1 /* $OpenBSD: mkfs.c,v 1.14 2021/10/06 00:40:41 deraadt Exp $ */
2 /* $NetBSD: mkfs.c,v 1.34 2016/06/24 19:24:11 christos Exp $ */
3
4 /*
5 * Copyright (c) 2002 Networks Associates Technology, Inc.
6 * All rights reserved.
7 *
8 * This software was developed for the FreeBSD Project by Marshall
9 * Kirk McKusick and Network Associates Laboratories, the Security
10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12 * research program
13 *
14 * Copyright (c) 1980, 1989, 1993
15 * The Regents of the University of California. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 * 3. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 */
41
42 #include <sys/param.h> /* roundup howmany setbit */
43 #include <sys/time.h>
44 #include <sys/resource.h>
45
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <limits.h>
49 #include <string.h>
50 #include <unistd.h>
51 #include <errno.h>
52 #include <util.h>
53
54 #include <ufs/ufs/dinode.h>
55 #include <ufs/ffs/fs.h>
56
57 #include "ffs/ufs_inode.h"
58 #include "ffs/ffs_extern.h"
59
60 #include "makefs.h"
61 #include "ffs.h"
62 #include "ffs/newfs_extern.h"
63
64 static void initcg(int, time_t, const fsinfo_t *);
65 static int ilog2(int);
66
67 static int count_digits(int);
68
69 /*
70 * make file system for cylinder-group style file systems
71 */
72 #define UMASK 0755
73 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
74
75 union {
76 struct fs fs;
77 char pad[SBLOCKSIZE];
78 } fsun;
79 #define sblock fsun.fs
80 struct csum *fscs;
81
82 union {
83 struct cg cg;
84 char pad[FFS_MAXBSIZE];
85 } cgun;
86 #define acg cgun.cg
87
88 char *iobuf;
89 int iobufsize;
90
91 char writebuf[FFS_MAXBSIZE];
92
93 static int Oflag; /* format as an 4.3BSD file system */
94 static int64_t fssize; /* file system size */
95 static int sectorsize; /* bytes/sector */
96 static int fsize; /* fragment size */
97 static int bsize; /* block size */
98 static int maxbsize; /* maximum clustering */
99 static int maxblkspercg;
100 static int minfree; /* free space threshold */
101 static int opt; /* optimization preference (space or time) */
102 static int density; /* number of bytes per inode */
103 static int maxcontig; /* max contiguous blocks to allocate */
104 static int maxbpg; /* maximum blocks per file in a cyl group */
105 static int bbsize; /* boot block size */
106 static int avgfilesize; /* expected average file size */
107 static int avgfpdir; /* expected number of files per directory */
108
109 struct fs *
ffs_mkfs(const char * fsys,const fsinfo_t * fsopts,time_t tstamp)110 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp)
111 {
112 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
113 int32_t cylno, i, csfrags;
114 long long sizepb;
115 void *space;
116 int size;
117 int nprintcols, printcolwidth;
118 ffs_opt_t *ffs_opts = fsopts->fs_specific;
119
120 Oflag = ffs_opts->version;
121 fssize = fsopts->size / fsopts->sectorsize;
122 sectorsize = fsopts->sectorsize;
123 fsize = ffs_opts->fsize;
124 bsize = ffs_opts->bsize;
125 maxbsize = ffs_opts->maxbsize;
126 maxblkspercg = ffs_opts->maxblkspercg;
127 minfree = ffs_opts->minfree;
128 opt = ffs_opts->optimization;
129 density = ffs_opts->density;
130 maxcontig = MAXIMUM(1, MINIMUM(MAXBSIZE, FFS_MAXBSIZE) / bsize);
131 maxbpg = ffs_opts->maxbpg;
132 avgfilesize = ffs_opts->avgfilesize;
133 avgfpdir = ffs_opts->avgfpdir;
134 bbsize = BBSIZE;
135
136 strlcpy((char *)sblock.fs_volname, ffs_opts->label,
137 sizeof(sblock.fs_volname));
138
139 sblock.fs_inodefmt = FS_44INODEFMT;
140 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
141 MAXSYMLINKLEN_UFS2);
142 sblock.fs_ffs1_flags = FS_FLAGS_UPDATED;
143 sblock.fs_flags = 0;
144
145 /*
146 * Validate the given file system size.
