xref: /freebsd/sys/kern/kern_ffclock.c (revision 685dc743)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 The University of Melbourne
5  * All rights reserved.
6  *
7  * This software was developed by Julien Ridoux at the University of Melbourne
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_ffclock.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/priv.h>
42 #include <sys/proc.h>
43 #include <sys/sbuf.h>
44 #include <sys/sysproto.h>
45 #include <sys/sysctl.h>
46 #include <sys/systm.h>
47 #include <sys/timeffc.h>
48 
49 #ifdef FFCLOCK
50 
51 FEATURE(ffclock, "Feed-forward clock support");
52 
53 extern struct ffclock_estimate ffclock_estimate;
54 extern struct bintime ffclock_boottime;
55 extern int8_t ffclock_updated;
56 extern struct mtx ffclock_mtx;
57 
58 /*
59  * Feed-forward clock absolute time. This should be the preferred way to read
60  * the feed-forward clock for "wall-clock" type time. The flags allow to compose
61  * various flavours of absolute time (e.g. with or without leap seconds taken
62  * into account). If valid pointers are provided, the ffcounter value and an
63  * upper bound on clock error associated with the bintime are provided.
64  * NOTE: use ffclock_convert_abs() to differ the conversion of a ffcounter value
65  * read earlier.
66  */
67 void
ffclock_abstime(ffcounter * ffcount,struct bintime * bt,struct bintime * error_bound,uint32_t flags)68 ffclock_abstime(ffcounter *ffcount, struct bintime *bt,
69     struct bintime *error_bound, uint32_t flags)
70 {
71 	struct ffclock_estimate cest;
72 	ffcounter ffc;
73 	ffcounter update_ffcount;
74 	ffcounter ffdelta_error;
75 
76 	/* Get counter and corresponding time. */
77 	if ((flags & FFCLOCK_FAST) == FFCLOCK_FAST)
78 		ffclock_last_tick(&ffc, bt, flags);
79 	else {
80 		ffclock_read_counter(&ffc);
81 		ffclock_convert_abs(ffc, bt, flags);
82 	}
83 
84 	/* Current ffclock estimate, use update_ffcount as generation number. */
85 	do {
86 		update_ffcount = ffclock_estimate.update_ffcount;
87 		bcopy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
88 	} while (update_ffcount != ffclock_estimate.update_ffcount);
89 
90 	/*
91 	 * Leap second adjustment. Total as seen by synchronisation algorithm
92 	 * since it started. cest.leapsec_next is the ffcounter prediction of
93 	 * when the next leapsecond occurs.
94 	 */
95 	if ((flags & FFCLOCK_LEAPSEC) == FFCLOCK_LEAPSEC) {
96 		bt->sec -= cest.leapsec_total;
97 		if (ffc > cest.leapsec_next)
98 			bt->sec -= cest.leapsec;
99 	}
100 
101 	/* Boot time adjustment, for uptime/monotonic clocks. */
102 	if ((flags & FFCLOCK_UPTIME) == FFCLOCK_UPTIME) {
103 		bintime_sub(bt, &ffclock_boottime);
104 	}
105 
106 	/* Compute error bound if a valid pointer has been passed. */
107 	if (error_bound) {
108 		ffdelta_error = ffc - cest.update_ffcount;
109 		ffclock_convert_diff(ffdelta_error, error_bound);
110 		/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
111 		bintime_mul(error_bound, cest.errb_rate *
112 		    (uint64_t)18446744073709LL);
113 		/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns] */
114 		bintime_addx(error_bound, cest.errb_abs *
115 		    (uint64_t)18446744073LL);
116 	}
117 
118 	if (ffcount)
119 		*ffcount = ffc;
120 }
121 
122 /*
123  * Feed-forward difference clock. This should be the preferred way to convert a
124  * time interval in ffcounter values into a time interval in seconds. If a valid
125  * pointer is passed, an upper bound on the error in computing the time interval
126  * in seconds is provided.
