1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/Loads.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include <numeric>
33 #include <queue>
34 
35 #define DEBUG_TYPE "vector-combine"
36 #include "llvm/Transforms/Utils/InstructionWorklist.h"
37 
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 STATISTIC(NumVecLoad, "Number of vector loads formed");
42 STATISTIC(NumVecCmp, "Number of vector compares formed");
43 STATISTIC(NumVecBO, "Number of vector binops formed");
44 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
45 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
46 STATISTIC(NumScalarBO, "Number of scalar binops formed");
47 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
48 
49 static cl::opt<bool> DisableVectorCombine(
50     "disable-vector-combine", cl::init(false), cl::Hidden,
51     cl::desc("Disable all vector combine transforms"));
52 
53 static cl::opt<bool> DisableBinopExtractShuffle(
54     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
55     cl::desc("Disable binop extract to shuffle transforms"));
56 
57 static cl::opt<unsigned> MaxInstrsToScan(
58     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
59     cl::desc("Max number of instructions to scan for vector combining."));
60 
61 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
62 
63 namespace {
64 class VectorCombine {
65 public:
VectorCombine(Function & F,const TargetTransformInfo & TTI,const DominatorTree & DT,AAResults & AA,AssumptionCache & AC,bool TryEarlyFoldsOnly)66   VectorCombine(Function &F, const TargetTransformInfo &TTI,
67                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
68                 bool TryEarlyFoldsOnly)
69       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
70         TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
71 
72   bool run();
73 
74 private:
75   Function &F;
76   IRBuilder<> Builder;
77   const TargetTransformInfo &TTI;
78   const DominatorTree &DT;
79   AAResults &AA;
80   AssumptionCache &AC;
81 
82   /// If true, only perform beneficial early IR transforms. Do not introduce new
83   /// vector operations.
84   bool TryEarlyFoldsOnly;
85 
86   InstructionWorklist Worklist;
87 
88   // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
89   //       parameter. That should be updated to specific sub-classes because the
90   //       run loop was changed to dispatch on opcode.
91   bool vectorizeLoadInsert(Instruction &I);
92   bool widenSubvectorLoad(Instruction &I);
93   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
94                                         ExtractElementInst *Ext1,
95                                         unsigned PreferredExtractIndex) const;
96   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
97                              const Instruction &I,
98                              ExtractElementInst *&ConvertToShuffle,
99                              unsigned PreferredExtractIndex);
100   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
101                      Instruction &I);
102   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
103                        Instruction &I);
104   bool foldExtractExtract(Instruction &I);
105   bool foldInsExtFNeg(Instruction &I);
106   bool foldBitcastShuffle(Instruction &I);
107   bool scalarizeBinopOrCmp(Instruction &I);
108   bool scalarizeVPIntrinsic(Instruction &I);
109   bool foldExtractedCmps(Instruction &I);
110   bool foldSingleElementStore(Instruction &I);
111   bool scalarizeLoadExtract(Instruction &I);
112   bool foldShuffleOfBinops(Instruction &I);
113   bool foldShuffleFromReductions(Instruction &I);
114   bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
115 
replaceValue(Value & Old,Value & New)116   void replaceValue(Value &Old, Value &New) {
117     Old.replaceAllUsesWith(&New);
118     if (auto *NewI = dyn_cast<Instruction>(&New)) {
119       New.takeName(&Old);
120       Worklist.pushUsersToWorkList(*NewI);
121       Worklist.pushValue(NewI);
122     }
123     Worklist.pushValue(&Old);
124   }
125 
eraseInstruction(Instruction & I)126   void eraseInstruction(Instruction &I) {
127     for (Value *Op : I.operands())
128       Worklist.pushValue(Op);
129     Worklist.remove(&I);
130     I.eraseFromParent();
131   }
132 };
133 } // namespace
134 
canWidenLoad(LoadInst * Load,const TargetTransformInfo & TTI)135 static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
136   // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
137   // The widened load may load data from dirty regions or create data races
138   // non-existent in the source.
139   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
140       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
141       mustSuppressSpeculation(*Load))
142     return false;
143 
144   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
145   // sure we have all of our type-based constraints in place for this target.
146   Type *ScalarTy = Load->getType()->getScalarType();
147   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
148   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
149   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
150       ScalarSize % 8 != 0)
151     return false;
152 
153   return true;
154 }
155 
vectorizeLoadInsert(Instruction & I)156 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
157   // Match insert into fixed vector of scalar value.
158   // TODO: Handle non-zero insert index.
159   Value *Scalar;
160   if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
161       !Scalar->hasOneUse())
162     return false;
163 
164   // Optionally match an extract from another vector.
165   Value *X;
166   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
167   if (!HasExtract)
168     X = Scalar;
169 
170   auto *Load = dyn_cast<LoadInst>(X);
171   if (!canWidenLoad(Load, TTI))
172     return false;
173 
174   Type *ScalarTy = Scalar->getType();
175   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
176   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
177 
178   // Check safety of replacing the scalar load with a larger vector load.
179   // We use minimal alignment (maximum flexibility) because we only care about
180   // the dereferenceable region. When calculating cost and creating a new op,
181   // we may use a larger value based on alignment attributes.
182   const DataLayout &DL = I.getModule()->getDataLayout();
183   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
184   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
185 
186   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
187   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
188   unsigned OffsetEltIndex = 0;
189   Align Alignment = Load->getAlign();
190   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &AC,
191                                    &DT)) {
192     // It is not safe to load directly from the pointer, but we can still peek
193     // through gep offsets and check if it safe to load from a base address with
194     // updated alignment. If it is, we can shuffle the element(s) into place
195     // after loading.
196     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
197     APInt Offset(OffsetBitWidth, 0);
198     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
199 
200     // We want to shuffle the result down from a high element of a vector, so
201     // the offset must be positive.
202     if (Offset.isNegative())
203       return false;
204 
205     // The offset must be a multiple of the scalar element to shuffle cleanly
206     // in the element's size.
207     uint64_t ScalarSizeInBytes = ScalarSize / 8;
208     if (Offset.urem(ScalarSizeInBytes) != 0)
209       return false;
210 
211     // If we load MinVecNumElts, will our target element still be loaded?
212     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
213     if (OffsetEltIndex >= MinVecNumElts)
214       return false;
215 
216     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &AC,
217                                      &DT))
218       return false;
219 
220     // Update alignment with offset value. Note that the offset could be negated
221     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
222     // negation does not change the result of the alignment calculation.
223     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
224   }
225 
226   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
227   // Use the greater of the alignment on the load or its source pointer.
228   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
229   Type *LoadTy = Load->getType();
230   unsigned AS = Load->getPointerAddressSpace();
231   InstructionCost OldCost =
232       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
233   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
234   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
235   OldCost +=
236       TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
237                                    /* Insert */ true, HasExtract, CostKind);
238 
239   // New pattern: load VecPtr
240   InstructionCost NewCost =
241       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
242   // Optionally, we are shuffling the loaded vector element(s) into place.
243   // For the mask set everything but element 0 to undef to prevent poison from
244   // propagating from the extra loaded memory. This will also optionally
245   // shrink/grow the vector from the loaded size to the output size.
246   // We assume this operation has no cost in codegen if there was no offset.
247   // Note that we could use freeze to avoid poison problems, but then we might
248   // still need a shuffle to change the vector size.
249   auto *Ty = cast<FixedVectorType>(I.getType());
250   unsigned OutputNumElts = Ty->getNumElements();
251   SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
252   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
253   Mask[0] = OffsetEltIndex;
254   if (OffsetEltIndex)
255     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
256 
257   // We can aggressively convert to the vector form because the backend can
258   // invert this transform if it does not result in a performance win.
259   if (OldCost < NewCost || !NewCost.isValid())
260     return false;
261 
262   // It is safe and potentially profitable to load a vector directly:
263   // inselt undef, load Scalar, 0 --> load VecPtr
264   IRBuilder<> Builder(Load);
265   Value *CastedPtr =
266       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
267   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
268   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
269 
270   replaceValue(I, *VecLd);
271   ++NumVecLoad;
272   return true;
273 }
274 
275 /// If we are loading a vector and then inserting it into a larger vector with
276 /// undefined elements, try to load the larger vector and eliminate the insert.
