1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
16 #include "MapFile.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/BLAKE3.h"
29 #include "llvm/Support/Parallel.h"
30 #include "llvm/Support/RandomNumberGenerator.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34
35 #define DEBUG_TYPE "lld"
36
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50
Writer()51 Writer() : buffer(errorHandler().outputBuffer) {}
52
53 void run();
54
55 private:
56 void copyLocalSymbols();
57 void addSectionSymbols();
58 void sortSections();
59 void resolveShfLinkOrder();
60 void finalizeAddressDependentContent();
61 void optimizeBasicBlockJumps();
62 void sortInputSections();
63 void finalizeSections();
64 void checkExecuteOnly();
65 void setReservedSymbolSections();
66
67 SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part);
68 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
69 unsigned pFlags);
70 void assignFileOffsets();
71 void assignFileOffsetsBinary();
72 void setPhdrs(Partition &part);
73 void checkSections();
74 void fixSectionAlignments();
75 void openFile();
76 void writeTrapInstr();
77 void writeHeader();
78 void writeSections();
79 void writeSectionsBinary();
80 void writeBuildId();
81
82 std::unique_ptr<FileOutputBuffer> &buffer;
83
84 void addRelIpltSymbols();
85 void addStartEndSymbols();
86 void addStartStopSymbols(OutputSection &osec);
87
88 uint64_t fileSize;
89 uint64_t sectionHeaderOff;
90 };
91 } // anonymous namespace
92
needsInterpSection()93 static bool needsInterpSection() {
94 return !config->relocatable && !config->shared &&
95 !config->dynamicLinker.empty() && script->needsInterpSection();
96 }
97
writeResult()98 template <class ELFT> void elf::writeResult() {
99 Writer<ELFT>().run();
100 }
101
removeEmptyPTLoad(SmallVector<PhdrEntry *,0> & phdrs)102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) {
103 auto it = std::stable_partition(
104 phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
105 if (p->p_type != PT_LOAD)
106 return true;
107 if (!p->firstSec)
108 return false;
109 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
110 return size != 0;
111 });
112
113 // Clear OutputSection::ptLoad for sections contained in removed
114 // segments.
115 DenseSet<PhdrEntry *> removed(it, phdrs.end());
116 for (OutputSection *sec : outputSections)
117 if (removed.count(sec->ptLoad))
118 sec->ptLoad = nullptr;
119 phdrs.erase(it, phdrs.end());
120 }
121
copySectionsIntoPartitions()122 void elf::copySectionsIntoPartitions() {
123 SmallVector<InputSectionBase *, 0> newSections;
124 const size_t ehSize = ctx.ehInputSections.size();
125 for (unsigned part = 2; part != partitions.size() + 1; ++part) {
126 for (InputSectionBase *s : ctx.inputSections) {
127 if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE)
128 continue;
129 auto *copy = make<InputSection>(cast<InputSection>(*s));
130 copy->partition = part;
131 newSections.push_back(copy);
132 }
133 for (size_t i = 0; i != ehSize; ++i) {
134 assert(ctx.ehInputSections[i]->isLive());
135 auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]);
136 copy->partition = part;
137 ctx.ehInputSections.push_back(copy);
138 }
139 }
140
141 ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(),
142 newSections.end());
143 }
144
addOptionalRegular(StringRef name,SectionBase * sec,uint64_t val,uint8_t stOther=STV_HIDDEN)145 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
146 uint64_t val, uint8_t stOther = STV_HIDDEN) {
147 Symbol *s = symtab.find(name);
148 if (!s || s->isDefined() || s->isCommon())
149 return nullptr;
150
151 s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val,
152 /*size=*/0, sec});
153 s->isUsedInRegularObj = true;
154 return cast<Defined>(s);
155 }
156
addAbsolute(StringRef name)157 static Defined *addAbsolute(StringRef name) {
158 Symbol *sym = symtab.addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
159 STT_NOTYPE, 0, 0, nullptr});
160 sym->isUsedInRegularObj = true;
161 return cast<Defined>(sym);
162 }
163
164 // The linker is expected to define some symbols depending on
165 // the linking result. This function defines such symbols.
addReservedSymbols()166 void elf::addReservedSymbols() {
167 if (config->emachine == EM_MIPS) {
168 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
169 // so that it points to an absolute address which by default is relative
170 // to GOT. Default offset is 0x7ff0.
171 // See "Global Data Symbols" in Chapter 6 in the following document:
172 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
173 ElfSym::mipsGp = addAbsolute("_gp");
174
175 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
176 // start of function and 'gp' pointer into GOT.
177 if (symtab.find("_gp_disp"))
178 ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
179
180 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
181 // pointer. This symbol is used in the code generated by .cpload pseudo-op
182 // in case of using -mno-shared option.
183 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
184 if (symtab.find("__gnu_local_gp"))
185 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
186 } else if (config->emachine == EM_PPC) {
187 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
188 // support Small Data Area, define it arbitrarily as 0.
189 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
190 } else if (config->emachine == EM_PPC64) {
191 addPPC64SaveRestore();
192 }
193
194 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
195 // combines the typical ELF GOT with the small data sections. It commonly
196 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
197 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
198 // represent the TOC base which is offset by 0x8000 bytes from the start of
199 // the .got section.
200 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
201 // correctness of some relocations depends on its value.
202 StringRef gotSymName =
203 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
204
205 if (Symbol *s = symtab.find(gotSymName)) {
206 if (s->isDefined()) {
207 error(toString(s->file) + " cannot redefine linker defined symbol '" +
208 gotSymName + "'");
209 return;
210 }
211
212 uint64_t gotOff = 0;
213 if (config->emachine == EM_PPC64)
214 gotOff = 0x8000;
215
216 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
217 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
218 ElfSym::globalOffsetTable = cast<Defined>(s);
219 }
220
221 // __ehdr_start is the location of ELF file headers. Note that we define
222 // this symbol unconditionally even when using a linker script, which
223 // differs from the behavior implemented by GNU linker which only define
224 // this symbol if ELF headers are in the memory mapped segment.
225 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
226
227 // __executable_start is not documented, but the expectation of at
228 // least the Android libc is that it points to the ELF header.
229 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
230
231 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
232 // each DSO. The address of the symbol doesn't matter as long as they are
233 // different in different DSOs, so we chose the start address of the DSO.
234 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
235
236 // If linker script do layout we do not need to create any standard symbols.
237 if (script->hasSectionsCommand)
238 return;
239
240 auto add = [](StringRef s, int64_t pos) {
241 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
242 };
243
244 ElfSym::bss = add("__bss_start", 0);
245 ElfSym::data = add("__data_start", 0);
246 ElfSym::end1 = add("end", -1);
247 ElfSym::end2 = add("_end", -1);
248 ElfSym::etext1 = add("etext", -1);
249 ElfSym::etext2 = add("_etext", -1);
250 ElfSym::edata1 = add("edata", -1);
251 ElfSym::edata2 = add("_edata", -1);
252 }
253
findSection(StringRef name,unsigned partition=1)254 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
255 for (SectionCommand *cmd : script->sectionCommands)
256 if (auto *osd = dyn_cast<OutputDesc>(cmd))
257 if (osd->osec.name == name && osd->osec.partition == partition)
258 return &osd->osec;
259 return nullptr;
260 }
261
createSyntheticSections()262 template <class ELFT> void elf::createSyntheticSections() {
263 // Initialize all pointers with NULL. This is needed because
264 // you can call lld::elf::main more than once as a library.
265 Out::tlsPhdr = nullptr;
266 Out::preinitArray = nullptr;
267 Out::initArray = nullptr;
268 Out::finiArray = nullptr;
269
270 // Add the .interp section first because it is not a SyntheticSection.
271 // The removeUnusedSyntheticSections() function relies on the
272 // SyntheticSections coming last.
273 if (needsInterpSection()) {
274 for (size_t i = 1; i <= partitions.size(); ++i) {
275 InputSection *sec = createInterpSection();
276 sec->partition = i;
277 ctx.inputSections.push_back(sec);
278 }
279 }
280
281 auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
282
283 in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false);
284
285 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
286 Out::programHeaders->addralign = config->wordsize;
287
288 if (config->strip != StripPolicy::All) {
289 in.strTab = std::make_unique<StringTableSection>(".strtab", false);
290 in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab);
291 in.symTabShndx = std::make_unique<SymtabShndxSection>();
292 }
293
294 in.bss = std::make_unique<BssSection>(".bss", 0, 1);
295 add(*in.bss);
296
297 // If there is a SECTIONS command and a .data.rel.ro section name use name
298 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
299 // This makes sure our relro is contiguous.
300 bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro");
301 in.bssRelRo = std::make_unique<BssSection>(
302 hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
303 add(*in.bssRelRo);
304
305 // Add MIPS-specific sections.
306 if (config->emachine == EM_MIPS) {
307 if (!config->shared && config->hasDynSymTab) {
308 in.mipsRldMap = std::make_unique<MipsRldMapSection>();
309 add(*in.mipsRldMap);
310 }
311 if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create()))
312 add(*in.mipsAbiFlags);
313 if ((in.mipsOptions = MipsOptionsSection<ELFT>::create()))
314 add(*in.mipsOptions);
315 if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create()))
316 add(*in.mipsReginfo);
317 }
318
319 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
320
321 const unsigned threadCount = config->threadCount;
322 for (Partition &part : partitions) {
323 auto add = [&](SyntheticSection &sec) {
324 sec.partition = part.getNumber();
325 ctx.inputSections.push_back(&sec);
326 };
327
328 if (!part.name.empty()) {
329 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>();
330 part.elfHeader->name = part.name;
331 add(*part.elfHeader);
332
333 part.programHeaders =
334 std::make_unique<PartitionProgramHeadersSection<ELFT>>();
335 add(*part.programHeaders);
336 }
337
338 if (config->buildId != BuildIdKind::None) {
339 part.buildId = std::make_unique<BuildIdSection>();
340 add(*part.buildId);
341 }
342
343 part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true);
344 part.dynSymTab =
345 std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab);
346 part.dynamic = std::make_unique<DynamicSection<ELFT>>();
347
348 if (config->emachine == EM_AARCH64 &&
349 config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) {
350 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>();
351 add(*part.memtagAndroidNote);
352 }
353
354 if (config->androidPackDynRelocs)
355 part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
356 relaDynName, threadCount);
357 else
358 part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
359 relaDynName, config->zCombreloc, threadCount);
360
361 if (config->hasDynSymTab) {
362 add(*part.dynSymTab);
363
364 part.verSym = std::make_unique<VersionTableSection>();
365 add(*part.verSym);
366
367 if (!namedVersionDefs().empty()) {
368 part.verDef = std::make_unique<VersionDefinitionSection>();
369 add(*part.verDef);
370 }
371
372 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>();
373 add(*part.verNeed);
374
375 if (config->gnuHash) {
376 part.gnuHashTab = std::make_unique<GnuHashTableSection>();
377 add(*part.gnuHashTab);
378 }
379
380 if (config->sysvHash) {
381 part.hashTab = std::make_unique<HashTableSection>();
382 add(*part.hashTab);
383 }
384
385 add(*part.dynamic);
386 add(*part.dynStrTab);
387 add(*part.relaDyn);
388 }
389
390 if (config->relrPackDynRelocs) {
391 part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount);
392 add(*part.relrDyn);
393 }
394
395 if (!config->relocatable) {
396 if (config->ehFrameHdr) {
397 part.ehFrameHdr = std::make_unique<EhFrameHeader>();
398 add(*part.ehFrameHdr);
399 }
400 part.ehFrame = std::make_unique<EhFrameSection>();
401 add(*part.ehFrame);
402
403 if (config->emachine == EM_ARM) {
404 // This section replaces all the individual .ARM.exidx InputSections.
405 part.armExidx = std::make_unique<ARMExidxSyntheticSection>();
406 add(*part.armExidx);
407 }
408 }
409
410 if (!config->packageMetadata.empty()) {
411 part.packageMetadataNote = std::make_unique<PackageMetadataNote>();
412 add(*part.packageMetadataNote);
413 }
414 }
415
416 if (partitions.size() != 1) {
417 // Create the partition end marker. This needs to be in partition number 255
418 // so that it is sorted after all other partitions. It also has other
419 // special handling (see createPhdrs() and combineEhSections()).
420 in.partEnd =
421 std::make_unique<BssSection>(".part.end", config->maxPageSize, 1);
422 in.partEnd->partition = 255;
423 add(*in.partEnd);
424
425 in.partIndex = std::make_unique<PartitionIndexSection>();
426 addOptionalRegular("__part_index_begin", in.partIndex.get(), 0);
427 addOptionalRegular("__part_index_end", in.partIndex.get(),
428 in.partIndex->getSize());
429 add(*in.partIndex);
430 }
431
432 // Add .got. MIPS' .got is so different from the other archs,
433 // it has its own class.
434 if (config->emachine == EM_MIPS) {
435 in.mipsGot = std::make_unique<MipsGotSection>();
436 add(*in.mipsGot);
437 } else {
438 in.got = std::make_unique<GotSection>();
439 add(*in.got);
440 }
441
442 if (config->emachine == EM_PPC) {
443 in.ppc32Got2 = std::make_unique<PPC32Got2Section>();
444 add(*in.ppc32Got2);
445 }
446
447 if (config->emachine == EM_PPC64) {
448 in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>();
449 add(*in.ppc64LongBranchTarget);
450 }
451
452 in.gotPlt = std::make_unique<GotPltSection>();
453 add(*in.gotPlt);
454 in.igotPlt = std::make_unique<IgotPltSection>();
455 add(*in.igotPlt);
456
457 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
458 // it as a relocation and ensure the referenced section is created.
