xref: /netbsd/sys/arch/sun3/sun3x/pmap.c (revision d8e361d9)
1 /*	$NetBSD: pmap.c,v 1.121 2022/05/31 08:43:15 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jeremy Cooper.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * XXX These comments aren't quite accurate.  Need to change.
34  * The sun3x uses the MC68851 Memory Management Unit, which is built
35  * into the CPU.  The 68851 maps virtual to physical addresses using
36  * a multi-level table lookup, which is stored in the very memory that
37  * it maps.  The number of levels of lookup is configurable from one
38  * to four.  In this implementation, we use three, named 'A' through 'C'.
39  *
40  * The MMU translates virtual addresses into physical addresses by
41  * traversing these tables in a process called a 'table walk'.  The most
42  * significant 7 bits of the Virtual Address ('VA') being translated are
43  * used as an index into the level A table, whose base in physical memory
44  * is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
45  * address found at that index in the A table is used as the base
46  * address for the next table, the B table.  The next six bits of the VA are
47  * used as an index into the B table, which in turn gives the base address
48  * of the third and final C table.
49  *
50  * The next six bits of the VA are used as an index into the C table to
51  * locate a Page Table Entry (PTE).  The PTE is a physical address in memory
52  * to which the remaining 13 bits of the VA are added, producing the
53  * mapped physical address.
54  *
55  * To map the entire memory space in this manner would require 2114296 bytes
56  * of page tables per process - quite expensive.  Instead we will
57  * allocate a fixed but considerably smaller space for the page tables at
58  * the time the VM system is initialized.  When the pmap code is asked by
59  * the kernel to map a VA to a PA, it allocates tables as needed from this
60  * pool.  When there are no more tables in the pool, tables are stolen
61  * from the oldest mapped entries in the tree.  This is only possible
62  * because all memory mappings are stored in the kernel memory map
63  * structures, independent of the pmap structures.  A VA which references
64  * one of these invalidated maps will cause a page fault.  The kernel
65  * will determine that the page fault was caused by a task using a valid
66  * VA, but for some reason (which does not concern it), that address was
67  * not mapped.  It will ask the pmap code to re-map the entry and then
68  * it will resume executing the faulting task.
69  *
70  * In this manner the most efficient use of the page table space is
71  * achieved.  Tasks which do not execute often will have their tables
72  * stolen and reused by tasks which execute more frequently.  The best
73  * size for the page table pool will probably be determined by
74  * experimentation.
75  *
76  * You read all of the comments so far.  Good for you.
77  * Now go play!
78  */
79 
80 /*** A Note About the 68851 Address Translation Cache
81  * The MC68851 has a 64 entry cache, called the Address Translation Cache
82  * or 'ATC'.  This cache stores the most recently used page descriptors
83  * accessed by the MMU when it does translations.  Using a marker called a
84  * 'task alias' the MMU can store the descriptors from 8 different table
85  * spaces concurrently.  The task alias is associated with the base
86  * address of the level A table of that address space.  When an address
87  * space is currently active (the CRP currently points to its A table)
88  * the only cached descriptors that will be obeyed are ones which have a
89  * matching task alias of the current space associated with them.
90  *
91  * Since the cache is always consulted before any table lookups are done,
92  * it is important that it accurately reflect the state of the MMU tables.
93  * Whenever a change has been made to a table that has been loaded into
94  * the MMU, the code must be sure to flush any cached entries that are
95  * affected by the change.  These instances are documented in the code at
96  * various points.
97  */
98 /*** A Note About the Note About the 68851 Address Translation Cache
99  * 4 months into this code I discovered that the sun3x does not have
100  * a MC68851 chip. Instead, it has a version of this MMU that is part of the
101  * the 68030 CPU.
102  * All though it behaves very similarly to the 68851, it only has 1 task
103  * alias and a 22 entry cache.  So sadly (or happily), the first paragraph
104  * of the previous note does not apply to the sun3x pmap.
105  */
106 
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.121 2022/05/31 08:43:15 andvar Exp $");
109 
110 #include "opt_ddb.h"
111 #include "opt_pmap_debug.h"
112 
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116 #include <sys/malloc.h>
117 #include <sys/pool.h>
118 #include <sys/queue.h>
119 #include <sys/kcore.h>
120 #include <sys/atomic.h>
121 
122 #include <uvm/uvm.h>
123 
124 #include <machine/cpu.h>
125 #include <machine/kcore.h>
126 #include <machine/mon.h>
127 #include <machine/pmap.h>
128 #include <machine/pte.h>
129 #include <machine/vmparam.h>
130 #include <m68k/cacheops.h>
131 
132 #include <sun3/sun3/cache.h>
133 #include <sun3/sun3/machdep.h>
134 
135 #include "pmap_pvt.h"
136 
137 /* XXX - What headers declare these? */
138 extern struct pcb *curpcb;
139 
140 /* Defined in locore.s */
141 extern char kernel_text[];
142 
143 /* Defined by the linker */
144 extern char etext[], edata[], end[];
145 extern char *esym;	/* DDB */
146 
147 /*************************** DEBUGGING DEFINITIONS ***********************
148  * Macros, preprocessor defines and variables used in debugging can make *
149  * code hard to read.  Anything used exclusively for debugging purposes  *
150  * is defined here to avoid having such mess scattered around the file.  *
151  *************************************************************************/
152 #ifdef	PMAP_DEBUG
153 /*
154  * To aid the debugging process, macros should be expanded into smaller steps
155  * that accomplish the same goal, yet provide convenient places for placing
156  * breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
157  * 'INLINE' keyword is defined to an empty string.  This way, any function
158  * defined to be a 'static INLINE' will become 'outlined' and compiled as
159  * a separate function, which is much easier to debug.
160  */
161 #define	INLINE	/* nothing */
162 
163 /*
164  * It is sometimes convenient to watch the activity of a particular table
165  * in the system.  The following variables are used for that purpose.
166  */
167 a_tmgr_t *pmap_watch_atbl = 0;
168 b_tmgr_t *pmap_watch_btbl = 0;
169 c_tmgr_t *pmap_watch_ctbl = 0;
170 
171 int pmap_debug = 0;
172 #define DPRINT(args) if (pmap_debug) printf args
173 
174 #else	/********** Stuff below is defined if NOT debugging **************/
175 
176 #define	INLINE	inline
177 #define DPRINT(args)  /* nada */
178 
179 #endif	/* PMAP_DEBUG */
180 /*********************** END OF DEBUGGING DEFINITIONS ********************/
181 
182 /*** Management Structure - Memory Layout
183  * For every MMU table in the sun3x pmap system there must be a way to
184  * manage it; we must know which process is using it, what other tables
185  * depend on it, and whether or not it contains any locked pages.  This
186  * is solved by the creation of 'table management'  or 'tmgr'
187  * structures.  One for each MMU table in the system.
188  *
189  *                        MAP OF MEMORY USED BY THE PMAP SYSTEM
190  *
191  *      towards lower memory
192  * kernAbase -> +-------------------------------------------------------+
193  *              | Kernel     MMU A level table                          |
194  * kernBbase -> +-------------------------------------------------------+
195  *              | Kernel     MMU B level tables                         |
196  * kernCbase -> +-------------------------------------------------------+
197  *              |                                                       |
198  *              | Kernel     MMU C level tables                         |
199  *              |                                                       |
200  * mmuCbase  -> +-------------------------------------------------------+
201  *              | User       MMU C level tables                         |
202  * mmuAbase  -> +-------------------------------------------------------+
203  *              |                                                       |
204  *              | User       MMU A level tables                         |
205  *              |                                                       |
206  * mmuBbase  -> +-------------------------------------------------------+
207  *              | User       MMU B level tables                         |
208  * tmgrAbase -> +-------------------------------------------------------+
209  *              |  TMGR A level table structures                        |
210  * tmgrBbase -> +-------------------------------------------------------+
211  *              |  TMGR B level table structures                        |
212  * tmgrCbase -> +-------------------------------------------------------+
213  *              |  TMGR C level table structures                        |
214  * pvbase    -> +-------------------------------------------------------+
215  *              |  Physical to Virtual mapping table (list heads)       |
216  * pvebase   -> +-------------------------------------------------------+
217  *              |  Physical to Virtual mapping table (list elements)    |
218  *              |                                                       |
219  *              +-------------------------------------------------------+
220  *      towards higher memory
221  *
222  * For every A table in the MMU A area, there will be a corresponding
223  * a_tmgr structure in the TMGR A area.  The same will be true for
224  * the B and C tables.  This arrangement will make it easy to find the
225  * controlling tmgr structure for any table in the system by use of
226  * (relatively) simple macros.
227  */
228 
229 /*
230  * Global variables for storing the base addresses for the areas
231  * labeled above.
232  */
233 static vaddr_t  	kernAphys;
234 static mmu_long_dte_t	*kernAbase;
235 static mmu_short_dte_t	*kernBbase;
236 static mmu_short_pte_t	*kernCbase;
237 static mmu_short_pte_t	*mmuCbase;
238 static mmu_short_dte_t	*mmuBbase;
239 static mmu_long_dte_t	*mmuAbase;
240 static a_tmgr_t		*Atmgrbase;
241 static b_tmgr_t		*Btmgrbase;
242 static c_tmgr_t		*Ctmgrbase;
243 static pv_t 		*pvbase;
244 static pv_elem_t	*pvebase;
245 static struct pmap	kernel_pmap;
246 struct pmap		*const kernel_pmap_ptr = &kernel_pmap;
247 
248 /*
249  * This holds the CRP currently loaded into the MMU.
250  */
251 struct mmu_rootptr kernel_crp;
252 
253 /*
254  * Just all around global variables.
255  */
256 static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
257 static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
258 static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
259 
260 
261 /*
262  * Flags used to mark the safety/availability of certain operations or
263  * resources.
264  */
265 /* Safe to use pmap_bootstrap_alloc(). */
266 static bool bootstrap_alloc_enabled = false;
267 /* Temporary virtual pages are in use */
268 int tmp_vpages_inuse;
269 
270 /*
271  * XXX:  For now, retain the traditional variables that were
272  * used in the old pmap/vm interface (without NONCONTIG).
273  */
274 /* Kernel virtual address space available: */
275 vaddr_t	virtual_avail, virtual_end;
276 /* Physical address space available: */
277 paddr_t	avail_start, avail_end;
278 
279 /* This keep track of the end of the contiguously mapped range. */
280 vaddr_t virtual_contig_end;
281 
282 /* Physical address used by pmap_next_page() */
283 paddr_t avail_next;
284 
285 /* These are used by pmap_copy_page(), etc. */
286 vaddr_t tmp_vpages[2];
287 
288 /* memory pool for pmap structures */
289 struct pool	pmap_pmap_pool;
290 
291 /*
292  * The 3/80 is the only member of the sun3x family that has non-contiguous
293  * physical memory.  Memory is divided into 4 banks which are physically
294  * locatable on the system board.  Although the size of these banks varies
295  * with the size of memory they contain, their base addresses are
296  * permanently fixed.  The following structure, which describes these
297  * banks, is initialized by pmap_bootstrap() after it reads from a similar
298  * structure provided by the ROM Monitor.
299  *
300  * For the other machines in the sun3x architecture which do have contiguous
301  * RAM, this list will have only one entry, which will describe the entire
302  * range of available memory.
303  */
304 struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
305 u_int total_phys_mem;
306 
307 /*************************************************************************/
308 
309 /*
310  * XXX - Should "tune" these based on statistics.
311  *
312  * My first guess about the relative numbers of these needed is
313  * based on the fact that a "typical" process will have several
314  * pages mapped at low virtual addresses (text, data, bss), then
315  * some mapped shared libraries, and then some stack pages mapped
316  * near the high end of the VA space.  Each process can use only
317  * one A table, and most will use only two B tables (maybe three)
318  * and probably about four C tables.  Therefore, the first guess
319  * at the relative numbers of these needed is 1:2:4 -gwr
320  *
321  * The number of C tables needed is closely related to the amount
322  * of physical memory available plus a certain amount attributable
323  * to the use of double mappings.  With a few simulation statistics
324  * we can find a reasonably good estimation of this unknown value.
325  * Armed with that and the above ratios, we have a good idea of what
326  * is needed at each level. -j
327  *
328  * Note: It is not physical memory memory size, but the total mapped
329  * virtual space required by the combined working sets of all the
330  * currently _runnable_ processes.  (Sleeping ones don't count.)
331  * The amount of physical memory should be irrelevant. -gwr
332  */
333 #ifdef	FIXED_NTABLES
334 #define NUM_A_TABLES	16
335 #define NUM_B_TABLES	32
336 #define NUM_C_TABLES	64
337 #else
338 unsigned int	NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
339 #endif	/* FIXED_NTABLES */
340 
341 /*
342  * This determines our total virtual mapping capacity.
343  * Yes, it is a FIXED value so we can pre-allocate.
344  */
345 #define NUM_USER_PTES	(NUM_C_TABLES * MMU_C_TBL_SIZE)
346 
347 /*
348  * The size of the Kernel Virtual Address Space (KVAS)
349  * for purposes of MMU table allocation is -KERNBASE
350  * (length from KERNBASE to 0xFFFFffff)
351  */
352 #define	KVAS_SIZE		(-KERNBASE3X)
353 
354 /* Numbers of kernel MMU tables to support KVAS_SIZE. */
355 #define KERN_B_TABLES	(KVAS_SIZE >> MMU_TIA_SHIFT)
356 #define KERN_C_TABLES	(KVAS_SIZE >> MMU_TIB_SHIFT)
357 #define	NUM_KERN_PTES	(KVAS_SIZE >> MMU_TIC_SHIFT)
358 
359 /*************************** MISCELLANEOUS MACROS *************************/
360 void *pmap_bootstrap_alloc(int);
361 
362 static INLINE void *mmu_ptov(paddr_t);
363 static INLINE paddr_t mmu_vtop(void *);
364 
365 #if	0
366 static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
367 #endif /* 0 */
368 static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
369 static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);
370 
371 static INLINE pv_t *pa2pv(paddr_t);
372 static INLINE int   pteidx(mmu_short_pte_t *);
373 static INLINE pmap_t current_pmap(void);
374 
375 /*
376  * We can always convert between virtual and physical addresses
377  * for anything in the range [KERNBASE ... avail_start] because
378  * that range is GUARANTEED to be mapped linearly.
379  * We rely heavily upon this feature!
380  */
381 static INLINE void *
mmu_ptov(paddr_t pa)382 mmu_ptov(paddr_t pa)
383 {
384 	vaddr_t va;
385 
386 	va = (pa + KERNBASE3X);
387 #ifdef	PMAP_DEBUG
388 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
389 		panic("mmu_ptov");
390 #endif
391 	return (void *)va;
392 }
393 
394 static INLINE paddr_t
mmu_vtop(void * vva)395 mmu_vtop(void *vva)
396 {
397 	vaddr_t va;
398 
399 	va = (vaddr_t)vva;
400 #ifdef	PMAP_DEBUG
401 	if ((va < KERNBASE3X) || (va >= virtual_contig_end))
402 		panic("mmu_vtop");
403 #endif
404 	return va - KERNBASE3X;
405 }
406 
407 /*
408  * These macros map MMU tables to their corresponding manager structures.
409  * They are needed quite often because many of the pointers in the pmap
410  * system reference MMU tables and not the structures that control them.
411  * There needs to be a way to find one when given the other and these
412  * macros do so by taking advantage of the memory layout described above.
413  * Here's a quick step through the first macro, mmuA2tmgr():
414  *
415  * 1) find the offset of the given MMU A table from the base of its table
416  *    pool (table - mmuAbase).
417  * 2) convert this offset into a table index by dividing it by the
418  *    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
419  * 3) use this index to select the corresponding 'A' table manager
420  *    structure from the 'A' table manager pool (Atmgrbase[index]).
421  */
422 /*  This function is not currently used. */
423 #if	0
424 static INLINE a_tmgr_t *
425 mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
426 {
427 	int idx;
428 
429 	/* Which table is this in? */
430 	idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
431 #ifdef	PMAP_DEBUG
432 	if ((idx < 0) || (idx >= NUM_A_TABLES))
433 		panic("mmuA2tmgr");
434 #endif
435 	return &Atmgrbase[idx];
436 }
437 #endif	/* 0 */
438 
439 static INLINE b_tmgr_t *
mmuB2tmgr(mmu_short_dte_t * mmuBtbl)440 mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
441 {
442 	int idx;
443 
444 	/* Which table is this in? */
445 	idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
446 #ifdef	PMAP_DEBUG
447 	if ((idx < 0) || (idx >= NUM_B_TABLES))
448 		panic("mmuB2tmgr");
449 #endif
450 	return &Btmgrbase[idx];
451 }
452 
453 /* mmuC2tmgr			INTERNAL
454  **
455  * Given a pte known to belong to a C table, return the address of
456  * that table's management structure.
457  */
458 static INLINE c_tmgr_t *
mmuC2tmgr(mmu_short_pte_t * mmuCtbl)459 mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
460 {
461 	int idx;
462 
463 	/* Which table is this in? */
464 	idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
465 #ifdef	PMAP_DEBUG
466 	if ((idx < 0) || (idx >= NUM_C_TABLES))
467 		panic("mmuC2tmgr");
468 #endif
469 	return &Ctmgrbase[idx];
470 }
471 
472 /* This is now a function call below.