277 /// This removes a shuffle in IR and may allow combining of other loaded values.
widenSubvectorLoad(Instruction & I)278 bool VectorCombine::widenSubvectorLoad(Instruction &I) {
279   // Match subvector insert of fixed vector.
280   auto *Shuf = cast<ShuffleVectorInst>(&I);
281   if (!Shuf->isIdentityWithPadding())
282     return false;
283 
284   // Allow a non-canonical shuffle mask that is choosing elements from op1.
285   unsigned NumOpElts =
286       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
287   unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
288     return M >= (int)(NumOpElts);
289   });
290 
291   auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
292   if (!canWidenLoad(Load, TTI))
293     return false;
294 
295   // We use minimal alignment (maximum flexibility) because we only care about
296   // the dereferenceable region. When calculating cost and creating a new op,
297   // we may use a larger value based on alignment attributes.
298   auto *Ty = cast<FixedVectorType>(I.getType());
299   const DataLayout &DL = I.getModule()->getDataLayout();
300   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
301   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
302   Align Alignment = Load->getAlign();
303   if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), DL, Load, &AC, &DT))
304     return false;
305 
306   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
307   Type *LoadTy = Load->getType();
308   unsigned AS = Load->getPointerAddressSpace();
309 
310   // Original pattern: insert_subvector (load PtrOp)
311   // This conservatively assumes that the cost of a subvector insert into an
312   // undef value is 0. We could add that cost if the cost model accurately
313   // reflects the real cost of that operation.
314   InstructionCost OldCost =
315       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
316 
317   // New pattern: load PtrOp
318   InstructionCost NewCost =
319       TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS);
320 
321   // We can aggressively convert to the vector form because the backend can
322   // invert this transform if it does not result in a performance win.
323   if (OldCost < NewCost || !NewCost.isValid())
324     return false;
325 
326   IRBuilder<> Builder(Load);
327   Value *CastedPtr =
328       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
329   Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
330   replaceValue(I, *VecLd);
331   ++NumVecLoad;
332   return true;
333 }
334 
335 /// Determine which, if any, of the inputs should be replaced by a shuffle
336 /// followed by extract from a different index.
getShuffleExtract(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned PreferredExtractIndex=InvalidIndex) const337 ExtractElementInst *VectorCombine::getShuffleExtract(
338     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
339     unsigned PreferredExtractIndex = InvalidIndex) const {
340   auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
341   auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
342   assert(Index0C && Index1C && "Expected constant extract indexes");
343 
344   unsigned Index0 = Index0C->getZExtValue();
345   unsigned Index1 = Index1C->getZExtValue();
346 
347   // If the extract indexes are identical, no shuffle is needed.
348   if (Index0 == Index1)
349     return nullptr;
350 
351   Type *VecTy = Ext0->getVectorOperand()->getType();
352   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
353   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
354   InstructionCost Cost0 =
355       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
356   InstructionCost Cost1 =
357       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
358 
359   // If both costs are invalid no shuffle is needed
360   if (!Cost0.isValid() && !Cost1.isValid())
361     return nullptr;
362 
363   // We are extracting from 2 different indexes, so one operand must be shuffled
364   // before performing a vector operation and/or extract. The more expensive
365   // extract will be replaced by a shuffle.
366   if (Cost0 > Cost1)
367     return Ext0;
368   if (Cost1 > Cost0)
369     return Ext1;
370 
371   // If the costs are equal and there is a preferred extract index, shuffle the
372   // opposite operand.
373   if (PreferredExtractIndex == Index0)
374     return Ext1;
375   if (PreferredExtractIndex == Index1)
376     return Ext0;
377 
378   // Otherwise, replace the extract with the higher index.
379   return Index0 > Index1 ? Ext0 : Ext1;
380 }
381 
382 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
383 /// vector operation(s) followed by extract. Return true if the existing
384 /// instructions are cheaper than a vector alternative. Otherwise, return false
385 /// and if one of the extracts should be transformed to a shufflevector, set
386 /// \p ConvertToShuffle to that extract instruction.
isExtractExtractCheap(ExtractElementInst * Ext0,ExtractElementInst * Ext1,const Instruction & I,ExtractElementInst * & ConvertToShuffle,unsigned PreferredExtractIndex)387 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
388                                           ExtractElementInst *Ext1,
389                                           const Instruction &I,
390                                           ExtractElementInst *&ConvertToShuffle,
391                                           unsigned PreferredExtractIndex) {
392   auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1));
393   auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1));
394   assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
395 
396   unsigned Opcode = I.getOpcode();
397   Type *ScalarTy = Ext0->getType();
398   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
399   InstructionCost ScalarOpCost, VectorOpCost;
400 
401   // Get cost estimates for scalar and vector versions of the operation.
402   bool IsBinOp = Instruction::isBinaryOp(Opcode);
403   if (IsBinOp) {
404     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
405     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
406   } else {
407     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
408            "Expected a compare");
409     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
410     ScalarOpCost = TTI.getCmpSelInstrCost(
411         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
412     VectorOpCost = TTI.getCmpSelInstrCost(
413         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
414   }
415 
416   // Get cost estimates for the extract elements. These costs will factor into
417   // both sequences.
418   unsigned Ext0Index = Ext0IndexC->getZExtValue();
419   unsigned Ext1Index = Ext1IndexC->getZExtValue();
420   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
421 
422   InstructionCost Extract0Cost =
423       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
424   InstructionCost Extract1Cost =
425       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
426 
427   // A more expensive extract will always be replaced by a splat shuffle.
428   // For example, if Ext0 is more expensive:
429   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
430   // extelt (opcode (splat V0, Ext0), V1), Ext1
431   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
432   //       check the cost of creating a broadcast shuffle and shuffling both
433   //       operands to element 0.
434   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
435 
436   // Extra uses of the extracts mean that we include those costs in the
437   // vector total because those instructions will not be eliminated.
438   InstructionCost OldCost, NewCost;
439   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
440     // Handle a special case. If the 2 extracts are identical, adjust the
441     // formulas to account for that. The extra use charge allows for either the
442     // CSE'd pattern or an unoptimized form with identical values:
443     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
444     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
445                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
446     OldCost = CheapExtractCost + ScalarOpCost;
447     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
448   } else {
449     // Handle the general case. Each extract is actually a different value:
450     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
451     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
452     NewCost = VectorOpCost + CheapExtractCost +
453               !Ext0->hasOneUse() * Extract0Cost +
454               !Ext1->hasOneUse() * Extract1Cost;
455   }
456 
457   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
458   if (ConvertToShuffle) {
459     if (IsBinOp && DisableBinopExtractShuffle)
460       return true;
461 
462     // If we are extracting from 2 different indexes, then one operand must be
463     // shuffled before performing the vector operation. The shuffle mask is
464     // poison except for 1 lane that is being translated to the remaining
465     // extraction lane. Therefore, it is a splat shuffle. Ex:
466     // ShufMask = { poison, poison, 0, poison }
467     // TODO: The cost model has an option for a "broadcast" shuffle
468     //       (splat-from-element-0), but no option for a more general splat.
469     NewCost +=
470         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
471   }
472 
473   // Aggressively form a vector op if the cost is equal because the transform
474   // may enable further optimization.
475   // Codegen can reverse this transform (scalarize) if it was not profitable.
476   return OldCost < NewCost;
477 }
478 
479 /// Create a shuffle that translates (shifts) 1 element from the input vector
480 /// to a new element location.
createShiftShuffle(Value * Vec,unsigned OldIndex,unsigned NewIndex,IRBuilder<> & Builder)481 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
482                                  unsigned NewIndex, IRBuilder<> &Builder) {
483   // The shuffle mask is poison except for 1 lane that is being translated
484   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
485   // ShufMask = { 2, poison, poison, poison }
486   auto *VecTy = cast<FixedVectorType>(Vec->getType());
487   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
488   ShufMask[NewIndex] = OldIndex;
489   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
490 }
491 
492 /// Given an extract element instruction with constant index operand, shuffle
493 /// the source vector (shift the scalar element) to a NewIndex for extraction.
