1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111 
112 #include "i915_drv.h"
113 #include "i915_reg.h"
114 #include "i915_trace.h"
115 #include "i915_vgpu.h"
116 #include "gen8_engine_cs.h"
117 #include "intel_breadcrumbs.h"
118 #include "intel_context.h"
119 #include "intel_engine_heartbeat.h"
120 #include "intel_engine_pm.h"
121 #include "intel_engine_regs.h"
122 #include "intel_engine_stats.h"
123 #include "intel_execlists_submission.h"
124 #include "intel_gt.h"
125 #include "intel_gt_irq.h"
126 #include "intel_gt_pm.h"
127 #include "intel_gt_regs.h"
128 #include "intel_gt_requests.h"
129 #include "intel_lrc.h"
130 #include "intel_lrc_reg.h"
131 #include "intel_mocs.h"
132 #include "intel_reset.h"
133 #include "intel_ring.h"
134 #include "intel_workarounds.h"
135 #include "shmem_utils.h"
136 
137 #define RING_EXECLIST_QFULL		(1 << 0x2)
138 #define RING_EXECLIST1_VALID		(1 << 0x3)
139 #define RING_EXECLIST0_VALID		(1 << 0x4)
140 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
141 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
142 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
143 
144 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
145 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
146 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
147 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
148 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
149 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
150 
151 #define GEN8_CTX_STATUS_COMPLETED_MASK \
152 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153 
154 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
155 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
156 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
157 #define GEN12_IDLE_CTX_ID		0x7FF
158 #define GEN12_CSB_CTX_VALID(csb_dw) \
159 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160 
161 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
162 #define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
163 #define XEHP_IDLE_CTX_ID			0xFFFF
164 #define XEHP_CSB_CTX_VALID(csb_dw) \
165 	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166 
167 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
168 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169 
170 struct virtual_engine {
171 	struct intel_engine_cs base;
172 	struct intel_context context;
173 	struct rcu_work rcu;
174 
175 	/*
176 	 * We allow only a single request through the virtual engine at a time
177 	 * (each request in the timeline waits for the completion fence of
178 	 * the previous before being submitted). By restricting ourselves to
179 	 * only submitting a single request, each request is placed on to a
180 	 * physical to maximise load spreading (by virtue of the late greedy
181 	 * scheduling -- each real engine takes the next available request
182 	 * upon idling).
183 	 */
184 	struct i915_request *request;
185 
186 	/*
187 	 * We keep a rbtree of available virtual engines inside each physical
188 	 * engine, sorted by priority. Here we preallocate the nodes we need
189 	 * for the virtual engine, indexed by physical_engine->id.
190 	 */
191 	struct ve_node {
192 		struct rb_node rb;
193 		int prio;
194 	} nodes[I915_NUM_ENGINES];
195 
196 	/* And finally, which physical engines this virtual engine maps onto. */
197 	unsigned int num_siblings;
198 	struct intel_engine_cs *siblings[];
199 };
200 
to_virtual_engine(struct intel_engine_cs * engine)201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
204 	return container_of(engine, struct virtual_engine, base);
205 }
206 
207 static struct intel_context *
208 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209 			 unsigned long flags);
210 
211 static struct i915_request *
__active_request(const struct intel_timeline * const tl,struct i915_request * rq,int error)212 __active_request(const struct intel_timeline * const tl,
213 		 struct i915_request *rq,
214 		 int error)
215 {
216 	struct i915_request *active = rq;
217 
218 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219 		if (__i915_request_is_complete(rq))
220 			break;
221 
222 		if (error) {
223 			i915_request_set_error_once(rq, error);
224 			__i915_request_skip(rq);
225 		}
226 		active = rq;
227 	}
228 
229 	return active;
230 }
231 
232 static struct i915_request *
active_request(const struct intel_timeline * const tl,struct i915_request * rq)233 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234 {
235 	return __active_request(tl, rq, 0);
236 }
237 
ring_set_paused(const struct intel_engine_cs * engine,int state)238 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239 {
240 	/*
241 	 * We inspect HWS_PREEMPT with a semaphore inside
242 	 * engine->emit_fini_breadcrumb. If the dword is true,
243 	 * the ring is paused as the semaphore will busywait
244 	 * until the dword is false.
245 	 */
246 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247 	if (state)
248 		wmb();
249 }
250 
to_priolist(struct rb_node * rb)251 static struct i915_priolist *to_priolist(struct rb_node *rb)
252 {
253 	return rb_entry(rb, struct i915_priolist, node);
254 }
255 
rq_prio(const struct i915_request * rq)256 static int rq_prio(const struct i915_request *rq)
257 {
258 	return READ_ONCE(rq->sched.attr.priority);
259 }
260 
effective_prio(const struct i915_request * rq)261 static int effective_prio(const struct i915_request *rq)
262 {
263 	int prio = rq_prio(rq);
264 
265 	/*
266 	 * If this request is special and must not be interrupted at any
267 	 * cost, so be it. Note we are only checking the most recent request
268 	 * in the context and so may be masking an earlier vip request. It
269 	 * is hoped that under the conditions where nopreempt is used, this
270 	 * will not matter (i.e. all requests to that context will be
271 	 * nopreempt for as long as desired).
272 	 */
273 	if (i915_request_has_nopreempt(rq))
274 		prio = I915_PRIORITY_UNPREEMPTABLE;
275 
276 	return prio;
277 }
278 
queue_prio(const struct i915_sched_engine * sched_engine)279 static int queue_prio(const struct i915_sched_engine *sched_engine)
280 {
281 	struct rb_node *rb;
282 
283 	rb = rb_first_cached(&sched_engine->queue);
284 	if (!rb)
285 		return INT_MIN;
286 
287 	return to_priolist(rb)->priority;
288 }
289 
virtual_prio(const struct intel_engine_execlists * el)290 static int virtual_prio(const struct intel_engine_execlists *el)
291 {
292 	struct rb_node *rb = rb_first_cached(&el->virtual);
293 
294 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295 }
296 
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq)297 static bool need_preempt(const struct intel_engine_cs *engine,
298 			 const struct i915_request *rq)
299 {
300 	int last_prio;
301 
302 	if (!intel_engine_has_semaphores(engine))
303 		return false;
304 
305 	/*
306 	 * Check if the current priority hint merits a preemption attempt.
307 	 *
308 	 * We record the highest value priority we saw during rescheduling
309 	 * prior to this dequeue, therefore we know that if it is strictly
310 	 * less than the current tail of ESLP[0], we do not need to force
311 	 * a preempt-to-idle cycle.
312 	 *
313 	 * However, the priority hint is a mere hint that we may need to
314 	 * preempt. If that hint is stale or we may be trying to preempt
315 	 * ourselves, ignore the request.
316 	 *
317 	 * More naturally we would write
318 	 *      prio >= max(0, last);
319 	 * except that we wish to prevent triggering preemption at the same
320 	 * priority level: the task that is running should remain running
321 	 * to preserve FIFO ordering of dependencies.
322 	 */
323 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324 	if (engine->sched_engine->queue_priority_hint <= last_prio)
325 		return false;
326 
327 	/*
328 	 * Check against the first request in ELSP[1], it will, thanks to the
329 	 * power of PI, be the highest priority of that context.
330 	 */
331 	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333 		return true;
334 
335 	/*
336 	 * If the inflight context did not trigger the preemption, then maybe
337 	 * it was the set of queued requests? Pick the highest priority in
338 	 * the queue (the first active priolist) and see if it deserves to be
339 	 * running instead of ELSP[0].
340 	 *
341 	 * The highest priority request in the queue can not be either
342 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
344 	 */
345 	return max(virtual_prio(&engine->execlists),
346 		   queue_prio(engine->sched_engine)) > last_prio;
347 }
348 
349 __maybe_unused static bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)350 assert_priority_queue(const struct i915_request *prev,
351 		      const struct i915_request *next)
352 {
353 	/*
354 	 * Without preemption, the prev may refer to the still active element
355 	 * which we refuse to let go.
356 	 *
357 	 * Even with preemption, there are times when we think it is better not
358 	 * to preempt and leave an ostensibly lower priority request in flight.
359 	 */
360 	if (i915_request_is_active(prev))
361 		return true;
362 
363 	return rq_prio(prev) >= rq_prio(next);
364 }
365 
366 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)367 __unwind_incomplete_requests(struct intel_engine_cs *engine)
368 {
369 	struct i915_request *rq, *rn, *active = NULL;
370 	struct list_head *pl;
371 	int prio = I915_PRIORITY_INVALID;
372 
373 	lockdep_assert_held(&engine->sched_engine->lock);
374 
375 	list_for_each_entry_safe_reverse(rq, rn,
376 					 &engine->sched_engine->requests,
377 					 sched.link) {
378 		if (__i915_request_is_complete(rq)) {
379 			list_del_init(&rq->sched.link);
380 			continue;
381 		}
382 
383 		__i915_request_unsubmit(rq);
384 
385 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386 		if (rq_prio(rq) != prio) {
387 			prio = rq_prio(rq);
388 			pl = i915_sched_lookup_priolist(engine->sched_engine,
389 							prio);
390 		}
391 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392 
393 		list_move(&rq->sched.link, pl);
394 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395 
396 		/* Check in case we rollback so far we wrap [size/2] */
397 		if (intel_ring_direction(rq->ring,
398 					 rq->tail,
399 					 rq->ring->tail + 8) > 0)
400 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401 
402 		active = rq;
403 	}
404 
405 	return active;
406 }
407 
408 struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)409 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
410 {
411 	struct intel_engine_cs *engine =
412 		container_of(execlists, typeof(*engine), execlists);
413 
414 	return __unwind_incomplete_requests(engine);
415 }
416 
417 static void
execlists_context_status_change(struct i915_request * rq,unsigned long status)418 execlists_context_status_change(struct i915_request *rq, unsigned long status)
419 {
420 	/*
421 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
422 	 * The compiler should eliminate this function as dead-code.
423 	 */
424 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
425 		return;
426 
427 	STUB();
428 #ifdef notyet
429 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
430 				   status, rq);
431 #endif
432 }
433 
reset_active(struct i915_request * rq,struct intel_engine_cs * engine)434 static void reset_active(struct i915_request *rq,
435 			 struct intel_engine_cs *engine)
436 {
437 	struct intel_context * const ce = rq->context;
438 	u32 head;
439 
440 	/*
441 	 * The executing context has been cancelled. We want to prevent
442 	 * further execution along this context and propagate the error on
443 	 * to anything depending on its results.
444 	 *
445 	 * In __i915_request_submit(), we apply the -EIO and remove the
446 	 * requests' payloads for any banned requests. But first, we must
447 	 * rewind the context back to the start of the incomplete request so
448 	 * that we do not jump back into the middle of the batch.
449 	 *
450 	 * We preserve the breadcrumbs and semaphores of the incomplete
451 	 * requests so that inter-timeline dependencies (i.e other timelines)
452 	 * remain correctly ordered. And we defer to __i915_request_submit()
453 	 * so that all asynchronous waits are correctly handled.
454 	 */
455 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
456 		     rq->fence.context, rq->fence.seqno);
457 
458 	/* On resubmission of the active request, payload will be scrubbed */
459 	if (__i915_request_is_complete(rq))
460 		head = rq->tail;
461 	else
462 		head = __active_request(ce->timeline, rq, -EIO)->head;
463 	head = intel_ring_wrap(ce->ring, head);
464 
465 	/* Scrub the context image to prevent replaying the previous batch */
466 	lrc_init_regs(ce, engine, true);
467 
468 	/* We've switched away, so this should be a no-op, but intent matters */
469 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
470 }
471 
bad_request(const struct i915_request * rq)472 static bool bad_request(const struct i915_request *rq)
473 {
474 	return rq->fence.error && i915_request_started(rq);
475 }
476 
477 static struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)478 __execlists_schedule_in(struct i915_request *rq)
479 {
480 	struct intel_engine_cs * const engine = rq->engine;
481 	struct intel_context * const ce = rq->context;
482 
483 	intel_context_get(ce);
484 
485 	if (unlikely(intel_context_is_closed(ce) &&
486 		     !intel_engine_has_heartbeat(engine)))
487 		intel_context_set_exiting(ce);
488 
489 	if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
490 		reset_active(rq, engine);
491 
492 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
493 		lrc_check_regs(ce, engine, "before");
494 
495 	if (ce->tag) {
496 		/* Use a fixed tag for OA and friends */
497 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
498 		ce->lrc.ccid = ce->tag;
499 	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
500 		/* We don't need a strict matching tag, just different values */
501 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
502 
503 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
504 		clear_bit(tag - 1, &engine->context_tag);
505 		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
506 
507 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
508 
509 	} else {
510 		/* We don't need a strict matching tag, just different values */
511 		unsigned int tag = __ffs(engine->context_tag);
512 
513 		GEM_BUG_ON(tag >= BITS_PER_LONG);
514 		__clear_bit(tag, &engine->context_tag);
515 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
516 
517 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
518 	}
519 
520 	ce->lrc.ccid |= engine->execlists.ccid;
521 
522 	__intel_gt_pm_get(engine->gt);
523 	if (engine->fw_domain && !engine->fw_active++)
524 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
525 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
526 	intel_engine_context_in(engine);
527 
528 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
529 
530 	return engine;
531 }
532 
execlists_schedule_in(struct i915_request * rq,int idx)533 static void execlists_schedule_in(struct i915_request *rq, int idx)
534 {
535 	struct intel_context * const ce = rq->context;
536 	struct intel_engine_cs *old;
537 
538 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
539 	trace_i915_request_in(rq, idx);
540 
541 	old = ce->inflight;
542 	if (!old)
543 		old = __execlists_schedule_in(rq);
544 	WRITE_ONCE(ce->inflight, ptr_inc(old));
545 
546 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
547 }
548 
549 static void
resubmit_virtual_request(struct i915_request * rq,struct virtual_engine * ve)550 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
551 {
552 	struct intel_engine_cs *engine = rq->engine;
553 
554 	spin_lock_irq(&engine->sched_engine->lock);
555 
556 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
557 	WRITE_ONCE(rq->engine, &ve->base);
558 	ve->base.submit_request(rq);
559 
560 	spin_unlock_irq(&engine->sched_engine->lock);
561 }
562 
kick_siblings(struct i915_request * rq,struct intel_context * ce)563 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
564 {
565 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
566 	struct intel_engine_cs *engine = rq->engine;
567 
568 	/*
569 	 * After this point, the rq may be transferred to a new sibling, so
570 	 * before we clear ce->inflight make sure that the context has been
571 	 * removed from the b->signalers and furthermore we need to make sure
572 	 * that the concurrent iterator in signal_irq_work is no longer
573 	 * following ce->signal_link.
574 	 */
575 	if (!list_empty(&ce->signals))
576 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
577 
578 	/*
579 	 * This engine is now too busy to run this virtual request, so
580 	 * see if we can find an alternative engine for it to execute on.
581 	 * Once a request has become bonded to this engine, we treat it the
582 	 * same as other native request.
583 	 */
584 	if (i915_request_in_priority_queue(rq) &&
585 	    rq->execution_mask != engine->mask)
586 		resubmit_virtual_request(rq, ve);
587 
588 	if (READ_ONCE(ve->request))
589 		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
590 }
591 
__execlists_schedule_out(struct i915_request * const rq,struct intel_context * const ce)592 static void __execlists_schedule_out(struct i915_request * const rq,
593 				     struct intel_context * const ce)
594 {
595 	struct intel_engine_cs * const engine = rq->engine;
596 	unsigned int ccid;
597 
598 	/*
599 	 * NB process_csb() is not under the engine->sched_engine->lock and hence
600 	 * schedule_out can race with schedule_in meaning that we should
601 	 * refrain from doing non-trivial work here.
602 	 */
603 
604 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
605 	GEM_BUG_ON(ce->inflight != engine);
606 
607 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
608 		lrc_check_regs(ce, engine, "after");
609 
610 	/*
611 	 * If we have just completed this context, the engine may now be
612 	 * idle and we want to re-enter powersaving.
613 	 */
614 	if (intel_timeline_is_last(ce->timeline, rq) &&
615 	    __i915_request_is_complete(rq))
616 		intel_engine_add_retire(engine, ce->timeline);
617 
618 	ccid = ce->lrc.ccid;
619 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
620 		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
621 		ccid &= XEHP_MAX_CONTEXT_HW_ID;
622 	} else {
623 		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
624 		ccid &= GEN12_MAX_CONTEXT_HW_ID;
625 	}
626 
627 	if (ccid < BITS_PER_LONG) {
628 		GEM_BUG_ON(ccid == 0);
629 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
630 		__set_bit(ccid - 1, &engine->context_tag);
631 	}
632 	intel_engine_context_out(engine);
633 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
634 	if (engine->fw_domain && !--engine->fw_active)
635 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
636 	intel_gt_pm_put_async(engine->gt);
637 
638 	/*
639 	 * If this is part of a virtual engine, its next request may
640 	 * have been blocked waiting for access to the active context.
641 	 * We have to kick all the siblings again in case we need to
642 	 * switch (e.g. the next request is not runnable on this
643 	 * engine). Hopefully, we will already have submitted the next
644 	 * request before the tasklet runs and do not need to rebuild
645 	 * each virtual tree and kick everyone again.
