1 // object.cc -- support for an object file for linking in gold
2 
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30 
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45 
46 namespace gold
47 {
48 
49 // Struct Read_symbols_data.
50 
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53 
~Read_symbols_data()54 Read_symbols_data::~Read_symbols_data()
55 {
56   if (this->section_headers != NULL)
57     delete this->section_headers;
58   if (this->section_names != NULL)
59     delete this->section_names;
60   if (this->symbols != NULL)
61     delete this->symbols;
62   if (this->symbol_names != NULL)
63     delete this->symbol_names;
64   if (this->versym != NULL)
65     delete this->versym;
66   if (this->verdef != NULL)
67     delete this->verdef;
68   if (this->verneed != NULL)
69     delete this->verneed;
70 }
71 
72 // Class Xindex.
73 
74 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
75 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77 
78 template<int size, bool big_endian>
79 void
initialize_symtab_xindex(Object * object,unsigned int symtab_shndx)80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82   if (!this->symtab_xindex_.empty())
83     return;
84 
85   gold_assert(symtab_shndx != 0);
86 
87   // Look through the sections in reverse order, on the theory that it
88   // is more likely to be near the end than the beginning.
89   unsigned int i = object->shnum();
90   while (i > 0)
91     {
92       --i;
93       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 	  && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 	{
96 	  this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 	  return;
98 	}
99     }
100 
101   object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103 
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
106 // section headers.
107 
108 template<int size, bool big_endian>
109 void
read_symtab_xindex(Object * object,unsigned int xindex_shndx,const unsigned char * pshdrs)110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 			   const unsigned char* pshdrs)
112 {
113   section_size_type bytecount;
114   const unsigned char* contents;
115   if (pshdrs == NULL)
116     contents = object->section_contents(xindex_shndx, &bytecount, false);
117   else
118     {
119       const unsigned char* p = (pshdrs
120 				+ (xindex_shndx
121 				   * elfcpp::Elf_sizes<size>::shdr_size));
122       typename elfcpp::Shdr<size, big_endian> shdr(p);
123       bytecount = convert_to_section_size_type(shdr.get_sh_size());
124       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125     }
126 
127   gold_assert(this->symtab_xindex_.empty());
128   this->symtab_xindex_.reserve(bytecount / 4);
129   for (section_size_type i = 0; i < bytecount; i += 4)
130     {
131       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132       // We preadjust the section indexes we save.
133       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134     }
135 }
136 
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139 
140 unsigned int
sym_xindex_to_shndx(Object * object,unsigned int symndx)141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143   if (symndx >= this->symtab_xindex_.size())
144     {
145       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 		    symndx);
147       return elfcpp::SHN_UNDEF;
148     }
149   unsigned int shndx = this->symtab_xindex_[symndx];
150   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151     {
152       object->error(_("extended index for symbol %u out of range: %u"),
153 		    symndx, shndx);
154       return elfcpp::SHN_UNDEF;
155     }
156   return shndx;
157 }
158 
159 // Class Object.
160 
161 // Report an error for this object file.  This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164 
165 void
error(const char * format,...) const166 Object::error(const char* format, ...) const
167 {
168   va_list args;
169   va_start(args, format);
170   char* buf = NULL;
171   if (vasprintf(&buf, format, args) < 0)
172     gold_nomem();
173   va_end(args);
174   gold_error(_("%s: %s"), this->name().c_str(), buf);
175   free(buf);
176 }
177 
178 // Return a view of the contents of a section.
179 
180 const unsigned char*
section_contents(unsigned int shndx,section_size_type * plen,bool cache)181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 			 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184 
185 // Read the section data into SD.  This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187 
188 template<int size, bool big_endian>
189 void
read_section_data(elfcpp::Elf_file<size,big_endian,Object> * elf_file,Read_symbols_data * sd)190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 			  Read_symbols_data* sd)
192 {
193   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194 
195   // Read the section headers.
196   const off_t shoff = elf_file->shoff();
197   const unsigned int shnum = this->shnum();
198   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 					       true, true);
200 
201   // Read the section names.
202   const unsigned char* pshdrs = sd->section_headers->data();
203   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205 
206   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207     this->error(_("section name section has wrong type: %u"),
208 		static_cast<unsigned int>(shdrnames.get_sh_type()));
209 
210   sd->section_names_size =
211     convert_to_section_size_type(shdrnames.get_sh_size());
212   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 					     sd->section_names_size, false,
214 					     false);
215 }
216 
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued.  SHNDX is the section index.  Return
219 // whether it is a warning section.
220 
221 bool
handle_gnu_warning_section(const char * name,unsigned int shndx,Symbol_table * symtab)222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 				   Symbol_table* symtab)
224 {
225   const char warn_prefix[] = ".gnu.warning.";
226   const int warn_prefix_len = sizeof warn_prefix - 1;
227   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228     {
229       // Read the section contents to get the warning text.  It would
230       // be nicer if we only did this if we have to actually issue a
231       // warning.  Unfortunately, warnings are issued as we relocate
232       // sections.  That means that we can not lock the object then,
233       // as we might try to issue the same warning multiple times
234       // simultaneously.
235       section_size_type len;
236       const unsigned char* contents = this->section_contents(shndx, &len,
237 							     false);
238       if (len == 0)
239 	{
240 	  const char* warning = name + warn_prefix_len;
241 	  contents = reinterpret_cast<const unsigned char*>(warning);
242 	  len = strlen(warning);
243 	}
244       std::string warning(reinterpret_cast<const char*>(contents), len);
245       symtab->add_warning(name + warn_prefix_len, this, warning);
246       return true;
247     }
248   return false;
249 }
250 
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253 
254 bool
handle_split_stack_section(const char * name)255 Object::handle_split_stack_section(const char* name)
256 {
257   if (strcmp(name, ".note.GNU-split-stack") == 0)
258     {
259       this->uses_split_stack_ = true;
260       return true;
261     }
262   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263     {
264       this->has_no_split_stack_ = true;
265       return true;
266     }
267   return false;
268 }
269 
270 // Class Relobj
271 
272 template<int size>
273 void
initialize_input_to_output_map(unsigned int shndx,typename elfcpp::Elf_types<size>::Elf_Addr starting_address,Unordered_map<section_offset_type,typename elfcpp::Elf_types<size>::Elf_Addr> * output_addresses) const274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 	  typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 	  Unordered_map<section_offset_type,
277 	  typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278   Object_merge_map *map = this->object_merge_map_;
279   map->initialize_input_to_output_map<size>(shndx, starting_address,
280 					    output_addresses);
281 }
282 
283 void
add_merge_mapping(Output_section_data * output_data,unsigned int shndx,section_offset_type offset,section_size_type length,section_offset_type output_offset)284 Relobj::add_merge_mapping(Output_section_data *output_data,
285                           unsigned int shndx, section_offset_type offset,
286                           section_size_type length,
287                           section_offset_type output_offset) {
288   Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291 
292 bool
merge_output_offset(unsigned int shndx,section_offset_type offset,section_offset_type * poutput) const293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294                             section_offset_type *poutput) const {
295   Object_merge_map* object_merge_map = this->object_merge_map_;
296   if (object_merge_map == NULL)
297     return false;
298   return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300 
301 const Output_section_data*
find_merge_section(unsigned int shndx) const302 Relobj::find_merge_section(unsigned int shndx) const {
303   Object_merge_map* object_merge_map = this->object_merge_map_;
304   if (object_merge_map == NULL)
305     return NULL;
306   return object_merge_map->find_merge_section(shndx);
307 }
308 
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312 
313 void
copy_symbols_data(Symbols_data * gc_sd,Read_symbols_data * sd,unsigned int section_header_size)314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 			  unsigned int section_header_size)
316 {
317   gc_sd->section_headers_data =
318 	 new unsigned char[(section_header_size)];
319   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 	 section_header_size);
321   gc_sd->section_names_data =
322 	 new unsigned char[sd->section_names_size];
323   memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 	 sd->section_names_size);
325   gc_sd->section_names_size = sd->section_names_size;
326   if (sd->symbols != NULL)
327     {
328       gc_sd->symbols_data =
329 	     new unsigned char[sd->symbols_size];
330       memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 	    sd->symbols_size);
332     }
333   else
334     {
335       gc_sd->symbols_data = NULL;
336     }
337   gc_sd->symbols_size = sd->symbols_size;
338   gc_sd->external_symbols_offset = sd->external_symbols_offset;
339   if (sd->symbol_names != NULL)
340     {
341       gc_sd->symbol_names_data =
342 	     new unsigned char[sd->symbol_names_size];
343       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 	    sd->symbol_names_size);
345     }
346   else
347     {
348       gc_sd->symbol_names_data = NULL;
349     }
350   gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352 
353 // This function determines if a particular section name must be included
354 // in the link.  This is used during garbage collection to determine the
355 // roots of the worklist.
356 
357 bool
is_section_name_included(const char * name)358 Relobj::is_section_name_included(const char* name)
359 {
360   if (is_prefix_of(".ctors", name)
361       || is_prefix_of(".dtors", name)
362       || is_prefix_of(".note", name)
363       || is_prefix_of(".init", name)
364       || is_prefix_of(".fini", name)
365       || is_prefix_of(".gcc_except_table", name)
366       || is_prefix_of(".jcr", name)
367       || is_prefix_of(".preinit_array", name)
368       || (is_prefix_of(".text", name)
369 	  && strstr(name, "personality"))
370       || (is_prefix_of(".data", name)
371 	  && strstr(name, "personality"))
372       || (is_prefix_of(".sdata", name)
373 	  && strstr(name, "personality"))
374       || (is_prefix_of(".gnu.linkonce.d", name)
375 	  && strstr(name, "personality"))
376       || (is_prefix_of(".rodata", name)
377 	  && strstr(name, "nptl_version")))
378     {
379       return true;
380     }
381   return false;
382 }
383 
384 // Finalize the incremental relocation information.  Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block.  If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388 
389 void
finalize_incremental_relocs(Layout * layout,bool clear_counts)390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392   unsigned int nsyms = this->get_global_symbols()->size();
393   this->reloc_bases_ = new unsigned int[nsyms];
394 
395   gold_assert(this->reloc_bases_ != NULL);
396   gold_assert(layout->incremental_inputs() != NULL);
397 
398   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399   for (unsigned int i = 0; i < nsyms; ++i)
400     {
401       this->reloc_bases_[i] = rindex;
402       rindex += this->reloc_counts_[i];
403       if (clear_counts)
404 	this->reloc_counts_[i] = 0;
405     }
406   layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408 
409 Object_merge_map*
get_or_create_merge_map()410 Relobj::get_or_create_merge_map()
411 {
412   if (!this->object_merge_map_)
413     this->object_merge_map_ = new Object_merge_map();
414   return this->object_merge_map_;
415 }
416 
417 // Class Sized_relobj.
418 
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421 
422 template<int size, bool big_endian>
423 void
do_for_all_local_got_entries(Got_offset_list::Visitor * v) const424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425     Got_offset_list::Visitor* v) const
426 {
427   unsigned int nsyms = this->local_symbol_count();
428   for (unsigned int i = 0; i < nsyms; i++)
429     {
430       Local_got_entry_key key(i, 0);
431       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432       if (p != this->local_got_offsets_.end())
433 	{
434 	  const Got_offset_list* got_offsets = p->second;
435 	  got_offsets->for_all_got_offsets(v);
436 	}
437     }
438 }
439 
440 // Get the address of an output section.
441 
442 template<int size, bool big_endian>
443 uint64_t
do_output_section_address(unsigned int shndx)444 Sized_relobj<size, big_endian>::do_output_section_address(
445     unsigned int shndx)
446 {
447   // If the input file is linked as --just-symbols, the output
448   // section address is the input section address.
449   if (this->just_symbols())
450     return this->section_address(shndx);
451 
452   const Output_section* os = this->do_output_section(shndx);
453   gold_assert(os != NULL);
454   return os->address();
455 }
456 
457 // Class Sized_relobj_file.
458 
459 template<int size, bool big_endian>
Sized_relobj_file(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461     const std::string& name,
462     Input_file* input_file,
463     off_t offset,
464     const elfcpp::Ehdr<size, big_endian>& ehdr)
465   : Sized_relobj<size, big_endian>(name, input_file, offset),
466     elf_file_(this, ehdr),
467     symtab_shndx_(-1U),
468     local_symbol_count_(0),
469     output_local_symbol_count_(0),
470     output_local_dynsym_count_(0),
471     symbols_(),
472     defined_count_(0),
473     local_symbol_offset_(0),
474     local_dynsym_offset_(0),
475     local_values_(),
476     local_plt_offsets_(),
477     kept_comdat_sections_(),
478     has_eh_frame_(false),
479     is_deferred_layout_(false),
480     deferred_layout_(),
481     deferred_layout_relocs_(),
482     output_views_(NULL)
483 {
484   this->e_type_ = ehdr.get_e_type();
485 }
486 
487 template<int size, bool big_endian>
~Sized_relobj_file()488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491 
492 // Set up an object file based on the file header.  This sets up the
493 // section information.
494 
495 template<int size, bool big_endian>
496 void
do_setup()497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499   const unsigned int shnum = this->elf_file_.shnum();
500   this->set_shnum(shnum);
501 }
502 
503 // Find the SHT_SYMTAB section, given the section headers.  The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section.  Until somebody figures out how that could
506 // work, we assume there is only one.
507 
508 template<int size, bool big_endian>
509 void
find_symtab(const unsigned char * pshdrs)510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512   const unsigned int shnum = this->shnum();
513   this->symtab_shndx_ = 0;
514   if (shnum > 0)
515     {
516       // Look through the sections in reverse order, since gas tends
517       // to put the symbol table at the end.
518       const unsigned char* p = pshdrs + shnum * This::shdr_size;
519       unsigned int i = shnum;
520       unsigned int xindex_shndx = 0;
521       unsigned int xindex_link = 0;
522       while (i > 0)
523 	{
524 	  --i;
525 	  p -= This::shdr_size;
526 	  typename This::Shdr shdr(p);
527 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 	    {
529 	      this->symtab_shndx_ = i;
530 	      if (xindex_shndx > 0 && xindex_link == i)
531 		{
532 		  Xindex* xindex =
533 		    new Xindex(this->elf_file_.large_shndx_offset());
534 		  xindex->read_symtab_xindex<size, big_endian>(this,
535 							       xindex_shndx,
536 							       pshdrs);
537 		  this->set_xindex(xindex);
538 		}
539 	      break;
540 	    }
541 
542 	  // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 	  // one.  This will work if it follows the SHT_SYMTAB
544 	  // section.
545 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 	    {
547 	      xindex_shndx = i;
548 	      xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 	    }
550 	}
551     }
552 }
553 
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556 
557 template<int size, bool big_endian>
558 Xindex*
do_initialize_xindex()559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561   gold_assert(this->symtab_shndx_ != -1U);
562   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564   return xindex;
565 }
566 
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569 
570 template<int size, bool big_endian>
571 bool
check_eh_frame_flags(const elfcpp::Shdr<size,big_endian> * shdr) const572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573     const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575   elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576   return ((sh_type == elfcpp::SHT_PROGBITS
577 	   || sh_type == parameters->target().unwind_section_type())
578 	  && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580 
581 // Find the section header with the given name.
