(const CallEvent & Call,CheckerContext & C) const2359 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2360 CheckerContext &C) const {
2361 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2362 if (!CE)
2363 return nullptr;
2364
2365 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2366 if (!FD)
2367 return nullptr;
2368
2369 if (StdCopy.matches(Call))
2370 return &CStringChecker::evalStdCopy;
2371 if (StdCopyBackward.matches(Call))
2372 return &CStringChecker::evalStdCopyBackward;
2373
2374 // Pro-actively check that argument types are safe to do arithmetic upon.
2375 // We do not want to crash if someone accidentally passes a structure
2376 // into, say, a C++ overload of any of these functions. We could not check
2377 // that for std::copy because they may have arguments of other types.
2378 for (auto I : CE->arguments()) {
2379 QualType T = I->getType();
2380 if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2381 return nullptr;
2382 }
2383
2384 const FnCheck *Callback = Callbacks.lookup(Call);
2385 if (Callback)
2386 return *Callback;
2387
2388 return nullptr;
2389 }
2390
evalCall(const CallEvent & Call,CheckerContext & C) const2391 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2392 FnCheck Callback = identifyCall(Call, C);
2393
2394 // If the callee isn't a string function, let another checker handle it.
2395 if (!Callback)
2396 return false;
2397
2398 // Check and evaluate the call.
2399 const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2400 Callback(this, C, CE);
2401
2402 // If the evaluate call resulted in no change, chain to the next eval call
2403 // handler.
2404 // Note, the custom CString evaluation calls assume that basic safety
2405 // properties are held. However, if the user chooses to turn off some of these
2406 // checks, we ignore the issues and leave the call evaluation to a generic
2407 // handler.
2408 return C.isDifferent();
2409 }
2410
checkPreStmt(const DeclStmt * DS,CheckerContext & C) const2411 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2412 // Record string length for char a[] = "abc";
2413 ProgramStateRef state = C.getState();
2414
2415 for (const auto *I : DS->decls()) {
2416 const VarDecl *D = dyn_cast<VarDecl>(I);
2417 if (!D)
2418 continue;
2419
2420 // FIXME: Handle array fields of structs.
2421 if (!D->getType()->isArrayType())
2422 continue;
2423
2424 const Expr *Init = D->getInit();
2425 if (!Init)
2426 continue;
2427 if (!isa<StringLiteral>(Init))
2428 continue;
2429
2430 Loc VarLoc = state->getLValue(D, C.getLocationContext());
2431 const MemRegion *MR = VarLoc.getAsRegion();
2432 if (!MR)
2433 continue;
2434
2435 SVal StrVal = C.getSVal(Init);
2436 assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2437 DefinedOrUnknownSVal strLength =
2438 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2439
2440 state = state->set<CStringLength>(MR, strLength);
2441 }
2442
2443 C.addTransition(state);
2444 }
2445
2446 ProgramStateRef
checkRegionChanges(ProgramStateRef state,const InvalidatedSymbols *,ArrayRef<const MemRegion * > ExplicitRegions,ArrayRef<const MemRegion * > Regions,const LocationContext * LCtx,const CallEvent * Call) const2447 CStringChecker::checkRegionChanges(ProgramStateRef state,
2448 const InvalidatedSymbols *,
2449 ArrayRef<const MemRegion *> ExplicitRegions,
2450 ArrayRef<const MemRegion *> Regions,
2451 const LocationContext *LCtx,
2452 const CallEvent *Call) const {
2453 CStringLengthTy Entries = state->get<CStringLength>();
2454 if (Entries.isEmpty())
2455 return state;
2456
2457 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2458 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2459
2460 // First build sets for the changed regions and their super-regions.
2461 for (ArrayRef<const MemRegion *>::iterator
2462 I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2463 const MemRegion *MR = *I;
2464 Invalidated.insert(MR);
2465
2466 SuperRegions.insert(MR);
2467 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2468 MR = SR->getSuperRegion();
2469 SuperRegions.insert(MR);
2470 }
2471 }
2472
2473 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2474
2475 // Then loop over the entries in the current state.
2476 for (CStringLengthTy::iterator I = Entries.begin(),
2477 E = Entries.end(); I != E; ++I) {
2478 const MemRegion *MR = I.getKey();
2479
2480 // Is this entry for a super-region of a changed region?
2481 if (SuperRegions.count(MR)) {
2482 Entries = F.remove(Entries, MR);
2483 continue;
2484 }
2485
2486 // Is this entry for a sub-region of a changed region?
2487 const MemRegion *Super = MR;
2488 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2489 Super = SR->getSuperRegion();
2490 if (Invalidated.count(Super)) {
2491 Entries = F.remove(Entries, MR);
2492 break;
2493 }
2494 }
2495 }
2496
2497 return state->set<CStringLength>(Entries);
2498 }
2499
checkLiveSymbols(ProgramStateRef state,SymbolReaper & SR) const2500 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2501 SymbolReaper &SR) const {
2502 // Mark all symbols in our string length map as valid.
2503 CStringLengthTy Entries = state->get<CStringLength>();
2504
2505 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2506 I != E; ++I) {
2507 SVal Len = I.getData();
2508
2509 for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2510 se = Len.symbol_end(); si != se; ++si)
2511 SR.markInUse(*si);
2512 }
2513 }
2514
checkDeadSymbols(SymbolReaper & SR,CheckerContext & C) const2515 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2516 CheckerContext &C) const {
2517 ProgramStateRef state = C.getState();
2518 CStringLengthTy Entries = state->get<CStringLength>();
2519 if (Entries.isEmpty())
2520 return;
2521
2522 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2523 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2524 I != E; ++I) {
2525 SVal Len = I.getData();
2526 if (SymbolRef Sym = Len.getAsSymbol()) {
2527 if (SR.isDead(Sym))
2528 Entries = F.remove(Entries, I.getKey());
2529 }
2530 }
2531
2532 state = state->set<CStringLength>(Entries);
2533 C.addTransition(state);
2534 }
2535
registerCStringModeling(CheckerManager & Mgr)2536 void ento::registerCStringModeling(CheckerManager &Mgr) {
2537 Mgr.registerChecker<CStringChecker>();
2538 }
2539
shouldRegisterCStringModeling(const CheckerManager & mgr)2540 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2541 return true;
2542 }
2543
2544 #define REGISTER_CHECKER(name) \
2545 void ento::register##name(CheckerManager &mgr) { \
2546 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \
2547 checker->Filter.Check##name = true; \
2548 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \
2549 } \
2550 \
2551 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2552
2553 REGISTER_CHECKER(CStringNullArg)
2554 REGISTER_CHECKER(CStringOutOfBounds)
2555 REGISTER_CHECKER(CStringBufferOverlap)
2556 REGISTER_CHECKER(CStringNotNullTerm)
2557 REGISTER_CHECKER(CStringUninitializedRead)
2558