1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 /**
7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
8 *
9 * Motivation:
10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11 * These expanded contexts enable a number of new abilities, especially
12 * "Execlists" (also implemented in this file).
13 *
14 * One of the main differences with the legacy HW contexts is that logical
15 * ring contexts incorporate many more things to the context's state, like
16 * PDPs or ringbuffer control registers:
17 *
18 * The reason why PDPs are included in the context is straightforward: as
19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21 * instead, the GPU will do it for you on the context switch.
22 *
23 * But, what about the ringbuffer control registers (head, tail, etc..)?
24 * shouldn't we just need a set of those per engine command streamer? This is
25 * where the name "Logical Rings" starts to make sense: by virtualizing the
26 * rings, the engine cs shifts to a new "ring buffer" with every context
27 * switch. When you want to submit a workload to the GPU you: A) choose your
28 * context, B) find its appropriate virtualized ring, C) write commands to it
29 * and then, finally, D) tell the GPU to switch to that context.
30 *
31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32 * to a contexts is via a context execution list, ergo "Execlists".
33 *
34 * LRC implementation:
35 * Regarding the creation of contexts, we have:
36 *
37 * - One global default context.
38 * - One local default context for each opened fd.
39 * - One local extra context for each context create ioctl call.
40 *
41 * Now that ringbuffers belong per-context (and not per-engine, like before)
42 * and that contexts are uniquely tied to a given engine (and not reusable,
43 * like before) we need:
44 *
45 * - One ringbuffer per-engine inside each context.
46 * - One backing object per-engine inside each context.
47 *
48 * The global default context starts its life with these new objects fully
49 * allocated and populated. The local default context for each opened fd is
50 * more complex, because we don't know at creation time which engine is going
51 * to use them. To handle this, we have implemented a deferred creation of LR
52 * contexts:
53 *
54 * The local context starts its life as a hollow or blank holder, that only
55 * gets populated for a given engine once we receive an execbuffer. If later
56 * on we receive another execbuffer ioctl for the same context but a different
57 * engine, we allocate/populate a new ringbuffer and context backing object and
58 * so on.
59 *
60 * Finally, regarding local contexts created using the ioctl call: as they are
61 * only allowed with the render ring, we can allocate & populate them right
62 * away (no need to defer anything, at least for now).
63 *
64 * Execlists implementation:
65 * Execlists are the new method by which, on gen8+ hardware, workloads are
66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67 * This method works as follows:
68 *
69 * When a request is committed, its commands (the BB start and any leading or
70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71 * for the appropriate context. The tail pointer in the hardware context is not
72 * updated at this time, but instead, kept by the driver in the ringbuffer
73 * structure. A structure representing this request is added to a request queue
74 * for the appropriate engine: this structure contains a copy of the context's
75 * tail after the request was written to the ring buffer and a pointer to the
76 * context itself.
77 *
78 * If the engine's request queue was empty before the request was added, the
79 * queue is processed immediately. Otherwise the queue will be processed during
80 * a context switch interrupt. In any case, elements on the queue will get sent
81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82 * globally unique 20-bits submission ID.
83 *
84 * When execution of a request completes, the GPU updates the context status
85 * buffer with a context complete event and generates a context switch interrupt.
86 * During the interrupt handling, the driver examines the events in the buffer:
87 * for each context complete event, if the announced ID matches that on the head
88 * of the request queue, then that request is retired and removed from the queue.
89 *
90 * After processing, if any requests were retired and the queue is not empty
91 * then a new execution list can be submitted. The two requests at the front of
92 * the queue are next to be submitted but since a context may not occur twice in
93 * an execution list, if subsequent requests have the same ID as the first then
94 * the two requests must be combined. This is done simply by discarding requests
95 * at the head of the queue until either only one requests is left (in which case
96 * we use a NULL second context) or the first two requests have unique IDs.
97 *
98 * By always executing the first two requests in the queue the driver ensures
99 * that the GPU is kept as busy as possible. In the case where a single context
100 * completes but a second context is still executing, the request for this second
101 * context will be at the head of the queue when we remove the first one. This
102 * request will then be resubmitted along with a new request for a different context,
103 * which will cause the hardware to continue executing the second request and queue
104 * the new request (the GPU detects the condition of a context getting preempted
105 * with the same context and optimizes the context switch flow by not doing
106 * preemption, but just sampling the new tail pointer).
107 *
108 */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111
112 #include "i915_drv.h"
113 #include "i915_reg.h"
114 #include "i915_trace.h"
115 #include "i915_vgpu.h"
116 #include "gen8_engine_cs.h"
117 #include "intel_breadcrumbs.h"
118 #include "intel_context.h"
119 #include "intel_engine_heartbeat.h"
120 #include "intel_engine_pm.h"
121 #include "intel_engine_regs.h"
122 #include "intel_engine_stats.h"
123 #include "intel_execlists_submission.h"
124 #include "intel_gt.h"
125 #include "intel_gt_irq.h"
126 #include "intel_gt_pm.h"
127 #include "intel_gt_regs.h"
128 #include "intel_gt_requests.h"
129 #include "intel_lrc.h"
130 #include "intel_lrc_reg.h"
131 #include "intel_mocs.h"
132 #include "intel_reset.h"
133 #include "intel_ring.h"
134 #include "intel_workarounds.h"
135 #include "shmem_utils.h"
136
137 #define RING_EXECLIST_QFULL (1 << 0x2)
138 #define RING_EXECLIST1_VALID (1 << 0x3)
139 #define RING_EXECLIST0_VALID (1 << 0x4)
140 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
141 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
142 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
143
144 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
145 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
146 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
147 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
148 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
149 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
150
151 #define GEN8_CTX_STATUS_COMPLETED_MASK \
152 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153
154 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
155 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
156 #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
157 #define GEN12_IDLE_CTX_ID 0x7FF
158 #define GEN12_CSB_CTX_VALID(csb_dw) \
159 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160
161 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE BIT(1) /* upper csb dword */
162 #define XEHP_CSB_SW_CTX_ID_MASK GENMASK(31, 10)
163 #define XEHP_IDLE_CTX_ID 0xFFFF
164 #define XEHP_CSB_CTX_VALID(csb_dw) \
165 (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166
167 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
168 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
170 struct virtual_engine {
171 struct intel_engine_cs base;
172 struct intel_context context;
173 struct rcu_work rcu;
174
175 /*
176 * We allow only a single request through the virtual engine at a time
177 * (each request in the timeline waits for the completion fence of
178 * the previous before being submitted). By restricting ourselves to
179 * only submitting a single request, each request is placed on to a
180 * physical to maximise load spreading (by virtue of the late greedy
181 * scheduling -- each real engine takes the next available request
182 * upon idling).
183 */
184 struct i915_request *request;
185
186 /*
187 * We keep a rbtree of available virtual engines inside each physical
188 * engine, sorted by priority. Here we preallocate the nodes we need
189 * for the virtual engine, indexed by physical_engine->id.
190 */
191 struct ve_node {
192 struct rb_node rb;
193 int prio;
194 } nodes[I915_NUM_ENGINES];
195
196 /* And finally, which physical engines this virtual engine maps onto. */
197 unsigned int num_siblings;
198 struct intel_engine_cs *siblings[];
199 };
200
to_virtual_engine(struct intel_engine_cs * engine)201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203 GEM_BUG_ON(!intel_engine_is_virtual(engine));
204 return container_of(engine, struct virtual_engine, base);
205 }
206
207 static struct intel_context *
208 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209 unsigned long flags);
210
211 static struct i915_request *
__active_request(const struct intel_timeline * const tl,struct i915_request * rq,int error)212 __active_request(const struct intel_timeline * const tl,
213 struct i915_request *rq,
214 int error)
215 {
216 struct i915_request *active = rq;
217
218 list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219 if (__i915_request_is_complete(rq))
220 break;
221
222 if (error) {
223 i915_request_set_error_once(rq, error);
224 __i915_request_skip(rq);
225 }
226 active = rq;
227 }
228
229 return active;
230 }
231
232 static struct i915_request *
active_request(const struct intel_timeline * const tl,struct i915_request * rq)233 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234 {
235 return __active_request(tl, rq, 0);
236 }
237
ring_set_paused(const struct intel_engine_cs * engine,int state)238 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239 {
240 /*
241 * We inspect HWS_PREEMPT with a semaphore inside
242 * engine->emit_fini_breadcrumb. If the dword is true,
243 * the ring is paused as the semaphore will busywait
244 * until the dword is false.
245 */
246 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247 if (state)
248 wmb();
249 }
250
to_priolist(struct rb_node * rb)251 static struct i915_priolist *to_priolist(struct rb_node *rb)
252 {
253 return rb_entry(rb, struct i915_priolist, node);
254 }
255
rq_prio(const struct i915_request * rq)256 static int rq_prio(const struct i915_request *rq)
257 {
258 return READ_ONCE(rq->sched.attr.priority);
259 }
260
effective_prio(const struct i915_request * rq)261 static int effective_prio(const struct i915_request *rq)
262 {
263 int prio = rq_prio(rq);
264
265 /*
266 * If this request is special and must not be interrupted at any
267 * cost, so be it. Note we are only checking the most recent request
268 * in the context and so may be masking an earlier vip request. It
269 * is hoped that under the conditions where nopreempt is used, this
270 * will not matter (i.e. all requests to that context will be
271 * nopreempt for as long as desired).
272 */
273 if (i915_request_has_nopreempt(rq))
274 prio = I915_PRIORITY_UNPREEMPTABLE;
275
276 return prio;
277 }
278
queue_prio(const struct i915_sched_engine * sched_engine)279 static int queue_prio(const struct i915_sched_engine *sched_engine)
280 {
281 struct rb_node *rb;
282
283 rb = rb_first_cached(&sched_engine->queue);
284 if (!rb)
285 return INT_MIN;
286
287 return to_priolist(rb)->priority;
288 }
289
virtual_prio(const struct intel_engine_execlists * el)290 static int virtual_prio(const struct intel_engine_execlists *el)
291 {
292 struct rb_node *rb = rb_first_cached(&el->virtual);
293
294 return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295 }
296
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq)297 static bool need_preempt(const struct intel_engine_cs *engine,
298 const struct i915_request *rq)
299 {
300 int last_prio;
301
302 if (!intel_engine_has_semaphores(engine))
303 return false;
304
305 /*
306 * Check if the current priority hint merits a preemption attempt.
307 *
308 * We record the highest value priority we saw during rescheduling
309 * prior to this dequeue, therefore we know that if it is strictly
310 * less than the current tail of ESLP[0], we do not need to force
311 * a preempt-to-idle cycle.
312 *
313 * However, the priority hint is a mere hint that we may need to
314 * preempt. If that hint is stale or we may be trying to preempt
315 * ourselves, ignore the request.
316 *
317 * More naturally we would write
318 * prio >= max(0, last);
319 * except that we wish to prevent triggering preemption at the same
320 * priority level: the task that is running should remain running
321 * to preserve FIFO ordering of dependencies.
322 */
323 last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324 if (engine->sched_engine->queue_priority_hint <= last_prio)
325 return false;
326
327 /*
328 * Check against the first request in ELSP[1], it will, thanks to the
329 * power of PI, be the highest priority of that context.
330 */
331 if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332 rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333 return true;
334
335 /*
336 * If the inflight context did not trigger the preemption, then maybe
337 * it was the set of queued requests? Pick the highest priority in
338 * the queue (the first active priolist) and see if it deserves to be
339 * running instead of ELSP[0].
340 *
341 * The highest priority request in the queue can not be either
342 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343 * context, it's priority would not exceed ELSP[0] aka last_prio.
344 */
345 return max(virtual_prio(&engine->execlists),
346 queue_prio(engine->sched_engine)) > last_prio;
347 }
348
349 __maybe_unused static bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)350 assert_priority_queue(const struct i915_request *prev,
351 const struct i915_request *next)
352 {
353 /*
354 * Without preemption, the prev may refer to the still active element
355 * which we refuse to let go.
356 *
357 * Even with preemption, there are times when we think it is better not
358 * to preempt and leave an ostensibly lower priority request in flight.
359 */
360 if (i915_request_is_active(prev))
361 return true;
362
363 return rq_prio(prev) >= rq_prio(next);
364 }
365
366 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)367 __unwind_incomplete_requests(struct intel_engine_cs *engine)
368 {
369 struct i915_request *rq, *rn, *active = NULL;
370 struct list_head *pl;
371 int prio = I915_PRIORITY_INVALID;
372
373 lockdep_assert_held(&engine->sched_engine->lock);
374
375 list_for_each_entry_safe_reverse(rq, rn,
376 &engine->sched_engine->requests,
377 sched.link) {
378 if (__i915_request_is_complete(rq)) {
379 list_del_init(&rq->sched.link);
380 continue;
381 }
382
383 __i915_request_unsubmit(rq);
384
385 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386 if (rq_prio(rq) != prio) {
387 prio = rq_prio(rq);
388 pl = i915_sched_lookup_priolist(engine->sched_engine,
389 prio);
390 }
391 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392
393 list_move(&rq->sched.link, pl);
394 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395
396 /* Check in case we rollback so far we wrap [size/2] */
397 if (intel_ring_direction(rq->ring,
398 rq->tail,
399 rq->ring->tail + 8) > 0)
400 rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401
402 active = rq;
403 }
404
405 return active;
406 }
407
408 struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)409 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
410 {
411 struct intel_engine_cs *engine =
412 container_of(execlists, typeof(*engine), execlists);
413
414 return __unwind_incomplete_requests(engine);
415 }
416
417 static void
execlists_context_status_change(struct i915_request * rq,unsigned long status)418 execlists_context_status_change(struct i915_request *rq, unsigned long status)
419 {
420 /*
421 * Only used when GVT-g is enabled now. When GVT-g is disabled,
422 * The compiler should eliminate this function as dead-code.
423 */
424 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
425 return;
426
427 STUB();
428 #ifdef notyet
429 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
430 status, rq);
431 #endif
432 }
433
reset_active(struct i915_request * rq,struct intel_engine_cs * engine)434 static void reset_active(struct i915_request *rq,
435 struct intel_engine_cs *engine)
436 {
437 struct intel_context * const ce = rq->context;
438 u32 head;
439
440 /*
441 * The executing context has been cancelled. We want to prevent
442 * further execution along this context and propagate the error on
443 * to anything depending on its results.
444 *
445 * In __i915_request_submit(), we apply the -EIO and remove the
446 * requests' payloads for any banned requests. But first, we must
447 * rewind the context back to the start of the incomplete request so
448 * that we do not jump back into the middle of the batch.
449 *
450 * We preserve the breadcrumbs and semaphores of the incomplete
451 * requests so that inter-timeline dependencies (i.e other timelines)
452 * remain correctly ordered. And we defer to __i915_request_submit()
453 * so that all asynchronous waits are correctly handled.
454 */
455 ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
456 rq->fence.context, rq->fence.seqno);
457
458 /* On resubmission of the active request, payload will be scrubbed */
459 if (__i915_request_is_complete(rq))
460 head = rq->tail;
461 else
462 head = __active_request(ce->timeline, rq, -EIO)->head;
463 head = intel_ring_wrap(ce->ring, head);
464
465 /* Scrub the context image to prevent replaying the previous batch */
466 lrc_init_regs(ce, engine, true);
467
468 /* We've switched away, so this should be a no-op, but intent matters */
469 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
470 }
471
bad_request(const struct i915_request * rq)472 static bool bad_request(const struct i915_request *rq)
473 {
474 return rq->fence.error && i915_request_started(rq);
475 }
476
477 static struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)478 __execlists_schedule_in(struct i915_request *rq)
479 {
480 struct intel_engine_cs * const engine = rq->engine;
481 struct intel_context * const ce = rq->context;
482
483 intel_context_get(ce);
484
485 if (unlikely(intel_context_is_closed(ce) &&
486 !intel_engine_has_heartbeat(engine)))
487 intel_context_set_exiting(ce);
488
489 if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
490 reset_active(rq, engine);
491
492 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
493 lrc_check_regs(ce, engine, "before");
494
495 if (ce->tag) {
496 /* Use a fixed tag for OA and friends */
497 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
498 ce->lrc.ccid = ce->tag;
499 } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
500 /* We don't need a strict matching tag, just different values */
501 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
502
503 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
504 clear_bit(tag - 1, &engine->context_tag);
505 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
506
507 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
508
509 } else {
510 /* We don't need a strict matching tag, just different values */
511 unsigned int tag = __ffs(engine->context_tag);
512
513 GEM_BUG_ON(tag >= BITS_PER_LONG);
514 __clear_bit(tag, &engine->context_tag);
515 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
516
517 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
518 }
519
520 ce->lrc.ccid |= engine->execlists.ccid;
521
522 __intel_gt_pm_get(engine->gt);
523 if (engine->fw_domain && !engine->fw_active++)
524 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
525 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
526 intel_engine_context_in(engine);
527
528 CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
529
530 return engine;
531 }
532
execlists_schedule_in(struct i915_request * rq,int idx)533 static void execlists_schedule_in(struct i915_request *rq, int idx)
534 {
535 struct intel_context * const ce = rq->context;
536 struct intel_engine_cs *old;
537
538 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
539 trace_i915_request_in(rq, idx);
540
541 old = ce->inflight;
542 if (!old)
543 old = __execlists_schedule_in(rq);
544 WRITE_ONCE(ce->inflight, ptr_inc(old));
545
546 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
547 }
548
549 static void
resubmit_virtual_request(struct i915_request * rq,struct virtual_engine * ve)550 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
551 {
552 struct intel_engine_cs *engine = rq->engine;
553
554 spin_lock_irq(&engine->sched_engine->lock);
555
556 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
557 WRITE_ONCE(rq->engine, &ve->base);
558 ve->base.submit_request(rq);
559
560 spin_unlock_irq(&engine->sched_engine->lock);
561 }
562
kick_siblings(struct i915_request * rq,struct intel_context * ce)563 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
564 {
565 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
566 struct intel_engine_cs *engine = rq->engine;
567
568 /*
569 * After this point, the rq may be transferred to a new sibling, so
570 * before we clear ce->inflight make sure that the context has been
571 * removed from the b->signalers and furthermore we need to make sure
572 * that the concurrent iterator in signal_irq_work is no longer
573 * following ce->signal_link.