473  * #define pa2pv(pa) \
474  *	(&pvbase[(unsigned long)\
475  *		m68k_btop(pa)\
476  *	])
477  */
478 
479 /* pa2pv			INTERNAL
480  **
481  * Return the pv_list_head element which manages the given physical
482  * address.
483  */
484 static INLINE pv_t *
pa2pv(paddr_t pa)485 pa2pv(paddr_t pa)
486 {
487 	struct pmap_physmem_struct *bank;
488 	int idx;
489 
490 	bank = &avail_mem[0];
491 	while (pa >= bank->pmem_end)
492 		bank = bank->pmem_next;
493 
494 	pa -= bank->pmem_start;
495 	idx = bank->pmem_pvbase + m68k_btop(pa);
496 #ifdef	PMAP_DEBUG
497 	if ((idx < 0) || (idx >= physmem))
498 		panic("pa2pv");
499 #endif
500 	return &pvbase[idx];
501 }
502 
503 /* pteidx			INTERNAL
504  **
505  * Return the index of the given PTE within the entire fixed table of
506  * PTEs.
507  */
508 static INLINE int
pteidx(mmu_short_pte_t * pte)509 pteidx(mmu_short_pte_t *pte)
510 {
511 
512 	return pte - kernCbase;
513 }
514 
515 /*
516  * This just offers a place to put some debugging checks,
517  * and reduces the number of places "curlwp" appears...
518  */
519 static INLINE pmap_t
current_pmap(void)520 current_pmap(void)
521 {
522 	struct vmspace *vm;
523 	struct vm_map *map;
524 	pmap_t	pmap;
525 
526 	vm = curproc->p_vmspace;
527 	map = &vm->vm_map;
528 	pmap = vm_map_pmap(map);
529 
530 	return pmap;
531 }
532 
533 
534 /*************************** FUNCTION DEFINITIONS ************************
535  * These appear here merely for the compiler to enforce type checking on *
536  * all function calls.                                                   *
537  *************************************************************************/
538 
539 /*
540  * Internal functions
541  */
542 a_tmgr_t *get_a_table(void);
543 b_tmgr_t *get_b_table(void);
544 c_tmgr_t *get_c_table(void);
545 int free_a_table(a_tmgr_t *, bool);
546 int free_b_table(b_tmgr_t *, bool);
547 int free_c_table(c_tmgr_t *, bool);
548 
549 void pmap_bootstrap_aalign(int);
550 void pmap_alloc_usermmu(void);
551 void pmap_alloc_usertmgr(void);
552 void pmap_alloc_pv(void);
553 void pmap_init_a_tables(void);
554 void pmap_init_b_tables(void);
555 void pmap_init_c_tables(void);
556 void pmap_init_pv(void);
557 void pmap_clear_pv(paddr_t, int);
558 static INLINE bool is_managed(paddr_t);
559 
560 bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
561 bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
562 bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
563 void pmap_remove_pte(mmu_short_pte_t *);
564 
565 void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
566 static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
567 static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
568 static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
569 vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
570 static INLINE int pmap_dereference(pmap_t);
571 
572 bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
573     mmu_short_pte_t **, int *, int *, int *);
574 void pmap_bootstrap_copyprom(void);
575 void pmap_takeover_mmu(void);
576 void pmap_bootstrap_setprom(void);
577 static void pmap_page_upload(void);
578 
579 #ifdef PMAP_DEBUG
580 /* Debugging function definitions */
581 void  pv_list(paddr_t, int);
582 #endif /* PMAP_DEBUG */
583 
584 /** Interface functions
585  ** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
586  **   defined.
587  **   The new UVM doesn't require them so now INTERNAL.
588  **/
589 static INLINE void pmap_pinit(pmap_t);
590 static INLINE void pmap_release(pmap_t);
591 
592 /********************************** CODE ********************************
593  * Functions that are called from other parts of the kernel are labeled *
594  * as 'INTERFACE' functions.  Functions that are only called from       *
595  * within the pmap module are labeled as 'INTERNAL' functions.          *
596  * Functions that are internal, but are not (currently) used at all are *
597  * labeled 'INTERNAL_X'.                                                *
598  ************************************************************************/
599 
600 /* pmap_bootstrap			INTERNAL
601  **
602  * Initializes the pmap system.  Called at boot time from
603  * locore2.c:_vm_init()
604  *
605  * Reminder: having a pmap_bootstrap_alloc() and also having the VM
606  *           system implement pmap_steal_memory() is redundant.
607  *           Don't release this code without removing one or the other!
608  */
609 void
pmap_bootstrap(vaddr_t nextva)610 pmap_bootstrap(vaddr_t nextva)
611 {
612 	struct physmemory *membank;
613 	struct pmap_physmem_struct *pmap_membank;
614 	vaddr_t va, eva;
615 	paddr_t pa;
616 	int b, c, i, j;	/* running table counts */
617 	int size, resvmem;
618 
619 	/*
620 	 * This function is called by __bootstrap after it has
621 	 * determined the type of machine and made the appropriate
622 	 * patches to the ROM vectors (XXX- I don't quite know what I meant
623 	 * by that.)  It allocates and sets up enough of the pmap system
624 	 * to manage the kernel's address space.
625 	 */
626 
627 	/*
628 	 * Determine the range of kernel virtual and physical
629 	 * space available. Note that we ABSOLUTELY DEPEND on
630 	 * the fact that the first bank of memory (4MB) is
631 	 * mapped linearly to KERNBASE (which we guaranteed in
632 	 * the first instructions of locore.s).
633 	 * That is plenty for our bootstrap work.
634 	 */
635 	virtual_avail = m68k_round_page(nextva);
636 	virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */
637 	virtual_end = VM_MAX_KERNEL_ADDRESS;
638 	/* Don't need avail_start til later. */
639 
640 	/* We may now call pmap_bootstrap_alloc(). */
641 	bootstrap_alloc_enabled = true;
642 
643 	/*
644 	 * This is a somewhat unwrapped loop to deal with
645 	 * copying the PROM's 'phsymem' banks into the pmap's
646 	 * banks.  The following is always assumed:
647 	 * 1. There is always at least one bank of memory.
648 	 * 2. There is always a last bank of memory, and its
649 	 *    pmem_next member must be set to NULL.
650 	 */
651 	membank = romVectorPtr->v_physmemory;
652 	pmap_membank = avail_mem;
653 	total_phys_mem = 0;
654 
655 	for (;;) { /* break on !membank */
656 		pmap_membank->pmem_start = membank->address;
657 		pmap_membank->pmem_end = membank->address + membank->size;
658 		total_phys_mem += membank->size;
659 		membank = membank->next;
660 		if (!membank)
661 			break;
662 		/* This silly syntax arises because pmap_membank
663 		 * is really a pre-allocated array, but it is put into
664 		 * use as a linked list.
665 		 */
666 		pmap_membank->pmem_next = pmap_membank + 1;
667 		pmap_membank = pmap_membank->pmem_next;
668 	}
669 	/* This is the last element. */
670 	pmap_membank->pmem_next = NULL;
671 
672 	/*
673 	 * Note: total_phys_mem, physmem represent
674 	 * actual physical memory, including that
675 	 * reserved for the PROM monitor.
676 	 */
677 	physmem = btoc(total_phys_mem);
678 
679 	/*
680 	 * Avail_end is set to the first byte of physical memory
681 	 * after the end of the last bank.  We use this only to
682 	 * determine if a physical address is "managed" memory.
683 	 * This address range should be reduced to prevent the
684 	 * physical pages needed by the PROM monitor from being used
685 	 * in the VM system.
686 	 */
687 	resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
688 	resvmem = m68k_round_page(resvmem);
689 	avail_end = pmap_membank->pmem_end - resvmem;
690 
691 	/*
692 	 * First allocate enough kernel MMU tables to map all
693 	 * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
694 	 * Note: All must be aligned on 256 byte boundaries.
695 	 * Start with the level-A table (one of those).
696 	 */
697 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
698 	kernAbase = pmap_bootstrap_alloc(size);
699 	memset(kernAbase, 0, size);
700 
701 	/* Now the level-B kernel tables... */
702 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
703 	kernBbase = pmap_bootstrap_alloc(size);
704 	memset(kernBbase, 0, size);
705 
706 	/* Now the level-C kernel tables... */
707 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
708 	kernCbase = pmap_bootstrap_alloc(size);
709 	memset(kernCbase, 0, size);
710 	/*
711 	 * Note: In order for the PV system to work correctly, the kernel
712 	 * and user-level C tables must be allocated contiguously.
713 	 * Nothing should be allocated between here and the allocation of
714 	 * mmuCbase below.  XXX: Should do this as one allocation, and
715 	 * then compute a pointer for mmuCbase instead of this...
716 	 *
717 	 * Allocate user MMU tables.
718 	 * These must be contiguous with the preceding.
719 	 */
720 
721 #ifndef	FIXED_NTABLES
722 	/*
723 	 * The number of user-level C tables that should be allocated is
724 	 * related to the size of physical memory.  In general, there should
725 	 * be enough tables to map four times the amount of available RAM.
726 	 * The extra amount is needed because some table space is wasted by
727 	 * fragmentation.
728 	 */
729 	NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
730 	NUM_B_TABLES = NUM_C_TABLES / 2;
731 	NUM_A_TABLES = NUM_B_TABLES / 2;
732 #endif	/* !FIXED_NTABLES */
733 
734 	size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE	* NUM_C_TABLES;
735 	mmuCbase = pmap_bootstrap_alloc(size);
736 
737 	size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE	* NUM_B_TABLES;
738 	mmuBbase = pmap_bootstrap_alloc(size);
739 
740 	size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
741 	mmuAbase = pmap_bootstrap_alloc(size);
742 
743 	/*
744 	 * Fill in the never-changing part of the kernel tables.
745 	 * For simplicity, the kernel's mappings will be editable as a
746 	 * flat array of page table entries at kernCbase.  The
747 	 * higher level 'A' and 'B' tables must be initialized to point
748 	 * to this lower one.
749 	 */
750 	b = c = 0;
751 
752 	/*
753 	 * Invalidate all mappings below KERNBASE in the A table.
754 	 * This area has already been zeroed out, but it is good
755 	 * practice to explicitly show that we are interpreting
756 	 * it as a list of A table descriptors.
757 	 */
758 	for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
759 		kernAbase[i].addr.raw = 0;
760 	}
761 
762 	/*
763 	 * Set up the kernel A and B tables so that they will reference the
764 	 * correct spots in the contiguous table of PTEs allocated for the
765 	 * kernel's virtual memory space.
766 	 */
767 	for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) {
768 		kernAbase[i].attr.raw =
769 		    MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
770 		kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);
771 
772 		for (j = 0; j < MMU_B_TBL_SIZE; j++) {
773 			kernBbase[b + j].attr.raw =
774 			    mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
775 			c += MMU_C_TBL_SIZE;
776 		}
777 		b += MMU_B_TBL_SIZE;
778 	}
779 
780 	pmap_alloc_usermmu();	/* Allocate user MMU tables.        */
781 	pmap_alloc_usertmgr();	/* Allocate user MMU table managers.*/
782 	pmap_alloc_pv();	/* Allocate physical->virtual map.  */
783 
784 	/*
785 	 * We are now done with pmap_bootstrap_alloc().  Round up
786 	 * `virtual_avail' to the nearest page, and set the flag
787 	 * to prevent use of pmap_bootstrap_alloc() hereafter.
788 	 */
789 	pmap_bootstrap_aalign(PAGE_SIZE);
790 	bootstrap_alloc_enabled = false;
791 
792 	/*
793 	 * Now that we are done with pmap_bootstrap_alloc(), we
794 	 * must save the virtual and physical addresses of the
795 	 * end of the linearly mapped range, which are stored in
796 	 * virtual_contig_end and avail_start, respectively.
797 	 * These variables will never change after this point.
798 	 */
799 	virtual_contig_end = virtual_avail;
800 	avail_start = virtual_avail - KERNBASE3X;
801 
802 	/*
803 	 * `avail_next' is a running pointer used by pmap_next_page() to
804 	 * keep track of the next available physical page to be handed
805 	 * to the VM system during its initialization, in which it
806 	 * asks for physical pages, one at a time.
807 	 */
808 	avail_next = avail_start;
809 
810 	/*
811 	 * Now allocate some virtual addresses, but not the physical pages
812 	 * behind them.  Note that virtual_avail is already page-aligned.
813 	 *
814 	 * tmp_vpages[] is an array of two virtual pages used for temporary
815 	 * kernel mappings in the pmap module to facilitate various physical
816 	 * address-oritented operations.
817 	 */
818 	tmp_vpages[0] = virtual_avail;
819 	virtual_avail += PAGE_SIZE;
820 	tmp_vpages[1] = virtual_avail;
821 	virtual_avail += PAGE_SIZE;
822 
823 	/** Initialize the PV system **/
824 	pmap_init_pv();
825 
826 	/*
827 	 * Fill in the kernel_pmap structure and kernel_crp.
828 	 */
829 	kernAphys = mmu_vtop(kernAbase);
830 	kernel_pmap.pm_a_tmgr = NULL;
831 	kernel_pmap.pm_a_phys = kernAphys;
832 	kernel_pmap.pm_refcount = 1; /* always in use */
833 
834 	kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
835 	kernel_crp.rp_addr = kernAphys;
836 
837 	/*
838 	 * Now pmap_enter_kernel() may be used safely and will be
839 	 * the main interface used hereafter to modify the kernel's
840 	 * virtual address space.  Note that since we are still running
841 	 * under the PROM's address table, none of these table modifications
842 	 * actually take effect until pmap_takeover_mmu() is called.
843 	 *
844 	 * Note: Our tables do NOT have the PROM linear mappings!
845 	 * Only the mappings created here exist in our tables, so
846 	 * remember to map anything we expect to use.
847 	 */
848 	va = (vaddr_t)KERNBASE3X;
849 	pa = 0;
850 
851 	/*
852 	 * The first page of the kernel virtual address space is the msgbuf
853 	 * page.  The page attributes (data, non-cached) are set here, while
854 	 * the address is assigned to this global pointer in cpu_startup().
855 	 * It is non-cached, mostly due to paranoia.
856 	 */
857 	pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
858 	va += PAGE_SIZE;
859 	pa += PAGE_SIZE;
860 
861 	/* Next page is used as the temporary stack. */
862 	pmap_enter_kernel(va, pa, VM_PROT_ALL);
863 	va += PAGE_SIZE;
864 	pa += PAGE_SIZE;
865 
866 	/*
867 	 * Map all of the kernel's text segment as read-only and cacheable.
868 	 * (Cacheable is implied by default).  Unfortunately, the last bytes
869 	 * of kernel text and the first bytes of kernel data will often be
870 	 * sharing the same page.  Therefore, the last page of kernel text
871 	 * has to be mapped as read/write, to accommodate the data.
872 	 */
873 	eva = m68k_trunc_page((vaddr_t)etext);
874 	for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
875 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
876 
877 	/*
878 	 * Map all of the kernel's data as read/write and cacheable.
879 	 * This includes: data, BSS, symbols, and everything in the
880 	 * contiguous memory used by pmap_bootstrap_alloc()
881 	 */
882 	for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
883 		pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
884 
885 	/*
886 	 * At this point we are almost ready to take over the MMU.  But first
887 	 * we must save the PROM's address space in our map, as we call its
888 	 * routines and make references to its data later in the kernel.
889 	 */
890 	pmap_bootstrap_copyprom();
891 	pmap_takeover_mmu();
892 	pmap_bootstrap_setprom();
893 
894 	/* Notify the VM system of our page size. */
895 	uvmexp.pagesize = PAGE_SIZE;
896 	uvm_md_init();
897 
898 	pmap_page_upload();
899 }
900 
901 
902 /* pmap_alloc_usermmu			INTERNAL
903  **
904  * Called from pmap_bootstrap() to allocate MMU tables that will
905  * eventually be used for user mappings.
906  */
907 void
pmap_alloc_usermmu(void)908 pmap_alloc_usermmu(void)
909 {
910 
911 	/* XXX: Moved into caller. */
912 }
913 
914 /* pmap_alloc_pv			INTERNAL
915  **
916  * Called from pmap_bootstrap() to allocate the physical
917  * to virtual mapping list.  Each physical page of memory
918  * in the system has a corresponding element in this list.
919  */
920 void
pmap_alloc_pv(void)921 pmap_alloc_pv(void)
922 {
923 	int	i;
924 	unsigned int	total_mem;
925 
926 	/*
927 	 * Allocate a pv_head structure for every page of physical
928 	 * memory that will be managed by the system.  Since memory on
929 	 * the 3/80 is non-contiguous, we cannot arrive at a total page
930 	 * count by subtraction of the lowest available address from the
931 	 * highest, but rather we have to step through each memory
932 	 * bank and add the number of pages in each to the total.
933 	 *
934 	 * At this time we also initialize the offset of each bank's
935 	 * starting pv_head within the pv_head list so that the physical
936 	 * memory state routines (pmap_is_referenced(),
937 	 * pmap_is_modified(), et al.) can quickly find corresponding
938 	 * pv_heads in spite of the non-contiguity.