147 * Verify that its last block can actually be accessed.
148 * Convert to file system fragment sized units.
149 */
150 if (fssize <= 0) {
151 printf("preposterous size %lld\n", (long long)fssize);
152 exit(13);
153 }
154 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
155
156 /*
157 * collect and verify the filesystem density info
158 */
159 sblock.fs_avgfilesize = avgfilesize;
160 sblock.fs_avgfpdir = avgfpdir;
161 if (sblock.fs_avgfilesize <= 0)
162 printf("illegal expected average file size %d\n",
163 sblock.fs_avgfilesize), exit(14);
164 if (sblock.fs_avgfpdir <= 0)
165 printf("illegal expected number of files per directory %d\n",
166 sblock.fs_avgfpdir), exit(15);
167 /*
168 * collect and verify the block and fragment sizes
169 */
170 sblock.fs_bsize = bsize;
171 sblock.fs_fsize = fsize;
172 if (!POWEROF2(sblock.fs_bsize)) {
173 printf("block size must be a power of 2, not %d\n",
174 sblock.fs_bsize);
175 exit(16);
176 }
177 if (!POWEROF2(sblock.fs_fsize)) {
178 printf("fragment size must be a power of 2, not %d\n",
179 sblock.fs_fsize);
180 exit(17);
181 }
182 if (sblock.fs_fsize < sectorsize) {
183 printf("fragment size %d is too small, minimum is %d\n",
184 sblock.fs_fsize, sectorsize);
185 exit(18);
186 }
187 if (sblock.fs_bsize < MINBSIZE) {
188 printf("block size %d is too small, minimum is %d\n",
189 sblock.fs_bsize, MINBSIZE);
190 exit(19);
191 }
192 if (sblock.fs_bsize > FFS_MAXBSIZE) {
193 printf("block size %d is too large, maximum is %d\n",
194 sblock.fs_bsize, FFS_MAXBSIZE);
195 exit(19);
196 }
197 if (sblock.fs_bsize < sblock.fs_fsize) {
198 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
199 sblock.fs_bsize, sblock.fs_fsize);
200 exit(20);
201 }
202
203 if (maxbsize < bsize || !POWEROF2(maxbsize)) {
204 sblock.fs_maxbsize = sblock.fs_bsize;
205 printf("Extent size set to %d\n", sblock.fs_maxbsize);
206 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
207 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
208 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
209 } else {
210 sblock.fs_maxbsize = maxbsize;
211 }
212 sblock.fs_maxcontig = maxcontig;
213 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
214 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
215 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
216 }
217
218 if (sblock.fs_maxcontig > 1)
219 sblock.fs_contigsumsize = MINIMUM(sblock.fs_maxcontig,FS_MAXCONTIG);
220
221 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
222 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
223 sblock.fs_qbmask = ~sblock.fs_bmask;
224 sblock.fs_qfmask = ~sblock.fs_fmask;
225 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
226 sblock.fs_bshift++;
227 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
228 sblock.fs_fshift++;
229 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
230 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
231 sblock.fs_fragshift++;
232 if (sblock.fs_frag > MAXFRAG) {
233 printf("fragment size %d is too small, "
234 "minimum with block size %d is %d\n",
235 sblock.fs_fsize, sblock.fs_bsize,
236 sblock.fs_bsize / MAXFRAG);
237 exit(21);
238 }
239 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
240 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
241
242 if (Oflag <= 1) {
243 sblock.fs_magic = FS_UFS1_MAGIC;
244 sblock.fs_sblockloc = SBLOCK_UFS1;
245 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
246 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
247 sblock.fs_maxsymlinklen = (NDADDR + NIADDR) * sizeof (int32_t);
248 sblock.fs_inodefmt = FS_44INODEFMT;
249 sblock.fs_cgoffset = 0;
250 sblock.fs_cgmask = 0xffffffff;
251 sblock.fs_ffs1_size = sblock.fs_size;
252 sblock.fs_rotdelay = 0;