574 */
575 if (!list_empty(&ce->signals))
576 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
577
578 /*
579 * This engine is now too busy to run this virtual request, so
580 * see if we can find an alternative engine for it to execute on.
581 * Once a request has become bonded to this engine, we treat it the
582 * same as other native request.
583 */
584 if (i915_request_in_priority_queue(rq) &&
585 rq->execution_mask != engine->mask)
586 resubmit_virtual_request(rq, ve);
587
588 if (READ_ONCE(ve->request))
589 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
590 }
591
__execlists_schedule_out(struct i915_request * const rq,struct intel_context * const ce)592 static void __execlists_schedule_out(struct i915_request * const rq,
593 struct intel_context * const ce)
594 {
595 struct intel_engine_cs * const engine = rq->engine;
596 unsigned int ccid;
597
598 /*
599 * NB process_csb() is not under the engine->sched_engine->lock and hence
600 * schedule_out can race with schedule_in meaning that we should
601 * refrain from doing non-trivial work here.
602 */
603
604 CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
605 GEM_BUG_ON(ce->inflight != engine);
606
607 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
608 lrc_check_regs(ce, engine, "after");
609
610 /*
611 * If we have just completed this context, the engine may now be
612 * idle and we want to re-enter powersaving.
613 */
614 if (intel_timeline_is_last(ce->timeline, rq) &&
615 __i915_request_is_complete(rq))
616 intel_engine_add_retire(engine, ce->timeline);
617
618 ccid = ce->lrc.ccid;
619 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
620 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
621 ccid &= XEHP_MAX_CONTEXT_HW_ID;
622 } else {
623 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
624 ccid &= GEN12_MAX_CONTEXT_HW_ID;
625 }
626
627 if (ccid < BITS_PER_LONG) {
628 GEM_BUG_ON(ccid == 0);
629 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
630 __set_bit(ccid - 1, &engine->context_tag);
631 }
632 intel_engine_context_out(engine);
633 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
634 if (engine->fw_domain && !--engine->fw_active)
635 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
636 intel_gt_pm_put_async(engine->gt);
637
638 /*
639 * If this is part of a virtual engine, its next request may
640 * have been blocked waiting for access to the active context.
641 * We have to kick all the siblings again in case we need to
642 * switch (e.g. the next request is not runnable on this
643 * engine). Hopefully, we will already have submitted the next
644 * request before the tasklet runs and do not need to rebuild
645 * each virtual tree and kick everyone again.
646 */
647 if (ce->engine != engine)
648 kick_siblings(rq, ce);
649
650 WRITE_ONCE(ce->inflight, NULL);
651 intel_context_put(ce);
652 }
653
execlists_schedule_out(struct i915_request * rq)654 static inline void execlists_schedule_out(struct i915_request *rq)
655 {
656 struct intel_context * const ce = rq->context;
657
658 trace_i915_request_out(rq);
659
660 GEM_BUG_ON(!ce->inflight);
661 ce->inflight = ptr_dec(ce->inflight);
662 if (!__intel_context_inflight_count(ce->inflight))
663 __execlists_schedule_out(rq, ce);
664
665 i915_request_put(rq);
666 }
667
map_i915_prio_to_lrc_desc_prio(int prio)668 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
669 {
670 if (prio > I915_PRIORITY_NORMAL)
671 return GEN12_CTX_PRIORITY_HIGH;
672 else if (prio < I915_PRIORITY_NORMAL)
673 return GEN12_CTX_PRIORITY_LOW;
674 else
675 return GEN12_CTX_PRIORITY_NORMAL;
676 }
677
execlists_update_context(struct i915_request * rq)678 static u64 execlists_update_context(struct i915_request *rq)
679 {
680 struct intel_context *ce = rq->context;
681 u64 desc;
682 u32 tail, prev;
683
684 desc = ce->lrc.desc;
685 if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
686 desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
687
688 /*
689 * WaIdleLiteRestore:bdw,skl
690 *
691 * We should never submit the context with the same RING_TAIL twice
692 * just in case we submit an empty ring, which confuses the HW.
693 *
694 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
695 * the normal request to be able to always advance the RING_TAIL on
696 * subsequent resubmissions (for lite restore). Should that fail us,
697 * and we try and submit the same tail again, force the context
698 * reload.
699 *
700 * If we need to return to a preempted context, we need to skip the
701 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
702 * HW has a tendency to ignore us rewinding the TAIL to the end of
703 * an earlier request.
704 */
705 GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
706 prev = rq->ring->tail;
707 tail = intel_ring_set_tail(rq->ring, rq->tail);
708 if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
709 desc |= CTX_DESC_FORCE_RESTORE;
710 ce->lrc_reg_state[CTX_RING_TAIL] = tail;
711 rq->tail = rq->wa_tail;
712
713 /*
714 * Make sure the context image is complete before we submit it to HW.
715 *
716 * Ostensibly, writes (including the WCB) should be flushed prior to
717 * an uncached write such as our mmio register access, the empirical
718 * evidence (esp. on Braswell) suggests that the WC write into memory
719 * may not be visible to the HW prior to the completion of the UC
720 * register write and that we may begin execution from the context
721 * before its image is complete leading to invalid PD chasing.
722 */
723 wmb();
724
725 ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
726 return desc;
727 }
728
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)729 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
730 {
731 if (execlists->ctrl_reg) {
732 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
733 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
734 } else {
735 writel(upper_32_bits(desc), execlists->submit_reg);
736 writel(lower_32_bits(desc), execlists->submit_reg);
737 }
738 }
739
740 static __maybe_unused char *
dump_port(char * buf,int buflen,const char * prefix,struct i915_request * rq)741 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
742 {
743 if (!rq)
744 return "";
745
746 snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
747 prefix,
748 rq->context->lrc.ccid,
749 rq->fence.context, rq->fence.seqno,
750 __i915_request_is_complete(rq) ? "!" :
751 __i915_request_has_started(rq) ? "*" :
752 "",
753 rq_prio(rq));
754
755 return buf;
756 }
757
758 static __maybe_unused noinline void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)759 trace_ports(const struct intel_engine_execlists *execlists,
760 const char *msg,
761 struct i915_request * const *ports)
762 {
763 const struct intel_engine_cs *engine =
764 container_of(execlists, typeof(*engine), execlists);
765 char __maybe_unused p0[40], p1[40];
766
767 if (!ports[0])
768 return;
769
770 ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
771 dump_port(p0, sizeof(p0), "", ports[0]),
772 dump_port(p1, sizeof(p1), ", ", ports[1]));
773 }
774
775 static bool
reset_in_progress(const struct intel_engine_cs * engine)776 reset_in_progress(const struct intel_engine_cs *engine)
777 {
778 return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
779 }
780
781 static __maybe_unused noinline bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)782 assert_pending_valid(const struct intel_engine_execlists *execlists,
783 const char *msg)
784 {
785 struct intel_engine_cs *engine =
786 container_of(execlists, typeof(*engine), execlists);
787 struct i915_request * const *port, *rq, *prev = NULL;
788 struct intel_context *ce = NULL;
789 u32 ccid = -1;
790
791 trace_ports(execlists, msg, execlists->pending);
792
793 /* We may be messing around with the lists during reset, lalala */
794 if (reset_in_progress(engine))
795 return true;
796
797 if (!execlists->pending[0]) {
798 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
799 engine->name);
800 return false;
801 }
802
803 if (execlists->pending[execlists_num_ports(execlists)]) {
804 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
805 engine->name, execlists_num_ports(execlists));
806 return false;
807 }
808
809 for (port = execlists->pending; (rq = *port); port++) {
810 unsigned long flags;
811 bool ok = true;
812
813 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
814 GEM_BUG_ON(!i915_request_is_active(rq));
815
816 if (ce == rq->context) {
817 GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
818 engine->name,
819 ce->timeline->fence_context,
820 port - execlists->pending);
821 return false;
822 }
823 ce = rq->context;
824
825 if (ccid == ce->lrc.ccid) {
826 GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
827 engine->name,
828 ccid, ce->timeline->fence_context,
829 port - execlists->pending);
830 return false;
831 }
832 ccid = ce->lrc.ccid;
833
834 /*
835 * Sentinels are supposed to be the last request so they flush
836 * the current execution off the HW. Check that they are the only
837 * request in the pending submission.
838 *
839 * NB: Due to the async nature of preempt-to-busy and request
840 * cancellation we need to handle the case where request
841 * becomes a sentinel in parallel to CSB processing.
842 */
843 if (prev && i915_request_has_sentinel(prev) &&
844 !READ_ONCE(prev->fence.error)) {
845 GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
846 engine->name,
847 ce->timeline->fence_context,
848 port - execlists->pending);
849 return false;
850 }
851 prev = rq;
852
853 /*
854 * We want virtual requests to only be in the first slot so
855 * that they are never stuck behind a hog and can be immediately
856 * transferred onto the next idle engine.
857 */
858 if (rq->execution_mask != engine->mask &&
859 port != execlists->pending) {
860 GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
861 engine->name,
862 ce->timeline->fence_context,
863 port - execlists->pending);
864 return false;
865 }
866
867 /* Hold tightly onto the lock to prevent concurrent retires! */
868 if (!spin_trylock_irqsave(&rq->lock, flags))
869 continue;
870
871 if (__i915_request_is_complete(rq))
872 goto unlock;
873
874 if (i915_active_is_idle(&ce->active) &&
875 !intel_context_is_barrier(ce)) {
876 GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
877 engine->name,
878 ce->timeline->fence_context,
879 port - execlists->pending);
880 ok = false;
881 goto unlock;
882 }
883
884 if (!i915_vma_is_pinned(ce->state)) {
885 GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
886 engine->name,
887 ce->timeline->fence_context,
888 port - execlists->pending);
889 ok = false;
890 goto unlock;
891 }
892
893 if (!i915_vma_is_pinned(ce->ring->vma)) {
894 GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
895 engine->name,
896 ce->timeline->fence_context,
897 port - execlists->pending);
898 ok = false;
899 goto unlock;
900 }
901
902 unlock:
903 spin_unlock_irqrestore(&rq->lock, flags);
904 if (!ok)
905 return false;
906 }
907
908 return ce;
909 }
910
execlists_submit_ports(struct intel_engine_cs * engine)911 static void execlists_submit_ports(struct intel_engine_cs *engine)
912 {
913 struct intel_engine_execlists *execlists = &engine->execlists;
914 unsigned int n;
915
916 GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
917
918 /*
919 * We can skip acquiring intel_runtime_pm_get() here as it was taken
920 * on our behalf by the request (see i915_gem_mark_busy()) and it will
921 * not be relinquished until the device is idle (see
922 * i915_gem_idle_work_handler()). As a precaution, we make sure
923 * that all ELSP are drained i.e. we have processed the CSB,
924 * before allowing ourselves to idle and calling intel_runtime_pm_put().
925 */
926 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
927
928 /*
929 * ELSQ note: the submit queue is not cleared after being submitted
930 * to the HW so we need to make sure we always clean it up. This is
931 * currently ensured by the fact that we always write the same number
932 * of elsq entries, keep this in mind before changing the loop below.
933 */
934 for (n = execlists_num_ports(execlists); n--; ) {
935 struct i915_request *rq = execlists->pending[n];
936
937 write_desc(execlists,
938 rq ? execlists_update_context(rq) : 0,
939 n);
940 }
941
942 /* we need to manually load the submit queue */
943 if (execlists->ctrl_reg)
944 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
945 }
946
ctx_single_port_submission(const struct intel_context * ce)947 static bool ctx_single_port_submission(const struct intel_context *ce)
948 {
949 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
950 intel_context_force_single_submission(ce));
951 }
952
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)953 static bool can_merge_ctx(const struct intel_context *prev,
954 const struct intel_context *next)
955 {
956 if (prev != next)
957 return false;
958
959 if (ctx_single_port_submission(prev))
960 return false;
961
962 return true;
963 }
964
i915_request_flags(const struct i915_request * rq)965 static unsigned long i915_request_flags(const struct i915_request *rq)
966 {
967 return READ_ONCE(rq->fence.flags);
968 }
969
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)970 static bool can_merge_rq(const struct i915_request *prev,
971 const struct i915_request *next)
972 {
973 GEM_BUG_ON(prev == next);
974 GEM_BUG_ON(!assert_priority_queue(prev, next));
975
976 /*
977 * We do not submit known completed requests. Therefore if the next
978 * request is already completed, we can pretend to merge it in
979 * with the previous context (and we will skip updating the ELSP
980 * and tracking). Thus hopefully keeping the ELSP full with active
981 * contexts, despite the best efforts of preempt-to-busy to confuse
982 * us.
983 */
984 if (__i915_request_is_complete(next))
985 return true;
986
987 if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
988 (BIT(I915_FENCE_FLAG_NOPREEMPT) |
989 BIT(I915_FENCE_FLAG_SENTINEL))))
990 return false;
991
992 if (!can_merge_ctx(prev->context, next->context))
993 return false;
994
995 GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
996 return true;
997 }
998
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)999 static bool virtual_matches(const struct virtual_engine *ve,
1000 const struct i915_request *rq,
1001 const struct intel_engine_cs *engine)
1002 {
1003 const struct intel_engine_cs *inflight;
1004
1005 if (!rq)
1006 return false;
1007
1008 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1009 return false;
1010
1011 /*
1012 * We track when the HW has completed saving the context image
1013 * (i.e. when we have seen the final CS event switching out of
1014 * the context) and must not overwrite the context image before
1015 * then. This restricts us to only using the active engine
1016 * while the previous virtualized request is inflight (so
1017 * we reuse the register offsets). This is a very small
1018 * hystersis on the greedy seelction algorithm.
1019 */
1020 inflight = intel_context_inflight(&ve->context);
1021 if (inflight && inflight != engine)
1022 return false;
1023
1024 return true;
1025 }
1026
1027 static struct virtual_engine *
first_virtual_engine(struct intel_engine_cs * engine)1028 first_virtual_engine(struct intel_engine_cs *engine)
1029 {
1030 struct intel_engine_execlists *el = &engine->execlists;
1031 struct rb_node *rb = rb_first_cached(&el->virtual);
1032
1033 while (rb) {
1034 struct virtual_engine *ve =
1035 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1036 struct i915_request *rq = READ_ONCE(ve->request);
1037
1038 /* lazily cleanup after another engine handled rq */
1039 if (!rq || !virtual_matches(ve, rq, engine)) {
1040 rb_erase_cached(rb, &el->virtual);
1041 RB_CLEAR_NODE(rb);
1042 rb = rb_first_cached(&el->virtual);
1043 continue;
1044 }
1045
1046 return ve;
1047 }
1048
1049 return NULL;
1050 }
1051
virtual_xfer_context(struct virtual_engine * ve,struct intel_engine_cs * engine)1052 static void virtual_xfer_context(struct virtual_engine *ve,
1053 struct intel_engine_cs *engine)
1054 {
1055 unsigned int n;
1056
1057 if (likely(engine == ve->siblings[0]))
1058 return;
1059
1060 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1061 if (!intel_engine_has_relative_mmio(engine))
1062 lrc_update_offsets(&ve->context, engine);
1063
1064 /*
1065 * Move the bound engine to the top of the list for
1066 * future execution. We then kick this tasklet first
1067 * before checking others, so that we preferentially
1068 * reuse this set of bound registers.
1069 */
1070 for (n = 1; n < ve->num_siblings; n++) {
1071 if (ve->siblings[n] == engine) {
1072 swap(ve->siblings[n], ve->siblings[0]);
1073 break;
1074 }
1075 }
1076 }
1077
defer_request(struct i915_request * rq,struct list_head * const pl)1078 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1079 {
1080 DRM_LIST_HEAD(list);
1081
1082 /*
1083 * We want to move the interrupted request to the back of
1084 * the round-robin list (i.e. its priority level), but
1085 * in doing so, we must then move all requests that were in
1086 * flight and were waiting for the interrupted request to
1087 * be run after it again.
