1 #pragma once
2
3 #include<type_traits>
4 #include<utility>
5 #include<cassert>
6
7 #include<dune/common/diagonalmatrix.hh>
8 #include<dune/common/hybridutilities.hh>
9 #include<dune/common/indices.hh>
10
11 #include<dune/istl/bcrsmatrix.hh>
12 #include<dune/istl/scaledidmatrix.hh>
13
14 namespace Dune{
15
16 namespace Impl {
17
18 // stolen from dune-functions: we call a type "scalar" if it does not support index accessing
19 template<class C>
20 using StaticIndexAccessConcept = decltype(std::declval<C>()[Dune::Indices::_0]);
21
22 template<class C>
23 using IsScalar = std::negation<Dune::Std::is_detected<StaticIndexAccessConcept, std::remove_reference_t<C>>>;
24
25 // Type trait for matrix types that supports
26 // - iteration done row-wise
27 // - sparse iteration over nonzero entries
28 template <class T>
29 struct IsRowMajorSparse : std::false_type {};
30
31 // This is supported by the following matrix types:
32 template <class B, class A>
33 struct IsRowMajorSparse<BCRSMatrix<B,A>> : std::true_type {};
34
35 template <class K, int n>
36 struct IsRowMajorSparse<DiagonalMatrix<K,n>> : std::true_type {};
37
38 template <class K, int n>
39 struct IsRowMajorSparse<ScaledIdentityMatrix<K,n>> : std::true_type {};
40
41
42 template <class Matrix>
rows(Matrix const &,PriorityTag<2>)43 auto rows(Matrix const& /*matrix*/, PriorityTag<2>) -> std::integral_constant<std::size_t, Matrix::N()> { return {}; }
44
45 template <class Matrix>
cols(Matrix const &,PriorityTag<2>)46 auto cols(Matrix const& /*matrix*/, PriorityTag<2>) -> std::integral_constant<std::size_t, Matrix::M()> { return {}; }
47
48 template <class Matrix>
rows(Matrix const & matrix,PriorityTag<1>)49 auto rows(Matrix const& matrix, PriorityTag<1>) -> decltype(matrix.N()) { return matrix.N(); }
50
51 template <class Matrix>
cols(Matrix const & matrix,PriorityTag<1>)52 auto cols(Matrix const& matrix, PriorityTag<1>) -> decltype(matrix.M()) { return matrix.M(); }
53
54 template <class Vector>
size(Vector const &,PriorityTag<2>)55 auto size(Vector const& /*vector*/, PriorityTag<2>) -> std::integral_constant<std::size_t, Vector::size()> { return {}; }
56
57 template <class Vector>
size(Vector const & vector,PriorityTag<1>)58 auto size(Vector const& vector, PriorityTag<1>) -> decltype(vector.size()) { return vector.size(); }
59
60
61 } // end namespace Impl
62
63 namespace ForEach{
64
65 template <class Matrix>
rows(Matrix const & matrix)66 auto rows(Matrix const& matrix) { return Impl::rows(matrix, PriorityTag<5>{}); }
67
68 template <class Matrix>
cols(Matrix const & matrix)69 auto cols(Matrix const& matrix) { return Impl::cols(matrix, PriorityTag<5>{}); }
70
71 template <class Vector>
size(Vector const & vector)72 auto size(Vector const& vector) { return Impl::size(vector, PriorityTag<5>{}); }
73
74 } // namespace ForEach
75
76
77
78
79 /** \brief Traverse a blocked vector and call a functor at each scalar entry
80 *
81 * The functor `f` is assumed to have the signature
82 *
83 * void(auto&& entry, std::size_t offset)
84 *
85 * taking a scalar entry and the current flat offset (index)
86 * of this position.
87 *
88 * It returns the total number of scalar entries. Similar to `dimension()` for
89 * some DUNE vector types.