582 
583 template<int size, bool big_endian>
584 const unsigned char*
find_shdr(const unsigned char * pshdrs,const char * name,const char * names,section_size_type names_size,const unsigned char * hdr) const585 Object::find_shdr(
586     const unsigned char* pshdrs,
587     const char* name,
588     const char* names,
589     section_size_type names_size,
590     const unsigned char* hdr) const
591 {
592   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593   const unsigned int shnum = this->shnum();
594   const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595   size_t sh_name = 0;
596 
597   while (1)
598     {
599       if (hdr)
600 	{
601 	  // We found HDR last time we were called, continue looking.
602 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 	  sh_name = shdr.get_sh_name();
604 	}
605       else
606 	{
607 	  // Look for the next occurrence of NAME in NAMES.
608 	  // The fact that .shstrtab produced by current GNU tools is
609 	  // string merged means we shouldn't have both .not.foo and
610 	  // .foo in .shstrtab, and multiple .foo sections should all
611 	  // have the same sh_name.  However, this is not guaranteed
612 	  // by the ELF spec and not all ELF object file producers may
613 	  // be so clever.
614 	  size_t len = strlen(name) + 1;
615 	  const char *p = sh_name ? names + sh_name + len : names;
616 	  p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 						   name, len));
618 	  if (p == NULL)
619 	    return NULL;
620 	  sh_name = p - names;
621 	  hdr = pshdrs;
622 	  if (sh_name == 0)
623 	    return hdr;
624 	}
625 
626       hdr += shdr_size;
627       while (hdr < hdr_end)
628 	{
629 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 	  if (shdr.get_sh_name() == sh_name)
631 	    return hdr;
632 	  hdr += shdr_size;
633 	}
634       hdr = NULL;
635       if (sh_name == 0)
636 	return hdr;
637     }
638 }
639 
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642 
643 template<int size, bool big_endian>
644 bool
find_eh_frame(const unsigned char * pshdrs,const char * names,section_size_type names_size) const645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646     const unsigned char* pshdrs,
647     const char* names,
648     section_size_type names_size) const
649 {
650   const unsigned char* s = NULL;
651 
652   while (1)
653     {
654       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 						     names, names_size, s);
656       if (s == NULL)
657 	return false;
658 
659       typename This::Shdr shdr(s);
660       if (this->check_eh_frame_flags(&shdr))
661 	return true;
662     }
663 }
664 
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task.  This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669 
670 static bool
need_decompressed_section(const char * name)671 need_decompressed_section(const char* name)
672 {
673   if (*name++ != '_')
674     return false;
675 
676 #ifdef ENABLE_THREADS
677   // Decompressing these sections now will help only if we're
678   // multithreaded.
679   if (parameters->options().threads())
680     {
681       // We will need .zdebug_str if this is not an incremental link
682       // (i.e., we are processing string merge sections) or if we need
683       // to build a gdb index.
684       if ((!parameters->incremental() || parameters->options().gdb_index())
685 	  && strcmp(name, "str") == 0)
686 	return true;
687 
688       // We will need these other sections when building a gdb index.
689       if (parameters->options().gdb_index()
690 	  && (strcmp(name, "info") == 0
691 	      || strcmp(name, "types") == 0
692 	      || strcmp(name, "pubnames") == 0
693 	      || strcmp(name, "pubtypes") == 0
694 	      || strcmp(name, "ranges") == 0
695 	      || strcmp(name, "abbrev") == 0))
696 	return true;
697     }
698 #endif
699 
700   // Even when single-threaded, we will need .zdebug_str if this is
701   // not an incremental link and we are building a gdb index.
702   // Otherwise, we would decompress the section twice: once for
703   // string merge processing, and once for building the gdb index.
704   if (!parameters->incremental()
705       && parameters->options().gdb_index()
706       && strcmp(name, "str") == 0)
707     return true;
708 
709   return false;
710 }
711 
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714 
715 template<int size, bool big_endian>
716 Compressed_section_map*
build_compressed_section_map(const unsigned char * pshdrs,unsigned int shnum,const char * names,section_size_type names_size,Object * obj,bool decompress_if_needed)717 build_compressed_section_map(
718     const unsigned char* pshdrs,
719     unsigned int shnum,
720     const char* names,
721     section_size_type names_size,
722     Object* obj,
723     bool decompress_if_needed)
724 {
725   Compressed_section_map* uncompressed_map = new Compressed_section_map();
726   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727   const unsigned char* p = pshdrs + shdr_size;
728 
729   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730     {
731       typename elfcpp::Shdr<size, big_endian> shdr(p);
732       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 	{
735 	  if (shdr.get_sh_name() >= names_size)
736 	    {
737 	      obj->error(_("bad section name offset for section %u: %lu"),
738 			 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 	      continue;
740 	    }
741 
742 	  const char* name = names + shdr.get_sh_name();
743 	  bool is_compressed = ((shdr.get_sh_flags()
744 				 & elfcpp::SHF_COMPRESSED) != 0);
745 	  bool is_zcompressed = (!is_compressed
746 				 && is_compressed_debug_section(name));
747 
748 	  if (is_zcompressed || is_compressed)
749 	    {
750 	      section_size_type len;
751 	      const unsigned char* contents =
752 		  obj->section_contents(i, &len, false);
753 	      uint64_t uncompressed_size;
754 	      Compressed_section_info info;
755 	      if (is_zcompressed)
756 		{
757 		  // Skip over the ".zdebug" prefix.
758 		  name += 7;
759 		  uncompressed_size = get_uncompressed_size(contents, len);
760 		  info.addralign = shdr.get_sh_addralign();
761 		}
762 	      else
763 		{
764 		  // Skip over the ".debug" prefix.
765 		  name += 6;
766 		  elfcpp::Chdr<size, big_endian> chdr(contents);
767 		  uncompressed_size = chdr.get_ch_size();
768 		  info.addralign = chdr.get_ch_addralign();
769 		}
770 	      info.size = convert_to_section_size_type(uncompressed_size);
771 	      info.flag = shdr.get_sh_flags();
772 	      info.contents = NULL;
773 	      if (uncompressed_size != -1ULL)
774 		{
775 		  unsigned char* uncompressed_data = NULL;
776 		  if (decompress_if_needed && need_decompressed_section(name))
777 		    {
778 		      uncompressed_data = new unsigned char[uncompressed_size];
779 		      if (decompress_input_section(contents, len,
780 						   uncompressed_data,
781 						   uncompressed_size,
782 						   size, big_endian,
783 						   shdr.get_sh_flags()))
784 			info.contents = uncompressed_data;
785 		      else
786 			delete[] uncompressed_data;
787 		    }
788 		  (*uncompressed_map)[i] = info;
789 		}
790 	    }
791 	}
792     }
793   return uncompressed_map;
794 }
795 
796 // Stash away info for a number of special sections.
797 // Return true if any of the sections found require local symbols to be read.
798 
799 template<int size, bool big_endian>
800 bool
do_find_special_sections(Read_symbols_data * sd)801 Sized_relobj_file<size, big_endian>::do_find_special_sections(
802     Read_symbols_data* sd)
803 {
804   const unsigned char* const pshdrs = sd->section_headers->data();
805   const unsigned char* namesu = sd->section_names->data();
806   const char* names = reinterpret_cast<const char*>(namesu);
807 
808   if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
809     this->has_eh_frame_ = true;
810 
811   Compressed_section_map* compressed_sections =
812     build_compressed_section_map<size, big_endian>(
813       pshdrs, this->shnum(), names, sd->section_names_size, this, true);
814   if (compressed_sections != NULL)
815     this->set_compressed_sections(compressed_sections);
816 
817   return (this->has_eh_frame_
818 	  || (!parameters->options().relocatable()
819 	      && parameters->options().gdb_index()
820 	      && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
821 		  || memmem(names, sd->section_names_size,
822 			    "debug_types", 12) != NULL)));
823 }
824 
825 // Read the sections and symbols from an object file.
826 
827 template<int size, bool big_endian>
828 void
do_read_symbols(Read_symbols_data * sd)829 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
830 {
831   this->base_read_symbols(sd);
832 }
833 
834 // Read the sections and symbols from an object file.  This is common
835 // code for all target-specific overrides of do_read_symbols().
836 
837 template<int size, bool big_endian>
838 void
base_read_symbols(Read_symbols_data * sd)839 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
840 {
841   this->read_section_data(&this->elf_file_, sd);
842 
843   const unsigned char* const pshdrs = sd->section_headers->data();
844 
845   this->find_symtab(pshdrs);
846 
847   bool need_local_symbols = this->do_find_special_sections(sd);
848 
849   sd->symbols = NULL;
850   sd->symbols_size = 0;
851   sd->external_symbols_offset = 0;
852   sd->symbol_names = NULL;
853   sd->symbol_names_size = 0;
854 
855   if (this->symtab_shndx_ == 0)
856     {
857       // No symbol table.  Weird but legal.
858       return;
859     }
860 
861   // Get the symbol table section header.
862   typename This::Shdr symtabshdr(pshdrs
863 				 + this->symtab_shndx_ * This::shdr_size);
864   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
865 
866   // If this object has a .eh_frame section, or if building a .gdb_index
867   // section and there is debug info, we need all the symbols.
868   // Otherwise we only need the external symbols.  While it would be
869   // simpler to just always read all the symbols, I've seen object
870   // files with well over 2000 local symbols, which for a 64-bit
871   // object file format is over 5 pages that we don't need to read
872   // now.
873 
874   const int sym_size = This::sym_size;
875   const unsigned int loccount = symtabshdr.get_sh_info();
876   this->local_symbol_count_ = loccount;
877   this->local_values_.resize(loccount);
878   section_offset_type locsize = loccount * sym_size;
879   off_t dataoff = symtabshdr.get_sh_offset();
880   section_size_type datasize =
881     convert_to_section_size_type(symtabshdr.get_sh_size());
882   off_t extoff = dataoff + locsize;
883   section_size_type extsize = datasize - locsize;
884 
885   off_t readoff = need_local_symbols ? dataoff : extoff;
886   section_size_type readsize = need_local_symbols ? datasize : extsize;
887 
888   if (readsize == 0)
889     {
890       // No external symbols.  Also weird but also legal.
891       return;
892     }
893 
894   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
895 
896   // Read the section header for the symbol names.
897   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
898   if (strtab_shndx >= this->shnum())
899     {
900       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
901       return;
902     }
903   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
904   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
905     {
906       this->error(_("symbol table name section has wrong type: %u"),
907 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
908       return;
909     }
910 
911   // Read the symbol names.
912   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
913 					       strtabshdr.get_sh_size(),
914 					       false, true);
915 
916   sd->symbols = fvsymtab;
917   sd->symbols_size = readsize;
918   sd->external_symbols_offset = need_local_symbols ? locsize : 0;
919   sd->symbol_names = fvstrtab;
920   sd->symbol_names_size =
921     convert_to_section_size_type(strtabshdr.get_sh_size());
922 }
923 
924 // Return the section index of symbol SYM.  Set *VALUE to its value in
925 // the object file.  Set *IS_ORDINARY if this is an ordinary section
926 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
927 // Note that for a symbol which is not defined in this object file,
928 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
929 // the final value of the symbol in the link.
930 
931 template<int size, bool big_endian>
932 unsigned int
symbol_section_and_value(unsigned int sym,Address * value,bool * is_ordinary)933 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
934 							      Address* value,
935 							      bool* is_ordinary)
936 {
937   section_size_type symbols_size;
938   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
939 							&symbols_size,
940 							false);
941 
942   const size_t count = symbols_size / This::sym_size;
943   gold_assert(sym < count);
944 
945   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
946   *value = elfsym.get_st_value();
947 
948   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
949 }
950 
951 // Return whether to include a section group in the link.  LAYOUT is
952 // used to keep track of which section groups we have already seen.
953 // INDEX is the index of the section group and SHDR is the section
954 // header.  If we do not want to include this group, we set bits in
955 // OMIT for each section which should be discarded.
956 
957 template<int size, bool big_endian>
958 bool
include_section_group(Symbol_table * symtab,Layout * layout,unsigned int index,const char * name,const unsigned char * shdrs,const char * section_names,section_size_type section_names_size,std::vector<bool> * omit)959 Sized_relobj_file<size, big_endian>::include_section_group(
960     Symbol_table* symtab,
961     Layout* layout,
962     unsigned int index,
963     const char* name,
964     const unsigned char* shdrs,
965     const char* section_names,
966     section_size_type section_names_size,
967     std::vector<bool>* omit)
968 {
969   // Read the section contents.
970   typename This::Shdr shdr(shdrs + index * This::shdr_size);
971   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
972 					     shdr.get_sh_size(), true, false);
973   const elfcpp::Elf_Word* pword =
974     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
975 
976   // The first word contains flags.  We only care about COMDAT section
977   // groups.  Other section groups are always included in the link
978   // just like ordinary sections.
979   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
980 
981   // Look up the group signature, which is the name of a symbol.  ELF
982   // uses a symbol name because some group signatures are long, and
983   // the name is generally already in the symbol table, so it makes
984   // sense to put the long string just once in .strtab rather than in
985   // both .strtab and .shstrtab.
986 
987   // Get the appropriate symbol table header (this will normally be
988   // the single SHT_SYMTAB section, but in principle it need not be).
989   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
990   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
991 
992   // Read the symbol table entry.
993   unsigned int symndx = shdr.get_sh_info();
994   if (symndx >= symshdr.get_sh_size() / This::sym_size)
995     {
996       this->error(_("section group %u info %u out of range"),
997 		  index, symndx);
998       return false;
999     }
1000   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1001   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1002 					     false);
1003   elfcpp::Sym<size, big_endian> sym(psym);
1004 
1005   // Read the symbol table names.
1006   section_size_type symnamelen;
1007   const unsigned char* psymnamesu;
1008   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1009 				      &symnamelen, true);
1010   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1011 
1012   // Get the section group signature.
1013   if (sym.get_st_name() >= symnamelen)
1014     {
1015       this->error(_("symbol %u name offset %u out of range"),
1016 		  symndx, sym.get_st_name());
1017       return false;
1018     }
1019 
1020   std::string signature(psymnames + sym.get_st_name());
1021 
1022   // It seems that some versions of gas will create a section group
1023   // associated with a section symbol, and then fail to give a name to
1024   // the section symbol.  In such a case, use the name of the section.
1025   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1026     {
1027       bool is_ordinary;
1028       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1029 						      sym.get_st_shndx(),
1030 						      &is_ordinary);
1031       if (!is_ordinary || sym_shndx >= this->shnum())
1032 	{
1033 	  this->error(_("symbol %u invalid section index %u"),
1034 		      symndx, sym_shndx);
1035 	  return false;
1036 	}
1037       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1038       if (member_shdr.get_sh_name() < section_names_size)
1039 	signature = section_names + member_shdr.get_sh_name();
1040     }
1041 
1042   // Record this section group in the layout, and see whether we've already
1043   // seen one with the same signature.