253 sblock.fs_rps = 60;
254 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
255 sblock.fs_cpg = 1;
256 sblock.fs_interleave = 1;
257 sblock.fs_trackskew = 0;
258 sblock.fs_cpc = 0;
259 sblock.fs_postblformat = 1;
260 sblock.fs_nrpos = 1;
261 } else {
262 sblock.fs_magic = FS_UFS2_MAGIC;
263 #if 0 /* XXX makefs is used for small filesystems. */
264 sblock.fs_sblockloc = SBLOCK_UFS2;
265 #else
266 sblock.fs_sblockloc = SBLOCK_UFS1;
267 #endif
268 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
269 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
270 sblock.fs_maxsymlinklen = (NDADDR + NIADDR) * sizeof (int64_t);
271 }
272
273 sblock.fs_sblkno =
274 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
275 sblock.fs_frag);
276 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
277 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
278 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
279 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
280 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
281 sizepb *= NINDIR(&sblock);
282 sblock.fs_maxfilesize += sizepb;
283 }
284
285 /*
286 * Calculate the number of blocks to put into each cylinder group.
287 *
288 * This algorithm selects the number of blocks per cylinder
289 * group. The first goal is to have at least enough data blocks
290 * in each cylinder group to meet the density requirement. Once
291 * this goal is achieved we try to expand to have at least
292 * 1 cylinder group. Once this goal is achieved, we pack as
293 * many blocks into each cylinder group map as will fit.
294 *
295 * We start by calculating the smallest number of blocks that we
296 * can put into each cylinder group. If this is too big, we reduce
297 * the density until it fits.
298 */
299 origdensity = density;
300 for (;;) {
301 fragsperinode = MAXIMUM(numfrags(&sblock, density), 1);
302 minfpg = fragsperinode * INOPB(&sblock);
303 if (minfpg > sblock.fs_size)
304 minfpg = sblock.fs_size;
305 sblock.fs_ipg = INOPB(&sblock);
306 sblock.fs_fpg = roundup(sblock.fs_iblkno +
307 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
308 if (sblock.fs_fpg < minfpg)
309 sblock.fs_fpg = minfpg;
310 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
311 INOPB(&sblock));
312 sblock.fs_fpg = roundup(sblock.fs_iblkno +
313 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
314 if (sblock.fs_fpg < minfpg)
315 sblock.fs_fpg = minfpg;
316 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
317 INOPB(&sblock));
318 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
319 break;
320 density -= sblock.fs_fsize;
321 }
322 if (density != origdensity)
323 printf("density reduced from %d to %d\n", origdensity, density);
324
325 if (maxblkspercg <= 0 || maxblkspercg >= fssize)
326 maxblkspercg = fssize - 1;
327 /*
328 * Start packing more blocks into the cylinder group until
329 * it cannot grow any larger, the number of cylinder groups
330 * drops below 1, or we reach the size requested.
331 */
332 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
333 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
334 INOPB(&sblock));
335 if (sblock.fs_size / sblock.fs_fpg < 1)
336 break;
337 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
338 continue;
339 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
340 break;
341 sblock.fs_fpg -= sblock.fs_frag;
342 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
343 INOPB(&sblock));
344 break;
345 }
346 /*
347 * Check to be sure that the last cylinder group has enough blocks
348 * to be viable. If it is too small, reduce the number of blocks
349 * per cylinder group which will have the effect of moving more
350 * blocks into the last cylinder group.