939 	 */
940 	total_mem = 0;
941 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
942 		avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
943 		total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
944 		if (avail_mem[i].pmem_next == NULL)
945 			break;
946 	}
947 	pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
948 	    m68k_btop(total_phys_mem));
949 }
950 
951 /* pmap_alloc_usertmgr			INTERNAL
952  **
953  * Called from pmap_bootstrap() to allocate the structures which
954  * facilitate management of user MMU tables.  Each user MMU table
955  * in the system has one such structure associated with it.
956  */
957 void
pmap_alloc_usertmgr(void)958 pmap_alloc_usertmgr(void)
959 {
960 	/* Allocate user MMU table managers */
961 	/* It would be a lot simpler to just make these BSS, but */
962 	/* we may want to change their size at boot time... -j */
963 	Atmgrbase =
964 	    (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
965 	Btmgrbase =
966 	    (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
967 	Ctmgrbase =
968 	    (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);
969 
970 	/*
971 	 * Allocate PV list elements for the physical to virtual
972 	 * mapping system.
973 	 */
974 	pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
975 	    (NUM_USER_PTES + NUM_KERN_PTES));
976 }
977 
978 /* pmap_bootstrap_copyprom()			INTERNAL
979  **
980  * Copy the PROM mappings into our own tables.  Note, we
981  * can use physical addresses until __bootstrap returns.
982  */
983 void
pmap_bootstrap_copyprom(void)984 pmap_bootstrap_copyprom(void)
985 {
986 	struct sunromvec *romp;
987 	int *mon_ctbl;
988 	mmu_short_pte_t *kpte;
989 	int i, len;
990 
991 	romp = romVectorPtr;
992 
993 	/*
994 	 * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
995 	 * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
996 	 */
997 	mon_ctbl = *romp->monptaddr;
998 	i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X);
999 	kpte = &kernCbase[i];
1000 	len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);
1001 
1002 	for (i = 0; i < len; i++) {
1003 		kpte[i].attr.raw = mon_ctbl[i];
1004 	}
1005 
1006 	/*
1007 	 * Copy the mappings at MON_DVMA_BASE (to the end).
1008 	 * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
1009 	 * Actually, we only want the last page, which the
1010 	 * PROM has set up for use by the "ie" driver.
1011 	 * (The i82686 needs its SCP there.)
1012 	 * If we copy all the mappings, pmap_enter_kernel
1013 	 * may complain about finding valid PTEs that are
1014 	 * not recorded in our PV lists...
1015 	 */
1016 	mon_ctbl = *romp->shadowpteaddr;
1017 	i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X);
1018 	kpte = &kernCbase[i];
1019 	len = m68k_btop(SUN3X_MON_DVMA_SIZE);
1020 	for (i = (len - 1); i < len; i++) {
1021 		kpte[i].attr.raw = mon_ctbl[i];
1022 	}
1023 }
1024 
1025 /* pmap_takeover_mmu			INTERNAL
1026  **
1027  * Called from pmap_bootstrap() after it has copied enough of the
1028  * PROM mappings into the kernel map so that we can use our own
1029  * MMU table.
1030  */
1031 void
pmap_takeover_mmu(void)1032 pmap_takeover_mmu(void)
1033 {
1034 
1035 	loadcrp(&kernel_crp);
1036 }
1037 
1038 /* pmap_bootstrap_setprom()			INTERNAL
1039  **
1040  * Set the PROM mappings so it can see kernel space.
1041  * Note that physical addresses are used here, which
1042  * we can get away with because this runs with the
1043  * low 1GB set for transparent translation.
1044  */
1045 void
pmap_bootstrap_setprom(void)1046 pmap_bootstrap_setprom(void)
1047 {
1048 	mmu_long_dte_t *mon_dte;
1049 	extern struct mmu_rootptr mon_crp;
1050 	int i;
1051 
1052 	mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
1053 	for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) {
1054 		mon_dte[i].attr.raw = kernAbase[i].attr.raw;
1055 		mon_dte[i].addr.raw = kernAbase[i].addr.raw;
1056 	}
1057 }
1058 
1059 
1060 /* pmap_init			INTERFACE
1061  **
1062  * Called at the end of vm_init() to set up the pmap system to go
1063  * into full time operation.  All initialization of kernel_pmap
1064  * should be already done by now, so this should just do things
1065  * needed for user-level pmaps to work.
1066  */
1067 void
pmap_init(void)1068 pmap_init(void)
1069 {
1070 
1071 	/** Initialize the manager pools **/
1072 	TAILQ_INIT(&a_pool);
1073 	TAILQ_INIT(&b_pool);
1074 	TAILQ_INIT(&c_pool);
1075 
1076 	/**************************************************************
1077 	 * Initialize all tmgr structures and MMU tables they manage. *
1078 	 **************************************************************/
1079 	/** Initialize A tables **/
1080 	pmap_init_a_tables();
1081 	/** Initialize B tables **/
1082 	pmap_init_b_tables();
1083 	/** Initialize C tables **/
1084 	pmap_init_c_tables();
1085 
1086 	/** Initialize the pmap pools **/
1087 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1088 	    &pool_allocator_nointr, IPL_NONE);
1089 }
1090 
1091 /* pmap_init_a_tables()			INTERNAL
1092  **
1093  * Initializes all A managers, their MMU A tables, and inserts
1094  * them into the A manager pool for use by the system.
1095  */
1096 void
pmap_init_a_tables(void)1097 pmap_init_a_tables(void)
1098 {
1099 	int i;
1100 	a_tmgr_t *a_tbl;
1101 
1102 	for (i = 0; i < NUM_A_TABLES; i++) {
1103 		/* Select the next available A manager from the pool */
1104 		a_tbl = &Atmgrbase[i];
1105 
1106 		/*
1107 		 * Clear its parent entry.  Set its wired and valid
1108 		 * entry count to zero.
1109 		 */
1110 		a_tbl->at_parent = NULL;
1111 		a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
1112 
1113 		/* Assign it the next available MMU A table from the pool */
1114 		a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
1115 
1116 		/*
1117 		 * Initialize the MMU A table with the table in the `lwp0',
1118 		 * or kernel, mapping.  This ensures that every process has
1119 		 * the kernel mapped in the top part of its address space.
1120 		 */
1121 		memcpy(a_tbl->at_dtbl, kernAbase,
1122 		    MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));
1123 
1124 		/*
1125 		 * Finally, insert the manager into the A pool,
1126 		 * making it ready to be used by the system.
1127 		 */
1128 		TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
1129 	}
1130 }
1131 
1132 /* pmap_init_b_tables()			INTERNAL
1133  **
1134  * Initializes all B table managers, their MMU B tables, and
1135  * inserts them into the B manager pool for use by the system.
1136  */
1137 void
pmap_init_b_tables(void)1138 pmap_init_b_tables(void)
1139 {
1140 	int i, j;
1141 	b_tmgr_t *b_tbl;
1142 
1143 	for (i = 0; i < NUM_B_TABLES; i++) {
1144 		/* Select the next available B manager from the pool */
1145 		b_tbl = &Btmgrbase[i];
1146 
1147 		b_tbl->bt_parent = NULL;	/* clear its parent,  */
1148 		b_tbl->bt_pidx = 0;		/* parent index,      */
1149 		b_tbl->bt_wcnt = 0;		/* wired entry count, */
1150 		b_tbl->bt_ecnt = 0;		/* valid entry count. */
1151 
1152 		/* Assign it the next available MMU B table from the pool */
1153 		b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
1154 
1155 		/* Invalidate every descriptor in the table */
1156 		for (j = 0; j < MMU_B_TBL_SIZE; j++)
1157 			b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
1158 
1159 		/* Insert the manager into the B pool */
1160 		TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
1161 	}
1162 }
1163 
1164 /* pmap_init_c_tables()			INTERNAL
1165  **
1166  * Initializes all C table managers, their MMU C tables, and
1167  * inserts them into the C manager pool for use by the system.
1168  */
1169 void
pmap_init_c_tables(void)1170 pmap_init_c_tables(void)
1171 {
1172 	int i, j;
1173 	c_tmgr_t *c_tbl;
1174 
1175 	for (i = 0; i < NUM_C_TABLES; i++) {
1176 		/* Select the next available C manager from the pool */
1177 		c_tbl = &Ctmgrbase[i];
1178 
1179 		c_tbl->ct_parent = NULL;	/* clear its parent,  */
1180 		c_tbl->ct_pidx = 0;		/* parent index,      */
1181 		c_tbl->ct_wcnt = 0;		/* wired entry count, */
1182 		c_tbl->ct_ecnt = 0;		/* valid entry count, */
1183 		c_tbl->ct_pmap = NULL;		/* parent pmap,       */
1184 		c_tbl->ct_va = 0;		/* base of managed range */
1185 
1186 		/* Assign it the next available MMU C table from the pool */
1187 		c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
1188 
1189 		for (j = 0; j < MMU_C_TBL_SIZE; j++)
1190 			c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
1191 
1192 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
1193 	}
1194 }
1195 
1196 /* pmap_init_pv()			INTERNAL
1197  **
1198  * Initializes the Physical to Virtual mapping system.
1199  */
1200 void
pmap_init_pv(void)1201 pmap_init_pv(void)
1202 {
1203 	int i;
1204 
1205 	/* Initialize every PV head. */
1206 	for (i = 0; i < m68k_btop(total_phys_mem); i++) {
1207 		pvbase[i].pv_idx = PVE_EOL;	/* Indicate no mappings */
1208 		pvbase[i].pv_flags = 0;		/* Zero out page flags  */
1209 	}
1210 }
1211 
1212 /* is_managed				INTERNAL
1213  **
1214  * Determine if the given physical address is managed by the PV system.
1215  * Note that this logic assumes that no one will ask for the status of
1216  * addresses which lie in-between the memory banks on the 3/80.  If they
1217  * do so, it will falsely report that it is managed.
1218  *
1219  * Note: A "managed" address is one that was reported to the VM system as
1220  * a "usable page" during system startup.  As such, the VM system expects the
1221  * pmap module to keep an accurate track of the usage of those pages.
1222  * Any page not given to the VM system at startup does not exist (as far as
1223  * the VM system is concerned) and is therefore "unmanaged."  Examples are
1224  * those pages which belong to the ROM monitor and the memory allocated before
1225  * the VM system was started.
1226  */
1227 static INLINE bool
is_managed(paddr_t pa)1228 is_managed(paddr_t pa)
1229 {
1230 	if (pa >= avail_start && pa < avail_end)
1231 		return true;
1232 	else
1233 		return false;
1234 }
1235 
1236 /* get_a_table			INTERNAL
1237  **
1238  * Retrieve and return a level A table for use in a user map.
1239  */
1240 a_tmgr_t *
get_a_table(void)1241 get_a_table(void)
1242 {
1243 	a_tmgr_t *tbl;
1244 	pmap_t pmap;
1245 
1246 	/* Get the top A table in the pool */
1247 	tbl = TAILQ_FIRST(&a_pool);
1248 	if (tbl == NULL) {
1249 		/*
1250 		 * XXX - Instead of panicking here and in other get_x_table
1251 		 * functions, we do have the option of sleeping on the head of
1252 		 * the table pool.  Any function which updates the table pool
1253 		 * would then issue a wakeup() on the head, thus waking up any
1254 		 * processes waiting for a table.
1255 		 *
1256 		 * Actually, the place to sleep would be when some process
1257 		 * asks for a "wired" mapping that would run us short of
1258 		 * mapping resources.  This design DEPENDS on always having
1259 		 * some mapping resources in the pool for stealing, so we
1260 		 * must make sure we NEVER let the pool become empty. -gwr
1261 		 */
1262 		panic("get_a_table: out of A tables.");
1263 	}
1264 
1265 	TAILQ_REMOVE(&a_pool, tbl, at_link);
1266 	/*
1267 	 * If the table has a non-null parent pointer then it is in use.
1268 	 * Forcibly abduct it from its parent and clear its entries.
1269 	 * No re-entrancy worries here.  This table would not be in the
1270 	 * table pool unless it was available for use.
1271 	 *
1272 	 * Note that the second argument to free_a_table() is false.  This
1273 	 * indicates that the table should not be relinked into the A table
1274 	 * pool.  That is a job for the function that called us.
1275 	 */
1276 	if (tbl->at_parent) {
1277 		KASSERT(tbl->at_wcnt == 0);
1278 		pmap = tbl->at_parent;
1279 		free_a_table(tbl, false);
1280 		pmap->pm_a_tmgr = NULL;
1281 		pmap->pm_a_phys = kernAphys;
1282 	}
1283 	return tbl;
1284 }
1285 
1286 /* get_b_table			INTERNAL
1287  **
1288  * Return a level B table for use.
1289  */
1290 b_tmgr_t *
get_b_table(void)1291 get_b_table(void)
1292 {
1293 	b_tmgr_t *tbl;
1294 
1295 	/* See 'get_a_table' for comments. */
1296 	tbl = TAILQ_FIRST(&b_pool);
1297 	if (tbl == NULL)
1298 		panic("get_b_table: out of B tables.");
1299 	TAILQ_REMOVE(&b_pool, tbl, bt_link);
1300 	if (tbl->bt_parent) {
1301 		KASSERT(tbl->bt_wcnt == 0);
1302 		tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
1303 		tbl->bt_parent->at_ecnt--;
1304 		free_b_table(tbl, false);
1305 	}
1306 	return tbl;
1307 }
1308 
1309 /* get_c_table			INTERNAL
1310  **
1311  * Return a level C table for use.
1312  */
1313 c_tmgr_t *
get_c_table(void)1314 get_c_table(void)
1315 {
1316 	c_tmgr_t *tbl;
1317 
1318 	/* See 'get_a_table' for comments */
1319 	tbl = TAILQ_FIRST(&c_pool);
1320 	if (tbl == NULL)
1321 		panic("get_c_table: out of C tables.");
1322 	TAILQ_REMOVE(&c_pool, tbl, ct_link);
1323 	if (tbl->ct_parent) {
1324 		KASSERT(tbl->ct_wcnt == 0);
1325 		tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
1326 		tbl->ct_parent->bt_ecnt--;
1327 		free_c_table(tbl, false);
1328 	}
1329 	return tbl;
1330 }
1331 
1332 /*
1333  * The following 'free_table' and 'steal_table' functions are called to
1334  * detach tables from their current obligations (parents and children) and
1335  * prepare them for reuse in another mapping.
1336  *
1337  * Free_table is used when the calling function will handle the fate
1338  * of the parent table, such as returning it to the free pool when it has
1339  * no valid entries.  Functions that do not want to handle this should
1340  * call steal_table, in which the parent table's descriptors and entry
1341  * count are automatically modified when this table is removed.
1342  */
1343 
1344 /* free_a_table			INTERNAL
1345  **
1346  * Unmaps the given A table and all child tables from their current
1347  * mappings.  Returns the number of pages that were invalidated.
1348  * If 'relink' is true, the function will return the table to the head
1349  * of the available table pool.
1350  *
1351  * Cache note: The MC68851 will automatically flush all
1352  * descriptors derived from a given A table from its
1353  * Automatic Translation Cache (ATC) if we issue a
1354  * 'PFLUSHR' instruction with the base address of the
1355  * table.  This function should do, and does so.
1356  * Note note: We are using an MC68030 - there is no
1357  * PFLUSHR.
1358  */
1359 int
free_a_table(a_tmgr_t * a_tbl,bool relink)1360 free_a_table(a_tmgr_t *a_tbl, bool relink)
1361 {
1362 	int i, removed_cnt;
1363 	mmu_long_dte_t	*dte;
1364 	mmu_short_dte_t *dtbl;
1365 	b_tmgr_t	*b_tbl;
1366 	uint8_t at_wired, bt_wired;
1367 
1368 	/*
1369 	 * Flush the ATC cache of all cached descriptors derived
1370 	 * from this table.
1371 	 * Sun3x does not use 68851's cached table feature
1372 	 * flush_atc_crp(mmu_vtop(a_tbl->dte));
1373 	 */
1374 
1375 	/*
1376 	 * Remove any pending cache flushes that were designated
1377 	 * for the pmap this A table belongs to.
1378 	 * a_tbl->parent->atc_flushq[0] = 0;
1379 	 * Not implemented in sun3x.
1380 	 */
1381 
1382 	/*
1383 	 * All A tables in the system should retain a map for the
1384 	 * kernel. If the table contains any valid descriptors
1385 	 * (other than those for the kernel area), invalidate them all,
1386 	 * stopping short of the kernel's entries.
1387 	 */
1388 	removed_cnt = 0;
1389 	at_wired = a_tbl->at_wcnt;
1390 	if (a_tbl->at_ecnt) {
1391 		dte = a_tbl->at_dtbl;
1392 		for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
1393 			/*
1394 			 * If a table entry points to a valid B table, free
1395 			 * it and its children.
1396 			 */
1397 			if (MMU_VALID_DT(dte[i])) {
1398 				/*
1399 				 * The following block does several things,
1400 				 * from innermost expression to the
1401 				 * outermost:
1402 				 * 1) It extracts the base (cc 1996)
1403 				 *    address of the B table pointed
1404 				 *    to in the A table entry dte[i].