459 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
460 if (target->gotBaseSymInGotPlt)
461 in.gotPlt->hasGotPltOffRel = true;
462 else
463 in.got->hasGotOffRel = true;
464 }
465
466 if (config->gdbIndex)
467 add(*GdbIndexSection::create<ELFT>());
468
469 // We always need to add rel[a].plt to output if it has entries.
470 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
471 in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
472 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
473 /*threadCount=*/1);
474 add(*in.relaPlt);
475
476 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
477 // relocations are processed last by the dynamic loader. We cannot place the
478 // iplt section in .rel.dyn when Android relocation packing is enabled because
479 // that would cause a section type mismatch. However, because the Android
480 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
481 // behaviour by placing the iplt section in .rel.plt.
482 in.relaIplt = std::make_unique<RelocationSection<ELFT>>(
483 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
484 /*sort=*/false, /*threadCount=*/1);
485 add(*in.relaIplt);
486
487 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
488 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
489 in.ibtPlt = std::make_unique<IBTPltSection>();
490 add(*in.ibtPlt);
491 }
492 #ifdef __OpenBSD__
493 else if (config->emachine == EM_X86_64) {
494 in.ibtPlt = std::make_unique<IBTPltSection>();
495 add(*in.ibtPlt);
496 }
497 #endif
498
499 if (config->emachine == EM_PPC)
500 in.plt = std::make_unique<PPC32GlinkSection>();
501 else
502 in.plt = std::make_unique<PltSection>();
503 add(*in.plt);
504 in.iplt = std::make_unique<IpltSection>();
505 add(*in.iplt);
506
507 if (config->andFeatures)
508 add(*make<GnuPropertySection>());
509
510 // .note.GNU-stack is always added when we are creating a re-linkable
511 // object file. Other linkers are using the presence of this marker
512 // section to control the executable-ness of the stack area, but that
513 // is irrelevant these days. Stack area should always be non-executable
514 // by default. So we emit this section unconditionally.
515 if (config->relocatable)
516 add(*make<GnuStackSection>());
517
518 if (in.symTab)
519 add(*in.symTab);
520 if (in.symTabShndx)
521 add(*in.symTabShndx);
522 add(*in.shStrTab);
523 if (in.strTab)
524 add(*in.strTab);
525 }
526
527 // The main function of the writer.
run()528 template <class ELFT> void Writer<ELFT>::run() {
529 copyLocalSymbols();
530
531 if (config->copyRelocs)
532 addSectionSymbols();
533
534 // Now that we have a complete set of output sections. This function
535 // completes section contents. For example, we need to add strings
536 // to the string table, and add entries to .got and .plt.
537 // finalizeSections does that.
538 finalizeSections();
539 checkExecuteOnly();
540
541 // If --compressed-debug-sections is specified, compress .debug_* sections.
542 // Do it right now because it changes the size of output sections.
543 for (OutputSection *sec : outputSections)
544 sec->maybeCompress<ELFT>();
545
546 if (script->hasSectionsCommand)
547 script->allocateHeaders(mainPart->phdrs);
548
549 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
550 // 0 sized region. This has to be done late since only after assignAddresses
551 // we know the size of the sections.
552 for (Partition &part : partitions)
553 removeEmptyPTLoad(part.phdrs);
554
555 if (!config->oFormatBinary)
556 assignFileOffsets();
557 else
558 assignFileOffsetsBinary();
559
560 for (Partition &part : partitions)
561 setPhdrs(part);
562
563 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
564 // because the files may be useful in case checkSections() or openFile()
565 // fails, for example, due to an erroneous file size.
566 writeMapAndCref();
567
568 if (config->checkSections)
569 checkSections();
570
571 // It does not make sense try to open the file if we have error already.
572 if (errorCount())
573 return;
574
575 {
576 llvm::TimeTraceScope timeScope("Write output file");
577 // Write the result down to a file.
578 openFile();
579 if (errorCount())
580 return;
581
582 if (!config->oFormatBinary) {
583 if (config->zSeparate != SeparateSegmentKind::None)
584 writeTrapInstr();
585 writeHeader();
586 writeSections();
587 } else {
588 writeSectionsBinary();
589 }
590
591 // Backfill .note.gnu.build-id section content. This is done at last
592 // because the content is usually a hash value of the entire output file.
593 writeBuildId();
594 if (errorCount())
595 return;
596
597 if (auto e = buffer->commit())
598 fatal("failed to write output '" + buffer->getPath() +
599 "': " + toString(std::move(e)));
600 }
601 }
602
603 template <class ELFT, class RelTy>
markUsedLocalSymbolsImpl(ObjFile<ELFT> * file,llvm::ArrayRef<RelTy> rels)604 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
605 llvm::ArrayRef<RelTy> rels) {
606 for (const RelTy &rel : rels) {
607 Symbol &sym = file->getRelocTargetSym(rel);
608 if (sym.isLocal())
609 sym.used = true;
610 }
611 }
612
613 // The function ensures that the "used" field of local symbols reflects the fact
614 // that the symbol is used in a relocation from a live section.
markUsedLocalSymbols()615 template <class ELFT> static void markUsedLocalSymbols() {
616 // With --gc-sections, the field is already filled.
617 // See MarkLive<ELFT>::resolveReloc().
618 if (config->gcSections)
619 return;
620 for (ELFFileBase *file : ctx.objectFiles) {
621 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
622 for (InputSectionBase *s : f->getSections()) {
623 InputSection *isec = dyn_cast_or_null<InputSection>(s);
624 if (!isec)
625 continue;
626 if (isec->type == SHT_REL)
627 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
628 else if (isec->type == SHT_RELA)
629 markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
630 }
631 }
632 }
633
shouldKeepInSymtab(const Defined & sym)634 static bool shouldKeepInSymtab(const Defined &sym) {
635 if (sym.isSection())
636 return false;
637
638 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
639 // from live sections.
640 if (sym.used && config->copyRelocs)
641 return true;
642
643 // Exclude local symbols pointing to .ARM.exidx sections.
644 // They are probably mapping symbols "$d", which are optional for these
645 // sections. After merging the .ARM.exidx sections, some of these symbols
646 // may become dangling. The easiest way to avoid the issue is not to add
647 // them to the symbol table from the beginning.
648 if (config->emachine == EM_ARM && sym.section &&
649 sym.section->type == SHT_ARM_EXIDX)
650 return false;
651
652 if (config->discard == DiscardPolicy::None)
653 return true;
654 if (config->discard == DiscardPolicy::All)
655 return false;
656
657 // In ELF assembly .L symbols are normally discarded by the assembler.
658 // If the assembler fails to do so, the linker discards them if
659 // * --discard-locals is used.
660 // * The symbol is in a SHF_MERGE section, which is normally the reason for
661 // the assembler keeping the .L symbol.
662 if ((sym.getName().startswith(".L") || sym.getName().empty()) &&
663 (config->discard == DiscardPolicy::Locals ||
664 (sym.section && (sym.section->flags & SHF_MERGE))))
665 return false;
666 return true;
667 }
668
includeInSymtab(const Symbol & b)669 static bool includeInSymtab(const Symbol &b) {
670 if (auto *d = dyn_cast<Defined>(&b)) {
671 // Always include absolute symbols.
672 SectionBase *sec = d->section;
673 if (!sec)
674 return true;
675
676 if (auto *s = dyn_cast<MergeInputSection>(sec))
677 return s->getSectionPiece(d->value).live;
678 return sec->isLive();
679 }
680 return b.used || !config->gcSections;
681 }
682
683 // Local symbols are not in the linker's symbol table. This function scans
684 // each object file's symbol table to copy local symbols to the output.
copyLocalSymbols()685 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
686 if (!in.symTab)
687 return;
688 llvm::TimeTraceScope timeScope("Add local symbols");
689 if (config->copyRelocs && config->discard != DiscardPolicy::None)
690 markUsedLocalSymbols<ELFT>();
691 for (ELFFileBase *file : ctx.objectFiles) {
692 for (Symbol *b : file->getLocalSymbols()) {
693 assert(b->isLocal() && "should have been caught in initializeSymbols()");
694 auto *dr = dyn_cast<Defined>(b);
695
696 // No reason to keep local undefined symbol in symtab.
697 if (!dr)
698 continue;
699 if (includeInSymtab(*b) && shouldKeepInSymtab(*dr))
700 in.symTab->addSymbol(b);
701 }
702 }
703 }
704
705 // Create a section symbol for each output section so that we can represent
706 // relocations that point to the section. If we know that no relocation is
707 // referring to a section (that happens if the section is a synthetic one), we
708 // don't create a section symbol for that section.
addSectionSymbols()709 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
710 for (SectionCommand *cmd : script->sectionCommands) {
711 auto *osd = dyn_cast<OutputDesc>(cmd);
712 if (!osd)
713 continue;
714 OutputSection &osec = osd->osec;
715 InputSectionBase *isec = nullptr;
716 // Iterate over all input sections and add a STT_SECTION symbol if any input
717 // section may be a relocation target.
718 for (SectionCommand *cmd : osec.commands) {
719 auto *isd = dyn_cast<InputSectionDescription>(cmd);
720 if (!isd)
721 continue;
722 for (InputSectionBase *s : isd->sections) {
723 // Relocations are not using REL[A] section symbols.
724 if (s->type == SHT_REL || s->type == SHT_RELA)
725 continue;
726
727 // Unlike other synthetic sections, mergeable output sections contain
728 // data copied from input sections, and there may be a relocation
729 // pointing to its contents if -r or --emit-reloc is given.
730 if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE))
731 continue;
732
733 isec = s;
734 break;
735 }
736 }
737 if (!isec)
738 continue;
739
740 // Set the symbol to be relative to the output section so that its st_value
741 // equals the output section address. Note, there may be a gap between the
742 // start of the output section and isec.
743 in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0,
744 STT_SECTION,
745 /*value=*/0, /*size=*/0, &osec));
746 }
747 }
748
749 // Today's loaders have a feature to make segments read-only after
750 // processing dynamic relocations to enhance security. PT_GNU_RELRO
751 // is defined for that.
752 //
753 // This function returns true if a section needs to be put into a
754 // PT_GNU_RELRO segment.
isRelroSection(const OutputSection * sec)755 static bool isRelroSection(const OutputSection *sec) {
756 if (!config->zRelro)
757 return false;
758 if (sec->relro)
759 return true;
760
761 uint64_t flags = sec->flags;
762
763 // Non-allocatable or non-writable sections don't need RELRO because
764 // they are not writable or not even mapped to memory in the first place.
765 // RELRO is for sections that are essentially read-only but need to
766 // be writable only at process startup to allow dynamic linker to
767 // apply relocations.
768 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
769 return false;
770
771 // Once initialized, TLS data segments are used as data templates
772 // for a thread-local storage. For each new thread, runtime
773 // allocates memory for a TLS and copy templates there. No thread
774 // are supposed to use templates directly. Thus, it can be in RELRO.
775 if (flags & SHF_TLS)
776 return true;
777
778 // .init_array, .preinit_array and .fini_array contain pointers to
779 // functions that are executed on process startup or exit. These
780 // pointers are set by the static linker, and they are not expected
781 // to change at runtime. But if you are an attacker, you could do
782 // interesting things by manipulating pointers in .fini_array, for
783 // example. So they are put into RELRO.
784 uint32_t type = sec->type;
785 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
786 type == SHT_PREINIT_ARRAY)
787 return true;
788
789 // .got contains pointers to external symbols. They are resolved by
790 // the dynamic linker when a module is loaded into memory, and after
791 // that they are not expected to change. So, it can be in RELRO.
792 if (in.got && sec == in.got->getParent())
793 return true;
794
795 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
796 // through r2 register, which is reserved for that purpose. Since r2 is used
797 // for accessing .got as well, .got and .toc need to be close enough in the
798 // virtual address space. Usually, .toc comes just after .got. Since we place
799 // .got into RELRO, .toc needs to be placed into RELRO too.
800 if (sec->name.equals(".toc"))
801 return true;
802
803 // .got.plt contains pointers to external function symbols. They are
804 // by default resolved lazily, so we usually cannot put it into RELRO.
805 // However, if "-z now" is given, the lazy symbol resolution is
806 // disabled, which enables us to put it into RELRO.
807 if (sec == in.gotPlt->getParent())
808 #ifndef __OpenBSD__
809 return config->zNow;
810 #else
811 return true; /* kbind(2) means we can always put these in RELRO */
812 #endif
813
814 // .dynamic section contains data for the dynamic linker, and
815 // there's no need to write to it at runtime, so it's better to put
816 // it into RELRO.
817 if (sec->name == ".dynamic")
818 return true;
819
820 // Sections with some special names are put into RELRO. This is a
821 // bit unfortunate because section names shouldn't be significant in
822 // ELF in spirit. But in reality many linker features depend on
823 // magic section names.
824 StringRef s = sec->name;
825 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
826 s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
827 s == ".fini_array" || s == ".init_array" ||
828 s == ".openbsd.randomdata" || s == ".preinit_array";
829 }
830
831 // We compute a rank for each section. The rank indicates where the
832 // section should be placed in the file. Instead of using simple
833 // numbers (0,1,2...), we use a series of flags. One for each decision
834 // point when placing the section.
835 // Using flags has two key properties:
836 // * It is easy to check if a give branch was taken.
837 // * It is easy two see how similar two ranks are (see getRankProximity).
