xref: /linux/fs/fcntl.c (revision c62b758b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/filelock.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/capability.h>
17 #include <linux/dnotify.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/security.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/rcupdate.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/user_namespace.h>
27 #include <linux/memfd.h>
28 #include <linux/compat.h>
29 #include <linux/mount.h>
30 #include <linux/rw_hint.h>
31 
32 #include <linux/poll.h>
33 #include <asm/siginfo.h>
34 #include <linux/uaccess.h>
35 
36 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
37 
setfl(int fd,struct file * filp,unsigned int arg)38 static int setfl(int fd, struct file * filp, unsigned int arg)
39 {
40 	struct inode * inode = file_inode(filp);
41 	int error = 0;
42 
43 	/*
44 	 * O_APPEND cannot be cleared if the file is marked as append-only
45 	 * and the file is open for write.
46 	 */
47 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
48 		return -EPERM;
49 
50 	/* O_NOATIME can only be set by the owner or superuser */
51 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
52 		if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
53 			return -EPERM;
54 
55 	/* required for strict SunOS emulation */
56 	if (O_NONBLOCK != O_NDELAY)
57 	       if (arg & O_NDELAY)
58 		   arg |= O_NONBLOCK;
59 
60 	/* Pipe packetized mode is controlled by O_DIRECT flag */
61 	if (!S_ISFIFO(inode->i_mode) &&
62 	    (arg & O_DIRECT) &&
63 	    !(filp->f_mode & FMODE_CAN_ODIRECT))
64 		return -EINVAL;
65 
66 	if (filp->f_op->check_flags)
67 		error = filp->f_op->check_flags(arg);
68 	if (error)
69 		return error;
70 
71 	/*
72 	 * ->fasync() is responsible for setting the FASYNC bit.
73 	 */
74 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
75 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
76 		if (error < 0)
77 			goto out;
78 		if (error > 0)
79 			error = 0;
80 	}
81 	spin_lock(&filp->f_lock);
82 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
83 	filp->f_iocb_flags = iocb_flags(filp);
84 	spin_unlock(&filp->f_lock);
85 
86  out:
87 	return error;
88 }
89 
f_modown(struct file * filp,struct pid * pid,enum pid_type type,int force)90 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
91                      int force)
92 {
93 	write_lock_irq(&filp->f_owner.lock);
94 	if (force || !filp->f_owner.pid) {
95 		put_pid(filp->f_owner.pid);
96 		filp->f_owner.pid = get_pid(pid);
97 		filp->f_owner.pid_type = type;
98 
99 		if (pid) {
100 			const struct cred *cred = current_cred();
101 			filp->f_owner.uid = cred->uid;
102 			filp->f_owner.euid = cred->euid;
103 		}
104 	}
105 	write_unlock_irq(&filp->f_owner.lock);
106 }
107 
__f_setown(struct file * filp,struct pid * pid,enum pid_type type,int force)108 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
109 		int force)
110 {
111 	security_file_set_fowner(filp);
112 	f_modown(filp, pid, type, force);
113 }
114 EXPORT_SYMBOL(__f_setown);
115 
f_setown(struct file * filp,int who,int force)116 int f_setown(struct file *filp, int who, int force)
117 {
118 	enum pid_type type;
119 	struct pid *pid = NULL;
120 	int ret = 0;
121 
122 	type = PIDTYPE_TGID;
123 	if (who < 0) {
124 		/* avoid overflow below */
125 		if (who == INT_MIN)
126 			return -EINVAL;
127 
128 		type = PIDTYPE_PGID;
129 		who = -who;
130 	}
131 
132 	rcu_read_lock();
133 	if (who) {
134 		pid = find_vpid(who);
135 		if (!pid)
136 			ret = -ESRCH;
137 	}
138 
139 	if (!ret)
140 		__f_setown(filp, pid, type, force);
141 	rcu_read_unlock();
142 
143 	return ret;
144 }
145 EXPORT_SYMBOL(f_setown);
146 
f_delown(struct file * filp)147 void f_delown(struct file *filp)
148 {
149 	f_modown(filp, NULL, PIDTYPE_TGID, 1);
150 }
151 
f_getown(struct file * filp)152 pid_t f_getown(struct file *filp)
153 {
154 	pid_t pid = 0;
155 
156 	read_lock_irq(&filp->f_owner.lock);
157 	rcu_read_lock();
158 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
159 		pid = pid_vnr(filp->f_owner.pid);
160 		if (filp->f_owner.pid_type == PIDTYPE_PGID)
161 			pid = -pid;
162 	}
163 	rcu_read_unlock();
164 	read_unlock_irq(&filp->f_owner.lock);
165 	return pid;
166 }
167 
f_setown_ex(struct file * filp,unsigned long arg)168 static int f_setown_ex(struct file *filp, unsigned long arg)