1405 				 * 2) It converts this base address into
1406 				 *    the virtual address it can be
1407 				 *    accessed with. (all MMU tables point
1408 				 *    to physical addresses.)
1409 				 * 3) It finds the corresponding manager
1410 				 *    structure which manages this MMU table.
1411 				 * 4) It frees the manager structure.
1412 				 *    (This frees the MMU table and all
1413 				 *    child tables. See 'free_b_table' for
1414 				 *    details.)
1415 				 */
1416 				dtbl = mmu_ptov(dte[i].addr.raw);
1417 				b_tbl = mmuB2tmgr(dtbl);
1418 				bt_wired = b_tbl->bt_wcnt;
1419 				removed_cnt += free_b_table(b_tbl, true);
1420 				if (bt_wired)
1421 					a_tbl->at_wcnt--;
1422 				dte[i].attr.raw = MMU_DT_INVALID;
1423 			}
1424 		}
1425 		a_tbl->at_ecnt = 0;
1426 	}
1427 	KASSERT(a_tbl->at_wcnt == 0);
1428 
1429 	if (relink) {
1430 		a_tbl->at_parent = NULL;
1431 		if (!at_wired)
1432 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1433 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
1434 	}
1435 	return removed_cnt;
1436 }
1437 
1438 /* free_b_table			INTERNAL
1439  **
1440  * Unmaps the given B table and all its children from their current
1441  * mappings.  Returns the number of pages that were invalidated.
1442  * (For comments, see 'free_a_table()').
1443  */
1444 int
free_b_table(b_tmgr_t * b_tbl,bool relink)1445 free_b_table(b_tmgr_t *b_tbl, bool relink)
1446 {
1447 	int i, removed_cnt;
1448 	mmu_short_dte_t *dte;
1449 	mmu_short_pte_t	*dtbl;
1450 	c_tmgr_t	*c_tbl;
1451 	uint8_t bt_wired, ct_wired;
1452 
1453 	removed_cnt = 0;
1454 	bt_wired = b_tbl->bt_wcnt;
1455 	if (b_tbl->bt_ecnt) {
1456 		dte = b_tbl->bt_dtbl;
1457 		for (i = 0; i < MMU_B_TBL_SIZE; i++) {
1458 			if (MMU_VALID_DT(dte[i])) {
1459 				dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
1460 				c_tbl = mmuC2tmgr(dtbl);
1461 				ct_wired = c_tbl->ct_wcnt;
1462 				removed_cnt += free_c_table(c_tbl, true);
1463 				if (ct_wired)
1464 					b_tbl->bt_wcnt--;
1465 				dte[i].attr.raw = MMU_DT_INVALID;
1466 			}
1467 		}
1468 		b_tbl->bt_ecnt = 0;
1469 	}
1470 	KASSERT(b_tbl->bt_wcnt == 0);
1471 
1472 	if (relink) {
1473 		b_tbl->bt_parent = NULL;
1474 		if (!bt_wired)
1475 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1476 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
1477 	}
1478 	return removed_cnt;
1479 }
1480 
1481 /* free_c_table			INTERNAL
1482  **
1483  * Unmaps the given C table from use and returns it to the pool for
1484  * re-use.  Returns the number of pages that were invalidated.
1485  *
1486  * This function preserves any physical page modification information
1487  * contained in the page descriptors within the C table by calling
1488  * 'pmap_remove_pte().'
1489  */
1490 int
free_c_table(c_tmgr_t * c_tbl,bool relink)1491 free_c_table(c_tmgr_t *c_tbl, bool relink)
1492 {
1493 	mmu_short_pte_t *c_pte;
1494 	int i, removed_cnt;
1495 	uint8_t ct_wired;
1496 
1497 	removed_cnt = 0;
1498 	ct_wired = c_tbl->ct_wcnt;
1499 	if (c_tbl->ct_ecnt) {
1500 		for (i = 0; i < MMU_C_TBL_SIZE; i++) {
1501 			c_pte = &c_tbl->ct_dtbl[i];
1502 			if (MMU_VALID_DT(*c_pte)) {
1503 				if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
1504 					c_tbl->ct_wcnt--;
1505 				pmap_remove_pte(c_pte);
1506 				removed_cnt++;
1507 			}
1508 		}
1509 		c_tbl->ct_ecnt = 0;
1510 	}
1511 	KASSERT(c_tbl->ct_wcnt == 0);
1512 
1513 	if (relink) {
1514 		c_tbl->ct_parent = NULL;
1515 		if (!ct_wired)
1516 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1517 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
1518 	}
1519 	return removed_cnt;
1520 }
1521 
1522 
1523 /* pmap_remove_pte			INTERNAL
1524  **
1525  * Unmap the given pte and preserve any page modification
1526  * information by transferring it to the pv head of the
1527  * physical page it maps to.  This function does not update
1528  * any reference counts because it is assumed that the calling
1529  * function will do so.
1530  */
1531 void
pmap_remove_pte(mmu_short_pte_t * pte)1532 pmap_remove_pte(mmu_short_pte_t *pte)
1533 {
1534 	u_short     pv_idx, targ_idx;
1535 	paddr_t     pa;
1536 	pv_t       *pv;
1537 
1538 	pa = MMU_PTE_PA(*pte);
1539 	if (is_managed(pa)) {
1540 		pv = pa2pv(pa);
1541 		targ_idx = pteidx(pte);	/* Index of PTE being removed    */
1542 
1543 		/*
1544 		 * If the PTE being removed is the first (or only) PTE in
1545 		 * the list of PTEs currently mapped to this page, remove the
1546 		 * PTE by changing the index found on the PV head.  Otherwise
1547 		 * a linear search through the list will have to be executed
1548 		 * in order to find the PVE which points to the PTE being
1549 		 * removed, so that it may be modified to point to its new
1550 		 * neighbor.
1551 		 */
1552 
1553 		pv_idx = pv->pv_idx;	/* Index of first PTE in PV list */
1554 		if (pv_idx == targ_idx) {
1555 			pv->pv_idx = pvebase[targ_idx].pve_next;
1556 		} else {
1557 
1558 			/*
1559 			 * Find the PV element pointing to the target
1560 			 * element.  Note: may have pv_idx==PVE_EOL
1561 			 */
1562 
1563 			for (;;) {
1564 				if (pv_idx == PVE_EOL) {
1565 					goto pv_not_found;
1566 				}
1567 				if (pvebase[pv_idx].pve_next == targ_idx)
1568 					break;
1569 				pv_idx = pvebase[pv_idx].pve_next;
1570 			}
1571 
1572 			/*
1573 			 * At this point, pv_idx is the index of the PV
1574 			 * element just before the target element in the list.
1575 			 * Unlink the target.
1576 			 */
1577 
1578 			pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
1579 		}
1580 
1581 		/*
1582 		 * Save the mod/ref bits of the pte by simply
1583 		 * ORing the entire pte onto the pv_flags member
1584 		 * of the pv structure.
1585 		 * There is no need to use a separate bit pattern
1586 		 * for usage information on the pv head than that
1587 		 * which is used on the MMU ptes.
1588 		 */
1589 
1590  pv_not_found:
1591 		pv->pv_flags |= (u_short) pte->attr.raw;
1592 	}
1593 	pte->attr.raw = MMU_DT_INVALID;
1594 }
1595 
1596 /* pmap_stroll			INTERNAL
1597  **
1598  * Retrieve the addresses of all table managers involved in the mapping of
1599  * the given virtual address.  If the table walk completed successfully,
1600  * return true.  If it was only partially successful, return false.
1601  * The table walk performed by this function is important to many other
1602  * functions in this module.
1603  *
1604  * Note: This function ought to be easier to read.
1605  */
1606 bool
pmap_stroll(pmap_t pmap,vaddr_t va,a_tmgr_t ** a_tbl,b_tmgr_t ** b_tbl,c_tmgr_t ** c_tbl,mmu_short_pte_t ** pte,int * a_idx,int * b_idx,int * pte_idx)1607 pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
1608     c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
1609     int *pte_idx)
1610 {
1611 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1612 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1613 
1614 	if (pmap == pmap_kernel())
1615 		return false;
1616 
1617 	/* Does the given pmap have its own A table? */
1618 	*a_tbl = pmap->pm_a_tmgr;
1619 	if (*a_tbl == NULL)
1620 		return false; /* No.  Return unknown. */
1621 	/* Does the A table have a valid B table
1622 	 * under the corresponding table entry?
1623 	 */
1624 	*a_idx = MMU_TIA(va);
1625 	a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
1626 	if (!MMU_VALID_DT(*a_dte))
1627 		return false; /* No. Return unknown. */
1628 	/* Yes. Extract B table from the A table. */
1629 	*b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
1630 	/*
1631 	 * Does the B table have a valid C table
1632 	 * under the corresponding table entry?
1633 	 */
1634 	*b_idx = MMU_TIB(va);
1635 	b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
1636 	if (!MMU_VALID_DT(*b_dte))
1637 		return false; /* No. Return unknown. */
1638 	/* Yes. Extract C table from the B table. */
1639 	*c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
1640 	*pte_idx = MMU_TIC(va);
1641 	*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
1642 
1643 	return true;
1644 }
1645 
1646 /* pmap_enter			INTERFACE
1647  **
1648  * Called by the kernel to map a virtual address
1649  * to a physical address in the given process map.
1650  *
1651  * Note: this function should apply an exclusive lock
1652  * on the pmap system for its duration.  (it certainly
1653  * would save my hair!!)
1654  * This function ought to be easier to read.
1655  */
1656 int
pmap_enter(pmap_t pmap,vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)1657 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1658 {
1659 	bool insert, managed; /* Marks the need for PV insertion.*/
1660 	u_short nidx;            /* PV list index                     */
1661 	int mapflags;            /* Flags for the mapping (see NOTE1) */
1662 	u_int a_idx, b_idx, pte_idx; /* table indices                 */
1663 	a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
1664 	b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
1665 	c_tmgr_t *c_tbl;         /* C: short page table manager       */
1666 	mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
1667 	mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
1668 	mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
1669 	pv_t      *pv;           /* pv list head                      */
1670 	bool wired;         /* is the mapping to be wired?       */
1671 	enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */
1672 
1673 	if (pmap == pmap_kernel()) {
1674 		pmap_enter_kernel(va, pa, prot);
1675 		return 0;
1676 	}
1677 
1678 	/*
1679 	 * Determine if the mapping should be wired.
1680 	 */
1681 	wired = ((flags & PMAP_WIRED) != 0);
1682 
1683 	/*
1684 	 * NOTE1:
1685 	 *
1686 	 * On November 13, 1999, someone changed the pmap_enter() API such
1687 	 * that it now accepts a 'flags' argument.  This new argument
1688 	 * contains bit-flags for the architecture-independent (UVM) system to
1689 	 * use in signalling certain mapping requirements to the architecture-
1690 	 * dependent (pmap) system.  The argument it replaces, 'wired', is now
1691 	 * one of the flags within it.
1692 	 *
1693 	 * In addition to flags signaled by the architecture-independent
1694 	 * system, parts of the architecture-dependent section of the sun3x
1695 	 * kernel pass their own flags in the lower, unused bits of the
1696 	 * physical address supplied to this function.  These flags are
1697 	 * extracted and stored in the temporary variable 'mapflags'.
1698 	 *
1699 	 * Extract sun3x specific flags from the physical address.
1700 	 */
1701 	mapflags = (pa & ~MMU_PAGE_MASK);
1702 	pa &= MMU_PAGE_MASK;
1703 
1704 	/*
1705 	 * Determine if the physical address being mapped is on-board RAM.
1706 	 * Any other area of the address space is likely to belong to a
1707 	 * device and hence it would be disastrous to cache its contents.
1708 	 */
1709 	if ((managed = is_managed(pa)) == false)
1710 		mapflags |= PMAP_NC;
1711 
1712 	/*
1713 	 * For user mappings we walk along the MMU tables of the given
1714 	 * pmap, reaching a PTE which describes the virtual page being
1715 	 * mapped or changed.  If any level of the walk ends in an invalid
1716 	 * entry, a table must be allocated and the entry must be updated
1717 	 * to point to it.
1718 	 * There is a bit of confusion as to whether this code must be
1719 	 * re-entrant.  For now we will assume it is.  To support
1720 	 * re-entrancy we must unlink tables from the table pool before
1721 	 * we assume we may use them.  Tables are re-linked into the pool
1722 	 * when we are finished with them at the end of the function.
1723 	 * But I don't feel like doing that until we have proof that this
1724 	 * needs to be re-entrant.
1725 	 * 'llevel' records which tables need to be relinked.
1726 	 */
1727 	llevel = NONE;
1728 
1729 	/*
1730 	 * Step 1 - Retrieve the A table from the pmap.  If it has no
1731 	 * A table, allocate a new one from the available pool.
1732 	 */
1733 
1734 	a_tbl = pmap->pm_a_tmgr;
1735 	if (a_tbl == NULL) {
1736 		/*
1737 		 * This pmap does not currently have an A table.  Allocate
1738 		 * a new one.
1739 		 */
1740 		a_tbl = get_a_table();
1741 		a_tbl->at_parent = pmap;
1742 
1743 		/*
1744 		 * Assign this new A table to the pmap, and calculate its
1745 		 * physical address so that loadcrp() can be used to make
1746 		 * the table active.
1747 		 */
1748 		pmap->pm_a_tmgr = a_tbl;
1749 		pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);
1750 
1751 		/*
1752 		 * If the process receiving a new A table is the current
1753 		 * process, we are responsible for setting the MMU so that
1754 		 * it becomes the current address space.  This only adds
1755 		 * new mappings, so no need to flush anything.
1756 		 */
1757 		if (pmap == current_pmap()) {
1758 			kernel_crp.rp_addr = pmap->pm_a_phys;
1759 			loadcrp(&kernel_crp);
1760 		}
1761 
1762 		if (!wired)
1763 			llevel = NEWA;
1764 	} else {
1765 		/*
1766 		 * Use the A table already allocated for this pmap.
1767 		 * Unlink it from the A table pool if necessary.
1768 		 */
1769 		if (wired && !a_tbl->at_wcnt)
1770 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
1771 	}
1772 
1773 	/*
1774 	 * Step 2 - Walk into the B table.  If there is no valid B table,
1775 	 * allocate one.
1776 	 */
1777 
1778 	a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
1779 	a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
1780 	if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
1781 		/* The descriptor is valid.  Use the B table it points to. */
1782 		/*************************************
1783 		 *               a_idx               *
1784 		 *                 v                 *
1785 		 * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
1786 		 *          | | | | | | | | | | | |  *
1787 		 *          +-+-+-+-+-+-+-+-+-+-+-+- *
1788 		 *                 |                 *
1789 		 *                 \- b_tbl -> +-+-  *
1790 		 *                             | |   *
1791 		 *                             +-+-  *
1792 		 *************************************/
1793 		b_dte = mmu_ptov(a_dte->addr.raw);
1794 		b_tbl = mmuB2tmgr(b_dte);
1795 
1796 		/*
1797 		 * If the requested mapping must be wired, but this table
1798 		 * being used to map it is not, the table must be removed
1799 		 * from the available pool and its wired entry count
1800 		 * incremented.
1801 		 */
1802 		if (wired && !b_tbl->bt_wcnt) {
1803 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
1804 			a_tbl->at_wcnt++;
1805 		}
1806 	} else {
1807 		/* The descriptor is invalid.  Allocate a new B table. */
1808 		b_tbl = get_b_table();
1809 
1810 		/* Point the parent A table descriptor to this new B table. */
1811 		a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
1812 		a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
1813 		a_tbl->at_ecnt++; /* Update parent's valid entry count */
1814 
1815 		/* Create the necessary back references to the parent table */
1816 		b_tbl->bt_parent = a_tbl;
1817 		b_tbl->bt_pidx = a_idx;
1818 
1819 		/*
1820 		 * If this table is to be wired, make sure the parent A table
1821 		 * wired count is updated to reflect that it has another wired
1822 		 * entry.
1823 		 */
1824 		if (wired)
1825 			a_tbl->at_wcnt++;
1826 		else if (llevel == NONE)
1827 			llevel = NEWB;
1828 	}
1829 
1830 	/*
1831 	 * Step 3 - Walk into the C table, if there is no valid C table,
1832 	 * allocate one.
1833 	 */
1834 
1835 	b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
1836 	b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
1837 	if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
1838 		/* The descriptor is valid.  Use the C table it points to. */
1839 		/**************************************
1840 		 *               c_idx                *
1841 		 * |                v                 *
1842 		 * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
1843 		 *             | | | | | | | | | | |  *
1844 		 *             +-+-+-+-+-+-+-+-+-+-+- *
1845 		 *                  |                 *
1846 		 *                  \- c_tbl -> +-+-- *
1847 		 *                              | | | *
1848 		 *                              +-+-- *
1849 		 **************************************/
1850 		c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
1851 		c_tbl = mmuC2tmgr(c_pte);
1852 
1853 		/* If mapping is wired and table is not */
1854 		if (wired && !c_tbl->ct_wcnt) {
1855 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
1856 			b_tbl->bt_wcnt++;
1857 		}
1858 	} else {
1859 		/* The descriptor is invalid.  Allocate a new C table. */
1860 		c_tbl = get_c_table();
1861 
1862 		/* Point the parent B table descriptor to this new C table. */
1863 		b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
1864 		b_dte->attr.raw |= MMU_DT_SHORT;
1865 		b_tbl->bt_ecnt++; /* Update parent's valid entry count */
1866 
1867 		/* Create the necessary back references to the parent table */
1868 		c_tbl->ct_parent = b_tbl;
1869 		c_tbl->ct_pidx = b_idx;
1870 		/*
1871 		 * Store the pmap and base virtual managed address for faster
1872 		 * retrieval in the PV functions.