838 enum RankFlags {
839 RF_NOT_ADDR_SET = 1 << 27,
840 RF_NOT_ALLOC = 1 << 26,
841 RF_PARTITION = 1 << 18, // Partition number (8 bits)
842 RF_NOT_PART_EHDR = 1 << 17,
843 RF_NOT_PART_PHDR = 1 << 16,
844 RF_NOT_INTERP = 1 << 15,
845 RF_NOT_NOTE = 1 << 14,
846 RF_WRITE = 1 << 13,
847 RF_EXEC_WRITE = 1 << 12,
848 RF_EXEC = 1 << 11,
849 RF_RODATA = 1 << 10,
850 RF_NOT_RELRO = 1 << 9,
851 RF_NOT_TLS = 1 << 8,
852 RF_BSS = 1 << 7,
853 RF_PPC_NOT_TOCBSS = 1 << 6,
854 RF_PPC_TOCL = 1 << 5,
855 RF_PPC_TOC = 1 << 4,
856 RF_PPC_GOT = 1 << 3,
857 RF_PPC_BRANCH_LT = 1 << 2,
858 RF_MIPS_GPREL = 1 << 1,
859 RF_MIPS_NOT_GOT = 1 << 0
860 };
861
getSectionRank(const OutputSection & osec)862 static unsigned getSectionRank(const OutputSection &osec) {
863 unsigned rank = osec.partition * RF_PARTITION;
864
865 // We want to put section specified by -T option first, so we
866 // can start assigning VA starting from them later.
867 if (config->sectionStartMap.count(osec.name))
868 return rank;
869 rank |= RF_NOT_ADDR_SET;
870
871 // Allocatable sections go first to reduce the total PT_LOAD size and
872 // so debug info doesn't change addresses in actual code.
873 if (!(osec.flags & SHF_ALLOC))
874 return rank | RF_NOT_ALLOC;
875
876 if (osec.type == SHT_LLVM_PART_EHDR)
877 return rank;
878 rank |= RF_NOT_PART_EHDR;
879
880 if (osec.type == SHT_LLVM_PART_PHDR)
881 return rank;
882 rank |= RF_NOT_PART_PHDR;
883
884 // Put .interp first because some loaders want to see that section
885 // on the first page of the executable file when loaded into memory.
886 if (osec.name == ".interp")
887 return rank;
888 rank |= RF_NOT_INTERP;
889
890 // Put .note sections (which make up one PT_NOTE) at the beginning so that
891 // they are likely to be included in a core file even if core file size is
892 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
893 // included in a core to match core files with executables.
894 if (osec.type == SHT_NOTE)
895 return rank;
896 rank |= RF_NOT_NOTE;
897
898 // Sort sections based on their access permission in the following
899 // order: R, RX, RWX, RW. This order is based on the following
900 // considerations:
901 // * Read-only sections come first such that they go in the
902 // PT_LOAD covering the program headers at the start of the file.
903 // * Read-only, executable sections come next.
904 // * Writable, executable sections follow such that .plt on
905 // architectures where it needs to be writable will be placed
906 // between .text and .data.
907 // * Writable sections come last, such that .bss lands at the very
908 // end of the last PT_LOAD.
909 bool isExec = osec.flags & SHF_EXECINSTR;
910 bool isWrite = osec.flags & SHF_WRITE;
911
912 if (isExec) {
913 if (isWrite)
914 rank |= RF_EXEC_WRITE;
915 else
916 rank |= RF_EXEC;
917 } else if (isWrite) {
918 rank |= RF_WRITE;
919 } else if (osec.type == SHT_PROGBITS) {
920 // Make non-executable and non-writable PROGBITS sections (e.g .rodata
921 // .eh_frame) closer to .text. They likely contain PC or GOT relative
922 // relocations and there could be relocation overflow if other huge sections
923 // (.dynstr .dynsym) were placed in between.
924 rank |= RF_RODATA;
925 }
926
927 // Place RelRo sections first. After considering SHT_NOBITS below, the
928 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
929 // where | marks where page alignment happens. An alternative ordering is
930 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
931 // waste more bytes due to 2 alignment places.
932 if (!isRelroSection(&osec))
933 rank |= RF_NOT_RELRO;
934
935 // If we got here we know that both A and B are in the same PT_LOAD.
936
937 // The TLS initialization block needs to be a single contiguous block in a R/W
938 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
939 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
940 // after PROGBITS.
941 if (!(osec.flags & SHF_TLS))
942 rank |= RF_NOT_TLS;
943
944 // Within TLS sections, or within other RelRo sections, or within non-RelRo
945 // sections, place non-NOBITS sections first.
946 if (osec.type == SHT_NOBITS)
947 rank |= RF_BSS;
948
949 // Some architectures have additional ordering restrictions for sections
950 // within the same PT_LOAD.
951 if (config->emachine == EM_PPC64) {
952 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
953 // that we would like to make sure appear is a specific order to maximize
954 // their coverage by a single signed 16-bit offset from the TOC base
955 // pointer. Conversely, the special .tocbss section should be first among
956 // all SHT_NOBITS sections. This will put it next to the loaded special
957 // PPC64 sections (and, thus, within reach of the TOC base pointer).
958 StringRef name = osec.name;
959 if (name != ".tocbss")
960 rank |= RF_PPC_NOT_TOCBSS;
961
962 if (name == ".toc1")
963 rank |= RF_PPC_TOCL;
964
965 if (name == ".toc")
966 rank |= RF_PPC_TOC;
967
968 if (name == ".got")
969 rank |= RF_PPC_GOT;
970
971 if (name == ".branch_lt")
972 rank |= RF_PPC_BRANCH_LT;
973 }
974
975 if (config->emachine == EM_MIPS) {
976 // All sections with SHF_MIPS_GPREL flag should be grouped together
977 // because data in these sections is addressable with a gp relative address.
978 if (osec.flags & SHF_MIPS_GPREL)
979 rank |= RF_MIPS_GPREL;
980
981 if (osec.name != ".got")
982 rank |= RF_MIPS_NOT_GOT;
983 }
984
985 return rank;
986 }
987
compareSections(const SectionCommand * aCmd,const SectionCommand * bCmd)988 static bool compareSections(const SectionCommand *aCmd,
989 const SectionCommand *bCmd) {
990 const OutputSection *a = &cast<OutputDesc>(aCmd)->osec;
991 const OutputSection *b = &cast<OutputDesc>(bCmd)->osec;
992
993 if (a->sortRank != b->sortRank)
994 return a->sortRank < b->sortRank;
995
996 if (!(a->sortRank & RF_NOT_ADDR_SET))
997 return config->sectionStartMap.lookup(a->name) <
998 config->sectionStartMap.lookup(b->name);
999 return false;
1000 }
1001
add(OutputSection * sec)1002 void PhdrEntry::add(OutputSection *sec) {
1003 lastSec = sec;
1004 if (!firstSec)
1005 firstSec = sec;
1006 p_align = std::max(p_align, sec->addralign);
1007 if (p_type == PT_LOAD)
1008 sec->ptLoad = this;
1009 }
1010
1011 // The beginning and the ending of .rel[a].plt section are marked
1012 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1013 // executable. The runtime needs these symbols in order to resolve
1014 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1015 // need these symbols, since IRELATIVE relocs are resolved through GOT
1016 // and PLT. For details, see http://www.airs.com/blog/archives/403.
addRelIpltSymbols()1017 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1018 if (config->isPic)
1019 return;
1020
1021 // By default, __rela_iplt_{start,end} belong to a dummy section 0
1022 // because .rela.plt might be empty and thus removed from output.
1023 // We'll override Out::elfHeader with In.relaIplt later when we are
1024 // sure that .rela.plt exists in output.
1025 ElfSym::relaIpltStart = addOptionalRegular(
1026 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1027 Out::elfHeader, 0, STV_HIDDEN);
1028
1029 ElfSym::relaIpltEnd = addOptionalRegular(
1030 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1031 Out::elfHeader, 0, STV_HIDDEN);
1032 }
1033
1034 // This function generates assignments for predefined symbols (e.g. _end or
1035 // _etext) and inserts them into the commands sequence to be processed at the
1036 // appropriate time. This ensures that the value is going to be correct by the
1037 // time any references to these symbols are processed and is equivalent to
1038 // defining these symbols explicitly in the linker script.
setReservedSymbolSections()1039 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1040 if (ElfSym::globalOffsetTable) {
1041 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1042 // to the start of the .got or .got.plt section.
1043 InputSection *sec = in.gotPlt.get();
1044 if (!target->gotBaseSymInGotPlt)
1045 sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get())
1046 : cast<InputSection>(in.got.get());
1047 ElfSym::globalOffsetTable->section = sec;
1048 }
1049
1050 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1051 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1052 ElfSym::relaIpltStart->section = in.relaIplt.get();
1053 ElfSym::relaIpltEnd->section = in.relaIplt.get();
1054 ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1055 }
1056
1057 PhdrEntry *last = nullptr;
1058 PhdrEntry *lastRO = nullptr;
1059
1060 for (Partition &part : partitions) {
1061 for (PhdrEntry *p : part.phdrs) {
1062 if (p->p_type != PT_LOAD)
1063 continue;
1064 last = p;
1065 if (!(p->p_flags & PF_W))
1066 lastRO = p;
1067 }
1068 }
1069
1070 if (lastRO) {
1071 // _etext is the first location after the last read-only loadable segment.
1072 if (ElfSym::etext1)
1073 ElfSym::etext1->section = lastRO->lastSec;
1074 if (ElfSym::etext2)
1075 ElfSym::etext2->section = lastRO->lastSec;
1076 }
1077
1078 if (last) {
1079 // _edata points to the end of the last mapped initialized section.
1080 OutputSection *edata = nullptr;
1081 for (OutputSection *os : outputSections) {
1082 if (os->type != SHT_NOBITS)
1083 edata = os;
1084 if (os == last->lastSec)
1085 break;
1086 }
1087
1088 if (ElfSym::edata1)
1089 ElfSym::edata1->section = edata;
1090 if (ElfSym::edata2)
1091 ElfSym::edata2->section = edata;
1092
1093 // _end is the first location after the uninitialized data region.
1094 if (ElfSym::end1)
1095 ElfSym::end1->section = last->lastSec;
1096 if (ElfSym::end2)
1097 ElfSym::end2->section = last->lastSec;
1098 }
1099
1100 if (ElfSym::bss)
1101 ElfSym::bss->section = findSection(".bss");
1102
1103 if (ElfSym::data)
1104 ElfSym::data->section = findSection(".data");
1105
1106 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1107 // be equal to the _gp symbol's value.
1108 if (ElfSym::mipsGp) {
1109 // Find GP-relative section with the lowest address
1110 // and use this address to calculate default _gp value.
1111 for (OutputSection *os : outputSections) {
1112 if (os->flags & SHF_MIPS_GPREL) {
1113 ElfSym::mipsGp->section = os;
1114 ElfSym::mipsGp->value = 0x7ff0;
1115 break;
1116 }
1117 }
1118 }
1119 }
1120
1121 // We want to find how similar two ranks are.
1122 // The more branches in getSectionRank that match, the more similar they are.
1123 // Since each branch corresponds to a bit flag, we can just use
1124 // countLeadingZeros.
getRankProximity(OutputSection * a,SectionCommand * b)1125 static int getRankProximity(OutputSection *a, SectionCommand *b) {
1126 auto *osd = dyn_cast<OutputDesc>(b);
1127 return (osd && osd->osec.hasInputSections)
1128 ? countLeadingZeros(a->sortRank ^ osd->osec.sortRank)
1129 : -1;
1130 }
1131
1132 // When placing orphan sections, we want to place them after symbol assignments
1133 // so that an orphan after
1134 // begin_foo = .;
1135 // foo : { *(foo) }
1136 // end_foo = .;
1137 // doesn't break the intended meaning of the begin/end symbols.
1138 // We don't want to go over sections since findOrphanPos is the
1139 // one in charge of deciding the order of the sections.
1140 // We don't want to go over changes to '.', since doing so in
1141 // rx_sec : { *(rx_sec) }
1142 // . = ALIGN(0x1000);
1143 // /* The RW PT_LOAD starts here*/
1144 // rw_sec : { *(rw_sec) }
1145 // would mean that the RW PT_LOAD would become unaligned.
shouldSkip(SectionCommand * cmd)1146 static bool shouldSkip(SectionCommand *cmd) {
1147 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1148 return assign->name != ".";
1149 return false;
1150 }
1151
1152 // We want to place orphan sections so that they share as much
1153 // characteristics with their neighbors as possible. For example, if
1154 // both are rw, or both are tls.
1155 static SmallVectorImpl<SectionCommand *>::iterator
findOrphanPos(SmallVectorImpl<SectionCommand * >::iterator b,SmallVectorImpl<SectionCommand * >::iterator e)1156 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b,
1157 SmallVectorImpl<SectionCommand *>::iterator e) {
1158 OutputSection *sec = &cast<OutputDesc>(*e)->osec;
1159
1160 // Find the first element that has as close a rank as possible.
1161 auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
1162 return getRankProximity(sec, a) < getRankProximity(sec, b);
1163 });
1164 if (i == e)
1165 return e;
1166 if (!isa<OutputDesc>(*i))
1167 return e;
1168 auto foundSec = &cast<OutputDesc>(*i)->osec;
1169
1170 // Consider all existing sections with the same proximity.
1171 int proximity = getRankProximity(sec, *i);
1172 unsigned sortRank = sec->sortRank;
1173 if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
1174 // Prevent the orphan section to be placed before the found section. If
1175 // custom program headers are defined, that helps to avoid adding it to a
1176 // previous segment and changing flags of that segment, for example, making
1177 // a read-only segment writable. If memory regions are defined, an orphan
1178 // section should continue the same region as the found section to better
1179 // resemble the behavior of GNU ld.
1180 sortRank = std::max(sortRank, foundSec->sortRank);
1181 for (; i != e; ++i) {
1182 auto *curSecDesc = dyn_cast<OutputDesc>(*i);
1183 if (!curSecDesc || !curSecDesc->osec.hasInputSections)
1184 continue;
1185 if (getRankProximity(sec, curSecDesc) != proximity ||
1186 sortRank < curSecDesc->osec.sortRank)
1187 break;
1188 }
1189
1190 auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
1191 auto *osd = dyn_cast<OutputDesc>(cmd);
1192 return osd && osd->osec.hasInputSections;
1193 };
1194 auto j =
1195 std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b),
1196 isOutputSecWithInputSections);
1197 i = j.base();
1198
1199 // As a special case, if the orphan section is the last section, put
1200 // it at the very end, past any other commands.