1044   bool include_group;
1045   bool is_comdat;
1046   Kept_section* kept_section = NULL;
1047 
1048   if ((flags & elfcpp::GRP_COMDAT) == 0)
1049     {
1050       include_group = true;
1051       is_comdat = false;
1052     }
1053   else
1054     {
1055       include_group = layout->find_or_add_kept_section(signature,
1056 						       this, index, true,
1057 						       true, &kept_section);
1058       is_comdat = true;
1059     }
1060 
1061   if (is_comdat && include_group)
1062     {
1063       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1064       if (incremental_inputs != NULL)
1065 	incremental_inputs->report_comdat_group(this, signature.c_str());
1066     }
1067 
1068   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1069 
1070   std::vector<unsigned int> shndxes;
1071   bool relocate_group = include_group && parameters->options().relocatable();
1072   if (relocate_group)
1073     shndxes.reserve(count - 1);
1074 
1075   for (size_t i = 1; i < count; ++i)
1076     {
1077       elfcpp::Elf_Word shndx =
1078 	this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1079 
1080       if (relocate_group)
1081 	shndxes.push_back(shndx);
1082 
1083       if (shndx >= this->shnum())
1084 	{
1085 	  this->error(_("section %u in section group %u out of range"),
1086 		      shndx, index);
1087 	  continue;
1088 	}
1089 
1090       // Check for an earlier section number, since we're going to get
1091       // it wrong--we may have already decided to include the section.
1092       if (shndx < index)
1093 	this->error(_("invalid section group %u refers to earlier section %u"),
1094 		    index, shndx);
1095 
1096       // Get the name of the member section.
1097       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1098       if (member_shdr.get_sh_name() >= section_names_size)
1099 	{
1100 	  // This is an error, but it will be diagnosed eventually
1101 	  // in do_layout, so we don't need to do anything here but
1102 	  // ignore it.
1103 	  continue;
1104 	}
1105       std::string mname(section_names + member_shdr.get_sh_name());
1106 
1107       if (include_group)
1108 	{
1109 	  if (is_comdat)
1110 	    kept_section->add_comdat_section(mname, shndx,
1111 					     member_shdr.get_sh_size());
1112 	}
1113       else
1114 	{
1115 	  (*omit)[shndx] = true;
1116 
1117 	  // Store a mapping from this section to the Kept_section
1118 	  // information for the group.  This mapping is used for
1119 	  // relocation processing and diagnostics.
1120 	  // If the kept section is a linkonce section, we don't
1121 	  // bother with it unless the comdat group contains just
1122 	  // a single section, making it easy to match up.
1123 	  if (is_comdat
1124 	      && (kept_section->is_comdat() || count == 2))
1125 	    this->set_kept_comdat_section(shndx, true, symndx,
1126 					  member_shdr.get_sh_size(),
1127 					  kept_section);
1128 	}
1129     }
1130 
1131   if (relocate_group)
1132     layout->layout_group(symtab, this, index, name, signature.c_str(),
1133 			 shdr, flags, &shndxes);
1134 
1135   return include_group;
1136 }
1137 
1138 // Whether to include a linkonce section in the link.  NAME is the
1139 // name of the section and SHDR is the section header.
1140 
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined.  The semantics are
1143 // that we only include one linkonce section with a given name.  The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature.  We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature.  We also use
1150 // the full name of the linkonce section as a normal section group
1151 // signature.
1152 
1153 template<int size, bool big_endian>
1154 bool
include_linkonce_section(Layout * layout,unsigned int index,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)1155 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156     Layout* layout,
1157     unsigned int index,
1158     const char* name,
1159     const elfcpp::Shdr<size, big_endian>& shdr)
1160 {
1161   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162   // In general the symbol name we want will be the string following
1163   // the last '.'.  However, we have to handle the case of
1164   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165   // some versions of gcc.  So we use a heuristic: if the name starts
1166   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1167   // we look for the last '.'.  We can't always simply skip
1168   // ".gnu.linkonce.X", because we have to deal with cases like
1169   // ".gnu.linkonce.d.rel.ro.local".
1170   const char* const linkonce_t = ".gnu.linkonce.t.";
1171   const char* symname;
1172   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173     symname = name + strlen(linkonce_t);
1174   else
1175     symname = strrchr(name, '.') + 1;
1176   std::string sig1(symname);
1177   std::string sig2(name);
1178   Kept_section* kept1;
1179   Kept_section* kept2;
1180   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181 						   false, &kept1);
1182   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183 						   true, &kept2);
1184 
1185   if (!include2)
1186     {
1187       // We are not including this section because we already saw the
1188       // name of the section as a signature.  This normally implies
1189       // that the kept section is another linkonce section.  If it is
1190       // the same size, record it as the section which corresponds to
1191       // this one.
1192       if (kept2->object() != NULL && !kept2->is_comdat())
1193 	this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1194     }
1195   else if (!include1)
1196     {
1197       // The section is being discarded on the basis of its symbol
1198       // name.  This means that the corresponding kept section was
1199       // part of a comdat group, and it will be difficult to identify
1200       // the specific section within that group that corresponds to
1201       // this linkonce section.  We'll handle the simple case where
1202       // the group has only one member section.  Otherwise, it's not
1203       // worth the effort.
1204       if (kept1->object() != NULL && kept1->is_comdat())
1205 	this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1206     }
1207   else
1208     {
1209       kept1->set_linkonce_size(sh_size);
1210       kept2->set_linkonce_size(sh_size);
1211     }
1212 
1213   return include1 && include2;
1214 }
1215 
1216 // Layout an input section.
1217 
1218 template<int size, bool big_endian>
1219 inline void
layout_section(Layout * layout,unsigned int shndx,const char * name,const typename This::Shdr & shdr,unsigned int sh_type,unsigned int reloc_shndx,unsigned int reloc_type)1220 Sized_relobj_file<size, big_endian>::layout_section(
1221     Layout* layout,
1222     unsigned int shndx,
1223     const char* name,
1224     const typename This::Shdr& shdr,
1225     unsigned int sh_type,
1226     unsigned int reloc_shndx,
1227     unsigned int reloc_type)
1228 {
1229   off_t offset;
1230   Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1231 				      reloc_shndx, reloc_type, &offset);
1232 
1233   this->output_sections()[shndx] = os;
1234   if (offset == -1)
1235     this->section_offsets()[shndx] = invalid_address;
1236   else
1237     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1238 
1239   // If this section requires special handling, and if there are
1240   // relocs that apply to it, then we must do the special handling
1241   // before we apply the relocs.
1242   if (offset == -1 && reloc_shndx != 0)
1243     this->set_relocs_must_follow_section_writes();
1244 }
1245 
1246 // Layout an input .eh_frame section.
1247 
1248 template<int size, bool big_endian>
1249 void
layout_eh_frame_section(Layout * layout,const unsigned char * symbols_data,section_size_type symbols_size,const unsigned char * symbol_names_data,section_size_type symbol_names_size,unsigned int shndx,const typename This::Shdr & shdr,unsigned int reloc_shndx,unsigned int reloc_type)1250 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1251     Layout* layout,
1252     const unsigned char* symbols_data,
1253     section_size_type symbols_size,
1254     const unsigned char* symbol_names_data,
1255     section_size_type symbol_names_size,
1256     unsigned int shndx,
1257     const typename This::Shdr& shdr,
1258     unsigned int reloc_shndx,
1259     unsigned int reloc_type)
1260 {
1261   gold_assert(this->has_eh_frame_);
1262 
1263   off_t offset;
1264   Output_section* os = layout->layout_eh_frame(this,
1265 					       symbols_data,
1266 					       symbols_size,
1267 					       symbol_names_data,
1268 					       symbol_names_size,
1269 					       shndx,
1270 					       shdr,
1271 					       reloc_shndx,
1272 					       reloc_type,
1273 					       &offset);
1274   this->output_sections()[shndx] = os;
1275   if (os == NULL || offset == -1)
1276     this->section_offsets()[shndx] = invalid_address;
1277   else
1278     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1279 
1280   // If this section requires special handling, and if there are
1281   // relocs that aply to it, then we must do the special handling
1282   // before we apply the relocs.
1283   if (os != NULL && offset == -1 && reloc_shndx != 0)
1284     this->set_relocs_must_follow_section_writes();
1285 }
1286 
1287 // Layout an input .note.gnu.property section.
1288 
1289 // This note section has an *extremely* non-standard layout.
1290 // The gABI spec says that ELF-64 files should have 8-byte fields and
1291 // 8-byte alignment in the note section, but the Gnu tools generally
1292 // use 4-byte fields and 4-byte alignment (see the comment for
1293 // Layout::create_note).  This section uses 4-byte fields (i.e.,
1294 // namesz, descsz, and type are always 4 bytes), the name field is
1295 // padded to a multiple of 4 bytes, but the desc field is padded
1296 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1297 // The individual properties within the desc field always use
1298 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1299 // a multiple of 4 or 8 bytes, depending on the ELF class.
1300 
1301 template<int size, bool big_endian>
1302 void
layout_gnu_property_section(Layout * layout,unsigned int shndx)1303 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1304     Layout* layout,
1305     unsigned int shndx)
1306 {
1307   section_size_type contents_len;
1308   const unsigned char* pcontents = this->section_contents(shndx,
1309 							  &contents_len,
1310 							  false);
1311   const unsigned char* pcontents_end = pcontents + contents_len;
1312 
1313   // Loop over all the notes in this section.
1314   while (pcontents < pcontents_end)
1315     {
1316       if (pcontents + 16 > pcontents_end)
1317 	{
1318 	  gold_warning(_("%s: corrupt .note.gnu.property section "
1319 			 "(note too short)"),
1320 		       this->name().c_str());
1321 	  return;
1322 	}
1323 
1324       size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1325       size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1326       unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1327       const unsigned char* pname = pcontents + 12;
1328 
1329       if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1330 	{
1331 	  gold_warning(_("%s: corrupt .note.gnu.property section "
1332 			 "(name is not 'GNU')"),
1333 		       this->name().c_str());
1334 	  return;
1335 	}
1336 
1337       if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1338 	{
1339 	  gold_warning(_("%s: unsupported note type %d "
1340 			 "in .note.gnu.property section"),
1341 		       this->name().c_str(), ntype);
1342 	  return;
1343 	}
1344 
1345       size_t aligned_namesz = align_address(namesz, 4);
1346       const unsigned char* pdesc = pname + aligned_namesz;
1347 
1348       if (pdesc + descsz > pcontents + contents_len)
1349 	{
1350 	  gold_warning(_("%s: corrupt .note.gnu.property section"),
1351 		       this->name().c_str());
1352 	  return;
1353 	}
1354 
1355       const unsigned char* pprop = pdesc;
1356 
1357       // Loop over the program properties in this note.
1358       while (pprop < pdesc + descsz)
1359 	{
1360 	  if (pprop + 8 > pdesc + descsz)
1361 	    {
1362 	      gold_warning(_("%s: corrupt .note.gnu.property section"),
1363 			   this->name().c_str());
1364 	      return;
1365 	    }
1366 	  unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1367 	  size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1368 	  pprop += 8;
1369 	  if (pprop + pr_datasz > pdesc + descsz)
1370 	    {
1371 	      gold_warning(_("%s: corrupt .note.gnu.property section"),
1372 			   this->name().c_str());
1373 	      return;
1374 	    }
1375 	  layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1376 	  pprop += align_address(pr_datasz, size / 8);
1377 	}
1378 
1379       pcontents = pdesc + align_address(descsz, size / 8);
1380     }
1381 }
1382 
1383 // This a copy of lto_section defined in GCC (lto-streamer.h)
1384 
1385 struct lto_section
1386 {
1387   int16_t major_version;
1388   int16_t minor_version;
1389   unsigned char slim_object;
1390 
1391   /* Flags is a private field that is not defined publicly.  */
1392   uint16_t flags;
1393 };
1394 
1395 // Lay out the input sections.  We walk through the sections and check
1396 // whether they should be included in the link.  If they should, we
1397 // pass them to the Layout object, which will return an output section
1398 // and an offset.
1399 // This function is called twice sometimes, two passes, when mapping
1400 // of input sections to output sections must be delayed.
1401 // This is true for the following :
1402 // * Garbage collection (--gc-sections): Some input sections will be
1403 // discarded and hence the assignment must wait until the second pass.
1404 // In the first pass,  it is for setting up some sections as roots to
1405 // a work-list for --gc-sections and to do comdat processing.
1406 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1407 // will be folded and hence the assignment must wait.
1408 // * Using plugins to map some sections to unique segments: Mapping
1409 // some sections to unique segments requires mapping them to unique
1410 // output sections too.  This can be done via plugins now and this
1411 // information is not available in the first pass.
1412 
1413 template<int size, bool big_endian>
1414 void
do_layout(Symbol_table * symtab,Layout * layout,Read_symbols_data * sd)1415 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1416 					       Layout* layout,
1417 					       Read_symbols_data* sd)
1418 {
1419   const unsigned int unwind_section_type =
1420       parameters->target().unwind_section_type();
1421   const unsigned int shnum = this->shnum();
1422 
1423   /* Should this function be called twice?  */
1424   bool is_two_pass = (parameters->options().gc_sections()
1425 		      || parameters->options().icf_enabled()
1426 		      || layout->is_unique_segment_for_sections_specified());
1427 
1428   /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1429      a two-pass approach is not needed.  */
1430   bool is_pass_one = false;
1431   bool is_pass_two = false;
1432 
1433   Symbols_data* gc_sd = NULL;
1434 
1435   /* Check if do_layout needs to be two-pass.  If so, find out which pass
1436      should happen.  In the first pass, the data in sd is saved to be used
1437      later in the second pass.  */
1438   if (is_two_pass)
1439     {
1440       gc_sd = this->get_symbols_data();
1441       if (gc_sd == NULL)
1442 	{
1443 	  gold_assert(sd != NULL);
1444 	  is_pass_one = true;
1445 	}
1446       else
1447 	{
1448 	  if (parameters->options().gc_sections())
1449 	    gold_assert(symtab->gc()->is_worklist_ready());
1450 	  if (parameters->options().icf_enabled())
1451 	    gold_assert(symtab->icf()->is_icf_ready());
1452 	  is_pass_two = true;
1453 	}
1454     }
1455 
1456   if (shnum == 0)
1457     return;
1458 
1459   if (is_pass_one)
1460     {
1461       // During garbage collection save the symbols data to use it when
1462       // re-entering this function.
1463       gc_sd = new Symbols_data;
1464       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1465       this->set_symbols_data(gc_sd);
1466     }
1467 
1468   const unsigned char* section_headers_data = NULL;
1469   section_size_type section_names_size;
1470   const unsigned char* symbols_data = NULL;
1471   section_size_type symbols_size;
1472   const unsigned char* symbol_names_data = NULL;
1473   section_size_type symbol_names_size;
1474 
1475   if (is_two_pass)
1476     {
1477       section_headers_data = gc_sd->section_headers_data;
1478       section_names_size = gc_sd->section_names_size;
1479       symbols_data = gc_sd->symbols_data;
1480       symbols_size = gc_sd->symbols_size;
1481       symbol_names_data = gc_sd->symbol_names_data;
1482       symbol_names_size = gc_sd->symbol_names_size;
1483     }
1484   else
1485     {
1486       section_headers_data = sd->section_headers->data();
1487       section_names_size = sd->section_names_size;
1488       if (sd->symbols != NULL)
1489 	symbols_data = sd->symbols->data();
1490       symbols_size = sd->symbols_size;
1491       if (sd->symbol_names != NULL)
1492 	symbol_names_data = sd->symbol_names->data();
1493       symbol_names_size = sd->symbol_names_size;
1494     }
1495 
1496   // Get the section headers.