169 {
170 	struct f_owner_ex __user *owner_p = (void __user *)arg;
171 	struct f_owner_ex owner;
172 	struct pid *pid;
173 	int type;
174 	int ret;
175 
176 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
177 	if (ret)
178 		return -EFAULT;
179 
180 	switch (owner.type) {
181 	case F_OWNER_TID:
182 		type = PIDTYPE_PID;
183 		break;
184 
185 	case F_OWNER_PID:
186 		type = PIDTYPE_TGID;
187 		break;
188 
189 	case F_OWNER_PGRP:
190 		type = PIDTYPE_PGID;
191 		break;
192 
193 	default:
194 		return -EINVAL;
195 	}
196 
197 	rcu_read_lock();
198 	pid = find_vpid(owner.pid);
199 	if (owner.pid && !pid)
200 		ret = -ESRCH;
201 	else
202 		 __f_setown(filp, pid, type, 1);
203 	rcu_read_unlock();
204 
205 	return ret;
206 }
207 
f_getown_ex(struct file * filp,unsigned long arg)208 static int f_getown_ex(struct file *filp, unsigned long arg)
209 {
210 	struct f_owner_ex __user *owner_p = (void __user *)arg;
211 	struct f_owner_ex owner = {};
212 	int ret = 0;
213 
214 	read_lock_irq(&filp->f_owner.lock);
215 	rcu_read_lock();
216 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
217 		owner.pid = pid_vnr(filp->f_owner.pid);
218 	rcu_read_unlock();
219 	switch (filp->f_owner.pid_type) {
220 	case PIDTYPE_PID:
221 		owner.type = F_OWNER_TID;
222 		break;
223 
224 	case PIDTYPE_TGID:
225 		owner.type = F_OWNER_PID;
226 		break;
227 
228 	case PIDTYPE_PGID:
229 		owner.type = F_OWNER_PGRP;
230 		break;
231 
232 	default:
233 		WARN_ON(1);
234 		ret = -EINVAL;
235 		break;
236 	}
237 	read_unlock_irq(&filp->f_owner.lock);
238 
239 	if (!ret) {
240 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
241 		if (ret)
242 			ret = -EFAULT;
243 	}
244 	return ret;
245 }
246 
247 #ifdef CONFIG_CHECKPOINT_RESTORE
f_getowner_uids(struct file * filp,unsigned long arg)248 static int f_getowner_uids(struct file *filp, unsigned long arg)
249 {
250 	struct user_namespace *user_ns = current_user_ns();
251 	uid_t __user *dst = (void __user *)arg;
252 	uid_t src[2];
253 	int err;
254 
255 	read_lock_irq(&filp->f_owner.lock);
256 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
257 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
258 	read_unlock_irq(&filp->f_owner.lock);
259 
260 	err  = put_user(src[0], &dst[0]);
261 	err |= put_user(src[1], &dst[1]);
262 
263 	return err;
264 }
265 #else
f_getowner_uids(struct file * filp,unsigned long arg)266 static int f_getowner_uids(struct file *filp, unsigned long arg)
267 {
268 	return -EINVAL;
269 }
270 #endif
271 
rw_hint_valid(u64 hint)272 static bool rw_hint_valid(u64 hint)
273 {
274 	BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET);
275 	BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE);
276 	BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT);
277 	BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM);
278 	BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG);
279 	BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME);
280 
281 	switch (hint) {
282 	case RWH_WRITE_LIFE_NOT_SET:
283 	case RWH_WRITE_LIFE_NONE:
284 	case RWH_WRITE_LIFE_SHORT:
285 	case RWH_WRITE_LIFE_MEDIUM:
286 	case RWH_WRITE_LIFE_LONG:
287 	case RWH_WRITE_LIFE_EXTREME:
288 		return true;
289 	default:
290 		return false;
291 	}
292 }
293 
fcntl_get_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)294 static long fcntl_get_rw_hint(struct file *file, unsigned int cmd,
295 			      unsigned long arg)
296 {
297 	struct inode *inode = file_inode(file);
298 	u64 __user *argp = (u64 __user *)arg;
299 	u64 hint = READ_ONCE(inode->i_write_hint);
300 
301 	if (copy_to_user(argp, &hint, sizeof(*argp)))
302 		return -EFAULT;
303 	return 0;
304 }
305 
fcntl_set_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)306 static long fcntl_set_rw_hint(struct file *file, unsigned int cmd,
307 			      unsigned long arg)
308 {
309 	struct inode *inode = file_inode(file);
310 	u64 __user *argp = (u64 __user *)arg;
311 	u64 hint;
312 
313 	if (copy_from_user(&hint, argp, sizeof(hint)))
314 		return -EFAULT;
315 	if (!rw_hint_valid(hint))
316 		return -EINVAL;
317 
318 	WRITE_ONCE(inode->i_write_hint, hint);
319 
320 	/*
321 	 * file->f_mapping->host may differ from inode. As an example,
322 	 * blkdev_open() modifies file->f_mapping.