351 */
352 optimalfpg = sblock.fs_fpg;
353 for (;;) {
354 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
355 lastminfpg = roundup(sblock.fs_iblkno +
356 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
357 if (sblock.fs_size < lastminfpg) {
358 printf("Filesystem size %lld < minimum size of %d\n",
359 (long long)sblock.fs_size, lastminfpg);
360 exit(28);
361 }
362 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
363 sblock.fs_size % sblock.fs_fpg == 0)
364 break;
365 sblock.fs_fpg -= sblock.fs_frag;
366 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
367 INOPB(&sblock));
368 }
369 if (optimalfpg != sblock.fs_fpg)
370 printf("Reduced frags per cylinder group from %d to %d %s\n",
371 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
372 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
373 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
374 if (Oflag <= 1) {
375 sblock.fs_spc = sblock.fs_fpg * sblock.fs_nspf;
376 sblock.fs_nsect = sblock.fs_spc;
377 sblock.fs_npsect = sblock.fs_spc;
378 sblock.fs_ncyl = sblock.fs_ncg;
379 }
380
381 /*
382 * fill in remaining fields of the super block
383 */
384 sblock.fs_csaddr = cgdmin(&sblock, 0);
385 sblock.fs_cssize =
386 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
387
388 /*
389 * Setup memory for temporary in-core cylgroup summaries.
390 * Cribbed from ffs_mountfs().
391 */
392 size = sblock.fs_cssize;
393 if (sblock.fs_contigsumsize > 0)
394 size += sblock.fs_ncg * sizeof(int32_t);
395 space = ecalloc(1, size);
396 sblock.fs_csp = space;
397 space = (char *)space + sblock.fs_cssize;
398 if (sblock.fs_contigsumsize > 0) {
399 int32_t *lp;
400
401 sblock.fs_maxcluster = lp = space;
402 for (i = 0; i < sblock.fs_ncg; i++)
403 *lp++ = sblock.fs_contigsumsize;
404 }
405
406 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
407 if (sblock.fs_sbsize > SBLOCKSIZE)
408 sblock.fs_sbsize = SBLOCKSIZE;
409 sblock.fs_minfree = minfree;
410 sblock.fs_maxcontig = maxcontig;
411 sblock.fs_maxbpg = maxbpg;
412 sblock.fs_optim = opt;
413 sblock.fs_cgrotor = 0;
414 sblock.fs_pendingblocks = 0;
415 sblock.fs_pendinginodes = 0;
416 sblock.fs_cstotal.cs_ndir = 0;
417 sblock.fs_cstotal.cs_nbfree = 0;
418 sblock.fs_cstotal.cs_nifree = 0;
419 sblock.fs_cstotal.cs_nffree = 0;
420 sblock.fs_fmod = 0;
421 sblock.fs_ronly = 0;
422 sblock.fs_state = 0;
423 sblock.fs_clean = FS_ISCLEAN;
424 sblock.fs_ronly = 0;
425 sblock.fs_id[0] = tstamp;
426 sblock.fs_id[1] = random();
427 sblock.fs_fsmnt[0] = '\0';
428 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
429 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
430 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
431 sblock.fs_cstotal.cs_nbfree =
432 fragstoblks(&sblock, sblock.fs_dsize) -
433 howmany(csfrags, sblock.fs_frag);
434 sblock.fs_cstotal.cs_nffree =
435 fragnum(&sblock, sblock.fs_size) +
436 (fragnum(&sblock, csfrags) > 0 ?
437 sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
438 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
439 sblock.fs_cstotal.cs_ndir = 0;
440 sblock.fs_dsize -= csfrags;
441 sblock.fs_time = tstamp;
442 if (Oflag <= 1) {
443 sblock.fs_ffs1_time = tstamp;
444 sblock.fs_ffs1_dsize = sblock.fs_dsize;
445 sblock.fs_ffs1_csaddr = sblock.fs_csaddr;
446 sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
447 sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
448 sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
449 sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
450 }
451 /*
452 * Dump out summary information about file system.