494 /// Return null if the input can be constant folded, so that we are not creating
495 /// unnecessary instructions.
translateExtract(ExtractElementInst * ExtElt,unsigned NewIndex,IRBuilder<> & Builder)496 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
497                                             unsigned NewIndex,
498                                             IRBuilder<> &Builder) {
499   // Shufflevectors can only be created for fixed-width vectors.
500   if (!isa<FixedVectorType>(ExtElt->getOperand(0)->getType()))
501     return nullptr;
502 
503   // If the extract can be constant-folded, this code is unsimplified. Defer
504   // to other passes to handle that.
505   Value *X = ExtElt->getVectorOperand();
506   Value *C = ExtElt->getIndexOperand();
507   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
508   if (isa<Constant>(X))
509     return nullptr;
510 
511   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
512                                    NewIndex, Builder);
513   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
514 }
515 
516 /// Try to reduce extract element costs by converting scalar compares to vector
517 /// compares followed by extract.
518 /// cmp (ext0 V0, C), (ext1 V1, C)
foldExtExtCmp(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)519 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
520                                   ExtractElementInst *Ext1, Instruction &I) {
521   assert(isa<CmpInst>(&I) && "Expected a compare");
522   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
523              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
524          "Expected matching constant extract indexes");
525 
526   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
527   ++NumVecCmp;
528   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
529   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
530   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
531   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
532   replaceValue(I, *NewExt);
533 }
534 
535 /// Try to reduce extract element costs by converting scalar binops to vector
536 /// binops followed by extract.
537 /// bo (ext0 V0, C), (ext1 V1, C)
foldExtExtBinop(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)538 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
539                                     ExtractElementInst *Ext1, Instruction &I) {
540   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
541   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
542              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
543          "Expected matching constant extract indexes");
544 
545   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
546   ++NumVecBO;
547   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
548   Value *VecBO =
549       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
550 
551   // All IR flags are safe to back-propagate because any potential poison
552   // created in unused vector elements is discarded by the extract.
553   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
554     VecBOInst->copyIRFlags(&I);
555 
556   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
557   replaceValue(I, *NewExt);
558 }
559 
560 /// Match an instruction with extracted vector operands.
foldExtractExtract(Instruction & I)561 bool VectorCombine::foldExtractExtract(Instruction &I) {
562   // It is not safe to transform things like div, urem, etc. because we may
563   // create undefined behavior when executing those on unknown vector elements.
564   if (!isSafeToSpeculativelyExecute(&I))
565     return false;
566 
567   Instruction *I0, *I1;
568   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
569   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
570       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
571     return false;
572 
573   Value *V0, *V1;
574   uint64_t C0, C1;
575   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
576       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
577       V0->getType() != V1->getType())
578     return false;
579 
580   // If the scalar value 'I' is going to be re-inserted into a vector, then try
581   // to create an extract to that same element. The extract/insert can be
582   // reduced to a "select shuffle".
583   // TODO: If we add a larger pattern match that starts from an insert, this
584   //       probably becomes unnecessary.
585   auto *Ext0 = cast<ExtractElementInst>(I0);
586   auto *Ext1 = cast<ExtractElementInst>(I1);
587   uint64_t InsertIndex = InvalidIndex;
588   if (I.hasOneUse())
589     match(I.user_back(),
590           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
591 
592   ExtractElementInst *ExtractToChange;
593   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
594     return false;
595 
596   if (ExtractToChange) {
597     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
598     ExtractElementInst *NewExtract =
599         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
600     if (!NewExtract)
601       return false;
602     if (ExtractToChange == Ext0)
603       Ext0 = NewExtract;
604     else
605       Ext1 = NewExtract;
606   }
607 
608   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
609     foldExtExtCmp(Ext0, Ext1, I);
610   else
611     foldExtExtBinop(Ext0, Ext1, I);
612 
613   Worklist.push(Ext0);
614   Worklist.push(Ext1);
615   return true;
616 }
617 
618 /// Try to replace an extract + scalar fneg + insert with a vector fneg +
619 /// shuffle.
foldInsExtFNeg(Instruction & I)620 bool VectorCombine::foldInsExtFNeg(Instruction &I) {
621   // Match an insert (op (extract)) pattern.
622   Value *DestVec;
623   uint64_t Index;
624   Instruction *FNeg;
625   if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
626                              m_ConstantInt(Index))))
627     return false;
628 
629   // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
630   Value *SrcVec;
631   Instruction *Extract;
632   if (!match(FNeg, m_FNeg(m_CombineAnd(
633                        m_Instruction(Extract),
634                        m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
635     return false;
636 
637   // TODO: We could handle this with a length-changing shuffle.
638   auto *VecTy = cast<FixedVectorType>(I.getType());
639   if (SrcVec->getType() != VecTy)
640     return false;
641 
642   // Ignore bogus insert/extract index.
643   unsigned NumElts = VecTy->getNumElements();
644   if (Index >= NumElts)
645     return false;
646 
647   // We are inserting the negated element into the same lane that we extracted
648   // from. This is equivalent to a select-shuffle that chooses all but the
649   // negated element from the destination vector.
650   SmallVector<int> Mask(NumElts);
651   std::iota(Mask.begin(), Mask.end(), 0);
652   Mask[Index] = Index + NumElts;
653 
654   Type *ScalarTy = VecTy->getScalarType();
655   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
656   InstructionCost OldCost =
657       TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy) +
658       TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
659 
660   // If the extract has one use, it will be eliminated, so count it in the
661   // original cost. If it has more than one use, ignore the cost because it will
662   // be the same before/after.
663   if (Extract->hasOneUse())
664     OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
665 
666   InstructionCost NewCost =
667       TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy) +
668       TTI.getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask);
669 
670   if (NewCost > OldCost)
671     return false;
672 
673   // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index -->
674   // shuffle DestVec, (fneg SrcVec), Mask
675   Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
676   Value *Shuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
677   replaceValue(I, *Shuf);
678   return true;
679 }
680 
681 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
682 /// destination type followed by shuffle. This can enable further transforms by
683 /// moving bitcasts or shuffles together.
foldBitcastShuffle(Instruction & I)684 bool VectorCombine::foldBitcastShuffle(Instruction &I) {
685   Value *V;
686   ArrayRef<int> Mask;
687   if (!match(&I, m_BitCast(
688                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
689     return false;
690 
691   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
692   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
693   // mask for scalable type is a splat or not.
694   // 2) Disallow non-vector casts.
695   // TODO: We could allow any shuffle.
696   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
697   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
698   if (!DestTy || !SrcTy)
699     return false;
700 
701   unsigned DestEltSize = DestTy->getScalarSizeInBits();
702   unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
703   if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
704     return false;
705 
706   SmallVector<int, 16> NewMask;
707   if (DestEltSize <= SrcEltSize) {
708     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
709     // always be expanded to the equivalent form choosing narrower elements.
710     assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
711     unsigned ScaleFactor = SrcEltSize / DestEltSize;
712     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
713   } else {
714     // The bitcast is from narrow elements to wide elements. The shuffle mask
715     // must choose consecutive elements to allow casting first.
716     assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
717     unsigned ScaleFactor = DestEltSize / SrcEltSize;
718     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
719       return false;
720   }
721 
722   // Bitcast the shuffle src - keep its original width but using the destination
723   // scalar type.
724   unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
725   auto *ShuffleTy = FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
726 
727   // The new shuffle must not cost more than the old shuffle. The bitcast is
728   // moved ahead of the shuffle, so assume that it has the same cost as before.
729   InstructionCost DestCost = TTI.getShuffleCost(
730       TargetTransformInfo::SK_PermuteSingleSrc, ShuffleTy, NewMask);
731   InstructionCost SrcCost =
732       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
733   if (DestCost > SrcCost || !DestCost.isValid())
734     return false;
735 
736   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
737   ++NumShufOfBitcast;
738   Value *CastV = Builder.CreateBitCast(V, ShuffleTy);
739   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
740   replaceValue(I, *Shuf);
741   return true;
742 }
743 
744 /// VP Intrinsics whose vector operands are both splat values may be simplified
745 /// into the scalar version of the operation and the result splatted. This
746 /// can lead to scalarization down the line.
scalarizeVPIntrinsic(Instruction & I)747 bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
748   if (!isa<VPIntrinsic>(I))
749     return false;
750   VPIntrinsic &VPI = cast<VPIntrinsic>(I);
751   Value *Op0 = VPI.getArgOperand(0);
752   Value *Op1 = VPI.getArgOperand(1);
753 
754   if (!isSplatValue(Op0) || !isSplatValue(Op1))
755     return false;
756 
757   // Check getSplatValue early in this function, to avoid doing unnecessary
758   // work.