323 	 */
324 	if (file->f_mapping->host != inode)
325 		WRITE_ONCE(file->f_mapping->host->i_write_hint, hint);
326 
327 	return 0;
328 }
329 
330 /* Is the file descriptor a dup of the file? */
f_dupfd_query(int fd,struct file * filp)331 static long f_dupfd_query(int fd, struct file *filp)
332 {
333 	CLASS(fd_raw, f)(fd);
334 
335 	/*
336 	 * We can do the 'fdput()' immediately, as the only thing that
337 	 * matters is the pointer value which isn't changed by the fdput.
338 	 *
339 	 * Technically we didn't need a ref at all, and 'fdget()' was
340 	 * overkill, but given our lockless file pointer lookup, the
341 	 * alternatives are complicated.
342 	 */
343 	return f.file == filp;
344 }
345 
do_fcntl(int fd,unsigned int cmd,unsigned long arg,struct file * filp)346 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
347 		struct file *filp)
348 {
349 	void __user *argp = (void __user *)arg;
350 	int argi = (int)arg;
351 	struct flock flock;
352 	long err = -EINVAL;
353 
354 	switch (cmd) {
355 	case F_DUPFD:
356 		err = f_dupfd(argi, filp, 0);
357 		break;
358 	case F_DUPFD_CLOEXEC:
359 		err = f_dupfd(argi, filp, O_CLOEXEC);
360 		break;
361 	case F_DUPFD_QUERY:
362 		err = f_dupfd_query(argi, filp);
363 		break;
364 	case F_GETFD:
365 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
366 		break;
367 	case F_SETFD:
368 		err = 0;
369 		set_close_on_exec(fd, argi & FD_CLOEXEC);
370 		break;
371 	case F_GETFL:
372 		err = filp->f_flags;
373 		break;
374 	case F_SETFL:
375 		err = setfl(fd, filp, argi);
376 		break;
377 #if BITS_PER_LONG != 32
378 	/* 32-bit arches must use fcntl64() */
379 	case F_OFD_GETLK:
380 #endif
381 	case F_GETLK:
382 		if (copy_from_user(&flock, argp, sizeof(flock)))
383 			return -EFAULT;
384 		err = fcntl_getlk(filp, cmd, &flock);
385 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
386 			return -EFAULT;
387 		break;
388 #if BITS_PER_LONG != 32
389 	/* 32-bit arches must use fcntl64() */
390 	case F_OFD_SETLK:
391 	case F_OFD_SETLKW:
392 		fallthrough;
393 #endif
394 	case F_SETLK:
395 	case F_SETLKW:
396 		if (copy_from_user(&flock, argp, sizeof(flock)))
397 			return -EFAULT;
398 		err = fcntl_setlk(fd, filp, cmd, &flock);
399 		break;
400 	case F_GETOWN:
401 		/*
402 		 * XXX If f_owner is a process group, the
403 		 * negative return value will get converted
404 		 * into an error.  Oops.  If we keep the
405 		 * current syscall conventions, the only way
406 		 * to fix this will be in libc.