1088 */
1089 do {
1090 struct i915_dependency *p;
1091
1092 GEM_BUG_ON(i915_request_is_active(rq));
1093 list_move_tail(&rq->sched.link, pl);
1094
1095 for_each_waiter(p, rq) {
1096 struct i915_request *w =
1097 container_of(p->waiter, typeof(*w), sched);
1098
1099 if (p->flags & I915_DEPENDENCY_WEAK)
1100 continue;
1101
1102 /* Leave semaphores spinning on the other engines */
1103 if (w->engine != rq->engine)
1104 continue;
1105
1106 /* No waiter should start before its signaler */
1107 GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1108 __i915_request_has_started(w) &&
1109 !__i915_request_is_complete(rq));
1110
1111 if (!i915_request_is_ready(w))
1112 continue;
1113
1114 if (rq_prio(w) < rq_prio(rq))
1115 continue;
1116
1117 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1118 GEM_BUG_ON(i915_request_is_active(w));
1119 list_move_tail(&w->sched.link, &list);
1120 }
1121
1122 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1123 } while (rq);
1124 }
1125
defer_active(struct intel_engine_cs * engine)1126 static void defer_active(struct intel_engine_cs *engine)
1127 {
1128 struct i915_request *rq;
1129
1130 rq = __unwind_incomplete_requests(engine);
1131 if (!rq)
1132 return;
1133
1134 defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1135 rq_prio(rq)));
1136 }
1137
1138 static bool
timeslice_yield(const struct intel_engine_execlists * el,const struct i915_request * rq)1139 timeslice_yield(const struct intel_engine_execlists *el,
1140 const struct i915_request *rq)
1141 {
1142 /*
1143 * Once bitten, forever smitten!
1144 *
1145 * If the active context ever busy-waited on a semaphore,
1146 * it will be treated as a hog until the end of its timeslice (i.e.
1147 * until it is scheduled out and replaced by a new submission,
1148 * possibly even its own lite-restore). The HW only sends an interrupt
1149 * on the first miss, and we do know if that semaphore has been
1150 * signaled, or even if it is now stuck on another semaphore. Play
1151 * safe, yield if it might be stuck -- it will be given a fresh
1152 * timeslice in the near future.
1153 */
1154 return rq->context->lrc.ccid == READ_ONCE(el->yield);
1155 }
1156
needs_timeslice(const struct intel_engine_cs * engine,const struct i915_request * rq)1157 static bool needs_timeslice(const struct intel_engine_cs *engine,
1158 const struct i915_request *rq)
1159 {
1160 if (!intel_engine_has_timeslices(engine))
1161 return false;
1162
1163 /* If not currently active, or about to switch, wait for next event */
1164 if (!rq || __i915_request_is_complete(rq))
1165 return false;
1166
1167 /* We do not need to start the timeslice until after the ACK */
1168 if (READ_ONCE(engine->execlists.pending[0]))
1169 return false;
1170
1171 /* If ELSP[1] is occupied, always check to see if worth slicing */
1172 if (!list_is_last_rcu(&rq->sched.link,
1173 &engine->sched_engine->requests)) {
1174 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1175 return true;
1176 }
1177
1178 /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1179 if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1180 ENGINE_TRACE(engine, "timeslice required for queue\n");
1181 return true;
1182 }
1183
1184 if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1185 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1186 return true;
1187 }
1188
1189 return false;
1190 }
1191
1192 static bool
timeslice_expired(struct intel_engine_cs * engine,const struct i915_request * rq)1193 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1194 {
1195 const struct intel_engine_execlists *el = &engine->execlists;
1196
1197 if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1198 return false;
1199
1200 if (!needs_timeslice(engine, rq))
1201 return false;
1202
1203 return timer_expired(&el->timer) || timeslice_yield(el, rq);
1204 }
1205
timeslice(const struct intel_engine_cs * engine)1206 static unsigned long timeslice(const struct intel_engine_cs *engine)
1207 {
1208 return READ_ONCE(engine->props.timeslice_duration_ms);
1209 }
1210
start_timeslice(struct intel_engine_cs * engine)1211 static void start_timeslice(struct intel_engine_cs *engine)
1212 {
1213 struct intel_engine_execlists *el = &engine->execlists;
1214 unsigned long duration;
1215
1216 /* Disable the timer if there is nothing to switch to */
1217 duration = 0;
1218 if (needs_timeslice(engine, *el->active)) {
1219 /* Avoid continually prolonging an active timeslice */
1220 if (timer_active(&el->timer)) {
1221 /*
1222 * If we just submitted a new ELSP after an old
1223 * context, that context may have already consumed
1224 * its timeslice, so recheck.
1225 */
1226 if (!timer_pending(&el->timer))
1227 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1228 return;
1229 }
1230
1231 duration = timeslice(engine);
1232 }
1233
1234 set_timer_ms(&el->timer, duration);
1235 }
1236
record_preemption(struct intel_engine_execlists * execlists)1237 static void record_preemption(struct intel_engine_execlists *execlists)
1238 {
1239 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1240 }
1241
active_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1242 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1243 const struct i915_request *rq)
1244 {
1245 if (!rq)
1246 return 0;
1247
1248 /* Only allow ourselves to force reset the currently active context */
1249 engine->execlists.preempt_target = rq;
1250
1251 /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1252 if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1253 return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1254
1255 return READ_ONCE(engine->props.preempt_timeout_ms);
1256 }
1257
set_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1258 static void set_preempt_timeout(struct intel_engine_cs *engine,
1259 const struct i915_request *rq)
1260 {
1261 if (!intel_engine_has_preempt_reset(engine))
1262 return;
1263
1264 set_timer_ms(&engine->execlists.preempt,
1265 active_preempt_timeout(engine, rq));
1266 }
1267
completed(const struct i915_request * rq)1268 static bool completed(const struct i915_request *rq)
1269 {
1270 if (i915_request_has_sentinel(rq))
1271 return false;
1272
1273 return __i915_request_is_complete(rq);
1274 }
1275
execlists_dequeue(struct intel_engine_cs * engine)1276 static void execlists_dequeue(struct intel_engine_cs *engine)
1277 {
1278 struct intel_engine_execlists * const execlists = &engine->execlists;
1279 struct i915_sched_engine * const sched_engine = engine->sched_engine;
1280 struct i915_request **port = execlists->pending;
1281 struct i915_request ** const last_port = port + execlists->port_mask;
1282 struct i915_request *last, * const *active;
1283 struct virtual_engine *ve;
1284 struct rb_node *rb;
1285 bool submit = false;
1286
1287 /*
1288 * Hardware submission is through 2 ports. Conceptually each port
1289 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1290 * static for a context, and unique to each, so we only execute
1291 * requests belonging to a single context from each ring. RING_HEAD
1292 * is maintained by the CS in the context image, it marks the place
1293 * where it got up to last time, and through RING_TAIL we tell the CS
1294 * where we want to execute up to this time.
1295 *
1296 * In this list the requests are in order of execution. Consecutive
1297 * requests from the same context are adjacent in the ringbuffer. We
1298 * can combine these requests into a single RING_TAIL update:
1299 *
1300 * RING_HEAD...req1...req2
1301 * ^- RING_TAIL
1302 * since to execute req2 the CS must first execute req1.
1303 *
1304 * Our goal then is to point each port to the end of a consecutive
1305 * sequence of requests as being the most optimal (fewest wake ups
1306 * and context switches) submission.
1307 */
1308
1309 spin_lock(&sched_engine->lock);
1310
1311 /*
1312 * If the queue is higher priority than the last
1313 * request in the currently active context, submit afresh.
1314 * We will resubmit again afterwards in case we need to split
1315 * the active context to interject the preemption request,
1316 * i.e. we will retrigger preemption following the ack in case
1317 * of trouble.
1318 *
1319 */
1320 active = execlists->active;
1321 while ((last = *active) && completed(last))
1322 active++;
1323
1324 if (last) {
1325 if (need_preempt(engine, last)) {
1326 ENGINE_TRACE(engine,
1327 "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1328 last->fence.context,
1329 last->fence.seqno,
1330 last->sched.attr.priority,
1331 sched_engine->queue_priority_hint);
1332 record_preemption(execlists);
1333
1334 /*
1335 * Don't let the RING_HEAD advance past the breadcrumb
1336 * as we unwind (and until we resubmit) so that we do
1337 * not accidentally tell it to go backwards.
1338 */
1339 ring_set_paused(engine, 1);
1340
1341 /*
1342 * Note that we have not stopped the GPU at this point,
1343 * so we are unwinding the incomplete requests as they
1344 * remain inflight and so by the time we do complete
1345 * the preemption, some of the unwound requests may
1346 * complete!
1347 */
1348 __unwind_incomplete_requests(engine);
1349
1350 last = NULL;
1351 } else if (timeslice_expired(engine, last)) {
1352 ENGINE_TRACE(engine,
1353 "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1354 str_yes_no(timer_expired(&execlists->timer)),
1355 last->fence.context, last->fence.seqno,
1356 rq_prio(last),
1357 sched_engine->queue_priority_hint,
1358 str_yes_no(timeslice_yield(execlists, last)));
1359
1360 /*
1361 * Consume this timeslice; ensure we start a new one.
1362 *
1363 * The timeslice expired, and we will unwind the
1364 * running contexts and recompute the next ELSP.
1365 * If that submit will be the same pair of contexts
1366 * (due to dependency ordering), we will skip the
1367 * submission. If we don't cancel the timer now,
1368 * we will see that the timer has expired and
1369 * reschedule the tasklet; continually until the
1370 * next context switch or other preemption event.
1371 *
1372 * Since we have decided to reschedule based on
1373 * consumption of this timeslice, if we submit the
1374 * same context again, grant it a full timeslice.
1375 */
1376 cancel_timer(&execlists->timer);
1377 ring_set_paused(engine, 1);
1378 defer_active(engine);
1379
1380 /*
1381 * Unlike for preemption, if we rewind and continue
1382 * executing the same context as previously active,
1383 * the order of execution will remain the same and
1384 * the tail will only advance. We do not need to
1385 * force a full context restore, as a lite-restore
1386 * is sufficient to resample the monotonic TAIL.
1387 *
1388 * If we switch to any other context, similarly we
1389 * will not rewind TAIL of current context, and
1390 * normal save/restore will preserve state and allow
1391 * us to later continue executing the same request.
1392 */
1393 last = NULL;
1394 } else {
1395 /*
1396 * Otherwise if we already have a request pending
1397 * for execution after the current one, we can
1398 * just wait until the next CS event before
1399 * queuing more. In either case we will force a
1400 * lite-restore preemption event, but if we wait
1401 * we hopefully coalesce several updates into a single
1402 * submission.
1403 */
1404 if (active[1]) {
1405 /*
1406 * Even if ELSP[1] is occupied and not worthy
1407 * of timeslices, our queue might be.
1408 */
1409 spin_unlock(&sched_engine->lock);
1410 return;
1411 }
1412 }
1413 }
1414
1415 /* XXX virtual is always taking precedence */
1416 while ((ve = first_virtual_engine(engine))) {
1417 struct i915_request *rq;
1418
1419 spin_lock(&ve->base.sched_engine->lock);
1420
1421 rq = ve->request;
1422 if (unlikely(!virtual_matches(ve, rq, engine)))
1423 goto unlock; /* lost the race to a sibling */
1424
1425 GEM_BUG_ON(rq->engine != &ve->base);
1426 GEM_BUG_ON(rq->context != &ve->context);
1427
1428 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1429 spin_unlock(&ve->base.sched_engine->lock);
1430 break;
1431 }
1432
1433 if (last && !can_merge_rq(last, rq)) {
1434 spin_unlock(&ve->base.sched_engine->lock);
1435 spin_unlock(&engine->sched_engine->lock);
1436 return; /* leave this for another sibling */
1437 }
1438
1439 ENGINE_TRACE(engine,
1440 "virtual rq=%llx:%lld%s, new engine? %s\n",
1441 rq->fence.context,
1442 rq->fence.seqno,
1443 __i915_request_is_complete(rq) ? "!" :
1444 __i915_request_has_started(rq) ? "*" :
1445 "",
1446 str_yes_no(engine != ve->siblings[0]));
1447
1448 WRITE_ONCE(ve->request, NULL);
1449 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1450
1451 rb = &ve->nodes[engine->id].rb;
1452 rb_erase_cached(rb, &execlists->virtual);
1453 RB_CLEAR_NODE(rb);
1454
1455 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1456 WRITE_ONCE(rq->engine, engine);
1457
1458 if (__i915_request_submit(rq)) {
1459 /*
1460 * Only after we confirm that we will submit
1461 * this request (i.e. it has not already
1462 * completed), do we want to update the context.
1463 *
1464 * This serves two purposes. It avoids
1465 * unnecessary work if we are resubmitting an
1466 * already completed request after timeslicing.
1467 * But more importantly, it prevents us altering
1468 * ve->siblings[] on an idle context, where
1469 * we may be using ve->siblings[] in
1470 * virtual_context_enter / virtual_context_exit.
1471 */
1472 virtual_xfer_context(ve, engine);
1473 GEM_BUG_ON(ve->siblings[0] != engine);
1474
1475 submit = true;
1476 last = rq;
1477 }
1478
1479 i915_request_put(rq);
1480 unlock:
1481 spin_unlock(&ve->base.sched_engine->lock);
1482
1483 /*
1484 * Hmm, we have a bunch of virtual engine requests,
1485 * but the first one was already completed (thanks
1486 * preempt-to-busy!). Keep looking at the veng queue
1487 * until we have no more relevant requests (i.e.
1488 * the normal submit queue has higher priority).
1489 */
1490 if (submit)
1491 break;
1492 }
1493
1494 while ((rb = rb_first_cached(&sched_engine->queue))) {
1495 struct i915_priolist *p = to_priolist(rb);
1496 struct i915_request *rq, *rn;
1497
1498 priolist_for_each_request_consume(rq, rn, p) {
1499 bool merge = true;
1500
1501 /*
1502 * Can we combine this request with the current port?
1503 * It has to be the same context/ringbuffer and not
1504 * have any exceptions (e.g. GVT saying never to
1505 * combine contexts).
1506 *
1507 * If we can combine the requests, we can execute both
1508 * by updating the RING_TAIL to point to the end of the
1509 * second request, and so we never need to tell the
1510 * hardware about the first.
1511 */
1512 if (last && !can_merge_rq(last, rq)) {
1513 /*
1514 * If we are on the second port and cannot
1515 * combine this request with the last, then we
1516 * are done.
1517 */
1518 if (port == last_port)
1519 goto done;
1520
1521 /*
1522 * We must not populate both ELSP[] with the
1523 * same LRCA, i.e. we must submit 2 different
1524 * contexts if we submit 2 ELSP.
1525 */
1526 if (last->context == rq->context)
1527 goto done;
1528
1529 if (i915_request_has_sentinel(last))
1530 goto done;
1531
1532 /*
1533 * We avoid submitting virtual requests into
1534 * the secondary ports so that we can migrate
1535 * the request immediately to another engine
1536 * rather than wait for the primary request.
1537 */
1538 if (rq->execution_mask != engine->mask)
1539 goto done;
1540
1541 /*
1542 * If GVT overrides us we only ever submit
1543 * port[0], leaving port[1] empty. Note that we
1544 * also have to be careful that we don't queue
1545 * the same context (even though a different
1546 * request) to the second port.
1547 */
1548 if (ctx_single_port_submission(last->context) ||
1549 ctx_single_port_submission(rq->context))
1550 goto done;
1551
1552 merge = false;
1553 }
1554
1555 if (__i915_request_submit(rq)) {
1556 if (!merge) {
1557 *port++ = i915_request_get(last);
1558 last = NULL;
1559 }
1560
1561 GEM_BUG_ON(last &&
1562 !can_merge_ctx(last->context,
1563 rq->context));
1564 GEM_BUG_ON(last &&
1565 i915_seqno_passed(last->fence.seqno,
1566 rq->fence.seqno));
1567
1568 submit = true;
1569 last = rq;
1570 }
1571 }
1572
1573 rb_erase_cached(&p->node, &sched_engine->queue);
1574 i915_priolist_free(p);
1575 }
1576 done:
1577 *port++ = i915_request_get(last);
1578
1579 /*
1580 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1581 *
1582 * We choose the priority hint such that if we add a request of greater
1583 * priority than this, we kick the submission tasklet to decide on
1584 * the right order of submitting the requests to hardware. We must
1585 * also be prepared to reorder requests as they are in-flight on the
1586 * HW. We derive the priority hint then as the first "hole" in
1587 * the HW submission ports and if there are no available slots,
1588 * the priority of the lowest executing request, i.e. last.
1589 *
1590 * When we do receive a higher priority request ready to run from the
1591 * user, see queue_request(), the priority hint is bumped to that
1592 * request triggering preemption on the next dequeue (or subsequent
1593 * interrupt for secondary ports).
1594 */
1595 sched_engine->queue_priority_hint = queue_prio(sched_engine);
1596 i915_sched_engine_reset_on_empty(sched_engine);
1597 spin_unlock(&sched_engine->lock);
1598
1599 /*
1600 * We can skip poking the HW if we ended up with exactly the same set
1601 * of requests as currently running, e.g. trying to timeslice a pair
1602 * of ordered contexts.