646 	 */
647 	if (ce->engine != engine)
648 		kick_siblings(rq, ce);
649 
650 	WRITE_ONCE(ce->inflight, NULL);
651 	intel_context_put(ce);
652 }
653 
execlists_schedule_out(struct i915_request * rq)654 static inline void execlists_schedule_out(struct i915_request *rq)
655 {
656 	struct intel_context * const ce = rq->context;
657 
658 	trace_i915_request_out(rq);
659 
660 	GEM_BUG_ON(!ce->inflight);
661 	ce->inflight = ptr_dec(ce->inflight);
662 	if (!__intel_context_inflight_count(ce->inflight))
663 		__execlists_schedule_out(rq, ce);
664 
665 	i915_request_put(rq);
666 }
667 
map_i915_prio_to_lrc_desc_prio(int prio)668 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
669 {
670 	if (prio > I915_PRIORITY_NORMAL)
671 		return GEN12_CTX_PRIORITY_HIGH;
672 	else if (prio < I915_PRIORITY_NORMAL)
673 		return GEN12_CTX_PRIORITY_LOW;
674 	else
675 		return GEN12_CTX_PRIORITY_NORMAL;
676 }
677 
execlists_update_context(struct i915_request * rq)678 static u64 execlists_update_context(struct i915_request *rq)
679 {
680 	struct intel_context *ce = rq->context;
681 	u64 desc;
682 	u32 tail, prev;
683 
684 	desc = ce->lrc.desc;
685 	if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
686 		desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
687 
688 	/*
689 	 * WaIdleLiteRestore:bdw,skl
690 	 *
691 	 * We should never submit the context with the same RING_TAIL twice
692 	 * just in case we submit an empty ring, which confuses the HW.
693 	 *
694 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
695 	 * the normal request to be able to always advance the RING_TAIL on
696 	 * subsequent resubmissions (for lite restore). Should that fail us,
697 	 * and we try and submit the same tail again, force the context
698 	 * reload.
699 	 *
700 	 * If we need to return to a preempted context, we need to skip the
701 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
702 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
703 	 * an earlier request.
704 	 */
705 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
706 	prev = rq->ring->tail;
707 	tail = intel_ring_set_tail(rq->ring, rq->tail);
708 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
709 		desc |= CTX_DESC_FORCE_RESTORE;
710 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
711 	rq->tail = rq->wa_tail;
712 
713 	/*
714 	 * Make sure the context image is complete before we submit it to HW.
715 	 *
716 	 * Ostensibly, writes (including the WCB) should be flushed prior to
717 	 * an uncached write such as our mmio register access, the empirical
718 	 * evidence (esp. on Braswell) suggests that the WC write into memory
719 	 * may not be visible to the HW prior to the completion of the UC
720 	 * register write and that we may begin execution from the context
721 	 * before its image is complete leading to invalid PD chasing.
722 	 */
723 	wmb();
724 
725 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
726 	return desc;
727 }
728 
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)729 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
730 {
731 	if (execlists->ctrl_reg) {
732 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
733 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
734 	} else {
735 		writel(upper_32_bits(desc), execlists->submit_reg);
736 		writel(lower_32_bits(desc), execlists->submit_reg);
737 	}
738 }
739 
740 static __maybe_unused char *
dump_port(char * buf,int buflen,const char * prefix,struct i915_request * rq)741 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
742 {
743 	if (!rq)
744 		return "";
745 
746 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
747 		 prefix,
748 		 rq->context->lrc.ccid,
749 		 rq->fence.context, rq->fence.seqno,
750 		 __i915_request_is_complete(rq) ? "!" :
751 		 __i915_request_has_started(rq) ? "*" :
752 		 "",
753 		 rq_prio(rq));
754 
755 	return buf;
756 }
757 
758 static __maybe_unused noinline void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)759 trace_ports(const struct intel_engine_execlists *execlists,
760 	    const char *msg,
761 	    struct i915_request * const *ports)
762 {
763 	const struct intel_engine_cs *engine =
764 		container_of(execlists, typeof(*engine), execlists);
765 	char __maybe_unused p0[40], p1[40];
766 
767 	if (!ports[0])
768 		return;
769 
770 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
771 		     dump_port(p0, sizeof(p0), "", ports[0]),
772 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
773 }
774 
775 static bool
reset_in_progress(const struct intel_engine_cs * engine)776 reset_in_progress(const struct intel_engine_cs *engine)
777 {
778 	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
779 }
780 
781 static __maybe_unused noinline bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)782 assert_pending_valid(const struct intel_engine_execlists *execlists,
783 		     const char *msg)
784 {
785 	struct intel_engine_cs *engine =
786 		container_of(execlists, typeof(*engine), execlists);
787 	struct i915_request * const *port, *rq, *prev = NULL;
788 	struct intel_context *ce = NULL;
789 	u32 ccid = -1;
790 
791 	trace_ports(execlists, msg, execlists->pending);
792 
793 	/* We may be messing around with the lists during reset, lalala */
794 	if (reset_in_progress(engine))
795 		return true;
796 
797 	if (!execlists->pending[0]) {
798 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
799 			      engine->name);
800 		return false;
801 	}
802 
803 	if (execlists->pending[execlists_num_ports(execlists)]) {
804 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
805 			      engine->name, execlists_num_ports(execlists));
806 		return false;
807 	}
808 
809 	for (port = execlists->pending; (rq = *port); port++) {
810 		unsigned long flags;
811 		bool ok = true;
812 
813 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
814 		GEM_BUG_ON(!i915_request_is_active(rq));
815 
816 		if (ce == rq->context) {
817 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
818 				      engine->name,
819 				      ce->timeline->fence_context,
820 				      port - execlists->pending);
821 			return false;
822 		}
823 		ce = rq->context;
824 
825 		if (ccid == ce->lrc.ccid) {
826 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
827 				      engine->name,
828 				      ccid, ce->timeline->fence_context,
829 				      port - execlists->pending);
830 			return false;
831 		}
832 		ccid = ce->lrc.ccid;
833 
834 		/*
835 		 * Sentinels are supposed to be the last request so they flush
836 		 * the current execution off the HW. Check that they are the only
837 		 * request in the pending submission.
838 		 *
839 		 * NB: Due to the async nature of preempt-to-busy and request
840 		 * cancellation we need to handle the case where request
841 		 * becomes a sentinel in parallel to CSB processing.
842 		 */
843 		if (prev && i915_request_has_sentinel(prev) &&
844 		    !READ_ONCE(prev->fence.error)) {
845 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
846 				      engine->name,
847 				      ce->timeline->fence_context,
848 				      port - execlists->pending);
849 			return false;
850 		}
851 		prev = rq;
852 
853 		/*
854 		 * We want virtual requests to only be in the first slot so
855 		 * that they are never stuck behind a hog and can be immediately
856 		 * transferred onto the next idle engine.
857 		 */
858 		if (rq->execution_mask != engine->mask &&
859 		    port != execlists->pending) {
860 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
861 				      engine->name,
862 				      ce->timeline->fence_context,
863 				      port - execlists->pending);
864 			return false;
865 		}
866 
867 		/* Hold tightly onto the lock to prevent concurrent retires! */
868 		if (!spin_trylock_irqsave(&rq->lock, flags))
869 			continue;
870 
871 		if (__i915_request_is_complete(rq))
872 			goto unlock;
873 
874 		if (i915_active_is_idle(&ce->active) &&
875 		    !intel_context_is_barrier(ce)) {
876 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
877 				      engine->name,
878 				      ce->timeline->fence_context,
879 				      port - execlists->pending);
880 			ok = false;
881 			goto unlock;
882 		}
883 
884 		if (!i915_vma_is_pinned(ce->state)) {
885 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
886 				      engine->name,
887 				      ce->timeline->fence_context,
888 				      port - execlists->pending);
889 			ok = false;
890 			goto unlock;
891 		}
892 
893 		if (!i915_vma_is_pinned(ce->ring->vma)) {
894 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
895 				      engine->name,
896 				      ce->timeline->fence_context,
897 				      port - execlists->pending);
898 			ok = false;
899 			goto unlock;
900 		}
901 
902 unlock:
903 		spin_unlock_irqrestore(&rq->lock, flags);
904 		if (!ok)
905 			return false;
906 	}
907 
908 	return ce;
909 }
910 
execlists_submit_ports(struct intel_engine_cs * engine)911 static void execlists_submit_ports(struct intel_engine_cs *engine)
912 {
913 	struct intel_engine_execlists *execlists = &engine->execlists;
914 	unsigned int n;
915 
916 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
917 
918 	/*
919 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
920 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
921 	 * not be relinquished until the device is idle (see
922 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
923 	 * that all ELSP are drained i.e. we have processed the CSB,
924 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
925 	 */
926 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
927 
928 	/*
929 	 * ELSQ note: the submit queue is not cleared after being submitted
930 	 * to the HW so we need to make sure we always clean it up. This is
931 	 * currently ensured by the fact that we always write the same number
932 	 * of elsq entries, keep this in mind before changing the loop below.
933 	 */
934 	for (n = execlists_num_ports(execlists); n--; ) {
935 		struct i915_request *rq = execlists->pending[n];
936 
937 		write_desc(execlists,
938 			   rq ? execlists_update_context(rq) : 0,
939 			   n);
940 	}
941 
942 	/* we need to manually load the submit queue */
943 	if (execlists->ctrl_reg)
944 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
945 }
946 
ctx_single_port_submission(const struct intel_context * ce)947 static bool ctx_single_port_submission(const struct intel_context *ce)
948 {
949 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
950 		intel_context_force_single_submission(ce));
951 }
952 
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)953 static bool can_merge_ctx(const struct intel_context *prev,
954 			  const struct intel_context *next)
955 {
956 	if (prev != next)
957 		return false;
958 
959 	if (ctx_single_port_submission(prev))
960 		return false;
961 
962 	return true;
963 }
964 
i915_request_flags(const struct i915_request * rq)965 static unsigned long i915_request_flags(const struct i915_request *rq)
966 {
967 	return READ_ONCE(rq->fence.flags);
968 }
969 
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)970 static bool can_merge_rq(const struct i915_request *prev,
971 			 const struct i915_request *next)
972 {
973 	GEM_BUG_ON(prev == next);
974 	GEM_BUG_ON(!assert_priority_queue(prev, next));
975 
976 	/*
977 	 * We do not submit known completed requests. Therefore if the next
978 	 * request is already completed, we can pretend to merge it in
979 	 * with the previous context (and we will skip updating the ELSP
980 	 * and tracking). Thus hopefully keeping the ELSP full with active
981 	 * contexts, despite the best efforts of preempt-to-busy to confuse
982 	 * us.
983 	 */
984 	if (__i915_request_is_complete(next))
985 		return true;
986 
987 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
988 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
989 		      BIT(I915_FENCE_FLAG_SENTINEL))))
990 		return false;
991 
992 	if (!can_merge_ctx(prev->context, next->context))
993 		return false;
994 
995 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
996 	return true;
997 }
998 
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)999 static bool virtual_matches(const struct virtual_engine *ve,
1000 			    const struct i915_request *rq,
1001 			    const struct intel_engine_cs *engine)
1002 {
1003 	const struct intel_engine_cs *inflight;
1004 
1005 	if (!rq)
1006 		return false;
1007 
1008 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1009 		return false;
1010 
1011 	/*
1012 	 * We track when the HW has completed saving the context image
1013 	 * (i.e. when we have seen the final CS event switching out of
1014 	 * the context) and must not overwrite the context image before
1015 	 * then. This restricts us to only using the active engine
1016 	 * while the previous virtualized request is inflight (so
1017 	 * we reuse the register offsets). This is a very small
1018 	 * hystersis on the greedy seelction algorithm.
1019 	 */
1020 	inflight = intel_context_inflight(&ve->context);
1021 	if (inflight && inflight != engine)
1022 		return false;
1023 
1024 	return true;
1025 }
1026 
1027 static struct virtual_engine *
first_virtual_engine(struct intel_engine_cs * engine)1028 first_virtual_engine(struct intel_engine_cs *engine)
1029 {
1030 	struct intel_engine_execlists *el = &engine->execlists;
1031 	struct rb_node *rb = rb_first_cached(&el->virtual);
1032 
1033 	while (rb) {
1034 		struct virtual_engine *ve =
1035 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1036 		struct i915_request *rq = READ_ONCE(ve->request);
1037 
1038 		/* lazily cleanup after another engine handled rq */
1039 		if (!rq || !virtual_matches(ve, rq, engine)) {
1040 			rb_erase_cached(rb, &el->virtual);
1041 			RB_CLEAR_NODE(rb);
1042 			rb = rb_first_cached(&el->virtual);
1043 			continue;
1044 		}
1045 
1046 		return ve;
1047 	}
1048 
1049 	return NULL;
1050 }
1051 
virtual_xfer_context(struct virtual_engine * ve,struct intel_engine_cs * engine)1052 static void virtual_xfer_context(struct virtual_engine *ve,
1053 				 struct intel_engine_cs *engine)
1054 {
1055 	unsigned int n;
1056 
1057 	if (likely(engine == ve->siblings[0]))
1058 		return;
1059 
1060 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1061 	if (!intel_engine_has_relative_mmio(engine))
1062 		lrc_update_offsets(&ve->context, engine);
1063 
1064 	/*
1065 	 * Move the bound engine to the top of the list for
1066 	 * future execution. We then kick this tasklet first
1067 	 * before checking others, so that we preferentially
1068 	 * reuse this set of bound registers.
1069 	 */
1070 	for (n = 1; n < ve->num_siblings; n++) {
1071 		if (ve->siblings[n] == engine) {
1072 			swap(ve->siblings[n], ve->siblings[0]);
1073 			break;
1074 		}
1075 	}
1076 }
1077 
defer_request(struct i915_request * rq,struct list_head * const pl)1078 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1079 {
1080 	DRM_LIST_HEAD(list);
1081 
1082 	/*
1083 	 * We want to move the interrupted request to the back of
1084 	 * the round-robin list (i.e. its priority level), but
1085 	 * in doing so, we must then move all requests that were in
1086 	 * flight and were waiting for the interrupted request to
1087 	 * be run after it again.
1088 	 */
1089 	do {
1090 		struct i915_dependency *p;
1091 
1092 		GEM_BUG_ON(i915_request_is_active(rq));
1093 		list_move_tail(&rq->sched.link, pl);
1094 
1095 		for_each_waiter(p, rq) {
1096 			struct i915_request *w =
1097 				container_of(p->waiter, typeof(*w), sched);
1098 
1099 			if (p->flags & I915_DEPENDENCY_WEAK)
1100 				continue;
1101 
1102 			/* Leave semaphores spinning on the other engines */
1103 			if (w->engine != rq->engine)
1104 				continue;
1105 
1106 			/* No waiter should start before its signaler */
1107 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1108 				   __i915_request_has_started(w) &&
1109 				   !__i915_request_is_complete(rq));
1110 
1111 			if (!i915_request_is_ready(w))
1112 				continue;
1113 
1114 			if (rq_prio(w) < rq_prio(rq))
1115 				continue;
1116 
1117 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1118 			GEM_BUG_ON(i915_request_is_active(w));
1119 			list_move_tail(&w->sched.link, &list);
1120 		}
1121 
1122 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1123 	} while (rq);
1124 }
1125 
defer_active(struct intel_engine_cs * engine)1126 static void defer_active(struct intel_engine_cs *engine)
1127 {
1128 	struct i915_request *rq;
1129 
1130 	rq = __unwind_incomplete_requests(engine);
1131 	if (!rq)
1132 		return;
1133 
1134 	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1135 						     rq_prio(rq)));
1136 }
1137 
1138 static bool
timeslice_yield(const struct intel_engine_execlists * el,const struct i915_request * rq)1139 timeslice_yield(const struct intel_engine_execlists *el,
1140 		const struct i915_request *rq)
1141 {
1142 	/*
1143 	 * Once bitten, forever smitten!
1144 	 *
1145 	 * If the active context ever busy-waited on a semaphore,
1146 	 * it will be treated as a hog until the end of its timeslice (i.e.
1147 	 * until it is scheduled out and replaced by a new submission,
1148 	 * possibly even its own lite-restore). The HW only sends an interrupt
1149 	 * on the first miss, and we do know if that semaphore has been
1150 	 * signaled, or even if it is now stuck on another semaphore. Play
1151 	 * safe, yield if it might be stuck -- it will be given a fresh
1152 	 * timeslice in the near future.