407 		 */
408 		err = f_getown(filp);
409 		force_successful_syscall_return();
410 		break;
411 	case F_SETOWN:
412 		err = f_setown(filp, argi, 1);
413 		break;
414 	case F_GETOWN_EX:
415 		err = f_getown_ex(filp, arg);
416 		break;
417 	case F_SETOWN_EX:
418 		err = f_setown_ex(filp, arg);
419 		break;
420 	case F_GETOWNER_UIDS:
421 		err = f_getowner_uids(filp, arg);
422 		break;
423 	case F_GETSIG:
424 		err = filp->f_owner.signum;
425 		break;
426 	case F_SETSIG:
427 		/* arg == 0 restores default behaviour. */
428 		if (!valid_signal(argi)) {
429 			break;
430 		}
431 		err = 0;
432 		filp->f_owner.signum = argi;
433 		break;
434 	case F_GETLEASE:
435 		err = fcntl_getlease(filp);
436 		break;
437 	case F_SETLEASE:
438 		err = fcntl_setlease(fd, filp, argi);
439 		break;
440 	case F_NOTIFY:
441 		err = fcntl_dirnotify(fd, filp, argi);
442 		break;
443 	case F_SETPIPE_SZ:
444 	case F_GETPIPE_SZ:
445 		err = pipe_fcntl(filp, cmd, argi);
446 		break;
447 	case F_ADD_SEALS:
448 	case F_GET_SEALS:
449 		err = memfd_fcntl(filp, cmd, argi);
450 		break;
451 	case F_GET_RW_HINT:
452 		err = fcntl_get_rw_hint(filp, cmd, arg);
453 		break;
454 	case F_SET_RW_HINT:
455 		err = fcntl_set_rw_hint(filp, cmd, arg);
456 		break;
457 	default:
458 		break;
459 	}
460 	return err;
461 }
462 
check_fcntl_cmd(unsigned cmd)463 static int check_fcntl_cmd(unsigned cmd)
464 {
465 	switch (cmd) {
466 	case F_DUPFD:
467 	case F_DUPFD_CLOEXEC:
468 	case F_DUPFD_QUERY:
469 	case F_GETFD:
470 	case F_SETFD:
471 	case F_GETFL:
472 		return 1;
473 	}
474 	return 0;
475 }
476 
SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,unsigned long,arg)477 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
478 {
479 	struct fd f = fdget_raw(fd);
480 	long err = -EBADF;
481 
482 	if (!f.file)
483 		goto out;
484 
485 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
486 		if (!check_fcntl_cmd(cmd))
487 			goto out1;
488 	}
489 
490 	err = security_file_fcntl(f.file, cmd, arg);
491 	if (!err)
492 		err = do_fcntl(fd, cmd, arg, f.file);
493 
494 out1:
495  	fdput(f);
496 out:
497 	return err;
498 }
499 
500 #if BITS_PER_LONG == 32
SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,unsigned long,arg)501 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
502 		unsigned long, arg)
503 {
504 	void __user *argp = (void __user *)arg;
505 	struct fd f = fdget_raw(fd);
506 	struct flock64 flock;
507 	long err = -EBADF;
508 
509 	if (!f.file)
510 		goto out;
511 
512 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
513 		if (!check_fcntl_cmd(cmd))
514 			goto out1;
515 	}
516 
517 	err = security_file_fcntl(f.file, cmd, arg);
518 	if (err)
519 		goto out1;
520 
521 	switch (cmd) {
522 	case F_GETLK64:
523 	case F_OFD_GETLK:
524 		err = -EFAULT;
525 		if (copy_from_user(&flock, argp, sizeof(flock)))
526 			break;
527 		err = fcntl_getlk64(f.file, cmd, &flock);
528 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
529 			err = -EFAULT;
530 		break;
531 	case F_SETLK64:
532 	case F_SETLKW64:
533 	case F_OFD_SETLK:
534 	case F_OFD_SETLKW:
535 		err = -EFAULT;
536 		if (copy_from_user(&flock, argp, sizeof(flock)))
537 			break;
538 		err = fcntl_setlk64(fd, f.file, cmd, &flock);
539 		break;
540 	default:
541 		err = do_fcntl(fd, cmd, arg, f.file);
542 		break;
543 	}
544 out1:
545 	fdput(f);
546 out:
547 	return err;
548 }
549 #endif
550 
551 #ifdef CONFIG_COMPAT
552 /* careful - don't use anywhere else */
553 #define copy_flock_fields(dst, src)		\
554 	(dst)->l_type = (src)->l_type;		\
555 	(dst)->l_whence = (src)->l_whence;	\
556 	(dst)->l_start = (src)->l_start;	\
557 	(dst)->l_len = (src)->l_len;		\