1603 */
1604 if (submit &&
1605 memcmp(active,
1606 execlists->pending,
1607 (port - execlists->pending) * sizeof(*port))) {
1608 *port = NULL;
1609 while (port-- != execlists->pending)
1610 execlists_schedule_in(*port, port - execlists->pending);
1611
1612 WRITE_ONCE(execlists->yield, -1);
1613 set_preempt_timeout(engine, *active);
1614 execlists_submit_ports(engine);
1615 } else {
1616 ring_set_paused(engine, 0);
1617 while (port-- != execlists->pending)
1618 i915_request_put(*port);
1619 *execlists->pending = NULL;
1620 }
1621 }
1622
execlists_dequeue_irq(struct intel_engine_cs * engine)1623 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1624 {
1625 local_irq_disable(); /* Suspend interrupts across request submission */
1626 execlists_dequeue(engine);
1627 local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1628 }
1629
clear_ports(struct i915_request ** ports,int count)1630 static void clear_ports(struct i915_request **ports, int count)
1631 {
1632 memset_p((void **)ports, NULL, count);
1633 }
1634
1635 static void
copy_ports(struct i915_request ** dst,struct i915_request ** src,int count)1636 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1637 {
1638 /* A memcpy_p() would be very useful here! */
1639 while (count--)
1640 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1641 }
1642
1643 static struct i915_request **
cancel_port_requests(struct intel_engine_execlists * const execlists,struct i915_request ** inactive)1644 cancel_port_requests(struct intel_engine_execlists * const execlists,
1645 struct i915_request **inactive)
1646 {
1647 struct i915_request * const *port;
1648
1649 for (port = execlists->pending; *port; port++)
1650 *inactive++ = *port;
1651 clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1652
1653 /* Mark the end of active before we overwrite *active */
1654 for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1655 *inactive++ = *port;
1656 clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1657
1658 smp_wmb(); /* complete the seqlock for execlists_active() */
1659 WRITE_ONCE(execlists->active, execlists->inflight);
1660
1661 /* Having cancelled all outstanding process_csb(), stop their timers */
1662 GEM_BUG_ON(execlists->pending[0]);
1663 cancel_timer(&execlists->timer);
1664 cancel_timer(&execlists->preempt);
1665
1666 return inactive;
1667 }
1668
1669 /*
1670 * Starting with Gen12, the status has a new format:
1671 *
1672 * bit 0: switched to new queue
1673 * bit 1: reserved
1674 * bit 2: semaphore wait mode (poll or signal), only valid when
1675 * switch detail is set to "wait on semaphore"
1676 * bits 3-5: engine class
1677 * bits 6-11: engine instance
1678 * bits 12-14: reserved
1679 * bits 15-25: sw context id of the lrc the GT switched to
1680 * bits 26-31: sw counter of the lrc the GT switched to
1681 * bits 32-35: context switch detail
1682 * - 0: ctx complete
1683 * - 1: wait on sync flip
1684 * - 2: wait on vblank
1685 * - 3: wait on scanline
1686 * - 4: wait on semaphore
1687 * - 5: context preempted (not on SEMAPHORE_WAIT or
1688 * WAIT_FOR_EVENT)
1689 * bit 36: reserved
1690 * bits 37-43: wait detail (for switch detail 1 to 4)
1691 * bits 44-46: reserved
1692 * bits 47-57: sw context id of the lrc the GT switched away from
1693 * bits 58-63: sw counter of the lrc the GT switched away from
1694 *
1695 * Xe_HP csb shuffles things around compared to TGL:
1696 *
1697 * bits 0-3: context switch detail (same possible values as TGL)
1698 * bits 4-9: engine instance
1699 * bits 10-25: sw context id of the lrc the GT switched to
1700 * bits 26-31: sw counter of the lrc the GT switched to
1701 * bit 32: semaphore wait mode (poll or signal), Only valid when
1702 * switch detail is set to "wait on semaphore"
1703 * bit 33: switched to new queue
1704 * bits 34-41: wait detail (for switch detail 1 to 4)
1705 * bits 42-57: sw context id of the lrc the GT switched away from
1706 * bits 58-63: sw counter of the lrc the GT switched away from
1707 */
1708 static inline bool
__gen12_csb_parse(bool ctx_to_valid,bool ctx_away_valid,bool new_queue,u8 switch_detail)1709 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1710 u8 switch_detail)
1711 {
1712 /*
1713 * The context switch detail is not guaranteed to be 5 when a preemption
1714 * occurs, so we can't just check for that. The check below works for
1715 * all the cases we care about, including preemptions of WAIT
1716 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1717 * would require some extra handling, but we don't support that.
1718 */
1719 if (!ctx_away_valid || new_queue) {
1720 GEM_BUG_ON(!ctx_to_valid);
1721 return true;
1722 }
1723
1724 /*
1725 * switch detail = 5 is covered by the case above and we do not expect a
1726 * context switch on an unsuccessful wait instruction since we always
1727 * use polling mode.
1728 */
1729 GEM_BUG_ON(switch_detail);
1730 return false;
1731 }
1732
xehp_csb_parse(const u64 csb)1733 static bool xehp_csb_parse(const u64 csb)
1734 {
1735 return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1736 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1737 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1738 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1739 }
1740
gen12_csb_parse(const u64 csb)1741 static bool gen12_csb_parse(const u64 csb)
1742 {
1743 return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1744 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1745 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1746 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1747 }
1748
gen8_csb_parse(const u64 csb)1749 static bool gen8_csb_parse(const u64 csb)
1750 {
1751 return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1752 }
1753
1754 static noinline u64
wa_csb_read(const struct intel_engine_cs * engine,u64 * const csb)1755 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1756 {
1757 u64 entry;
1758
1759 /*
1760 * Reading from the HWSP has one particular advantage: we can detect
1761 * a stale entry. Since the write into HWSP is broken, we have no reason
1762 * to trust the HW at all, the mmio entry may equally be unordered, so
1763 * we prefer the path that is self-checking and as a last resort,
1764 * return the mmio value.
1765 *
1766 * tgl,dg1:HSDES#22011327657
1767 */
1768 preempt_disable();
1769 if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1770 int idx = csb - engine->execlists.csb_status;
1771 int status;
1772
1773 status = GEN8_EXECLISTS_STATUS_BUF;
1774 if (idx >= 6) {
1775 status = GEN11_EXECLISTS_STATUS_BUF2;
1776 idx -= 6;
1777 }
1778 status += sizeof(u64) * idx;
1779
1780 entry = intel_uncore_read64(engine->uncore,
1781 _MMIO(engine->mmio_base + status));
1782 }
1783 preempt_enable();
1784
1785 return entry;
1786 }
1787
csb_read(const struct intel_engine_cs * engine,u64 * const csb)1788 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1789 {
1790 u64 entry = READ_ONCE(*csb);
1791
1792 /*
1793 * Unfortunately, the GPU does not always serialise its write
1794 * of the CSB entries before its write of the CSB pointer, at least
1795 * from the perspective of the CPU, using what is known as a Global
1796 * Observation Point. We may read a new CSB tail pointer, but then
1797 * read the stale CSB entries, causing us to misinterpret the
1798 * context-switch events, and eventually declare the GPU hung.
1799 *
1800 * icl:HSDES#1806554093
1801 * tgl:HSDES#22011248461
1802 */
1803 if (unlikely(entry == -1))
1804 entry = wa_csb_read(engine, csb);
1805
1806 /* Consume this entry so that we can spot its future reuse. */
1807 WRITE_ONCE(*csb, -1);
1808
1809 /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1810 return entry;
1811 }
1812
new_timeslice(struct intel_engine_execlists * el)1813 static void new_timeslice(struct intel_engine_execlists *el)
1814 {
1815 /* By cancelling, we will start afresh in start_timeslice() */
1816 cancel_timer(&el->timer);
1817 }
1818
1819 static struct i915_request **
process_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)1820 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1821 {
1822 struct intel_engine_execlists * const execlists = &engine->execlists;
1823 u64 * const buf = execlists->csb_status;
1824 const u8 num_entries = execlists->csb_size;
1825 struct i915_request **prev;
1826 u8 head, tail;
1827
1828 /*
1829 * As we modify our execlists state tracking we require exclusive
1830 * access. Either we are inside the tasklet, or the tasklet is disabled
1831 * and we assume that is only inside the reset paths and so serialised.
1832 */
1833 GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1834 !reset_in_progress(engine));
1835
1836 /*
1837 * Note that csb_write, csb_status may be either in HWSP or mmio.
1838 * When reading from the csb_write mmio register, we have to be
1839 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1840 * the low 4bits. As it happens we know the next 4bits are always
1841 * zero and so we can simply masked off the low u8 of the register
1842 * and treat it identically to reading from the HWSP (without having
1843 * to use explicit shifting and masking, and probably bifurcating
1844 * the code to handle the legacy mmio read).
1845 */
1846 head = execlists->csb_head;
1847 tail = READ_ONCE(*execlists->csb_write);
1848 if (unlikely(head == tail))
1849 return inactive;
1850
1851 /*
1852 * We will consume all events from HW, or at least pretend to.
1853 *
1854 * The sequence of events from the HW is deterministic, and derived
1855 * from our writes to the ELSP, with a smidgen of variability for
1856 * the arrival of the asynchronous requests wrt to the inflight
1857 * execution. If the HW sends an event that does not correspond with
1858 * the one we are expecting, we have to abandon all hope as we lose
1859 * all tracking of what the engine is actually executing. We will
1860 * only detect we are out of sequence with the HW when we get an
1861 * 'impossible' event because we have already drained our own
1862 * preemption/promotion queue. If this occurs, we know that we likely
1863 * lost track of execution earlier and must unwind and restart, the
1864 * simplest way is by stop processing the event queue and force the
1865 * engine to reset.
1866 */
1867 execlists->csb_head = tail;
1868 ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1869
1870 /*
1871 * Hopefully paired with a wmb() in HW!
1872 *
1873 * We must complete the read of the write pointer before any reads
1874 * from the CSB, so that we do not see stale values. Without an rmb
1875 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1876 * we perform the READ_ONCE(*csb_write).
1877 */
1878 rmb();
1879
1880 /* Remember who was last running under the timer */
1881 prev = inactive;
1882 *prev = NULL;
1883
1884 do {
1885 bool promote;
1886 u64 csb;
1887
1888 if (++head == num_entries)
1889 head = 0;
1890
1891 /*
1892 * We are flying near dragons again.
1893 *
1894 * We hold a reference to the request in execlist_port[]
1895 * but no more than that. We are operating in softirq
1896 * context and so cannot hold any mutex or sleep. That
1897 * prevents us stopping the requests we are processing
1898 * in port[] from being retired simultaneously (the
1899 * breadcrumb will be complete before we see the
1900 * context-switch). As we only hold the reference to the
1901 * request, any pointer chasing underneath the request
1902 * is subject to a potential use-after-free. Thus we
1903 * store all of the bookkeeping within port[] as
1904 * required, and avoid using unguarded pointers beneath
1905 * request itself. The same applies to the atomic
1906 * status notifier.
1907 */
1908
1909 csb = csb_read(engine, buf + head);
1910 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1911 head, upper_32_bits(csb), lower_32_bits(csb));
1912
1913 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1914 promote = xehp_csb_parse(csb);
1915 else if (GRAPHICS_VER(engine->i915) >= 12)
1916 promote = gen12_csb_parse(csb);
1917 else
1918 promote = gen8_csb_parse(csb);
1919 if (promote) {
1920 struct i915_request * const *old = execlists->active;
1921
1922 if (GEM_WARN_ON(!*execlists->pending)) {
1923 execlists->error_interrupt |= ERROR_CSB;
1924 break;
1925 }
1926
1927 ring_set_paused(engine, 0);
1928
1929 /* Point active to the new ELSP; prevent overwriting */
1930 WRITE_ONCE(execlists->active, execlists->pending);
1931 smp_wmb(); /* notify execlists_active() */
1932
1933 /* cancel old inflight, prepare for switch */
1934 trace_ports(execlists, "preempted", old);
1935 while (*old)
1936 *inactive++ = *old++;
1937
1938 /* switch pending to inflight */
1939 GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1940 copy_ports(execlists->inflight,
1941 execlists->pending,
1942 execlists_num_ports(execlists));
1943 smp_wmb(); /* complete the seqlock */
1944 WRITE_ONCE(execlists->active, execlists->inflight);
1945
1946 /* XXX Magic delay for tgl */
1947 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1948
1949 WRITE_ONCE(execlists->pending[0], NULL);
1950 } else {
1951 if (GEM_WARN_ON(!*execlists->active)) {
1952 execlists->error_interrupt |= ERROR_CSB;
1953 break;
1954 }
1955
1956 /* port0 completed, advanced to port1 */
1957 trace_ports(execlists, "completed", execlists->active);
1958
1959 /*
1960 * We rely on the hardware being strongly
1961 * ordered, that the breadcrumb write is
1962 * coherent (visible from the CPU) before the
1963 * user interrupt is processed. One might assume
1964 * that the breadcrumb write being before the
1965 * user interrupt and the CS event for the context
1966 * switch would therefore be before the CS event
1967 * itself...
1968 */
1969 if (GEM_SHOW_DEBUG() &&
1970 !__i915_request_is_complete(*execlists->active)) {
1971 struct i915_request *rq = *execlists->active;
1972 const u32 *regs __maybe_unused =
1973 rq->context->lrc_reg_state;
1974
1975 ENGINE_TRACE(engine,
1976 "context completed before request!\n");
1977 ENGINE_TRACE(engine,
1978 "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1979 ENGINE_READ(engine, RING_START),
1980 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1981 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1982 ENGINE_READ(engine, RING_CTL),
1983 ENGINE_READ(engine, RING_MI_MODE));
1984 ENGINE_TRACE(engine,
1985 "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1986 i915_ggtt_offset(rq->ring->vma),
1987 rq->head, rq->tail,
1988 rq->fence.context,
1989 lower_32_bits(rq->fence.seqno),
1990 hwsp_seqno(rq));
1991 ENGINE_TRACE(engine,
1992 "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1993 regs[CTX_RING_START],
1994 regs[CTX_RING_HEAD],
1995 regs[CTX_RING_TAIL]);
1996 }
1997
1998 *inactive++ = *execlists->active++;
1999
2000 GEM_BUG_ON(execlists->active - execlists->inflight >
2001 execlists_num_ports(execlists));
2002 }
2003 } while (head != tail);
2004
2005 /*
2006 * Gen11 has proven to fail wrt global observation point between
2007 * entry and tail update, failing on the ordering and thus
2008 * we see an old entry in the context status buffer.
2009 *
2010 * Forcibly evict out entries for the next gpu csb update,
2011 * to increase the odds that we get a fresh entries with non
2012 * working hardware. The cost for doing so comes out mostly with
2013 * the wash as hardware, working or not, will need to do the
2014 * invalidation before.
2015 */
2016 drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2017
2018 /*
2019 * We assume that any event reflects a change in context flow
2020 * and merits a fresh timeslice. We reinstall the timer after
2021 * inspecting the queue to see if we need to resumbit.
2022 */
2023 if (*prev != *execlists->active) { /* elide lite-restores */
2024 struct intel_context *prev_ce = NULL, *active_ce = NULL;
2025
2026 /*
2027 * Note the inherent discrepancy between the HW runtime,
2028 * recorded as part of the context switch, and the CPU
2029 * adjustment for active contexts. We have to hope that
2030 * the delay in processing the CS event is very small
2031 * and consistent. It works to our advantage to have
2032 * the CPU adjustment _undershoot_ (i.e. start later than)
2033 * the CS timestamp so we never overreport the runtime
2034 * and correct overselves later when updating from HW.
2035 */
2036 if (*prev)
2037 prev_ce = (*prev)->context;
2038 if (*execlists->active)
2039 active_ce = (*execlists->active)->context;
2040 if (prev_ce != active_ce) {
2041 if (prev_ce)
2042 lrc_runtime_stop(prev_ce);
2043 if (active_ce)
2044 lrc_runtime_start(active_ce);
2045 }
2046 new_timeslice(execlists);
2047 }
2048
2049 return inactive;
2050 }
2051
post_process_csb(struct i915_request ** port,struct i915_request ** last)2052 static void post_process_csb(struct i915_request **port,
2053 struct i915_request **last)
2054 {
2055 while (port != last)
2056 execlists_schedule_out(*port++);
2057 }
2058
__execlists_hold(struct i915_request * rq)2059 static void __execlists_hold(struct i915_request *rq)
2060 {
2061 DRM_LIST_HEAD(list);
2062
2063 do {
2064 struct i915_dependency *p;
2065
2066 if (i915_request_is_active(rq))
2067 __i915_request_unsubmit(rq);
2068
2069 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2070 list_move_tail(&rq->sched.link,
2071 &rq->engine->sched_engine->hold);
2072 i915_request_set_hold(rq);
2073 RQ_TRACE(rq, "on hold\n");
2074
2075 for_each_waiter(p, rq) {
2076 struct i915_request *w =
2077 container_of(p->waiter, typeof(*w), sched);
2078
2079 if (p->flags & I915_DEPENDENCY_WEAK)
2080 continue;
2081
2082 /* Leave semaphores spinning on the other engines */
2083 if (w->engine != rq->engine)
2084 continue;
2085
2086 if (!i915_request_is_ready(w))
2087 continue;
2088
2089 if (__i915_request_is_complete(w))
2090 continue;
2091
2092 if (i915_request_on_hold(w))
2093 continue;
2094
2095 list_move_tail(&w->sched.link, &list);
2096 }
2097
2098 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2099 } while (rq);
2100 }
2101
execlists_hold(struct intel_engine_cs * engine,struct i915_request * rq)2102 static bool execlists_hold(struct intel_engine_cs *engine,
2103 struct i915_request *rq)
2104 {
2105 if (i915_request_on_hold(rq))
2106 return false;
2107
2108 spin_lock_irq(&engine->sched_engine->lock);
2109
2110 if (__i915_request_is_complete(rq)) { /* too late! */
2111 rq = NULL;
2112 goto unlock;
2113 }
2114
2115 /*
2116 * Transfer this request onto the hold queue to prevent it
2117 * being resumbitted to HW (and potentially completed) before we have
2118 * released it. Since we may have already submitted following
2119 * requests, we need to remove those as well.