1153 	 */
1154 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1155 }
1156 
needs_timeslice(const struct intel_engine_cs * engine,const struct i915_request * rq)1157 static bool needs_timeslice(const struct intel_engine_cs *engine,
1158 			    const struct i915_request *rq)
1159 {
1160 	if (!intel_engine_has_timeslices(engine))
1161 		return false;
1162 
1163 	/* If not currently active, or about to switch, wait for next event */
1164 	if (!rq || __i915_request_is_complete(rq))
1165 		return false;
1166 
1167 	/* We do not need to start the timeslice until after the ACK */
1168 	if (READ_ONCE(engine->execlists.pending[0]))
1169 		return false;
1170 
1171 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1172 	if (!list_is_last_rcu(&rq->sched.link,
1173 			      &engine->sched_engine->requests)) {
1174 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1175 		return true;
1176 	}
1177 
1178 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1179 	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1180 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1181 		return true;
1182 	}
1183 
1184 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1185 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1186 		return true;
1187 	}
1188 
1189 	return false;
1190 }
1191 
1192 static bool
timeslice_expired(struct intel_engine_cs * engine,const struct i915_request * rq)1193 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1194 {
1195 	const struct intel_engine_execlists *el = &engine->execlists;
1196 
1197 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1198 		return false;
1199 
1200 	if (!needs_timeslice(engine, rq))
1201 		return false;
1202 
1203 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1204 }
1205 
timeslice(const struct intel_engine_cs * engine)1206 static unsigned long timeslice(const struct intel_engine_cs *engine)
1207 {
1208 	return READ_ONCE(engine->props.timeslice_duration_ms);
1209 }
1210 
start_timeslice(struct intel_engine_cs * engine)1211 static void start_timeslice(struct intel_engine_cs *engine)
1212 {
1213 	struct intel_engine_execlists *el = &engine->execlists;
1214 	unsigned long duration;
1215 
1216 	/* Disable the timer if there is nothing to switch to */
1217 	duration = 0;
1218 	if (needs_timeslice(engine, *el->active)) {
1219 		/* Avoid continually prolonging an active timeslice */
1220 		if (timer_active(&el->timer)) {
1221 			/*
1222 			 * If we just submitted a new ELSP after an old
1223 			 * context, that context may have already consumed
1224 			 * its timeslice, so recheck.
1225 			 */
1226 			if (!timer_pending(&el->timer))
1227 				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1228 			return;
1229 		}
1230 
1231 		duration = timeslice(engine);
1232 	}
1233 
1234 	set_timer_ms(&el->timer, duration);
1235 }
1236 
record_preemption(struct intel_engine_execlists * execlists)1237 static void record_preemption(struct intel_engine_execlists *execlists)
1238 {
1239 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1240 }
1241 
active_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1242 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1243 					    const struct i915_request *rq)
1244 {
1245 	if (!rq)
1246 		return 0;
1247 
1248 	/* Only allow ourselves to force reset the currently active context */
1249 	engine->execlists.preempt_target = rq;
1250 
1251 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1252 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1253 		return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1254 
1255 	return READ_ONCE(engine->props.preempt_timeout_ms);
1256 }
1257 
set_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1258 static void set_preempt_timeout(struct intel_engine_cs *engine,
1259 				const struct i915_request *rq)
1260 {
1261 	if (!intel_engine_has_preempt_reset(engine))
1262 		return;
1263 
1264 	set_timer_ms(&engine->execlists.preempt,
1265 		     active_preempt_timeout(engine, rq));
1266 }
1267 
completed(const struct i915_request * rq)1268 static bool completed(const struct i915_request *rq)
1269 {
1270 	if (i915_request_has_sentinel(rq))
1271 		return false;
1272 
1273 	return __i915_request_is_complete(rq);
1274 }
1275 
execlists_dequeue(struct intel_engine_cs * engine)1276 static void execlists_dequeue(struct intel_engine_cs *engine)
1277 {
1278 	struct intel_engine_execlists * const execlists = &engine->execlists;
1279 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1280 	struct i915_request **port = execlists->pending;
1281 	struct i915_request ** const last_port = port + execlists->port_mask;
1282 	struct i915_request *last, * const *active;
1283 	struct virtual_engine *ve;
1284 	struct rb_node *rb;
1285 	bool submit = false;
1286 
1287 	/*
1288 	 * Hardware submission is through 2 ports. Conceptually each port
1289 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1290 	 * static for a context, and unique to each, so we only execute
1291 	 * requests belonging to a single context from each ring. RING_HEAD
1292 	 * is maintained by the CS in the context image, it marks the place
1293 	 * where it got up to last time, and through RING_TAIL we tell the CS
1294 	 * where we want to execute up to this time.
1295 	 *
1296 	 * In this list the requests are in order of execution. Consecutive
1297 	 * requests from the same context are adjacent in the ringbuffer. We
1298 	 * can combine these requests into a single RING_TAIL update:
1299 	 *
1300 	 *              RING_HEAD...req1...req2
1301 	 *                                    ^- RING_TAIL
1302 	 * since to execute req2 the CS must first execute req1.
1303 	 *
1304 	 * Our goal then is to point each port to the end of a consecutive
1305 	 * sequence of requests as being the most optimal (fewest wake ups
1306 	 * and context switches) submission.
1307 	 */
1308 
1309 	spin_lock(&sched_engine->lock);
1310 
1311 	/*
1312 	 * If the queue is higher priority than the last
1313 	 * request in the currently active context, submit afresh.
1314 	 * We will resubmit again afterwards in case we need to split
1315 	 * the active context to interject the preemption request,
1316 	 * i.e. we will retrigger preemption following the ack in case
1317 	 * of trouble.
1318 	 *
1319 	 */
1320 	active = execlists->active;
1321 	while ((last = *active) && completed(last))
1322 		active++;
1323 
1324 	if (last) {
1325 		if (need_preempt(engine, last)) {
1326 			ENGINE_TRACE(engine,
1327 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1328 				     last->fence.context,
1329 				     last->fence.seqno,
1330 				     last->sched.attr.priority,
1331 				     sched_engine->queue_priority_hint);
1332 			record_preemption(execlists);
1333 
1334 			/*
1335 			 * Don't let the RING_HEAD advance past the breadcrumb
1336 			 * as we unwind (and until we resubmit) so that we do
1337 			 * not accidentally tell it to go backwards.
1338 			 */
1339 			ring_set_paused(engine, 1);
1340 
1341 			/*
1342 			 * Note that we have not stopped the GPU at this point,
1343 			 * so we are unwinding the incomplete requests as they
1344 			 * remain inflight and so by the time we do complete
1345 			 * the preemption, some of the unwound requests may
1346 			 * complete!
1347 			 */
1348 			__unwind_incomplete_requests(engine);
1349 
1350 			last = NULL;
1351 		} else if (timeslice_expired(engine, last)) {
1352 			ENGINE_TRACE(engine,
1353 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1354 				     str_yes_no(timer_expired(&execlists->timer)),
1355 				     last->fence.context, last->fence.seqno,
1356 				     rq_prio(last),
1357 				     sched_engine->queue_priority_hint,
1358 				     str_yes_no(timeslice_yield(execlists, last)));
1359 
1360 			/*
1361 			 * Consume this timeslice; ensure we start a new one.
1362 			 *
1363 			 * The timeslice expired, and we will unwind the
1364 			 * running contexts and recompute the next ELSP.
1365 			 * If that submit will be the same pair of contexts
1366 			 * (due to dependency ordering), we will skip the
1367 			 * submission. If we don't cancel the timer now,
1368 			 * we will see that the timer has expired and
1369 			 * reschedule the tasklet; continually until the
1370 			 * next context switch or other preemption event.
1371 			 *
1372 			 * Since we have decided to reschedule based on
1373 			 * consumption of this timeslice, if we submit the
1374 			 * same context again, grant it a full timeslice.
1375 			 */
1376 			cancel_timer(&execlists->timer);
1377 			ring_set_paused(engine, 1);
1378 			defer_active(engine);
1379 
1380 			/*
1381 			 * Unlike for preemption, if we rewind and continue
1382 			 * executing the same context as previously active,
1383 			 * the order of execution will remain the same and
1384 			 * the tail will only advance. We do not need to
1385 			 * force a full context restore, as a lite-restore
1386 			 * is sufficient to resample the monotonic TAIL.
1387 			 *
1388 			 * If we switch to any other context, similarly we
1389 			 * will not rewind TAIL of current context, and
1390 			 * normal save/restore will preserve state and allow
1391 			 * us to later continue executing the same request.
1392 			 */
1393 			last = NULL;
1394 		} else {
1395 			/*
1396 			 * Otherwise if we already have a request pending
1397 			 * for execution after the current one, we can
1398 			 * just wait until the next CS event before
1399 			 * queuing more. In either case we will force a
1400 			 * lite-restore preemption event, but if we wait
1401 			 * we hopefully coalesce several updates into a single
1402 			 * submission.
1403 			 */
1404 			if (active[1]) {
1405 				/*
1406 				 * Even if ELSP[1] is occupied and not worthy
1407 				 * of timeslices, our queue might be.
1408 				 */
1409 				spin_unlock(&sched_engine->lock);
1410 				return;
1411 			}
1412 		}
1413 	}
1414 
1415 	/* XXX virtual is always taking precedence */
1416 	while ((ve = first_virtual_engine(engine))) {
1417 		struct i915_request *rq;
1418 
1419 		spin_lock(&ve->base.sched_engine->lock);
1420 
1421 		rq = ve->request;
1422 		if (unlikely(!virtual_matches(ve, rq, engine)))
1423 			goto unlock; /* lost the race to a sibling */
1424 
1425 		GEM_BUG_ON(rq->engine != &ve->base);
1426 		GEM_BUG_ON(rq->context != &ve->context);
1427 
1428 		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1429 			spin_unlock(&ve->base.sched_engine->lock);
1430 			break;
1431 		}
1432 
1433 		if (last && !can_merge_rq(last, rq)) {
1434 			spin_unlock(&ve->base.sched_engine->lock);
1435 			spin_unlock(&engine->sched_engine->lock);
1436 			return; /* leave this for another sibling */
1437 		}
1438 
1439 		ENGINE_TRACE(engine,
1440 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1441 			     rq->fence.context,
1442 			     rq->fence.seqno,
1443 			     __i915_request_is_complete(rq) ? "!" :
1444 			     __i915_request_has_started(rq) ? "*" :
1445 			     "",
1446 			     str_yes_no(engine != ve->siblings[0]));
1447 
1448 		WRITE_ONCE(ve->request, NULL);
1449 		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1450 
1451 		rb = &ve->nodes[engine->id].rb;
1452 		rb_erase_cached(rb, &execlists->virtual);
1453 		RB_CLEAR_NODE(rb);
1454 
1455 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1456 		WRITE_ONCE(rq->engine, engine);
1457 
1458 		if (__i915_request_submit(rq)) {
1459 			/*
1460 			 * Only after we confirm that we will submit
1461 			 * this request (i.e. it has not already
1462 			 * completed), do we want to update the context.
1463 			 *
1464 			 * This serves two purposes. It avoids
1465 			 * unnecessary work if we are resubmitting an
1466 			 * already completed request after timeslicing.
1467 			 * But more importantly, it prevents us altering
1468 			 * ve->siblings[] on an idle context, where
1469 			 * we may be using ve->siblings[] in
1470 			 * virtual_context_enter / virtual_context_exit.
1471 			 */
1472 			virtual_xfer_context(ve, engine);
1473 			GEM_BUG_ON(ve->siblings[0] != engine);
1474 
1475 			submit = true;
1476 			last = rq;
1477 		}
1478 
1479 		i915_request_put(rq);
1480 unlock:
1481 		spin_unlock(&ve->base.sched_engine->lock);
1482 
1483 		/*
1484 		 * Hmm, we have a bunch of virtual engine requests,
1485 		 * but the first one was already completed (thanks
1486 		 * preempt-to-busy!). Keep looking at the veng queue
1487 		 * until we have no more relevant requests (i.e.
1488 		 * the normal submit queue has higher priority).
1489 		 */
1490 		if (submit)
1491 			break;
1492 	}
1493 
1494 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1495 		struct i915_priolist *p = to_priolist(rb);
1496 		struct i915_request *rq, *rn;
1497 
1498 		priolist_for_each_request_consume(rq, rn, p) {
1499 			bool merge = true;
1500 
1501 			/*
1502 			 * Can we combine this request with the current port?
1503 			 * It has to be the same context/ringbuffer and not
1504 			 * have any exceptions (e.g. GVT saying never to
1505 			 * combine contexts).
1506 			 *
1507 			 * If we can combine the requests, we can execute both
1508 			 * by updating the RING_TAIL to point to the end of the
1509 			 * second request, and so we never need to tell the
1510 			 * hardware about the first.
1511 			 */
1512 			if (last && !can_merge_rq(last, rq)) {
1513 				/*
1514 				 * If we are on the second port and cannot
1515 				 * combine this request with the last, then we
1516 				 * are done.
1517 				 */
1518 				if (port == last_port)
1519 					goto done;
1520 
1521 				/*
1522 				 * We must not populate both ELSP[] with the
1523 				 * same LRCA, i.e. we must submit 2 different
1524 				 * contexts if we submit 2 ELSP.
1525 				 */
1526 				if (last->context == rq->context)
1527 					goto done;
1528 
1529 				if (i915_request_has_sentinel(last))
1530 					goto done;
1531 
1532 				/*
1533 				 * We avoid submitting virtual requests into
1534 				 * the secondary ports so that we can migrate
1535 				 * the request immediately to another engine
1536 				 * rather than wait for the primary request.
1537 				 */
1538 				if (rq->execution_mask != engine->mask)
1539 					goto done;
1540 
1541 				/*
1542 				 * If GVT overrides us we only ever submit
1543 				 * port[0], leaving port[1] empty. Note that we
1544 				 * also have to be careful that we don't queue
1545 				 * the same context (even though a different
1546 				 * request) to the second port.
1547 				 */
1548 				if (ctx_single_port_submission(last->context) ||
1549 				    ctx_single_port_submission(rq->context))
1550 					goto done;
1551 
1552 				merge = false;
1553 			}
1554 
1555 			if (__i915_request_submit(rq)) {
1556 				if (!merge) {
1557 					*port++ = i915_request_get(last);
1558 					last = NULL;
1559 				}
1560 
1561 				GEM_BUG_ON(last &&
1562 					   !can_merge_ctx(last->context,
1563 							  rq->context));
1564 				GEM_BUG_ON(last &&
1565 					   i915_seqno_passed(last->fence.seqno,
1566 							     rq->fence.seqno));
1567 
1568 				submit = true;
1569 				last = rq;
1570 			}
1571 		}
1572 
1573 		rb_erase_cached(&p->node, &sched_engine->queue);
1574 		i915_priolist_free(p);
1575 	}
1576 done:
1577 	*port++ = i915_request_get(last);
1578 
1579 	/*
1580 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1581 	 *
1582 	 * We choose the priority hint such that if we add a request of greater
1583 	 * priority than this, we kick the submission tasklet to decide on
1584 	 * the right order of submitting the requests to hardware. We must
1585 	 * also be prepared to reorder requests as they are in-flight on the
1586 	 * HW. We derive the priority hint then as the first "hole" in
1587 	 * the HW submission ports and if there are no available slots,
1588 	 * the priority of the lowest executing request, i.e. last.
1589 	 *
1590 	 * When we do receive a higher priority request ready to run from the
1591 	 * user, see queue_request(), the priority hint is bumped to that
1592 	 * request triggering preemption on the next dequeue (or subsequent
1593 	 * interrupt for secondary ports).
1594 	 */
1595 	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1596 	i915_sched_engine_reset_on_empty(sched_engine);
1597 	spin_unlock(&sched_engine->lock);
1598 
1599 	/*
1600 	 * We can skip poking the HW if we ended up with exactly the same set
1601 	 * of requests as currently running, e.g. trying to timeslice a pair
1602 	 * of ordered contexts.
1603 	 */
1604 	if (submit &&
1605 	    memcmp(active,
1606 		   execlists->pending,
1607 		   (port - execlists->pending) * sizeof(*port))) {
1608 		*port = NULL;
1609 		while (port-- != execlists->pending)
1610 			execlists_schedule_in(*port, port - execlists->pending);
1611 
1612 		WRITE_ONCE(execlists->yield, -1);
1613 		set_preempt_timeout(engine, *active);
1614 		execlists_submit_ports(engine);
1615 	} else {
1616 		ring_set_paused(engine, 0);
1617 		while (port-- != execlists->pending)
1618 			i915_request_put(*port);
1619 		*execlists->pending = NULL;
1620 	}
1621 }
1622 
execlists_dequeue_irq(struct intel_engine_cs * engine)1623 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1624 {
1625 	local_irq_disable(); /* Suspend interrupts across request submission */
1626 	execlists_dequeue(engine);
1627 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1628 }
1629 
clear_ports(struct i915_request ** ports,int count)1630 static void clear_ports(struct i915_request **ports, int count)
1631 {
1632 	memset_p((void **)ports, NULL, count);
1633 }
1634 
1635 static void
copy_ports(struct i915_request ** dst,struct i915_request ** src,int count)1636 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1637 {
1638 	/* A memcpy_p() would be very useful here! */
1639 	while (count--)
1640 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1641 }
1642 
1643 static struct i915_request **
cancel_port_requests(struct intel_engine_execlists * const execlists,struct i915_request ** inactive)1644 cancel_port_requests(struct intel_engine_execlists * const execlists,
1645 		     struct i915_request **inactive)
1646 {
1647 	struct i915_request * const *port;
1648 
1649 	for (port = execlists->pending; *port; port++)
1650 		*inactive++ = *port;
1651 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1652 
1653 	/* Mark the end of active before we overwrite *active */
1654 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1655 		*inactive++ = *port;
1656 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1657 
1658 	smp_wmb(); /* complete the seqlock for execlists_active() */
1659 	WRITE_ONCE(execlists->active, execlists->inflight);
1660 
1661 	/* Having cancelled all outstanding process_csb(), stop their timers */
1662 	GEM_BUG_ON(execlists->pending[0]);
1663 	cancel_timer(&execlists->timer);
1664 	cancel_timer(&execlists->preempt);
1665 
1666 	return inactive;
1667 }
1668 
1669 /*
1670  * Starting with Gen12, the status has a new format:
1671  *
1672  *     bit  0:     switched to new queue
1673  *     bit  1:     reserved
1674  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1675  *                 switch detail is set to "wait on semaphore"
1676  *     bits 3-5:   engine class
1677  *     bits 6-11:  engine instance
1678  *     bits 12-14: reserved
1679  *     bits 15-25: sw context id of the lrc the GT switched to
1680  *     bits 26-31: sw counter of the lrc the GT switched to
1681  *     bits 32-35: context switch detail
1682  *                  - 0: ctx complete
1683  *                  - 1: wait on sync flip
1684  *                  - 2: wait on vblank
1685  *                  - 3: wait on scanline
1686  *                  - 4: wait on semaphore
1687  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1688  *                       WAIT_FOR_EVENT)
1689  *     bit  36:    reserved
1690  *     bits 37-43: wait detail (for switch detail 1 to 4)
1691  *     bits 44-46: reserved
1692  *     bits 47-57: sw context id of the lrc the GT switched away from
1693  *     bits 58-63: sw counter of the lrc the GT switched away from
1694  *
1695  * Xe_HP csb shuffles things around compared to TGL:
1696  *
1697  *     bits 0-3:   context switch detail (same possible values as TGL)
1698  *     bits 4-9:   engine instance
1699  *     bits 10-25: sw context id of the lrc the GT switched to
1700  *     bits 26-31: sw counter of the lrc the GT switched to
1701  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1702  *                 switch detail is set to "wait on semaphore"
1703  *     bit  33:    switched to new queue
1704  *     bits 34-41: wait detail (for switch detail 1 to 4)
1705  *     bits 42-57: sw context id of the lrc the GT switched away from
1706  *     bits 58-63: sw counter of the lrc the GT switched away from
1707  */
1708 static inline bool
__gen12_csb_parse(bool ctx_to_valid,bool ctx_away_valid,bool new_queue,u8 switch_detail)1709 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1710 		  u8 switch_detail)
1711 {
1712 	/*
1713 	 * The context switch detail is not guaranteed to be 5 when a preemption
1714 	 * occurs, so we can't just check for that. The check below works for
1715 	 * all the cases we care about, including preemptions of WAIT
1716 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1717 	 * would require some extra handling, but we don't support that.