127  */
128 void
ffclock_difftime(ffcounter ffdelta,struct bintime * bt,struct bintime * error_bound)129 ffclock_difftime(ffcounter ffdelta, struct bintime *bt,
130     struct bintime *error_bound)
131 {
132 	ffcounter update_ffcount;
133 	uint32_t err_rate;
134 
135 	ffclock_convert_diff(ffdelta, bt);
136 
137 	if (error_bound) {
138 		do {
139 			update_ffcount = ffclock_estimate.update_ffcount;
140 			err_rate = ffclock_estimate.errb_rate;
141 		} while (update_ffcount != ffclock_estimate.update_ffcount);
142 
143 		ffclock_convert_diff(ffdelta, error_bound);
144 		/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
145 		bintime_mul(error_bound, err_rate * (uint64_t)18446744073709LL);
146 	}
147 }
148 
149 /*
150  * Create a new kern.sysclock sysctl node, which will be home to some generic
151  * sysclock configuration variables. Feed-forward clock specific variables will
152  * live under the ffclock subnode.
153  */
154 
155 SYSCTL_NODE(_kern, OID_AUTO, sysclock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
156     "System clock related configuration");
157 SYSCTL_NODE(_kern_sysclock, OID_AUTO, ffclock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
158     "Feed-forward clock configuration");
159 
160 static char *sysclocks[] = {"feedback", "feed-forward"};
161 #define	MAX_SYSCLOCK_NAME_LEN 16
162 #define	NUM_SYSCLOCKS nitems(sysclocks)
163 
164 static int ffclock_version = 2;
165 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, version, CTLFLAG_RD,
166     &ffclock_version, 0, "Feed-forward clock kernel version");
167 
168 /* List available sysclocks. */
169 static int
sysctl_kern_sysclock_available(SYSCTL_HANDLER_ARGS)170 sysctl_kern_sysclock_available(SYSCTL_HANDLER_ARGS)
171 {
172 	struct sbuf *s;
173 	int clk, error;
174 
175 	s = sbuf_new_for_sysctl(NULL, NULL,
176 	    MAX_SYSCLOCK_NAME_LEN * NUM_SYSCLOCKS, req);
177 	if (s == NULL)
178 		return (ENOMEM);
179 
180 	for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
181 		sbuf_cat(s, sysclocks[clk]);
182 		if (clk + 1 < NUM_SYSCLOCKS)
183 			sbuf_cat(s, " ");
184 	}
185 	error = sbuf_finish(s);
186 	sbuf_delete(s);
187 
188 	return (error);
189 }
190 
191 SYSCTL_PROC(_kern_sysclock, OID_AUTO, available,
192     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0,
193     sysctl_kern_sysclock_available, "A",
194     "List of available system clocks");
195 
196 /*
197  * Return the name of the active system clock if read, or attempt to change
198  * the active system clock to the user specified one if written to. The active
199  * system clock is read when calling any of the [get]{bin,nano,micro}[up]time()
200  * functions.
201  */
202 static int
sysctl_kern_sysclock_active(SYSCTL_HANDLER_ARGS)203 sysctl_kern_sysclock_active(SYSCTL_HANDLER_ARGS)
204 {
205 	char newclock[MAX_SYSCLOCK_NAME_LEN];
206 	int error;
207 	int clk;
208 
209 	/* Return the name of the current active sysclock. */
210 	strlcpy(newclock, sysclocks[sysclock_active], sizeof(newclock));
211 	error = sysctl_handle_string(oidp, newclock, sizeof(newclock), req);
212 
213 	/* Check for error or no change */
214 	if (error != 0 || req->newptr == NULL)
215 		goto done;
216 
217 	/* Change the active sysclock to the user specified one: */
218 	error = EINVAL;
219 	for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
220 		if (strncmp(newclock, sysclocks[clk],
221 		    MAX_SYSCLOCK_NAME_LEN - 1)) {
222 			continue;
223 		}
224 		sysclock_active = clk;
225 		error = 0;
226 		break;
227 	}
228 done:
229 	return (error);
230 }
231 
232 SYSCTL_PROC(_kern_sysclock, OID_AUTO, active,
233     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0,
234     sysctl_kern_sysclock_active, "A",
235     "Name of the active system clock which is currently serving time");
236 
237 static int sysctl_kern_ffclock_ffcounter_bypass = 0;
238 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, ffcounter_bypass, CTLFLAG_RW,
239     &sysctl_kern_ffclock_ffcounter_bypass, 0,
240     "Use reliable hardware timecounter as the feed-forward counter");
241 
242 /*
243  * High level functions to access the Feed-Forward Clock.