2120 */
2121 GEM_BUG_ON(i915_request_on_hold(rq));
2122 GEM_BUG_ON(rq->engine != engine);
2123 __execlists_hold(rq);
2124 GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2125
2126 unlock:
2127 spin_unlock_irq(&engine->sched_engine->lock);
2128 return rq;
2129 }
2130
hold_request(const struct i915_request * rq)2131 static bool hold_request(const struct i915_request *rq)
2132 {
2133 struct i915_dependency *p;
2134 bool result = false;
2135
2136 /*
2137 * If one of our ancestors is on hold, we must also be on hold,
2138 * otherwise we will bypass it and execute before it.
2139 */
2140 rcu_read_lock();
2141 for_each_signaler(p, rq) {
2142 const struct i915_request *s =
2143 container_of(p->signaler, typeof(*s), sched);
2144
2145 if (s->engine != rq->engine)
2146 continue;
2147
2148 result = i915_request_on_hold(s);
2149 if (result)
2150 break;
2151 }
2152 rcu_read_unlock();
2153
2154 return result;
2155 }
2156
__execlists_unhold(struct i915_request * rq)2157 static void __execlists_unhold(struct i915_request *rq)
2158 {
2159 DRM_LIST_HEAD(list);
2160
2161 do {
2162 struct i915_dependency *p;
2163
2164 RQ_TRACE(rq, "hold release\n");
2165
2166 GEM_BUG_ON(!i915_request_on_hold(rq));
2167 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2168
2169 i915_request_clear_hold(rq);
2170 list_move_tail(&rq->sched.link,
2171 i915_sched_lookup_priolist(rq->engine->sched_engine,
2172 rq_prio(rq)));
2173 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2174
2175 /* Also release any children on this engine that are ready */
2176 for_each_waiter(p, rq) {
2177 struct i915_request *w =
2178 container_of(p->waiter, typeof(*w), sched);
2179
2180 if (p->flags & I915_DEPENDENCY_WEAK)
2181 continue;
2182
2183 if (w->engine != rq->engine)
2184 continue;
2185
2186 if (!i915_request_on_hold(w))
2187 continue;
2188
2189 /* Check that no other parents are also on hold */
2190 if (hold_request(w))
2191 continue;
2192
2193 list_move_tail(&w->sched.link, &list);
2194 }
2195
2196 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2197 } while (rq);
2198 }
2199
execlists_unhold(struct intel_engine_cs * engine,struct i915_request * rq)2200 static void execlists_unhold(struct intel_engine_cs *engine,
2201 struct i915_request *rq)
2202 {
2203 spin_lock_irq(&engine->sched_engine->lock);
2204
2205 /*
2206 * Move this request back to the priority queue, and all of its
2207 * children and grandchildren that were suspended along with it.
2208 */
2209 __execlists_unhold(rq);
2210
2211 if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2212 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2213 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2214 }
2215
2216 spin_unlock_irq(&engine->sched_engine->lock);
2217 }
2218
2219 struct execlists_capture {
2220 struct work_struct work;
2221 struct i915_request *rq;
2222 struct i915_gpu_coredump *error;
2223 };
2224
execlists_capture_work(struct work_struct * work)2225 static void execlists_capture_work(struct work_struct *work)
2226 {
2227 struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2228 const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2229 __GFP_NOWARN;
2230 struct intel_engine_cs *engine = cap->rq->engine;
2231 struct intel_gt_coredump *gt = cap->error->gt;
2232 struct intel_engine_capture_vma *vma;
2233
2234 /* Compress all the objects attached to the request, slow! */
2235 vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2236 if (vma) {
2237 struct i915_vma_compress *compress =
2238 i915_vma_capture_prepare(gt);
2239
2240 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2241 i915_vma_capture_finish(gt, compress);
2242 }
2243
2244 gt->simulated = gt->engine->simulated;
2245 cap->error->simulated = gt->simulated;
2246
2247 /* Publish the error state, and announce it to the world */
2248 i915_error_state_store(cap->error);
2249 i915_gpu_coredump_put(cap->error);
2250
2251 /* Return this request and all that depend upon it for signaling */
2252 execlists_unhold(engine, cap->rq);
2253 i915_request_put(cap->rq);
2254
2255 kfree(cap);
2256 }
2257
capture_regs(struct intel_engine_cs * engine)2258 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2259 {
2260 const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2261 struct execlists_capture *cap;
2262
2263 cap = kmalloc(sizeof(*cap), gfp);
2264 if (!cap)
2265 return NULL;
2266
2267 cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2268 if (!cap->error)
2269 goto err_cap;
2270
2271 cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2272 if (!cap->error->gt)
2273 goto err_gpu;
2274
2275 cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2276 if (!cap->error->gt->engine)
2277 goto err_gt;
2278
2279 cap->error->gt->engine->hung = true;
2280
2281 return cap;
2282
2283 err_gt:
2284 kfree(cap->error->gt);
2285 err_gpu:
2286 kfree(cap->error);
2287 err_cap:
2288 kfree(cap);
2289 return NULL;
2290 }
2291
2292 static struct i915_request *
active_context(struct intel_engine_cs * engine,u32 ccid)2293 active_context(struct intel_engine_cs *engine, u32 ccid)
2294 {
2295 const struct intel_engine_execlists * const el = &engine->execlists;
2296 struct i915_request * const *port, *rq;
2297
2298 /*
2299 * Use the most recent result from process_csb(), but just in case
2300 * we trigger an error (via interrupt) before the first CS event has
2301 * been written, peek at the next submission.
2302 */
2303
2304 for (port = el->active; (rq = *port); port++) {
2305 if (rq->context->lrc.ccid == ccid) {
2306 ENGINE_TRACE(engine,
2307 "ccid:%x found at active:%zd\n",
2308 ccid, port - el->active);
2309 return rq;
2310 }
2311 }
2312
2313 for (port = el->pending; (rq = *port); port++) {
2314 if (rq->context->lrc.ccid == ccid) {
2315 ENGINE_TRACE(engine,
2316 "ccid:%x found at pending:%zd\n",
2317 ccid, port - el->pending);
2318 return rq;
2319 }
2320 }
2321
2322 ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2323 return NULL;
2324 }
2325
active_ccid(struct intel_engine_cs * engine)2326 static u32 active_ccid(struct intel_engine_cs *engine)
2327 {
2328 return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2329 }
2330
execlists_capture(struct intel_engine_cs * engine)2331 static void execlists_capture(struct intel_engine_cs *engine)
2332 {
2333 struct drm_i915_private *i915 = engine->i915;
2334 struct execlists_capture *cap;
2335
2336 if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2337 return;
2338
2339 /*
2340 * We need to _quickly_ capture the engine state before we reset.
2341 * We are inside an atomic section (softirq) here and we are delaying
2342 * the forced preemption event.
2343 */
2344 cap = capture_regs(engine);
2345 if (!cap)
2346 return;
2347
2348 spin_lock_irq(&engine->sched_engine->lock);
2349 cap->rq = active_context(engine, active_ccid(engine));
2350 if (cap->rq) {
2351 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2352 cap->rq = i915_request_get_rcu(cap->rq);
2353 }
2354 spin_unlock_irq(&engine->sched_engine->lock);
2355 if (!cap->rq)
2356 goto err_free;
2357
2358 /*
2359 * Remove the request from the execlists queue, and take ownership
2360 * of the request. We pass it to our worker who will _slowly_ compress
2361 * all the pages the _user_ requested for debugging their batch, after
2362 * which we return it to the queue for signaling.
2363 *
2364 * By removing them from the execlists queue, we also remove the
2365 * requests from being processed by __unwind_incomplete_requests()
2366 * during the intel_engine_reset(), and so they will *not* be replayed
2367 * afterwards.
2368 *
2369 * Note that because we have not yet reset the engine at this point,
2370 * it is possible for the request that we have identified as being
2371 * guilty, did in fact complete and we will then hit an arbitration
2372 * point allowing the outstanding preemption to succeed. The likelihood
2373 * of that is very low (as capturing of the engine registers should be
2374 * fast enough to run inside an irq-off atomic section!), so we will
2375 * simply hold that request accountable for being non-preemptible
2376 * long enough to force the reset.
2377 */
2378 if (!execlists_hold(engine, cap->rq))
2379 goto err_rq;
2380
2381 INIT_WORK(&cap->work, execlists_capture_work);
2382 queue_work(i915->unordered_wq, &cap->work);
2383 return;
2384
2385 err_rq:
2386 i915_request_put(cap->rq);
2387 err_free:
2388 i915_gpu_coredump_put(cap->error);
2389 kfree(cap);
2390 }
2391
execlists_reset(struct intel_engine_cs * engine,const char * msg)2392 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2393 {
2394 const unsigned int bit = I915_RESET_ENGINE + engine->id;
2395 unsigned long *lock = &engine->gt->reset.flags;
2396
2397 if (!intel_has_reset_engine(engine->gt))
2398 return;
2399
2400 if (test_and_set_bit(bit, lock))
2401 return;
2402
2403 ENGINE_TRACE(engine, "reset for %s\n", msg);
2404
2405 /* Mark this tasklet as disabled to avoid waiting for it to complete */
2406 tasklet_disable_nosync(&engine->sched_engine->tasklet);
2407
2408 ring_set_paused(engine, 1); /* Freeze the current request in place */
2409 execlists_capture(engine);
2410 intel_engine_reset(engine, msg);
2411
2412 tasklet_enable(&engine->sched_engine->tasklet);
2413 clear_and_wake_up_bit(bit, lock);
2414 }
2415
preempt_timeout(const struct intel_engine_cs * const engine)2416 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2417 {
2418 const struct timeout *t = &engine->execlists.preempt;
2419
2420 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2421 return false;
2422
2423 if (!timer_expired(t))
2424 return false;
2425
2426 return engine->execlists.pending[0];
2427 }
2428
2429 /*
2430 * Check the unread Context Status Buffers and manage the submission of new
2431 * contexts to the ELSP accordingly.
2432 */
execlists_submission_tasklet(struct tasklet_struct * t)2433 static void execlists_submission_tasklet(struct tasklet_struct *t)
2434 {
2435 struct i915_sched_engine *sched_engine =
2436 from_tasklet(sched_engine, t, tasklet);
2437 struct intel_engine_cs * const engine = sched_engine->private_data;
2438 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2439 struct i915_request **inactive;
2440
2441 rcu_read_lock();
2442 inactive = process_csb(engine, post);
2443 GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2444
2445 if (unlikely(preempt_timeout(engine))) {
2446 const struct i915_request *rq = *engine->execlists.active;
2447
2448 /*
2449 * If after the preempt-timeout expired, we are still on the
2450 * same active request/context as before we initiated the
2451 * preemption, reset the engine.
2452 *
2453 * However, if we have processed a CS event to switch contexts,
2454 * but not yet processed the CS event for the pending
2455 * preemption, reset the timer allowing the new context to
2456 * gracefully exit.
2457 */
2458 cancel_timer(&engine->execlists.preempt);
2459 if (rq == engine->execlists.preempt_target)
2460 engine->execlists.error_interrupt |= ERROR_PREEMPT;
2461 else
2462 set_timer_ms(&engine->execlists.preempt,
2463 active_preempt_timeout(engine, rq));
2464 }
2465
2466 if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2467 const char *msg;
2468
2469 /* Generate the error message in priority wrt to the user! */
2470 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2471 msg = "CS error"; /* thrown by a user payload */
2472 else if (engine->execlists.error_interrupt & ERROR_CSB)
2473 msg = "invalid CSB event";
2474 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2475 msg = "preemption time out";
2476 else
2477 msg = "internal error";
2478
2479 engine->execlists.error_interrupt = 0;
2480 execlists_reset(engine, msg);
2481 }
2482
2483 if (!engine->execlists.pending[0]) {
2484 execlists_dequeue_irq(engine);
2485 start_timeslice(engine);
2486 }
2487
2488 post_process_csb(post, inactive);
2489 rcu_read_unlock();
2490 }
2491
execlists_irq_handler(struct intel_engine_cs * engine,u16 iir)2492 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2493 {
2494 bool tasklet = false;
2495
2496 if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2497 u32 eir;
2498
2499 /* Upper 16b are the enabling mask, rsvd for internal errors */
2500 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2501 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2502
2503 /* Disable the error interrupt until after the reset */
2504 if (likely(eir)) {
2505 ENGINE_WRITE(engine, RING_EMR, ~0u);
2506 ENGINE_WRITE(engine, RING_EIR, eir);
2507 WRITE_ONCE(engine->execlists.error_interrupt, eir);
2508 tasklet = true;
2509 }
2510 }
2511
2512 if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2513 WRITE_ONCE(engine->execlists.yield,
2514 ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2515 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2516 engine->execlists.yield);
2517 if (del_timer(&engine->execlists.timer))
2518 tasklet = true;
2519 }
2520
2521 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2522 tasklet = true;
2523
2524 if (iir & GT_RENDER_USER_INTERRUPT)
2525 intel_engine_signal_breadcrumbs(engine);
2526
2527 if (tasklet)
2528 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2529 }
2530
__execlists_kick(struct intel_engine_execlists * execlists)2531 static void __execlists_kick(struct intel_engine_execlists *execlists)
2532 {
2533 struct intel_engine_cs *engine =
2534 container_of(execlists, typeof(*engine), execlists);
2535
2536 /* Kick the tasklet for some interrupt coalescing and reset handling */
2537 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2538 }
2539
2540 #define execlists_kick(t, member) \
2541 __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2542
execlists_timeslice(void * arg)2543 static void execlists_timeslice(void *arg)
2544 {
2545 struct timeout *timer = (struct timeout *)arg;
2546 execlists_kick(timer, timer);
2547 }
2548
execlists_preempt(void * arg)2549 static void execlists_preempt(void *arg)
2550 {
2551 struct timeout *timer = (struct timeout *)arg;
2552 execlists_kick(timer, preempt);
2553 }
2554
queue_request(struct intel_engine_cs * engine,struct i915_request * rq)2555 static void queue_request(struct intel_engine_cs *engine,
2556 struct i915_request *rq)
2557 {
2558 GEM_BUG_ON(!list_empty(&rq->sched.link));
2559 list_add_tail(&rq->sched.link,
2560 i915_sched_lookup_priolist(engine->sched_engine,
2561 rq_prio(rq)));
2562 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2563 }
2564
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)2565 static bool submit_queue(struct intel_engine_cs *engine,
2566 const struct i915_request *rq)
2567 {
2568 struct i915_sched_engine *sched_engine = engine->sched_engine;
2569
2570 if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2571 return false;
2572
2573 sched_engine->queue_priority_hint = rq_prio(rq);
2574 return true;
2575 }
2576
ancestor_on_hold(const struct intel_engine_cs * engine,const struct i915_request * rq)2577 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2578 const struct i915_request *rq)
2579 {
2580 GEM_BUG_ON(i915_request_on_hold(rq));
2581 return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2582 }
2583
execlists_submit_request(struct i915_request * request)2584 static void execlists_submit_request(struct i915_request *request)
2585 {
2586 struct intel_engine_cs *engine = request->engine;
2587 unsigned long flags;
2588
2589 /* Will be called from irq-context when using foreign fences. */
2590 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2591
2592 if (unlikely(ancestor_on_hold(engine, request))) {
2593 RQ_TRACE(request, "ancestor on hold\n");
2594 list_add_tail(&request->sched.link,
2595 &engine->sched_engine->hold);
2596 i915_request_set_hold(request);
2597 } else {
2598 queue_request(engine, request);
2599
2600 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2601 GEM_BUG_ON(list_empty(&request->sched.link));
2602
2603 if (submit_queue(engine, request))
2604 __execlists_kick(&engine->execlists);
2605 }
2606
2607 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2608 }
2609
2610 static int
__execlists_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2611 __execlists_context_pre_pin(struct intel_context *ce,
2612 struct intel_engine_cs *engine,
2613 struct i915_gem_ww_ctx *ww, void **vaddr)
2614 {
2615 int err;
2616
2617 err = lrc_pre_pin(ce, engine, ww, vaddr);
2618 if (err)
2619 return err;
2620
2621 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2622 lrc_init_state(ce, engine, *vaddr);
2623
2624 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2625 }
2626
2627 return 0;
2628 }
2629
execlists_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2630 static int execlists_context_pre_pin(struct intel_context *ce,
2631 struct i915_gem_ww_ctx *ww,
2632 void **vaddr)
2633 {
2634 return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2635 }
2636
execlists_context_pin(struct intel_context * ce,void * vaddr)2637 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2638 {
2639 return lrc_pin(ce, ce->engine, vaddr);
2640 }
2641
execlists_context_alloc(struct intel_context * ce)2642 static int execlists_context_alloc(struct intel_context *ce)
2643 {
2644 return lrc_alloc(ce, ce->engine);
2645 }
2646
execlists_context_cancel_request(struct intel_context * ce,struct i915_request * rq)2647 static void execlists_context_cancel_request(struct intel_context *ce,
2648 struct i915_request *rq)
2649 {
2650 struct intel_engine_cs *engine = NULL;
2651
2652 i915_request_active_engine(rq, &engine);
2653
2654 if (engine && intel_engine_pulse(engine))
2655 intel_gt_handle_error(engine->gt, engine->mask, 0,
2656 "request cancellation by %s",
2657 curproc->p_p->ps_comm);
2658 }
2659
2660 static struct intel_context *
execlists_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)2661 execlists_create_parallel(struct intel_engine_cs **engines,
2662 unsigned int num_siblings,
2663 unsigned int width)
2664 {
2665 struct intel_context *parent = NULL, *ce, *err;
2666 int i;
2667
2668 GEM_BUG_ON(num_siblings != 1);
2669
2670 for (i = 0; i < width; ++i) {
2671 ce = intel_context_create(engines[i]);
2672 if (IS_ERR(ce)) {
2673 err = ce;
2674 goto unwind;
2675 }
2676
2677 if (i == 0)
2678 parent = ce;
2679 else
2680 intel_context_bind_parent_child(parent, ce);
2681 }
2682
2683 parent->parallel.fence_context = dma_fence_context_alloc(1);
2684
2685 intel_context_set_nopreempt(parent);
2686 for_each_child(parent, ce)
2687 intel_context_set_nopreempt(ce);
2688
2689 return parent;
2690
2691 unwind:
2692 if (parent)
2693 intel_context_put(parent);
2694 return err;
2695 }
2696
2697 static const struct intel_context_ops execlists_context_ops = {
2698 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2699
2700 .alloc = execlists_context_alloc,
2701
2702 .cancel_request = execlists_context_cancel_request,
2703
2704 .pre_pin = execlists_context_pre_pin,
2705 .pin = execlists_context_pin,
2706 .unpin = lrc_unpin,
2707 .post_unpin = lrc_post_unpin,
2708
2709 .enter = intel_context_enter_engine,
2710 .exit = intel_context_exit_engine,
2711
2712 .reset = lrc_reset,
2713 .destroy = lrc_destroy,
2714
2715 .create_parallel = execlists_create_parallel,
2716 .create_virtual = execlists_create_virtual,
2717 };
2718
emit_pdps(struct i915_request * rq)2719 static int emit_pdps(struct i915_request *rq)
2720 {
2721 const struct intel_engine_cs * const engine = rq->engine;
2722 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2723 int err, i;
2724 u32 *cs;
2725
2726 GEM_BUG_ON(intel_vgpu_active(rq->i915));
2727
2728 /*
2729 * Beware ye of the dragons, this sequence is magic!