1718 	 */
1719 	if (!ctx_away_valid || new_queue) {
1720 		GEM_BUG_ON(!ctx_to_valid);
1721 		return true;
1722 	}
1723 
1724 	/*
1725 	 * switch detail = 5 is covered by the case above and we do not expect a
1726 	 * context switch on an unsuccessful wait instruction since we always
1727 	 * use polling mode.
1728 	 */
1729 	GEM_BUG_ON(switch_detail);
1730 	return false;
1731 }
1732 
xehp_csb_parse(const u64 csb)1733 static bool xehp_csb_parse(const u64 csb)
1734 {
1735 	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1736 				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1737 				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1738 				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1739 }
1740 
gen12_csb_parse(const u64 csb)1741 static bool gen12_csb_parse(const u64 csb)
1742 {
1743 	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1744 				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1745 				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1746 				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1747 }
1748 
gen8_csb_parse(const u64 csb)1749 static bool gen8_csb_parse(const u64 csb)
1750 {
1751 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1752 }
1753 
1754 static noinline u64
wa_csb_read(const struct intel_engine_cs * engine,u64 * const csb)1755 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1756 {
1757 	u64 entry;
1758 
1759 	/*
1760 	 * Reading from the HWSP has one particular advantage: we can detect
1761 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1762 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1763 	 * we prefer the path that is self-checking and as a last resort,
1764 	 * return the mmio value.
1765 	 *
1766 	 * tgl,dg1:HSDES#22011327657
1767 	 */
1768 	preempt_disable();
1769 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1770 		int idx = csb - engine->execlists.csb_status;
1771 		int status;
1772 
1773 		status = GEN8_EXECLISTS_STATUS_BUF;
1774 		if (idx >= 6) {
1775 			status = GEN11_EXECLISTS_STATUS_BUF2;
1776 			idx -= 6;
1777 		}
1778 		status += sizeof(u64) * idx;
1779 
1780 		entry = intel_uncore_read64(engine->uncore,
1781 					    _MMIO(engine->mmio_base + status));
1782 	}
1783 	preempt_enable();
1784 
1785 	return entry;
1786 }
1787 
csb_read(const struct intel_engine_cs * engine,u64 * const csb)1788 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1789 {
1790 	u64 entry = READ_ONCE(*csb);
1791 
1792 	/*
1793 	 * Unfortunately, the GPU does not always serialise its write
1794 	 * of the CSB entries before its write of the CSB pointer, at least
1795 	 * from the perspective of the CPU, using what is known as a Global
1796 	 * Observation Point. We may read a new CSB tail pointer, but then
1797 	 * read the stale CSB entries, causing us to misinterpret the
1798 	 * context-switch events, and eventually declare the GPU hung.
1799 	 *
1800 	 * icl:HSDES#1806554093
1801 	 * tgl:HSDES#22011248461
1802 	 */
1803 	if (unlikely(entry == -1))
1804 		entry = wa_csb_read(engine, csb);
1805 
1806 	/* Consume this entry so that we can spot its future reuse. */
1807 	WRITE_ONCE(*csb, -1);
1808 
1809 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1810 	return entry;
1811 }
1812 
new_timeslice(struct intel_engine_execlists * el)1813 static void new_timeslice(struct intel_engine_execlists *el)
1814 {
1815 	/* By cancelling, we will start afresh in start_timeslice() */
1816 	cancel_timer(&el->timer);
1817 }
1818 
1819 static struct i915_request **
process_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)1820 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1821 {
1822 	struct intel_engine_execlists * const execlists = &engine->execlists;
1823 	u64 * const buf = execlists->csb_status;
1824 	const u8 num_entries = execlists->csb_size;
1825 	struct i915_request **prev;
1826 	u8 head, tail;
1827 
1828 	/*
1829 	 * As we modify our execlists state tracking we require exclusive
1830 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1831 	 * and we assume that is only inside the reset paths and so serialised.
1832 	 */
1833 	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1834 		   !reset_in_progress(engine));
1835 
1836 	/*
1837 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1838 	 * When reading from the csb_write mmio register, we have to be
1839 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1840 	 * the low 4bits. As it happens we know the next 4bits are always
1841 	 * zero and so we can simply masked off the low u8 of the register
1842 	 * and treat it identically to reading from the HWSP (without having
1843 	 * to use explicit shifting and masking, and probably bifurcating
1844 	 * the code to handle the legacy mmio read).
1845 	 */
1846 	head = execlists->csb_head;
1847 	tail = READ_ONCE(*execlists->csb_write);
1848 	if (unlikely(head == tail))
1849 		return inactive;
1850 
1851 	/*
1852 	 * We will consume all events from HW, or at least pretend to.
1853 	 *
1854 	 * The sequence of events from the HW is deterministic, and derived
1855 	 * from our writes to the ELSP, with a smidgen of variability for
1856 	 * the arrival of the asynchronous requests wrt to the inflight
1857 	 * execution. If the HW sends an event that does not correspond with
1858 	 * the one we are expecting, we have to abandon all hope as we lose
1859 	 * all tracking of what the engine is actually executing. We will
1860 	 * only detect we are out of sequence with the HW when we get an
1861 	 * 'impossible' event because we have already drained our own
1862 	 * preemption/promotion queue. If this occurs, we know that we likely
1863 	 * lost track of execution earlier and must unwind and restart, the
1864 	 * simplest way is by stop processing the event queue and force the
1865 	 * engine to reset.
1866 	 */
1867 	execlists->csb_head = tail;
1868 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1869 
1870 	/*
1871 	 * Hopefully paired with a wmb() in HW!
1872 	 *
1873 	 * We must complete the read of the write pointer before any reads
1874 	 * from the CSB, so that we do not see stale values. Without an rmb
1875 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1876 	 * we perform the READ_ONCE(*csb_write).
1877 	 */
1878 	rmb();
1879 
1880 	/* Remember who was last running under the timer */
1881 	prev = inactive;
1882 	*prev = NULL;
1883 
1884 	do {
1885 		bool promote;
1886 		u64 csb;
1887 
1888 		if (++head == num_entries)
1889 			head = 0;
1890 
1891 		/*
1892 		 * We are flying near dragons again.
1893 		 *
1894 		 * We hold a reference to the request in execlist_port[]
1895 		 * but no more than that. We are operating in softirq
1896 		 * context and so cannot hold any mutex or sleep. That
1897 		 * prevents us stopping the requests we are processing
1898 		 * in port[] from being retired simultaneously (the
1899 		 * breadcrumb will be complete before we see the
1900 		 * context-switch). As we only hold the reference to the
1901 		 * request, any pointer chasing underneath the request
1902 		 * is subject to a potential use-after-free. Thus we
1903 		 * store all of the bookkeeping within port[] as
1904 		 * required, and avoid using unguarded pointers beneath
1905 		 * request itself. The same applies to the atomic
1906 		 * status notifier.
1907 		 */
1908 
1909 		csb = csb_read(engine, buf + head);
1910 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1911 			     head, upper_32_bits(csb), lower_32_bits(csb));
1912 
1913 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1914 			promote = xehp_csb_parse(csb);
1915 		else if (GRAPHICS_VER(engine->i915) >= 12)
1916 			promote = gen12_csb_parse(csb);
1917 		else
1918 			promote = gen8_csb_parse(csb);
1919 		if (promote) {
1920 			struct i915_request * const *old = execlists->active;
1921 
1922 			if (GEM_WARN_ON(!*execlists->pending)) {
1923 				execlists->error_interrupt |= ERROR_CSB;
1924 				break;
1925 			}
1926 
1927 			ring_set_paused(engine, 0);
1928 
1929 			/* Point active to the new ELSP; prevent overwriting */
1930 			WRITE_ONCE(execlists->active, execlists->pending);
1931 			smp_wmb(); /* notify execlists_active() */
1932 
1933 			/* cancel old inflight, prepare for switch */
1934 			trace_ports(execlists, "preempted", old);
1935 			while (*old)
1936 				*inactive++ = *old++;
1937 
1938 			/* switch pending to inflight */
1939 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1940 			copy_ports(execlists->inflight,
1941 				   execlists->pending,
1942 				   execlists_num_ports(execlists));
1943 			smp_wmb(); /* complete the seqlock */
1944 			WRITE_ONCE(execlists->active, execlists->inflight);
1945 
1946 			/* XXX Magic delay for tgl */
1947 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1948 
1949 			WRITE_ONCE(execlists->pending[0], NULL);
1950 		} else {
1951 			if (GEM_WARN_ON(!*execlists->active)) {
1952 				execlists->error_interrupt |= ERROR_CSB;
1953 				break;
1954 			}
1955 
1956 			/* port0 completed, advanced to port1 */
1957 			trace_ports(execlists, "completed", execlists->active);
1958 
1959 			/*
1960 			 * We rely on the hardware being strongly
1961 			 * ordered, that the breadcrumb write is
1962 			 * coherent (visible from the CPU) before the
1963 			 * user interrupt is processed. One might assume
1964 			 * that the breadcrumb write being before the
1965 			 * user interrupt and the CS event for the context
1966 			 * switch would therefore be before the CS event
1967 			 * itself...
1968 			 */
1969 			if (GEM_SHOW_DEBUG() &&
1970 			    !__i915_request_is_complete(*execlists->active)) {
1971 				struct i915_request *rq = *execlists->active;
1972 				const u32 *regs __maybe_unused =
1973 					rq->context->lrc_reg_state;
1974 
1975 				ENGINE_TRACE(engine,
1976 					     "context completed before request!\n");
1977 				ENGINE_TRACE(engine,
1978 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1979 					     ENGINE_READ(engine, RING_START),
1980 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1981 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1982 					     ENGINE_READ(engine, RING_CTL),
1983 					     ENGINE_READ(engine, RING_MI_MODE));
1984 				ENGINE_TRACE(engine,
1985 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1986 					     i915_ggtt_offset(rq->ring->vma),
1987 					     rq->head, rq->tail,
1988 					     rq->fence.context,
1989 					     lower_32_bits(rq->fence.seqno),
1990 					     hwsp_seqno(rq));
1991 				ENGINE_TRACE(engine,
1992 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1993 					     regs[CTX_RING_START],
1994 					     regs[CTX_RING_HEAD],
1995 					     regs[CTX_RING_TAIL]);
1996 			}
1997 
1998 			*inactive++ = *execlists->active++;
1999 
2000 			GEM_BUG_ON(execlists->active - execlists->inflight >
2001 				   execlists_num_ports(execlists));
2002 		}
2003 	} while (head != tail);
2004 
2005 	/*
2006 	 * Gen11 has proven to fail wrt global observation point between
2007 	 * entry and tail update, failing on the ordering and thus
2008 	 * we see an old entry in the context status buffer.
2009 	 *
2010 	 * Forcibly evict out entries for the next gpu csb update,
2011 	 * to increase the odds that we get a fresh entries with non
2012 	 * working hardware. The cost for doing so comes out mostly with
2013 	 * the wash as hardware, working or not, will need to do the
2014 	 * invalidation before.
2015 	 */
2016 	drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2017 
2018 	/*
2019 	 * We assume that any event reflects a change in context flow
2020 	 * and merits a fresh timeslice. We reinstall the timer after
2021 	 * inspecting the queue to see if we need to resumbit.
2022 	 */
2023 	if (*prev != *execlists->active) { /* elide lite-restores */
2024 		struct intel_context *prev_ce = NULL, *active_ce = NULL;
2025 
2026 		/*
2027 		 * Note the inherent discrepancy between the HW runtime,
2028 		 * recorded as part of the context switch, and the CPU
2029 		 * adjustment for active contexts. We have to hope that
2030 		 * the delay in processing the CS event is very small
2031 		 * and consistent. It works to our advantage to have
2032 		 * the CPU adjustment _undershoot_ (i.e. start later than)
2033 		 * the CS timestamp so we never overreport the runtime
2034 		 * and correct overselves later when updating from HW.
2035 		 */
2036 		if (*prev)
2037 			prev_ce = (*prev)->context;
2038 		if (*execlists->active)
2039 			active_ce = (*execlists->active)->context;
2040 		if (prev_ce != active_ce) {
2041 			if (prev_ce)
2042 				lrc_runtime_stop(prev_ce);
2043 			if (active_ce)
2044 				lrc_runtime_start(active_ce);
2045 		}
2046 		new_timeslice(execlists);
2047 	}
2048 
2049 	return inactive;
2050 }
2051 
post_process_csb(struct i915_request ** port,struct i915_request ** last)2052 static void post_process_csb(struct i915_request **port,
2053 			     struct i915_request **last)
2054 {
2055 	while (port != last)
2056 		execlists_schedule_out(*port++);
2057 }
2058 
__execlists_hold(struct i915_request * rq)2059 static void __execlists_hold(struct i915_request *rq)
2060 {
2061 	DRM_LIST_HEAD(list);
2062 
2063 	do {
2064 		struct i915_dependency *p;
2065 
2066 		if (i915_request_is_active(rq))
2067 			__i915_request_unsubmit(rq);
2068 
2069 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2070 		list_move_tail(&rq->sched.link,
2071 			       &rq->engine->sched_engine->hold);
2072 		i915_request_set_hold(rq);
2073 		RQ_TRACE(rq, "on hold\n");
2074 
2075 		for_each_waiter(p, rq) {
2076 			struct i915_request *w =
2077 				container_of(p->waiter, typeof(*w), sched);
2078 
2079 			if (p->flags & I915_DEPENDENCY_WEAK)
2080 				continue;
2081 
2082 			/* Leave semaphores spinning on the other engines */
2083 			if (w->engine != rq->engine)
2084 				continue;
2085 
2086 			if (!i915_request_is_ready(w))
2087 				continue;
2088 
2089 			if (__i915_request_is_complete(w))
2090 				continue;
2091 
2092 			if (i915_request_on_hold(w))
2093 				continue;
2094 
2095 			list_move_tail(&w->sched.link, &list);
2096 		}
2097 
2098 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2099 	} while (rq);
2100 }
2101 
execlists_hold(struct intel_engine_cs * engine,struct i915_request * rq)2102 static bool execlists_hold(struct intel_engine_cs *engine,
2103 			   struct i915_request *rq)
2104 {
2105 	if (i915_request_on_hold(rq))
2106 		return false;
2107 
2108 	spin_lock_irq(&engine->sched_engine->lock);
2109 
2110 	if (__i915_request_is_complete(rq)) { /* too late! */
2111 		rq = NULL;
2112 		goto unlock;
2113 	}
2114 
2115 	/*
2116 	 * Transfer this request onto the hold queue to prevent it
2117 	 * being resumbitted to HW (and potentially completed) before we have
2118 	 * released it. Since we may have already submitted following
2119 	 * requests, we need to remove those as well.
2120 	 */
2121 	GEM_BUG_ON(i915_request_on_hold(rq));
2122 	GEM_BUG_ON(rq->engine != engine);
2123 	__execlists_hold(rq);
2124 	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2125 
2126 unlock:
2127 	spin_unlock_irq(&engine->sched_engine->lock);
2128 	return rq;
2129 }
2130 
hold_request(const struct i915_request * rq)2131 static bool hold_request(const struct i915_request *rq)
2132 {
2133 	struct i915_dependency *p;
2134 	bool result = false;
2135 
2136 	/*
2137 	 * If one of our ancestors is on hold, we must also be on hold,
2138 	 * otherwise we will bypass it and execute before it.