1497   const unsigned char* shdrs = section_headers_data;
1498   const unsigned char* pshdrs;
1499 
1500   // Get the section names.
1501   const unsigned char* pnamesu = (is_two_pass
1502 				  ? gc_sd->section_names_data
1503 				  : sd->section_names->data());
1504 
1505   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1506 
1507   // If any input files have been claimed by plugins, we need to defer
1508   // actual layout until the replacement files have arrived.
1509   const bool should_defer_layout =
1510       (parameters->options().has_plugins()
1511        && parameters->options().plugins()->should_defer_layout());
1512   unsigned int num_sections_to_defer = 0;
1513 
1514   // For each section, record the index of the reloc section if any.
1515   // Use 0 to mean that there is no reloc section, -1U to mean that
1516   // there is more than one.
1517   std::vector<unsigned int> reloc_shndx(shnum, 0);
1518   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1519   // Skip the first, dummy, section.
1520   pshdrs = shdrs + This::shdr_size;
1521   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1522     {
1523       typename This::Shdr shdr(pshdrs);
1524 
1525       // Count the number of sections whose layout will be deferred.
1526       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1527 	++num_sections_to_defer;
1528 
1529       unsigned int sh_type = shdr.get_sh_type();
1530       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1531 	{
1532 	  unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1533 	  if (target_shndx == 0 || target_shndx >= shnum)
1534 	    {
1535 	      this->error(_("relocation section %u has bad info %u"),
1536 			  i, target_shndx);
1537 	      continue;
1538 	    }
1539 
1540 	  if (reloc_shndx[target_shndx] != 0)
1541 	    reloc_shndx[target_shndx] = -1U;
1542 	  else
1543 	    {
1544 	      reloc_shndx[target_shndx] = i;
1545 	      reloc_type[target_shndx] = sh_type;
1546 	    }
1547 	}
1548     }
1549 
1550   Output_sections& out_sections(this->output_sections());
1551   std::vector<Address>& out_section_offsets(this->section_offsets());
1552 
1553   if (!is_pass_two)
1554     {
1555       out_sections.resize(shnum);
1556       out_section_offsets.resize(shnum);
1557     }
1558 
1559   // If we are only linking for symbols, then there is nothing else to
1560   // do here.
1561   if (this->input_file()->just_symbols())
1562     {
1563       if (!is_pass_two)
1564 	{
1565 	  delete sd->section_headers;
1566 	  sd->section_headers = NULL;
1567 	  delete sd->section_names;
1568 	  sd->section_names = NULL;
1569 	}
1570       return;
1571     }
1572 
1573   if (num_sections_to_defer > 0)
1574     {
1575       parameters->options().plugins()->add_deferred_layout_object(this);
1576       this->deferred_layout_.reserve(num_sections_to_defer);
1577       this->is_deferred_layout_ = true;
1578     }
1579 
1580   // Whether we've seen a .note.GNU-stack section.
1581   bool seen_gnu_stack = false;
1582   // The flags of a .note.GNU-stack section.
1583   uint64_t gnu_stack_flags = 0;
1584 
1585   // Keep track of which sections to omit.
1586   std::vector<bool> omit(shnum, false);
1587 
1588   // Keep track of reloc sections when emitting relocations.
1589   const bool relocatable = parameters->options().relocatable();
1590   const bool emit_relocs = (relocatable
1591 			    || parameters->options().emit_relocs());
1592   std::vector<unsigned int> reloc_sections;
1593 
1594   // Keep track of .eh_frame sections.
1595   std::vector<unsigned int> eh_frame_sections;
1596 
1597   // Keep track of .debug_info and .debug_types sections.
1598   std::vector<unsigned int> debug_info_sections;
1599   std::vector<unsigned int> debug_types_sections;
1600 
1601   // Skip the first, dummy, section.
1602   pshdrs = shdrs + This::shdr_size;
1603   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1604     {
1605       typename This::Shdr shdr(pshdrs);
1606       const unsigned int sh_name = shdr.get_sh_name();
1607       unsigned int sh_type = shdr.get_sh_type();
1608 
1609       if (sh_name >= section_names_size)
1610 	{
1611 	  this->error(_("bad section name offset for section %u: %lu"),
1612 		      i, static_cast<unsigned long>(sh_name));
1613 	  return;
1614 	}
1615 
1616       const char* name = pnames + sh_name;
1617 
1618       if (!is_pass_two)
1619 	{
1620 	  if (this->handle_gnu_warning_section(name, i, symtab))
1621 	    {
1622 	      if (!relocatable && !parameters->options().shared())
1623 		omit[i] = true;
1624 	    }
1625 
1626 	  // The .note.GNU-stack section is special.  It gives the
1627 	  // protection flags that this object file requires for the stack
1628 	  // in memory.
1629 	  if (strcmp(name, ".note.GNU-stack") == 0)
1630 	    {
1631 	      seen_gnu_stack = true;
1632 	      gnu_stack_flags |= shdr.get_sh_flags();
1633 	      omit[i] = true;
1634 	    }
1635 
1636 	  // The .note.GNU-split-stack section is also special.  It
1637 	  // indicates that the object was compiled with
1638 	  // -fsplit-stack.
1639 	  if (this->handle_split_stack_section(name))
1640 	    {
1641 	      if (!relocatable && !parameters->options().shared())
1642 		omit[i] = true;
1643 	    }
1644 
1645 	  // Skip attributes section.
1646 	  if (parameters->target().is_attributes_section(name))
1647 	    {
1648 	      omit[i] = true;
1649 	    }
1650 
1651 	  // Handle .note.gnu.property sections.
1652 	  if (sh_type == elfcpp::SHT_NOTE
1653 	      && strcmp(name, ".note.gnu.property") == 0)
1654 	    {
1655 	      this->layout_gnu_property_section(layout, i);
1656 	      omit[i] = true;
1657 	    }
1658 
1659 	  bool discard = omit[i];
1660 	  if (!discard)
1661 	    {
1662 	      if (sh_type == elfcpp::SHT_GROUP)
1663 		{
1664 		  if (!this->include_section_group(symtab, layout, i, name,
1665 						   shdrs, pnames,
1666 						   section_names_size,
1667 						   &omit))
1668 		    discard = true;
1669 		}
1670 	      else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1671 		       && Layout::is_linkonce(name))
1672 		{
1673 		  if (!this->include_linkonce_section(layout, i, name, shdr))
1674 		    discard = true;
1675 		}
1676 	    }
1677 
1678 	  // Add the section to the incremental inputs layout.
1679 	  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1680 	  if (incremental_inputs != NULL
1681 	      && !discard
1682 	      && can_incremental_update(sh_type))
1683 	    {
1684 	      off_t sh_size = shdr.get_sh_size();
1685 	      section_size_type uncompressed_size;
1686 	      if (this->section_is_compressed(i, &uncompressed_size))
1687 		sh_size = uncompressed_size;
1688 	      incremental_inputs->report_input_section(this, i, name, sh_size);
1689 	    }
1690 
1691 	  if (discard)
1692 	    {
1693 	      // Do not include this section in the link.
1694 	      out_sections[i] = NULL;
1695 	      out_section_offsets[i] = invalid_address;
1696 	      continue;
1697 	    }
1698 	}
1699 
1700       if (is_pass_one && parameters->options().gc_sections())
1701 	{
1702 	  if (this->is_section_name_included(name)
1703 	      || layout->keep_input_section (this, name)
1704 	      || sh_type == elfcpp::SHT_INIT_ARRAY
1705 	      || sh_type == elfcpp::SHT_FINI_ARRAY)
1706 	    {
1707 	      symtab->gc()->worklist().push_back(Section_id(this, i));
1708 	    }
1709 	  // If the section name XXX can be represented as a C identifier
1710 	  // it cannot be discarded if there are references to
1711 	  // __start_XXX and __stop_XXX symbols.  These need to be
1712 	  // specially handled.
1713 	  if (is_cident(name))
1714 	    {
1715 	      symtab->gc()->add_cident_section(name, Section_id(this, i));
1716 	    }
1717 	}
1718 
1719       // When doing a relocatable link we are going to copy input
1720       // reloc sections into the output.  We only want to copy the
1721       // ones associated with sections which are not being discarded.
1722       // However, we don't know that yet for all sections.  So save
1723       // reloc sections and process them later. Garbage collection is
1724       // not triggered when relocatable code is desired.
1725       if (emit_relocs
1726 	  && (sh_type == elfcpp::SHT_REL
1727 	      || sh_type == elfcpp::SHT_RELA))
1728 	{
1729 	  reloc_sections.push_back(i);
1730 	  continue;
1731 	}
1732 
1733       if (relocatable && sh_type == elfcpp::SHT_GROUP)
1734 	continue;
1735 
1736       // The .eh_frame section is special.  It holds exception frame
1737       // information that we need to read in order to generate the
1738       // exception frame header.  We process these after all the other
1739       // sections so that the exception frame reader can reliably
1740       // determine which sections are being discarded, and discard the
1741       // corresponding information.
1742       if (this->check_eh_frame_flags(&shdr)
1743 	  && strcmp(name, ".eh_frame") == 0)
1744 	{
1745 	  // If the target has a special unwind section type, let's
1746 	  // canonicalize it here.
1747 	  sh_type = unwind_section_type;
1748 	  if (!relocatable)
1749 	    {
1750 	      if (is_pass_one)
1751 		{
1752 		  if (this->is_deferred_layout())
1753 		    out_sections[i] = reinterpret_cast<Output_section*>(2);
1754 		  else
1755 		    out_sections[i] = reinterpret_cast<Output_section*>(1);
1756 		  out_section_offsets[i] = invalid_address;
1757 		}
1758 	      else if (this->is_deferred_layout())
1759 		{
1760 		  out_sections[i] = reinterpret_cast<Output_section*>(2);
1761 		  out_section_offsets[i] = invalid_address;
1762 		  this->deferred_layout_.push_back(
1763 		      Deferred_layout(i, name, sh_type, pshdrs,
1764 				      reloc_shndx[i], reloc_type[i]));
1765 		}
1766 	      else
1767 		eh_frame_sections.push_back(i);
1768 	      continue;
1769 	    }
1770 	}
1771 
1772       if (is_pass_two && parameters->options().gc_sections())
1773 	{
1774 	  // This is executed during the second pass of garbage
1775 	  // collection. do_layout has been called before and some
1776 	  // sections have been already discarded. Simply ignore
1777 	  // such sections this time around.
1778 	  if (out_sections[i] == NULL)
1779 	    {
1780 	      gold_assert(out_section_offsets[i] == invalid_address);
1781 	      continue;
1782 	    }
1783 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1784 	      && symtab->gc()->is_section_garbage(this, i))
1785 	      {
1786 		if (parameters->options().print_gc_sections())
1787 		  gold_info(_("%s: removing unused section from '%s'"
1788 			      " in file '%s'"),
1789 			    program_name, this->section_name(i).c_str(),
1790 			    this->name().c_str());
1791 		out_sections[i] = NULL;
1792 		out_section_offsets[i] = invalid_address;
1793 		continue;
1794 	      }
1795 	}
1796 
1797       if (is_pass_two && parameters->options().icf_enabled())
1798 	{
1799 	  if (out_sections[i] == NULL)
1800 	    {
1801 	      gold_assert(out_section_offsets[i] == invalid_address);
1802 	      continue;
1803 	    }
1804 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1805 	      && symtab->icf()->is_section_folded(this, i))
1806 	      {
1807 		if (parameters->options().print_icf_sections())
1808 		  {
1809 		    Section_id folded =
1810 				symtab->icf()->get_folded_section(this, i);
1811 		    Relobj* folded_obj =
1812 				reinterpret_cast<Relobj*>(folded.first);
1813 		    gold_info(_("%s: ICF folding section '%s' in file '%s' "
1814 				"into '%s' in file '%s'"),
1815 			      program_name, this->section_name(i).c_str(),
1816 			      this->name().c_str(),
1817 			      folded_obj->section_name(folded.second).c_str(),
1818 			      folded_obj->name().c_str());
1819 		  }
1820 		out_sections[i] = NULL;
1821 		out_section_offsets[i] = invalid_address;
1822 		continue;
1823 	      }
1824 	}
1825 
1826       // Defer layout here if input files are claimed by plugins.  When gc
1827       // is turned on this function is called twice; we only want to do this
1828       // on the first pass.
1829       if (!is_pass_two
1830           && this->is_deferred_layout()
1831           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1832 	{
1833 	  this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1834 							   pshdrs,
1835 							   reloc_shndx[i],
1836 							   reloc_type[i]));
1837 	  // Put dummy values here; real values will be supplied by
1838 	  // do_layout_deferred_sections.
1839 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1840 	  out_section_offsets[i] = invalid_address;
1841 	  continue;
1842 	}
1843 
1844       // During gc_pass_two if a section that was previously deferred is
1845       // found, do not layout the section as layout_deferred_sections will
1846       // do it later from gold.cc.
1847       if (is_pass_two
1848 	  && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1849 	continue;
1850 
1851       if (is_pass_one)
1852 	{
1853 	  // This is during garbage collection. The out_sections are
1854 	  // assigned in the second call to this function.
1855 	  out_sections[i] = reinterpret_cast<Output_section*>(1);
1856 	  out_section_offsets[i] = invalid_address;
1857 	}
1858       else
1859 	{
1860 	  // When garbage collection is switched on the actual layout
1861 	  // only happens in the second call.
1862 	  this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1863 			       reloc_type[i]);
1864 
1865 	  // When generating a .gdb_index section, we do additional
1866 	  // processing of .debug_info and .debug_types sections after all
1867 	  // the other sections for the same reason as above.
1868 	  if (!relocatable
1869 	      && parameters->options().gdb_index()
1870 	      && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1871 	    {
1872 	      if (strcmp(name, ".debug_info") == 0
1873 		  || strcmp(name, ".zdebug_info") == 0)
1874 		debug_info_sections.push_back(i);
1875 	      else if (strcmp(name, ".debug_types") == 0
1876 		       || strcmp(name, ".zdebug_types") == 0)
1877 		debug_types_sections.push_back(i);
1878 	    }
1879 	}
1880 
1881       /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1882 	 section.  */
1883       const char *lto_section_name = ".gnu.lto_.lto.";
1884       if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1885 	{
1886 	  section_size_type contents_len;
1887 	  const unsigned char* pcontents
1888 	    = this->section_contents(i, &contents_len, false);
1889 	  if (contents_len >= sizeof(lto_section))
1890 	    {
1891 	      const lto_section* lsection
1892 		= reinterpret_cast<const lto_section*>(pcontents);
1893 	      if (lsection->slim_object)
1894 		layout->set_lto_slim_object();
1895 	    }
1896 	}
1897     }
1898 
1899   if (!is_pass_two)
1900     {
1901       layout->merge_gnu_properties(this);
1902       layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1903     }
1904 
1905   // Handle the .eh_frame sections after the other sections.