1201 // This matches bfd's behavior and is convenient when the linker script fully
1202 // specifies the start of the file, but doesn't care about the end (the non
1203 // alloc sections for example).
1204 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1205 if (nextSec == e)
1206 return e;
1207
1208 while (i != e && shouldSkip(*i))
1209 ++i;
1210 return i;
1211 }
1212
1213 // Adds random priorities to sections not already in the map.
maybeShuffle(DenseMap<const InputSectionBase *,int> & order)1214 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1215 if (config->shuffleSections.empty())
1216 return;
1217
1218 SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections;
1219 matched.reserve(sections.size());
1220 for (const auto &patAndSeed : config->shuffleSections) {
1221 matched.clear();
1222 for (InputSectionBase *sec : sections)
1223 if (patAndSeed.first.match(sec->name))
1224 matched.push_back(sec);
1225 const uint32_t seed = patAndSeed.second;
1226 if (seed == UINT32_MAX) {
1227 // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1228 // section order is stable even if the number of sections changes. This is
1229 // useful to catch issues like static initialization order fiasco
1230 // reliably.
1231 std::reverse(matched.begin(), matched.end());
1232 } else {
1233 std::mt19937 g(seed ? seed : std::random_device()());
1234 llvm::shuffle(matched.begin(), matched.end(), g);
1235 }
1236 size_t i = 0;
1237 for (InputSectionBase *&sec : sections)
1238 if (patAndSeed.first.match(sec->name))
1239 sec = matched[i++];
1240 }
1241
1242 // Existing priorities are < 0, so use priorities >= 0 for the missing
1243 // sections.
1244 int prio = 0;
1245 for (InputSectionBase *sec : sections) {
1246 if (order.try_emplace(sec, prio).second)
1247 ++prio;
1248 }
1249 }
1250
1251 // Builds section order for handling --symbol-ordering-file.
buildSectionOrder()1252 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1253 DenseMap<const InputSectionBase *, int> sectionOrder;
1254 // Use the rarely used option --call-graph-ordering-file to sort sections.
1255 if (!config->callGraphProfile.empty())
1256 return computeCallGraphProfileOrder();
1257
1258 if (config->symbolOrderingFile.empty())
1259 return sectionOrder;
1260
1261 struct SymbolOrderEntry {
1262 int priority;
1263 bool present;
1264 };
1265
1266 // Build a map from symbols to their priorities. Symbols that didn't
1267 // appear in the symbol ordering file have the lowest priority 0.
1268 // All explicitly mentioned symbols have negative (higher) priorities.
1269 DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder;
1270 int priority = -config->symbolOrderingFile.size();
1271 for (StringRef s : config->symbolOrderingFile)
1272 symbolOrder.insert({CachedHashStringRef(s), {priority++, false}});
1273
1274 // Build a map from sections to their priorities.
1275 auto addSym = [&](Symbol &sym) {
1276 auto it = symbolOrder.find(CachedHashStringRef(sym.getName()));
1277 if (it == symbolOrder.end())
1278 return;
1279 SymbolOrderEntry &ent = it->second;
1280 ent.present = true;
1281
1282 maybeWarnUnorderableSymbol(&sym);
1283
1284 if (auto *d = dyn_cast<Defined>(&sym)) {
1285 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1286 int &priority = sectionOrder[cast<InputSectionBase>(sec)];
1287 priority = std::min(priority, ent.priority);
1288 }
1289 }
1290 };
1291
1292 // We want both global and local symbols. We get the global ones from the
1293 // symbol table and iterate the object files for the local ones.
1294 for (Symbol *sym : symtab.getSymbols())
1295 addSym(*sym);
1296
1297 for (ELFFileBase *file : ctx.objectFiles)
1298 for (Symbol *sym : file->getLocalSymbols())
1299 addSym(*sym);
1300
1301 if (config->warnSymbolOrdering)
1302 for (auto orderEntry : symbolOrder)
1303 if (!orderEntry.second.present)
1304 warn("symbol ordering file: no such symbol: " + orderEntry.first.val());
1305
1306 return sectionOrder;
1307 }
1308
1309 // Sorts the sections in ISD according to the provided section order.
1310 static void
sortISDBySectionOrder(InputSectionDescription * isd,const DenseMap<const InputSectionBase *,int> & order,bool executableOutputSection)1311 sortISDBySectionOrder(InputSectionDescription *isd,
1312 const DenseMap<const InputSectionBase *, int> &order,
1313 bool executableOutputSection) {
1314 SmallVector<InputSection *, 0> unorderedSections;
1315 SmallVector<std::pair<InputSection *, int>, 0> orderedSections;
1316 uint64_t unorderedSize = 0;
1317 uint64_t totalSize = 0;
1318
1319 for (InputSection *isec : isd->sections) {
1320 if (executableOutputSection)
1321 totalSize += isec->getSize();
1322 auto i = order.find(isec);
1323 if (i == order.end()) {
1324 unorderedSections.push_back(isec);
1325 unorderedSize += isec->getSize();
1326 continue;
1327 }
1328 orderedSections.push_back({isec, i->second});
1329 }
1330 llvm::sort(orderedSections, llvm::less_second());
1331
1332 // Find an insertion point for the ordered section list in the unordered
1333 // section list. On targets with limited-range branches, this is the mid-point
1334 // of the unordered section list. This decreases the likelihood that a range
1335 // extension thunk will be needed to enter or exit the ordered region. If the
1336 // ordered section list is a list of hot functions, we can generally expect
1337 // the ordered functions to be called more often than the unordered functions,
1338 // making it more likely that any particular call will be within range, and
1339 // therefore reducing the number of thunks required.
1340 //
1341 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1342 // If the layout is:
1343 //
1344 // 8MB hot
1345 // 32MB cold
1346 //
1347 // only the first 8-16MB of the cold code (depending on which hot function it
1348 // is actually calling) can call the hot code without a range extension thunk.
1349 // However, if we use this layout:
1350 //
1351 // 16MB cold
1352 // 8MB hot
1353 // 16MB cold
1354 //
1355 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1356 // of the second block of cold code can call the hot code without a thunk. So
1357 // we effectively double the amount of code that could potentially call into
1358 // the hot code without a thunk.
1359 //
1360 // The above is not necessary if total size of input sections in this "isd"
1361 // is small. Note that we assume all input sections are executable if the
1362 // output section is executable (which is not always true but supposed to
1363 // cover most cases).
1364 size_t insPt = 0;
1365 if (executableOutputSection && !orderedSections.empty() &&
1366 target->getThunkSectionSpacing() &&
1367 totalSize >= target->getThunkSectionSpacing()) {
1368 uint64_t unorderedPos = 0;
1369 for (; insPt != unorderedSections.size(); ++insPt) {
1370 unorderedPos += unorderedSections[insPt]->getSize();
1371 if (unorderedPos > unorderedSize / 2)
1372 break;
1373 }
1374 }
1375
1376 isd->sections.clear();
1377 for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt))
1378 isd->sections.push_back(isec);
1379 for (std::pair<InputSection *, int> p : orderedSections)
1380 isd->sections.push_back(p.first);
1381 for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt))
1382 isd->sections.push_back(isec);
1383 }
1384
sortSection(OutputSection & osec,const DenseMap<const InputSectionBase *,int> & order)1385 static void sortSection(OutputSection &osec,
1386 const DenseMap<const InputSectionBase *, int> &order) {
1387 StringRef name = osec.name;
1388
1389 // Never sort these.
1390 if (name == ".init" || name == ".fini")
1391 return;
1392
1393 // IRelative relocations that usually live in the .rel[a].dyn section should
1394 // be processed last by the dynamic loader. To achieve that we add synthetic
1395 // sections in the required order from the beginning so that the in.relaIplt
1396 // section is placed last in an output section. Here we just do not apply
1397 // sorting for an output section which holds the in.relaIplt section.
1398 if (in.relaIplt->getParent() == &osec)
1399 return;
1400
1401 // Sort input sections by priority using the list provided by
1402 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1403 // digit radix sort. The sections may be sorted stably again by a more
1404 // significant key.
1405 if (!order.empty())
1406 for (SectionCommand *b : osec.commands)
1407 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1408 sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR);
1409
1410 if (script->hasSectionsCommand)
1411 return;
1412
1413 if (name == ".init_array" || name == ".fini_array") {
1414 osec.sortInitFini();
1415 } else if (name == ".ctors" || name == ".dtors") {
1416 osec.sortCtorsDtors();
1417 } else if (config->emachine == EM_PPC64 && name == ".toc") {
1418 // .toc is allocated just after .got and is accessed using GOT-relative
1419 // relocations. Object files compiled with small code model have an
1420 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1421 // To reduce the risk of relocation overflow, .toc contents are sorted so
1422 // that sections having smaller relocation offsets are at beginning of .toc
1423 assert(osec.commands.size() == 1);
1424 auto *isd = cast<InputSectionDescription>(osec.commands[0]);
1425 llvm::stable_sort(isd->sections,
1426 [](const InputSection *a, const InputSection *b) -> bool {
1427 return a->file->ppc64SmallCodeModelTocRelocs &&
1428 !b->file->ppc64SmallCodeModelTocRelocs;
1429 });
1430 }
1431 }
1432
1433 // If no layout was provided by linker script, we want to apply default
1434 // sorting for special input sections. This also handles --symbol-ordering-file.
sortInputSections()1435 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1436 // Build the order once since it is expensive.
1437 DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1438 maybeShuffle(order);
1439 for (SectionCommand *cmd : script->sectionCommands)
1440 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1441 sortSection(osd->osec, order);
1442 }
1443
sortSections()1444 template <class ELFT> void Writer<ELFT>::sortSections() {
1445 llvm::TimeTraceScope timeScope("Sort sections");
1446
1447 // Don't sort if using -r. It is not necessary and we want to preserve the
1448 // relative order for SHF_LINK_ORDER sections.
1449 if (config->relocatable) {
1450 script->adjustOutputSections();
1451 return;
1452 }
1453
1454 sortInputSections();
1455
1456 for (SectionCommand *cmd : script->sectionCommands)
1457 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1458 osd->osec.sortRank = getSectionRank(osd->osec);
1459 if (!script->hasSectionsCommand) {
1460 // We know that all the OutputSections are contiguous in this case.
1461 auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); };
1462 std::stable_sort(
1463 llvm::find_if(script->sectionCommands, isSection),
1464 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1465 compareSections);
1466 }
1467
1468 // Process INSERT commands and update output section attributes. From this
1469 // point onwards the order of script->sectionCommands is fixed.
1470 script->processInsertCommands();
1471 script->adjustOutputSections();
1472
1473 if (!script->hasSectionsCommand)
1474 return;
1475
1476 // Orphan sections are sections present in the input files which are
1477 // not explicitly placed into the output file by the linker script.
1478 //
1479 // The sections in the linker script are already in the correct
1480 // order. We have to figuere out where to insert the orphan
1481 // sections.
1482 //
1483 // The order of the sections in the script is arbitrary and may not agree with
1484 // compareSections. This means that we cannot easily define a strict weak
1485 // ordering. To see why, consider a comparison of a section in the script and
1486 // one not in the script. We have a two simple options:
1487 // * Make them equivalent (a is not less than b, and b is not less than a).
1488 // The problem is then that equivalence has to be transitive and we can
1489 // have sections a, b and c with only b in a script and a less than c
1490 // which breaks this property.
1491 // * Use compareSectionsNonScript. Given that the script order doesn't have
1492 // to match, we can end up with sections a, b, c, d where b and c are in the
1493 // script and c is compareSectionsNonScript less than b. In which case d
1494 // can be equivalent to c, a to b and d < a. As a concrete example:
1495 // .a (rx) # not in script
1496 // .b (rx) # in script
1497 // .c (ro) # in script
1498 // .d (ro) # not in script
1499 //
1500 // The way we define an order then is:
1501 // * Sort only the orphan sections. They are in the end right now.
1502 // * Move each orphan section to its preferred position. We try
1503 // to put each section in the last position where it can share
1504 // a PT_LOAD.
1505 //
1506 // There is some ambiguity as to where exactly a new entry should be
1507 // inserted, because Commands contains not only output section
1508 // commands but also other types of commands such as symbol assignment
1509 // expressions. There's no correct answer here due to the lack of the
1510 // formal specification of the linker script. We use heuristics to
1511 // determine whether a new output command should be added before or
1512 // after another commands. For the details, look at shouldSkip
1513 // function.
1514
1515 auto i = script->sectionCommands.begin();
1516 auto e = script->sectionCommands.end();
1517 auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
1518 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1519 return osd->osec.sectionIndex == UINT32_MAX;
1520 return false;
1521 });
1522
1523 // Sort the orphan sections.
1524 std::stable_sort(nonScriptI, e, compareSections);
1525
1526 // As a horrible special case, skip the first . assignment if it is before any
1527 // section. We do this because it is common to set a load address by starting
1528 // the script with ". = 0xabcd" and the expectation is that every section is
1529 // after that.
1530 auto firstSectionOrDotAssignment =
1531 std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
1532 if (firstSectionOrDotAssignment != e &&
1533 isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1534 ++firstSectionOrDotAssignment;
1535 i = firstSectionOrDotAssignment;
1536
1537 while (nonScriptI != e) {
1538 auto pos = findOrphanPos(i, nonScriptI);
1539 OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec;
1540
1541 // As an optimization, find all sections with the same sort rank
1542 // and insert them with one rotate.