453 */
454 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
455 printf("%s: %.1fMB (%lld sectors) block size %d, "
456 "fragment size %d\n",
457 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
458 (long long)fsbtodb(&sblock, sblock.fs_size),
459 sblock.fs_bsize, sblock.fs_fsize);
460 printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
461 "%d inodes.\n",
462 sblock.fs_ncg,
463 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
464 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
465 #undef B2MBFACTOR
466 /*
467 * Now determine how wide each column will be, and calculate how
468 * many columns will fit in a 76 char line. 76 is the width of the
469 * subwindows in sysinst.
470 */
471 printcolwidth = count_digits(
472 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
473 nprintcols = 76 / (printcolwidth + 2);
474
475 /*
476 * allocate space for superblock, cylinder group map, and
477 * two sets of inode blocks.
478 */
479 if (sblock.fs_bsize < SBLOCKSIZE)
480 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
481 else
482 iobufsize = 4 * sblock.fs_bsize;
483 iobuf = ecalloc(1, iobufsize);
484 /*
485 * Make a copy of the superblock into the buffer that we will be
486 * writing out in each cylinder group.
487 */
488 memcpy(writebuf, &sblock, SBLOCKSIZE);
489 memcpy(iobuf, writebuf, SBLOCKSIZE);
490
491 printf("super-block backups (for fsck -b #) at:");
492 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
493 initcg(cylno, tstamp, fsopts);
494 if (cylno % nprintcols == 0)
495 printf("\n");
496 printf(" %*lld,", printcolwidth,
497 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
498 fflush(stdout);
499 }
500 printf("\n");
501
502 /*
503 * Now construct the initial file system,
504 * then write out the super-block.
505 */
506 sblock.fs_time = tstamp;
507 if (Oflag <= 1) {
508 sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
509 sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
510 sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
511 sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
512 }
513 ffs_write_superblock(&sblock, fsopts);
514 return (&sblock);
515 }
516
517 /*
518 * Write out the superblock and its duplicates,
519 * and the cylinder group summaries
520 */
521 void
ffs_write_superblock(struct fs * fs,const fsinfo_t * fsopts)522 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
523 {
524 int cylno, size, blks, i;
525 struct fs *fsdup;
526 void *space;
527 char *wrbuf;
528
529 memcpy(writebuf, fs, SBLOCKSIZE);
530
531 fsdup = (struct fs *)writebuf;
532 fsdup->fs_csp = NULL;
533 fsdup->fs_maxcluster = NULL;
534
535 ffs_wtfs(fs->fs_sblockloc / sectorsize, SBLOCKSIZE, writebuf, fsopts);
536
537 /* Write out the duplicate super blocks */
538 for (cylno = 0; cylno < fs->fs_ncg; cylno++)
539 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
540 SBLOCKSIZE, writebuf, fsopts);
541
542 /* Write out the cylinder group summaries */
543 size = fs->fs_cssize;
544 blks = howmany(size, fs->fs_fsize);
545 space = (void *)fs->fs_csp;
546 wrbuf = emalloc(size);
547 for (i = 0; i < blks; i+= fs->fs_frag) {
548 size = fs->fs_bsize;
549 if (i + fs->fs_frag > blks)
550 size = (blks - i) * fs->fs_fsize;
551 memcpy(wrbuf, space, (u_int)size);
552 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
553 space = (char *)space + size;
554 }
555 free(wrbuf);
556 }
557
558 /*
559 * Initialize a cylinder group.
560 */
561 static void
initcg(int cylno,time_t utime,const fsinfo_t * fsopts)562 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
563 {
564 daddr_t cbase, dmax;
565 int i, j, d, dlower, dupper, blkno;
566 struct ufs1_dinode *dp1;
567 struct ufs2_dinode *dp2;
568 int start;
569
570 /*
571 * Determine block bounds for cylinder group.
572 * Allow space for super block summary information in first
573 * cylinder group.