1906   gold_assert(!is_pass_one || eh_frame_sections.empty());
1907   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1908        p != eh_frame_sections.end();
1909        ++p)
1910     {
1911       unsigned int i = *p;
1912       const unsigned char* pshdr;
1913       pshdr = section_headers_data + i * This::shdr_size;
1914       typename This::Shdr shdr(pshdr);
1915 
1916       this->layout_eh_frame_section(layout,
1917 				    symbols_data,
1918 				    symbols_size,
1919 				    symbol_names_data,
1920 				    symbol_names_size,
1921 				    i,
1922 				    shdr,
1923 				    reloc_shndx[i],
1924 				    reloc_type[i]);
1925     }
1926 
1927   // When doing a relocatable link handle the reloc sections at the
1928   // end.  Garbage collection  and Identical Code Folding is not
1929   // turned on for relocatable code.
1930   if (emit_relocs)
1931     this->size_relocatable_relocs();
1932 
1933   gold_assert(!is_two_pass || reloc_sections.empty());
1934 
1935   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1936        p != reloc_sections.end();
1937        ++p)
1938     {
1939       unsigned int i = *p;
1940       const unsigned char* pshdr;
1941       pshdr = section_headers_data + i * This::shdr_size;
1942       typename This::Shdr shdr(pshdr);
1943 
1944       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1945       if (data_shndx >= shnum)
1946 	{
1947 	  // We already warned about this above.
1948 	  continue;
1949 	}
1950 
1951       Output_section* data_section = out_sections[data_shndx];
1952       if (data_section == reinterpret_cast<Output_section*>(2))
1953 	{
1954 	  if (is_pass_two)
1955 	    continue;
1956 	  // The layout for the data section was deferred, so we need
1957 	  // to defer the relocation section, too.
1958 	  const char* name = pnames + shdr.get_sh_name();
1959 	  this->deferred_layout_relocs_.push_back(
1960 	      Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1961 			      elfcpp::SHT_NULL));
1962 	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1963 	  out_section_offsets[i] = invalid_address;
1964 	  continue;
1965 	}
1966       if (data_section == NULL)
1967 	{
1968 	  out_sections[i] = NULL;
1969 	  out_section_offsets[i] = invalid_address;
1970 	  continue;
1971 	}
1972 
1973       Relocatable_relocs* rr = new Relocatable_relocs();
1974       this->set_relocatable_relocs(i, rr);
1975 
1976       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1977 						rr);
1978       out_sections[i] = os;
1979       out_section_offsets[i] = invalid_address;
1980     }
1981 
1982   // When building a .gdb_index section, scan the .debug_info and
1983   // .debug_types sections.
1984   gold_assert(!is_pass_one
1985 	      || (debug_info_sections.empty() && debug_types_sections.empty()));
1986   for (std::vector<unsigned int>::const_iterator p
1987 	   = debug_info_sections.begin();
1988        p != debug_info_sections.end();
1989        ++p)
1990     {
1991       unsigned int i = *p;
1992       layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1993 			       i, reloc_shndx[i], reloc_type[i]);
1994     }
1995   for (std::vector<unsigned int>::const_iterator p
1996 	   = debug_types_sections.begin();
1997        p != debug_types_sections.end();
1998        ++p)
1999     {
2000       unsigned int i = *p;
2001       layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
2002 			       i, reloc_shndx[i], reloc_type[i]);
2003     }
2004 
2005   if (is_pass_two)
2006     {
2007       delete[] gc_sd->section_headers_data;
2008       delete[] gc_sd->section_names_data;
2009       delete[] gc_sd->symbols_data;
2010       delete[] gc_sd->symbol_names_data;
2011       this->set_symbols_data(NULL);
2012     }
2013   else
2014     {
2015       delete sd->section_headers;
2016       sd->section_headers = NULL;
2017       delete sd->section_names;
2018       sd->section_names = NULL;
2019     }
2020 }
2021 
2022 // Layout sections whose layout was deferred while waiting for
2023 // input files from a plugin.
2024 
2025 template<int size, bool big_endian>
2026 void
do_layout_deferred_sections(Layout * layout)2027 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
2028 {
2029   typename std::vector<Deferred_layout>::iterator deferred;
2030 
2031   for (deferred = this->deferred_layout_.begin();
2032        deferred != this->deferred_layout_.end();
2033        ++deferred)
2034     {
2035       typename This::Shdr shdr(deferred->shdr_data_);
2036 
2037       if (!parameters->options().relocatable()
2038 	  && deferred->name_ == ".eh_frame"
2039 	  && this->check_eh_frame_flags(&shdr))
2040 	{
2041 	  // Checking is_section_included is not reliable for
2042 	  // .eh_frame sections, because they do not have an output
2043 	  // section.  This is not a problem normally because we call
2044 	  // layout_eh_frame_section unconditionally, but when
2045 	  // deferring sections that is not true.  We don't want to
2046 	  // keep all .eh_frame sections because that will cause us to
2047 	  // keep all sections that they refer to, which is the wrong
2048 	  // way around.  Instead, the eh_frame code will discard
2049 	  // .eh_frame sections that refer to discarded sections.
2050 
2051 	  // Reading the symbols again here may be slow.
2052 	  Read_symbols_data sd;
2053 	  this->base_read_symbols(&sd);
2054 	  this->layout_eh_frame_section(layout,
2055 					sd.symbols->data(),
2056 					sd.symbols_size,
2057 					sd.symbol_names->data(),
2058 					sd.symbol_names_size,
2059 					deferred->shndx_,
2060 					shdr,
2061 					deferred->reloc_shndx_,
2062 					deferred->reloc_type_);
2063 	  continue;
2064 	}
2065 
2066       // If the section is not included, it is because the garbage collector
2067       // decided it is not needed.  Avoid reverting that decision.
2068       if (!this->is_section_included(deferred->shndx_))
2069 	continue;
2070 
2071       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2072 			   shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2073 			   deferred->reloc_type_);
2074     }
2075 
2076   this->deferred_layout_.clear();
2077 
2078   // Now handle the deferred relocation sections.
2079 
2080   Output_sections& out_sections(this->output_sections());
2081   std::vector<Address>& out_section_offsets(this->section_offsets());
2082 
2083   for (deferred = this->deferred_layout_relocs_.begin();
2084        deferred != this->deferred_layout_relocs_.end();
2085        ++deferred)
2086     {
2087       unsigned int shndx = deferred->shndx_;
2088       typename This::Shdr shdr(deferred->shdr_data_);
2089       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2090 
2091       Output_section* data_section = out_sections[data_shndx];
2092       if (data_section == NULL)
2093 	{
2094 	  out_sections[shndx] = NULL;
2095 	  out_section_offsets[shndx] = invalid_address;
2096 	  continue;
2097 	}
2098 
2099       Relocatable_relocs* rr = new Relocatable_relocs();
2100       this->set_relocatable_relocs(shndx, rr);
2101 
2102       Output_section* os = layout->layout_reloc(this, shndx, shdr,
2103 						data_section, rr);
2104       out_sections[shndx] = os;
2105       out_section_offsets[shndx] = invalid_address;
2106     }
2107 }
2108 
2109 // Add the symbols to the symbol table.
2110 
2111 template<int size, bool big_endian>
2112 void
do_add_symbols(Symbol_table * symtab,Read_symbols_data * sd,Layout * layout)2113 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2114 						    Read_symbols_data* sd,
2115 						    Layout* layout)
2116 {
2117   if (sd->symbols == NULL)
2118     {
2119       gold_assert(sd->symbol_names == NULL);
2120       return;
2121     }
2122 
2123   const int sym_size = This::sym_size;
2124   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2125 		     / sym_size);
2126   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2127     {
2128       this->error(_("size of symbols is not multiple of symbol size"));
2129       return;
2130     }
2131 
2132   this->symbols_.resize(symcount);
2133 
2134   if (!parameters->options().relocatable()
2135       && layout->is_lto_slim_object ())
2136     gold_info(_("%s: plugin needed to handle lto object"),
2137 	      this->name().c_str());
2138 
2139   const char* sym_names =
2140     reinterpret_cast<const char*>(sd->symbol_names->data());
2141   symtab->add_from_relobj(this,
2142 			  sd->symbols->data() + sd->external_symbols_offset,
2143 			  symcount, this->local_symbol_count_,
2144 			  sym_names, sd->symbol_names_size,
2145 			  &this->symbols_,
2146 			  &this->defined_count_);
2147 
2148   delete sd->symbols;
2149   sd->symbols = NULL;
2150   delete sd->symbol_names;
2151   sd->symbol_names = NULL;
2152 }
2153 
2154 // Find out if this object, that is a member of a lib group, should be included
2155 // in the link. We check every symbol defined by this object. If the symbol
2156 // table has a strong undefined reference to that symbol, we have to include
2157 // the object.
2158 
2159 template<int size, bool big_endian>
2160 Archive::Should_include
do_should_include_member(Symbol_table * symtab,Layout * layout,Read_symbols_data * sd,std::string * why)2161 Sized_relobj_file<size, big_endian>::do_should_include_member(
2162     Symbol_table* symtab,
2163     Layout* layout,
2164     Read_symbols_data* sd,
2165     std::string* why)
2166 {
2167   char* tmpbuf = NULL;
2168   size_t tmpbuflen = 0;
2169   const char* sym_names =
2170       reinterpret_cast<const char*>(sd->symbol_names->data());
2171   const unsigned char* syms =
2172       sd->symbols->data() + sd->external_symbols_offset;
2173   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2174   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2175 			 / sym_size);
2176 
2177   const unsigned char* p = syms;
2178 
2179   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2180     {
2181       elfcpp::Sym<size, big_endian> sym(p);
2182       unsigned int st_shndx = sym.get_st_shndx();
2183       if (st_shndx == elfcpp::SHN_UNDEF)
2184 	continue;
2185 
2186       unsigned int st_name = sym.get_st_name();
2187       const char* name = sym_names + st_name;
2188       Symbol* symbol;
2189       Archive::Should_include t = Archive::should_include_member(symtab,
2190 								 layout,
2191 								 name,
2192 								 &symbol, why,
2193 								 &tmpbuf,
2194 								 &tmpbuflen);
2195       if (t == Archive::SHOULD_INCLUDE_YES)
2196 	{
2197 	  if (tmpbuf != NULL)
2198 	    free(tmpbuf);
2199 	  return t;
2200 	}
2201     }
2202   if (tmpbuf != NULL)
2203     free(tmpbuf);
2204   return Archive::SHOULD_INCLUDE_UNKNOWN;
2205 }
2206 
2207 // Iterate over global defined symbols, calling a visitor class V for each.
2208 
2209 template<int size, bool big_endian>
2210 void
do_for_all_global_symbols(Read_symbols_data * sd,Library_base::Symbol_visitor_base * v)2211 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2212     Read_symbols_data* sd,
2213     Library_base::Symbol_visitor_base* v)
2214 {
2215   const char* sym_names =
2216       reinterpret_cast<const char*>(sd->symbol_names->data());
2217   const unsigned char* syms =
2218       sd->symbols->data() + sd->external_symbols_offset;
2219   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2220   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2221 		     / sym_size);
2222   const unsigned char* p = syms;
2223 
2224   for (size_t i = 0; i < symcount; ++i, p += sym_size)
2225     {
2226       elfcpp::Sym<size, big_endian> sym(p);
2227       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2228 	v->visit(sym_names + sym.get_st_name());
2229     }
2230 }
2231 
2232 // Return whether the local symbol SYMNDX has a PLT offset.
2233 
2234 template<int size, bool big_endian>
2235 bool
local_has_plt_offset(unsigned int symndx) const2236 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2237     unsigned int symndx) const
2238 {
2239   typename Local_plt_offsets::const_iterator p =
2240     this->local_plt_offsets_.find(symndx);
2241   return p != this->local_plt_offsets_.end();
2242 }
2243 
2244 // Get the PLT offset of a local symbol.
2245 
2246 template<int size, bool big_endian>
2247 unsigned int
do_local_plt_offset(unsigned int symndx) const2248 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2249     unsigned int symndx) const
2250 {
2251   typename Local_plt_offsets::const_iterator p =
2252     this->local_plt_offsets_.find(symndx);
2253   gold_assert(p != this->local_plt_offsets_.end());
2254   return p->second;
2255 }
2256 
2257 // Set the PLT offset of a local symbol.
2258 
2259 template<int size, bool big_endian>
2260 void
set_local_plt_offset(unsigned int symndx,unsigned int plt_offset)2261 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2262     unsigned int symndx, unsigned int plt_offset)
2263 {
2264   std::pair<typename Local_plt_offsets::iterator, bool> ins =
2265     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2266   gold_assert(ins.second);
2267 }
2268 
2269 // First pass over the local symbols.  Here we add their names to
2270 // *POOL and *DYNPOOL, and we store the symbol value in
2271 // THIS->LOCAL_VALUES_.  This function is always called from a
2272 // singleton thread.  This is followed by a call to
2273 // finalize_local_symbols.
2274 
2275 template<int size, bool big_endian>
2276 void
do_count_local_symbols(Stringpool * pool,Stringpool * dynpool)2277 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2278 							    Stringpool* dynpool)
2279 {
2280   gold_assert(this->symtab_shndx_ != -1U);
2281   if (this->symtab_shndx_ == 0)
2282     {
2283       // This object has no symbols.  Weird but legal.
2284       return;
2285     }
2286 
2287   // Read the symbol table section header.
2288   const unsigned int symtab_shndx = this->symtab_shndx_;
2289   typename This::Shdr symtabshdr(this,
2290 				 this->elf_file_.section_header(symtab_shndx));
2291   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2292 
2293   // Read the local symbols.
2294   const int sym_size = This::sym_size;
2295   const unsigned int loccount = this->local_symbol_count_;
2296   gold_assert(loccount == symtabshdr.get_sh_info());
2297   off_t locsize = loccount * sym_size;
2298   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2299 					      locsize, true, true);
2300 
2301   // Read the symbol names.
2302   const unsigned int strtab_shndx =
2303     this->adjust_shndx(symtabshdr.get_sh_link());
2304   section_size_type strtab_size;
2305   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2306 							&strtab_size,
2307 							true);
2308   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2309 
2310   // Loop over the local symbols.
2311 
2312   const Output_sections& out_sections(this->output_sections());
2313   std::vector<Address>& out_section_offsets(this->section_offsets());
2314   unsigned int shnum = this->shnum();
2315   unsigned int count = 0;
2316   unsigned int dyncount = 0;
2317   // Skip the first, dummy, symbol.
2318   psyms += sym_size;
2319   bool strip_all = parameters->options().strip_all();
2320   bool discard_all = parameters->options().discard_all();
2321   bool discard_locals = parameters->options().discard_locals();
2322   bool discard_sec_merge = parameters->options().discard_sec_merge();
2323   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2324     {
2325       elfcpp::Sym<size, big_endian> sym(psyms);
2326 
2327       Symbol_value<size>& lv(this->local_values_[i]);
2328 
2329       bool is_ordinary;
2330       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2331 						  &is_ordinary);
2332       lv.set_input_shndx(shndx, is_ordinary);
2333 
2334       if (sym.get_st_type() == elfcpp::STT_SECTION)
2335 	lv.set_is_section_symbol();
2336       else if (sym.get_st_type() == elfcpp::STT_TLS)
2337 	lv.set_is_tls_symbol();
2338       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2339 	lv.set_is_ifunc_symbol();
2340 
2341       // Save the input symbol value for use in do_finalize_local_symbols().