558 	(dst)->l_pid = (src)->l_pid;
559 
get_compat_flock(struct flock * kfl,const struct compat_flock __user * ufl)560 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
561 {
562 	struct compat_flock fl;
563 
564 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
565 		return -EFAULT;
566 	copy_flock_fields(kfl, &fl);
567 	return 0;
568 }
569 
get_compat_flock64(struct flock * kfl,const struct compat_flock64 __user * ufl)570 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
571 {
572 	struct compat_flock64 fl;
573 
574 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
575 		return -EFAULT;
576 	copy_flock_fields(kfl, &fl);
577 	return 0;
578 }
579 
put_compat_flock(const struct flock * kfl,struct compat_flock __user * ufl)580 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
581 {
582 	struct compat_flock fl;
583 
584 	memset(&fl, 0, sizeof(struct compat_flock));
585 	copy_flock_fields(&fl, kfl);
586 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
587 		return -EFAULT;
588 	return 0;
589 }
590 
put_compat_flock64(const struct flock * kfl,struct compat_flock64 __user * ufl)591 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
592 {
593 	struct compat_flock64 fl;
594 
595 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
596 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
597 
598 	memset(&fl, 0, sizeof(struct compat_flock64));
599 	copy_flock_fields(&fl, kfl);
600 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
601 		return -EFAULT;
602 	return 0;
603 }
604 #undef copy_flock_fields
605 
606 static unsigned int
convert_fcntl_cmd(unsigned int cmd)607 convert_fcntl_cmd(unsigned int cmd)
608 {
609 	switch (cmd) {
610 	case F_GETLK64:
611 		return F_GETLK;
612 	case F_SETLK64:
613 		return F_SETLK;
614 	case F_SETLKW64:
615 		return F_SETLKW;
616 	}
617 
618 	return cmd;
619 }
620 
621 /*
622  * GETLK was successful and we need to return the data, but it needs to fit in
623  * the compat structure.
624  * l_start shouldn't be too big, unless the original start + end is greater than
625  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
626  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
627  * truncate it, and only allow the app to see that part of the conflicting lock
628  * that might make sense to it anyway
629  */
fixup_compat_flock(struct flock * flock)630 static int fixup_compat_flock(struct flock *flock)
631 {
632 	if (flock->l_start > COMPAT_OFF_T_MAX)
633 		return -EOVERFLOW;
634 	if (flock->l_len > COMPAT_OFF_T_MAX)
635 		flock->l_len = COMPAT_OFF_T_MAX;
636 	return 0;
637 }
638 
do_compat_fcntl64(unsigned int fd,unsigned int cmd,compat_ulong_t arg)639 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
640 			     compat_ulong_t arg)
641 {
642 	struct fd f = fdget_raw(fd);
643 	struct flock flock;
644 	long err = -EBADF;
645 
646 	if (!f.file)
647 		return err;
648 
649 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
650 		if (!check_fcntl_cmd(cmd))
651 			goto out_put;
652 	}
653 
654 	err = security_file_fcntl(f.file, cmd, arg);
655 	if (err)
656 		goto out_put;
657 
658 	switch (cmd) {
659 	case F_GETLK:
660 		err = get_compat_flock(&flock, compat_ptr(arg));
661 		if (err)
662 			break;
663 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
664 		if (err)
665 			break;
666 		err = fixup_compat_flock(&flock);
667 		if (!err)
668 			err = put_compat_flock(&flock, compat_ptr(arg));
669 		break;
670 	case F_GETLK64:
671 	case F_OFD_GETLK:
672 		err = get_compat_flock64(&flock, compat_ptr(arg));
673 		if (err)
674 			break;
675 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
676 		if (!err)