1543 unsigned rank = orphan->sortRank;
1544 auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
1545 return cast<OutputDesc>(cmd)->osec.sortRank != rank;
1546 });
1547 std::rotate(pos, nonScriptI, end);
1548 nonScriptI = end;
1549 }
1550
1551 script->adjustSectionsAfterSorting();
1552 }
1553
compareByFilePosition(InputSection * a,InputSection * b)1554 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1555 InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1556 InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1557 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1558 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1559 if (!la || !lb)
1560 return la && !lb;
1561 OutputSection *aOut = la->getParent();
1562 OutputSection *bOut = lb->getParent();
1563
1564 if (aOut != bOut)
1565 return aOut->addr < bOut->addr;
1566 return la->outSecOff < lb->outSecOff;
1567 }
1568
resolveShfLinkOrder()1569 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1570 llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1571 for (OutputSection *sec : outputSections) {
1572 if (!(sec->flags & SHF_LINK_ORDER))
1573 continue;
1574
1575 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1576 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1577 if (!config->relocatable && config->emachine == EM_ARM &&
1578 sec->type == SHT_ARM_EXIDX)
1579 continue;
1580
1581 // Link order may be distributed across several InputSectionDescriptions.
1582 // Sorting is performed separately.
1583 SmallVector<InputSection **, 0> scriptSections;
1584 SmallVector<InputSection *, 0> sections;
1585 for (SectionCommand *cmd : sec->commands) {
1586 auto *isd = dyn_cast<InputSectionDescription>(cmd);
1587 if (!isd)
1588 continue;
1589 bool hasLinkOrder = false;
1590 scriptSections.clear();
1591 sections.clear();
1592 for (InputSection *&isec : isd->sections) {
1593 if (isec->flags & SHF_LINK_ORDER) {
1594 InputSection *link = isec->getLinkOrderDep();
1595 if (link && !link->getParent())
1596 error(toString(isec) + ": sh_link points to discarded section " +
1597 toString(link));
1598 hasLinkOrder = true;
1599 }
1600 scriptSections.push_back(&isec);
1601 sections.push_back(isec);
1602 }
1603 if (hasLinkOrder && errorCount() == 0) {
1604 llvm::stable_sort(sections, compareByFilePosition);
1605 for (int i = 0, n = sections.size(); i != n; ++i)
1606 *scriptSections[i] = sections[i];
1607 }
1608 }
1609 }
1610 }
1611
finalizeSynthetic(SyntheticSection * sec)1612 static void finalizeSynthetic(SyntheticSection *sec) {
1613 if (sec && sec->isNeeded() && sec->getParent()) {
1614 llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1615 sec->finalizeContents();
1616 }
1617 }
1618
1619 // We need to generate and finalize the content that depends on the address of
1620 // InputSections. As the generation of the content may also alter InputSection
1621 // addresses we must converge to a fixed point. We do that here. See the comment
1622 // in Writer<ELFT>::finalizeSections().
finalizeAddressDependentContent()1623 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1624 llvm::TimeTraceScope timeScope("Finalize address dependent content");
1625 ThunkCreator tc;
1626 AArch64Err843419Patcher a64p;
1627 ARMErr657417Patcher a32p;
1628 script->assignAddresses();
1629 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1630 // do require the relative addresses of OutputSections because linker scripts
1631 // can assign Virtual Addresses to OutputSections that are not monotonically
1632 // increasing.
1633 for (Partition &part : partitions)
1634 finalizeSynthetic(part.armExidx.get());
1635 resolveShfLinkOrder();
1636
1637 // Converts call x@GDPLT to call __tls_get_addr
1638 if (config->emachine == EM_HEXAGON)
1639 hexagonTLSSymbolUpdate(outputSections);
1640
1641 uint32_t pass = 0, assignPasses = 0;
1642 for (;;) {
1643 bool changed = target->needsThunks ? tc.createThunks(pass, outputSections)
1644 : target->relaxOnce(pass);
1645 ++pass;
1646
1647 // With Thunk Size much smaller than branch range we expect to
1648 // converge quickly; if we get to 15 something has gone wrong.
1649 if (changed && pass >= 15) {
1650 error(target->needsThunks ? "thunk creation not converged"
1651 : "relaxation not converged");
1652 break;
1653 }
1654
1655 if (config->fixCortexA53Errata843419) {
1656 if (changed)
1657 script->assignAddresses();
1658 changed |= a64p.createFixes();
1659 }
1660 if (config->fixCortexA8) {
1661 if (changed)
1662 script->assignAddresses();
1663 changed |= a32p.createFixes();
1664 }
1665
1666 if (in.mipsGot)
1667 in.mipsGot->updateAllocSize();
1668
1669 for (Partition &part : partitions) {
1670 changed |= part.relaDyn->updateAllocSize();
1671 if (part.relrDyn)
1672 changed |= part.relrDyn->updateAllocSize();
1673 }
1674
1675 const Defined *changedSym = script->assignAddresses();
1676 if (!changed) {
1677 // Some symbols may be dependent on section addresses. When we break the
1678 // loop, the symbol values are finalized because a previous
1679 // assignAddresses() finalized section addresses.
1680 if (!changedSym)
1681 break;
1682 if (++assignPasses == 5) {
1683 errorOrWarn("assignment to symbol " + toString(*changedSym) +
1684 " does not converge");
1685 break;
1686 }
1687 }
1688 }
1689 if (!config->relocatable && config->emachine == EM_RISCV)
1690 riscvFinalizeRelax(pass);
1691
1692 if (config->relocatable)
1693 for (OutputSection *sec : outputSections)
1694 sec->addr = 0;
1695
1696 // If addrExpr is set, the address may not be a multiple of the alignment.
1697 // Warn because this is error-prone.
1698 for (SectionCommand *cmd : script->sectionCommands)
1699 if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1700 OutputSection *osec = &osd->osec;
1701 if (osec->addr % osec->addralign != 0)
1702 warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " +
1703 osec->name + " is not a multiple of alignment (" +
1704 Twine(osec->addralign) + ")");
1705 }
1706 }
1707
1708 // If Input Sections have been shrunk (basic block sections) then
1709 // update symbol values and sizes associated with these sections. With basic
1710 // block sections, input sections can shrink when the jump instructions at
1711 // the end of the section are relaxed.
fixSymbolsAfterShrinking()1712 static void fixSymbolsAfterShrinking() {
1713 for (InputFile *File : ctx.objectFiles) {
1714 parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1715 auto *def = dyn_cast<Defined>(Sym);
1716 if (!def)
1717 return;
1718
1719 const SectionBase *sec = def->section;
1720 if (!sec)
1721 return;
1722
1723 const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec);
1724 if (!inputSec || !inputSec->bytesDropped)
1725 return;
1726
1727 const size_t OldSize = inputSec->content().size();
1728 const size_t NewSize = OldSize - inputSec->bytesDropped;
1729
1730 if (def->value > NewSize && def->value <= OldSize) {
1731 LLVM_DEBUG(llvm::dbgs()
1732 << "Moving symbol " << Sym->getName() << " from "
1733 << def->value << " to "
1734 << def->value - inputSec->bytesDropped << " bytes\n");
1735 def->value -= inputSec->bytesDropped;
1736 return;
1737 }
1738
1739 if (def->value + def->size > NewSize && def->value <= OldSize &&
1740 def->value + def->size <= OldSize) {
1741 LLVM_DEBUG(llvm::dbgs()
1742 << "Shrinking symbol " << Sym->getName() << " from "
1743 << def->size << " to " << def->size - inputSec->bytesDropped
1744 << " bytes\n");
1745 def->size -= inputSec->bytesDropped;
1746 }
1747 });
1748 }
1749 }
1750
1751 // If basic block sections exist, there are opportunities to delete fall thru
1752 // jumps and shrink jump instructions after basic block reordering. This
1753 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1754 // option is used.
optimizeBasicBlockJumps()1755 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1756 assert(config->optimizeBBJumps);
1757 SmallVector<InputSection *, 0> storage;
1758
1759 script->assignAddresses();
1760 // For every output section that has executable input sections, this
1761 // does the following:
1762 // 1. Deletes all direct jump instructions in input sections that
1763 // jump to the following section as it is not required.
1764 // 2. If there are two consecutive jump instructions, it checks
1765 // if they can be flipped and one can be deleted.
1766 for (OutputSection *osec : outputSections) {
1767 if (!(osec->flags & SHF_EXECINSTR))
1768 continue;
1769 ArrayRef<InputSection *> sections = getInputSections(*osec, storage);
1770 size_t numDeleted = 0;
1771 // Delete all fall through jump instructions. Also, check if two
1772 // consecutive jump instructions can be flipped so that a fall
1773 // through jmp instruction can be deleted.
1774 for (size_t i = 0, e = sections.size(); i != e; ++i) {
1775 InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1776 InputSection &sec = *sections[i];
1777 numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next);
1778 }
1779 if (numDeleted > 0) {
1780 script->assignAddresses();
1781 LLVM_DEBUG(llvm::dbgs()
1782 << "Removing " << numDeleted << " fall through jumps\n");
1783 }
1784 }
1785
1786 fixSymbolsAfterShrinking();
1787
1788 for (OutputSection *osec : outputSections)
1789 for (InputSection *is : getInputSections(*osec, storage))
1790 is->trim();
1791 }
1792
1793 // In order to allow users to manipulate linker-synthesized sections,
1794 // we had to add synthetic sections to the input section list early,
1795 // even before we make decisions whether they are needed. This allows
1796 // users to write scripts like this: ".mygot : { .got }".
1797 //
1798 // Doing it has an unintended side effects. If it turns out that we
1799 // don't need a .got (for example) at all because there's no
1800 // relocation that needs a .got, we don't want to emit .got.
1801 //
1802 // To deal with the above problem, this function is called after
1803 // scanRelocations is called to remove synthetic sections that turn
1804 // out to be empty.
removeUnusedSyntheticSections()1805 static void removeUnusedSyntheticSections() {
1806 // All input synthetic sections that can be empty are placed after
1807 // all regular ones. Reverse iterate to find the first synthetic section
1808 // after a non-synthetic one which will be our starting point.
1809 auto start =
1810 llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) {
1811 return !isa<SyntheticSection>(s);
1812 }).base();
1813
1814 // Remove unused synthetic sections from ctx.inputSections;
1815 DenseSet<InputSectionBase *> unused;
1816 auto end =
1817 std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) {
1818 auto *sec = cast<SyntheticSection>(s);
1819 if (sec->getParent() && sec->isNeeded())
1820 return false;
1821 unused.insert(sec);
1822 return true;
1823 });
1824 ctx.inputSections.erase(end, ctx.inputSections.end());
1825
1826 // Remove unused synthetic sections from the corresponding input section
1827 // description and orphanSections.
1828 for (auto *sec : unused)
1829 if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
1830 for (SectionCommand *cmd : osec->commands)
1831 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
1832 llvm::erase_if(isd->sections, [&](InputSection *isec) {
1833 return unused.count(isec);
1834 });
1835 llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
1836 return unused.count(sec);
1837 });
1838 }
1839
1840 // Create output section objects and add them to OutputSections.
finalizeSections()1841 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1842 if (!config->relocatable) {
1843 Out::preinitArray = findSection(".preinit_array");
1844 Out::initArray = findSection(".init_array");
1845 Out::finiArray = findSection(".fini_array");
1846
1847 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1848 // symbols for sections, so that the runtime can get the start and end
1849 // addresses of each section by section name. Add such symbols.
1850 addStartEndSymbols();
1851 for (SectionCommand *cmd : script->sectionCommands)
1852 if (auto *osd = dyn_cast<OutputDesc>(cmd))
1853 addStartStopSymbols(osd->osec);
1854
1855 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1856 // It should be okay as no one seems to care about the type.
1857 // Even the author of gold doesn't remember why gold behaves that way.
1858 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1859 if (mainPart->dynamic->parent) {
1860 Symbol *s = symtab.addSymbol(Defined{
1861 /*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE,
1862 /*value=*/0, /*size=*/0, mainPart->dynamic.get()});
1863 s->isUsedInRegularObj = true;
1864 }
1865
1866 // Define __rel[a]_iplt_{start,end} symbols if needed.
1867 addRelIpltSymbols();
1868
1869 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1870 // should only be defined in an executable. If .sdata does not exist, its
1871 // value/section does not matter but it has to be relative, so set its
1872 // st_shndx arbitrarily to 1 (Out::elfHeader).
1873 if (config->emachine == EM_RISCV && !config->shared) {
1874 OutputSection *sec = findSection(".sdata");
1875 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 0x800,
1876 STV_DEFAULT);
1877 }
1878
1879 if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
1880 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1881 // way that:
1882 //
1883 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1884 // computes 0.
1885 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1886 // in the TLS block).
1887 //
1888 // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1889 // as an absolute symbol of zero. This is different from GNU linkers which
1890 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1891 Symbol *s = symtab.find("_TLS_MODULE_BASE_");
1892 if (s && s->isUndefined()) {
1893 s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL,
1894 STV_HIDDEN, STT_TLS, /*value=*/0, 0,
1895 /*section=*/nullptr});
1896 ElfSym::tlsModuleBase = cast<Defined>(s);
1897 }
1898 }
1899
1900 // This responsible for splitting up .eh_frame section into
1901 // pieces. The relocation scan uses those pieces, so this has to be
1902 // earlier.
1903 {
1904 llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1905 for (Partition &part : partitions)
1906 finalizeSynthetic(part.ehFrame.get());
1907 }
1908
1909 if (config->hasDynSymTab) {
1910 parallelForEach(symtab.getSymbols(), [](Symbol *sym) {
1911 sym->isPreemptible = computeIsPreemptible(*sym);
1912 });
1913 }
1914 }
1915
1916 // Change values of linker-script-defined symbols from placeholders (assigned
1917 // by declareSymbols) to actual definitions.