244  */
245 void
ffclock_bintime(struct bintime * bt)246 ffclock_bintime(struct bintime *bt)
247 {
248 
249 	ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
250 }
251 
252 void
ffclock_nanotime(struct timespec * tsp)253 ffclock_nanotime(struct timespec *tsp)
254 {
255 	struct bintime bt;
256 
257 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
258 	bintime2timespec(&bt, tsp);
259 }
260 
261 void
ffclock_microtime(struct timeval * tvp)262 ffclock_microtime(struct timeval *tvp)
263 {
264 	struct bintime bt;
265 
266 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
267 	bintime2timeval(&bt, tvp);
268 }
269 
270 void
ffclock_getbintime(struct bintime * bt)271 ffclock_getbintime(struct bintime *bt)
272 {
273 
274 	ffclock_abstime(NULL, bt, NULL,
275 	    FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
276 }
277 
278 void
ffclock_getnanotime(struct timespec * tsp)279 ffclock_getnanotime(struct timespec *tsp)
280 {
281 	struct bintime bt;
282 
283 	ffclock_abstime(NULL, &bt, NULL,
284 	    FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
285 	bintime2timespec(&bt, tsp);
286 }
287 
288 void
ffclock_getmicrotime(struct timeval * tvp)289 ffclock_getmicrotime(struct timeval *tvp)
290 {
291 	struct bintime bt;
292 
293 	ffclock_abstime(NULL, &bt, NULL,
294 	    FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
295 	bintime2timeval(&bt, tvp);
296 }
297 
298 void
ffclock_binuptime(struct bintime * bt)299 ffclock_binuptime(struct bintime *bt)
300 {
301 
302 	ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
303 }
304 
305 void
ffclock_nanouptime(struct timespec * tsp)306 ffclock_nanouptime(struct timespec *tsp)
307 {
308 	struct bintime bt;
309 
310 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
311 	bintime2timespec(&bt, tsp);
312 }
313 
314 void
ffclock_microuptime(struct timeval * tvp)315 ffclock_microuptime(struct timeval *tvp)
316 {
317 	struct bintime bt;
318 
319 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
320 	bintime2timeval(&bt, tvp);
321 }
322 
323 void
ffclock_getbinuptime(struct bintime * bt)324 ffclock_getbinuptime(struct bintime *bt)
325 {
326 
327 	ffclock_abstime(NULL, bt, NULL,
328 	    FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
329 }
330 
331 void
ffclock_getnanouptime(struct timespec * tsp)332 ffclock_getnanouptime(struct timespec *tsp)
333 {
334 	struct bintime bt;
335 
336 	ffclock_abstime(NULL, &bt, NULL,
337 	    FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
338 	bintime2timespec(&bt, tsp);
339 }
340 
341 void
ffclock_getmicrouptime(struct timeval * tvp)342 ffclock_getmicrouptime(struct timeval *tvp)
343 {
344 	struct bintime bt;
345 
346 	ffclock_abstime(NULL, &bt, NULL,
347 	    FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
348 	bintime2timeval(&bt, tvp);
349 }
350 
351 void
ffclock_bindifftime(ffcounter ffdelta,struct bintime * bt)352 ffclock_bindifftime(ffcounter ffdelta, struct bintime *bt)
353 {
354 
355 	ffclock_difftime(ffdelta, bt, NULL);
356 }
357 
358 void
ffclock_nanodifftime(ffcounter ffdelta,struct timespec * tsp)359 ffclock_nanodifftime(ffcounter ffdelta, struct timespec *tsp)
360 {
361 	struct bintime bt;
362 
363 	ffclock_difftime(ffdelta, &bt, NULL);
364 	bintime2timespec(&bt, tsp);
365 }
366 
367 void
ffclock_microdifftime(ffcounter ffdelta,struct timeval * tvp)368 ffclock_microdifftime(ffcounter ffdelta, struct timeval *tvp)
369 {
370 	struct bintime bt;
371 
372 	ffclock_difftime(ffdelta, &bt, NULL);
373 	bintime2timeval(&bt, tvp);
374 }
375 
376 /*
377  * System call allowing userland applications to retrieve the current value of
378  * the Feed-Forward Clock counter.