1873 		 */
1874 		c_tbl->ct_pmap = pmap;
1875 		c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));
1876 
1877 		/*
1878 		 * If this table is to be wired, make sure the parent B table
1879 		 * wired count is updated to reflect that it has another wired
1880 		 * entry.
1881 		 */
1882 		if (wired)
1883 			b_tbl->bt_wcnt++;
1884 		else if (llevel == NONE)
1885 			llevel = NEWC;
1886 	}
1887 
1888 	/*
1889 	 * Step 4 - Deposit a page descriptor (PTE) into the appropriate
1890 	 * slot of the C table, describing the PA to which the VA is mapped.
1891 	 */
1892 
1893 	pte_idx = MMU_TIC(va);
1894 	c_pte = &c_tbl->ct_dtbl[pte_idx];
1895 	if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
1896 		/*
1897 		 * The PTE is currently valid.  This particular call
1898 		 * is just a synonym for one (or more) of the following
1899 		 * operations:
1900 		 *     change protection of a page
1901 		 *     change wiring status of a page
1902 		 *     remove the mapping of a page
1903 		 */
1904 
1905 		/* First check if this is a wiring operation. */
1906 		if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
1907 			/*
1908 			 * The existing mapping is wired, so adjust wired
1909 			 * entry count here. If new mapping is still wired,
1910 			 * wired entry count will be incremented again later.
1911 			 */
1912 			c_tbl->ct_wcnt--;
1913 			if (!wired) {
1914 				/*
1915 				 * The mapping of this PTE is being changed
1916 				 * from wired to unwired.
1917 				 * Adjust wired entry counts in each table and
1918 				 * set llevel flag to put unwired tables back
1919 				 * into the active pool.
1920 				 */
1921 				if (c_tbl->ct_wcnt == 0) {
1922 					llevel = NEWC;
1923 					if (--b_tbl->bt_wcnt == 0) {
1924 						llevel = NEWB;
1925 						if (--a_tbl->at_wcnt == 0) {
1926 							llevel = NEWA;
1927 						}
1928 					}
1929 				}
1930 			}
1931 		}
1932 
1933 		/* Is the new address the same as the old? */
1934 		if (MMU_PTE_PA(*c_pte) == pa) {
1935 			/*
1936 			 * Yes, mark that it does not need to be reinserted
1937 			 * into the PV list.
1938 			 */
1939 			insert = false;
1940 
1941 			/*
1942 			 * Clear all but the modified, referenced and wired
1943 			 * bits on the PTE.
1944 			 */
1945 			c_pte->attr.raw &= (MMU_SHORT_PTE_M
1946 			    | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
1947 		} else {
1948 			/* No, remove the old entry */
1949 			pmap_remove_pte(c_pte);
1950 			insert = true;
1951 		}
1952 
1953 		/*
1954 		 * TLB flush is only necessary if modifying current map.
1955 		 * However, in pmap_enter(), the pmap almost always IS
1956 		 * the current pmap, so don't even bother to check.
1957 		 */
1958 		TBIS(va);
1959 	} else {
1960 		/*
1961 		 * The PTE is invalid.  Increment the valid entry count in
1962 		 * the C table manager to reflect the addition of a new entry.
1963 		 */
1964 		c_tbl->ct_ecnt++;
1965 
1966 		/* XXX - temporarily make sure the PTE is cleared. */
1967 		c_pte->attr.raw = 0;
1968 
1969 		/* It will also need to be inserted into the PV list. */
1970 		insert = true;
1971 	}
1972 
1973 	/*
1974 	 * If page is changing from unwired to wired status, set an unused bit
1975 	 * within the PTE to indicate that it is wired.  Also increment the
1976 	 * wired entry count in the C table manager.
1977 	 */
1978 	if (wired) {
1979 		c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
1980 		c_tbl->ct_wcnt++;
1981 	}
1982 
1983 	/*
1984 	 * Map the page, being careful to preserve modify/reference/wired
1985 	 * bits.  At this point it is assumed that the PTE either has no bits
1986 	 * set, or if there are set bits, they are only modified, reference or
1987 	 * wired bits.  If not, the following statement will cause erratic
1988 	 * behavior.
1989 	 */
1990 #ifdef	PMAP_DEBUG
1991 	if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
1992 		MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
1993 		printf("pmap_enter: junk left in PTE at %p\n", c_pte);
1994 		Debugger();
1995 	}
1996 #endif
1997 	c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);
1998 
1999 	/*
2000 	 * If the mapping should be read-only, set the write protect
2001 	 * bit in the PTE.
2002 	 */
2003 	if (!(prot & VM_PROT_WRITE))
2004 		c_pte->attr.raw |= MMU_SHORT_PTE_WP;
2005 
2006 	/*
2007 	 * Mark the PTE as used and/or modified as specified by the flags arg.
2008 	 */
2009 	if (flags & VM_PROT_ALL) {
2010 		c_pte->attr.raw |= MMU_SHORT_PTE_USED;
2011 		if (flags & VM_PROT_WRITE) {
2012 			c_pte->attr.raw |= MMU_SHORT_PTE_M;
2013 		}
2014 	}
2015 
2016 	/*
2017 	 * If the mapping should be cache inhibited (indicated by the flag
2018 	 * bits found on the lower order of the physical address.)
2019 	 * mark the PTE as a cache inhibited page.
2020 	 */
2021 	if (mapflags & PMAP_NC)
2022 		c_pte->attr.raw |= MMU_SHORT_PTE_CI;
2023 
2024 	/*
2025 	 * If the physical address being mapped is managed by the PV
2026 	 * system then link the pte into the list of pages mapped to that
2027 	 * address.
2028 	 */
2029 	if (insert && managed) {
2030 		pv = pa2pv(pa);
2031 		nidx = pteidx(c_pte);
2032 
2033 		pvebase[nidx].pve_next = pv->pv_idx;
2034 		pv->pv_idx = nidx;
2035 	}
2036 
2037 	/* Move any allocated or unwired tables back into the active pool. */
2038 
2039 	switch (llevel) {
2040 		case NEWA:
2041 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2042 			/* FALLTHROUGH */
2043 		case NEWB:
2044 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2045 			/* FALLTHROUGH */
2046 		case NEWC:
2047 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2048 			/* FALLTHROUGH */
2049 		default:
2050 			break;
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 /* pmap_enter_kernel			INTERNAL
2057  **
2058  * Map the given virtual address to the given physical address within the
2059  * kernel address space.  This function exists because the kernel map does
2060  * not do dynamic table allocation.  It consists of a contiguous array of ptes
2061  * and can be edited directly without the need to walk through any tables.
2062  *
2063  * XXX: "Danger, Will Robinson!"
2064  * Note that the kernel should never take a fault on any page
2065  * between [ KERNBASE .. virtual_avail ] and this is checked in
2066  * trap.c for kernel-mode MMU faults.  This means that mappings
2067  * created in that range must be implicitly wired. -gwr
2068  */
2069 void
pmap_enter_kernel(vaddr_t va,paddr_t pa,vm_prot_t prot)2070 pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
2071 {
2072 	bool       was_valid, insert;
2073 	u_short         pte_idx;
2074 	int             flags;
2075 	mmu_short_pte_t *pte;
2076 	pv_t            *pv;
2077 	paddr_t     old_pa;
2078 
2079 	flags = (pa & ~MMU_PAGE_MASK);
2080 	pa &= MMU_PAGE_MASK;
2081 
2082 	if (is_managed(pa))
2083 		insert = true;
2084 	else
2085 		insert = false;
2086 
2087 	/*
2088 	 * Calculate the index of the PTE being modified.
2089 	 */
2090 	pte_idx = (u_long)m68k_btop(va - KERNBASE3X);
2091 
2092 	/* This array is traditionally named "Sysmap" */
2093 	pte = &kernCbase[pte_idx];
2094 
2095 	if (MMU_VALID_DT(*pte)) {
2096 		was_valid = true;
2097 		/*
2098 		 * If the PTE already maps a different
2099 		 * physical address, umap and pv_unlink.
2100 		 */
2101 		old_pa = MMU_PTE_PA(*pte);
2102 		if (pa != old_pa)
2103 			pmap_remove_pte(pte);
2104 		else {
2105 		    /*
2106 		     * Old PA and new PA are the same.  No need to
2107 		     * relink the mapping within the PV list.
2108 		     */
2109 		     insert = false;
2110 
2111 		    /*
2112 		     * Save any mod/ref bits on the PTE.
2113 		     */
2114 		    pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
2115 		}
2116 	} else {
2117 		pte->attr.raw = MMU_DT_INVALID;
2118 		was_valid = false;
2119 	}
2120 
2121 	/*
2122 	 * Map the page.  Being careful to preserve modified/referenced bits
2123 	 * on the PTE.
2124 	 */
2125 	pte->attr.raw |= (pa | MMU_DT_PAGE);
2126 
2127 	if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
2128 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2129 	if (flags & PMAP_NC)
2130 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2131 	if (was_valid)
2132 		TBIS(va);
2133 
2134 	/*
2135 	 * Insert the PTE into the PV system, if need be.
2136 	 */
2137 	if (insert) {
2138 		pv = pa2pv(pa);
2139 		pvebase[pte_idx].pve_next = pv->pv_idx;
2140 		pv->pv_idx = pte_idx;
2141 	}
2142 }
2143 
2144 void
pmap_kenter_pa(vaddr_t va,paddr_t pa,vm_prot_t prot,u_int flags)2145 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2146 {
2147 	mmu_short_pte_t	*pte;
2148 	u_int mapflags;
2149 
2150 	/* XXX: MD PMAP_NC should be replaced by MI PMAP_NOCACHE in flags. */
2151 	mapflags = (pa & ~MMU_PAGE_MASK);
2152 	if ((mapflags & PMAP_NC) != 0)
2153 		flags |= PMAP_NOCACHE;
2154 
2155 	/* This array is traditionally named "Sysmap" */
2156 	pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)];
2157 
2158 	KASSERT(!MMU_VALID_DT(*pte));
2159 	pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
2160 	if (!(prot & VM_PROT_WRITE))
2161 		pte->attr.raw |= MMU_SHORT_PTE_WP;
2162 	if ((flags & PMAP_NOCACHE) != 0)
2163 		pte->attr.raw |= MMU_SHORT_PTE_CI;
2164 }
2165 
2166 void
pmap_kremove(vaddr_t va,vsize_t len)2167 pmap_kremove(vaddr_t va, vsize_t len)
2168 {
2169 	int idx, eidx;
2170 
2171 #ifdef	PMAP_DEBUG
2172 	if ((va & PGOFSET) || (len & PGOFSET))
2173 		panic("pmap_kremove: alignment");
2174 #endif
2175 
2176 	idx  = m68k_btop(va - KERNBASE3X);
2177 	eidx = m68k_btop(va + len - KERNBASE3X);
2178 
2179 	while (idx < eidx) {
2180 		kernCbase[idx++].attr.raw = MMU_DT_INVALID;
2181 		TBIS(va);
2182 		va += PAGE_SIZE;
2183 	}
2184 }
2185 
2186 /* pmap_map			INTERNAL
2187  **
2188  * Map a contiguous range of physical memory into a contiguous range of
2189  * the kernel virtual address space.
2190  *
2191  * Used for device mappings and early mapping of the kernel text/data/bss.
2192  * Returns the first virtual address beyond the end of the range.
2193  */
2194 vaddr_t
pmap_map(vaddr_t va,paddr_t pa,paddr_t endpa,int prot)2195 pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
2196 {
2197 	int sz;
2198 
2199 	sz = endpa - pa;
2200 	do {
2201 		pmap_enter_kernel(va, pa, prot);
2202 		va += PAGE_SIZE;
2203 		pa += PAGE_SIZE;
2204 		sz -= PAGE_SIZE;
2205 	} while (sz > 0);
2206 	pmap_update(pmap_kernel());
2207 	return va;
2208 }
2209 
2210 /* pmap_protect_kernel			INTERNAL
2211  **
2212  * Apply the given protection code to a kernel address range.
2213  */
2214 static INLINE void
pmap_protect_kernel(vaddr_t startva,vaddr_t endva,vm_prot_t prot)2215 pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2216 {
2217 	vaddr_t va;
2218 	mmu_short_pte_t *pte;
2219 
2220 	pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)];
2221 	for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
2222 		if (MMU_VALID_DT(*pte)) {
2223 		    switch (prot) {
2224 		        case VM_PROT_ALL:
2225 		            break;
2226 		        case VM_PROT_EXECUTE:
2227 		        case VM_PROT_READ:
2228 		        case VM_PROT_READ|VM_PROT_EXECUTE:
2229 		            pte->attr.raw |= MMU_SHORT_PTE_WP;
2230 		            break;
2231 		        case VM_PROT_NONE:
2232 		            /* this is an alias for 'pmap_remove_kernel' */
2233 		            pmap_remove_pte(pte);
2234 		            break;
2235 		        default:
2236 		            break;
2237 		    }
2238 		    /*
2239 		     * since this is the kernel, immediately flush any cached
2240 		     * descriptors for this address.
2241 		     */
2242 		    TBIS(va);
2243 		}
2244 	}
2245 }
2246 
2247 /* pmap_protect			INTERFACE
2248  **
2249  * Apply the given protection to the given virtual address range within
2250  * the given map.
2251  *
2252  * It is ok for the protection applied to be stronger than what is
2253  * specified.  We use this to our advantage when the given map has no
2254  * mapping for the virtual address.  By skipping a page when this
2255  * is discovered, we are effectively applying a protection of VM_PROT_NONE,
2256  * and therefore do not need to map the page just to apply a protection
2257  * code.  Only pmap_enter() needs to create new mappings if they do not exist.
2258  *
2259  * XXX - This function could be speeded up by using pmap_stroll() for initial
2260  *       setup, and then manual scrolling in the for() loop.
2261  */
2262 void
pmap_protect(pmap_t pmap,vaddr_t startva,vaddr_t endva,vm_prot_t prot)2263 pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
2264 {
2265 	bool iscurpmap;
2266 	int a_idx, b_idx, c_idx;
2267 	a_tmgr_t *a_tbl;
2268 	b_tmgr_t *b_tbl;
2269 	c_tmgr_t *c_tbl;
2270 	mmu_short_pte_t *pte;
2271 
2272 	if (pmap == pmap_kernel()) {
2273 		pmap_protect_kernel(startva, endva, prot);
2274 		return;
2275 	}
2276 
2277 	/*
2278 	 * In this particular pmap implementation, there are only three
2279 	 * types of memory protection: 'all' (read/write/execute),
2280 	 * 'read-only' (read/execute) and 'none' (no mapping.)
2281 	 * It is not possible for us to treat 'executable' as a separate
2282 	 * protection type.  Therefore, protection requests that seek to
2283 	 * remove execute permission while retaining read or write, and those
2284 	 * that make little sense (write-only for example) are ignored.
2285 	 */
2286 	switch (prot) {
2287 		case VM_PROT_NONE:
2288 			/*
2289 			 * A request to apply the protection code of
2290 			 * 'VM_PROT_NONE' is a synonym for pmap_remove().
2291 			 */
2292 			pmap_remove(pmap, startva, endva);
2293 			return;
2294 		case	VM_PROT_EXECUTE:
2295 		case	VM_PROT_READ:
2296 		case	VM_PROT_READ|VM_PROT_EXECUTE:
2297 			/* continue */
2298 			break;
2299 		case	VM_PROT_WRITE:
2300 		case	VM_PROT_WRITE|VM_PROT_READ:
2301 		case	VM_PROT_WRITE|VM_PROT_EXECUTE:
2302 		case	VM_PROT_ALL:
2303 			/* None of these should happen in a sane system. */
2304 			return;
2305 	}
2306 
2307 	/*
2308 	 * If the pmap has no A table, it has no mappings and therefore
2309 	 * there is nothing to protect.
2310 	 */
2311 	if ((a_tbl = pmap->pm_a_tmgr) == NULL)
2312 		return;
2313 
2314 	a_idx = MMU_TIA(startva);
2315 	b_idx = MMU_TIB(startva);
2316 	c_idx = MMU_TIC(startva);
2317 	b_tbl = NULL;
2318 	c_tbl = NULL;
2319 
2320 	iscurpmap = (pmap == current_pmap());
2321 	while (startva < endva) {
2322 		if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
2323 		  if (b_tbl == NULL) {
2324 		    b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
2325 		    b_tbl = mmu_ptov((vaddr_t)b_tbl);
2326 		    b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
2327 		  }
2328 		  if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
2329 		    if (c_tbl == NULL) {
2330 		      c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
2331 		      c_tbl = mmu_ptov((vaddr_t)c_tbl);
2332 		      c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
2333 		    }
2334 		    if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
2335 		      pte = &c_tbl->ct_dtbl[c_idx];
2336 		      /* make the mapping read-only */
2337 		      pte->attr.raw |= MMU_SHORT_PTE_WP;
2338 		      /*
2339 		       * If we just modified the current address space,
2340 		       * flush any translations for the modified page from
2341 		       * the translation cache and any data from it in the
2342 		       * data cache.