2730 *
2731 * Small changes to this sequence can cause anything from
2732 * GPU hangs to forcewake errors and machine lockups!
2733 */
2734
2735 cs = intel_ring_begin(rq, 2);
2736 if (IS_ERR(cs))
2737 return PTR_ERR(cs);
2738
2739 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2740 *cs++ = MI_NOOP;
2741 intel_ring_advance(rq, cs);
2742
2743 /* Flush any residual operations from the context load */
2744 err = engine->emit_flush(rq, EMIT_FLUSH);
2745 if (err)
2746 return err;
2747
2748 /* Magic required to prevent forcewake errors! */
2749 err = engine->emit_flush(rq, EMIT_INVALIDATE);
2750 if (err)
2751 return err;
2752
2753 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2754 if (IS_ERR(cs))
2755 return PTR_ERR(cs);
2756
2757 /* Ensure the LRI have landed before we invalidate & continue */
2758 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2759 for (i = GEN8_3LVL_PDPES; i--; ) {
2760 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2761 u32 base = engine->mmio_base;
2762
2763 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2764 *cs++ = upper_32_bits(pd_daddr);
2765 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2766 *cs++ = lower_32_bits(pd_daddr);
2767 }
2768 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2769 intel_ring_advance(rq, cs);
2770
2771 intel_ring_advance(rq, cs);
2772
2773 return 0;
2774 }
2775
execlists_request_alloc(struct i915_request * request)2776 static int execlists_request_alloc(struct i915_request *request)
2777 {
2778 int ret;
2779
2780 GEM_BUG_ON(!intel_context_is_pinned(request->context));
2781
2782 /*
2783 * Flush enough space to reduce the likelihood of waiting after
2784 * we start building the request - in which case we will just
2785 * have to repeat work.
2786 */
2787 request->reserved_space += EXECLISTS_REQUEST_SIZE;
2788
2789 /*
2790 * Note that after this point, we have committed to using
2791 * this request as it is being used to both track the
2792 * state of engine initialisation and liveness of the
2793 * golden renderstate above. Think twice before you try
2794 * to cancel/unwind this request now.
2795 */
2796
2797 if (!i915_vm_is_4lvl(request->context->vm)) {
2798 ret = emit_pdps(request);
2799 if (ret)
2800 return ret;
2801 }
2802
2803 /* Unconditionally invalidate GPU caches and TLBs. */
2804 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2805 if (ret)
2806 return ret;
2807
2808 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2809 return 0;
2810 }
2811
reset_csb_pointers(struct intel_engine_cs * engine)2812 static void reset_csb_pointers(struct intel_engine_cs *engine)
2813 {
2814 struct intel_engine_execlists * const execlists = &engine->execlists;
2815 const unsigned int reset_value = execlists->csb_size - 1;
2816
2817 ring_set_paused(engine, 0);
2818
2819 /*
2820 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2821 * Bludgeon them with a mmio update to be sure.
2822 */
2823 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2824 0xffff << 16 | reset_value << 8 | reset_value);
2825 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2826
2827 /*
2828 * After a reset, the HW starts writing into CSB entry [0]. We
2829 * therefore have to set our HEAD pointer back one entry so that
2830 * the *first* entry we check is entry 0. To complicate this further,
2831 * as we don't wait for the first interrupt after reset, we have to
2832 * fake the HW write to point back to the last entry so that our
2833 * inline comparison of our cached head position against the last HW
2834 * write works even before the first interrupt.
2835 */
2836 execlists->csb_head = reset_value;
2837 WRITE_ONCE(*execlists->csb_write, reset_value);
2838 wmb(); /* Make sure this is visible to HW (paranoia?) */
2839
2840 /* Check that the GPU does indeed update the CSB entries! */
2841 memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2842 drm_clflush_virt_range(execlists->csb_status,
2843 execlists->csb_size *
2844 sizeof(execlists->csb_status));
2845
2846 /* Once more for luck and our trusty paranoia */
2847 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2848 0xffff << 16 | reset_value << 8 | reset_value);
2849 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2850
2851 GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2852 }
2853
sanitize_hwsp(struct intel_engine_cs * engine)2854 static void sanitize_hwsp(struct intel_engine_cs *engine)
2855 {
2856 struct intel_timeline *tl;
2857
2858 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2859 intel_timeline_reset_seqno(tl);
2860 }
2861
execlists_sanitize(struct intel_engine_cs * engine)2862 static void execlists_sanitize(struct intel_engine_cs *engine)
2863 {
2864 GEM_BUG_ON(execlists_active(&engine->execlists));
2865
2866 /*
2867 * Poison residual state on resume, in case the suspend didn't!
2868 *
2869 * We have to assume that across suspend/resume (or other loss
2870 * of control) that the contents of our pinned buffers has been
2871 * lost, replaced by garbage. Since this doesn't always happen,
2872 * let's poison such state so that we more quickly spot when
2873 * we falsely assume it has been preserved.
2874 */
2875 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2876 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2877
2878 reset_csb_pointers(engine);
2879
2880 /*
2881 * The kernel_context HWSP is stored in the status_page. As above,
2882 * that may be lost on resume/initialisation, and so we need to
2883 * reset the value in the HWSP.
2884 */
2885 sanitize_hwsp(engine);
2886
2887 /* And scrub the dirty cachelines for the HWSP */
2888 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2889
2890 intel_engine_reset_pinned_contexts(engine);
2891 }
2892
enable_error_interrupt(struct intel_engine_cs * engine)2893 static void enable_error_interrupt(struct intel_engine_cs *engine)
2894 {
2895 u32 status;
2896
2897 engine->execlists.error_interrupt = 0;
2898 ENGINE_WRITE(engine, RING_EMR, ~0u);
2899 ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2900
2901 status = ENGINE_READ(engine, RING_ESR);
2902 if (unlikely(status)) {
2903 drm_err(&engine->i915->drm,
2904 "engine '%s' resumed still in error: %08x\n",
2905 engine->name, status);
2906 __intel_gt_reset(engine->gt, engine->mask);
2907 }
2908
2909 /*
2910 * On current gen8+, we have 2 signals to play with
2911 *
2912 * - I915_ERROR_INSTUCTION (bit 0)
2913 *
2914 * Generate an error if the command parser encounters an invalid
2915 * instruction
2916 *
2917 * This is a fatal error.
2918 *
2919 * - CP_PRIV (bit 2)
2920 *
2921 * Generate an error on privilege violation (where the CP replaces
2922 * the instruction with a no-op). This also fires for writes into
2923 * read-only scratch pages.
2924 *
2925 * This is a non-fatal error, parsing continues.
2926 *
2927 * * there are a few others defined for odd HW that we do not use
2928 *
2929 * Since CP_PRIV fires for cases where we have chosen to ignore the
2930 * error (as the HW is validating and suppressing the mistakes), we
2931 * only unmask the instruction error bit.
2932 */
2933 ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2934 }
2935
enable_execlists(struct intel_engine_cs * engine)2936 static void enable_execlists(struct intel_engine_cs *engine)
2937 {
2938 u32 mode;
2939
2940 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2941
2942 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2943
2944 if (GRAPHICS_VER(engine->i915) >= 11)
2945 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2946 else
2947 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2948 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2949
2950 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2951
2952 ENGINE_WRITE_FW(engine,
2953 RING_HWS_PGA,
2954 i915_ggtt_offset(engine->status_page.vma));
2955 ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2956
2957 enable_error_interrupt(engine);
2958 }
2959
execlists_resume(struct intel_engine_cs * engine)2960 static int execlists_resume(struct intel_engine_cs *engine)
2961 {
2962 intel_mocs_init_engine(engine);
2963 intel_breadcrumbs_reset(engine->breadcrumbs);
2964
2965 enable_execlists(engine);
2966
2967 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2968 xehp_enable_ccs_engines(engine);
2969
2970 return 0;
2971 }
2972
execlists_reset_prepare(struct intel_engine_cs * engine)2973 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2974 {
2975 ENGINE_TRACE(engine, "depth<-%d\n",
2976 atomic_read(&engine->sched_engine->tasklet.count));
2977
2978 /*
2979 * Prevent request submission to the hardware until we have
2980 * completed the reset in i915_gem_reset_finish(). If a request
2981 * is completed by one engine, it may then queue a request
2982 * to a second via its execlists->tasklet *just* as we are
2983 * calling engine->resume() and also writing the ELSP.
2984 * Turning off the execlists->tasklet until the reset is over
2985 * prevents the race.
2986 */
2987 __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2988 GEM_BUG_ON(!reset_in_progress(engine));
2989
2990 /*
2991 * We stop engines, otherwise we might get failed reset and a
2992 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2993 * from system hang if batchbuffer is progressing when
2994 * the reset is issued, regardless of READY_TO_RESET ack.
2995 * Thus assume it is best to stop engines on all gens
2996 * where we have a gpu reset.
2997 *
2998 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2999 *
3000 * FIXME: Wa for more modern gens needs to be validated
3001 */
3002 ring_set_paused(engine, 1);
3003 intel_engine_stop_cs(engine);
3004
3005 /*
3006 * Wa_22011802037: In addition to stopping the cs, we need
3007 * to wait for any pending mi force wakeups
3008 */
3009 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
3010 intel_engine_wait_for_pending_mi_fw(engine);
3011
3012 engine->execlists.reset_ccid = active_ccid(engine);
3013 }
3014
3015 static struct i915_request **
reset_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)3016 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3017 {
3018 struct intel_engine_execlists * const execlists = &engine->execlists;
3019
3020 drm_clflush_virt_range(execlists->csb_write,
3021 sizeof(execlists->csb_write[0]));
3022
3023 inactive = process_csb(engine, inactive); /* drain preemption events */
3024
3025 /* Following the reset, we need to reload the CSB read/write pointers */
3026 reset_csb_pointers(engine);
3027
3028 return inactive;
3029 }
3030
3031 static void
execlists_reset_active(struct intel_engine_cs * engine,bool stalled)3032 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3033 {
3034 struct intel_context *ce;
3035 struct i915_request *rq;
3036 u32 head;
3037
3038 /*
3039 * Save the currently executing context, even if we completed
3040 * its request, it was still running at the time of the
3041 * reset and will have been clobbered.
3042 */
3043 rq = active_context(engine, engine->execlists.reset_ccid);
3044 if (!rq)
3045 return;
3046
3047 ce = rq->context;
3048 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3049
3050 if (__i915_request_is_complete(rq)) {
3051 /* Idle context; tidy up the ring so we can restart afresh */
3052 head = intel_ring_wrap(ce->ring, rq->tail);
3053 goto out_replay;
3054 }
3055
3056 /* We still have requests in-flight; the engine should be active */
3057 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3058
3059 /* Context has requests still in-flight; it should not be idle! */
3060 GEM_BUG_ON(i915_active_is_idle(&ce->active));
3061
3062 rq = active_request(ce->timeline, rq);
3063 head = intel_ring_wrap(ce->ring, rq->head);
3064 GEM_BUG_ON(head == ce->ring->tail);
3065
3066 /*
3067 * If this request hasn't started yet, e.g. it is waiting on a
3068 * semaphore, we need to avoid skipping the request or else we
3069 * break the signaling chain. However, if the context is corrupt
3070 * the request will not restart and we will be stuck with a wedged
3071 * device. It is quite often the case that if we issue a reset
3072 * while the GPU is loading the context image, that the context
3073 * image becomes corrupt.
3074 *
3075 * Otherwise, if we have not started yet, the request should replay
3076 * perfectly and we do not need to flag the result as being erroneous.
3077 */
3078 if (!__i915_request_has_started(rq))
3079 goto out_replay;
3080
3081 /*
3082 * If the request was innocent, we leave the request in the ELSP
3083 * and will try to replay it on restarting. The context image may
3084 * have been corrupted by the reset, in which case we may have
3085 * to service a new GPU hang, but more likely we can continue on
3086 * without impact.
3087 *
3088 * If the request was guilty, we presume the context is corrupt
3089 * and have to at least restore the RING register in the context
3090 * image back to the expected values to skip over the guilty request.
3091 */
3092 __i915_request_reset(rq, stalled);
3093
3094 /*
3095 * We want a simple context + ring to execute the breadcrumb update.
3096 * We cannot rely on the context being intact across the GPU hang,
3097 * so clear it and rebuild just what we need for the breadcrumb.
3098 * All pending requests for this context will be zapped, and any
3099 * future request will be after userspace has had the opportunity
3100 * to recreate its own state.
3101 */
3102 out_replay:
3103 ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3104 head, ce->ring->tail);
3105 lrc_reset_regs(ce, engine);
3106 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3107 }
3108
execlists_reset_csb(struct intel_engine_cs * engine,bool stalled)3109 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3110 {
3111 struct intel_engine_execlists * const execlists = &engine->execlists;
3112 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3113 struct i915_request **inactive;
3114
3115 rcu_read_lock();
3116 inactive = reset_csb(engine, post);
3117
3118 execlists_reset_active(engine, true);
3119
3120 inactive = cancel_port_requests(execlists, inactive);
3121 post_process_csb(post, inactive);
3122 rcu_read_unlock();
3123 }
3124
execlists_reset_rewind(struct intel_engine_cs * engine,bool stalled)3125 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3126 {
3127 unsigned long flags;
3128
3129 ENGINE_TRACE(engine, "\n");
3130
3131 /* Process the csb, find the guilty context and throw away */
3132 execlists_reset_csb(engine, stalled);
3133
3134 /* Push back any incomplete requests for replay after the reset. */
3135 rcu_read_lock();
3136 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3137 __unwind_incomplete_requests(engine);
3138 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3139 rcu_read_unlock();
3140 }
3141
nop_submission_tasklet(struct tasklet_struct * t)3142 static void nop_submission_tasklet(struct tasklet_struct *t)
3143 {
3144 struct i915_sched_engine *sched_engine =
3145 from_tasklet(sched_engine, t, tasklet);
3146 struct intel_engine_cs * const engine = sched_engine->private_data;
3147
3148 /* The driver is wedged; don't process any more events. */
3149 WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3150 }
3151
execlists_reset_cancel(struct intel_engine_cs * engine)3152 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3153 {
3154 struct intel_engine_execlists * const execlists = &engine->execlists;
3155 struct i915_sched_engine * const sched_engine = engine->sched_engine;
3156 struct i915_request *rq, *rn;
3157 struct rb_node *rb;
3158 unsigned long flags;
3159
3160 ENGINE_TRACE(engine, "\n");
3161
3162 /*
3163 * Before we call engine->cancel_requests(), we should have exclusive
3164 * access to the submission state. This is arranged for us by the
3165 * caller disabling the interrupt generation, the tasklet and other
3166 * threads that may then access the same state, giving us a free hand
3167 * to reset state. However, we still need to let lockdep be aware that
3168 * we know this state may be accessed in hardirq context, so we
3169 * disable the irq around this manipulation and we want to keep
3170 * the spinlock focused on its duties and not accidentally conflate
3171 * coverage to the submission's irq state. (Similarly, although we
3172 * shouldn't need to disable irq around the manipulation of the
3173 * submission's irq state, we also wish to remind ourselves that
3174 * it is irq state.)