759   Value *ScalarOp0 = getSplatValue(Op0);
760   Value *ScalarOp1 = getSplatValue(Op1);
761   if (!ScalarOp0 || !ScalarOp1)
762     return false;
763 
764   // For the binary VP intrinsics supported here, the result on disabled lanes
765   // is a poison value. For now, only do this simplification if all lanes
766   // are active.
767   // TODO: Relax the condition that all lanes are active by using insertelement
768   // on inactive lanes.
769   auto IsAllTrueMask = [](Value *MaskVal) {
770     if (Value *SplattedVal = getSplatValue(MaskVal))
771       if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
772         return ConstValue->isAllOnesValue();
773     return false;
774   };
775   if (!IsAllTrueMask(VPI.getArgOperand(2)))
776     return false;
777 
778   // Check to make sure we support scalarization of the intrinsic
779   Intrinsic::ID IntrID = VPI.getIntrinsicID();
780   if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
781     return false;
782 
783   // Calculate cost of splatting both operands into vectors and the vector
784   // intrinsic
785   VectorType *VecTy = cast<VectorType>(VPI.getType());
786   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
787   InstructionCost SplatCost =
788       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
789       TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
790 
791   // Calculate the cost of the VP Intrinsic
792   SmallVector<Type *, 4> Args;
793   for (Value *V : VPI.args())
794     Args.push_back(V->getType());
795   IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
796   InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
797   InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
798 
799   // Determine scalar opcode
800   std::optional<unsigned> FunctionalOpcode =
801       VPI.getFunctionalOpcode();
802   std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
803   if (!FunctionalOpcode) {
804     ScalarIntrID = VPI.getFunctionalIntrinsicID();
805     if (!ScalarIntrID)
806       return false;
807   }
808 
809   // Calculate cost of scalarizing
810   InstructionCost ScalarOpCost = 0;
811   if (ScalarIntrID) {
812     IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
813     ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
814   } else {
815     ScalarOpCost =
816         TTI.getArithmeticInstrCost(*FunctionalOpcode, VecTy->getScalarType());
817   }
818 
819   // The existing splats may be kept around if other instructions use them.
820   InstructionCost CostToKeepSplats =
821       (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
822   InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
823 
824   LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
825                     << "\n");
826   LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
827                     << ", Cost of scalarizing:" << NewCost << "\n");
828 
829   // We want to scalarize unless the vector variant actually has lower cost.
830   if (OldCost < NewCost || !NewCost.isValid())
831     return false;
832 
833   // Scalarize the intrinsic
834   ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
835   Value *EVL = VPI.getArgOperand(3);
836   const DataLayout &DL = VPI.getModule()->getDataLayout();
837 
838   // If the VP op might introduce UB or poison, we can scalarize it provided
839   // that we know the EVL > 0: If the EVL is zero, then the original VP op
840   // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
841   // scalarizing it.
842   bool SafeToSpeculate;
843   if (ScalarIntrID)
844     SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
845                           .hasFnAttr(Attribute::AttrKind::Speculatable);
846   else
847     SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
848         *FunctionalOpcode, &VPI, nullptr, &AC, &DT);
849   if (!SafeToSpeculate && !isKnownNonZero(EVL, DL, 0, &AC, &VPI, &DT))
850     return false;
851 
852   Value *ScalarVal =
853       ScalarIntrID
854           ? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
855                                     {ScalarOp0, ScalarOp1})
856           : Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
857                                 ScalarOp0, ScalarOp1);
858 
859   replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
860   return true;
861 }
862 
863 /// Match a vector binop or compare instruction with at least one inserted
864 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
scalarizeBinopOrCmp(Instruction & I)865 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
866   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
867   Value *Ins0, *Ins1;
868   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
869       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
870     return false;
871 
872   // Do not convert the vector condition of a vector select into a scalar
873   // condition. That may cause problems for codegen because of differences in
874   // boolean formats and register-file transfers.
875   // TODO: Can we account for that in the cost model?
876   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
877   if (IsCmp)
878     for (User *U : I.users())
879       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
880         return false;
881 
882   // Match against one or both scalar values being inserted into constant
883   // vectors:
884   // vec_op VecC0, (inselt VecC1, V1, Index)
885   // vec_op (inselt VecC0, V0, Index), VecC1
886   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
887   // TODO: Deal with mismatched index constants and variable indexes?
888   Constant *VecC0 = nullptr, *VecC1 = nullptr;
889   Value *V0 = nullptr, *V1 = nullptr;
890   uint64_t Index0 = 0, Index1 = 0;
891   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
892                                m_ConstantInt(Index0))) &&
893       !match(Ins0, m_Constant(VecC0)))
894     return false;
895   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
896                                m_ConstantInt(Index1))) &&
897       !match(Ins1, m_Constant(VecC1)))
898     return false;
899 
900   bool IsConst0 = !V0;
901   bool IsConst1 = !V1;
902   if (IsConst0 && IsConst1)
903     return false;
904   if (!IsConst0 && !IsConst1 && Index0 != Index1)
905     return false;
906 
907   // Bail for single insertion if it is a load.
908   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
909   auto *I0 = dyn_cast_or_null<Instruction>(V0);
910   auto *I1 = dyn_cast_or_null<Instruction>(V1);
911   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
912       (IsConst1 && I0 && I0->mayReadFromMemory()))
913     return false;
914 
915   uint64_t Index = IsConst0 ? Index1 : Index0;
916   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
917   Type *VecTy = I.getType();
918   assert(VecTy->isVectorTy() &&
919          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
920          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
921           ScalarTy->isPointerTy()) &&
922          "Unexpected types for insert element into binop or cmp");
923 
924   unsigned Opcode = I.getOpcode();
925   InstructionCost ScalarOpCost, VectorOpCost;
926   if (IsCmp) {
927     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
928     ScalarOpCost = TTI.getCmpSelInstrCost(
929         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
930     VectorOpCost = TTI.getCmpSelInstrCost(
931         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
932   } else {
933     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
934     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
935   }
936 
937   // Get cost estimate for the insert element. This cost will factor into
938   // both sequences.
939   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
940   InstructionCost InsertCost = TTI.getVectorInstrCost(
941       Instruction::InsertElement, VecTy, CostKind, Index);
942   InstructionCost OldCost =
943       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
944   InstructionCost NewCost = ScalarOpCost + InsertCost +
945                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
946                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
947 
948   // We want to scalarize unless the vector variant actually has lower cost.
949   if (OldCost < NewCost || !NewCost.isValid())
950     return false;
951 
952   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
953   // inselt NewVecC, (scalar_op V0, V1), Index
954   if (IsCmp)
955     ++NumScalarCmp;
956   else
957     ++NumScalarBO;
958 
959   // For constant cases, extract the scalar element, this should constant fold.
960   if (IsConst0)
961     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
962   if (IsConst1)
963     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
964 
965   Value *Scalar =
966       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
967             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
968 
969   Scalar->setName(I.getName() + ".scalar");
970 
971   // All IR flags are safe to back-propagate. There is no potential for extra
972   // poison to be created by the scalar instruction.
973   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
974     ScalarInst->copyIRFlags(&I);
975 
976   // Fold the vector constants in the original vectors into a new base vector.
977   Value *NewVecC =
978       IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
979             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
980   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
981   replaceValue(I, *Insert);
982   return true;
983 }
984 
985 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
986 /// a vector into vector operations followed by extract. Note: The SLP pass
987 /// may miss this pattern because of implementation problems.
foldExtractedCmps(Instruction & I)988 bool VectorCombine::foldExtractedCmps(Instruction &I) {
989   // We are looking for a scalar binop of booleans.
990   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
991   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
992     return false;
993 
994   // The compare predicates should match, and each compare should have a
995   // constant operand.