2139 	 */
2140 	rcu_read_lock();
2141 	for_each_signaler(p, rq) {
2142 		const struct i915_request *s =
2143 			container_of(p->signaler, typeof(*s), sched);
2144 
2145 		if (s->engine != rq->engine)
2146 			continue;
2147 
2148 		result = i915_request_on_hold(s);
2149 		if (result)
2150 			break;
2151 	}
2152 	rcu_read_unlock();
2153 
2154 	return result;
2155 }
2156 
__execlists_unhold(struct i915_request * rq)2157 static void __execlists_unhold(struct i915_request *rq)
2158 {
2159 	DRM_LIST_HEAD(list);
2160 
2161 	do {
2162 		struct i915_dependency *p;
2163 
2164 		RQ_TRACE(rq, "hold release\n");
2165 
2166 		GEM_BUG_ON(!i915_request_on_hold(rq));
2167 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2168 
2169 		i915_request_clear_hold(rq);
2170 		list_move_tail(&rq->sched.link,
2171 			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2172 							  rq_prio(rq)));
2173 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2174 
2175 		/* Also release any children on this engine that are ready */
2176 		for_each_waiter(p, rq) {
2177 			struct i915_request *w =
2178 				container_of(p->waiter, typeof(*w), sched);
2179 
2180 			if (p->flags & I915_DEPENDENCY_WEAK)
2181 				continue;
2182 
2183 			if (w->engine != rq->engine)
2184 				continue;
2185 
2186 			if (!i915_request_on_hold(w))
2187 				continue;
2188 
2189 			/* Check that no other parents are also on hold */
2190 			if (hold_request(w))
2191 				continue;
2192 
2193 			list_move_tail(&w->sched.link, &list);
2194 		}
2195 
2196 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2197 	} while (rq);
2198 }
2199 
execlists_unhold(struct intel_engine_cs * engine,struct i915_request * rq)2200 static void execlists_unhold(struct intel_engine_cs *engine,
2201 			     struct i915_request *rq)
2202 {
2203 	spin_lock_irq(&engine->sched_engine->lock);
2204 
2205 	/*
2206 	 * Move this request back to the priority queue, and all of its
2207 	 * children and grandchildren that were suspended along with it.
2208 	 */
2209 	__execlists_unhold(rq);
2210 
2211 	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2212 		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2213 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2214 	}
2215 
2216 	spin_unlock_irq(&engine->sched_engine->lock);
2217 }
2218 
2219 struct execlists_capture {
2220 	struct work_struct work;
2221 	struct i915_request *rq;
2222 	struct i915_gpu_coredump *error;
2223 };
2224 
execlists_capture_work(struct work_struct * work)2225 static void execlists_capture_work(struct work_struct *work)
2226 {
2227 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2228 	const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2229 		__GFP_NOWARN;
2230 	struct intel_engine_cs *engine = cap->rq->engine;
2231 	struct intel_gt_coredump *gt = cap->error->gt;
2232 	struct intel_engine_capture_vma *vma;
2233 
2234 	/* Compress all the objects attached to the request, slow! */
2235 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2236 	if (vma) {
2237 		struct i915_vma_compress *compress =
2238 			i915_vma_capture_prepare(gt);
2239 
2240 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2241 		i915_vma_capture_finish(gt, compress);
2242 	}
2243 
2244 	gt->simulated = gt->engine->simulated;
2245 	cap->error->simulated = gt->simulated;
2246 
2247 	/* Publish the error state, and announce it to the world */
2248 	i915_error_state_store(cap->error);
2249 	i915_gpu_coredump_put(cap->error);
2250 
2251 	/* Return this request and all that depend upon it for signaling */
2252 	execlists_unhold(engine, cap->rq);
2253 	i915_request_put(cap->rq);
2254 
2255 	kfree(cap);
2256 }
2257 
capture_regs(struct intel_engine_cs * engine)2258 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2259 {
2260 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2261 	struct execlists_capture *cap;
2262 
2263 	cap = kmalloc(sizeof(*cap), gfp);
2264 	if (!cap)
2265 		return NULL;
2266 
2267 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2268 	if (!cap->error)
2269 		goto err_cap;
2270 
2271 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2272 	if (!cap->error->gt)
2273 		goto err_gpu;
2274 
2275 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2276 	if (!cap->error->gt->engine)
2277 		goto err_gt;
2278 
2279 	cap->error->gt->engine->hung = true;
2280 
2281 	return cap;
2282 
2283 err_gt:
2284 	kfree(cap->error->gt);
2285 err_gpu:
2286 	kfree(cap->error);
2287 err_cap:
2288 	kfree(cap);
2289 	return NULL;
2290 }
2291 
2292 static struct i915_request *
active_context(struct intel_engine_cs * engine,u32 ccid)2293 active_context(struct intel_engine_cs *engine, u32 ccid)
2294 {
2295 	const struct intel_engine_execlists * const el = &engine->execlists;
2296 	struct i915_request * const *port, *rq;
2297 
2298 	/*
2299 	 * Use the most recent result from process_csb(), but just in case
2300 	 * we trigger an error (via interrupt) before the first CS event has
2301 	 * been written, peek at the next submission.
2302 	 */
2303 
2304 	for (port = el->active; (rq = *port); port++) {
2305 		if (rq->context->lrc.ccid == ccid) {
2306 			ENGINE_TRACE(engine,
2307 				     "ccid:%x found at active:%zd\n",
2308 				     ccid, port - el->active);
2309 			return rq;
2310 		}
2311 	}
2312 
2313 	for (port = el->pending; (rq = *port); port++) {
2314 		if (rq->context->lrc.ccid == ccid) {
2315 			ENGINE_TRACE(engine,
2316 				     "ccid:%x found at pending:%zd\n",
2317 				     ccid, port - el->pending);
2318 			return rq;
2319 		}
2320 	}
2321 
2322 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2323 	return NULL;
2324 }
2325 
active_ccid(struct intel_engine_cs * engine)2326 static u32 active_ccid(struct intel_engine_cs *engine)
2327 {
2328 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2329 }
2330 
execlists_capture(struct intel_engine_cs * engine)2331 static void execlists_capture(struct intel_engine_cs *engine)
2332 {
2333 	struct drm_i915_private *i915 = engine->i915;
2334 	struct execlists_capture *cap;
2335 
2336 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2337 		return;
2338 
2339 	/*
2340 	 * We need to _quickly_ capture the engine state before we reset.
2341 	 * We are inside an atomic section (softirq) here and we are delaying
2342 	 * the forced preemption event.
2343 	 */
2344 	cap = capture_regs(engine);
2345 	if (!cap)
2346 		return;
2347 
2348 	spin_lock_irq(&engine->sched_engine->lock);
2349 	cap->rq = active_context(engine, active_ccid(engine));
2350 	if (cap->rq) {
2351 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2352 		cap->rq = i915_request_get_rcu(cap->rq);
2353 	}
2354 	spin_unlock_irq(&engine->sched_engine->lock);
2355 	if (!cap->rq)
2356 		goto err_free;
2357 
2358 	/*
2359 	 * Remove the request from the execlists queue, and take ownership
2360 	 * of the request. We pass it to our worker who will _slowly_ compress
2361 	 * all the pages the _user_ requested for debugging their batch, after
2362 	 * which we return it to the queue for signaling.
2363 	 *
2364 	 * By removing them from the execlists queue, we also remove the
2365 	 * requests from being processed by __unwind_incomplete_requests()
2366 	 * during the intel_engine_reset(), and so they will *not* be replayed
2367 	 * afterwards.
2368 	 *
2369 	 * Note that because we have not yet reset the engine at this point,
2370 	 * it is possible for the request that we have identified as being
2371 	 * guilty, did in fact complete and we will then hit an arbitration
2372 	 * point allowing the outstanding preemption to succeed. The likelihood
2373 	 * of that is very low (as capturing of the engine registers should be
2374 	 * fast enough to run inside an irq-off atomic section!), so we will
2375 	 * simply hold that request accountable for being non-preemptible
2376 	 * long enough to force the reset.
2377 	 */
2378 	if (!execlists_hold(engine, cap->rq))
2379 		goto err_rq;
2380 
2381 	INIT_WORK(&cap->work, execlists_capture_work);
2382 	queue_work(i915->unordered_wq, &cap->work);
2383 	return;
2384 
2385 err_rq:
2386 	i915_request_put(cap->rq);
2387 err_free:
2388 	i915_gpu_coredump_put(cap->error);
2389 	kfree(cap);
2390 }
2391 
execlists_reset(struct intel_engine_cs * engine,const char * msg)2392 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2393 {
2394 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2395 	unsigned long *lock = &engine->gt->reset.flags;
2396 
2397 	if (!intel_has_reset_engine(engine->gt))
2398 		return;
2399 
2400 	if (test_and_set_bit(bit, lock))
2401 		return;
2402 
2403 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2404 
2405 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2406 	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2407 
2408 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2409 	execlists_capture(engine);
2410 	intel_engine_reset(engine, msg);
2411 
2412 	tasklet_enable(&engine->sched_engine->tasklet);
2413 	clear_and_wake_up_bit(bit, lock);
2414 }
2415 
preempt_timeout(const struct intel_engine_cs * const engine)2416 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2417 {
2418 	const struct timeout *t = &engine->execlists.preempt;
2419 
2420 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2421 		return false;
2422 
2423 	if (!timer_expired(t))
2424 		return false;
2425 
2426 	return engine->execlists.pending[0];
2427 }
2428 
2429 /*
2430  * Check the unread Context Status Buffers and manage the submission of new
2431  * contexts to the ELSP accordingly.
2432  */
execlists_submission_tasklet(struct tasklet_struct * t)2433 static void execlists_submission_tasklet(struct tasklet_struct *t)
2434 {
2435 	struct i915_sched_engine *sched_engine =
2436 		from_tasklet(sched_engine, t, tasklet);
2437 	struct intel_engine_cs * const engine = sched_engine->private_data;
2438 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2439 	struct i915_request **inactive;
2440 
2441 	rcu_read_lock();
2442 	inactive = process_csb(engine, post);
2443 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2444 
2445 	if (unlikely(preempt_timeout(engine))) {
2446 		const struct i915_request *rq = *engine->execlists.active;
2447 
2448 		/*
2449 		 * If after the preempt-timeout expired, we are still on the
2450 		 * same active request/context as before we initiated the
2451 		 * preemption, reset the engine.
2452 		 *
2453 		 * However, if we have processed a CS event to switch contexts,
2454 		 * but not yet processed the CS event for the pending
2455 		 * preemption, reset the timer allowing the new context to
2456 		 * gracefully exit.
2457 		 */
2458 		cancel_timer(&engine->execlists.preempt);
2459 		if (rq == engine->execlists.preempt_target)
2460 			engine->execlists.error_interrupt |= ERROR_PREEMPT;
2461 		else
2462 			set_timer_ms(&engine->execlists.preempt,
2463 				     active_preempt_timeout(engine, rq));
2464 	}
2465 
2466 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2467 		const char *msg;
2468 
2469 		/* Generate the error message in priority wrt to the user! */
2470 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2471 			msg = "CS error"; /* thrown by a user payload */
2472 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2473 			msg = "invalid CSB event";
2474 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2475 			msg = "preemption time out";
2476 		else
2477 			msg = "internal error";
2478 
2479 		engine->execlists.error_interrupt = 0;
2480 		execlists_reset(engine, msg);
2481 	}
2482 
2483 	if (!engine->execlists.pending[0]) {
2484 		execlists_dequeue_irq(engine);
2485 		start_timeslice(engine);
2486 	}
2487 
2488 	post_process_csb(post, inactive);
2489 	rcu_read_unlock();
2490 }
2491 
execlists_irq_handler(struct intel_engine_cs * engine,u16 iir)2492 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2493 {
2494 	bool tasklet = false;
2495 
2496 	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2497 		u32 eir;
2498 
2499 		/* Upper 16b are the enabling mask, rsvd for internal errors */
2500 		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2501 		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2502 
2503 		/* Disable the error interrupt until after the reset */
2504 		if (likely(eir)) {
2505 			ENGINE_WRITE(engine, RING_EMR, ~0u);
2506 			ENGINE_WRITE(engine, RING_EIR, eir);
2507 			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2508 			tasklet = true;
2509 		}
2510 	}
2511 
2512 	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2513 		WRITE_ONCE(engine->execlists.yield,
2514 			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2515 		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2516 			     engine->execlists.yield);
2517 		if (del_timer(&engine->execlists.timer))
2518 			tasklet = true;
2519 	}
2520 
2521 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2522 		tasklet = true;
2523 
2524 	if (iir & GT_RENDER_USER_INTERRUPT)
2525 		intel_engine_signal_breadcrumbs(engine);
2526 
2527 	if (tasklet)
2528 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2529 }
2530 
__execlists_kick(struct intel_engine_execlists * execlists)2531 static void __execlists_kick(struct intel_engine_execlists *execlists)
2532 {
2533 	struct intel_engine_cs *engine =
2534 		container_of(execlists, typeof(*engine), execlists);
2535 
2536 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2537 	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2538 }
2539 
2540 #define execlists_kick(t, member) \
2541 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2542 
execlists_timeslice(void * arg)2543 static void execlists_timeslice(void *arg)
2544 {
2545 	struct timeout *timer = (struct timeout *)arg;
2546 	execlists_kick(timer, timer);
2547 }
2548 
execlists_preempt(void * arg)2549 static void execlists_preempt(void *arg)
2550 {
2551 	struct timeout *timer = (struct timeout *)arg;
2552 	execlists_kick(timer, preempt);
2553 }
2554 
queue_request(struct intel_engine_cs * engine,struct i915_request * rq)2555 static void queue_request(struct intel_engine_cs *engine,
2556 			  struct i915_request *rq)
2557 {
2558 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2559 	list_add_tail(&rq->sched.link,
2560 		      i915_sched_lookup_priolist(engine->sched_engine,
2561 						 rq_prio(rq)));
2562 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2563 }
2564 
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)2565 static bool submit_queue(struct intel_engine_cs *engine,
2566 			 const struct i915_request *rq)
2567 {
2568 	struct i915_sched_engine *sched_engine = engine->sched_engine;
2569 
2570 	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2571 		return false;
2572 
2573 	sched_engine->queue_priority_hint = rq_prio(rq);
2574 	return true;
2575 }
2576 
ancestor_on_hold(const struct intel_engine_cs * engine,const struct i915_request * rq)2577 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2578 			     const struct i915_request *rq)
2579 {
2580 	GEM_BUG_ON(i915_request_on_hold(rq));
2581 	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2582 }
2583 
execlists_submit_request(struct i915_request * request)2584 static void execlists_submit_request(struct i915_request *request)
2585 {
2586 	struct intel_engine_cs *engine = request->engine;
2587 	unsigned long flags;
2588 
2589 	/* Will be called from irq-context when using foreign fences. */
2590 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2591 
2592 	if (unlikely(ancestor_on_hold(engine, request))) {
2593 		RQ_TRACE(request, "ancestor on hold\n");
2594 		list_add_tail(&request->sched.link,
2595 			      &engine->sched_engine->hold);
2596 		i915_request_set_hold(request);
2597 	} else {
2598 		queue_request(engine, request);
2599 
2600 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2601 		GEM_BUG_ON(list_empty(&request->sched.link));
2602 
2603 		if (submit_queue(engine, request))
2604 			__execlists_kick(&engine->execlists);
2605 	}
2606 
2607 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2608 }
2609 
2610 static int
__execlists_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2611 __execlists_context_pre_pin(struct intel_context *ce,
2612 			    struct intel_engine_cs *engine,
2613 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2614 {
2615 	int err;
2616 
2617 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2618 	if (err)
2619 		return err;
2620 
2621 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2622 		lrc_init_state(ce, engine, *vaddr);
2623 
2624 		__i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2625 	}
2626 
2627 	return 0;
2628 }
2629 
execlists_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2630 static int execlists_context_pre_pin(struct intel_context *ce,
2631 				     struct i915_gem_ww_ctx *ww,
2632 				     void **vaddr)
2633 {
2634 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2635 }
2636 
execlists_context_pin(struct intel_context * ce,void * vaddr)2637 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2638 {
2639 	return lrc_pin(ce, ce->engine, vaddr);
2640 }
2641 
execlists_context_alloc(struct intel_context * ce)2642 static int execlists_context_alloc(struct intel_context *ce)
2643 {
2644 	return lrc_alloc(ce, ce->engine);
2645 }
2646 
execlists_context_cancel_request(struct intel_context * ce,struct i915_request * rq)2647 static void execlists_context_cancel_request(struct intel_context *ce,
2648 					     struct i915_request *rq)
2649 {
2650 	struct intel_engine_cs *engine = NULL;
2651 
2652 	i915_request_active_engine(rq, &engine);
2653 
2654 	if (engine && intel_engine_pulse(engine))
2655 		intel_gt_handle_error(engine->gt, engine->mask, 0,
2656 				      "request cancellation by %s",
2657 				      curproc->p_p->ps_comm);
2658 }
2659 
2660 static struct intel_context *
execlists_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)2661 execlists_create_parallel(struct intel_engine_cs **engines,
2662 			  unsigned int num_siblings,
2663 			  unsigned int width)
2664 {
2665 	struct intel_context *parent = NULL, *ce, *err;
2666 	int i;
2667 
2668 	GEM_BUG_ON(num_siblings != 1);
2669 
2670 	for (i = 0; i < width; ++i) {
2671 		ce = intel_context_create(engines[i]);
2672 		if (IS_ERR(ce)) {
2673 			err = ce;
2674 			goto unwind;
2675 		}
2676 
2677 		if (i == 0)
2678 			parent = ce;
2679 		else
2680 			intel_context_bind_parent_child(parent, ce);
2681 	}
2682 
2683 	parent->parallel.fence_context = dma_fence_context_alloc(1);
2684 
2685 	intel_context_set_nopreempt(parent);
2686 	for_each_child(parent, ce)
2687 		intel_context_set_nopreempt(ce);
2688 
2689 	return parent;
2690 
2691 unwind:
2692 	if (parent)
2693 		intel_context_put(parent);
2694 	return err;
2695 }
2696 
2697 static const struct intel_context_ops execlists_context_ops = {
2698 	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2699 
2700 	.alloc = execlists_context_alloc,
2701 
2702 	.cancel_request = execlists_context_cancel_request,
2703 
2704 	.pre_pin = execlists_context_pre_pin,
2705 	.pin = execlists_context_pin,
2706 	.unpin = lrc_unpin,
2707 	.post_unpin = lrc_post_unpin,
2708 
2709 	.enter = intel_context_enter_engine,
2710 	.exit = intel_context_exit_engine,
2711 
2712 	.reset = lrc_reset,
2713 	.destroy = lrc_destroy,
2714 
2715 	.create_parallel = execlists_create_parallel,
2716 	.create_virtual = execlists_create_virtual,
2717 };
2718 
emit_pdps(struct i915_request * rq)2719 static int emit_pdps(struct i915_request *rq)
2720 {
2721 	const struct intel_engine_cs * const engine = rq->engine;
2722 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2723 	int err, i;
2724 	u32 *cs;
2725 
2726 	GEM_BUG_ON(intel_vgpu_active(rq->i915));
2727 
2728 	/*
2729 	 * Beware ye of the dragons, this sequence is magic!