3175 */
3176 execlists_reset_csb(engine, true);
3177
3178 rcu_read_lock();
3179 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3180
3181 /* Mark all executing requests as skipped. */
3182 list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3183 i915_request_put(i915_request_mark_eio(rq));
3184 intel_engine_signal_breadcrumbs(engine);
3185
3186 /* Flush the queued requests to the timeline list (for retiring). */
3187 while ((rb = rb_first_cached(&sched_engine->queue))) {
3188 struct i915_priolist *p = to_priolist(rb);
3189
3190 priolist_for_each_request_consume(rq, rn, p) {
3191 if (i915_request_mark_eio(rq)) {
3192 __i915_request_submit(rq);
3193 i915_request_put(rq);
3194 }
3195 }
3196
3197 rb_erase_cached(&p->node, &sched_engine->queue);
3198 i915_priolist_free(p);
3199 }
3200
3201 /* On-hold requests will be flushed to timeline upon their release */
3202 list_for_each_entry(rq, &sched_engine->hold, sched.link)
3203 i915_request_put(i915_request_mark_eio(rq));
3204
3205 /* Cancel all attached virtual engines */
3206 while ((rb = rb_first_cached(&execlists->virtual))) {
3207 struct virtual_engine *ve =
3208 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3209
3210 rb_erase_cached(rb, &execlists->virtual);
3211 RB_CLEAR_NODE(rb);
3212
3213 spin_lock(&ve->base.sched_engine->lock);
3214 rq = fetch_and_zero(&ve->request);
3215 if (rq) {
3216 if (i915_request_mark_eio(rq)) {
3217 rq->engine = engine;
3218 __i915_request_submit(rq);
3219 i915_request_put(rq);
3220 }
3221 i915_request_put(rq);
3222
3223 ve->base.sched_engine->queue_priority_hint = INT_MIN;
3224 }
3225 spin_unlock(&ve->base.sched_engine->lock);
3226 }
3227
3228 /* Remaining _unready_ requests will be nop'ed when submitted */
3229
3230 sched_engine->queue_priority_hint = INT_MIN;
3231 sched_engine->queue = RB_ROOT_CACHED;
3232
3233 GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3234 engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3235
3236 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3237 rcu_read_unlock();
3238 }
3239
execlists_reset_finish(struct intel_engine_cs * engine)3240 static void execlists_reset_finish(struct intel_engine_cs *engine)
3241 {
3242 struct intel_engine_execlists * const execlists = &engine->execlists;
3243
3244 /*
3245 * After a GPU reset, we may have requests to replay. Do so now while
3246 * we still have the forcewake to be sure that the GPU is not allowed
3247 * to sleep before we restart and reload a context.
3248 *
3249 * If the GPU reset fails, the engine may still be alive with requests
3250 * inflight. We expect those to complete, or for the device to be
3251 * reset as the next level of recovery, and as a final resort we
3252 * will declare the device wedged.
3253 */
3254 GEM_BUG_ON(!reset_in_progress(engine));
3255
3256 /* And kick in case we missed a new request submission. */
3257 if (__tasklet_enable(&engine->sched_engine->tasklet))
3258 __execlists_kick(execlists);
3259
3260 ENGINE_TRACE(engine, "depth->%d\n",
3261 atomic_read(&engine->sched_engine->tasklet.count));
3262 }
3263
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)3264 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3265 {
3266 ENGINE_WRITE(engine, RING_IMR,
3267 ~(engine->irq_enable_mask | engine->irq_keep_mask));
3268 ENGINE_POSTING_READ(engine, RING_IMR);
3269 }
3270
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)3271 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3272 {
3273 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3274 }
3275
execlists_park(struct intel_engine_cs * engine)3276 static void execlists_park(struct intel_engine_cs *engine)
3277 {
3278 cancel_timer(&engine->execlists.timer);
3279 cancel_timer(&engine->execlists.preempt);
3280
3281 /* Reset upon idling, or we may delay the busy wakeup. */
3282 WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3283 }
3284
add_to_engine(struct i915_request * rq)3285 static void add_to_engine(struct i915_request *rq)
3286 {
3287 lockdep_assert_held(&rq->engine->sched_engine->lock);
3288 list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3289 }
3290
remove_from_engine(struct i915_request * rq)3291 static void remove_from_engine(struct i915_request *rq)
3292 {
3293 struct intel_engine_cs *engine, *locked;
3294
3295 /*
3296 * Virtual engines complicate acquiring the engine timeline lock,
3297 * as their rq->engine pointer is not stable until under that
3298 * engine lock. The simple ploy we use is to take the lock then
3299 * check that the rq still belongs to the newly locked engine.
3300 */
3301 locked = READ_ONCE(rq->engine);
3302 spin_lock_irq(&locked->sched_engine->lock);
3303 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3304 spin_unlock(&locked->sched_engine->lock);
3305 spin_lock(&engine->sched_engine->lock);
3306 locked = engine;
3307 }
3308 list_del_init(&rq->sched.link);
3309
3310 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3311 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3312
3313 /* Prevent further __await_execution() registering a cb, then flush */
3314 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3315
3316 spin_unlock_irq(&locked->sched_engine->lock);
3317
3318 i915_request_notify_execute_cb_imm(rq);
3319 }
3320
can_preempt(struct intel_engine_cs * engine)3321 static bool can_preempt(struct intel_engine_cs *engine)
3322 {
3323 return GRAPHICS_VER(engine->i915) > 8;
3324 }
3325
kick_execlists(const struct i915_request * rq,int prio)3326 static void kick_execlists(const struct i915_request *rq, int prio)
3327 {
3328 struct intel_engine_cs *engine = rq->engine;
3329 struct i915_sched_engine *sched_engine = engine->sched_engine;
3330 const struct i915_request *inflight;
3331
3332 /*
3333 * We only need to kick the tasklet once for the high priority
3334 * new context we add into the queue.
3335 */
3336 if (prio <= sched_engine->queue_priority_hint)
3337 return;
3338
3339 rcu_read_lock();
3340
3341 /* Nothing currently active? We're overdue for a submission! */
3342 inflight = execlists_active(&engine->execlists);
3343 if (!inflight)
3344 goto unlock;
3345
3346 /*
3347 * If we are already the currently executing context, don't
3348 * bother evaluating if we should preempt ourselves.
3349 */
3350 if (inflight->context == rq->context)
3351 goto unlock;
3352
3353 ENGINE_TRACE(engine,
3354 "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3355 prio,
3356 rq->fence.context, rq->fence.seqno,
3357 inflight->fence.context, inflight->fence.seqno,
3358 inflight->sched.attr.priority);
3359
3360 sched_engine->queue_priority_hint = prio;
3361
3362 /*
3363 * Allow preemption of low -> normal -> high, but we do
3364 * not allow low priority tasks to preempt other low priority
3365 * tasks under the impression that latency for low priority
3366 * tasks does not matter (as much as background throughput),
3367 * so kiss.
3368 */
3369 if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3370 tasklet_hi_schedule(&sched_engine->tasklet);
3371
3372 unlock:
3373 rcu_read_unlock();
3374 }
3375
execlists_set_default_submission(struct intel_engine_cs * engine)3376 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3377 {
3378 engine->submit_request = execlists_submit_request;
3379 engine->sched_engine->schedule = i915_schedule;
3380 engine->sched_engine->kick_backend = kick_execlists;
3381 engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3382 }
3383
execlists_shutdown(struct intel_engine_cs * engine)3384 static void execlists_shutdown(struct intel_engine_cs *engine)
3385 {
3386 /* Synchronise with residual timers and any softirq they raise */
3387 del_timer_sync(&engine->execlists.timer);
3388 del_timer_sync(&engine->execlists.preempt);
3389 tasklet_kill(&engine->sched_engine->tasklet);
3390 }
3391
execlists_release(struct intel_engine_cs * engine)3392 static void execlists_release(struct intel_engine_cs *engine)
3393 {
3394 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3395
3396 execlists_shutdown(engine);
3397
3398 intel_engine_cleanup_common(engine);
3399 lrc_fini_wa_ctx(engine);
3400 }
3401
__execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3402 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3403 ktime_t *now)
3404 {
3405 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3406 ktime_t total = stats->total;
3407
3408 /*
3409 * If the engine is executing something at the moment
3410 * add it to the total.
3411 */
3412 *now = ktime_get();
3413 if (READ_ONCE(stats->active))
3414 total = ktime_add(total, ktime_sub(*now, stats->start));
3415
3416 return total;
3417 }
3418
execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3419 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3420 ktime_t *now)
3421 {
3422 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3423 unsigned int seq;
3424 ktime_t total;
3425
3426 do {
3427 seq = read_seqcount_begin(&stats->lock);
3428 total = __execlists_engine_busyness(engine, now);
3429 } while (read_seqcount_retry(&stats->lock, seq));
3430
3431 return total;
3432 }
3433
3434 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3435 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3436 {
3437 /* Default vfuncs which can be overridden by each engine. */
3438
3439 engine->resume = execlists_resume;
3440
3441 engine->cops = &execlists_context_ops;
3442 engine->request_alloc = execlists_request_alloc;
3443 engine->add_active_request = add_to_engine;
3444 engine->remove_active_request = remove_from_engine;
3445
3446 engine->reset.prepare = execlists_reset_prepare;
3447 engine->reset.rewind = execlists_reset_rewind;
3448 engine->reset.cancel = execlists_reset_cancel;
3449 engine->reset.finish = execlists_reset_finish;
3450
3451 engine->park = execlists_park;
3452 engine->unpark = NULL;
3453
3454 engine->emit_flush = gen8_emit_flush_xcs;
3455 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3456 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3457 if (GRAPHICS_VER(engine->i915) >= 12) {
3458 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3459 engine->emit_flush = gen12_emit_flush_xcs;
3460 }
3461 engine->set_default_submission = execlists_set_default_submission;
3462
3463 if (GRAPHICS_VER(engine->i915) < 11) {
3464 engine->irq_enable = gen8_logical_ring_enable_irq;
3465 engine->irq_disable = gen8_logical_ring_disable_irq;
3466 } else {
3467 /*
3468 * TODO: On Gen11 interrupt masks need to be clear
3469 * to allow C6 entry. Keep interrupts enabled at
3470 * and take the hit of generating extra interrupts
3471 * until a more refined solution exists.
3472 */
3473 }
3474 intel_engine_set_irq_handler(engine, execlists_irq_handler);
3475
3476 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3477 if (!intel_vgpu_active(engine->i915)) {
3478 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3479 if (can_preempt(engine)) {
3480 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3481 if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3482 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3483 }
3484 }
3485
3486 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3487 if (intel_engine_has_preemption(engine))
3488 engine->emit_bb_start = xehp_emit_bb_start;
3489 else
3490 engine->emit_bb_start = xehp_emit_bb_start_noarb;
3491 } else {
3492 if (intel_engine_has_preemption(engine))
3493 engine->emit_bb_start = gen8_emit_bb_start;
3494 else
3495 engine->emit_bb_start = gen8_emit_bb_start_noarb;
3496 }
3497
3498 engine->busyness = execlists_engine_busyness;
3499 }
3500
logical_ring_default_irqs(struct intel_engine_cs * engine)3501 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3502 {
3503 unsigned int shift = 0;
3504
3505 if (GRAPHICS_VER(engine->i915) < 11) {
3506 const u8 irq_shifts[] = {
3507 [RCS0] = GEN8_RCS_IRQ_SHIFT,
3508 [BCS0] = GEN8_BCS_IRQ_SHIFT,
3509 [VCS0] = GEN8_VCS0_IRQ_SHIFT,
3510 [VCS1] = GEN8_VCS1_IRQ_SHIFT,
3511 [VECS0] = GEN8_VECS_IRQ_SHIFT,
3512 };
3513
3514 shift = irq_shifts[engine->id];
3515 }
3516
3517 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3518 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3519 engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3520 engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3521 }
3522
rcs_submission_override(struct intel_engine_cs * engine)3523 static void rcs_submission_override(struct intel_engine_cs *engine)
3524 {
3525 switch (GRAPHICS_VER(engine->i915)) {
3526 case 12:
3527 engine->emit_flush = gen12_emit_flush_rcs;
3528 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3529 break;
3530 case 11:
3531 engine->emit_flush = gen11_emit_flush_rcs;
3532 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3533 break;
3534 default:
3535 engine->emit_flush = gen8_emit_flush_rcs;
3536 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3537 break;
3538 }
3539 }
3540
intel_execlists_submission_setup(struct intel_engine_cs * engine)3541 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3542 {
3543 struct intel_engine_execlists * const execlists = &engine->execlists;
3544 struct drm_i915_private *i915 = engine->i915;
3545 struct intel_uncore *uncore = engine->uncore;
3546 u32 base = engine->mmio_base;
3547
3548 tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3549 #ifdef __linux__
3550 timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3551 timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3552 #else
3553 timeout_set(&engine->execlists.timer, execlists_timeslice,
3554 &engine->execlists.timer);
3555 timeout_set(&engine->execlists.preempt, execlists_preempt,
3556 &engine->execlists.preempt);
3557 #endif
3558
3559 logical_ring_default_vfuncs(engine);
3560 logical_ring_default_irqs(engine);
3561
3562 seqcount_init(&engine->stats.execlists.lock);
3563
3564 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3565 rcs_submission_override(engine);
3566
3567 lrc_init_wa_ctx(engine);
3568
3569 if (HAS_LOGICAL_RING_ELSQ(i915)) {
3570 execlists->submit_reg = intel_uncore_regs(uncore) +
3571 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3572 execlists->ctrl_reg = intel_uncore_regs(uncore) +
3573 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3574
3575 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3576 RING_EXECLIST_CONTROL(engine->mmio_base),
3577 FW_REG_WRITE);
3578 } else {
3579 execlists->submit_reg = intel_uncore_regs(uncore) +
3580 i915_mmio_reg_offset(RING_ELSP(base));
3581 }
3582
3583 execlists->csb_status =
3584 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3585
3586 execlists->csb_write =
3587 &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3588
3589 if (GRAPHICS_VER(i915) < 11)
3590 execlists->csb_size = GEN8_CSB_ENTRIES;
3591 else
3592 execlists->csb_size = GEN11_CSB_ENTRIES;
3593
3594 engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3595 if (GRAPHICS_VER(engine->i915) >= 11 &&
3596 GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3597 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3598 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3599 }
3600
3601 /* Finally, take ownership and responsibility for cleanup! */
3602 engine->sanitize = execlists_sanitize;
3603 engine->release = execlists_release;
3604
3605 return 0;
3606 }
3607
virtual_queue(struct virtual_engine * ve)3608 static struct list_head *virtual_queue(struct virtual_engine *ve)
3609 {
3610 return &ve->base.sched_engine->default_priolist.requests;
3611 }
3612
rcu_virtual_context_destroy(struct work_struct * wrk)3613 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3614 {
3615 struct virtual_engine *ve =
3616 container_of(wrk, typeof(*ve), rcu.work);
3617 unsigned int n;
3618
3619 GEM_BUG_ON(ve->context.inflight);
3620
3621 /* Preempt-to-busy may leave a stale request behind. */
3622 if (unlikely(ve->request)) {
3623 struct i915_request *old;
3624
3625 spin_lock_irq(&ve->base.sched_engine->lock);
3626
3627 old = fetch_and_zero(&ve->request);
3628 if (old) {
3629 GEM_BUG_ON(!__i915_request_is_complete(old));
3630 __i915_request_submit(old);
3631 i915_request_put(old);
3632 }
3633
3634 spin_unlock_irq(&ve->base.sched_engine->lock);
3635 }
3636
3637 /*
3638 * Flush the tasklet in case it is still running on another core.
3639 *
3640 * This needs to be done before we remove ourselves from the siblings'
3641 * rbtrees as in the case it is running in parallel, it may reinsert
3642 * the rb_node into a sibling.