996   // TODO: Relax the one-use constraints.
997   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
998   Instruction *I0, *I1;
999   Constant *C0, *C1;
1000   CmpInst::Predicate P0, P1;
1001   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
1002       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
1003       P0 != P1)
1004     return false;
1005 
1006   // The compare operands must be extracts of the same vector with constant
1007   // extract indexes.
1008   // TODO: Relax the one-use constraints.
1009   Value *X;
1010   uint64_t Index0, Index1;
1011   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
1012       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
1013     return false;
1014 
1015   auto *Ext0 = cast<ExtractElementInst>(I0);
1016   auto *Ext1 = cast<ExtractElementInst>(I1);
1017   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
1018   if (!ConvertToShuf)
1019     return false;
1020 
1021   // The original scalar pattern is:
1022   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1023   CmpInst::Predicate Pred = P0;
1024   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
1025                                                     : Instruction::ICmp;
1026   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
1027   if (!VecTy)
1028     return false;
1029 
1030   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1031   InstructionCost OldCost =
1032       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
1033   OldCost += TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
1034   OldCost +=
1035       TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
1036                              CmpInst::makeCmpResultType(I0->getType()), Pred) *
1037       2;
1038   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
1039 
1040   // The proposed vector pattern is:
1041   // vcmp = cmp Pred X, VecC
1042   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1043   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1044   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1045   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
1046   InstructionCost NewCost = TTI.getCmpSelInstrCost(
1047       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
1048   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
1049   ShufMask[CheapIndex] = ExpensiveIndex;
1050   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
1051                                 ShufMask);
1052   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
1053   NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
1054 
1055   // Aggressively form vector ops if the cost is equal because the transform
1056   // may enable further optimization.
1057   // Codegen can reverse this transform (scalarize) if it was not profitable.
1058   if (OldCost < NewCost || !NewCost.isValid())
1059     return false;
1060 
1061   // Create a vector constant from the 2 scalar constants.
1062   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
1063                                    PoisonValue::get(VecTy->getElementType()));
1064   CmpC[Index0] = C0;
1065   CmpC[Index1] = C1;
1066   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
1067 
1068   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
1069   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
1070                                         VCmp, Shuf);
1071   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
1072   replaceValue(I, *NewExt);
1073   ++NumVecCmpBO;
1074   return true;
1075 }
1076 
1077 // Check if memory loc modified between two instrs in the same BB
isMemModifiedBetween(BasicBlock::iterator Begin,BasicBlock::iterator End,const MemoryLocation & Loc,AAResults & AA)1078 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
1079                                  BasicBlock::iterator End,
1080                                  const MemoryLocation &Loc, AAResults &AA) {
1081   unsigned NumScanned = 0;
1082   return std::any_of(Begin, End, [&](const Instruction &Instr) {
1083     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
1084            ++NumScanned > MaxInstrsToScan;
1085   });
1086 }
1087 
1088 namespace {
1089 /// Helper class to indicate whether a vector index can be safely scalarized and
1090 /// if a freeze needs to be inserted.
1091 class ScalarizationResult {
1092   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1093 
1094   StatusTy Status;
1095   Value *ToFreeze;
1096 
ScalarizationResult(StatusTy Status,Value * ToFreeze=nullptr)1097   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
1098       : Status(Status), ToFreeze(ToFreeze) {}
1099 
1100 public:
1101   ScalarizationResult(const ScalarizationResult &Other) = default;
~ScalarizationResult()1102   ~ScalarizationResult() {
1103     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
1104   }
1105 
unsafe()1106   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
safe()1107   static ScalarizationResult safe() { return {StatusTy::Safe}; }
safeWithFreeze(Value * ToFreeze)1108   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
1109     return {StatusTy::SafeWithFreeze, ToFreeze};
1110   }
1111 
1112   /// Returns true if the index can be scalarize without requiring a freeze.
isSafe() const1113   bool isSafe() const { return Status == StatusTy::Safe; }
1114   /// Returns true if the index cannot be scalarized.
isUnsafe() const1115   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
1116   /// Returns true if the index can be scalarize, but requires inserting a
1117   /// freeze.
isSafeWithFreeze() const1118   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
1119 
1120   /// Reset the state of Unsafe and clear ToFreze if set.
discard()1121   void discard() {
1122     ToFreeze = nullptr;
1123     Status = StatusTy::Unsafe;
1124   }
1125 
1126   /// Freeze the ToFreeze and update the use in \p User to use it.
freeze(IRBuilder<> & Builder,Instruction & UserI)1127   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
1128     assert(isSafeWithFreeze() &&
1129            "should only be used when freezing is required");
1130     assert(is_contained(ToFreeze->users(), &UserI) &&
1131            "UserI must be a user of ToFreeze");
1132     IRBuilder<>::InsertPointGuard Guard(Builder);
1133     Builder.SetInsertPoint(cast<Instruction>(&UserI));
1134     Value *Frozen =
1135         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
1136     for (Use &U : make_early_inc_range((UserI.operands())))
1137       if (U.get() == ToFreeze)
1138         U.set(Frozen);
1139 
1140     ToFreeze = nullptr;
1141   }
1142 };
1143 } // namespace
1144 
1145 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1146 /// Idx. \p Idx must access a valid vector element.
canScalarizeAccess(VectorType * VecTy,Value * Idx,Instruction * CtxI,AssumptionCache & AC,const DominatorTree & DT)1147 static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
1148                                               Instruction *CtxI,
1149                                               AssumptionCache &AC,
1150                                               const DominatorTree &DT) {
1151   // We do checks for both fixed vector types and scalable vector types.
1152   // This is the number of elements of fixed vector types,
1153   // or the minimum number of elements of scalable vector types.
1154   uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1155 
1156   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
1157     if (C->getValue().ult(NumElements))
1158       return ScalarizationResult::safe();
1159     return ScalarizationResult::unsafe();
1160   }
1161 
1162   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
1163   APInt Zero(IntWidth, 0);
1164   APInt MaxElts(IntWidth, NumElements);
1165   ConstantRange ValidIndices(Zero, MaxElts);
1166   ConstantRange IdxRange(IntWidth, true);
1167 
1168   if (isGuaranteedNotToBePoison(Idx, &AC)) {
1169     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
1170                                                    true, &AC, CtxI, &DT)))
1171       return ScalarizationResult::safe();
1172     return ScalarizationResult::unsafe();
1173   }
1174 
1175   // If the index may be poison, check if we can insert a freeze before the
1176   // range of the index is restricted.
1177   Value *IdxBase;
1178   ConstantInt *CI;
1179   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
1180     IdxRange = IdxRange.binaryAnd(CI->getValue());
1181   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
1182     IdxRange = IdxRange.urem(CI->getValue());
1183   }
1184 
1185   if (ValidIndices.contains(IdxRange))
1186     return ScalarizationResult::safeWithFreeze(IdxBase);
1187   return ScalarizationResult::unsafe();
1188 }
1189 
1190 /// The memory operation on a vector of \p ScalarType had alignment of
1191 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
1192 /// alignment that will be valid for the memory operation on a single scalar
1193 /// element of the same type with index \p Idx.
computeAlignmentAfterScalarization(Align VectorAlignment,Type * ScalarType,Value * Idx,const DataLayout & DL)1194 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
1195                                                 Type *ScalarType, Value *Idx,
1196                                                 const DataLayout &DL) {
1197   if (auto *C = dyn_cast<ConstantInt>(Idx))
1198     return commonAlignment(VectorAlignment,
1199                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
1200   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
1201 }
1202 
1203 // Combine patterns like:
1204 //   %0 = load <4 x i32>, <4 x i32>* %a
1205 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1206 //   store <4 x i32> %1, <4 x i32>* %a
1207 // to:
1208 //   %0 = bitcast <4 x i32>* %a to i32*
1209 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1210 //   store i32 %b, i32* %1
foldSingleElementStore(Instruction & I)1211 bool VectorCombine::foldSingleElementStore(Instruction &I) {
1212   auto *SI = cast<StoreInst>(&I);
1213   if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
1214     return false;
1215 
1216   // TODO: Combine more complicated patterns (multiple insert) by referencing
1217   // TargetTransformInfo.