574 */
575 cbase = cgbase(&sblock, cylno);
576 dmax = cbase + sblock.fs_fpg;
577 if (dmax > sblock.fs_size)
578 dmax = sblock.fs_size;
579 dlower = cgsblock(&sblock, cylno) - cbase;
580 dupper = cgdmin(&sblock, cylno) - cbase;
581 if (cylno == 0)
582 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
583 memset(&acg, 0, sblock.fs_cgsize);
584 acg.cg_ffs2_time = utime;
585 acg.cg_magic = CG_MAGIC;
586 acg.cg_cgx = cylno;
587 acg.cg_ffs2_niblk = sblock.fs_ipg;
588 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
589 sblock.fs_ipg : 2 * INOPB(&sblock);
590 acg.cg_ndblk = dmax - cbase;
591 if (sblock.fs_contigsumsize > 0)
592 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
593 start = sizeof(struct cg);
594 if (Oflag == 2) {
595 acg.cg_iusedoff = start;
596 } else {
597 if (cylno == sblock.fs_ncg - 1)
598 acg.cg_ncyl = howmany(acg.cg_ndblk,
599 sblock.fs_fpg / sblock.fs_cpg);
600 else
601 acg.cg_ncyl = sblock.fs_cpg;
602 acg.cg_time = acg.cg_ffs2_time;
603 acg.cg_ffs2_time = 0;
604 acg.cg_niblk = acg.cg_ffs2_niblk;
605 acg.cg_ffs2_niblk = 0;
606 acg.cg_initediblk = 0;
607 acg.cg_btotoff = start;
608 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
609 acg.cg_iusedoff = acg.cg_boff +
610 sblock.fs_cpg * sizeof(u_int16_t);
611 }
612 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
613 if (sblock.fs_contigsumsize <= 0) {
614 acg.cg_nextfreeoff = acg.cg_freeoff +
615 howmany(sblock.fs_fpg, CHAR_BIT);
616 } else {
617 acg.cg_clustersumoff = acg.cg_freeoff +
618 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
619 acg.cg_clustersumoff =
620 roundup(acg.cg_clustersumoff, sizeof(int32_t));
621 acg.cg_clusteroff = acg.cg_clustersumoff +
622 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
623 acg.cg_nextfreeoff = acg.cg_clusteroff +
624 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
625 }
626 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
627 printf("Panic: cylinder group too big\n");
628 exit(37);
629 }
630 acg.cg_cs.cs_nifree += sblock.fs_ipg;
631 if (cylno == 0) {
632 size_t r;
633
634 for (r = 0; r < ROOTINO; r++) {
635 setbit(cg_inosused(&acg), r);
636 acg.cg_cs.cs_nifree--;
637 }
638 }
639 if (cylno > 0) {
640 /*
641 * In cylno 0, beginning space is reserved
642 * for boot and super blocks.
643 */
644 for (d = 0, blkno = 0; d < dlower;) {
645 ffs_setblock(&sblock, cg_blksfree(&acg), blkno);
646 if (sblock.fs_contigsumsize > 0)
647 setbit(cg_clustersfree(&acg), blkno);
648 acg.cg_cs.cs_nbfree++;
649 d += sblock.fs_frag;
650 blkno++;
651 }
652 }
653 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
654 acg.cg_frsum[sblock.fs_frag - i]++;
655 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
656 setbit(cg_blksfree(&acg), dupper);
657 acg.cg_cs.cs_nffree++;
658 }
659 }
660 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
661 d + sblock.fs_frag <= acg.cg_ndblk; ) {
662 ffs_setblock(&sblock, cg_blksfree(&acg), blkno);
663 if (sblock.fs_contigsumsize > 0)
664 setbit(cg_clustersfree(&acg), blkno);
665 acg.cg_cs.cs_nbfree++;
666 d += sblock.fs_frag;
667 blkno++;
668 }
669 if (d < acg.cg_ndblk) {
670 acg.cg_frsum[acg.cg_ndblk - d]++;
671 for (; d < acg.cg_ndblk; d++) {
672 setbit(cg_blksfree(&acg), d);
673 acg.cg_cs.cs_nffree++;
674 }
675 }
676 if (sblock.fs_contigsumsize > 0) {
677 int32_t *sump = cg_clustersum(&acg);
678 u_char *mapp = cg_clustersfree(&acg);
679 int map = *mapp++;
680 int bit = 1;
681 int run = 0;
682
683 for (i = 0; i < acg.cg_nclusterblks; i++) {
684 if ((map & bit) != 0) {
685 run++;
686 } else if (run != 0) {
687 if (run > sblock.fs_contigsumsize)
688 run = sblock.fs_contigsumsize;
689 sump[run]++;
690 run = 0;
691 }
692 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
693 bit <<= 1;
694 } else {
695 map = *mapp++;
696 bit = 1;
697 }
698 }
699 if (run != 0) {
700 if (run > sblock.fs_contigsumsize)
701 run = sblock.fs_contigsumsize;
702 sump[run]++;
703 }
704 }
705 sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
706 /*
707 * Write out the duplicate super block, the cylinder group map
708 * and two blocks worth of inodes in a single write.