677 			err = put_compat_flock64(&flock, compat_ptr(arg));
678 		break;
679 	case F_SETLK:
680 	case F_SETLKW:
681 		err = get_compat_flock(&flock, compat_ptr(arg));
682 		if (err)
683 			break;
684 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
685 		break;
686 	case F_SETLK64:
687 	case F_SETLKW64:
688 	case F_OFD_SETLK:
689 	case F_OFD_SETLKW:
690 		err = get_compat_flock64(&flock, compat_ptr(arg));
691 		if (err)
692 			break;
693 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
694 		break;
695 	default:
696 		err = do_fcntl(fd, cmd, arg, f.file);
697 		break;
698 	}
699 out_put:
700 	fdput(f);
701 	return err;
702 }
703 
COMPAT_SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)704 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
705 		       compat_ulong_t, arg)
706 {
707 	return do_compat_fcntl64(fd, cmd, arg);
708 }
709 
COMPAT_SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)710 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
711 		       compat_ulong_t, arg)
712 {
713 	switch (cmd) {
714 	case F_GETLK64:
715 	case F_SETLK64:
716 	case F_SETLKW64:
717 	case F_OFD_GETLK:
718 	case F_OFD_SETLK:
719 	case F_OFD_SETLKW:
720 		return -EINVAL;
721 	}
722 	return do_compat_fcntl64(fd, cmd, arg);
723 }
724 #endif
725 
726 /* Table to convert sigio signal codes into poll band bitmaps */
727 
728 static const __poll_t band_table[NSIGPOLL] = {
729 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
730 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
731 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
732 	EPOLLERR,				/* POLL_ERR */
733 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
734 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
735 };
736 
sigio_perm(struct task_struct * p,struct fown_struct * fown,int sig)737 static inline int sigio_perm(struct task_struct *p,
738                              struct fown_struct *fown, int sig)
739 {
740 	const struct cred *cred;
741 	int ret;
742 
743 	rcu_read_lock();
744 	cred = __task_cred(p);
745 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
746 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
747 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
748 	       !security_file_send_sigiotask(p, fown, sig));
749 	rcu_read_unlock();
750 	return ret;
751 }
752 
send_sigio_to_task(struct task_struct * p,struct fown_struct * fown,int fd,int reason,enum pid_type type)753 static void send_sigio_to_task(struct task_struct *p,
754 			       struct fown_struct *fown,
755 			       int fd, int reason, enum pid_type type)
756 {
757 	/*
758 	 * F_SETSIG can change ->signum lockless in parallel, make
759 	 * sure we read it once and use the same value throughout.
760 	 */
761 	int signum = READ_ONCE(fown->signum);
762 
763 	if (!sigio_perm(p, fown, signum))
764 		return;
765 
766 	switch (signum) {
767 		default: {
768 			kernel_siginfo_t si;
769 
770 			/* Queue a rt signal with the appropriate fd as its
771 			   value.  We use SI_SIGIO as the source, not
772 			   SI_KERNEL, since kernel signals always get
773 			   delivered even if we can't queue.  Failure to
774 			   queue in this case _should_ be reported; we fall
775 			   back to SIGIO in that case. --sct */
776 			clear_siginfo(&si);
777 			si.si_signo = signum;
778 			si.si_errno = 0;
779 		        si.si_code  = reason;
780 			/*
781 			 * Posix definies POLL_IN and friends to be signal
782 			 * specific si_codes for SIG_POLL.  Linux extended
783 			 * these si_codes to other signals in a way that is
784 			 * ambiguous if other signals also have signal
785 			 * specific si_codes.  In that case use SI_SIGIO instead
786 			 * to remove the ambiguity.