1218   Instruction *Source;
1219   Value *NewElement;
1220   Value *Idx;
1221   if (!match(SI->getValueOperand(),
1222              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
1223                          m_Value(Idx))))
1224     return false;
1225 
1226   if (auto *Load = dyn_cast<LoadInst>(Source)) {
1227     auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
1228     const DataLayout &DL = I.getModule()->getDataLayout();
1229     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
1230     // Don't optimize for atomic/volatile load or store. Ensure memory is not
1231     // modified between, vector type matches store size, and index is inbounds.
1232     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
1233         !DL.typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
1234         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
1235       return false;
1236 
1237     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
1238     if (ScalarizableIdx.isUnsafe() ||
1239         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
1240                              MemoryLocation::get(SI), AA))
1241       return false;
1242 
1243     if (ScalarizableIdx.isSafeWithFreeze())
1244       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
1245     Value *GEP = Builder.CreateInBoundsGEP(
1246         SI->getValueOperand()->getType(), SI->getPointerOperand(),
1247         {ConstantInt::get(Idx->getType(), 0), Idx});
1248     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
1249     NSI->copyMetadata(*SI);
1250     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1251         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
1252         DL);
1253     NSI->setAlignment(ScalarOpAlignment);
1254     replaceValue(I, *NSI);
1255     eraseInstruction(I);
1256     return true;
1257   }
1258 
1259   return false;
1260 }
1261 
1262 /// Try to scalarize vector loads feeding extractelement instructions.
scalarizeLoadExtract(Instruction & I)1263 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
1264   Value *Ptr;
1265   if (!match(&I, m_Load(m_Value(Ptr))))
1266     return false;
1267 
1268   auto *VecTy = cast<VectorType>(I.getType());
1269   auto *LI = cast<LoadInst>(&I);
1270   const DataLayout &DL = I.getModule()->getDataLayout();
1271   if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(VecTy->getScalarType()))
1272     return false;
1273 
1274   InstructionCost OriginalCost =
1275       TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
1276                           LI->getPointerAddressSpace());
1277   InstructionCost ScalarizedCost = 0;
1278 
1279   Instruction *LastCheckedInst = LI;
1280   unsigned NumInstChecked = 0;
1281   DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1282   auto FailureGuard = make_scope_exit([&]() {
1283     // If the transform is aborted, discard the ScalarizationResults.
1284     for (auto &Pair : NeedFreeze)
1285       Pair.second.discard();
1286   });
1287 
1288   // Check if all users of the load are extracts with no memory modifications
1289   // between the load and the extract. Compute the cost of both the original
1290   // code and the scalarized version.
1291   for (User *U : LI->users()) {
1292     auto *UI = dyn_cast<ExtractElementInst>(U);
1293     if (!UI || UI->getParent() != LI->getParent())
1294       return false;
1295 
1296     // Check if any instruction between the load and the extract may modify
1297     // memory.
1298     if (LastCheckedInst->comesBefore(UI)) {
1299       for (Instruction &I :
1300            make_range(std::next(LI->getIterator()), UI->getIterator())) {
1301         // Bail out if we reached the check limit or the instruction may write
1302         // to memory.
1303         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1304           return false;
1305         NumInstChecked++;
1306       }
1307       LastCheckedInst = UI;
1308     }
1309 
1310     auto ScalarIdx = canScalarizeAccess(VecTy, UI->getOperand(1), &I, AC, DT);
1311     if (ScalarIdx.isUnsafe())
1312       return false;
1313     if (ScalarIdx.isSafeWithFreeze()) {
1314       NeedFreeze.try_emplace(UI, ScalarIdx);
1315       ScalarIdx.discard();
1316     }
1317 
1318     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
1319     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1320     OriginalCost +=
1321         TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
1322                                Index ? Index->getZExtValue() : -1);
1323     ScalarizedCost +=
1324         TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
1325                             Align(1), LI->getPointerAddressSpace());
1326     ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
1327   }
1328 
1329   if (ScalarizedCost >= OriginalCost)
1330     return false;
1331 
1332   // Replace extracts with narrow scalar loads.
1333   for (User *U : LI->users()) {
1334     auto *EI = cast<ExtractElementInst>(U);
1335     Value *Idx = EI->getOperand(1);
1336 
1337     // Insert 'freeze' for poison indexes.
1338     auto It = NeedFreeze.find(EI);
1339     if (It != NeedFreeze.end())
1340       It->second.freeze(Builder, *cast<Instruction>(Idx));
1341 
1342     Builder.SetInsertPoint(EI);
1343     Value *GEP =
1344         Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
1345     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1346         VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
1347 
1348     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1349         LI->getAlign(), VecTy->getElementType(), Idx, DL);
1350     NewLoad->setAlignment(ScalarOpAlignment);
1351 
1352     replaceValue(*EI, *NewLoad);
1353   }
1354 
1355   FailureGuard.release();
1356   return true;
1357 }
1358 
1359 /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
1360 /// "binop (shuffle), (shuffle)".
foldShuffleOfBinops(Instruction & I)1361 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1362   auto *VecTy = cast<FixedVectorType>(I.getType());
1363   BinaryOperator *B0, *B1;
1364   ArrayRef<int> Mask;
1365   if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
1366                            m_Mask(Mask))) ||
1367       B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
1368     return false;
1369 
1370   // Try to replace a binop with a shuffle if the shuffle is not costly.
1371   // The new shuffle will choose from a single, common operand, so it may be
1372   // cheaper than the existing two-operand shuffle.
1373   SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
1374   Instruction::BinaryOps Opcode = B0->getOpcode();
1375   InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
1376   InstructionCost ShufCost = TTI.getShuffleCost(
1377       TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
1378   if (ShufCost > BinopCost)
1379     return false;
1380 
1381   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1382   Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
1383   Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
1384   if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
1385     std::swap(X, Y);
1386 
1387   Value *Shuf0, *Shuf1;
1388   if (X == Z) {
1389     // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
1390     Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
1391     Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
1392   } else if (Y == W) {
1393     // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
1394     Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
1395     Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
1396   } else {
1397     return false;
1398   }
1399 
1400   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1401   // Intersect flags from the old binops.
1402   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1403     NewInst->copyIRFlags(B0);
1404     NewInst->andIRFlags(B1);
1405   }
1406   replaceValue(I, *NewBO);
1407   return true;
1408 }
1409 
1410 /// Given a commutative reduction, the order of the input lanes does not alter
1411 /// the results. We can use this to remove certain shuffles feeding the
1412 /// reduction, removing the need to shuffle at all.
foldShuffleFromReductions(Instruction & I)1413 bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
1414   auto *II = dyn_cast<IntrinsicInst>(&I);
1415   if (!II)
1416     return false;
1417   switch (II->getIntrinsicID()) {
1418   case Intrinsic::vector_reduce_add:
1419   case Intrinsic::vector_reduce_mul:
1420   case Intrinsic::vector_reduce_and:
1421   case Intrinsic::vector_reduce_or:
1422   case Intrinsic::vector_reduce_xor:
1423   case Intrinsic::vector_reduce_smin:
1424   case Intrinsic::vector_reduce_smax:
1425   case Intrinsic::vector_reduce_umin:
1426   case Intrinsic::vector_reduce_umax:
1427     break;
1428   default:
1429     return false;
1430   }
1431 
1432   // Find all the inputs when looking through operations that do not alter the
1433   // lane order (binops, for example). Currently we look for a single shuffle,
1434   // and can ignore splat values.
1435   std::queue<Value *> Worklist;
1436   SmallPtrSet<Value *, 4> Visited;
1437   ShuffleVectorInst *Shuffle = nullptr;
1438   if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
1439     Worklist.push(Op);
1440 
1441   while (!Worklist.empty()) {
1442     Value *CV = Worklist.front();
1443     Worklist.pop();
1444     if (Visited.contains(CV))
1445       continue;
1446 
1447     // Splats don't change the order, so can be safely ignored.
1448     if (isSplatValue(CV))
1449       continue;
1450 
1451     Visited.insert(CV);
1452 
1453     if (auto *CI = dyn_cast<Instruction>(CV)) {
1454       if (CI->isBinaryOp()) {
1455         for (auto *Op : CI->operand_values())
1456           Worklist.push(Op);
1457         continue;
1458       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
1459         if (Shuffle && Shuffle != SV)
1460           return false;
1461         Shuffle = SV;
1462         continue;
1463       }
1464     }
1465 
1466     // Anything else is currently an unknown node.