2342       lv.set_input_value(sym.get_st_value());
2343 
2344       // Decide whether this symbol should go into the output file.
2345 
2346       if (is_ordinary
2347 	  && shndx < shnum
2348 	  && (out_sections[shndx] == NULL
2349 	      || (out_sections[shndx]->order() == ORDER_EHFRAME
2350 		  && out_section_offsets[shndx] == invalid_address)))
2351 	{
2352 	  // This is either a discarded section or an optimized .eh_frame
2353 	  // section.
2354 	  lv.set_no_output_symtab_entry();
2355 	  gold_assert(!lv.needs_output_dynsym_entry());
2356 	  continue;
2357 	}
2358 
2359       if (sym.get_st_type() == elfcpp::STT_SECTION
2360 	  || !this->adjust_local_symbol(&lv))
2361 	{
2362 	  lv.set_no_output_symtab_entry();
2363 	  gold_assert(!lv.needs_output_dynsym_entry());
2364 	  continue;
2365 	}
2366 
2367       if (sym.get_st_name() >= strtab_size)
2368 	{
2369 	  this->error(_("local symbol %u section name out of range: %u >= %u"),
2370 		      i, sym.get_st_name(),
2371 		      static_cast<unsigned int>(strtab_size));
2372 	  lv.set_no_output_symtab_entry();
2373 	  continue;
2374 	}
2375 
2376       const char* name = pnames + sym.get_st_name();
2377 
2378       // If needed, add the symbol to the dynamic symbol table string pool.
2379       if (lv.needs_output_dynsym_entry())
2380 	{
2381 	  dynpool->add(name, true, NULL);
2382 	  ++dyncount;
2383 	}
2384 
2385       if (strip_all
2386 	  || (discard_all && lv.may_be_discarded_from_output_symtab()))
2387 	{
2388 	  lv.set_no_output_symtab_entry();
2389 	  continue;
2390 	}
2391 
2392       // By default, discard temporary local symbols in merge sections.
2393       // If --discard-locals option is used, discard all temporary local
2394       // symbols.  These symbols start with system-specific local label
2395       // prefixes, typically .L for ELF system.  We want to be compatible
2396       // with GNU ld so here we essentially use the same check in
2397       // bfd_is_local_label().  The code is different because we already
2398       // know that:
2399       //
2400       //   - the symbol is local and thus cannot have global or weak binding.
2401       //   - the symbol is not a section symbol.
2402       //   - the symbol has a name.
2403       //
2404       // We do not discard a symbol if it needs a dynamic symbol entry.
2405       if ((discard_locals
2406 	   || (discard_sec_merge
2407 	       && is_ordinary
2408 	       && out_section_offsets[shndx] == invalid_address))
2409 	  && sym.get_st_type() != elfcpp::STT_FILE
2410 	  && !lv.needs_output_dynsym_entry()
2411 	  && lv.may_be_discarded_from_output_symtab()
2412 	  && parameters->target().is_local_label_name(name))
2413 	{
2414 	  lv.set_no_output_symtab_entry();
2415 	  continue;
2416 	}
2417 
2418       // Discard the local symbol if -retain_symbols_file is specified
2419       // and the local symbol is not in that file.
2420       if (!parameters->options().should_retain_symbol(name))
2421 	{
2422 	  lv.set_no_output_symtab_entry();
2423 	  continue;
2424 	}
2425 
2426       // Add the symbol to the symbol table string pool.
2427       pool->add(name, true, NULL);
2428       ++count;
2429     }
2430 
2431   this->output_local_symbol_count_ = count;
2432   this->output_local_dynsym_count_ = dyncount;
2433 }
2434 
2435 // Compute the final value of a local symbol.
2436 
2437 template<int size, bool big_endian>
2438 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
compute_final_local_value_internal(unsigned int r_sym,const Symbol_value<size> * lv_in,Symbol_value<size> * lv_out,bool relocatable,const Output_sections & out_sections,const std::vector<Address> & out_offsets,const Symbol_table * symtab)2439 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2440     unsigned int r_sym,
2441     const Symbol_value<size>* lv_in,
2442     Symbol_value<size>* lv_out,
2443     bool relocatable,
2444     const Output_sections& out_sections,
2445     const std::vector<Address>& out_offsets,
2446     const Symbol_table* symtab)
2447 {
2448   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2449   // we may have a memory leak.
2450   gold_assert(lv_out->has_output_value());
2451 
2452   bool is_ordinary;
2453   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2454 
2455   // Set the output symbol value.
2456 
2457   if (!is_ordinary)
2458     {
2459       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2460 	lv_out->set_output_value(lv_in->input_value());
2461       else
2462 	{
2463 	  this->error(_("unknown section index %u for local symbol %u"),
2464 		      shndx, r_sym);
2465 	  lv_out->set_output_value(0);
2466 	  return This::CFLV_ERROR;
2467 	}
2468     }
2469   else
2470     {
2471       if (shndx >= this->shnum())
2472 	{
2473 	  this->error(_("local symbol %u section index %u out of range"),
2474 		      r_sym, shndx);
2475 	  lv_out->set_output_value(0);
2476 	  return This::CFLV_ERROR;
2477 	}
2478 
2479       Output_section* os = out_sections[shndx];
2480       Address secoffset = out_offsets[shndx];
2481       if (symtab->is_section_folded(this, shndx))
2482 	{
2483 	  gold_assert(os == NULL && secoffset == invalid_address);
2484 	  // Get the os of the section it is folded onto.
2485 	  Section_id folded = symtab->icf()->get_folded_section(this,
2486 								shndx);
2487 	  gold_assert(folded.first != NULL);
2488 	  Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2489 	    <Sized_relobj_file<size, big_endian>*>(folded.first);
2490 	  os = folded_obj->output_section(folded.second);
2491 	  gold_assert(os != NULL);
2492 	  secoffset = folded_obj->get_output_section_offset(folded.second);
2493 
2494 	  // This could be a relaxed input section.
2495 	  if (secoffset == invalid_address)
2496 	    {
2497 	      const Output_relaxed_input_section* relaxed_section =
2498 		os->find_relaxed_input_section(folded_obj, folded.second);
2499 	      gold_assert(relaxed_section != NULL);
2500 	      secoffset = relaxed_section->address() - os->address();
2501 	    }
2502 	}
2503 
2504       if (os == NULL)
2505 	{
2506 	  // This local symbol belongs to a section we are discarding.
2507 	  // In some cases when applying relocations later, we will
2508 	  // attempt to match it to the corresponding kept section,
2509 	  // so we leave the input value unchanged here.
2510 	  return This::CFLV_DISCARDED;
2511 	}
2512       else if (secoffset == invalid_address)
2513 	{
2514 	  uint64_t start;
2515 
2516 	  // This is a SHF_MERGE section or one which otherwise
2517 	  // requires special handling.
2518 	  if (os->order() == ORDER_EHFRAME)
2519 	    {
2520 	      // This local symbol belongs to a discarded or optimized
2521 	      // .eh_frame section.  Just treat it like the case in which
2522 	      // os == NULL above.
2523 	      gold_assert(this->has_eh_frame_);
2524 	      return This::CFLV_DISCARDED;
2525 	    }
2526 	  else if (!lv_in->is_section_symbol())
2527 	    {
2528 	      // This is not a section symbol.  We can determine
2529 	      // the final value now.
2530 	      uint64_t value =
2531 		os->output_address(this, shndx, lv_in->input_value());
2532 	      if (relocatable)
2533 		value -= os->address();
2534 	      lv_out->set_output_value(value);
2535 	    }
2536 	  else if (!os->find_starting_output_address(this, shndx, &start))
2537 	    {
2538 	      // This is a section symbol, but apparently not one in a
2539 	      // merged section.  First check to see if this is a relaxed
2540 	      // input section.  If so, use its address.  Otherwise just
2541 	      // use the start of the output section.  This happens with
2542 	      // relocatable links when the input object has section
2543 	      // symbols for arbitrary non-merge sections.
2544 	      const Output_section_data* posd =
2545 		os->find_relaxed_input_section(this, shndx);
2546 	      if (posd != NULL)
2547 		{
2548 		  uint64_t value = posd->address();
2549 		  if (relocatable)
2550 		    value -= os->address();
2551 		  lv_out->set_output_value(value);
2552 		}
2553 	      else
2554 		lv_out->set_output_value(os->address());
2555 	    }
2556 	  else
2557 	    {
2558 	      // We have to consider the addend to determine the
2559 	      // value to use in a relocation.  START is the start
2560 	      // of this input section.  If we are doing a relocatable
2561 	      // link, use offset from start output section instead of
2562 	      // address.
2563 	      Address adjusted_start =
2564 		relocatable ? start - os->address() : start;
2565 	      Merged_symbol_value<size>* msv =
2566 		new Merged_symbol_value<size>(lv_in->input_value(),
2567 					      adjusted_start);
2568 	      lv_out->set_merged_symbol_value(msv);
2569 	    }
2570 	}
2571       else if (lv_in->is_tls_symbol()
2572                || (lv_in->is_section_symbol()
2573                    && (os->flags() & elfcpp::SHF_TLS)))
2574 	lv_out->set_output_value(os->tls_offset()
2575 				 + secoffset
2576 				 + lv_in->input_value());
2577       else
2578 	lv_out->set_output_value((relocatable ? 0 : os->address())
2579 				 + secoffset
2580 				 + lv_in->input_value());
2581     }
2582   return This::CFLV_OK;
2583 }
2584 
2585 // Compute final local symbol value.  R_SYM is the index of a local
2586 // symbol in symbol table.  LV points to a symbol value, which is
2587 // expected to hold the input value and to be over-written by the
2588 // final value.  SYMTAB points to a symbol table.  Some targets may want
2589 // to know would-be-finalized local symbol values in relaxation.
2590 // Hence we provide this method.  Since this method updates *LV, a
2591 // callee should make a copy of the original local symbol value and
2592 // use the copy instead of modifying an object's local symbols before
2593 // everything is finalized.  The caller should also free up any allocated
2594 // memory in the return value in *LV.
2595 template<int size, bool big_endian>
2596 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
compute_final_local_value(unsigned int r_sym,const Symbol_value<size> * lv_in,Symbol_value<size> * lv_out,const Symbol_table * symtab)2597 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2598     unsigned int r_sym,
2599     const Symbol_value<size>* lv_in,
2600     Symbol_value<size>* lv_out,
2601     const Symbol_table* symtab)
2602 {
2603   // This is just a wrapper of compute_final_local_value_internal.
2604   const bool relocatable = parameters->options().relocatable();
2605   const Output_sections& out_sections(this->output_sections());
2606   const std::vector<Address>& out_offsets(this->section_offsets());
2607   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2608 						  relocatable, out_sections,
2609 						  out_offsets, symtab);
2610 }
2611 
2612 // Finalize the local symbols.  Here we set the final value in
2613 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2614 // This function is always called from a singleton thread.  The actual
2615 // output of the local symbols will occur in a separate task.
2616 
2617 template<int size, bool big_endian>
2618 unsigned int
do_finalize_local_symbols(unsigned int index,off_t off,Symbol_table * symtab)2619 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2620     unsigned int index,
2621     off_t off,
2622     Symbol_table* symtab)
2623 {
2624   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2625 
2626   const unsigned int loccount = this->local_symbol_count_;
2627   this->local_symbol_offset_ = off;
2628 
2629   const bool relocatable = parameters->options().relocatable();
2630   const Output_sections& out_sections(this->output_sections());
2631   const std::vector<Address>& out_offsets(this->section_offsets());
2632 
2633   for (unsigned int i = 1; i < loccount; ++i)
2634     {
2635       Symbol_value<size>* lv = &this->local_values_[i];
2636 
2637       Compute_final_local_value_status cflv_status =
2638 	this->compute_final_local_value_internal(i, lv, lv, relocatable,
2639 						 out_sections, out_offsets,
2640 						 symtab);
2641       switch (cflv_status)
2642 	{
2643 	case CFLV_OK:
2644 	  if (!lv->is_output_symtab_index_set())
2645 	    {
2646 	      lv->set_output_symtab_index(index);
2647 	      ++index;
2648 	    }
2649 	  if (lv->is_ifunc_symbol()
2650 	      && (lv->has_output_symtab_entry()
2651 		  || lv->needs_output_dynsym_entry()))
2652 	    symtab->set_has_gnu_output();
2653 	  break;
2654 	case CFLV_DISCARDED:
2655 	case CFLV_ERROR:
2656 	  // Do nothing.
2657 	  break;
2658 	default:
2659 	  gold_unreachable();
2660 	}
2661     }
2662   return index;
2663 }
2664 
2665 // Set the output dynamic symbol table indexes for the local variables.
2666 
2667 template<int size, bool big_endian>
2668 unsigned int
do_set_local_dynsym_indexes(unsigned int index)2669 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2670     unsigned int index)
2671 {
2672   const unsigned int loccount = this->local_symbol_count_;
2673   for (unsigned int i = 1; i < loccount; ++i)
2674     {
2675       Symbol_value<size>& lv(this->local_values_[i]);
2676       if (lv.needs_output_dynsym_entry())
2677 	{
2678 	  lv.set_output_dynsym_index(index);
2679 	  ++index;
2680 	}
2681     }
2682   return index;
2683 }
2684 
2685 // Set the offset where local dynamic symbol information will be stored.
2686 // Returns the count of local symbols contributed to the symbol table by
2687 // this object.
2688 
2689 template<int size, bool big_endian>
2690 unsigned int
do_set_local_dynsym_offset(off_t off)2691 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2692 {
2693   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2694   this->local_dynsym_offset_ = off;
2695   return this->output_local_dynsym_count_;
2696 }
2697 
2698 // If Symbols_data is not NULL get the section flags from here otherwise
2699 // get it from the file.
2700 
2701 template<int size, bool big_endian>
2702 uint64_t
do_section_flags(unsigned int shndx)2703 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2704 {
2705   Symbols_data* sd = this->get_symbols_data();
2706   if (sd != NULL)
2707     {
2708       const unsigned char* pshdrs = sd->section_headers_data
2709 				    + This::shdr_size * shndx;
2710       typename This::Shdr shdr(pshdrs);
2711       return shdr.get_sh_flags();
2712     }
2713   // If sd is NULL, read the section header from the file.
2714   return this->elf_file_.section_flags(shndx);
2715 }
2716 
2717 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2718 // in icf.cc
2719 
2720 template<int size, bool big_endian>
2721 uint64_t
do_section_entsize(unsigned int shndx)2722 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2723 {
2724   Symbols_data* sd = this->get_symbols_data();
2725   gold_assert(sd != NULL);
2726 
2727   const unsigned char* pshdrs = sd->section_headers_data
2728 				+ This::shdr_size * shndx;
2729   typename This::Shdr shdr(pshdrs);
2730   return shdr.get_sh_entsize();
2731 }
2732 
2733 // Write out the local symbols.