1918 script->processSymbolAssignments();
1919
1920 if (!config->relocatable) {
1921 llvm::TimeTraceScope timeScope("Scan relocations");
1922 // Scan relocations. This must be done after every symbol is declared so
1923 // that we can correctly decide if a dynamic relocation is needed. This is
1924 // called after processSymbolAssignments() because it needs to know whether
1925 // a linker-script-defined symbol is absolute.
1926 ppc64noTocRelax.clear();
1927 scanRelocations<ELFT>();
1928 reportUndefinedSymbols();
1929 postScanRelocations();
1930
1931 if (in.plt && in.plt->isNeeded())
1932 in.plt->addSymbols();
1933 if (in.iplt && in.iplt->isNeeded())
1934 in.iplt->addSymbols();
1935
1936 if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
1937 auto diagnose =
1938 config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
1939 ? errorOrWarn
1940 : warn;
1941 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1942 // entries are seen. These cases would otherwise lead to runtime errors
1943 // reported by the dynamic linker.
1944 //
1945 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
1946 // to catch more cases. That is too much for us. Our approach resembles
1947 // the one used in ld.gold, achieves a good balance to be useful but not
1948 // too smart.
1949 for (SharedFile *file : ctx.sharedFiles) {
1950 bool allNeededIsKnown =
1951 llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1952 return symtab.soNames.count(CachedHashStringRef(needed));
1953 });
1954 if (!allNeededIsKnown)
1955 continue;
1956 for (Symbol *sym : file->requiredSymbols)
1957 if (sym->isUndefined() && !sym->isWeak())
1958 diagnose("undefined reference due to --no-allow-shlib-undefined: " +
1959 toString(*sym) + "\n>>> referenced by " + toString(file));
1960 }
1961 }
1962 }
1963
1964 {
1965 llvm::TimeTraceScope timeScope("Add symbols to symtabs");
1966 // Now that we have defined all possible global symbols including linker-
1967 // synthesized ones. Visit all symbols to give the finishing touches.
1968 for (Symbol *sym : symtab.getSymbols()) {
1969 if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
1970 continue;
1971 if (!config->relocatable)
1972 sym->binding = sym->computeBinding();
1973 if (in.symTab)
1974 in.symTab->addSymbol(sym);
1975
1976 if (sym->includeInDynsym()) {
1977 partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1978 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1979 if (file->isNeeded && !sym->isUndefined())
1980 addVerneed(sym);
1981 }
1982 }
1983
1984 // We also need to scan the dynamic relocation tables of the other
1985 // partitions and add any referenced symbols to the partition's dynsym.
1986 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1987 DenseSet<Symbol *> syms;
1988 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1989 syms.insert(e.sym);
1990 for (DynamicReloc &reloc : part.relaDyn->relocs)
1991 if (reloc.sym && reloc.needsDynSymIndex() &&
1992 syms.insert(reloc.sym).second)
1993 part.dynSymTab->addSymbol(reloc.sym);
1994 }
1995 }
1996
1997 if (in.mipsGot)
1998 in.mipsGot->build();
1999
2000 removeUnusedSyntheticSections();
2001 script->diagnoseOrphanHandling();
2002
2003 sortSections();
2004
2005 // Create a list of OutputSections, assign sectionIndex, and populate
2006 // in.shStrTab.
2007 for (SectionCommand *cmd : script->sectionCommands)
2008 if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
2009 OutputSection *osec = &osd->osec;
2010 outputSections.push_back(osec);
2011 osec->sectionIndex = outputSections.size();
2012 osec->shName = in.shStrTab->addString(osec->name);
2013 }
2014
2015 // Prefer command line supplied address over other constraints.
2016 for (OutputSection *sec : outputSections) {
2017 auto i = config->sectionStartMap.find(sec->name);
2018 if (i != config->sectionStartMap.end())
2019 sec->addrExpr = [=] { return i->second; };
2020 }
2021
2022 // With the outputSections available check for GDPLT relocations
2023 // and add __tls_get_addr symbol if needed.
2024 if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2025 Symbol *sym = symtab.addSymbol(Undefined{
2026 nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2027 sym->isPreemptible = true;
2028 partitions[0].dynSymTab->addSymbol(sym);
2029 }
2030
2031 // This is a bit of a hack. A value of 0 means undef, so we set it
2032 // to 1 to make __ehdr_start defined. The section number is not
2033 // particularly relevant.
2034 Out::elfHeader->sectionIndex = 1;
2035 Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
2036
2037 // Binary and relocatable output does not have PHDRS.
2038 // The headers have to be created before finalize as that can influence the
2039 // image base and the dynamic section on mips includes the image base.
2040 if (!config->relocatable && !config->oFormatBinary) {
2041 for (Partition &part : partitions) {
2042 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2043 : createPhdrs(part);
2044 if (config->emachine == EM_ARM) {
2045 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2046 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2047 }
2048 if (config->emachine == EM_MIPS) {
2049 // Add separate segments for MIPS-specific sections.
2050 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2051 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2052 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2053 }
2054 }
2055 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2056
2057 // Find the TLS segment. This happens before the section layout loop so that
2058 // Android relocation packing can look up TLS symbol addresses. We only need
2059 // to care about the main partition here because all TLS symbols were moved
2060 // to the main partition (see MarkLive.cpp).
2061 for (PhdrEntry *p : mainPart->phdrs)
2062 if (p->p_type == PT_TLS)
2063 Out::tlsPhdr = p;
2064 }
2065
2066 // Some symbols are defined in term of program headers. Now that we
2067 // have the headers, we can find out which sections they point to.
2068 setReservedSymbolSections();
2069
2070 {
2071 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2072
2073 finalizeSynthetic(in.bss.get());
2074 finalizeSynthetic(in.bssRelRo.get());
2075 finalizeSynthetic(in.symTabShndx.get());
2076 finalizeSynthetic(in.shStrTab.get());
2077 finalizeSynthetic(in.strTab.get());
2078 finalizeSynthetic(in.got.get());
2079 finalizeSynthetic(in.mipsGot.get());
2080 finalizeSynthetic(in.igotPlt.get());
2081 finalizeSynthetic(in.gotPlt.get());
2082 finalizeSynthetic(in.relaIplt.get());
2083 finalizeSynthetic(in.relaPlt.get());
2084 finalizeSynthetic(in.plt.get());
2085 finalizeSynthetic(in.iplt.get());
2086 finalizeSynthetic(in.ppc32Got2.get());
2087 finalizeSynthetic(in.partIndex.get());
2088
2089 // Dynamic section must be the last one in this list and dynamic
2090 // symbol table section (dynSymTab) must be the first one.
2091 for (Partition &part : partitions) {
2092 if (part.relaDyn) {
2093 part.relaDyn->mergeRels();
2094 // Compute DT_RELACOUNT to be used by part.dynamic.
2095 part.relaDyn->partitionRels();
2096 finalizeSynthetic(part.relaDyn.get());
2097 }
2098 if (part.relrDyn) {
2099 part.relrDyn->mergeRels();
2100 finalizeSynthetic(part.relrDyn.get());
2101 }
2102
2103 finalizeSynthetic(part.dynSymTab.get());
2104 finalizeSynthetic(part.gnuHashTab.get());
2105 finalizeSynthetic(part.hashTab.get());
2106 finalizeSynthetic(part.verDef.get());
2107 finalizeSynthetic(part.ehFrameHdr.get());
2108 finalizeSynthetic(part.verSym.get());
2109 finalizeSynthetic(part.verNeed.get());
2110 finalizeSynthetic(part.dynamic.get());
2111 }
2112 }
2113
2114 if (!script->hasSectionsCommand && !config->relocatable)
2115 fixSectionAlignments();
2116
2117 // This is used to:
2118 // 1) Create "thunks":
2119 // Jump instructions in many ISAs have small displacements, and therefore
2120 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2121 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2122 // responsibility to create and insert small pieces of code between
2123 // sections to extend the ranges if jump targets are out of range. Such
2124 // code pieces are called "thunks".
2125 //
2126 // We add thunks at this stage. We couldn't do this before this point
2127 // because this is the earliest point where we know sizes of sections and
2128 // their layouts (that are needed to determine if jump targets are in
2129 // range).
2130 //
2131 // 2) Update the sections. We need to generate content that depends on the
2132 // address of InputSections. For example, MIPS GOT section content or
2133 // android packed relocations sections content.
2134 //
2135 // 3) Assign the final values for the linker script symbols. Linker scripts
2136 // sometimes using forward symbol declarations. We want to set the correct
2137 // values. They also might change after adding the thunks.
2138 finalizeAddressDependentContent();
2139
2140 // All information needed for OutputSection part of Map file is available.
2141 if (errorCount())
2142 return;
2143
2144 {
2145 llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2146 // finalizeAddressDependentContent may have added local symbols to the
2147 // static symbol table.
2148 finalizeSynthetic(in.symTab.get());
2149 finalizeSynthetic(in.ppc64LongBranchTarget.get());
2150 }
2151
2152 // Relaxation to delete inter-basic block jumps created by basic block
2153 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2154 // can relax jump instructions based on symbol offset.
2155 if (config->optimizeBBJumps)
2156 optimizeBasicBlockJumps();
2157
2158 // Fill other section headers. The dynamic table is finalized
2159 // at the end because some tags like RELSZ depend on result
2160 // of finalizing other sections.
2161 for (OutputSection *sec : outputSections)
2162 sec->finalize();
2163 }
2164
2165 // Ensure data sections are not mixed with executable sections when
2166 // --execute-only is used. --execute-only make pages executable but not
2167 // readable.
checkExecuteOnly()2168 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2169 if (!config->executeOnly)
2170 return;
2171
2172 SmallVector<InputSection *, 0> storage;
2173 for (OutputSection *osec : outputSections)
2174 if (osec->flags & SHF_EXECINSTR)
2175 for (InputSection *isec : getInputSections(*osec, storage))
2176 if (!(isec->flags & SHF_EXECINSTR))
2177 error("cannot place " + toString(isec) + " into " +
2178 toString(osec->name) +
2179 ": --execute-only does not support intermingling data and code");
2180 }
2181
2182 // The linker is expected to define SECNAME_start and SECNAME_end
2183 // symbols for a few sections. This function defines them.
addStartEndSymbols()2184 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2185 // If a section does not exist, there's ambiguity as to how we
2186 // define _start and _end symbols for an init/fini section. Since
2187 // the loader assume that the symbols are always defined, we need to
2188 // always define them. But what value? The loader iterates over all
2189 // pointers between _start and _end to run global ctors/dtors, so if
2190 // the section is empty, their symbol values don't actually matter
2191 // as long as _start and _end point to the same location.
2192 //
2193 // That said, we don't want to set the symbols to 0 (which is
2194 // probably the simplest value) because that could cause some
2195 // program to fail to link due to relocation overflow, if their
2196 // program text is above 2 GiB. We use the address of the .text
2197 // section instead to prevent that failure.
2198 //
2199 // In rare situations, the .text section may not exist. If that's the
2200 // case, use the image base address as a last resort.
2201 OutputSection *Default = findSection(".text");
2202 if (!Default)
2203 Default = Out::elfHeader;
2204
2205 auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2206 if (os && !script->isDiscarded(os)) {
2207 addOptionalRegular(start, os, 0);
2208 addOptionalRegular(end, os, -1);
2209 } else {
2210 addOptionalRegular(start, Default, 0);
2211 addOptionalRegular(end, Default, 0);
2212 }
2213 };
2214
2215 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2216 define("__init_array_start", "__init_array_end", Out::initArray);
2217 define("__fini_array_start", "__fini_array_end", Out::finiArray);
2218
2219 if (OutputSection *sec = findSection(".ARM.exidx"))
2220 define("__exidx_start", "__exidx_end", sec);
2221 }
2222
2223 // If a section name is valid as a C identifier (which is rare because of
2224 // the leading '.'), linkers are expected to define __start_<secname> and
2225 // __stop_<secname> symbols. They are at beginning and end of the section,
2226 // respectively. This is not requested by the ELF standard, but GNU ld and
2227 // gold provide the feature, and used by many programs.
2228 template <class ELFT>
addStartStopSymbols(OutputSection & osec)2229 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) {
2230 StringRef s = osec.name;
2231 if (!isValidCIdentifier(s))
2232 return;
2233 addOptionalRegular(saver().save("__start_" + s), &osec, 0,
2234 config->zStartStopVisibility);
2235 addOptionalRegular(saver().save("__stop_" + s), &osec, -1,
2236 config->zStartStopVisibility);
2237 }
2238
needsPtLoad(OutputSection * sec)2239 static bool needsPtLoad(OutputSection *sec) {
2240 if (!(sec->flags & SHF_ALLOC))
2241 return false;
2242
2243 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2244 // responsible for allocating space for them, not the PT_LOAD that
2245 // contains the TLS initialization image.
2246 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2247 return false;
2248 return true;
2249 }
2250
2251 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2252 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2253 // RW. This means that there is no alignment in the RO to RX transition and we
2254 // cannot create a PT_LOAD there.
computeFlags(uint64_t flags)2255 static uint64_t computeFlags(uint64_t flags) {
2256 if (config->omagic)
2257 return PF_R | PF_W | PF_X;
2258 if (config->executeOnly && (flags & PF_X))
2259 return flags & ~PF_R;
2260 if (config->singleRoRx && !(flags & PF_W))
2261 return flags | PF_X;
2262 return flags;
2263 }
2264
2265 // Decide which program headers to create and which sections to include in each
2266 // one.
2267 template <class ELFT>
createPhdrs(Partition & part)2268 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) {
2269 SmallVector<PhdrEntry *, 0> ret;
2270 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2271 ret.push_back(make<PhdrEntry>(type, flags));
2272 return ret.back();
2273 };
2274
2275 unsigned partNo = part.getNumber();
2276 bool isMain = partNo == 1;
2277
2278 // Add the first PT_LOAD segment for regular output sections.