90 */
91 template <class Vector, class F>
flatVectorForEach(Vector && vector,F && f,std::size_t offset=0)92 std::size_t flatVectorForEach(Vector&& vector, F&& f, std::size_t offset = 0)
93 {
94 using V = std::decay_t<Vector>;
95 if constexpr( Impl::IsScalar<V>::value )
96 {
97 f(vector, offset);
98 return 1;
99 }
100 else
101 {
102 std::size_t idx = 0;
103 Hybrid::forEach(Dune::range(ForEach::size(vector)), [&](auto i) {
104 idx += flatVectorForEach(vector[i], f, offset + idx);
105 });
106 return idx;
107 }
108 }
109
110
111 /** \brief Traverse a blocked matrix and call a functor at each scalar entry
112 *
113 * The functor `f` is assumed to have the signature
114 *
115 * void(auto&& entry, std::size_t rowOffset, std::size_t colOffset)
116 *
117 * taking a scalar entry and the current flat offset (index)
118 * of both row and column.
119 *
120 * The restrictions on the matrix are:
121 * - well aligned blocks (otherwise there is no sense in the total number of scalar rows/cols)
122 * - all blocks have positive non-zero column / row number
123 * - at least one entry must be present if dynamic matrix types are wrapped within other dynamic matrix types
124 * - if the block size of a sparse matrix is statically known at compile time, the matrix can be empty
125 *
126 * The return value is a pair of the total number of scalar rows and columns of the matrix.
127 */
128 template <class Matrix, class F>
flatMatrixForEach(Matrix && matrix,F && f,std::size_t rowOffset=0,std::size_t colOffset=0)129 std::pair<std::size_t,std::size_t> flatMatrixForEach(Matrix&& matrix, F&& f, std::size_t rowOffset = 0, std::size_t colOffset = 0)
130 {
131 using M = std::decay_t<Matrix>;
132 if constexpr ( Impl::IsScalar<M>::value )
133 {
134 f(matrix,rowOffset,colOffset);
135 return {1,1};
136 }
137 else
138 {
139 // if M supports the IsRowMajorSparse type trait: iterate just over the nonzero entries and
140 // and compute the flat row/col size directly
141 if constexpr ( Impl::IsRowMajorSparse<M>::value )
142 {
143 using Block = std::decay_t<decltype(matrix[0][0])>;
144
145 // find an existing block or at least try to create one
146 auto block = [&]{
147 for (auto const& row : matrix)
148 for (auto const& entry : row)
149 return entry;
150 return Block{};
151 }();
152
153 // compute the scalar size of the block
154 auto [blockRows, blockCols] = flatMatrixForEach(block, [](...){});
155
156 // check whether we have valid sized blocks
157 assert( ( blockRows!=0 or blockCols!=0 ) and "the block size can't be zero");
158
159 for ( auto rowIt = matrix.begin(); rowIt != matrix.end(); rowIt++ )
160 {
161 auto&& row = *rowIt;
162 auto rowIdx = rowIt.index();
163 for ( auto colIt = row.begin(); colIt != row.end(); colIt++ )
164 {
165 auto&& entry = *colIt;
166 auto colIdx = colIt.index();
167 auto [ dummyRows, dummyCols ] = flatMatrixForEach(entry, f, rowOffset + rowIdx*blockRows, colOffset + colIdx*blockCols);
168 assert( dummyRows == blockRows and dummyCols == blockCols and "we need the same size of each block in this matrix type");
169 }
170 }
171
172 return { matrix.N()*blockRows, matrix.M()*blockCols };
173 }
174 // all other matrix types are accessed index-wise with dynamic flat row/col counting
175 else
176 {
177 std::size_t r = 0, c = 0;
178 std::size_t nRows, nCols;
179
180 Hybrid::forEach(Dune::range(ForEach::rows(matrix)), [&](auto i) {
181 c = 0;
182 Hybrid::forEach(Dune::range(ForEach::cols(matrix)), [&](auto j) {
183 std::tie(nRows,nCols) = flatMatrixForEach(matrix[i][j], f, rowOffset + r, colOffset + c);
184 c += nCols;
185 });
186 r += nRows;
187 });
188 return {r,c};
189 }
190 }
191 }
192
193 } // namespace Dune
194