2730 	 *
2731 	 * Small changes to this sequence can cause anything from
2732 	 * GPU hangs to forcewake errors and machine lockups!
2733 	 */
2734 
2735 	cs = intel_ring_begin(rq, 2);
2736 	if (IS_ERR(cs))
2737 		return PTR_ERR(cs);
2738 
2739 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2740 	*cs++ = MI_NOOP;
2741 	intel_ring_advance(rq, cs);
2742 
2743 	/* Flush any residual operations from the context load */
2744 	err = engine->emit_flush(rq, EMIT_FLUSH);
2745 	if (err)
2746 		return err;
2747 
2748 	/* Magic required to prevent forcewake errors! */
2749 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2750 	if (err)
2751 		return err;
2752 
2753 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2754 	if (IS_ERR(cs))
2755 		return PTR_ERR(cs);
2756 
2757 	/* Ensure the LRI have landed before we invalidate & continue */
2758 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2759 	for (i = GEN8_3LVL_PDPES; i--; ) {
2760 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2761 		u32 base = engine->mmio_base;
2762 
2763 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2764 		*cs++ = upper_32_bits(pd_daddr);
2765 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2766 		*cs++ = lower_32_bits(pd_daddr);
2767 	}
2768 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2769 	intel_ring_advance(rq, cs);
2770 
2771 	intel_ring_advance(rq, cs);
2772 
2773 	return 0;
2774 }
2775 
execlists_request_alloc(struct i915_request * request)2776 static int execlists_request_alloc(struct i915_request *request)
2777 {
2778 	int ret;
2779 
2780 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2781 
2782 	/*
2783 	 * Flush enough space to reduce the likelihood of waiting after
2784 	 * we start building the request - in which case we will just
2785 	 * have to repeat work.
2786 	 */
2787 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2788 
2789 	/*
2790 	 * Note that after this point, we have committed to using
2791 	 * this request as it is being used to both track the
2792 	 * state of engine initialisation and liveness of the
2793 	 * golden renderstate above. Think twice before you try
2794 	 * to cancel/unwind this request now.
2795 	 */
2796 
2797 	if (!i915_vm_is_4lvl(request->context->vm)) {
2798 		ret = emit_pdps(request);
2799 		if (ret)
2800 			return ret;
2801 	}
2802 
2803 	/* Unconditionally invalidate GPU caches and TLBs. */
2804 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2805 	if (ret)
2806 		return ret;
2807 
2808 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2809 	return 0;
2810 }
2811 
reset_csb_pointers(struct intel_engine_cs * engine)2812 static void reset_csb_pointers(struct intel_engine_cs *engine)
2813 {
2814 	struct intel_engine_execlists * const execlists = &engine->execlists;
2815 	const unsigned int reset_value = execlists->csb_size - 1;
2816 
2817 	ring_set_paused(engine, 0);
2818 
2819 	/*
2820 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2821 	 * Bludgeon them with a mmio update to be sure.
2822 	 */
2823 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2824 		     0xffff << 16 | reset_value << 8 | reset_value);
2825 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2826 
2827 	/*
2828 	 * After a reset, the HW starts writing into CSB entry [0]. We
2829 	 * therefore have to set our HEAD pointer back one entry so that
2830 	 * the *first* entry we check is entry 0. To complicate this further,
2831 	 * as we don't wait for the first interrupt after reset, we have to
2832 	 * fake the HW write to point back to the last entry so that our
2833 	 * inline comparison of our cached head position against the last HW
2834 	 * write works even before the first interrupt.
2835 	 */
2836 	execlists->csb_head = reset_value;
2837 	WRITE_ONCE(*execlists->csb_write, reset_value);
2838 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2839 
2840 	/* Check that the GPU does indeed update the CSB entries! */
2841 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2842 	drm_clflush_virt_range(execlists->csb_status,
2843 			       execlists->csb_size *
2844 			       sizeof(execlists->csb_status));
2845 
2846 	/* Once more for luck and our trusty paranoia */
2847 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2848 		     0xffff << 16 | reset_value << 8 | reset_value);
2849 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2850 
2851 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2852 }
2853 
sanitize_hwsp(struct intel_engine_cs * engine)2854 static void sanitize_hwsp(struct intel_engine_cs *engine)
2855 {
2856 	struct intel_timeline *tl;
2857 
2858 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2859 		intel_timeline_reset_seqno(tl);
2860 }
2861 
execlists_sanitize(struct intel_engine_cs * engine)2862 static void execlists_sanitize(struct intel_engine_cs *engine)
2863 {
2864 	GEM_BUG_ON(execlists_active(&engine->execlists));
2865 
2866 	/*
2867 	 * Poison residual state on resume, in case the suspend didn't!
2868 	 *
2869 	 * We have to assume that across suspend/resume (or other loss
2870 	 * of control) that the contents of our pinned buffers has been
2871 	 * lost, replaced by garbage. Since this doesn't always happen,
2872 	 * let's poison such state so that we more quickly spot when
2873 	 * we falsely assume it has been preserved.
2874 	 */
2875 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2876 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2877 
2878 	reset_csb_pointers(engine);
2879 
2880 	/*
2881 	 * The kernel_context HWSP is stored in the status_page. As above,
2882 	 * that may be lost on resume/initialisation, and so we need to
2883 	 * reset the value in the HWSP.
2884 	 */
2885 	sanitize_hwsp(engine);
2886 
2887 	/* And scrub the dirty cachelines for the HWSP */
2888 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2889 
2890 	intel_engine_reset_pinned_contexts(engine);
2891 }
2892 
enable_error_interrupt(struct intel_engine_cs * engine)2893 static void enable_error_interrupt(struct intel_engine_cs *engine)
2894 {
2895 	u32 status;
2896 
2897 	engine->execlists.error_interrupt = 0;
2898 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2899 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2900 
2901 	status = ENGINE_READ(engine, RING_ESR);
2902 	if (unlikely(status)) {
2903 		drm_err(&engine->i915->drm,
2904 			"engine '%s' resumed still in error: %08x\n",
2905 			engine->name, status);
2906 		__intel_gt_reset(engine->gt, engine->mask);
2907 	}
2908 
2909 	/*
2910 	 * On current gen8+, we have 2 signals to play with
2911 	 *
2912 	 * - I915_ERROR_INSTUCTION (bit 0)
2913 	 *
2914 	 *    Generate an error if the command parser encounters an invalid
2915 	 *    instruction
2916 	 *
2917 	 *    This is a fatal error.
2918 	 *
2919 	 * - CP_PRIV (bit 2)
2920 	 *
2921 	 *    Generate an error on privilege violation (where the CP replaces
2922 	 *    the instruction with a no-op). This also fires for writes into
2923 	 *    read-only scratch pages.
2924 	 *
2925 	 *    This is a non-fatal error, parsing continues.
2926 	 *
2927 	 * * there are a few others defined for odd HW that we do not use
2928 	 *
2929 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2930 	 * error (as the HW is validating and suppressing the mistakes), we
2931 	 * only unmask the instruction error bit.
2932 	 */
2933 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2934 }
2935 
enable_execlists(struct intel_engine_cs * engine)2936 static void enable_execlists(struct intel_engine_cs *engine)
2937 {
2938 	u32 mode;
2939 
2940 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2941 
2942 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2943 
2944 	if (GRAPHICS_VER(engine->i915) >= 11)
2945 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2946 	else
2947 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2948 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2949 
2950 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2951 
2952 	ENGINE_WRITE_FW(engine,
2953 			RING_HWS_PGA,
2954 			i915_ggtt_offset(engine->status_page.vma));
2955 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2956 
2957 	enable_error_interrupt(engine);
2958 }
2959 
execlists_resume(struct intel_engine_cs * engine)2960 static int execlists_resume(struct intel_engine_cs *engine)
2961 {
2962 	intel_mocs_init_engine(engine);
2963 	intel_breadcrumbs_reset(engine->breadcrumbs);
2964 
2965 	enable_execlists(engine);
2966 
2967 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2968 		xehp_enable_ccs_engines(engine);
2969 
2970 	return 0;
2971 }
2972 
execlists_reset_prepare(struct intel_engine_cs * engine)2973 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2974 {
2975 	ENGINE_TRACE(engine, "depth<-%d\n",
2976 		     atomic_read(&engine->sched_engine->tasklet.count));
2977 
2978 	/*
2979 	 * Prevent request submission to the hardware until we have
2980 	 * completed the reset in i915_gem_reset_finish(). If a request
2981 	 * is completed by one engine, it may then queue a request
2982 	 * to a second via its execlists->tasklet *just* as we are
2983 	 * calling engine->resume() and also writing the ELSP.
2984 	 * Turning off the execlists->tasklet until the reset is over
2985 	 * prevents the race.
2986 	 */
2987 	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2988 	GEM_BUG_ON(!reset_in_progress(engine));
2989 
2990 	/*
2991 	 * We stop engines, otherwise we might get failed reset and a
2992 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2993 	 * from system hang if batchbuffer is progressing when
2994 	 * the reset is issued, regardless of READY_TO_RESET ack.
2995 	 * Thus assume it is best to stop engines on all gens
2996 	 * where we have a gpu reset.
2997 	 *
2998 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2999 	 *
3000 	 * FIXME: Wa for more modern gens needs to be validated
3001 	 */
3002 	ring_set_paused(engine, 1);
3003 	intel_engine_stop_cs(engine);
3004 
3005 	/*
3006 	 * Wa_22011802037: In addition to stopping the cs, we need
3007 	 * to wait for any pending mi force wakeups
3008 	 */
3009 	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
3010 		intel_engine_wait_for_pending_mi_fw(engine);
3011 
3012 	engine->execlists.reset_ccid = active_ccid(engine);
3013 }
3014 
3015 static struct i915_request **
reset_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)3016 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3017 {
3018 	struct intel_engine_execlists * const execlists = &engine->execlists;
3019 
3020 	drm_clflush_virt_range(execlists->csb_write,
3021 			       sizeof(execlists->csb_write[0]));
3022 
3023 	inactive = process_csb(engine, inactive); /* drain preemption events */
3024 
3025 	/* Following the reset, we need to reload the CSB read/write pointers */
3026 	reset_csb_pointers(engine);
3027 
3028 	return inactive;
3029 }
3030 
3031 static void
execlists_reset_active(struct intel_engine_cs * engine,bool stalled)3032 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3033 {
3034 	struct intel_context *ce;
3035 	struct i915_request *rq;
3036 	u32 head;
3037 
3038 	/*
3039 	 * Save the currently executing context, even if we completed
3040 	 * its request, it was still running at the time of the
3041 	 * reset and will have been clobbered.
3042 	 */
3043 	rq = active_context(engine, engine->execlists.reset_ccid);
3044 	if (!rq)
3045 		return;
3046 
3047 	ce = rq->context;
3048 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3049 
3050 	if (__i915_request_is_complete(rq)) {
3051 		/* Idle context; tidy up the ring so we can restart afresh */
3052 		head = intel_ring_wrap(ce->ring, rq->tail);
3053 		goto out_replay;
3054 	}
3055 
3056 	/* We still have requests in-flight; the engine should be active */
3057 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3058 
3059 	/* Context has requests still in-flight; it should not be idle! */
3060 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3061 
3062 	rq = active_request(ce->timeline, rq);
3063 	head = intel_ring_wrap(ce->ring, rq->head);
3064 	GEM_BUG_ON(head == ce->ring->tail);
3065 
3066 	/*
3067 	 * If this request hasn't started yet, e.g. it is waiting on a
3068 	 * semaphore, we need to avoid skipping the request or else we
3069 	 * break the signaling chain. However, if the context is corrupt
3070 	 * the request will not restart and we will be stuck with a wedged
3071 	 * device. It is quite often the case that if we issue a reset
3072 	 * while the GPU is loading the context image, that the context
3073 	 * image becomes corrupt.
3074 	 *
3075 	 * Otherwise, if we have not started yet, the request should replay
3076 	 * perfectly and we do not need to flag the result as being erroneous.
3077 	 */
3078 	if (!__i915_request_has_started(rq))
3079 		goto out_replay;
3080 
3081 	/*
3082 	 * If the request was innocent, we leave the request in the ELSP
3083 	 * and will try to replay it on restarting. The context image may
3084 	 * have been corrupted by the reset, in which case we may have
3085 	 * to service a new GPU hang, but more likely we can continue on
3086 	 * without impact.
3087 	 *
3088 	 * If the request was guilty, we presume the context is corrupt
3089 	 * and have to at least restore the RING register in the context
3090 	 * image back to the expected values to skip over the guilty request.
3091 	 */
3092 	__i915_request_reset(rq, stalled);
3093 
3094 	/*
3095 	 * We want a simple context + ring to execute the breadcrumb update.
3096 	 * We cannot rely on the context being intact across the GPU hang,
3097 	 * so clear it and rebuild just what we need for the breadcrumb.
3098 	 * All pending requests for this context will be zapped, and any
3099 	 * future request will be after userspace has had the opportunity
3100 	 * to recreate its own state.
3101 	 */
3102 out_replay:
3103 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3104 		     head, ce->ring->tail);
3105 	lrc_reset_regs(ce, engine);
3106 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3107 }
3108 
execlists_reset_csb(struct intel_engine_cs * engine,bool stalled)3109 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3110 {
3111 	struct intel_engine_execlists * const execlists = &engine->execlists;
3112 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3113 	struct i915_request **inactive;
3114 
3115 	rcu_read_lock();
3116 	inactive = reset_csb(engine, post);
3117 
3118 	execlists_reset_active(engine, true);
3119 
3120 	inactive = cancel_port_requests(execlists, inactive);
3121 	post_process_csb(post, inactive);
3122 	rcu_read_unlock();
3123 }
3124 
execlists_reset_rewind(struct intel_engine_cs * engine,bool stalled)3125 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3126 {
3127 	unsigned long flags;
3128 
3129 	ENGINE_TRACE(engine, "\n");
3130 
3131 	/* Process the csb, find the guilty context and throw away */
3132 	execlists_reset_csb(engine, stalled);
3133 
3134 	/* Push back any incomplete requests for replay after the reset. */
3135 	rcu_read_lock();
3136 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3137 	__unwind_incomplete_requests(engine);
3138 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3139 	rcu_read_unlock();
3140 }
3141 
nop_submission_tasklet(struct tasklet_struct * t)3142 static void nop_submission_tasklet(struct tasklet_struct *t)
3143 {
3144 	struct i915_sched_engine *sched_engine =
3145 		from_tasklet(sched_engine, t, tasklet);
3146 	struct intel_engine_cs * const engine = sched_engine->private_data;
3147 
3148 	/* The driver is wedged; don't process any more events. */
3149 	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3150 }
3151 
execlists_reset_cancel(struct intel_engine_cs * engine)3152 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3153 {
3154 	struct intel_engine_execlists * const execlists = &engine->execlists;
3155 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3156 	struct i915_request *rq, *rn;
3157 	struct rb_node *rb;
3158 	unsigned long flags;
3159 
3160 	ENGINE_TRACE(engine, "\n");
3161 
3162 	/*
3163 	 * Before we call engine->cancel_requests(), we should have exclusive
3164 	 * access to the submission state. This is arranged for us by the
3165 	 * caller disabling the interrupt generation, the tasklet and other
3166 	 * threads that may then access the same state, giving us a free hand
3167 	 * to reset state. However, we still need to let lockdep be aware that
3168 	 * we know this state may be accessed in hardirq context, so we
3169 	 * disable the irq around this manipulation and we want to keep
3170 	 * the spinlock focused on its duties and not accidentally conflate
3171 	 * coverage to the submission's irq state. (Similarly, although we
3172 	 * shouldn't need to disable irq around the manipulation of the
3173 	 * submission's irq state, we also wish to remind ourselves that
3174 	 * it is irq state.)