2279 uint64_t flags = computeFlags(PF_R);
2280 PhdrEntry *load = nullptr;
2281
2282 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2283 // PT_LOAD.
2284 if (!config->nmagic && !config->omagic) {
2285 // The first phdr entry is PT_PHDR which describes the program header
2286 // itself.
2287 if (isMain)
2288 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2289 else
2290 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2291
2292 // PT_INTERP must be the second entry if exists.
2293 if (OutputSection *cmd = findSection(".interp", partNo))
2294 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2295
2296 // Add the headers. We will remove them if they don't fit.
2297 // In the other partitions the headers are ordinary sections, so they don't
2298 // need to be added here.
2299 if (isMain) {
2300 load = addHdr(PT_LOAD, flags);
2301 load->add(Out::elfHeader);
2302 load->add(Out::programHeaders);
2303 }
2304 }
2305
2306 // PT_GNU_RELRO includes all sections that should be marked as
2307 // read-only by dynamic linker after processing relocations.
2308 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2309 // an error message if more than one PT_GNU_RELRO PHDR is required.
2310 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2311 bool inRelroPhdr = false;
2312 OutputSection *relroEnd = nullptr;
2313 for (OutputSection *sec : outputSections) {
2314 if (sec->partition != partNo || !needsPtLoad(sec))
2315 continue;
2316 if (isRelroSection(sec)) {
2317 inRelroPhdr = true;
2318 if (!relroEnd)
2319 relRo->add(sec);
2320 else
2321 error("section: " + sec->name + " is not contiguous with other relro" +
2322 " sections");
2323 } else if (inRelroPhdr) {
2324 inRelroPhdr = false;
2325 relroEnd = sec;
2326 }
2327 }
2328
2329 for (OutputSection *sec : outputSections) {
2330 if (!needsPtLoad(sec))
2331 continue;
2332
2333 // Normally, sections in partitions other than the current partition are
2334 // ignored. But partition number 255 is a special case: it contains the
2335 // partition end marker (.part.end). It needs to be added to the main
2336 // partition so that a segment is created for it in the main partition,
2337 // which will cause the dynamic loader to reserve space for the other
2338 // partitions.
2339 if (sec->partition != partNo) {
2340 if (isMain && sec->partition == 255)
2341 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2342 continue;
2343 }
2344
2345 // Segments are contiguous memory regions that has the same attributes
2346 // (e.g. executable or writable). There is one phdr for each segment.
2347 // Therefore, we need to create a new phdr when the next section has
2348 // different flags or is loaded at a discontiguous address or memory
2349 // region using AT or AT> linker script command, respectively. At the same
2350 // time, we don't want to create a separate load segment for the headers,
2351 // even if the first output section has an AT or AT> attribute.
2352 uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2353 bool sameLMARegion =
2354 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2355 if (!(load && newFlags == flags && sec != relroEnd &&
2356 sec->memRegion == load->firstSec->memRegion &&
2357 (sameLMARegion || load->lastSec == Out::programHeaders))) {
2358 load = addHdr(PT_LOAD, newFlags);
2359 flags = newFlags;
2360 }
2361
2362 load->add(sec);
2363 }
2364
2365 // Add a TLS segment if any.
2366 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2367 for (OutputSection *sec : outputSections)
2368 if (sec->partition == partNo && sec->flags & SHF_TLS)
2369 tlsHdr->add(sec);
2370 if (tlsHdr->firstSec)
2371 ret.push_back(tlsHdr);
2372
2373 // Add an entry for .dynamic.
2374 if (OutputSection *sec = part.dynamic->getParent())
2375 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2376
2377 if (relRo->firstSec)
2378 ret.push_back(relRo);
2379
2380 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2381 if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2382 part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2383 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2384 ->add(part.ehFrameHdr->getParent());
2385
2386 // PT_OPENBSD_MUTABLE is an OpenBSD-specific feature. That makes
2387 // the dynamic linker fill the segment with zero data, like bss, but
2388 // it can be treated differently.
2389 if (OutputSection *cmd = findSection(".openbsd.mutable", partNo))
2390 addHdr(PT_OPENBSD_MUTABLE, cmd->getPhdrFlags())->add(cmd);
2391
2392 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2393 // the dynamic linker fill the segment with random data.
2394 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2395 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2396
2397 // PT_OPENBSD_SYSCALLS is an OpenBSD-specific feature. That makes
2398 // the kernel and dynamic linker register system call sites.
2399 if (OutputSection *cmd = findSection(".openbsd.syscalls", partNo))
2400 addHdr(PT_OPENBSD_SYSCALLS, cmd->getPhdrFlags())->add(cmd);
2401
2402 if (config->zGnustack != GnuStackKind::None) {
2403 // PT_GNU_STACK is a special section to tell the loader to make the
2404 // pages for the stack non-executable. If you really want an executable
2405 // stack, you can pass -z execstack, but that's not recommended for
2406 // security reasons.
2407 unsigned perm = PF_R | PF_W;
2408 if (config->zGnustack == GnuStackKind::Exec)
2409 perm |= PF_X;
2410 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2411 }
2412
2413 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2414 // is expected to perform W^X violations, such as calling mprotect(2) or
2415 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2416 // OpenBSD.
2417 if (config->zWxneeded)
2418 addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2419
2420 // PT_OPENBSD_NOBTCFI is an OpenBSD-specific header to mark that the
2421 // executable is expected to violate branch-target CFI checks.
2422 if (config->zNoBtCfi)
2423 addHdr(PT_OPENBSD_NOBTCFI, PF_X);
2424
2425 if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2426 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2427
2428 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2429 // same alignment.
2430 PhdrEntry *note = nullptr;
2431 for (OutputSection *sec : outputSections) {
2432 if (sec->partition != partNo)
2433 continue;
2434 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2435 if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign)
2436 note = addHdr(PT_NOTE, PF_R);
2437 note->add(sec);
2438 } else {
2439 note = nullptr;
2440 }
2441 }
2442 return ret;
2443 }
2444
2445 template <class ELFT>
addPhdrForSection(Partition & part,unsigned shType,unsigned pType,unsigned pFlags)2446 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2447 unsigned pType, unsigned pFlags) {
2448 unsigned partNo = part.getNumber();
2449 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2450 return cmd->partition == partNo && cmd->type == shType;
2451 });
2452 if (i == outputSections.end())
2453 return;
2454
2455 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2456 entry->add(*i);
2457 part.phdrs.push_back(entry);
2458 }
2459
2460 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2461 // This is achieved by assigning an alignment expression to addrExpr of each
2462 // such section.
fixSectionAlignments()2463 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2464 const PhdrEntry *prev;
2465 auto pageAlign = [&](const PhdrEntry *p) {
2466 OutputSection *cmd = p->firstSec;
2467 if (!cmd)
2468 return;
2469 cmd->alignExpr = [align = cmd->addralign]() { return align; };
2470 if (!cmd->addrExpr) {
2471 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2472 // padding in the file contents.
2473 //
2474 // When -z separate-code is used we must not have any overlap in pages
2475 // between an executable segment and a non-executable segment. We align to
2476 // the next maximum page size boundary on transitions between executable
2477 // and non-executable segments.
2478 //
2479 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2480 // sections will be extracted to a separate file. Align to the next
2481 // maximum page size boundary so that we can find the ELF header at the
2482 // start. We cannot benefit from overlapping p_offset ranges with the
2483 // previous segment anyway.
2484 if (config->zSeparate == SeparateSegmentKind::Loadable ||
2485 (config->zSeparate == SeparateSegmentKind::Code && prev &&
2486 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2487 cmd->type == SHT_LLVM_PART_EHDR)
2488 cmd->addrExpr = [] {
2489 return alignToPowerOf2(script->getDot(), config->maxPageSize);
2490 };
2491 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2492 // it must be the RW. Align to p_align(PT_TLS) to make sure
2493 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2494 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2495 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2496 // be congruent to 0 modulo p_align(PT_TLS).
2497 //
2498 // Technically this is not required, but as of 2019, some dynamic loaders
2499 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2500 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2501 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2502 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2503 // blocks correctly. We need to keep the workaround for a while.
2504 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2505 cmd->addrExpr = [] {
2506 return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2507 alignToPowerOf2(script->getDot() % config->maxPageSize,
2508 Out::tlsPhdr->p_align);
2509 };
2510 else
2511 cmd->addrExpr = [] {
2512 return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2513 script->getDot() % config->maxPageSize;
2514 };
2515 }
2516 };
2517
2518 #ifdef __OpenBSD__
2519 // On i386, produce binaries that are compatible with our W^X implementation
2520 if (config->emachine == EM_386) {
2521 auto NXAlign = [](OutputSection *Cmd) {
2522 if (Cmd && !Cmd->addrExpr)
2523 Cmd->addrExpr = [=] {
2524 return alignTo(script->getDot(), 0x20000000);
2525 };
2526 };
2527
2528 for (Partition &part : partitions) {
2529 PhdrEntry *firstRW = nullptr;
2530 for (PhdrEntry *P : part.phdrs) {
2531 if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) {
2532 firstRW = P;
2533 break;
2534 }
2535 }
2536
2537 if (firstRW)
2538 NXAlign(firstRW->firstSec);
2539 }
2540 }
2541 #endif
2542
2543 for (Partition &part : partitions) {
2544 prev = nullptr;
2545 for (const PhdrEntry *p : part.phdrs)
2546 if (p->p_type == PT_LOAD && p->firstSec) {
2547 pageAlign(p);
2548 prev = p;
2549 }
2550 }
2551 }
2552
2553 // Compute an in-file position for a given section. The file offset must be the
2554 // same with its virtual address modulo the page size, so that the loader can
2555 // load executables without any address adjustment.
computeFileOffset(OutputSection * os,uint64_t off)2556 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2557 // The first section in a PT_LOAD has to have congruent offset and address
2558 // modulo the maximum page size.
2559 if (os->ptLoad && os->ptLoad->firstSec == os)
2560 return alignTo(off, os->ptLoad->p_align, os->addr);
2561
2562 // File offsets are not significant for .bss sections other than the first one
2563 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2564 // increasing rather than setting to zero.
2565 if (os->type == SHT_NOBITS &&
2566 (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
2567 return off;
2568
2569 // If the section is not in a PT_LOAD, we just have to align it.
2570 if (!os->ptLoad)
2571 return alignToPowerOf2(off, os->addralign);
2572
2573 // If two sections share the same PT_LOAD the file offset is calculated
2574 // using this formula: Off2 = Off1 + (VA2 - VA1).
2575 OutputSection *first = os->ptLoad->firstSec;
2576 return first->offset + os->addr - first->addr;
2577 }
2578
assignFileOffsetsBinary()2579 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2580 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2581 auto needsOffset = [](OutputSection &sec) {
2582 return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2583 };
2584 uint64_t minAddr = UINT64_MAX;
2585 for (OutputSection *sec : outputSections)
2586 if (needsOffset(*sec)) {
2587 sec->offset = sec->getLMA();
2588 minAddr = std::min(minAddr, sec->offset);
2589 }
2590
2591 // Sections are laid out at LMA minus minAddr.
2592 fileSize = 0;
2593 for (OutputSection *sec : outputSections)
2594 if (needsOffset(*sec)) {
2595 sec->offset -= minAddr;
2596 fileSize = std::max(fileSize, sec->offset + sec->size);
2597 }
2598 }
2599
rangeToString(uint64_t addr,uint64_t len)2600 static std::string rangeToString(uint64_t addr, uint64_t len) {
2601 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2602 }
2603
2604 // Assign file offsets to output sections.
assignFileOffsets()2605 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2606 Out::programHeaders->offset = Out::elfHeader->size;
2607 uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
2608
2609 PhdrEntry *lastRX = nullptr;
2610 for (Partition &part : partitions)
2611 for (PhdrEntry *p : part.phdrs)
2612 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2613 lastRX = p;
2614
2615 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2616 // will not occupy file offsets contained by a PT_LOAD.
2617 for (OutputSection *sec : outputSections) {
2618 if (!(sec->flags & SHF_ALLOC))
2619 continue;
2620 off = computeFileOffset(sec, off);
2621 sec->offset = off;
2622 if (sec->type != SHT_NOBITS)
2623 off += sec->size;
2624
2625 // If this is a last section of the last executable segment and that
2626 // segment is the last loadable segment, align the offset of the
2627 // following section to avoid loading non-segments parts of the file.
2628 if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2629 lastRX->lastSec == sec)
2630 off = alignToPowerOf2(off, config->maxPageSize);
2631 }
2632 for (OutputSection *osec : outputSections)
2633 if (!(osec->flags & SHF_ALLOC)) {
2634 osec->offset = alignToPowerOf2(off, osec->addralign);
2635 off = osec->offset + osec->size;
2636 }
2637
2638 sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
2639 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2640
2641 // Our logic assumes that sections have rising VA within the same segment.
2642 // With use of linker scripts it is possible to violate this rule and get file
2643 // offset overlaps or overflows. That should never happen with a valid script
2644 // which does not move the location counter backwards and usually scripts do
2645 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2646 // kernel, which control segment distribution explicitly and move the counter
2647 // backwards, so we have to allow doing that to support linking them. We
2648 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2649 // we want to prevent file size overflows because it would crash the linker.
2650 for (OutputSection *sec : outputSections) {
2651 if (sec->type == SHT_NOBITS)
2652 continue;
2653 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2654 error("unable to place section " + sec->name + " at file offset " +
2655 rangeToString(sec->offset, sec->size) +
2656 "; check your linker script for overflows");
2657 }
2658 }
2659
2660 // Finalize the program headers. We call this function after we assign
2661 // file offsets and VAs to all sections.
setPhdrs(Partition & part)2662 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2663 for (PhdrEntry *p : part.phdrs) {
2664 OutputSection *first = p->firstSec;
2665 OutputSection *last = p->lastSec;
2666
2667 if (first) {
2668 p->p_filesz = last->offset - first->offset;
2669 if (last->type != SHT_NOBITS)
2670 p->p_filesz += last->size;
2671
2672 p->p_memsz = last->addr + last->size - first->addr;
2673 p->p_offset = first->offset;
2674 p->p_vaddr = first->addr;
2675
2676 // File offsets in partitions other than the main partition are relative
2677 // to the offset of the ELF headers. Perform that adjustment now.