3643 */
3644 tasklet_kill(&ve->base.sched_engine->tasklet);
3645
3646 /* Decouple ourselves from the siblings, no more access allowed. */
3647 for (n = 0; n < ve->num_siblings; n++) {
3648 struct intel_engine_cs *sibling = ve->siblings[n];
3649 struct rb_node *node = &ve->nodes[sibling->id].rb;
3650
3651 if (RB_EMPTY_NODE(node))
3652 continue;
3653
3654 spin_lock_irq(&sibling->sched_engine->lock);
3655
3656 /* Detachment is lazily performed in the sched_engine->tasklet */
3657 if (!RB_EMPTY_NODE(node))
3658 rb_erase_cached(node, &sibling->execlists.virtual);
3659
3660 spin_unlock_irq(&sibling->sched_engine->lock);
3661 }
3662 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3663 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3664
3665 lrc_fini(&ve->context);
3666 intel_context_fini(&ve->context);
3667
3668 if (ve->base.breadcrumbs)
3669 intel_breadcrumbs_put(ve->base.breadcrumbs);
3670 if (ve->base.sched_engine)
3671 i915_sched_engine_put(ve->base.sched_engine);
3672 intel_engine_free_request_pool(&ve->base);
3673
3674 kfree(ve);
3675 }
3676
virtual_context_destroy(struct kref * kref)3677 static void virtual_context_destroy(struct kref *kref)
3678 {
3679 struct virtual_engine *ve =
3680 container_of(kref, typeof(*ve), context.ref);
3681
3682 GEM_BUG_ON(!list_empty(&ve->context.signals));
3683
3684 /*
3685 * When destroying the virtual engine, we have to be aware that
3686 * it may still be in use from an hardirq/softirq context causing
3687 * the resubmission of a completed request (background completion
3688 * due to preempt-to-busy). Before we can free the engine, we need
3689 * to flush the submission code and tasklets that are still potentially
3690 * accessing the engine. Flushing the tasklets requires process context,
3691 * and since we can guard the resubmit onto the engine with an RCU read
3692 * lock, we can delegate the free of the engine to an RCU worker.
3693 */
3694 INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3695 queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3696 }
3697
virtual_engine_initial_hint(struct virtual_engine * ve)3698 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3699 {
3700 int swp;
3701
3702 /*
3703 * Pick a random sibling on starting to help spread the load around.
3704 *
3705 * New contexts are typically created with exactly the same order
3706 * of siblings, and often started in batches. Due to the way we iterate
3707 * the array of sibling when submitting requests, sibling[0] is
3708 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3709 * randomised across the system, we also help spread the load by the
3710 * first engine we inspect being different each time.
3711 *
3712 * NB This does not force us to execute on this engine, it will just
3713 * typically be the first we inspect for submission.
3714 */
3715 swp = get_random_u32_below(ve->num_siblings);
3716 if (swp)
3717 swap(ve->siblings[swp], ve->siblings[0]);
3718 }
3719
virtual_context_alloc(struct intel_context * ce)3720 static int virtual_context_alloc(struct intel_context *ce)
3721 {
3722 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3723
3724 return lrc_alloc(ce, ve->siblings[0]);
3725 }
3726
virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3727 static int virtual_context_pre_pin(struct intel_context *ce,
3728 struct i915_gem_ww_ctx *ww,
3729 void **vaddr)
3730 {
3731 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3732
3733 /* Note: we must use a real engine class for setting up reg state */
3734 return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3735 }
3736
virtual_context_pin(struct intel_context * ce,void * vaddr)3737 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3738 {
3739 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3740
3741 return lrc_pin(ce, ve->siblings[0], vaddr);
3742 }
3743
virtual_context_enter(struct intel_context * ce)3744 static void virtual_context_enter(struct intel_context *ce)
3745 {
3746 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3747 unsigned int n;
3748
3749 for (n = 0; n < ve->num_siblings; n++)
3750 intel_engine_pm_get(ve->siblings[n]);
3751
3752 intel_timeline_enter(ce->timeline);
3753 }
3754
virtual_context_exit(struct intel_context * ce)3755 static void virtual_context_exit(struct intel_context *ce)
3756 {
3757 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3758 unsigned int n;
3759
3760 intel_timeline_exit(ce->timeline);
3761
3762 for (n = 0; n < ve->num_siblings; n++)
3763 intel_engine_pm_put(ve->siblings[n]);
3764 }
3765
3766 static struct intel_engine_cs *
virtual_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)3767 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3768 {
3769 struct virtual_engine *ve = to_virtual_engine(engine);
3770
3771 if (sibling >= ve->num_siblings)
3772 return NULL;
3773
3774 return ve->siblings[sibling];
3775 }
3776
3777 static const struct intel_context_ops virtual_context_ops = {
3778 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3779
3780 .alloc = virtual_context_alloc,
3781
3782 .cancel_request = execlists_context_cancel_request,
3783
3784 .pre_pin = virtual_context_pre_pin,
3785 .pin = virtual_context_pin,
3786 .unpin = lrc_unpin,
3787 .post_unpin = lrc_post_unpin,
3788
3789 .enter = virtual_context_enter,
3790 .exit = virtual_context_exit,
3791
3792 .destroy = virtual_context_destroy,
3793
3794 .get_sibling = virtual_get_sibling,
3795 };
3796
virtual_submission_mask(struct virtual_engine * ve)3797 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3798 {
3799 struct i915_request *rq;
3800 intel_engine_mask_t mask;
3801
3802 rq = READ_ONCE(ve->request);
3803 if (!rq)
3804 return 0;
3805
3806 /* The rq is ready for submission; rq->execution_mask is now stable. */
3807 mask = rq->execution_mask;
3808 if (unlikely(!mask)) {
3809 /* Invalid selection, submit to a random engine in error */
3810 i915_request_set_error_once(rq, -ENODEV);
3811 mask = ve->siblings[0]->mask;
3812 }
3813
3814 ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3815 rq->fence.context, rq->fence.seqno,
3816 mask, ve->base.sched_engine->queue_priority_hint);
3817
3818 return mask;
3819 }
3820
virtual_submission_tasklet(struct tasklet_struct * t)3821 static void virtual_submission_tasklet(struct tasklet_struct *t)
3822 {
3823 struct i915_sched_engine *sched_engine =
3824 from_tasklet(sched_engine, t, tasklet);
3825 struct virtual_engine * const ve =
3826 (struct virtual_engine *)sched_engine->private_data;
3827 const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3828 intel_engine_mask_t mask;
3829 unsigned int n;
3830
3831 rcu_read_lock();
3832 mask = virtual_submission_mask(ve);
3833 rcu_read_unlock();
3834 if (unlikely(!mask))
3835 return;
3836
3837 for (n = 0; n < ve->num_siblings; n++) {
3838 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3839 struct ve_node * const node = &ve->nodes[sibling->id];
3840 struct rb_node **parent, *rb;
3841 bool first;
3842
3843 if (!READ_ONCE(ve->request))
3844 break; /* already handled by a sibling's tasklet */
3845
3846 spin_lock_irq(&sibling->sched_engine->lock);
3847
3848 if (unlikely(!(mask & sibling->mask))) {
3849 if (!RB_EMPTY_NODE(&node->rb)) {
3850 rb_erase_cached(&node->rb,
3851 &sibling->execlists.virtual);
3852 RB_CLEAR_NODE(&node->rb);
3853 }
3854
3855 goto unlock_engine;
3856 }
3857
3858 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3859 /*
3860 * Cheat and avoid rebalancing the tree if we can
3861 * reuse this node in situ.
3862 */
3863 first = rb_first_cached(&sibling->execlists.virtual) ==
3864 &node->rb;
3865 if (prio == node->prio || (prio > node->prio && first))
3866 goto submit_engine;
3867
3868 rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3869 }
3870
3871 rb = NULL;
3872 first = true;
3873 parent = &sibling->execlists.virtual.rb_root.rb_node;
3874 while (*parent) {
3875 struct ve_node *other;
3876
3877 rb = *parent;
3878 other = rb_entry(rb, typeof(*other), rb);
3879 if (prio > other->prio) {
3880 parent = &rb->rb_left;
3881 } else {
3882 parent = &rb->rb_right;
3883 first = false;
3884 }
3885 }
3886
3887 rb_link_node(&node->rb, rb, parent);
3888 rb_insert_color_cached(&node->rb,
3889 &sibling->execlists.virtual,
3890 first);
3891
3892 submit_engine:
3893 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3894 node->prio = prio;
3895 if (first && prio > sibling->sched_engine->queue_priority_hint)
3896 tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3897
3898 unlock_engine:
3899 spin_unlock_irq(&sibling->sched_engine->lock);
3900
3901 if (intel_context_inflight(&ve->context))
3902 break;
3903 }
3904 }
3905
virtual_submit_request(struct i915_request * rq)3906 static void virtual_submit_request(struct i915_request *rq)
3907 {
3908 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3909 unsigned long flags;
3910
3911 ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3912 rq->fence.context,
3913 rq->fence.seqno);
3914
3915 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3916
3917 spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3918
3919 /* By the time we resubmit a request, it may be completed */
3920 if (__i915_request_is_complete(rq)) {
3921 __i915_request_submit(rq);
3922 goto unlock;
3923 }
3924
3925 if (ve->request) { /* background completion from preempt-to-busy */
3926 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3927 __i915_request_submit(ve->request);
3928 i915_request_put(ve->request);
3929 }
3930
3931 ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3932 ve->request = i915_request_get(rq);
3933
3934 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3935 list_move_tail(&rq->sched.link, virtual_queue(ve));
3936
3937 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3938
3939 unlock:
3940 spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3941 }
3942
3943 static struct intel_context *
execlists_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)3944 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3945 unsigned long flags)
3946 {
3947 struct drm_i915_private *i915 = siblings[0]->i915;
3948 struct virtual_engine *ve;
3949 unsigned int n;
3950 int err;
3951
3952 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3953 if (!ve)
3954 return ERR_PTR(-ENOMEM);
3955
3956 ve->base.i915 = i915;
3957 ve->base.gt = siblings[0]->gt;
3958 ve->base.uncore = siblings[0]->uncore;
3959 ve->base.id = -1;
3960
3961 ve->base.class = OTHER_CLASS;
3962 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3963 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3964 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3965
3966 /*
3967 * The decision on whether to submit a request using semaphores
3968 * depends on the saturated state of the engine. We only compute
3969 * this during HW submission of the request, and we need for this
3970 * state to be globally applied to all requests being submitted
3971 * to this engine. Virtual engines encompass more than one physical
3972 * engine and so we cannot accurately tell in advance if one of those
3973 * engines is already saturated and so cannot afford to use a semaphore
3974 * and be pessimized in priority for doing so -- if we are the only
3975 * context using semaphores after all other clients have stopped, we
3976 * will be starved on the saturated system. Such a global switch for
3977 * semaphores is less than ideal, but alas is the current compromise.
3978 */
3979 ve->base.saturated = ALL_ENGINES;
3980
3981 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3982
3983 intel_engine_init_execlists(&ve->base);
3984
3985 ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3986 if (!ve->base.sched_engine) {
3987 err = -ENOMEM;
3988 goto err_put;
3989 }
3990 ve->base.sched_engine->private_data = &ve->base;
3991
3992 ve->base.cops = &virtual_context_ops;
3993 ve->base.request_alloc = execlists_request_alloc;
3994
3995 ve->base.sched_engine->schedule = i915_schedule;
3996 ve->base.sched_engine->kick_backend = kick_execlists;
3997 ve->base.submit_request = virtual_submit_request;
3998
3999 INIT_LIST_HEAD(virtual_queue(ve));
4000 tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
4001
4002 intel_context_init(&ve->context, &ve->base);
4003
4004 ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
4005 if (!ve->base.breadcrumbs) {
4006 err = -ENOMEM;
4007 goto err_put;
4008 }
4009
4010 for (n = 0; n < count; n++) {
4011 struct intel_engine_cs *sibling = siblings[n];
4012
4013 GEM_BUG_ON(!is_power_of_2(sibling->mask));
4014 if (sibling->mask & ve->base.mask) {
4015 drm_dbg(&i915->drm,
4016 "duplicate %s entry in load balancer\n",
4017 sibling->name);
4018 err = -EINVAL;
4019 goto err_put;
4020 }
4021
4022 /*
4023 * The virtual engine implementation is tightly coupled to
4024 * the execlists backend -- we push out request directly
4025 * into a tree inside each physical engine. We could support
4026 * layering if we handle cloning of the requests and
4027 * submitting a copy into each backend.
4028 */
4029 if (sibling->sched_engine->tasklet.callback !=
4030 execlists_submission_tasklet) {
4031 err = -ENODEV;
4032 goto err_put;
4033 }
4034
4035 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4036 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4037
4038 ve->siblings[ve->num_siblings++] = sibling;
4039 ve->base.mask |= sibling->mask;
4040 ve->base.logical_mask |= sibling->logical_mask;
4041
4042 /*
4043 * All physical engines must be compatible for their emission
4044 * functions (as we build the instructions during request
4045 * construction and do not alter them before submission
4046 * on the physical engine). We use the engine class as a guide
4047 * here, although that could be refined.
4048 */
4049 if (ve->base.class != OTHER_CLASS) {
4050 if (ve->base.class != sibling->class) {
4051 drm_dbg(&i915->drm,
4052 "invalid mixing of engine class, sibling %d, already %d\n",
4053 sibling->class, ve->base.class);
4054 err = -EINVAL;
4055 goto err_put;
4056 }
4057 continue;
4058 }
4059
4060 ve->base.class = sibling->class;
4061 ve->base.uabi_class = sibling->uabi_class;
4062 snprintf(ve->base.name, sizeof(ve->base.name),
4063 "v%dx%d", ve->base.class, count);
4064 ve->base.context_size = sibling->context_size;
4065
4066 ve->base.add_active_request = sibling->add_active_request;
4067 ve->base.remove_active_request = sibling->remove_active_request;
4068 ve->base.emit_bb_start = sibling->emit_bb_start;
4069 ve->base.emit_flush = sibling->emit_flush;
4070 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4071 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4072 ve->base.emit_fini_breadcrumb_dw =
4073 sibling->emit_fini_breadcrumb_dw;
4074
4075 ve->base.flags = sibling->flags;
4076 }
4077
4078 ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4079
4080 virtual_engine_initial_hint(ve);
4081 return &ve->context;
4082
4083 err_put:
4084 intel_context_put(&ve->context);
4085 return ERR_PTR(err);
4086 }
4087
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent),unsigned int max)4088 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4089 struct drm_printer *m,
4090 void (*show_request)(struct drm_printer *m,
4091 const struct i915_request *rq,
4092 const char *prefix,
4093 int indent),
4094 unsigned int max)
4095 {
4096 const struct intel_engine_execlists *execlists = &engine->execlists;
4097 struct i915_sched_engine *sched_engine = engine->sched_engine;
4098 struct i915_request *rq, *last;
4099 unsigned long flags;
4100 unsigned int count;
4101 struct rb_node *rb;
4102
4103 spin_lock_irqsave(&sched_engine->lock, flags);
4104
4105 last = NULL;
4106 count = 0;
4107 list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4108 if (count++ < max - 1)
4109 show_request(m, rq, "\t\t", 0);
4110 else
4111 last = rq;
4112 }
4113 if (last) {
4114 if (count > max) {
4115 drm_printf(m,
4116 "\t\t...skipping %d executing requests...\n",
4117 count - max);
4118 }
4119 show_request(m, last, "\t\t", 0);
4120 }
4121
4122 if (sched_engine->queue_priority_hint != INT_MIN)
4123 drm_printf(m, "\t\tQueue priority hint: %d\n",
4124 READ_ONCE(sched_engine->queue_priority_hint));
4125
4126 last = NULL;
4127 count = 0;
4128 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4129 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4130
4131 priolist_for_each_request(rq, p) {
4132 if (count++ < max - 1)
4133 show_request(m, rq, "\t\t", 0);
4134 else
4135 last = rq;
4136 }
4137 }
4138 if (last) {
4139 if (count > max) {
4140 drm_printf(m,
4141 "\t\t...skipping %d queued requests...\n",
4142 count - max);
4143 }
4144 show_request(m, last, "\t\t", 0);
4145 }
4146
4147 last = NULL;
4148 count = 0;
4149 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4150 struct virtual_engine *ve =
4151 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4152 struct i915_request *rq = READ_ONCE(ve->request);
4153
4154 if (rq) {
4155 if (count++ < max - 1)
4156 show_request(m, rq, "\t\t", 0);
4157 else
4158 last = rq;
4159 }
4160 }
4161 if (last) {
4162 if (count > max) {
4163 drm_printf(m,
4164 "\t\t...skipping %d virtual requests...\n",
4165 count - max);
4166 }
4167 show_request(m, last, "\t\t", 0);
4168 }
4169
4170 spin_unlock_irqrestore(&sched_engine->lock, flags);
4171 }
4172
intel_execlists_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)4173 void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4174 struct i915_request *hung_rq,
4175 struct drm_printer *m)
4176 {
4177 unsigned long flags;
4178
4179 spin_lock_irqsave(&engine->sched_engine->lock, flags);
4180
4181 intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4182
4183 drm_printf(m, "\tOn hold?: %zu\n",
4184 list_count_nodes(&engine->sched_engine->hold));
4185
4186 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4187 }
4188
4189 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4190 #include "selftest_execlists.c"
4191 #endif
4192