1467     return false;
1468   }
1469 
1470   if (!Shuffle)
1471     return false;
1472 
1473   // Check all uses of the binary ops and shuffles are also included in the
1474   // lane-invariant operations (Visited should be the list of lanewise
1475   // instructions, including the shuffle that we found).
1476   for (auto *V : Visited)
1477     for (auto *U : V->users())
1478       if (!Visited.contains(U) && U != &I)
1479         return false;
1480 
1481   FixedVectorType *VecType =
1482       dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
1483   if (!VecType)
1484     return false;
1485   FixedVectorType *ShuffleInputType =
1486       dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
1487   if (!ShuffleInputType)
1488     return false;
1489   unsigned NumInputElts = ShuffleInputType->getNumElements();
1490 
1491   // Find the mask from sorting the lanes into order. This is most likely to
1492   // become a identity or concat mask. Undef elements are pushed to the end.
1493   SmallVector<int> ConcatMask;
1494   Shuffle->getShuffleMask(ConcatMask);
1495   sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
1496   // In the case of a truncating shuffle it's possible for the mask
1497   // to have an index greater than the size of the resulting vector.
1498   // This requires special handling.
1499   bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
1500   bool UsesSecondVec =
1501       any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
1502 
1503   FixedVectorType *VecTyForCost =
1504       (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
1505   InstructionCost OldCost = TTI.getShuffleCost(
1506       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
1507       VecTyForCost, Shuffle->getShuffleMask());
1508   InstructionCost NewCost = TTI.getShuffleCost(
1509       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
1510       VecTyForCost, ConcatMask);
1511 
1512   LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
1513                     << "\n");
1514   LLVM_DEBUG(dbgs() << "  OldCost: " << OldCost << " vs NewCost: " << NewCost
1515                     << "\n");
1516   if (NewCost < OldCost) {
1517     Builder.SetInsertPoint(Shuffle);
1518     Value *NewShuffle = Builder.CreateShuffleVector(
1519         Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
1520     LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
1521     replaceValue(*Shuffle, *NewShuffle);
1522   }
1523 
1524   // See if we can re-use foldSelectShuffle, getting it to reduce the size of
1525   // the shuffle into a nicer order, as it can ignore the order of the shuffles.
1526   return foldSelectShuffle(*Shuffle, true);
1527 }
1528 
1529 /// This method looks for groups of shuffles acting on binops, of the form:
1530 ///  %x = shuffle ...
1531 ///  %y = shuffle ...
1532 ///  %a = binop %x, %y
1533 ///  %b = binop %x, %y
1534 ///  shuffle %a, %b, selectmask
1535 /// We may, especially if the shuffle is wider than legal, be able to convert
1536 /// the shuffle to a form where only parts of a and b need to be computed. On
1537 /// architectures with no obvious "select" shuffle, this can reduce the total
1538 /// number of operations if the target reports them as cheaper.
foldSelectShuffle(Instruction & I,bool FromReduction)1539 bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
1540   auto *SVI = cast<ShuffleVectorInst>(&I);
1541   auto *VT = cast<FixedVectorType>(I.getType());
1542   auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
1543   auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
1544   if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
1545       VT != Op0->getType())
1546     return false;
1547 
1548   auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
1549   auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
1550   auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
1551   auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
1552   SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
1553   auto checkSVNonOpUses = [&](Instruction *I) {
1554     if (!I || I->getOperand(0)->getType() != VT)
1555       return true;
1556     return any_of(I->users(), [&](User *U) {
1557       return U != Op0 && U != Op1 &&
1558              !(isa<ShuffleVectorInst>(U) &&
1559                (InputShuffles.contains(cast<Instruction>(U)) ||
1560                 isInstructionTriviallyDead(cast<Instruction>(U))));
1561     });
1562   };
1563   if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
1564       checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
1565     return false;
1566 
1567   // Collect all the uses that are shuffles that we can transform together. We
1568   // may not have a single shuffle, but a group that can all be transformed
1569   // together profitably.
1570   SmallVector<ShuffleVectorInst *> Shuffles;
1571   auto collectShuffles = [&](Instruction *I) {
1572     for (auto *U : I->users()) {
1573       auto *SV = dyn_cast<ShuffleVectorInst>(U);
1574       if (!SV || SV->getType() != VT)
1575         return false;
1576       if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
1577           (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
1578         return false;
1579       if (!llvm::is_contained(Shuffles, SV))
1580         Shuffles.push_back(SV);
1581     }
1582     return true;
1583   };
1584   if (!collectShuffles(Op0) || !collectShuffles(Op1))
1585     return false;
1586   // From a reduction, we need to be processing a single shuffle, otherwise the
1587   // other uses will not be lane-invariant.
1588   if (FromReduction && Shuffles.size() > 1)
1589     return false;
1590 
1591   // Add any shuffle uses for the shuffles we have found, to include them in our
1592   // cost calculations.
1593   if (!FromReduction) {
1594     for (ShuffleVectorInst *SV : Shuffles) {
1595       for (auto *U : SV->users()) {
1596         ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
1597         if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
1598           Shuffles.push_back(SSV);
1599       }
1600     }
1601   }
1602 
1603   // For each of the output shuffles, we try to sort all the first vector
1604   // elements to the beginning, followed by the second array elements at the
1605   // end. If the binops are legalized to smaller vectors, this may reduce total
1606   // number of binops. We compute the ReconstructMask mask needed to convert
1607   // back to the original lane order.
1608   SmallVector<std::pair<int, int>> V1, V2;
1609   SmallVector<SmallVector<int>> OrigReconstructMasks;
1610   int MaxV1Elt = 0, MaxV2Elt = 0;
1611   unsigned NumElts = VT->getNumElements();
1612   for (ShuffleVectorInst *SVN : Shuffles) {
1613     SmallVector<int> Mask;
1614     SVN->getShuffleMask(Mask);
1615 
1616     // Check the operands are the same as the original, or reversed (in which
1617     // case we need to commute the mask).
1618     Value *SVOp0 = SVN->getOperand(0);
1619     Value *SVOp1 = SVN->getOperand(1);
1620     if (isa<UndefValue>(SVOp1)) {
1621       auto *SSV = cast<ShuffleVectorInst>(SVOp0);
1622       SVOp0 = SSV->getOperand(0);
1623       SVOp1 = SSV->getOperand(1);
1624       for (unsigned I = 0, E = Mask.size(); I != E; I++) {
1625         if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
1626           return false;
1627         Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
1628       }
1629     }
1630     if (SVOp0 == Op1 && SVOp1 == Op0) {
1631       std::swap(SVOp0, SVOp1);
1632       ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1633     }
1634     if (SVOp0 != Op0 || SVOp1 != Op1)
1635       return false;
1636 
1637     // Calculate the reconstruction mask for this shuffle, as the mask needed to
1638     // take the packed values from Op0/Op1 and reconstructing to the original
1639     // order.
1640     SmallVector<int> ReconstructMask;
1641     for (unsigned I = 0; I < Mask.size(); I++) {
1642       if (Mask[I] < 0) {
1643         ReconstructMask.push_back(-1);
1644       } else if (Mask[I] < static_cast<int>(NumElts)) {
1645         MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
1646         auto It = find_if(V1, [&](const std::pair<int, int> &A) {
1647           return Mask[I] == A.first;
1648         });
1649         if (It != V1.end())
1650           ReconstructMask.push_back(It - V1.begin());
1651         else {
1652           ReconstructMask.push_back(V1.size());
1653           V1.emplace_back(Mask[I], V1.size());
1654         }
1655       } else {
1656         MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
1657         auto It = find_if(V2, [&](const std::pair<int, int> &A) {
1658           return Mask[I] - static_cast<int>(NumElts) == A.first;
1659         });
1660         if (It != V2.end())
1661           ReconstructMask.push_back(NumElts + It - V2.begin());
1662         else {
1663           ReconstructMask.push_back(NumElts + V2.size());
1664           V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
1665         }
1666       }
1667     }
1668 
1669     // For reductions, we know that the lane ordering out doesn't alter the
1670     // result. In-order can help simplify the shuffle away.