787 			 */
788 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
789 				si.si_code = SI_SIGIO;
790 
791 			/* Make sure we are called with one of the POLL_*
792 			   reasons, otherwise we could leak kernel stack into
793 			   userspace.  */
794 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
795 			if (reason - POLL_IN >= NSIGPOLL)
796 				si.si_band  = ~0L;
797 			else
798 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
799 			si.si_fd    = fd;
800 			if (!do_send_sig_info(signum, &si, p, type))
801 				break;
802 		}
803 			fallthrough;	/* fall back on the old plain SIGIO signal */
804 		case 0:
805 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
806 	}
807 }
808 
send_sigio(struct fown_struct * fown,int fd,int band)809 void send_sigio(struct fown_struct *fown, int fd, int band)
810 {
811 	struct task_struct *p;
812 	enum pid_type type;
813 	unsigned long flags;
814 	struct pid *pid;
815 
816 	read_lock_irqsave(&fown->lock, flags);
817 
818 	type = fown->pid_type;
819 	pid = fown->pid;
820 	if (!pid)
821 		goto out_unlock_fown;
822 
823 	if (type <= PIDTYPE_TGID) {
824 		rcu_read_lock();
825 		p = pid_task(pid, PIDTYPE_PID);
826 		if (p)
827 			send_sigio_to_task(p, fown, fd, band, type);
828 		rcu_read_unlock();
829 	} else {
830 		read_lock(&tasklist_lock);
831 		do_each_pid_task(pid, type, p) {
832 			send_sigio_to_task(p, fown, fd, band, type);
833 		} while_each_pid_task(pid, type, p);
834 		read_unlock(&tasklist_lock);
835 	}
836  out_unlock_fown:
837 	read_unlock_irqrestore(&fown->lock, flags);
838 }
839 
send_sigurg_to_task(struct task_struct * p,struct fown_struct * fown,enum pid_type type)840 static void send_sigurg_to_task(struct task_struct *p,
841 				struct fown_struct *fown, enum pid_type type)
842 {
843 	if (sigio_perm(p, fown, SIGURG))
844 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
845 }
846 
send_sigurg(struct fown_struct * fown)847 int send_sigurg(struct fown_struct *fown)
848 {
849 	struct task_struct *p;
850 	enum pid_type type;
851 	struct pid *pid;
852 	unsigned long flags;
853 	int ret = 0;
854 
855 	read_lock_irqsave(&fown->lock, flags);
856 
857 	type = fown->pid_type;
858 	pid = fown->pid;
859 	if (!pid)
860 		goto out_unlock_fown;
861 
862 	ret = 1;
863 
864 	if (type <= PIDTYPE_TGID) {
865 		rcu_read_lock();
866 		p = pid_task(pid, PIDTYPE_PID);
867 		if (p)
868 			send_sigurg_to_task(p, fown, type);
869 		rcu_read_unlock();
870 	} else {
871 		read_lock(&tasklist_lock);
872 		do_each_pid_task(pid, type, p) {
873 			send_sigurg_to_task(p, fown, type);
874 		} while_each_pid_task(pid, type, p);
875 		read_unlock(&tasklist_lock);
876 	}
877  out_unlock_fown:
878 	read_unlock_irqrestore(&fown->lock, flags);
879 	return ret;
880 }
881 
882 static DEFINE_SPINLOCK(fasync_lock);
883 static struct kmem_cache *fasync_cache __ro_after_init;
884 
885 /*
886  * Remove a fasync entry. If successfully removed, return
887  * positive and clear the FASYNC flag. If no entry exists,
888  * do nothing and return 0.
889  *
890  * NOTE! It is very important that the FASYNC flag always
891  * match the state "is the filp on a fasync list".
892  *
893  */
fasync_remove_entry(struct file * filp,struct fasync_struct ** fapp)894 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
895 {
896 	struct fasync_struct *fa, **fp;
897 	int result = 0;
898 
899 	spin_lock(&filp->f_lock);
900 	spin_lock(&fasync_lock);
901 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
902 		if (fa->fa_file != filp)
903 			continue;
904 
905 		write_lock_irq(&fa->fa_lock);
906 		fa->fa_file = NULL;
907 		write_unlock_irq(&fa->fa_lock);
908 
909 		*fp = fa->fa_next;
910 		kfree_rcu(fa, fa_rcu);
911 		filp->f_flags &= ~FASYNC;
912 		result = 1;
913 		break;
914 	}
915 	spin_unlock(&fasync_lock);
916 	spin_unlock(&filp->f_lock);
917 	return result;
918 }
919 
fasync_alloc(void)920 struct fasync_struct *fasync_alloc(void)
921 {
922 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
923 }
924 
925 /*
926  * NOTE! This can be used only for unused fasync entries:
927  * entries that actually got inserted on the fasync list
928  * need to be released by rcu - see fasync_remove_entry.
929  */
fasync_free(struct fasync_struct * new)930 void fasync_free(struct fasync_struct *new)
931 {
932 	kmem_cache_free(fasync_cache, new);
933 }
934 
935 /*
936  * Insert a new entry into the fasync list.  Return the pointer to the
937  * old one if we didn't use the new one.
938  *
939  * NOTE! It is very important that the FASYNC flag always
940  * match the state "is the filp on a fasync list".