3175 	 */
3176 	execlists_reset_csb(engine, true);
3177 
3178 	rcu_read_lock();
3179 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3180 
3181 	/* Mark all executing requests as skipped. */
3182 	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3183 		i915_request_put(i915_request_mark_eio(rq));
3184 	intel_engine_signal_breadcrumbs(engine);
3185 
3186 	/* Flush the queued requests to the timeline list (for retiring). */
3187 	while ((rb = rb_first_cached(&sched_engine->queue))) {
3188 		struct i915_priolist *p = to_priolist(rb);
3189 
3190 		priolist_for_each_request_consume(rq, rn, p) {
3191 			if (i915_request_mark_eio(rq)) {
3192 				__i915_request_submit(rq);
3193 				i915_request_put(rq);
3194 			}
3195 		}
3196 
3197 		rb_erase_cached(&p->node, &sched_engine->queue);
3198 		i915_priolist_free(p);
3199 	}
3200 
3201 	/* On-hold requests will be flushed to timeline upon their release */
3202 	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3203 		i915_request_put(i915_request_mark_eio(rq));
3204 
3205 	/* Cancel all attached virtual engines */
3206 	while ((rb = rb_first_cached(&execlists->virtual))) {
3207 		struct virtual_engine *ve =
3208 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3209 
3210 		rb_erase_cached(rb, &execlists->virtual);
3211 		RB_CLEAR_NODE(rb);
3212 
3213 		spin_lock(&ve->base.sched_engine->lock);
3214 		rq = fetch_and_zero(&ve->request);
3215 		if (rq) {
3216 			if (i915_request_mark_eio(rq)) {
3217 				rq->engine = engine;
3218 				__i915_request_submit(rq);
3219 				i915_request_put(rq);
3220 			}
3221 			i915_request_put(rq);
3222 
3223 			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3224 		}
3225 		spin_unlock(&ve->base.sched_engine->lock);
3226 	}
3227 
3228 	/* Remaining _unready_ requests will be nop'ed when submitted */
3229 
3230 	sched_engine->queue_priority_hint = INT_MIN;
3231 	sched_engine->queue = RB_ROOT_CACHED;
3232 
3233 	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3234 	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3235 
3236 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3237 	rcu_read_unlock();
3238 }
3239 
execlists_reset_finish(struct intel_engine_cs * engine)3240 static void execlists_reset_finish(struct intel_engine_cs *engine)
3241 {
3242 	struct intel_engine_execlists * const execlists = &engine->execlists;
3243 
3244 	/*
3245 	 * After a GPU reset, we may have requests to replay. Do so now while
3246 	 * we still have the forcewake to be sure that the GPU is not allowed
3247 	 * to sleep before we restart and reload a context.
3248 	 *
3249 	 * If the GPU reset fails, the engine may still be alive with requests
3250 	 * inflight. We expect those to complete, or for the device to be
3251 	 * reset as the next level of recovery, and as a final resort we
3252 	 * will declare the device wedged.
3253 	 */
3254 	GEM_BUG_ON(!reset_in_progress(engine));
3255 
3256 	/* And kick in case we missed a new request submission. */
3257 	if (__tasklet_enable(&engine->sched_engine->tasklet))
3258 		__execlists_kick(execlists);
3259 
3260 	ENGINE_TRACE(engine, "depth->%d\n",
3261 		     atomic_read(&engine->sched_engine->tasklet.count));
3262 }
3263 
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)3264 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3265 {
3266 	ENGINE_WRITE(engine, RING_IMR,
3267 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3268 	ENGINE_POSTING_READ(engine, RING_IMR);
3269 }
3270 
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)3271 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3272 {
3273 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3274 }
3275 
execlists_park(struct intel_engine_cs * engine)3276 static void execlists_park(struct intel_engine_cs *engine)
3277 {
3278 	cancel_timer(&engine->execlists.timer);
3279 	cancel_timer(&engine->execlists.preempt);
3280 
3281 	/* Reset upon idling, or we may delay the busy wakeup. */
3282 	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3283 }
3284 
add_to_engine(struct i915_request * rq)3285 static void add_to_engine(struct i915_request *rq)
3286 {
3287 	lockdep_assert_held(&rq->engine->sched_engine->lock);
3288 	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3289 }
3290 
remove_from_engine(struct i915_request * rq)3291 static void remove_from_engine(struct i915_request *rq)
3292 {
3293 	struct intel_engine_cs *engine, *locked;
3294 
3295 	/*
3296 	 * Virtual engines complicate acquiring the engine timeline lock,
3297 	 * as their rq->engine pointer is not stable until under that
3298 	 * engine lock. The simple ploy we use is to take the lock then
3299 	 * check that the rq still belongs to the newly locked engine.
3300 	 */
3301 	locked = READ_ONCE(rq->engine);
3302 	spin_lock_irq(&locked->sched_engine->lock);
3303 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3304 		spin_unlock(&locked->sched_engine->lock);
3305 		spin_lock(&engine->sched_engine->lock);
3306 		locked = engine;
3307 	}
3308 	list_del_init(&rq->sched.link);
3309 
3310 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3311 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3312 
3313 	/* Prevent further __await_execution() registering a cb, then flush */
3314 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3315 
3316 	spin_unlock_irq(&locked->sched_engine->lock);
3317 
3318 	i915_request_notify_execute_cb_imm(rq);
3319 }
3320 
can_preempt(struct intel_engine_cs * engine)3321 static bool can_preempt(struct intel_engine_cs *engine)
3322 {
3323 	return GRAPHICS_VER(engine->i915) > 8;
3324 }
3325 
kick_execlists(const struct i915_request * rq,int prio)3326 static void kick_execlists(const struct i915_request *rq, int prio)
3327 {
3328 	struct intel_engine_cs *engine = rq->engine;
3329 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3330 	const struct i915_request *inflight;
3331 
3332 	/*
3333 	 * We only need to kick the tasklet once for the high priority
3334 	 * new context we add into the queue.
3335 	 */
3336 	if (prio <= sched_engine->queue_priority_hint)
3337 		return;
3338 
3339 	rcu_read_lock();
3340 
3341 	/* Nothing currently active? We're overdue for a submission! */
3342 	inflight = execlists_active(&engine->execlists);
3343 	if (!inflight)
3344 		goto unlock;
3345 
3346 	/*
3347 	 * If we are already the currently executing context, don't
3348 	 * bother evaluating if we should preempt ourselves.
3349 	 */
3350 	if (inflight->context == rq->context)
3351 		goto unlock;
3352 
3353 	ENGINE_TRACE(engine,
3354 		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3355 		     prio,
3356 		     rq->fence.context, rq->fence.seqno,
3357 		     inflight->fence.context, inflight->fence.seqno,
3358 		     inflight->sched.attr.priority);
3359 
3360 	sched_engine->queue_priority_hint = prio;
3361 
3362 	/*
3363 	 * Allow preemption of low -> normal -> high, but we do
3364 	 * not allow low priority tasks to preempt other low priority
3365 	 * tasks under the impression that latency for low priority
3366 	 * tasks does not matter (as much as background throughput),
3367 	 * so kiss.
3368 	 */
3369 	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3370 		tasklet_hi_schedule(&sched_engine->tasklet);
3371 
3372 unlock:
3373 	rcu_read_unlock();
3374 }
3375 
execlists_set_default_submission(struct intel_engine_cs * engine)3376 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3377 {
3378 	engine->submit_request = execlists_submit_request;
3379 	engine->sched_engine->schedule = i915_schedule;
3380 	engine->sched_engine->kick_backend = kick_execlists;
3381 	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3382 }
3383 
execlists_shutdown(struct intel_engine_cs * engine)3384 static void execlists_shutdown(struct intel_engine_cs *engine)
3385 {
3386 	/* Synchronise with residual timers and any softirq they raise */
3387 	del_timer_sync(&engine->execlists.timer);
3388 	del_timer_sync(&engine->execlists.preempt);
3389 	tasklet_kill(&engine->sched_engine->tasklet);
3390 }
3391 
execlists_release(struct intel_engine_cs * engine)3392 static void execlists_release(struct intel_engine_cs *engine)
3393 {
3394 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3395 
3396 	execlists_shutdown(engine);
3397 
3398 	intel_engine_cleanup_common(engine);
3399 	lrc_fini_wa_ctx(engine);
3400 }
3401 
__execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3402 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3403 					   ktime_t *now)
3404 {
3405 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3406 	ktime_t total = stats->total;
3407 
3408 	/*
3409 	 * If the engine is executing something at the moment
3410 	 * add it to the total.
3411 	 */
3412 	*now = ktime_get();
3413 	if (READ_ONCE(stats->active))
3414 		total = ktime_add(total, ktime_sub(*now, stats->start));
3415 
3416 	return total;
3417 }
3418 
execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3419 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3420 					 ktime_t *now)
3421 {
3422 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3423 	unsigned int seq;
3424 	ktime_t total;
3425 
3426 	do {
3427 		seq = read_seqcount_begin(&stats->lock);
3428 		total = __execlists_engine_busyness(engine, now);
3429 	} while (read_seqcount_retry(&stats->lock, seq));
3430 
3431 	return total;
3432 }
3433 
3434 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3435 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3436 {
3437 	/* Default vfuncs which can be overridden by each engine. */
3438 
3439 	engine->resume = execlists_resume;
3440 
3441 	engine->cops = &execlists_context_ops;
3442 	engine->request_alloc = execlists_request_alloc;
3443 	engine->add_active_request = add_to_engine;
3444 	engine->remove_active_request = remove_from_engine;
3445 
3446 	engine->reset.prepare = execlists_reset_prepare;
3447 	engine->reset.rewind = execlists_reset_rewind;
3448 	engine->reset.cancel = execlists_reset_cancel;
3449 	engine->reset.finish = execlists_reset_finish;
3450 
3451 	engine->park = execlists_park;
3452 	engine->unpark = NULL;
3453 
3454 	engine->emit_flush = gen8_emit_flush_xcs;
3455 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3456 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3457 	if (GRAPHICS_VER(engine->i915) >= 12) {
3458 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3459 		engine->emit_flush = gen12_emit_flush_xcs;
3460 	}
3461 	engine->set_default_submission = execlists_set_default_submission;
3462 
3463 	if (GRAPHICS_VER(engine->i915) < 11) {
3464 		engine->irq_enable = gen8_logical_ring_enable_irq;
3465 		engine->irq_disable = gen8_logical_ring_disable_irq;
3466 	} else {
3467 		/*
3468 		 * TODO: On Gen11 interrupt masks need to be clear
3469 		 * to allow C6 entry. Keep interrupts enabled at
3470 		 * and take the hit of generating extra interrupts
3471 		 * until a more refined solution exists.
3472 		 */
3473 	}
3474 	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3475 
3476 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3477 	if (!intel_vgpu_active(engine->i915)) {
3478 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3479 		if (can_preempt(engine)) {
3480 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3481 			if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3482 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3483 		}
3484 	}
3485 
3486 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3487 		if (intel_engine_has_preemption(engine))
3488 			engine->emit_bb_start = xehp_emit_bb_start;
3489 		else
3490 			engine->emit_bb_start = xehp_emit_bb_start_noarb;
3491 	} else {
3492 		if (intel_engine_has_preemption(engine))
3493 			engine->emit_bb_start = gen8_emit_bb_start;
3494 		else
3495 			engine->emit_bb_start = gen8_emit_bb_start_noarb;
3496 	}
3497 
3498 	engine->busyness = execlists_engine_busyness;
3499 }
3500 
logical_ring_default_irqs(struct intel_engine_cs * engine)3501 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3502 {
3503 	unsigned int shift = 0;
3504 
3505 	if (GRAPHICS_VER(engine->i915) < 11) {
3506 		const u8 irq_shifts[] = {
3507 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3508 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3509 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3510 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3511 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3512 		};
3513 
3514 		shift = irq_shifts[engine->id];
3515 	}
3516 
3517 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3518 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3519 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3520 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3521 }
3522 
rcs_submission_override(struct intel_engine_cs * engine)3523 static void rcs_submission_override(struct intel_engine_cs *engine)
3524 {
3525 	switch (GRAPHICS_VER(engine->i915)) {
3526 	case 12:
3527 		engine->emit_flush = gen12_emit_flush_rcs;
3528 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3529 		break;
3530 	case 11:
3531 		engine->emit_flush = gen11_emit_flush_rcs;
3532 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3533 		break;
3534 	default:
3535 		engine->emit_flush = gen8_emit_flush_rcs;
3536 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3537 		break;
3538 	}
3539 }
3540 
intel_execlists_submission_setup(struct intel_engine_cs * engine)3541 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3542 {
3543 	struct intel_engine_execlists * const execlists = &engine->execlists;
3544 	struct drm_i915_private *i915 = engine->i915;
3545 	struct intel_uncore *uncore = engine->uncore;
3546 	u32 base = engine->mmio_base;
3547 
3548 	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3549 #ifdef __linux__
3550 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3551 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3552 #else
3553 	timeout_set(&engine->execlists.timer, execlists_timeslice,
3554 	    &engine->execlists.timer);
3555 	timeout_set(&engine->execlists.preempt, execlists_preempt,
3556 	    &engine->execlists.preempt);
3557 #endif
3558 
3559 	logical_ring_default_vfuncs(engine);
3560 	logical_ring_default_irqs(engine);
3561 
3562 	seqcount_init(&engine->stats.execlists.lock);
3563 
3564 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3565 		rcs_submission_override(engine);
3566 
3567 	lrc_init_wa_ctx(engine);
3568 
3569 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3570 		execlists->submit_reg = intel_uncore_regs(uncore) +
3571 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3572 		execlists->ctrl_reg = intel_uncore_regs(uncore) +
3573 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3574 
3575 		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3576 				    RING_EXECLIST_CONTROL(engine->mmio_base),
3577 				    FW_REG_WRITE);
3578 	} else {
3579 		execlists->submit_reg = intel_uncore_regs(uncore) +
3580 			i915_mmio_reg_offset(RING_ELSP(base));
3581 	}
3582 
3583 	execlists->csb_status =
3584 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3585 
3586 	execlists->csb_write =
3587 		&engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3588 
3589 	if (GRAPHICS_VER(i915) < 11)
3590 		execlists->csb_size = GEN8_CSB_ENTRIES;
3591 	else
3592 		execlists->csb_size = GEN11_CSB_ENTRIES;
3593 
3594 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3595 	if (GRAPHICS_VER(engine->i915) >= 11 &&
3596 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3597 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3598 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3599 	}
3600 
3601 	/* Finally, take ownership and responsibility for cleanup! */
3602 	engine->sanitize = execlists_sanitize;
3603 	engine->release = execlists_release;
3604 
3605 	return 0;
3606 }
3607 
virtual_queue(struct virtual_engine * ve)3608 static struct list_head *virtual_queue(struct virtual_engine *ve)
3609 {
3610 	return &ve->base.sched_engine->default_priolist.requests;
3611 }
3612 
rcu_virtual_context_destroy(struct work_struct * wrk)3613 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3614 {
3615 	struct virtual_engine *ve =
3616 		container_of(wrk, typeof(*ve), rcu.work);
3617 	unsigned int n;
3618 
3619 	GEM_BUG_ON(ve->context.inflight);
3620 
3621 	/* Preempt-to-busy may leave a stale request behind. */
3622 	if (unlikely(ve->request)) {
3623 		struct i915_request *old;
3624 
3625 		spin_lock_irq(&ve->base.sched_engine->lock);
3626 
3627 		old = fetch_and_zero(&ve->request);
3628 		if (old) {
3629 			GEM_BUG_ON(!__i915_request_is_complete(old));
3630 			__i915_request_submit(old);
3631 			i915_request_put(old);
3632 		}
3633 
3634 		spin_unlock_irq(&ve->base.sched_engine->lock);
3635 	}
3636 
3637 	/*
3638 	 * Flush the tasklet in case it is still running on another core.
3639 	 *
3640 	 * This needs to be done before we remove ourselves from the siblings'
3641 	 * rbtrees as in the case it is running in parallel, it may reinsert
3642 	 * the rb_node into a sibling.