2343 		       */
2344 		      if (iscurpmap)
2345 		          TBIS(startva);
2346 		    }
2347 		    startva += PAGE_SIZE;
2348 
2349 		    if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
2350 		      c_tbl = NULL;
2351 		      c_idx = 0;
2352 		      if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2353 		        b_tbl = NULL;
2354 		        b_idx = 0;
2355 		      }
2356 		    }
2357 		  } else { /* C table wasn't valid */
2358 		    c_tbl = NULL;
2359 		    c_idx = 0;
2360 		    startva += MMU_TIB_RANGE;
2361 		    if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
2362 		      b_tbl = NULL;
2363 		      b_idx = 0;
2364 		    }
2365 		  } /* C table */
2366 		} else { /* B table wasn't valid */
2367 		  b_tbl = NULL;
2368 		  b_idx = 0;
2369 		  startva += MMU_TIA_RANGE;
2370 		  a_idx++;
2371 		} /* B table */
2372 	}
2373 }
2374 
2375 /* pmap_unwire				INTERFACE
2376  **
2377  * Clear the wired attribute of the specified page.
2378  *
2379  * This function is called from vm_fault.c to unwire
2380  * a mapping.
2381  */
2382 void
pmap_unwire(pmap_t pmap,vaddr_t va)2383 pmap_unwire(pmap_t pmap, vaddr_t va)
2384 {
2385 	int a_idx, b_idx, c_idx;
2386 	a_tmgr_t *a_tbl;
2387 	b_tmgr_t *b_tbl;
2388 	c_tmgr_t *c_tbl;
2389 	mmu_short_pte_t *pte;
2390 
2391 	/* Kernel mappings always remain wired. */
2392 	if (pmap == pmap_kernel())
2393 		return;
2394 
2395 	/*
2396 	 * Walk through the tables.  If the walk terminates without
2397 	 * a valid PTE then the address wasn't wired in the first place.
2398 	 * Return immediately.
2399 	 */
2400 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
2401 		&b_idx, &c_idx) == false)
2402 		return;
2403 
2404 
2405 	/* Is the PTE wired?  If not, return. */
2406 	if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
2407 		return;
2408 
2409 	/* Remove the wiring bit. */
2410 	pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
2411 
2412 	/*
2413 	 * Decrement the wired entry count in the C table.
2414 	 * If it reaches zero the following things happen:
2415 	 * 1. The table no longer has any wired entries and is considered
2416 	 *    unwired.
2417 	 * 2. It is placed on the available queue.
2418 	 * 3. The parent table's wired entry count is decremented.
2419 	 * 4. If it reaches zero, this process repeats at step 1 and
2420 	 *    stops at after reaching the A table.
2421 	 */
2422 	if (--c_tbl->ct_wcnt == 0) {
2423 		TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
2424 		if (--b_tbl->bt_wcnt == 0) {
2425 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
2426 			if (--a_tbl->at_wcnt == 0) {
2427 				TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
2428 			}
2429 		}
2430 	}
2431 }
2432 
2433 /* pmap_copy				INTERFACE
2434  **
2435  * Copy the mappings of a range of addresses in one pmap, into
2436  * the destination address of another.
2437  *
2438  * This routine is advisory.  Should we one day decide that MMU tables
2439  * may be shared by more than one pmap, this function should be used to
2440  * link them together.  Until that day however, we do nothing.
2441  */
2442 void
pmap_copy(pmap_t pmap_a,pmap_t pmap_b,vaddr_t dst,vsize_t len,vaddr_t src)2443 pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
2444 {
2445 
2446 	/* not implemented. */
2447 }
2448 
2449 /* pmap_copy_page			INTERFACE
2450  **
2451  * Copy the contents of one physical page into another.
2452  *
2453  * This function makes use of two virtual pages allocated in pmap_bootstrap()
2454  * to map the two specified physical pages into the kernel address space.
2455  *
2456  * Note: We could use the transparent translation registers to make the
2457  * mappings.  If we do so, be sure to disable interrupts before using them.
2458  */
2459 void
pmap_copy_page(paddr_t srcpa,paddr_t dstpa)2460 pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
2461 {
2462 	vaddr_t srcva, dstva;
2463 	int s;
2464 
2465 	srcva = tmp_vpages[0];
2466 	dstva = tmp_vpages[1];
2467 
2468 	s = splvm();
2469 #ifdef DIAGNOSTIC
2470 	if (tmp_vpages_inuse++)
2471 		panic("pmap_copy_page: temporary vpages are in use.");
2472 #endif
2473 
2474 	/* Map pages as non-cacheable to avoid cache polution? */
2475 	pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0);
2476 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
2477 
2478 	/* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
2479 	copypage((char *)srcva, (char *)dstva);
2480 
2481 	pmap_kremove(srcva, PAGE_SIZE);
2482 	pmap_kremove(dstva, PAGE_SIZE);
2483 
2484 #ifdef DIAGNOSTIC
2485 	--tmp_vpages_inuse;
2486 #endif
2487 	splx(s);
2488 }
2489 
2490 /* pmap_zero_page			INTERFACE
2491  **
2492  * Zero the contents of the specified physical page.
2493  *
2494  * Uses one of the virtual pages allocated in pmap_bootstrap()
2495  * to map the specified page into the kernel address space.
2496  */
2497 void
pmap_zero_page(paddr_t dstpa)2498 pmap_zero_page(paddr_t dstpa)
2499 {
2500 	vaddr_t dstva;
2501 	int s;
2502 
2503 	dstva = tmp_vpages[1];
2504 	s = splvm();
2505 #ifdef DIAGNOSTIC
2506 	if (tmp_vpages_inuse++)
2507 		panic("pmap_zero_page: temporary vpages are in use.");
2508 #endif
2509 
2510 	/* The comments in pmap_copy_page() above apply here also. */
2511 	pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);
2512 
2513 	/* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
2514 	zeropage((char *)dstva);
2515 
2516 	pmap_kremove(dstva, PAGE_SIZE);
2517 #ifdef DIAGNOSTIC
2518 	--tmp_vpages_inuse;
2519 #endif
2520 	splx(s);
2521 }
2522 
2523 /* pmap_pinit			INTERNAL
2524  **
2525  * Initialize a pmap structure.
2526  */
2527 static INLINE void
pmap_pinit(pmap_t pmap)2528 pmap_pinit(pmap_t pmap)
2529 {
2530 
2531 	memset(pmap, 0, sizeof(struct pmap));
2532 	pmap->pm_a_tmgr = NULL;
2533 	pmap->pm_a_phys = kernAphys;
2534 	pmap->pm_refcount = 1;
2535 }
2536 
2537 /* pmap_create			INTERFACE
2538  **
2539  * Create and return a pmap structure.
2540  */
2541 pmap_t
pmap_create(void)2542 pmap_create(void)
2543 {
2544 	pmap_t	pmap;
2545 
2546 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
2547 	pmap_pinit(pmap);
2548 	return pmap;
2549 }
2550 
2551 /* pmap_release				INTERNAL
2552  **
2553  * Release any resources held by the given pmap.
2554  *
2555  * This is the reverse analog to pmap_pinit.  It does not
2556  * necessarily mean for the pmap structure to be deallocated,
2557  * as in pmap_destroy.
2558  */
2559 static INLINE void
pmap_release(pmap_t pmap)2560 pmap_release(pmap_t pmap)
2561 {
2562 
2563 	/*
2564 	 * As long as the pmap contains no mappings,
2565 	 * which always should be the case whenever
2566 	 * this function is called, there really should
2567 	 * be nothing to do.
2568 	 */
2569 #ifdef	PMAP_DEBUG
2570 	if (pmap == pmap_kernel())
2571 		panic("pmap_release: kernel pmap");
2572 #endif
2573 	/*
2574 	 * XXX - If this pmap has an A table, give it back.
2575 	 * The pmap SHOULD be empty by now, and pmap_remove
2576 	 * should have already given back the A table...
2577 	 * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
2578 	 * at this point, which means some mapping was not
2579 	 * removed when it should have been. -gwr
2580 	 */
2581 	if (pmap->pm_a_tmgr != NULL) {
2582 		/* First make sure we are not using it! */
2583 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
2584 			kernel_crp.rp_addr = kernAphys;
2585 			loadcrp(&kernel_crp);
2586 		}
2587 #ifdef	PMAP_DEBUG /* XXX - todo! */
2588 		/* XXX - Now complain... */
2589 		printf("pmap_release: still have table\n");
2590 		Debugger();
2591 #endif
2592 		free_a_table(pmap->pm_a_tmgr, true);
2593 		pmap->pm_a_tmgr = NULL;
2594 		pmap->pm_a_phys = kernAphys;
2595 	}
2596 }
2597 
2598 /* pmap_reference			INTERFACE
2599  **
2600  * Increment the reference count of a pmap.
2601  */
2602 void
pmap_reference(pmap_t pmap)2603 pmap_reference(pmap_t pmap)
2604 {
2605 
2606 	atomic_inc_uint(&pmap->pm_refcount);
2607 }
2608 
2609 /* pmap_dereference			INTERNAL
2610  **
2611  * Decrease the reference count on the given pmap
2612  * by one and return the current count.
2613  */
2614 static INLINE int
pmap_dereference(pmap_t pmap)2615 pmap_dereference(pmap_t pmap)
2616 {
2617 	int rtn;
2618 
2619 	rtn = atomic_dec_uint_nv(&pmap->pm_refcount);
2620 
2621 	return rtn;
2622 }
2623 
2624 /* pmap_destroy			INTERFACE
2625  **
2626  * Decrement a pmap's reference count and delete
2627  * the pmap if it becomes zero.  Will be called
2628  * only after all mappings have been removed.
2629  */
2630 void
pmap_destroy(pmap_t pmap)2631 pmap_destroy(pmap_t pmap)
2632 {
2633 
2634 	if (pmap_dereference(pmap) == 0) {
2635 		pmap_release(pmap);
2636 		pool_put(&pmap_pmap_pool, pmap);
2637 	}
2638 }
2639 
2640 /* pmap_is_referenced			INTERFACE
2641  **
2642  * Determine if the given physical page has been
2643  * referenced (read from [or written to.])
2644  */
2645 bool
pmap_is_referenced(struct vm_page * pg)2646 pmap_is_referenced(struct vm_page *pg)
2647 {
2648 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2649 	pv_t      *pv;
2650 	int       idx;
2651 
2652 	/*
2653 	 * Check the flags on the pv head.  If they are set,
2654 	 * return immediately.  Otherwise a search must be done.
2655 	 */
2656 
2657 	pv = pa2pv(pa);
2658 	if (pv->pv_flags & PV_FLAGS_USED)
2659 		return true;
2660 
2661 	/*
2662 	 * Search through all pv elements pointing
2663 	 * to this page and query their reference bits
2664 	 */
2665 
2666 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2667 		if (MMU_PTE_USED(kernCbase[idx])) {
2668 			return true;
2669 		}
2670 	}
2671 	return false;
2672 }
2673 
2674 /* pmap_is_modified			INTERFACE
2675  **
2676  * Determine if the given physical page has been
2677  * modified (written to.)
2678  */
2679 bool
pmap_is_modified(struct vm_page * pg)2680 pmap_is_modified(struct vm_page *pg)
2681 {
2682 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2683 	pv_t      *pv;
2684 	int       idx;
2685 
2686 	/* see comments in pmap_is_referenced() */
2687 	pv = pa2pv(pa);
2688 	if (pv->pv_flags & PV_FLAGS_MDFY)
2689 		return true;
2690 
2691 	for (idx = pv->pv_idx;
2692 		 idx != PVE_EOL;
2693 		 idx = pvebase[idx].pve_next) {
2694 
2695 		if (MMU_PTE_MODIFIED(kernCbase[idx])) {
2696 			return true;
2697 		}
2698 	}
2699 
2700 	return false;
2701 }
2702 
2703 /* pmap_page_protect			INTERFACE
2704  **
2705  * Applies the given protection to all mappings to the given
2706  * physical page.
2707  */
2708 void
pmap_page_protect(struct vm_page * pg,vm_prot_t prot)2709 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2710 {
2711 	paddr_t   pa = VM_PAGE_TO_PHYS(pg);
2712 	pv_t      *pv;
2713 	int       idx;
2714 	vaddr_t va;
2715 	struct mmu_short_pte_struct *pte;
2716 	c_tmgr_t  *c_tbl;
2717 	pmap_t    pmap, curpmap;
2718 
2719 	curpmap = current_pmap();
2720 	pv = pa2pv(pa);
2721 
2722 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2723 		pte = &kernCbase[idx];
2724 		switch (prot) {
2725 			case VM_PROT_ALL:
2726 				/* do nothing */
2727 				break;
2728 			case VM_PROT_EXECUTE:
2729 			case VM_PROT_READ:
2730 			case VM_PROT_READ|VM_PROT_EXECUTE:
2731 				/*
2732 				 * Determine the virtual address mapped by
2733 				 * the PTE and flush ATC entries if necessary.
2734 				 */
2735 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2736 				pte->attr.raw |= MMU_SHORT_PTE_WP;
2737 				if (pmap == curpmap || pmap == pmap_kernel())
2738 					TBIS(va);
2739 				break;
2740 			case VM_PROT_NONE:
2741 				/* Save the mod/ref bits. */
2742 				pv->pv_flags |= pte->attr.raw;
2743 				/* Invalidate the PTE. */
2744 				pte->attr.raw = MMU_DT_INVALID;
2745 
2746 				/*
2747 				 * Update table counts.  And flush ATC entries
2748 				 * if necessary.
2749 				 */
2750 				va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2751 
2752 				/*
2753 				 * If the PTE belongs to the kernel map,
2754 				 * be sure to flush the page it maps.
2755 				 */
2756 				if (pmap == pmap_kernel()) {
2757 					TBIS(va);
2758 				} else {
2759 					/*
2760 					 * The PTE belongs to a user map.
2761 					 * update the entry count in the C
2762 					 * table to which it belongs and flush
2763 					 * the ATC if the mapping belongs to
2764 					 * the current pmap.
2765 					 */
2766 					c_tbl->ct_ecnt--;
2767 					if (pmap == curpmap)
2768 						TBIS(va);
2769 				}
2770 				break;
2771 			default:
2772 				break;
2773 		}
2774 	}
2775 
2776 	/*
2777 	 * If the protection code indicates that all mappings to the page
2778 	 * be removed, truncate the PV list to zero entries.
2779 	 */
2780 	if (prot == VM_PROT_NONE)
2781 		pv->pv_idx = PVE_EOL;
2782 }
2783 
2784 /* pmap_get_pteinfo		INTERNAL
2785  **
2786  * Called internally to find the pmap and virtual address within that
2787  * map to which the pte at the given index maps.  Also includes the PTE's C
2788  * table manager.
2789  *
2790  * Returns the pmap in the argument provided, and the virtual address
2791  * by return value.
2792  */
2793 vaddr_t
pmap_get_pteinfo(u_int idx,pmap_t * pmap,c_tmgr_t ** tbl)2794 pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
2795 {
2796 	vaddr_t     va = 0;
2797 
2798 	/*
2799 	 * Determine if the PTE is a kernel PTE or a user PTE.
2800 	 */
2801 	if (idx >= NUM_KERN_PTES) {
2802 		/*
2803 		 * The PTE belongs to a user mapping.
2804 		 */
2805 		/* XXX: Would like an inline for this to validate idx... */
2806 		*tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];
2807 
2808 		*pmap = (*tbl)->ct_pmap;
2809 		/*
2810 		 * To find the va to which the PTE maps, we first take
2811 		 * the table's base virtual address mapping which is stored
2812 		 * in ct_va.  We then increment this address by a page for
2813 		 * every slot skipped until we reach the PTE.
2814 		 */
2815 		va = (*tbl)->ct_va;
2816 		va += m68k_ptob(idx % MMU_C_TBL_SIZE);
2817 	} else {
2818 		/*
2819 		 * The PTE belongs to the kernel map.
2820 		 */
2821 		*pmap = pmap_kernel();
2822 
2823 		va = m68k_ptob(idx);
2824 		va += KERNBASE3X;
2825 	}
2826 
2827 	return va;
2828 }
2829 
2830 /* pmap_clear_modify			INTERFACE
2831  **
2832  * Clear the modification bit on the page at the specified
2833  * physical address.
2834  *
2835  */
2836 bool
pmap_clear_modify(struct vm_page * pg)2837 pmap_clear_modify(struct vm_page *pg)
2838 {
2839 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2840 	bool rv;
2841 
2842 	rv = pmap_is_modified(pg);
2843 	pmap_clear_pv(pa, PV_FLAGS_MDFY);
2844 	return rv;
2845 }
2846 
2847 /* pmap_clear_reference			INTERFACE
2848  **
2849  * Clear the referenced bit on the page at the specified
2850  * physical address.