379  */
380 #ifndef _SYS_SYSPROTO_H_
381 struct ffclock_getcounter_args {
382 	ffcounter *ffcount;
383 };
384 #endif
385 /* ARGSUSED */
386 int
sys_ffclock_getcounter(struct thread * td,struct ffclock_getcounter_args * uap)387 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
388 {
389 	ffcounter ffcount;
390 	int error;
391 
392 	ffcount = 0;
393 	ffclock_read_counter(&ffcount);
394 	if (ffcount == 0)
395 		return (EAGAIN);
396 	error = copyout(&ffcount, uap->ffcount, sizeof(ffcounter));
397 
398 	return (error);
399 }
400 
401 /*
402  * System call allowing the synchronisation daemon to push new feed-forward clock
403  * estimates to the kernel. Acquire ffclock_mtx to prevent concurrent updates
404  * and ensure data consistency.
405  * NOTE: ffclock_updated signals the fftimehands that new estimates are
406  * available. The updated estimates are picked up by the fftimehands on next
407  * tick, which could take as long as 1/hz seconds (if ticks are not missed).
408  */
409 #ifndef _SYS_SYSPROTO_H_
410 struct ffclock_setestimate_args {
411 	struct ffclock_estimate *cest;
412 };
413 #endif
414 /* ARGSUSED */
415 int
sys_ffclock_setestimate(struct thread * td,struct ffclock_setestimate_args * uap)416 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
417 {
418 	struct ffclock_estimate cest;
419 	int error;
420 
421 	/* Reuse of PRIV_CLOCK_SETTIME. */
422 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
423 		return (error);
424 
425 	if ((error = copyin(uap->cest, &cest, sizeof(struct ffclock_estimate)))
426 	    != 0)
427 		return (error);
428 
429 	mtx_lock(&ffclock_mtx);
430 	memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
431 	ffclock_updated++;
432 	mtx_unlock(&ffclock_mtx);
433 	return (error);
434 }
435 
436 /*
437  * System call allowing userland applications to retrieve the clock estimates
438  * stored within the kernel. It is useful to kickstart the synchronisation
439  * daemon with the kernel's knowledge of hardware timecounter.
440  */
441 #ifndef _SYS_SYSPROTO_H_
442 struct ffclock_getestimate_args {
443 	struct ffclock_estimate *cest;
444 };
445 #endif
446 /* ARGSUSED */
447 int
sys_ffclock_getestimate(struct thread * td,struct ffclock_getestimate_args * uap)448 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
449 {
450 	struct ffclock_estimate cest;
451 	int error;
452 
453 	mtx_lock(&ffclock_mtx);
454 	memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
455 	mtx_unlock(&ffclock_mtx);
456 	error = copyout(&cest, uap->cest, sizeof(struct ffclock_estimate));
457 	return (error);
458 }
459 
460 #else /* !FFCLOCK */
461 
462 int
sys_ffclock_getcounter(struct thread * td,struct ffclock_getcounter_args * uap)463 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
464 {
465 
466 	return (ENOSYS);
467 }
468 
469 int
sys_ffclock_setestimate(struct thread * td,struct ffclock_setestimate_args * uap)470 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
471 {
472 
473 	return (ENOSYS);
474 }
475 
476 int
sys_ffclock_getestimate(struct thread * td,struct ffclock_getestimate_args * uap)477 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
478 {
479 
480 	return (ENOSYS);
481 }
482 
483 #endif /* FFCLOCK */
484