3643 	 */
3644 	tasklet_kill(&ve->base.sched_engine->tasklet);
3645 
3646 	/* Decouple ourselves from the siblings, no more access allowed. */
3647 	for (n = 0; n < ve->num_siblings; n++) {
3648 		struct intel_engine_cs *sibling = ve->siblings[n];
3649 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3650 
3651 		if (RB_EMPTY_NODE(node))
3652 			continue;
3653 
3654 		spin_lock_irq(&sibling->sched_engine->lock);
3655 
3656 		/* Detachment is lazily performed in the sched_engine->tasklet */
3657 		if (!RB_EMPTY_NODE(node))
3658 			rb_erase_cached(node, &sibling->execlists.virtual);
3659 
3660 		spin_unlock_irq(&sibling->sched_engine->lock);
3661 	}
3662 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3663 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3664 
3665 	lrc_fini(&ve->context);
3666 	intel_context_fini(&ve->context);
3667 
3668 	if (ve->base.breadcrumbs)
3669 		intel_breadcrumbs_put(ve->base.breadcrumbs);
3670 	if (ve->base.sched_engine)
3671 		i915_sched_engine_put(ve->base.sched_engine);
3672 	intel_engine_free_request_pool(&ve->base);
3673 
3674 	kfree(ve);
3675 }
3676 
virtual_context_destroy(struct kref * kref)3677 static void virtual_context_destroy(struct kref *kref)
3678 {
3679 	struct virtual_engine *ve =
3680 		container_of(kref, typeof(*ve), context.ref);
3681 
3682 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3683 
3684 	/*
3685 	 * When destroying the virtual engine, we have to be aware that
3686 	 * it may still be in use from an hardirq/softirq context causing
3687 	 * the resubmission of a completed request (background completion
3688 	 * due to preempt-to-busy). Before we can free the engine, we need
3689 	 * to flush the submission code and tasklets that are still potentially
3690 	 * accessing the engine. Flushing the tasklets requires process context,
3691 	 * and since we can guard the resubmit onto the engine with an RCU read
3692 	 * lock, we can delegate the free of the engine to an RCU worker.
3693 	 */
3694 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3695 	queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3696 }
3697 
virtual_engine_initial_hint(struct virtual_engine * ve)3698 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3699 {
3700 	int swp;
3701 
3702 	/*
3703 	 * Pick a random sibling on starting to help spread the load around.
3704 	 *
3705 	 * New contexts are typically created with exactly the same order
3706 	 * of siblings, and often started in batches. Due to the way we iterate
3707 	 * the array of sibling when submitting requests, sibling[0] is
3708 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3709 	 * randomised across the system, we also help spread the load by the
3710 	 * first engine we inspect being different each time.
3711 	 *
3712 	 * NB This does not force us to execute on this engine, it will just
3713 	 * typically be the first we inspect for submission.
3714 	 */
3715 	swp = get_random_u32_below(ve->num_siblings);
3716 	if (swp)
3717 		swap(ve->siblings[swp], ve->siblings[0]);
3718 }
3719 
virtual_context_alloc(struct intel_context * ce)3720 static int virtual_context_alloc(struct intel_context *ce)
3721 {
3722 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3723 
3724 	return lrc_alloc(ce, ve->siblings[0]);
3725 }
3726 
virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3727 static int virtual_context_pre_pin(struct intel_context *ce,
3728 				   struct i915_gem_ww_ctx *ww,
3729 				   void **vaddr)
3730 {
3731 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3732 
3733 	 /* Note: we must use a real engine class for setting up reg state */
3734 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3735 }
3736 
virtual_context_pin(struct intel_context * ce,void * vaddr)3737 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3738 {
3739 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3740 
3741 	return lrc_pin(ce, ve->siblings[0], vaddr);
3742 }
3743 
virtual_context_enter(struct intel_context * ce)3744 static void virtual_context_enter(struct intel_context *ce)
3745 {
3746 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3747 	unsigned int n;
3748 
3749 	for (n = 0; n < ve->num_siblings; n++)
3750 		intel_engine_pm_get(ve->siblings[n]);
3751 
3752 	intel_timeline_enter(ce->timeline);
3753 }
3754 
virtual_context_exit(struct intel_context * ce)3755 static void virtual_context_exit(struct intel_context *ce)
3756 {
3757 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3758 	unsigned int n;
3759 
3760 	intel_timeline_exit(ce->timeline);
3761 
3762 	for (n = 0; n < ve->num_siblings; n++)
3763 		intel_engine_pm_put(ve->siblings[n]);
3764 }
3765 
3766 static struct intel_engine_cs *
virtual_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)3767 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3768 {
3769 	struct virtual_engine *ve = to_virtual_engine(engine);
3770 
3771 	if (sibling >= ve->num_siblings)
3772 		return NULL;
3773 
3774 	return ve->siblings[sibling];
3775 }
3776 
3777 static const struct intel_context_ops virtual_context_ops = {
3778 	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3779 
3780 	.alloc = virtual_context_alloc,
3781 
3782 	.cancel_request = execlists_context_cancel_request,
3783 
3784 	.pre_pin = virtual_context_pre_pin,
3785 	.pin = virtual_context_pin,
3786 	.unpin = lrc_unpin,
3787 	.post_unpin = lrc_post_unpin,
3788 
3789 	.enter = virtual_context_enter,
3790 	.exit = virtual_context_exit,
3791 
3792 	.destroy = virtual_context_destroy,
3793 
3794 	.get_sibling = virtual_get_sibling,
3795 };
3796 
virtual_submission_mask(struct virtual_engine * ve)3797 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3798 {
3799 	struct i915_request *rq;
3800 	intel_engine_mask_t mask;
3801 
3802 	rq = READ_ONCE(ve->request);
3803 	if (!rq)
3804 		return 0;
3805 
3806 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3807 	mask = rq->execution_mask;
3808 	if (unlikely(!mask)) {
3809 		/* Invalid selection, submit to a random engine in error */
3810 		i915_request_set_error_once(rq, -ENODEV);
3811 		mask = ve->siblings[0]->mask;
3812 	}
3813 
3814 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3815 		     rq->fence.context, rq->fence.seqno,
3816 		     mask, ve->base.sched_engine->queue_priority_hint);
3817 
3818 	return mask;
3819 }
3820 
virtual_submission_tasklet(struct tasklet_struct * t)3821 static void virtual_submission_tasklet(struct tasklet_struct *t)
3822 {
3823 	struct i915_sched_engine *sched_engine =
3824 		from_tasklet(sched_engine, t, tasklet);
3825 	struct virtual_engine * const ve =
3826 		(struct virtual_engine *)sched_engine->private_data;
3827 	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3828 	intel_engine_mask_t mask;
3829 	unsigned int n;
3830 
3831 	rcu_read_lock();
3832 	mask = virtual_submission_mask(ve);
3833 	rcu_read_unlock();
3834 	if (unlikely(!mask))
3835 		return;
3836 
3837 	for (n = 0; n < ve->num_siblings; n++) {
3838 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3839 		struct ve_node * const node = &ve->nodes[sibling->id];
3840 		struct rb_node **parent, *rb;
3841 		bool first;
3842 
3843 		if (!READ_ONCE(ve->request))
3844 			break; /* already handled by a sibling's tasklet */
3845 
3846 		spin_lock_irq(&sibling->sched_engine->lock);
3847 
3848 		if (unlikely(!(mask & sibling->mask))) {
3849 			if (!RB_EMPTY_NODE(&node->rb)) {
3850 				rb_erase_cached(&node->rb,
3851 						&sibling->execlists.virtual);
3852 				RB_CLEAR_NODE(&node->rb);
3853 			}
3854 
3855 			goto unlock_engine;
3856 		}
3857 
3858 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3859 			/*
3860 			 * Cheat and avoid rebalancing the tree if we can
3861 			 * reuse this node in situ.
3862 			 */
3863 			first = rb_first_cached(&sibling->execlists.virtual) ==
3864 				&node->rb;
3865 			if (prio == node->prio || (prio > node->prio && first))
3866 				goto submit_engine;
3867 
3868 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3869 		}
3870 
3871 		rb = NULL;
3872 		first = true;
3873 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3874 		while (*parent) {
3875 			struct ve_node *other;
3876 
3877 			rb = *parent;
3878 			other = rb_entry(rb, typeof(*other), rb);
3879 			if (prio > other->prio) {
3880 				parent = &rb->rb_left;
3881 			} else {
3882 				parent = &rb->rb_right;
3883 				first = false;
3884 			}
3885 		}
3886 
3887 		rb_link_node(&node->rb, rb, parent);
3888 		rb_insert_color_cached(&node->rb,
3889 				       &sibling->execlists.virtual,
3890 				       first);
3891 
3892 submit_engine:
3893 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3894 		node->prio = prio;
3895 		if (first && prio > sibling->sched_engine->queue_priority_hint)
3896 			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3897 
3898 unlock_engine:
3899 		spin_unlock_irq(&sibling->sched_engine->lock);
3900 
3901 		if (intel_context_inflight(&ve->context))
3902 			break;
3903 	}
3904 }
3905 
virtual_submit_request(struct i915_request * rq)3906 static void virtual_submit_request(struct i915_request *rq)
3907 {
3908 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3909 	unsigned long flags;
3910 
3911 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3912 		     rq->fence.context,
3913 		     rq->fence.seqno);
3914 
3915 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3916 
3917 	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3918 
3919 	/* By the time we resubmit a request, it may be completed */
3920 	if (__i915_request_is_complete(rq)) {
3921 		__i915_request_submit(rq);
3922 		goto unlock;
3923 	}
3924 
3925 	if (ve->request) { /* background completion from preempt-to-busy */
3926 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3927 		__i915_request_submit(ve->request);
3928 		i915_request_put(ve->request);
3929 	}
3930 
3931 	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3932 	ve->request = i915_request_get(rq);
3933 
3934 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3935 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3936 
3937 	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3938 
3939 unlock:
3940 	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3941 }
3942 
3943 static struct intel_context *
execlists_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)3944 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3945 			 unsigned long flags)
3946 {
3947 	struct drm_i915_private *i915 = siblings[0]->i915;
3948 	struct virtual_engine *ve;
3949 	unsigned int n;
3950 	int err;
3951 
3952 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3953 	if (!ve)
3954 		return ERR_PTR(-ENOMEM);
3955 
3956 	ve->base.i915 = i915;
3957 	ve->base.gt = siblings[0]->gt;
3958 	ve->base.uncore = siblings[0]->uncore;
3959 	ve->base.id = -1;
3960 
3961 	ve->base.class = OTHER_CLASS;
3962 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3963 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3964 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3965 
3966 	/*
3967 	 * The decision on whether to submit a request using semaphores
3968 	 * depends on the saturated state of the engine. We only compute
3969 	 * this during HW submission of the request, and we need for this
3970 	 * state to be globally applied to all requests being submitted
3971 	 * to this engine. Virtual engines encompass more than one physical
3972 	 * engine and so we cannot accurately tell in advance if one of those
3973 	 * engines is already saturated and so cannot afford to use a semaphore
3974 	 * and be pessimized in priority for doing so -- if we are the only
3975 	 * context using semaphores after all other clients have stopped, we
3976 	 * will be starved on the saturated system. Such a global switch for
3977 	 * semaphores is less than ideal, but alas is the current compromise.
3978 	 */
3979 	ve->base.saturated = ALL_ENGINES;
3980 
3981 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3982 
3983 	intel_engine_init_execlists(&ve->base);
3984 
3985 	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3986 	if (!ve->base.sched_engine) {
3987 		err = -ENOMEM;
3988 		goto err_put;
3989 	}
3990 	ve->base.sched_engine->private_data = &ve->base;
3991 
3992 	ve->base.cops = &virtual_context_ops;
3993 	ve->base.request_alloc = execlists_request_alloc;
3994 
3995 	ve->base.sched_engine->schedule = i915_schedule;
3996 	ve->base.sched_engine->kick_backend = kick_execlists;
3997 	ve->base.submit_request = virtual_submit_request;
3998 
3999 	INIT_LIST_HEAD(virtual_queue(ve));
4000 	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
4001 
4002 	intel_context_init(&ve->context, &ve->base);
4003 
4004 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
4005 	if (!ve->base.breadcrumbs) {
4006 		err = -ENOMEM;
4007 		goto err_put;
4008 	}
4009 
4010 	for (n = 0; n < count; n++) {
4011 		struct intel_engine_cs *sibling = siblings[n];
4012 
4013 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
4014 		if (sibling->mask & ve->base.mask) {
4015 			drm_dbg(&i915->drm,
4016 				"duplicate %s entry in load balancer\n",
4017 				sibling->name);
4018 			err = -EINVAL;
4019 			goto err_put;
4020 		}
4021 
4022 		/*
4023 		 * The virtual engine implementation is tightly coupled to
4024 		 * the execlists backend -- we push out request directly
4025 		 * into a tree inside each physical engine. We could support
4026 		 * layering if we handle cloning of the requests and
4027 		 * submitting a copy into each backend.
4028 		 */
4029 		if (sibling->sched_engine->tasklet.callback !=
4030 		    execlists_submission_tasklet) {
4031 			err = -ENODEV;
4032 			goto err_put;
4033 		}
4034 
4035 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4036 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4037 
4038 		ve->siblings[ve->num_siblings++] = sibling;
4039 		ve->base.mask |= sibling->mask;
4040 		ve->base.logical_mask |= sibling->logical_mask;
4041 
4042 		/*
4043 		 * All physical engines must be compatible for their emission
4044 		 * functions (as we build the instructions during request
4045 		 * construction and do not alter them before submission
4046 		 * on the physical engine). We use the engine class as a guide
4047 		 * here, although that could be refined.
4048 		 */
4049 		if (ve->base.class != OTHER_CLASS) {
4050 			if (ve->base.class != sibling->class) {
4051 				drm_dbg(&i915->drm,
4052 					"invalid mixing of engine class, sibling %d, already %d\n",
4053 					sibling->class, ve->base.class);
4054 				err = -EINVAL;
4055 				goto err_put;
4056 			}
4057 			continue;
4058 		}
4059 
4060 		ve->base.class = sibling->class;
4061 		ve->base.uabi_class = sibling->uabi_class;
4062 		snprintf(ve->base.name, sizeof(ve->base.name),
4063 			 "v%dx%d", ve->base.class, count);
4064 		ve->base.context_size = sibling->context_size;
4065 
4066 		ve->base.add_active_request = sibling->add_active_request;
4067 		ve->base.remove_active_request = sibling->remove_active_request;
4068 		ve->base.emit_bb_start = sibling->emit_bb_start;
4069 		ve->base.emit_flush = sibling->emit_flush;
4070 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4071 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4072 		ve->base.emit_fini_breadcrumb_dw =
4073 			sibling->emit_fini_breadcrumb_dw;
4074 
4075 		ve->base.flags = sibling->flags;
4076 	}
4077 
4078 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4079 
4080 	virtual_engine_initial_hint(ve);
4081 	return &ve->context;
4082 
4083 err_put:
4084 	intel_context_put(&ve->context);
4085 	return ERR_PTR(err);
4086 }
4087 
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent),unsigned int max)4088 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4089 				   struct drm_printer *m,
4090 				   void (*show_request)(struct drm_printer *m,
4091 							const struct i915_request *rq,
4092 							const char *prefix,
4093 							int indent),
4094 				   unsigned int max)
4095 {
4096 	const struct intel_engine_execlists *execlists = &engine->execlists;
4097 	struct i915_sched_engine *sched_engine = engine->sched_engine;
4098 	struct i915_request *rq, *last;
4099 	unsigned long flags;
4100 	unsigned int count;
4101 	struct rb_node *rb;
4102 
4103 	spin_lock_irqsave(&sched_engine->lock, flags);
4104 
4105 	last = NULL;
4106 	count = 0;
4107 	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4108 		if (count++ < max - 1)
4109 			show_request(m, rq, "\t\t", 0);
4110 		else
4111 			last = rq;
4112 	}
4113 	if (last) {
4114 		if (count > max) {
4115 			drm_printf(m,
4116 				   "\t\t...skipping %d executing requests...\n",
4117 				   count - max);
4118 		}
4119 		show_request(m, last, "\t\t", 0);
4120 	}
4121 
4122 	if (sched_engine->queue_priority_hint != INT_MIN)
4123 		drm_printf(m, "\t\tQueue priority hint: %d\n",
4124 			   READ_ONCE(sched_engine->queue_priority_hint));
4125 
4126 	last = NULL;
4127 	count = 0;
4128 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4129 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4130 
4131 		priolist_for_each_request(rq, p) {
4132 			if (count++ < max - 1)
4133 				show_request(m, rq, "\t\t", 0);
4134 			else
4135 				last = rq;
4136 		}
4137 	}
4138 	if (last) {
4139 		if (count > max) {
4140 			drm_printf(m,
4141 				   "\t\t...skipping %d queued requests...\n",
4142 				   count - max);
4143 		}
4144 		show_request(m, last, "\t\t", 0);
4145 	}
4146 
4147 	last = NULL;
4148 	count = 0;
4149 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4150 		struct virtual_engine *ve =
4151 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4152 		struct i915_request *rq = READ_ONCE(ve->request);
4153 
4154 		if (rq) {
4155 			if (count++ < max - 1)
4156 				show_request(m, rq, "\t\t", 0);
4157 			else
4158 				last = rq;
4159 		}
4160 	}
4161 	if (last) {
4162 		if (count > max) {
4163 			drm_printf(m,
4164 				   "\t\t...skipping %d virtual requests...\n",
4165 				   count - max);
4166 		}
4167 		show_request(m, last, "\t\t", 0);
4168 	}
4169 
4170 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4171 }
4172 
intel_execlists_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)4173 void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4174 					  struct i915_request *hung_rq,
4175 					  struct drm_printer *m)
4176 {
4177 	unsigned long flags;
4178 
4179 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
4180 
4181 	intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4182 
4183 	drm_printf(m, "\tOn hold?: %zu\n",
4184 		   list_count_nodes(&engine->sched_engine->hold));
4185 
4186 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4187 }
4188 
4189 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4190 #include "selftest_execlists.c"
4191 #endif
4192