2851  */
2852 bool
pmap_clear_reference(struct vm_page * pg)2853 pmap_clear_reference(struct vm_page *pg)
2854 {
2855 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
2856 	bool rv;
2857 
2858 	rv = pmap_is_referenced(pg);
2859 	pmap_clear_pv(pa, PV_FLAGS_USED);
2860 	return rv;
2861 }
2862 
2863 /* pmap_clear_pv			INTERNAL
2864  **
2865  * Clears the specified flag from the specified physical address.
2866  * (Used by pmap_clear_modify() and pmap_clear_reference().)
2867  *
2868  * Flag is one of:
2869  *   PV_FLAGS_MDFY - Page modified bit.
2870  *   PV_FLAGS_USED - Page used (referenced) bit.
2871  *
2872  * This routine must not only clear the flag on the pv list
2873  * head.  It must also clear the bit on every pte in the pv
2874  * list associated with the address.
2875  */
2876 void
pmap_clear_pv(paddr_t pa,int flag)2877 pmap_clear_pv(paddr_t pa, int flag)
2878 {
2879 	pv_t      *pv;
2880 	int       idx;
2881 	vaddr_t   va;
2882 	pmap_t          pmap;
2883 	mmu_short_pte_t *pte;
2884 	c_tmgr_t        *c_tbl;
2885 
2886 	pv = pa2pv(pa);
2887 	pv->pv_flags &= ~(flag);
2888 	for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
2889 		pte = &kernCbase[idx];
2890 		pte->attr.raw &= ~(flag);
2891 
2892 		/*
2893 		 * The MC68030 MMU will not set the modified or
2894 		 * referenced bits on any MMU tables for which it has
2895 		 * a cached descriptor with its modify bit set.  To insure
2896 		 * that it will modify these bits on the PTE during the next
2897 		 * time it is written to or read from, we must flush it from
2898 		 * the ATC.
2899 		 *
2900 		 * Ordinarily it is only necessary to flush the descriptor
2901 		 * if it is used in the current address space.  But since I
2902 		 * am not sure that there will always be a notion of
2903 		 * 'the current address space' when this function is called,
2904 		 * I will skip the test and always flush the address.  It
2905 		 * does no harm.
2906 		 */
2907 
2908 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
2909 		TBIS(va);
2910 	}
2911 }
2912 
2913 /* pmap_extract_kernel		INTERNAL
2914  **
2915  * Extract a translation from the kernel address space.
2916  */
2917 static INLINE bool
pmap_extract_kernel(vaddr_t va,paddr_t * pap)2918 pmap_extract_kernel(vaddr_t va, paddr_t *pap)
2919 {
2920 	mmu_short_pte_t *pte;
2921 
2922 	pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)];
2923 	if (!MMU_VALID_DT(*pte))
2924 		return false;
2925 	if (pap != NULL)
2926 		*pap = MMU_PTE_PA(*pte);
2927 	return true;
2928 }
2929 
2930 /* pmap_extract			INTERFACE
2931  **
2932  * Return the physical address mapped by the virtual address
2933  * in the specified pmap.
2934  *
2935  * Note: this function should also apply an exclusive lock
2936  * on the pmap system during its duration.
2937  */
2938 bool
pmap_extract(pmap_t pmap,vaddr_t va,paddr_t * pap)2939 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
2940 {
2941 	int a_idx, b_idx, pte_idx;
2942 	a_tmgr_t	*a_tbl;
2943 	b_tmgr_t	*b_tbl;
2944 	c_tmgr_t	*c_tbl;
2945 	mmu_short_pte_t	*c_pte;
2946 
2947 	if (pmap == pmap_kernel())
2948 		return pmap_extract_kernel(va, pap);
2949 
2950 	if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
2951 		&c_pte, &a_idx, &b_idx, &pte_idx) == false)
2952 		return false;
2953 
2954 	if (!MMU_VALID_DT(*c_pte))
2955 		return false;
2956 
2957 	if (pap != NULL)
2958 		*pap = MMU_PTE_PA(*c_pte);
2959 	return true;
2960 }
2961 
2962 /* pmap_remove_kernel		INTERNAL
2963  **
2964  * Remove the mapping of a range of virtual addresses from the kernel map.
2965  * The arguments are already page-aligned.
2966  */
2967 static INLINE void
pmap_remove_kernel(vaddr_t sva,vaddr_t eva)2968 pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
2969 {
2970 	int idx, eidx;
2971 
2972 #ifdef	PMAP_DEBUG
2973 	if ((sva & PGOFSET) || (eva & PGOFSET))
2974 		panic("pmap_remove_kernel: alignment");
2975 #endif
2976 
2977 	idx  = m68k_btop(sva - KERNBASE3X);
2978 	eidx = m68k_btop(eva - KERNBASE3X);
2979 
2980 	while (idx < eidx) {
2981 		pmap_remove_pte(&kernCbase[idx++]);
2982 		TBIS(sva);
2983 		sva += PAGE_SIZE;
2984 	}
2985 }
2986 
2987 /* pmap_remove			INTERFACE
2988  **
2989  * Remove the mapping of a range of virtual addresses from the given pmap.
2990  *
2991  */
2992 void
pmap_remove(pmap_t pmap,vaddr_t sva,vaddr_t eva)2993 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
2994 {
2995 
2996 	if (pmap == pmap_kernel()) {
2997 		pmap_remove_kernel(sva, eva);
2998 		return;
2999 	}
3000 
3001 	/*
3002 	 * If the pmap doesn't have an A table of its own, it has no mappings
3003 	 * that can be removed.
3004 	 */
3005 	if (pmap->pm_a_tmgr == NULL)
3006 		return;
3007 
3008 	/*
3009 	 * Remove the specified range from the pmap.  If the function
3010 	 * returns true, the operation removed all the valid mappings
3011 	 * in the pmap and freed its A table.  If this happened to the
3012 	 * currently loaded pmap, the MMU root pointer must be reloaded
3013 	 * with the default 'kernel' map.
3014 	 */
3015 	if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
3016 		if (kernel_crp.rp_addr == pmap->pm_a_phys) {
3017 			kernel_crp.rp_addr = kernAphys;
3018 			loadcrp(&kernel_crp);
3019 			/* will do TLB flush below */
3020 		}
3021 		pmap->pm_a_tmgr = NULL;
3022 		pmap->pm_a_phys = kernAphys;
3023 	}
3024 
3025 	/*
3026 	 * If we just modified the current address space,
3027 	 * make sure to flush the MMU cache.
3028 	 *
3029 	 * XXX - this could be an unnecessarily large flush.
3030 	 * XXX - Could decide, based on the size of the VA range
3031 	 * to be removed, whether to flush "by pages" or "all".
3032 	 */
3033 	if (pmap == current_pmap())
3034 		TBIAU();
3035 }
3036 
3037 /* pmap_remove_a			INTERNAL
3038  **
3039  * This is function number one in a set of three that removes a range
3040  * of memory in the most efficient manner by removing the highest possible
3041  * tables from the memory space.  This particular function attempts to remove
3042  * as many B tables as it can, delegating the remaining fragmented ranges to
3043  * pmap_remove_b().
3044  *
3045  * If the removal operation results in an empty A table, the function returns
3046  * true.
3047  *
3048  * It's ugly but will do for now.
3049  */
3050 bool
pmap_remove_a(a_tmgr_t * a_tbl,vaddr_t sva,vaddr_t eva)3051 pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
3052 {
3053 	bool empty;
3054 	int idx;
3055 	vaddr_t nstart, nend;
3056 	b_tmgr_t *b_tbl;
3057 	mmu_long_dte_t  *a_dte;
3058 	mmu_short_dte_t *b_dte;
3059 	uint8_t at_wired, bt_wired;
3060 
3061 	/*
3062 	 * The following code works with what I call a 'granularity
3063 	 * reduction algorithm'.  A range of addresses will always have
3064 	 * the following properties, which are classified according to
3065 	 * how the range relates to the size of the current granularity
3066 	 * - an A table entry:
3067 	 *
3068 	 *            1 2       3 4
3069 	 * -+---+---+---+---+---+---+---+-
3070 	 * -+---+---+---+---+---+---+---+-
3071 	 *
3072 	 * A range will always start on a granularity boundary, illustrated
3073 	 * by '+' signs in the table above, or it will start at some point
3074 	 * in-between a granularity boundary, as illustrated by point 1.
3075 	 * The first step in removing a range of addresses is to remove the
3076 	 * range between 1 and 2, the nearest granularity boundary.  This
3077 	 * job is handled by the section of code governed by the
3078 	 * 'if (start < nstart)' statement.
3079 	 *
3080 	 * A range will always encompass zero or more integral granules,
3081 	 * illustrated by points 2 and 3.  Integral granules are easy to
3082 	 * remove.  The removal of these granules is the second step, and
3083 	 * is handled by the code block 'if (nstart < nend)'.
3084 	 *
3085 	 * Lastly, a range will always end on a granularity boundary,
3086 	 * ill. by point 3, or it will fall just beyond one, ill. by point
3087 	 * 4.  The last step involves removing this range and is handled by
3088 	 * the code block 'if (nend < end)'.
3089 	 */
3090 	nstart = MMU_ROUND_UP_A(sva);
3091 	nend = MMU_ROUND_A(eva);
3092 
3093 	at_wired = a_tbl->at_wcnt;
3094 
3095 	if (sva < nstart) {
3096 		/*
3097 		 * This block is executed if the range starts between
3098 		 * a granularity boundary.
3099 		 *
3100 		 * First find the DTE which is responsible for mapping
3101 		 * the start of the range.
3102 		 */
3103 		idx = MMU_TIA(sva);
3104 		a_dte = &a_tbl->at_dtbl[idx];
3105 
3106 		/*
3107 		 * If the DTE is valid then delegate the removal of the sub
3108 		 * range to pmap_remove_b(), which can remove addresses at
3109 		 * a finer granularity.
3110 		 */
3111 		if (MMU_VALID_DT(*a_dte)) {
3112 			b_dte = mmu_ptov(a_dte->addr.raw);
3113 			b_tbl = mmuB2tmgr(b_dte);
3114 			bt_wired = b_tbl->bt_wcnt;
3115 
3116 			/*
3117 			 * The sub range to be removed starts at the start
3118 			 * of the full range we were asked to remove, and ends
3119 			 * at the greater of:
3120 			 * 1. The end of the full range, -or-
3121 			 * 2. The end of the full range, rounded down to the
3122 			 *    nearest granularity boundary.
3123 			 */
3124 			if (eva < nstart)
3125 				empty = pmap_remove_b(b_tbl, sva, eva);
3126 			else
3127 				empty = pmap_remove_b(b_tbl, sva, nstart);
3128 
3129 			/*
3130 			 * If the child table no longer has wired entries,
3131 			 * decrement wired entry count.
3132 			 */
3133 			if (bt_wired && b_tbl->bt_wcnt == 0)
3134 				a_tbl->at_wcnt--;
3135 
3136 			/*
3137 			 * If the removal resulted in an empty B table,
3138 			 * invalidate the DTE that points to it and decrement
3139 			 * the valid entry count of the A table.
3140 			 */
3141 			if (empty) {
3142 				a_dte->attr.raw = MMU_DT_INVALID;
3143 				a_tbl->at_ecnt--;
3144 			}
3145 		}
3146 		/*
3147 		 * If the DTE is invalid, the address range is already non-
3148 		 * existent and can simply be skipped.
3149 		 */
3150 	}
3151 	if (nstart < nend) {
3152 		/*
3153 		 * This block is executed if the range spans a whole number
3154 		 * multiple of granules (A table entries.)
3155 		 *
3156 		 * First find the DTE which is responsible for mapping
3157 		 * the start of the first granule involved.
3158 		 */
3159 		idx = MMU_TIA(nstart);
3160 		a_dte = &a_tbl->at_dtbl[idx];
3161 
3162 		/*
3163 		 * Remove entire sub-granules (B tables) one at a time,
3164 		 * until reaching the end of the range.
3165 		 */
3166 		for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
3167 			if (MMU_VALID_DT(*a_dte)) {
3168 				/*
3169 				 * Find the B table manager for the
3170 				 * entry and free it.
3171 				 */
3172 				b_dte = mmu_ptov(a_dte->addr.raw);
3173 				b_tbl = mmuB2tmgr(b_dte);
3174 				bt_wired = b_tbl->bt_wcnt;
3175 
3176 				free_b_table(b_tbl, true);
3177 
3178 				/*
3179 				 * All child entries has been removed.
3180 				 * If there were any wired entries in it,
3181 				 * decrement wired entry count.
3182 				 */
3183 				if (bt_wired)
3184 					a_tbl->at_wcnt--;
3185 
3186 				/*
3187 				 * Invalidate the DTE that points to the
3188 				 * B table and decrement the valid entry
3189 				 * count of the A table.
3190 				 */
3191 				a_dte->attr.raw = MMU_DT_INVALID;
3192 				a_tbl->at_ecnt--;
3193 			}
3194 	}
3195 	if (nend < eva) {
3196 		/*
3197 		 * This block is executed if the range ends beyond a
3198 		 * granularity boundary.
3199 		 *
3200 		 * First find the DTE which is responsible for mapping
3201 		 * the start of the nearest (rounded down) granularity
3202 		 * boundary.
3203 		 */
3204 		idx = MMU_TIA(nend);
3205 		a_dte = &a_tbl->at_dtbl[idx];
3206 
3207 		/*
3208 		 * If the DTE is valid then delegate the removal of the sub
3209 		 * range to pmap_remove_b(), which can remove addresses at
3210 		 * a finer granularity.
3211 		 */
3212 		if (MMU_VALID_DT(*a_dte)) {
3213 			/*
3214 			 * Find the B table manager for the entry
3215 			 * and hand it to pmap_remove_b() along with
3216 			 * the sub range.
3217 			 */
3218 			b_dte = mmu_ptov(a_dte->addr.raw);
3219 			b_tbl = mmuB2tmgr(b_dte);
3220 			bt_wired = b_tbl->bt_wcnt;
3221 
3222 			empty = pmap_remove_b(b_tbl, nend, eva);
3223 
3224 			/*
3225 			 * If the child table no longer has wired entries,
3226 			 * decrement wired entry count.
3227 			 */
3228 			if (bt_wired && b_tbl->bt_wcnt == 0)
3229 				a_tbl->at_wcnt--;
3230 			/*
3231 			 * If the removal resulted in an empty B table,
3232 			 * invalidate the DTE that points to it and decrement
3233 			 * the valid entry count of the A table.
3234 			 */
3235 			if (empty) {
3236 				a_dte->attr.raw = MMU_DT_INVALID;
3237 				a_tbl->at_ecnt--;
3238 			}
3239 		}
3240 	}
3241 
3242 	/*
3243 	 * If there are no more entries in the A table, release it
3244 	 * back to the available pool and return true.
3245 	 */
3246 	if (a_tbl->at_ecnt == 0) {
3247 		KASSERT(a_tbl->at_wcnt == 0);
3248 		a_tbl->at_parent = NULL;
3249 		if (!at_wired)
3250 			TAILQ_REMOVE(&a_pool, a_tbl, at_link);
3251 		TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
3252 		empty = true;
3253 	} else {
3254 		/*
3255 		 * If the table doesn't have wired entries any longer
3256 		 * but still has unwired entries, put it back into
3257 		 * the available queue.
3258 		 */
3259 		if (at_wired && a_tbl->at_wcnt == 0)
3260 			TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
3261 		empty = false;
3262 	}
3263 
3264 	return empty;
3265 }
3266 
3267 /* pmap_remove_b			INTERNAL
3268  **
3269  * Remove a range of addresses from an address space, trying to remove entire
3270  * C tables if possible.
3271  *
3272  * If the operation results in an empty B table, the function returns true.
3273  */
3274 bool
pmap_remove_b(b_tmgr_t * b_tbl,vaddr_t sva,vaddr_t eva)3275 pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
3276 {
3277 	bool empty;
3278 	int idx;
3279 	vaddr_t nstart, nend, rstart;
3280 	c_tmgr_t *c_tbl;
3281 	mmu_short_dte_t  *b_dte;
3282 	mmu_short_pte_t  *c_dte;
3283 	uint8_t bt_wired, ct_wired;
3284 
3285 	nstart = MMU_ROUND_UP_B(sva);
3286 	nend = MMU_ROUND_B(eva);
3287 
3288 	bt_wired = b_tbl->bt_wcnt;
3289 
3290 	if (sva < nstart) {
3291 		idx = MMU_TIB(sva);
3292 		b_dte = &b_tbl->bt_dtbl[idx];
3293 		if (MMU_VALID_DT(*b_dte)) {
3294 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3295 			c_tbl = mmuC2tmgr(c_dte);
3296 			ct_wired = c_tbl->ct_wcnt;
3297 
3298 			if (eva < nstart)
3299 				empty = pmap_remove_c(c_tbl, sva, eva);
3300 			else
3301 				empty = pmap_remove_c(c_tbl, sva, nstart);
3302 
3303 			/*
3304 			 * If the child table no longer has wired entries,
3305 			 * decrement wired entry count.