2734 
2735 template<int size, bool big_endian>
2736 void
write_local_symbols(Output_file * of,const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,off_t symtab_off)2737 Sized_relobj_file<size, big_endian>::write_local_symbols(
2738     Output_file* of,
2739     const Stringpool* sympool,
2740     const Stringpool* dynpool,
2741     Output_symtab_xindex* symtab_xindex,
2742     Output_symtab_xindex* dynsym_xindex,
2743     off_t symtab_off)
2744 {
2745   const bool strip_all = parameters->options().strip_all();
2746   if (strip_all)
2747     {
2748       if (this->output_local_dynsym_count_ == 0)
2749 	return;
2750       this->output_local_symbol_count_ = 0;
2751     }
2752 
2753   gold_assert(this->symtab_shndx_ != -1U);
2754   if (this->symtab_shndx_ == 0)
2755     {
2756       // This object has no symbols.  Weird but legal.
2757       return;
2758     }
2759 
2760   // Read the symbol table section header.
2761   const unsigned int symtab_shndx = this->symtab_shndx_;
2762   typename This::Shdr symtabshdr(this,
2763 				 this->elf_file_.section_header(symtab_shndx));
2764   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2765   const unsigned int loccount = this->local_symbol_count_;
2766   gold_assert(loccount == symtabshdr.get_sh_info());
2767 
2768   // Read the local symbols.
2769   const int sym_size = This::sym_size;
2770   off_t locsize = loccount * sym_size;
2771   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2772 					      locsize, true, false);
2773 
2774   // Read the symbol names.
2775   const unsigned int strtab_shndx =
2776     this->adjust_shndx(symtabshdr.get_sh_link());
2777   section_size_type strtab_size;
2778   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2779 							&strtab_size,
2780 							false);
2781   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2782 
2783   // Get views into the output file for the portions of the symbol table
2784   // and the dynamic symbol table that we will be writing.
2785   off_t output_size = this->output_local_symbol_count_ * sym_size;
2786   unsigned char* oview = NULL;
2787   if (output_size > 0)
2788     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2789 				output_size);
2790 
2791   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2792   unsigned char* dyn_oview = NULL;
2793   if (dyn_output_size > 0)
2794     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2795 				    dyn_output_size);
2796 
2797   const Output_sections& out_sections(this->output_sections());
2798 
2799   gold_assert(this->local_values_.size() == loccount);
2800 
2801   unsigned char* ov = oview;
2802   unsigned char* dyn_ov = dyn_oview;
2803   psyms += sym_size;
2804   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2805     {
2806       elfcpp::Sym<size, big_endian> isym(psyms);
2807 
2808       Symbol_value<size>& lv(this->local_values_[i]);
2809 
2810       bool is_ordinary;
2811       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2812 						     &is_ordinary);
2813       if (is_ordinary)
2814 	{
2815 	  gold_assert(st_shndx < out_sections.size());
2816 	  if (out_sections[st_shndx] == NULL)
2817 	    continue;
2818 	  st_shndx = out_sections[st_shndx]->out_shndx();
2819 	  if (st_shndx >= elfcpp::SHN_LORESERVE)
2820 	    {
2821 	      if (lv.has_output_symtab_entry())
2822 		symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2823 	      if (lv.has_output_dynsym_entry())
2824 		dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2825 	      st_shndx = elfcpp::SHN_XINDEX;
2826 	    }
2827 	}
2828 
2829       // Write the symbol to the output symbol table.
2830       if (lv.has_output_symtab_entry())
2831 	{
2832 	  elfcpp::Sym_write<size, big_endian> osym(ov);
2833 
2834 	  gold_assert(isym.get_st_name() < strtab_size);
2835 	  const char* name = pnames + isym.get_st_name();
2836 	  osym.put_st_name(sympool->get_offset(name));
2837 	  osym.put_st_value(lv.value(this, 0));
2838 	  osym.put_st_size(isym.get_st_size());
2839 	  osym.put_st_info(isym.get_st_info());
2840 	  osym.put_st_other(isym.get_st_other());
2841 	  osym.put_st_shndx(st_shndx);
2842 
2843 	  ov += sym_size;
2844 	}
2845 
2846       // Write the symbol to the output dynamic symbol table.
2847       if (lv.has_output_dynsym_entry())
2848 	{
2849 	  gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2850 	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2851 
2852 	  gold_assert(isym.get_st_name() < strtab_size);
2853 	  const char* name = pnames + isym.get_st_name();
2854 	  osym.put_st_name(dynpool->get_offset(name));
2855 	  osym.put_st_value(lv.value(this, 0));
2856 	  osym.put_st_size(isym.get_st_size());
2857 	  osym.put_st_info(isym.get_st_info());
2858 	  osym.put_st_other(isym.get_st_other());
2859 	  osym.put_st_shndx(st_shndx);
2860 
2861 	  dyn_ov += sym_size;
2862 	}
2863     }
2864 
2865 
2866   if (output_size > 0)
2867     {
2868       gold_assert(ov - oview == output_size);
2869       of->write_output_view(symtab_off + this->local_symbol_offset_,
2870 			    output_size, oview);
2871     }
2872 
2873   if (dyn_output_size > 0)
2874     {
2875       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2876       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2877 			    dyn_oview);
2878     }
2879 }
2880 
2881 // Set *INFO to symbolic information about the offset OFFSET in the
2882 // section SHNDX.  Return true if we found something, false if we
2883 // found nothing.
2884 
2885 template<int size, bool big_endian>
2886 bool
get_symbol_location_info(unsigned int shndx,off_t offset,Symbol_location_info * info)2887 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2888     unsigned int shndx,
2889     off_t offset,
2890     Symbol_location_info* info)
2891 {
2892   if (this->symtab_shndx_ == 0)
2893     return false;
2894 
2895   section_size_type symbols_size;
2896   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2897 							&symbols_size,
2898 							false);
2899 
2900   unsigned int symbol_names_shndx =
2901     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2902   section_size_type names_size;
2903   const unsigned char* symbol_names_u =
2904     this->section_contents(symbol_names_shndx, &names_size, false);
2905   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2906 
2907   const int sym_size = This::sym_size;
2908   const size_t count = symbols_size / sym_size;
2909 
2910   const unsigned char* p = symbols;
2911   for (size_t i = 0; i < count; ++i, p += sym_size)
2912     {
2913       elfcpp::Sym<size, big_endian> sym(p);
2914 
2915       if (sym.get_st_type() == elfcpp::STT_FILE)
2916 	{
2917 	  if (sym.get_st_name() >= names_size)
2918 	    info->source_file = "(invalid)";
2919 	  else
2920 	    info->source_file = symbol_names + sym.get_st_name();
2921 	  continue;
2922 	}
2923 
2924       bool is_ordinary;
2925       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2926 						     &is_ordinary);
2927       if (is_ordinary
2928 	  && st_shndx == shndx
2929 	  && static_cast<off_t>(sym.get_st_value()) <= offset
2930 	  && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2931 	      > offset))
2932 	{
2933 	  info->enclosing_symbol_type = sym.get_st_type();
2934 	  if (sym.get_st_name() > names_size)
2935 	    info->enclosing_symbol_name = "(invalid)";
2936 	  else
2937 	    {
2938 	      info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2939 	      if (parameters->options().do_demangle())
2940 		{
2941 		  char* demangled_name = cplus_demangle(
2942 		      info->enclosing_symbol_name.c_str(),
2943 		      DMGL_ANSI | DMGL_PARAMS);
2944 		  if (demangled_name != NULL)
2945 		    {
2946 		      info->enclosing_symbol_name.assign(demangled_name);
2947 		      free(demangled_name);
2948 		    }
2949 		}
2950 	    }
2951 	  return true;
2952 	}
2953     }
2954 
2955   return false;
2956 }
2957 
2958 // Look for a kept section corresponding to the given discarded section,
2959 // and return its output address.  This is used only for relocations in
2960 // debugging sections.  If we can't find the kept section, return 0.
2961 
2962 template<int size, bool big_endian>
2963 typename Sized_relobj_file<size, big_endian>::Address
map_to_kept_section(unsigned int shndx,std::string & section_name,bool * pfound) const2964 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2965     unsigned int shndx,
2966     std::string& section_name,
2967     bool* pfound) const
2968 {
2969   Kept_section* kept_section;
2970   bool is_comdat;
2971   uint64_t sh_size;
2972   unsigned int symndx;
2973   bool found = false;
2974 
2975   if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2976 				    &kept_section))
2977     {
2978       Relobj* kept_object = kept_section->object();
2979       unsigned int kept_shndx = 0;
2980       if (!kept_section->is_comdat())
2981         {
2982 	  // The kept section is a linkonce section.
2983 	  if (sh_size == kept_section->linkonce_size())
2984 	    found = true;
2985         }
2986       else
2987 	{
2988 	  if (is_comdat)
2989 	    {
2990 	      // Find the corresponding kept section.
2991 	      // Since we're using this mapping for relocation processing,
2992 	      // we don't want to match sections unless they have the same
2993 	      // size.
2994 	      uint64_t kept_size = 0;
2995 	      if (kept_section->find_comdat_section(section_name, &kept_shndx,
2996 						    &kept_size))
2997 		{
2998 		  if (sh_size == kept_size)
2999 		    found = true;
3000 		}
3001 	    }
3002 	  else
3003 	    {
3004 	      uint64_t kept_size = 0;
3005 	      if (kept_section->find_single_comdat_section(&kept_shndx,
3006 							   &kept_size)
3007 		  && sh_size == kept_size)
3008 		found = true;
3009 	    }
3010 	}
3011 
3012       if (found)
3013 	{
3014 	  Sized_relobj_file<size, big_endian>* kept_relobj =
3015 	    static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
3016 	  Output_section* os = kept_relobj->output_section(kept_shndx);
3017 	  Address offset = kept_relobj->get_output_section_offset(kept_shndx);
3018 	  if (os != NULL && offset != invalid_address)
3019 	    {
3020 	      *pfound = true;
3021 	      return os->address() + offset;
3022 	    }
3023 	}
3024     }
3025   *pfound = false;
3026   return 0;
3027 }
3028 
3029 // Look for a kept section corresponding to the given discarded section,
3030 // and return its object file.
3031 
3032 template<int size, bool big_endian>
3033 Relobj*
find_kept_section_object(unsigned int shndx,unsigned int * symndx_p) const3034 Sized_relobj_file<size, big_endian>::find_kept_section_object(
3035     unsigned int shndx, unsigned int *symndx_p) const
3036 {
3037   Kept_section* kept_section;
3038   bool is_comdat;
3039   uint64_t sh_size;
3040   if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3041 				    &kept_section))
3042     return kept_section->object();
3043   return NULL;
3044 }
3045 
3046 // Return the name of symbol SYMNDX.
3047 
3048 template<int size, bool big_endian>
3049 const char*
get_symbol_name(unsigned int symndx)3050 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3051 {
3052   if (this->symtab_shndx_ == 0)
3053     return NULL;
3054 
3055   section_size_type symbols_size;
3056   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3057 							&symbols_size,
3058 							false);
3059 
3060   unsigned int symbol_names_shndx =
3061     this->adjust_shndx(this->section_link(this->symtab_shndx_));
3062   section_size_type names_size;
3063   const unsigned char* symbol_names_u =
3064     this->section_contents(symbol_names_shndx, &names_size, false);
3065   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3066 
3067   const unsigned char* p = symbols + symndx * This::sym_size;
3068 
3069   if (p >= symbols + symbols_size)
3070     return NULL;
3071 
3072   elfcpp::Sym<size, big_endian> sym(p);
3073 
3074   return symbol_names + sym.get_st_name();
3075 }
3076 
3077 // Get symbol counts.
3078 
3079 template<int size, bool big_endian>
3080 void
do_get_global_symbol_counts(const Symbol_table *,size_t * defined,size_t * used) const3081 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3082     const Symbol_table*,
3083     size_t* defined,
3084     size_t* used) const
3085 {
3086   *defined = this->defined_count_;
3087   size_t count = 0;
3088   for (typename Symbols::const_iterator p = this->symbols_.begin();
3089        p != this->symbols_.end();
3090        ++p)
3091     if (*p != NULL
3092 	&& (*p)->source() == Symbol::FROM_OBJECT
3093 	&& (*p)->object() == this
3094 	&& (*p)->is_defined())
3095       ++count;
3096   *used = count;
3097 }
3098 
3099 // Return a view of the decompressed contents of a section.  Set *PLEN
3100 // to the size.  Set *IS_NEW to true if the contents need to be freed
3101 // by the caller.
3102 
3103 const unsigned char*
decompressed_section_contents(unsigned int shndx,section_size_type * plen,bool * is_new,uint64_t * palign)3104 Object::decompressed_section_contents(
3105     unsigned int shndx,
3106     section_size_type* plen,
3107     bool* is_new,
3108     uint64_t* palign)
3109 {
3110   section_size_type buffer_size;
3111   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3112 							  false);
3113 
3114   if (this->compressed_sections_ == NULL)
3115     {
3116       *plen = buffer_size;
3117       *is_new = false;
3118       return buffer;
3119     }
3120 
3121   Compressed_section_map::const_iterator p =
3122       this->compressed_sections_->find(shndx);
3123   if (p == this->compressed_sections_->end())
3124     {
3125       *plen = buffer_size;
3126       *is_new = false;
3127       return buffer;
3128     }
3129 
3130   section_size_type uncompressed_size = p->second.size;
3131   if (p->second.contents != NULL)
3132     {
3133       *plen = uncompressed_size;
3134       *is_new = false;
3135       if (palign != NULL)
3136 	*palign = p->second.addralign;
3137       return p->second.contents;
3138     }
3139 
3140   unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3141   if (!decompress_input_section(buffer,
3142 				buffer_size,
3143 				uncompressed_data,
3144 				uncompressed_size,
3145 				elfsize(),
3146 				is_big_endian(),
3147 				p->second.flag))
3148     this->error(_("could not decompress section %s"),
3149 		this->do_section_name(shndx).c_str());
3150 
3151   // We could cache the results in p->second.contents and store
3152   // false in *IS_NEW, but build_compressed_section_map() would
3153   // have done so if it had expected it to be profitable.  If
3154   // we reach this point, we expect to need the contents only
3155   // once in this pass.
3156   *plen = uncompressed_size;
3157   *is_new = true;
3158   if (palign != NULL)
3159     *palign = p->second.addralign;
3160   return uncompressed_data;
3161 }
3162 
3163 // Discard any buffers of uncompressed sections.  This is done
3164 // at the end of the Add_symbols task.
3165 
3166 void
discard_decompressed_sections()3167 Object::discard_decompressed_sections()
3168 {
3169   if (this->compressed_sections_ == NULL)
3170     return;
3171 
3172   for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3173        p != this->compressed_sections_->end();
3174        ++p)
3175     {
3176       if (p->second.contents != NULL)
3177 	{
3178 	  delete[] p->second.contents;
3179 	  p->second.contents = NULL;
3180 	}
3181     }
3182 }
3183 
3184 // Input_objects methods.
3185 
3186 // Add a regular relocatable object to the list.  Return false if this
3187 // object should be ignored.