941  */
fasync_insert_entry(int fd,struct file * filp,struct fasync_struct ** fapp,struct fasync_struct * new)942 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
943 {
944         struct fasync_struct *fa, **fp;
945 
946 	spin_lock(&filp->f_lock);
947 	spin_lock(&fasync_lock);
948 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
949 		if (fa->fa_file != filp)
950 			continue;
951 
952 		write_lock_irq(&fa->fa_lock);
953 		fa->fa_fd = fd;
954 		write_unlock_irq(&fa->fa_lock);
955 		goto out;
956 	}
957 
958 	rwlock_init(&new->fa_lock);
959 	new->magic = FASYNC_MAGIC;
960 	new->fa_file = filp;
961 	new->fa_fd = fd;
962 	new->fa_next = *fapp;
963 	rcu_assign_pointer(*fapp, new);
964 	filp->f_flags |= FASYNC;
965 
966 out:
967 	spin_unlock(&fasync_lock);
968 	spin_unlock(&filp->f_lock);
969 	return fa;
970 }
971 
972 /*
973  * Add a fasync entry. Return negative on error, positive if
974  * added, and zero if did nothing but change an existing one.
975  */
fasync_add_entry(int fd,struct file * filp,struct fasync_struct ** fapp)976 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
977 {
978 	struct fasync_struct *new;
979 
980 	new = fasync_alloc();
981 	if (!new)
982 		return -ENOMEM;
983 
984 	/*
985 	 * fasync_insert_entry() returns the old (update) entry if
986 	 * it existed.
987 	 *
988 	 * So free the (unused) new entry and return 0 to let the
989 	 * caller know that we didn't add any new fasync entries.
990 	 */
991 	if (fasync_insert_entry(fd, filp, fapp, new)) {
992 		fasync_free(new);
993 		return 0;
994 	}
995 
996 	return 1;
997 }
998 
999 /*
1000  * fasync_helper() is used by almost all character device drivers
1001  * to set up the fasync queue, and for regular files by the file
1002  * lease code. It returns negative on error, 0 if it did no changes
1003  * and positive if it added/deleted the entry.
1004  */
fasync_helper(int fd,struct file * filp,int on,struct fasync_struct ** fapp)1005 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
1006 {
1007 	if (!on)
1008 		return fasync_remove_entry(filp, fapp);
1009 	return fasync_add_entry(fd, filp, fapp);
1010 }
1011 
1012 EXPORT_SYMBOL(fasync_helper);
1013 
1014 /*
1015  * rcu_read_lock() is held
1016  */
kill_fasync_rcu(struct fasync_struct * fa,int sig,int band)1017 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1018 {
1019 	while (fa) {
1020 		struct fown_struct *fown;
1021 		unsigned long flags;
1022 
1023 		if (fa->magic != FASYNC_MAGIC) {
1024 			printk(KERN_ERR "kill_fasync: bad magic number in "
1025 			       "fasync_struct!\n");
1026 			return;
1027 		}
1028 		read_lock_irqsave(&fa->fa_lock, flags);
1029 		if (fa->fa_file) {
1030 			fown = &fa->fa_file->f_owner;
1031 			/* Don't send SIGURG to processes which have not set a
1032 			   queued signum: SIGURG has its own default signalling
1033 			   mechanism. */
1034 			if (!(sig == SIGURG && fown->signum == 0))
1035 				send_sigio(fown, fa->fa_fd, band);
1036 		}
1037 		read_unlock_irqrestore(&fa->fa_lock, flags);
1038 		fa = rcu_dereference(fa->fa_next);
1039 	}
1040 }
1041 
kill_fasync(struct fasync_struct ** fp,int sig,int band)1042 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1043 {
1044 	/* First a quick test without locking: usually
1045 	 * the list is empty.
1046 	 */
1047 	if (*fp) {
1048 		rcu_read_lock();
1049 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1050 		rcu_read_unlock();
1051 	}
1052 }
1053 EXPORT_SYMBOL(kill_fasync);
1054 
fcntl_init(void)1055 static int __init fcntl_init(void)
1056 {
1057 	/*
1058 	 * Please add new bits here to ensure allocation uniqueness.
1059 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1060 	 * is defined as O_NONBLOCK on some platforms and not on others.
1061 	 */
1062 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1063 		HWEIGHT32(
1064 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1065 			__FMODE_EXEC | __FMODE_NONOTIFY));
1066 
1067 	fasync_cache = kmem_cache_create("fasync_cache",
1068 					 sizeof(struct fasync_struct), 0,
1069 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1070 	return 0;
1071 }
1072 
1073 module_init(fcntl_init)
1074