709 */
710 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
711 memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
712 start += sblock.fs_bsize;
713 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
714 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
715 for (i = 0; i < acg.cg_initediblk; i++) {
716 if (sblock.fs_magic == FS_UFS1_MAGIC) {
717 /* No need to swap, it'll stay random */
718 dp1->di_gen = random();
719 dp1++;
720 } else {
721 dp2->di_gen = random();
722 dp2++;
723 }
724 }
725 ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf,
726 fsopts);
727 /*
728 * For the old file system, we have to initialize all the inodes.
729 */
730 if (Oflag <= 1) {
731 for (i = 2 * sblock.fs_frag;
732 i < sblock.fs_ipg / INOPF(&sblock);
733 i += sblock.fs_frag) {
734 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
735 for (j = 0; j < INOPB(&sblock); j++) {
736 dp1->di_gen = random();
737 dp1++;
738 }
739 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
740 sblock.fs_bsize, &iobuf[start], fsopts);
741 }
742 }
743 }
744
745 /*
746 * read a block from the file system
747 */
748 void
ffs_rdfs(daddr_t bno,int size,void * bf,const fsinfo_t * fsopts)749 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
750 {
751 int n;
752 off_t offset;
753
754 offset = bno * fsopts->sectorsize + fsopts->offset;
755 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
756 err(1, "%s: seek error for sector %lld", __func__,
757 (long long)bno);
758 n = read(fsopts->fd, bf, size);
759 if (n == -1) {
760 err(1, "%s: read error bno %lld size %d", __func__,
761 (long long)bno, size);
762 }
763 else if (n != size)
764 errx(1, "%s: short read error for sector %lld", __func__,
765 (long long)bno);
766 }
767
768 /*
769 * write a block to the file system
770 */
771 void
ffs_wtfs(daddr_t bno,int size,void * bf,const fsinfo_t * fsopts)772 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
773 {
774 int n;
775 off_t offset;
776
777 offset = bno * fsopts->sectorsize + fsopts->offset;
778 if (lseek(fsopts->fd, offset, SEEK_SET) == -1)
779 err(1, "%s: seek error for sector %lld", __func__,
780 (long long)bno);
781 n = write(fsopts->fd, bf, size);
782 if (n == -1)
783 err(1, "%s: write error for sector %lld", __func__,
784 (long long)bno);
785 else if (n != size)
786 errx(1, "%s: short write error for sector %lld", __func__,
787 (long long)bno);
788 }
789
790
791 /* Determine how many digits are needed to print a given integer */
792 static int
count_digits(int num)793 count_digits(int num)
794 {
795 int ndig;
796
797 for(ndig = 1; num > 9; num /=10, ndig++);
798
799 return (ndig);
800 }
801
802 static int
ilog2(int val)803 ilog2(int val)
804 {
805 u_int n;
806
807 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
808 if (1 << n == val)
809 return (n);
810 errx(1, "%s: %d is not a power of 2", __func__, val);
811 }
812