3188 
3189 bool
add_object(Object * obj)3190 Input_objects::add_object(Object* obj)
3191 {
3192   // Print the filename if the -t/--trace option is selected.
3193   if (parameters->options().trace())
3194     gold_info("%s", obj->name().c_str());
3195 
3196   if (!obj->is_dynamic())
3197     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3198   else
3199     {
3200       // See if this is a duplicate SONAME.
3201       Dynobj* dynobj = static_cast<Dynobj*>(obj);
3202       const char* soname = dynobj->soname();
3203 
3204       Unordered_map<std::string, Object*>::value_type val(soname, obj);
3205       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3206 	this->sonames_.insert(val);
3207       if (!ins.second)
3208 	{
3209 	  // We have already seen a dynamic object with this soname.
3210 	  // If any instances of this object on the command line have
3211 	  // the --no-as-needed flag, make sure the one we keep is
3212 	  // marked so.
3213 	  if (!obj->as_needed())
3214 	    {
3215 	      gold_assert(ins.first->second != NULL);
3216 	      ins.first->second->clear_as_needed();
3217 	    }
3218 	  return false;
3219 	}
3220 
3221       this->dynobj_list_.push_back(dynobj);
3222     }
3223 
3224   // Add this object to the cross-referencer if requested.
3225   if (parameters->options().user_set_print_symbol_counts()
3226       || parameters->options().cref())
3227     {
3228       if (this->cref_ == NULL)
3229 	this->cref_ = new Cref();
3230       this->cref_->add_object(obj);
3231     }
3232 
3233   return true;
3234 }
3235 
3236 // For each dynamic object, record whether we've seen all of its
3237 // explicit dependencies.
3238 
3239 void
check_dynamic_dependencies() const3240 Input_objects::check_dynamic_dependencies() const
3241 {
3242   bool issued_copy_dt_needed_error = false;
3243   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3244        p != this->dynobj_list_.end();
3245        ++p)
3246     {
3247       const Dynobj::Needed& needed((*p)->needed());
3248       bool found_all = true;
3249       Dynobj::Needed::const_iterator pneeded;
3250       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3251 	{
3252 	  if (this->sonames_.find(*pneeded) == this->sonames_.end())
3253 	    {
3254 	      found_all = false;
3255 	      break;
3256 	    }
3257 	}
3258       (*p)->set_has_unknown_needed_entries(!found_all);
3259 
3260       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3261       // that gold does not support.  However, they cause no trouble
3262       // unless there is a DT_NEEDED entry that we don't know about;
3263       // warn only in that case.
3264       if (!found_all
3265 	  && !issued_copy_dt_needed_error
3266 	  && (parameters->options().copy_dt_needed_entries()
3267 	      || parameters->options().add_needed()))
3268 	{
3269 	  const char* optname;
3270 	  if (parameters->options().copy_dt_needed_entries())
3271 	    optname = "--copy-dt-needed-entries";
3272 	  else
3273 	    optname = "--add-needed";
3274 	  gold_error(_("%s is not supported but is required for %s in %s"),
3275 		     optname, (*pneeded).c_str(), (*p)->name().c_str());
3276 	  issued_copy_dt_needed_error = true;
3277 	}
3278     }
3279 }
3280 
3281 // Start processing an archive.
3282 
3283 void
archive_start(Archive * archive)3284 Input_objects::archive_start(Archive* archive)
3285 {
3286   if (parameters->options().user_set_print_symbol_counts()
3287       || parameters->options().cref())
3288     {
3289       if (this->cref_ == NULL)
3290 	this->cref_ = new Cref();
3291       this->cref_->add_archive_start(archive);
3292     }
3293 }
3294 
3295 // Stop processing an archive.
3296 
3297 void
archive_stop(Archive * archive)3298 Input_objects::archive_stop(Archive* archive)
3299 {
3300   if (parameters->options().user_set_print_symbol_counts()
3301       || parameters->options().cref())
3302     this->cref_->add_archive_stop(archive);
3303 }
3304 
3305 // Print symbol counts
3306 
3307 void
print_symbol_counts(const Symbol_table * symtab) const3308 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3309 {
3310   if (parameters->options().user_set_print_symbol_counts()
3311       && this->cref_ != NULL)
3312     this->cref_->print_symbol_counts(symtab);
3313 }
3314 
3315 // Print a cross reference table.
3316 
3317 void
print_cref(const Symbol_table * symtab,FILE * f) const3318 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3319 {
3320   if (parameters->options().cref() && this->cref_ != NULL)
3321     this->cref_->print_cref(symtab, f);
3322 }
3323 
3324 // Relocate_info methods.
3325 
3326 // Return a string describing the location of a relocation when file
3327 // and lineno information is not available.  This is only used in
3328 // error messages.
3329 
3330 template<int size, bool big_endian>
3331 std::string
location(size_t,off_t offset) const3332 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3333 {
3334   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3335   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3336   if (!ret.empty())
3337     return ret;
3338 
3339   ret = this->object->name();
3340 
3341   Symbol_location_info info;
3342   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3343     {
3344       if (!info.source_file.empty())
3345 	{
3346 	  ret += ":";
3347 	  ret += info.source_file;
3348 	}
3349       ret += ":";
3350       if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3351 	ret += _("function ");
3352       ret += info.enclosing_symbol_name;
3353       return ret;
3354     }
3355 
3356   ret += "(";
3357   ret += this->object->section_name(this->data_shndx);
3358   char buf[100];
3359   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3360   ret += buf;
3361   return ret;
3362 }
3363 
3364 } // End namespace gold.
3365 
3366 namespace
3367 {
3368 
3369 using namespace gold;
3370 
3371 // Read an ELF file with the header and return the appropriate
3372 // instance of Object.
3373 
3374 template<int size, bool big_endian>
3375 Object*
make_elf_sized_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr,bool * punconfigured)3376 make_elf_sized_object(const std::string& name, Input_file* input_file,
3377 		      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3378 		      bool* punconfigured)
3379 {
3380   Target* target = select_target(input_file, offset,
3381 				 ehdr.get_e_machine(), size, big_endian,
3382 				 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3383 				 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3384   if (target == NULL)
3385     gold_fatal(_("%s: unsupported ELF machine number %d"),
3386 	       name.c_str(), ehdr.get_e_machine());
3387 
3388   if (!parameters->target_valid())
3389     set_parameters_target(target);
3390   else if (target != &parameters->target())
3391     {
3392       if (punconfigured != NULL)
3393 	*punconfigured = true;
3394       else
3395 	gold_error(_("%s: incompatible target"), name.c_str());
3396       return NULL;
3397     }
3398 
3399   return target->make_elf_object<size, big_endian>(name, input_file, offset,
3400 						   ehdr);
3401 }
3402 
3403 } // End anonymous namespace.
3404 
3405 namespace gold
3406 {
3407 
3408 // Return whether INPUT_FILE is an ELF object.
3409 
3410 bool
is_elf_object(Input_file * input_file,off_t offset,const unsigned char ** start,int * read_size)3411 is_elf_object(Input_file* input_file, off_t offset,
3412 	      const unsigned char** start, int* read_size)
3413 {
3414   off_t filesize = input_file->file().filesize();
3415   int want = elfcpp::Elf_recognizer::max_header_size;
3416   if (filesize - offset < want)
3417     want = filesize - offset;
3418 
3419   const unsigned char* p = input_file->file().get_view(offset, 0, want,
3420 						       true, false);
3421   *start = p;
3422   *read_size = want;
3423 
3424   return elfcpp::Elf_recognizer::is_elf_file(p, want);
3425 }
3426 
3427 // Read an ELF file and return the appropriate instance of Object.
3428 
3429 Object*
make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const unsigned char * p,section_offset_type bytes,bool * punconfigured)3430 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3431 		const unsigned char* p, section_offset_type bytes,
3432 		bool* punconfigured)
3433 {
3434   if (punconfigured != NULL)
3435     *punconfigured = false;
3436 
3437   std::string error;
3438   bool big_endian = false;
3439   int size = 0;
3440   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3441 					       &big_endian, &error))
3442     {
3443       gold_error(_("%s: %s"), name.c_str(), error.c_str());
3444       return NULL;
3445     }
3446 
3447   if (size == 32)
3448     {
3449       if (big_endian)
3450 	{
3451 #ifdef HAVE_TARGET_32_BIG
3452 	  elfcpp::Ehdr<32, true> ehdr(p);
3453 	  return make_elf_sized_object<32, true>(name, input_file,
3454 						 offset, ehdr, punconfigured);
3455 #else
3456 	  if (punconfigured != NULL)
3457 	    *punconfigured = true;
3458 	  else
3459 	    gold_error(_("%s: not configured to support "
3460 			 "32-bit big-endian object"),
3461 		       name.c_str());
3462 	  return NULL;
3463 #endif
3464 	}
3465       else
3466 	{
3467 #ifdef HAVE_TARGET_32_LITTLE
3468 	  elfcpp::Ehdr<32, false> ehdr(p);
3469 	  return make_elf_sized_object<32, false>(name, input_file,
3470 						  offset, ehdr, punconfigured);
3471 #else
3472 	  if (punconfigured != NULL)
3473 	    *punconfigured = true;
3474 	  else
3475 	    gold_error(_("%s: not configured to support "
3476 			 "32-bit little-endian object"),
3477 		       name.c_str());
3478 	  return NULL;
3479 #endif
3480 	}
3481     }
3482   else if (size == 64)
3483     {
3484       if (big_endian)
3485 	{
3486 #ifdef HAVE_TARGET_64_BIG
3487 	  elfcpp::Ehdr<64, true> ehdr(p);
3488 	  return make_elf_sized_object<64, true>(name, input_file,
3489 						 offset, ehdr, punconfigured);
3490 #else
3491 	  if (punconfigured != NULL)
3492 	    *punconfigured = true;
3493 	  else
3494 	    gold_error(_("%s: not configured to support "
3495 			 "64-bit big-endian object"),
3496 		       name.c_str());
3497 	  return NULL;
3498 #endif
3499 	}
3500       else
3501 	{
3502 #ifdef HAVE_TARGET_64_LITTLE
3503 	  elfcpp::Ehdr<64, false> ehdr(p);
3504 	  return make_elf_sized_object<64, false>(name, input_file,
3505 						  offset, ehdr, punconfigured);
3506 #else
3507 	  if (punconfigured != NULL)
3508 	    *punconfigured = true;
3509 	  else
3510 	    gold_error(_("%s: not configured to support "
3511 			 "64-bit little-endian object"),
3512 		       name.c_str());
3513 	  return NULL;
3514 #endif
3515 	}
3516     }
3517   else
3518     gold_unreachable();
3519 }
3520 
3521 // Instantiate the templates we need.
3522 
3523 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3524 template
3525 void
3526 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3527       elfcpp::Elf_types<64>::Elf_Addr starting_address,
3528       Unordered_map<section_offset_type,
3529       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3530 #endif
3531 
3532 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3533 template
3534 void
3535 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3536       elfcpp::Elf_types<32>::Elf_Addr starting_address,
3537       Unordered_map<section_offset_type,
3538       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3539 #endif
3540 
3541 #ifdef HAVE_TARGET_32_LITTLE
3542 template
3543 void
3544 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3545 				     Read_symbols_data*);
3546 template
3547 const unsigned char*
3548 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3549 			    section_size_type, const unsigned char*) const;
3550 #endif
3551 
3552 #ifdef HAVE_TARGET_32_BIG
3553 template
3554 void
3555 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3556 				    Read_symbols_data*);
3557 template
3558 const unsigned char*
3559 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3560 			   section_size_type, const unsigned char*) const;
3561 #endif
3562 
3563 #ifdef HAVE_TARGET_64_LITTLE
3564 template
3565 void
3566 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3567 				     Read_symbols_data*);
3568 template
3569 const unsigned char*
3570 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3571 			    section_size_type, const unsigned char*) const;
3572 #endif
3573 
3574 #ifdef HAVE_TARGET_64_BIG
3575 template
3576 void
3577 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3578 				    Read_symbols_data*);
3579 template
3580 const unsigned char*
3581 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3582 			   section_size_type, const unsigned char*) const;
3583 #endif
3584 
3585 #ifdef HAVE_TARGET_32_LITTLE
3586 template
3587 class Sized_relobj<32, false>;
3588 
3589 template
3590 class Sized_relobj_file<32, false>;
3591 #endif
3592 
3593 #ifdef HAVE_TARGET_32_BIG
3594 template
3595 class Sized_relobj<32, true>;
3596 
3597 template
3598 class Sized_relobj_file<32, true>;
3599 #endif
3600 
3601 #ifdef HAVE_TARGET_64_LITTLE
3602 template
3603 class Sized_relobj<64, false>;
3604 
3605 template
3606 class Sized_relobj_file<64, false>;
3607 #endif
3608 
3609 #ifdef HAVE_TARGET_64_BIG
3610 template
3611 class Sized_relobj<64, true>;
3612 
3613 template
3614 class Sized_relobj_file<64, true>;
3615 #endif
3616 
3617 #ifdef HAVE_TARGET_32_LITTLE
3618 template
3619 struct Relocate_info<32, false>;
3620 #endif
3621 
3622 #ifdef HAVE_TARGET_32_BIG
3623 template
3624 struct Relocate_info<32, true>;
3625 #endif
3626 
3627 #ifdef HAVE_TARGET_64_LITTLE
3628 template
3629 struct Relocate_info<64, false>;
3630 #endif
3631 
3632 #ifdef HAVE_TARGET_64_BIG
3633 template
3634 struct Relocate_info<64, true>;
3635 #endif
3636 
3637 #ifdef HAVE_TARGET_32_LITTLE
3638 template
3639 void
3640 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3641 
3642 template
3643 void
3644 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3645 				      const unsigned char*);
3646 #endif
3647 
3648 #ifdef HAVE_TARGET_32_BIG
3649 template
3650 void
3651 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3652 
3653 template
3654 void
3655 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3656 				     const unsigned char*);
3657 #endif
3658 
3659 #ifdef HAVE_TARGET_64_LITTLE
3660 template
3661 void
3662 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3663 
3664 template
3665 void
3666 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3667 				      const unsigned char*);
3668 #endif
3669 
3670 #ifdef HAVE_TARGET_64_BIG
3671 template
3672 void
3673 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3674 
3675 template
3676 void
3677 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3678 				     const unsigned char*);
3679 #endif
3680 
3681 #ifdef HAVE_TARGET_32_LITTLE
3682 template
3683 Compressed_section_map*
3684 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3685 					const char*, section_size_type,
3686 					Object*, bool);
3687 #endif
3688 
3689 #ifdef HAVE_TARGET_32_BIG
3690 template
3691 Compressed_section_map*
3692 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3693 					const char*, section_size_type,
3694 					Object*, bool);
3695 #endif
3696 
3697 #ifdef HAVE_TARGET_64_LITTLE
3698 template
3699 Compressed_section_map*
3700 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3701 					const char*, section_size_type,
3702 					Object*, bool);
3703 #endif
3704 
3705 #ifdef HAVE_TARGET_64_BIG
3706 template
3707 Compressed_section_map*
3708 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3709 					const char*, section_size_type,
3710 					Object*, bool);
3711 #endif
3712 
3713 } // End namespace gold.
3714