2678 if (part.elfHeader)
2679 p->p_offset -= part.elfHeader->getParent()->offset;
2680
2681 if (!p->hasLMA)
2682 p->p_paddr = first->getLMA();
2683 }
2684
2685 if (p->p_type == PT_GNU_RELRO) {
2686 p->p_align = 1;
2687 // musl/glibc ld.so rounds the size down, so we need to round up
2688 // to protect the last page. This is a no-op on FreeBSD which always
2689 // rounds up.
2690 p->p_memsz =
2691 alignToPowerOf2(p->p_offset + p->p_memsz, config->commonPageSize) -
2692 p->p_offset;
2693 }
2694 }
2695 }
2696
2697 // A helper struct for checkSectionOverlap.
2698 namespace {
2699 struct SectionOffset {
2700 OutputSection *sec;
2701 uint64_t offset;
2702 };
2703 } // namespace
2704
2705 // Check whether sections overlap for a specific address range (file offsets,
2706 // load and virtual addresses).
checkOverlap(StringRef name,std::vector<SectionOffset> & sections,bool isVirtualAddr)2707 static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions,
2708 bool isVirtualAddr) {
2709 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2710 return a.offset < b.offset;
2711 });
2712
2713 // Finding overlap is easy given a vector is sorted by start position.
2714 // If an element starts before the end of the previous element, they overlap.
2715 for (size_t i = 1, end = sections.size(); i < end; ++i) {
2716 SectionOffset a = sections[i - 1];
2717 SectionOffset b = sections[i];
2718 if (b.offset >= a.offset + a.sec->size)
2719 continue;
2720
2721 // If both sections are in OVERLAY we allow the overlapping of virtual
2722 // addresses, because it is what OVERLAY was designed for.
2723 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2724 continue;
2725
2726 errorOrWarn("section " + a.sec->name + " " + name +
2727 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2728 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2729 b.sec->name + " range is " +
2730 rangeToString(b.offset, b.sec->size));
2731 }
2732 }
2733
2734 // Check for overlapping sections and address overflows.
2735 //
2736 // In this function we check that none of the output sections have overlapping
2737 // file offsets. For SHF_ALLOC sections we also check that the load address
2738 // ranges and the virtual address ranges don't overlap
checkSections()2739 template <class ELFT> void Writer<ELFT>::checkSections() {
2740 // First, check that section's VAs fit in available address space for target.
2741 for (OutputSection *os : outputSections)
2742 if ((os->addr + os->size < os->addr) ||
2743 (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1))
2744 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2745 " of size 0x" + utohexstr(os->size) +
2746 " exceeds available address space");
2747
2748 // Check for overlapping file offsets. In this case we need to skip any
2749 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2750 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2751 // binary is specified only add SHF_ALLOC sections are added to the output
2752 // file so we skip any non-allocated sections in that case.
2753 std::vector<SectionOffset> fileOffs;
2754 for (OutputSection *sec : outputSections)
2755 if (sec->size > 0 && sec->type != SHT_NOBITS &&
2756 (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2757 fileOffs.push_back({sec, sec->offset});
2758 checkOverlap("file", fileOffs, false);
2759
2760 // When linking with -r there is no need to check for overlapping virtual/load
2761 // addresses since those addresses will only be assigned when the final
2762 // executable/shared object is created.
2763 if (config->relocatable)
2764 return;
2765
2766 // Checking for overlapping virtual and load addresses only needs to take
2767 // into account SHF_ALLOC sections since others will not be loaded.
2768 // Furthermore, we also need to skip SHF_TLS sections since these will be
2769 // mapped to other addresses at runtime and can therefore have overlapping
2770 // ranges in the file.
2771 std::vector<SectionOffset> vmas;
2772 for (OutputSection *sec : outputSections)
2773 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2774 vmas.push_back({sec, sec->addr});
2775 checkOverlap("virtual address", vmas, true);
2776
2777 // Finally, check that the load addresses don't overlap. This will usually be
2778 // the same as the virtual addresses but can be different when using a linker
2779 // script with AT().
2780 std::vector<SectionOffset> lmas;
2781 for (OutputSection *sec : outputSections)
2782 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2783 lmas.push_back({sec, sec->getLMA()});
2784 checkOverlap("load address", lmas, false);
2785 }
2786
2787 // The entry point address is chosen in the following ways.
2788 //
2789 // 1. the '-e' entry command-line option;
2790 // 2. the ENTRY(symbol) command in a linker control script;
2791 // 3. the value of the symbol _start, if present;
2792 // 4. the number represented by the entry symbol, if it is a number;
2793 // 5. the address 0.
getEntryAddr()2794 static uint64_t getEntryAddr() {
2795 // Case 1, 2 or 3
2796 if (Symbol *b = symtab.find(config->entry))
2797 return b->getVA();
2798
2799 // Case 4
2800 uint64_t addr;
2801 if (to_integer(config->entry, addr))
2802 return addr;
2803
2804 // Case 5
2805 if (config->warnMissingEntry)
2806 warn("cannot find entry symbol " + config->entry +
2807 "; not setting start address");
2808 return 0;
2809 }
2810
getELFType()2811 static uint16_t getELFType() {
2812 if (config->isPic)
2813 return ET_DYN;
2814 if (config->relocatable)
2815 return ET_REL;
2816 return ET_EXEC;
2817 }
2818
writeHeader()2819 template <class ELFT> void Writer<ELFT>::writeHeader() {
2820 writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2821 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2822
2823 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2824 eHdr->e_type = getELFType();
2825 eHdr->e_entry = getEntryAddr();
2826 eHdr->e_shoff = sectionHeaderOff;
2827
2828 // Write the section header table.
2829 //
2830 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2831 // and e_shstrndx fields. When the value of one of these fields exceeds
2832 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2833 // use fields in the section header at index 0 to store
2834 // the value. The sentinel values and fields are:
2835 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2836 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2837 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2838 size_t num = outputSections.size() + 1;
2839 if (num >= SHN_LORESERVE)
2840 sHdrs->sh_size = num;
2841 else
2842 eHdr->e_shnum = num;
2843
2844 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2845 if (strTabIndex >= SHN_LORESERVE) {
2846 sHdrs->sh_link = strTabIndex;
2847 eHdr->e_shstrndx = SHN_XINDEX;
2848 } else {
2849 eHdr->e_shstrndx = strTabIndex;
2850 }
2851
2852 for (OutputSection *sec : outputSections)
2853 sec->writeHeaderTo<ELFT>(++sHdrs);
2854 }
2855
2856 // Open a result file.
openFile()2857 template <class ELFT> void Writer<ELFT>::openFile() {
2858 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2859 if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2860 std::string msg;
2861 raw_string_ostream s(msg);
2862 s << "output file too large: " << Twine(fileSize) << " bytes\n"
2863 << "section sizes:\n";
2864 for (OutputSection *os : outputSections)
2865 s << os->name << ' ' << os->size << "\n";
2866 error(s.str());
2867 return;
2868 }
2869
2870 unlinkAsync(config->outputFile);
2871 unsigned flags = 0;
2872 if (!config->relocatable)
2873 flags |= FileOutputBuffer::F_executable;
2874 if (!config->mmapOutputFile)
2875 flags |= FileOutputBuffer::F_no_mmap;
2876 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2877 FileOutputBuffer::create(config->outputFile, fileSize, flags);
2878
2879 if (!bufferOrErr) {
2880 error("failed to open " + config->outputFile + ": " +
2881 llvm::toString(bufferOrErr.takeError()));
2882 return;
2883 }
2884 buffer = std::move(*bufferOrErr);
2885 Out::bufferStart = buffer->getBufferStart();
2886 }
2887
writeSectionsBinary()2888 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2889 parallel::TaskGroup tg;
2890 for (OutputSection *sec : outputSections)
2891 if (sec->flags & SHF_ALLOC)
2892 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2893 }
2894
fillTrap(uint8_t * i,uint8_t * end)2895 static void fillTrap(uint8_t *i, uint8_t *end) {
2896 for (; i + 4 <= end; i += 4)
2897 memcpy(i, &target->trapInstr, 4);
2898 }
2899
2900 // Fill the last page of executable segments with trap instructions
2901 // instead of leaving them as zero. Even though it is not required by any
2902 // standard, it is in general a good thing to do for security reasons.
2903 //
2904 // We'll leave other pages in segments as-is because the rest will be
2905 // overwritten by output sections.
writeTrapInstr()2906 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2907 for (Partition &part : partitions) {
2908 // Fill the last page.
2909 for (PhdrEntry *p : part.phdrs)
2910 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2911 fillTrap(Out::bufferStart +
2912 alignDown(p->firstSec->offset + p->p_filesz, 4),
2913 Out::bufferStart +
2914 alignToPowerOf2(p->firstSec->offset + p->p_filesz,
2915 config->maxPageSize));
2916
2917 // Round up the file size of the last segment to the page boundary iff it is
2918 // an executable segment to ensure that other tools don't accidentally
2919 // trim the instruction padding (e.g. when stripping the file).
2920 PhdrEntry *last = nullptr;
2921 for (PhdrEntry *p : part.phdrs)
2922 if (p->p_type == PT_LOAD)
2923 last = p;
2924
2925 if (last && (last->p_flags & PF_X))
2926 last->p_memsz = last->p_filesz =
2927 alignToPowerOf2(last->p_filesz, config->maxPageSize);
2928 }
2929 }
2930
2931 // Write section contents to a mmap'ed file.
writeSections()2932 template <class ELFT> void Writer<ELFT>::writeSections() {
2933 llvm::TimeTraceScope timeScope("Write sections");
2934
2935 {
2936 // In -r or --emit-relocs mode, write the relocation sections first as in
2937 // ELf_Rel targets we might find out that we need to modify the relocated
2938 // section while doing it.
2939 parallel::TaskGroup tg;
2940 for (OutputSection *sec : outputSections)
2941 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2942 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2943 }
2944 {
2945 parallel::TaskGroup tg;
2946 for (OutputSection *sec : outputSections)
2947 if (sec->type != SHT_REL && sec->type != SHT_RELA)
2948 sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2949 }
2950
2951 // Finally, check that all dynamic relocation addends were written correctly.
2952 if (config->checkDynamicRelocs && config->writeAddends) {
2953 for (OutputSection *sec : outputSections)
2954 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2955 sec->checkDynRelAddends(Out::bufferStart);
2956 }
2957 }
2958
2959 // Computes a hash value of Data using a given hash function.
2960 // In order to utilize multiple cores, we first split data into 1MB
2961 // chunks, compute a hash for each chunk, and then compute a hash value
2962 // of the hash values.
2963 static void
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,llvm::ArrayRef<uint8_t> data,std::function<void (uint8_t * dest,ArrayRef<uint8_t> arr)> hashFn)2964 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2965 llvm::ArrayRef<uint8_t> data,
2966 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2967 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2968 const size_t hashesSize = chunks.size() * hashBuf.size();
2969 std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]);
2970
2971 // Compute hash values.
2972 parallelFor(0, chunks.size(), [&](size_t i) {
2973 hashFn(hashes.get() + i * hashBuf.size(), chunks[i]);
2974 });
2975
2976 // Write to the final output buffer.
2977 hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize));
2978 }
2979
writeBuildId()2980 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2981 if (!mainPart->buildId || !mainPart->buildId->getParent())
2982 return;
2983
2984 if (config->buildId == BuildIdKind::Hexstring) {
2985 for (Partition &part : partitions)
2986 part.buildId->writeBuildId(config->buildIdVector);
2987 return;
2988 }
2989
2990 // Compute a hash of all sections of the output file.
2991 size_t hashSize = mainPart->buildId->hashSize;
2992 std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]);
2993 MutableArrayRef<uint8_t> output(buildId.get(), hashSize);
2994 llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)};
2995
2996 // Fedora introduced build ID as "approximation of true uniqueness across all
2997 // binaries that might be used by overlapping sets of people". It does not
2998 // need some security goals that some hash algorithms strive to provide, e.g.
2999 // (second-)preimage and collision resistance. In practice people use 'md5'
3000 // and 'sha1' just for different lengths. Implement them with the more
3001 // efficient BLAKE3.
3002 switch (config->buildId) {
3003 case BuildIdKind::Fast:
3004 computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
3005 write64le(dest, xxHash64(arr));
3006 });
3007 break;
3008 case BuildIdKind::Md5:
3009 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3010 memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize);
3011 });
3012 break;
3013 case BuildIdKind::Sha1:
3014 computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3015 memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize);
3016 });
3017 break;
3018 case BuildIdKind::Uuid:
3019 if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize))
3020 error("entropy source failure: " + ec.message());
3021 break;
3022 default:
3023 llvm_unreachable("unknown BuildIdKind");
3024 }
3025 for (Partition &part : partitions)
3026 part.buildId->writeBuildId(output);
3027 }
3028
3029 template void elf::createSyntheticSections<ELF32LE>();
3030 template void elf::createSyntheticSections<ELF32BE>();
3031 template void elf::createSyntheticSections<ELF64LE>();
3032 template void elf::createSyntheticSections<ELF64BE>();
3033
3034 template void elf::writeResult<ELF32LE>();
3035 template void elf::writeResult<ELF32BE>();
3036 template void elf::writeResult<ELF64LE>();
3037 template void elf::writeResult<ELF64BE>();
3038