3306 			 */
3307 			if (ct_wired && c_tbl->ct_wcnt == 0)
3308 				b_tbl->bt_wcnt--;
3309 
3310 			if (empty) {
3311 				b_dte->attr.raw = MMU_DT_INVALID;
3312 				b_tbl->bt_ecnt--;
3313 			}
3314 		}
3315 	}
3316 	if (nstart < nend) {
3317 		idx = MMU_TIB(nstart);
3318 		b_dte = &b_tbl->bt_dtbl[idx];
3319 		rstart = nstart;
3320 		while (rstart < nend) {
3321 			if (MMU_VALID_DT(*b_dte)) {
3322 				c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3323 				c_tbl = mmuC2tmgr(c_dte);
3324 				ct_wired = c_tbl->ct_wcnt;
3325 
3326 				free_c_table(c_tbl, true);
3327 
3328 				/*
3329 				 * All child entries has been removed.
3330 				 * If there were any wired entries in it,
3331 				 * decrement wired entry count.
3332 				 */
3333 				if (ct_wired)
3334 					b_tbl->bt_wcnt--;
3335 
3336 				b_dte->attr.raw = MMU_DT_INVALID;
3337 				b_tbl->bt_ecnt--;
3338 			}
3339 			b_dte++;
3340 			rstart += MMU_TIB_RANGE;
3341 		}
3342 	}
3343 	if (nend < eva) {
3344 		idx = MMU_TIB(nend);
3345 		b_dte = &b_tbl->bt_dtbl[idx];
3346 		if (MMU_VALID_DT(*b_dte)) {
3347 			c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
3348 			c_tbl = mmuC2tmgr(c_dte);
3349 			ct_wired = c_tbl->ct_wcnt;
3350 			empty = pmap_remove_c(c_tbl, nend, eva);
3351 
3352 			/*
3353 			 * If the child table no longer has wired entries,
3354 			 * decrement wired entry count.
3355 			 */
3356 			if (ct_wired && c_tbl->ct_wcnt == 0)
3357 				b_tbl->bt_wcnt--;
3358 
3359 			if (empty) {
3360 				b_dte->attr.raw = MMU_DT_INVALID;
3361 				b_tbl->bt_ecnt--;
3362 			}
3363 		}
3364 	}
3365 
3366 	if (b_tbl->bt_ecnt == 0) {
3367 		KASSERT(b_tbl->bt_wcnt == 0);
3368 		b_tbl->bt_parent = NULL;
3369 		if (!bt_wired)
3370 			TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
3371 		TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
3372 		empty = true;
3373 	} else {
3374 		/*
3375 		 * If the table doesn't have wired entries any longer
3376 		 * but still has unwired entries, put it back into
3377 		 * the available queue.
3378 		 */
3379 		if (bt_wired && b_tbl->bt_wcnt == 0)
3380 			TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
3381 
3382 		empty = false;
3383 	}
3384 
3385 	return empty;
3386 }
3387 
3388 /* pmap_remove_c			INTERNAL
3389  **
3390  * Remove a range of addresses from the given C table.
3391  */
3392 bool
pmap_remove_c(c_tmgr_t * c_tbl,vaddr_t sva,vaddr_t eva)3393 pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
3394 {
3395 	bool empty;
3396 	int idx;
3397 	mmu_short_pte_t *c_pte;
3398 	uint8_t ct_wired;
3399 
3400 	ct_wired = c_tbl->ct_wcnt;
3401 
3402 	idx = MMU_TIC(sva);
3403 	c_pte = &c_tbl->ct_dtbl[idx];
3404 	for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
3405 		if (MMU_VALID_DT(*c_pte)) {
3406 			if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
3407 				c_tbl->ct_wcnt--;
3408 			pmap_remove_pte(c_pte);
3409 			c_tbl->ct_ecnt--;
3410 		}
3411 	}
3412 
3413 	if (c_tbl->ct_ecnt == 0) {
3414 		KASSERT(c_tbl->ct_wcnt == 0);
3415 		c_tbl->ct_parent = NULL;
3416 		if (!ct_wired)
3417 			TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
3418 		TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
3419 		empty = true;
3420 	} else {
3421 		/*
3422 		 * If the table doesn't have wired entries any longer
3423 		 * but still has unwired entries, put it back into
3424 		 * the available queue.
3425 		 */
3426 		if (ct_wired && c_tbl->ct_wcnt == 0)
3427 			TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
3428 		empty = false;
3429 	}
3430 
3431 	return empty;
3432 }
3433 
3434 /* pmap_bootstrap_alloc			INTERNAL
3435  **
3436  * Used internally for memory allocation at startup when malloc is not
3437  * available.  This code will fail once it crosses the first memory
3438  * bank boundary on the 3/80.  Hopefully by then however, the VM system
3439  * will be in charge of allocation.
3440  */
3441 void *
pmap_bootstrap_alloc(int size)3442 pmap_bootstrap_alloc(int size)
3443 {
3444 	void *rtn;
3445 
3446 #ifdef	PMAP_DEBUG
3447 	if (bootstrap_alloc_enabled == false) {
3448 		mon_printf("pmap_bootstrap_alloc: disabled\n");
3449 		sunmon_abort();
3450 	}
3451 #endif
3452 
3453 	rtn = (void *) virtual_avail;
3454 	virtual_avail += size;
3455 
3456 #ifdef	PMAP_DEBUG
3457 	if (virtual_avail > virtual_contig_end) {
3458 		mon_printf("pmap_bootstrap_alloc: out of mem\n");
3459 		sunmon_abort();
3460 	}
3461 #endif
3462 
3463 	return rtn;
3464 }
3465 
3466 /* pmap_bootstap_aalign			INTERNAL
3467  **
3468  * Used to insure that the next call to pmap_bootstrap_alloc() will
3469  * return a chunk of memory aligned to the specified size.
3470  *
3471  * Note: This function will only support alignment sizes that are powers
3472  * of two.
3473  */
3474 void
pmap_bootstrap_aalign(int size)3475 pmap_bootstrap_aalign(int size)
3476 {
3477 	int off;
3478 
3479 	off = virtual_avail & (size - 1);
3480 	if (off) {
3481 		(void)pmap_bootstrap_alloc(size - off);
3482 	}
3483 }
3484 
3485 /* pmap_pa_exists
3486  **
3487  * Used by the /dev/mem driver to see if a given PA is memory
3488  * that can be mapped.  (The PA is not in a hole.)
3489  */
3490 int
pmap_pa_exists(paddr_t pa)3491 pmap_pa_exists(paddr_t pa)
3492 {
3493 	int i;
3494 
3495 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3496 		if ((pa >= avail_mem[i].pmem_start) &&
3497 			(pa <  avail_mem[i].pmem_end))
3498 			return 1;
3499 		if (avail_mem[i].pmem_next == NULL)
3500 			break;
3501 	}
3502 	return 0;
3503 }
3504 
3505 /* Called only from locore.s and pmap.c */
3506 void	_pmap_switch(pmap_t pmap);
3507 
3508 /*
3509  * _pmap_switch			INTERNAL
3510  *
3511  * This is called by locore.s:cpu_switch() when it is
3512  * switching to a new process.  Load new translations.
3513  * Note: done in-line by locore.s unless PMAP_DEBUG
3514  *
3515  * Note that we do NOT allocate a context here, but
3516  * share the "kernel only" context until we really
3517  * need our own context for user-space mappings in
3518  * pmap_enter_user().  [ s/context/mmu A table/ ]
3519  */
3520 void
_pmap_switch(pmap_t pmap)3521 _pmap_switch(pmap_t pmap)
3522 {
3523 	u_long rootpa;
3524 
3525 	/*
3526 	 * Only do reload/flush if we have to.
3527 	 * Note that if the old and new process
3528 	 * were BOTH using the "null" context,
3529 	 * then this will NOT flush the TLB.
3530 	 */
3531 	rootpa = pmap->pm_a_phys;
3532 	if (kernel_crp.rp_addr != rootpa) {
3533 		DPRINT(("pmap_activate(%p)\n", pmap));
3534 		kernel_crp.rp_addr = rootpa;
3535 		loadcrp(&kernel_crp);
3536 		TBIAU();
3537 	}
3538 }
3539 
3540 /*
3541  * Exported version of pmap_activate().  This is called from the
3542  * machine-independent VM code when a process is given a new pmap.
3543  * If (p == curlwp) do like cpu_switch would do; otherwise just
3544  * take this as notification that the process has a new pmap.
3545  */
3546 void
pmap_activate(struct lwp * l)3547 pmap_activate(struct lwp *l)
3548 {
3549 
3550 	if (l->l_proc == curproc) {
3551 		_pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
3552 	}
3553 }
3554 
3555 /*
3556  * pmap_deactivate			INTERFACE
3557  **
3558  * This is called to deactivate the specified process's address space.
3559  */
3560 void
pmap_deactivate(struct lwp * l)3561 pmap_deactivate(struct lwp *l)
3562 {
3563 
3564 	/* Nothing to do. */
3565 }
3566 
3567 /*
3568  * Fill in the sun3x-specific part of the kernel core header
3569  * for dumpsys().  (See machdep.c for the rest.)
3570  */
3571 void
pmap_kcore_hdr(struct sun3x_kcore_hdr * sh)3572 pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
3573 {
3574 	u_long spa, len;
3575 	int i;
3576 
3577 	sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
3578 	sh->pg_valid = MMU_DT_PAGE;
3579 	sh->contig_end = virtual_contig_end;
3580 	sh->kernCbase = (u_long)kernCbase;
3581 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3582 		spa = avail_mem[i].pmem_start;
3583 		spa = m68k_trunc_page(spa);
3584 		len = avail_mem[i].pmem_end - spa;
3585 		len = m68k_round_page(len);
3586 		sh->ram_segs[i].start = spa;
3587 		sh->ram_segs[i].size  = len;
3588 	}
3589 }
3590 
3591 
3592 /* pmap_virtual_space			INTERFACE
3593  **
3594  * Return the current available range of virtual addresses in the
3595  * arguments provided.  Only really called once.
3596  */
3597 void
pmap_virtual_space(vaddr_t * vstart,vaddr_t * vend)3598 pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
3599 {
3600 
3601 	*vstart = virtual_avail;
3602 	*vend = virtual_end;
3603 }
3604 
3605 /*
3606  * Provide memory to the VM system.
3607  *
3608  * Assume avail_start is always in the
3609  * first segment as pmap_bootstrap does.
3610  */
3611 static void
pmap_page_upload(void)3612 pmap_page_upload(void)
3613 {
3614 	paddr_t	a, b;	/* memory range */
3615 	int i;
3616 
3617 	/* Supply the memory in segments. */
3618 	for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
3619 		a = atop(avail_mem[i].pmem_start);
3620 		b = atop(avail_mem[i].pmem_end);
3621 		if (i == 0)
3622 			a = atop(avail_start);
3623 		if (avail_mem[i].pmem_end > avail_end)
3624 			b = atop(avail_end);
3625 
3626 		uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);
3627 
3628 		if (avail_mem[i].pmem_next == NULL)
3629 			break;
3630 	}
3631 }
3632 
3633 /* pmap_count			INTERFACE
3634  **
3635  * Return the number of resident (valid) pages in the given pmap.
3636  *
3637  * Note:  If this function is handed the kernel map, it will report
3638  * that it has no mappings.  Hopefully the VM system won't ask for kernel
3639  * map statistics.
3640  */
3641 segsz_t
pmap_count(pmap_t pmap,int type)3642 pmap_count(pmap_t pmap, int type)
3643 {
3644 	u_int     count;
3645 	int       a_idx, b_idx;
3646 	a_tmgr_t *a_tbl;
3647 	b_tmgr_t *b_tbl;
3648 	c_tmgr_t *c_tbl;
3649 
3650 	/*
3651 	 * If the pmap does not have its own A table manager, it has no
3652 	 * valid entries.
3653 	 */
3654 	if (pmap->pm_a_tmgr == NULL)
3655 		return 0;
3656 
3657 	a_tbl = pmap->pm_a_tmgr;
3658 
3659 	count = 0;
3660 	for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) {
3661 	    if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
3662 	        b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
3663 	        for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
3664 	            if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
3665 	                c_tbl = mmuC2tmgr(
3666 	                    mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
3667 	                if (type == 0)
3668 	                    /*
3669 	                     * A resident entry count has been requested.
3670 	                     */
3671 	                    count += c_tbl->ct_ecnt;
3672 	                else
3673 	                    /*
3674 	                     * A wired entry count has been requested.
3675 	                     */
3676 	                    count += c_tbl->ct_wcnt;
3677 	            }
3678 	        }
3679 	    }
3680 	}
3681 
3682 	return count;
3683 }
3684 
3685 /************************ SUN3 COMPATIBILITY ROUTINES ********************
3686  * The following routines are only used by DDB for tricky kernel text    *
3687  * text operations in db_memrw.c.  They are provided for sun3            *
3688  * compatibility.                                                        *
3689  *************************************************************************/
3690 /* get_pte			INTERNAL
3691  **
3692  * Return the page descriptor the describes the kernel mapping
3693  * of the given virtual address.
3694  */
3695 extern u_long ptest_addr(u_long);	/* XXX: locore.s */
3696 u_int
get_pte(vaddr_t va)3697 get_pte(vaddr_t va)
3698 {
3699 	u_long pte_pa;
3700 	mmu_short_pte_t *pte;
3701 
3702 	/* Get the physical address of the PTE */
3703 	pte_pa = ptest_addr(va & ~PGOFSET);
3704 
3705 	/* Convert to a virtual address... */
3706 	pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa);
3707 
3708 	/* Make sure it is in our level-C tables... */
3709 	if ((pte < kernCbase) ||
3710 		(pte >= &mmuCbase[NUM_USER_PTES]))
3711 		return 0;
3712 
3713 	/* ... and just return its contents. */
3714 	return (pte->attr.raw);
3715 }
3716 
3717 
3718 /* set_pte			INTERNAL
3719  **
3720  * Set the page descriptor that describes the kernel mapping
3721  * of the given virtual address.
3722  */
3723 void
set_pte(vaddr_t va,u_int pte)3724 set_pte(vaddr_t va, u_int pte)
3725 {
3726 	u_long idx;
3727 
3728 	if (va < KERNBASE3X)
3729 		return;
3730 
3731 	idx = (unsigned long) m68k_btop(va - KERNBASE3X);
3732 	kernCbase[idx].attr.raw = pte;
3733 	TBIS(va);
3734 }
3735 
3736 /*
3737  *	Routine:        pmap_procwr
3738  *
3739  *	Function:
3740  *		Synchronize caches corresponding to [addr, addr+len) in p.
3741  */
3742 void
pmap_procwr(struct proc * p,vaddr_t va,size_t len)3743 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
3744 {
3745 
3746 	(void)cachectl1(0x80000004, va, len, p);
3747 }
3748 
3749 
3750 #ifdef	PMAP_DEBUG
3751 /************************** DEBUGGING ROUTINES **************************
3752  * The following routines are meant to be an aid to debugging the pmap  *
3753  * system.  They are callable from the DDB command line and should be   *
3754  * prepared to be handed unstable or incomplete states of the system.   *
3755  ************************************************************************/
3756 
3757 /* pv_list
3758  **
3759  * List all pages found on the pv list for the given physical page.
3760  * To avoid endless loops, the listing will stop at the end of the list
3761  * or after 'n' entries - whichever comes first.
3762  */
3763 void
pv_list(paddr_t pa,int n)3764 pv_list(paddr_t pa, int n)
3765 {
3766 	int  idx;
3767 	vaddr_t va;
3768 	pv_t *pv;
3769 	c_tmgr_t *c_tbl;
3770 	pmap_t pmap;
3771 
3772 	pv = pa2pv(pa);
3773 	idx = pv->pv_idx;
3774 	for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
3775 		va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
3776 		printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
3777 			idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
3778 	}
3779 }
3780 #endif	/* PMAP_DEBUG */
3781 
3782 #ifdef NOT_YET
3783 /* and maybe not ever */
3784 /************************** LOW-LEVEL ROUTINES **************************
3785  * These routines will eventually be re-written into assembly and placed*
3786  * in locore.s.  They are here now as stubs so that the pmap module can *
3787  * be linked as a standalone user program for testing.                  *
3788  ************************************************************************/
3789 /* flush_atc_crp			INTERNAL
3790  **
3791  * Flush all page descriptors derived from the given CPU Root Pointer
3792  * (CRP), or 'A' table as it is known here, from the 68851's automatic
3793  * cache.
3794  */
3795 void
flush_atc_crp(int a_tbl)3796 flush_atc_crp(int a_tbl)
3797 {
3798 	mmu_long_rp_t rp;
3799 
3800 	/* Create a temporary root table pointer that points to the
3801 	 * given A table.
3802 	 */
3803 	rp.attr.raw = ~MMU_LONG_RP_LU;
3804 	rp.addr.raw = (unsigned int) a_tbl;
3805 
3806 	mmu_pflushr(&rp);
3807 	/* mmu_pflushr:
3808 	 * 	movel   sp(4)@,a0
3809 	 * 	pflushr a0@
3810 	 *	rts
3811 	 */
3812 }
3813 #endif /* NOT_YET */
3814