1671     if (FromReduction)
1672       sort(ReconstructMask);
1673     OrigReconstructMasks.push_back(std::move(ReconstructMask));
1674   }
1675 
1676   // If the Maximum element used from V1 and V2 are not larger than the new
1677   // vectors, the vectors are already packes and performing the optimization
1678   // again will likely not help any further. This also prevents us from getting
1679   // stuck in a cycle in case the costs do not also rule it out.
1680   if (V1.empty() || V2.empty() ||
1681       (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
1682        MaxV2Elt == static_cast<int>(V2.size()) - 1))
1683     return false;
1684 
1685   // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
1686   // shuffle of another shuffle, or not a shuffle (that is treated like a
1687   // identity shuffle).
1688   auto GetBaseMaskValue = [&](Instruction *I, int M) {
1689     auto *SV = dyn_cast<ShuffleVectorInst>(I);
1690     if (!SV)
1691       return M;
1692     if (isa<UndefValue>(SV->getOperand(1)))
1693       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
1694         if (InputShuffles.contains(SSV))
1695           return SSV->getMaskValue(SV->getMaskValue(M));
1696     return SV->getMaskValue(M);
1697   };
1698 
1699   // Attempt to sort the inputs my ascending mask values to make simpler input
1700   // shuffles and push complex shuffles down to the uses. We sort on the first
1701   // of the two input shuffle orders, to try and get at least one input into a
1702   // nice order.
1703   auto SortBase = [&](Instruction *A, std::pair<int, int> X,
1704                       std::pair<int, int> Y) {
1705     int MXA = GetBaseMaskValue(A, X.first);
1706     int MYA = GetBaseMaskValue(A, Y.first);
1707     return MXA < MYA;
1708   };
1709   stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
1710     return SortBase(SVI0A, A, B);
1711   });
1712   stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
1713     return SortBase(SVI1A, A, B);
1714   });
1715   // Calculate our ReconstructMasks from the OrigReconstructMasks and the
1716   // modified order of the input shuffles.
1717   SmallVector<SmallVector<int>> ReconstructMasks;
1718   for (const auto &Mask : OrigReconstructMasks) {
1719     SmallVector<int> ReconstructMask;
1720     for (int M : Mask) {
1721       auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
1722         auto It = find_if(V, [M](auto A) { return A.second == M; });
1723         assert(It != V.end() && "Expected all entries in Mask");
1724         return std::distance(V.begin(), It);
1725       };
1726       if (M < 0)
1727         ReconstructMask.push_back(-1);
1728       else if (M < static_cast<int>(NumElts)) {
1729         ReconstructMask.push_back(FindIndex(V1, M));
1730       } else {
1731         ReconstructMask.push_back(NumElts + FindIndex(V2, M));
1732       }
1733     }
1734     ReconstructMasks.push_back(std::move(ReconstructMask));
1735   }
1736 
1737   // Calculate the masks needed for the new input shuffles, which get padded
1738   // with undef
1739   SmallVector<int> V1A, V1B, V2A, V2B;
1740   for (unsigned I = 0; I < V1.size(); I++) {
1741     V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
1742     V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
1743   }
1744   for (unsigned I = 0; I < V2.size(); I++) {
1745     V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
1746     V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
1747   }
1748   while (V1A.size() < NumElts) {
1749     V1A.push_back(PoisonMaskElem);
1750     V1B.push_back(PoisonMaskElem);
1751   }
1752   while (V2A.size() < NumElts) {
1753     V2A.push_back(PoisonMaskElem);
1754     V2B.push_back(PoisonMaskElem);
1755   }
1756 
1757   auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
1758     auto *SV = dyn_cast<ShuffleVectorInst>(I);
1759     if (!SV)
1760       return C;
1761     return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
1762                                       ? TTI::SK_PermuteSingleSrc
1763                                       : TTI::SK_PermuteTwoSrc,
1764                                   VT, SV->getShuffleMask());
1765   };
1766   auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
1767     return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask);
1768   };
1769 
1770   // Get the costs of the shuffles + binops before and after with the new
1771   // shuffle masks.
1772   InstructionCost CostBefore =
1773       TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) +
1774       TTI.getArithmeticInstrCost(Op1->getOpcode(), VT);
1775   CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
1776                                 InstructionCost(0), AddShuffleCost);
1777   CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
1778                                 InstructionCost(0), AddShuffleCost);
1779 
1780   // The new binops will be unused for lanes past the used shuffle lengths.
1781   // These types attempt to get the correct cost for that from the target.
1782   FixedVectorType *Op0SmallVT =
1783       FixedVectorType::get(VT->getScalarType(), V1.size());
1784   FixedVectorType *Op1SmallVT =
1785       FixedVectorType::get(VT->getScalarType(), V2.size());
1786   InstructionCost CostAfter =
1787       TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) +
1788       TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT);
1789   CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
1790                                InstructionCost(0), AddShuffleMaskCost);
1791   std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
1792   CostAfter +=
1793       std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
1794                       InstructionCost(0), AddShuffleMaskCost);
1795 
1796   LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
1797   LLVM_DEBUG(dbgs() << "  CostBefore: " << CostBefore
1798                     << " vs CostAfter: " << CostAfter << "\n");
1799   if (CostBefore <= CostAfter)
1800     return false;
1801 
1802   // The cost model has passed, create the new instructions.
1803   auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
1804     auto *SV = dyn_cast<ShuffleVectorInst>(I);
1805     if (!SV)
1806       return I;
1807     if (isa<UndefValue>(SV->getOperand(1)))
1808       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
1809         if (InputShuffles.contains(SSV))
1810           return SSV->getOperand(Op);
1811     return SV->getOperand(Op);
1812   };
1813   Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
1814   Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
1815                                              GetShuffleOperand(SVI0A, 1), V1A);
1816   Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
1817   Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
1818                                              GetShuffleOperand(SVI0B, 1), V1B);
1819   Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
1820   Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
1821                                              GetShuffleOperand(SVI1A, 1), V2A);
1822   Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
1823   Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
1824                                              GetShuffleOperand(SVI1B, 1), V2B);
1825   Builder.SetInsertPoint(Op0);
1826   Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
1827                                     NSV0A, NSV0B);
1828   if (auto *I = dyn_cast<Instruction>(NOp0))
1829     I->copyIRFlags(Op0, true);
1830   Builder.SetInsertPoint(Op1);
1831   Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
1832                                     NSV1A, NSV1B);
1833   if (auto *I = dyn_cast<Instruction>(NOp1))
1834     I->copyIRFlags(Op1, true);
1835 
1836   for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
1837     Builder.SetInsertPoint(Shuffles[S]);
1838     Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
1839     replaceValue(*Shuffles[S], *NSV);
1840   }
1841 
1842   Worklist.pushValue(NSV0A);
1843   Worklist.pushValue(NSV0B);
1844   Worklist.pushValue(NSV1A);
1845   Worklist.pushValue(NSV1B);
1846   for (auto *S : Shuffles)
1847     Worklist.add(S);
1848   return true;
1849 }
1850 
1851 /// This is the entry point for all transforms. Pass manager differences are
1852 /// handled in the callers of this function.
run()1853 bool VectorCombine::run() {
1854   if (DisableVectorCombine)
1855     return false;
1856 
1857   // Don't attempt vectorization if the target does not support vectors.
1858   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
1859     return false;
1860 
1861   bool MadeChange = false;
1862   auto FoldInst = [this, &MadeChange](Instruction &I) {
1863     Builder.SetInsertPoint(&I);
1864     bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
1865     auto Opcode = I.getOpcode();
1866 
1867     // These folds should be beneficial regardless of when this pass is run
1868     // in the optimization pipeline.
1869     // The type checking is for run-time efficiency. We can avoid wasting time
1870     // dispatching to folding functions if there's no chance of matching.
1871     if (IsFixedVectorType) {
1872       switch (Opcode) {
1873       case Instruction::InsertElement:
1874         MadeChange |= vectorizeLoadInsert(I);
1875         break;
1876       case Instruction::ShuffleVector:
1877         MadeChange |= widenSubvectorLoad(I);
1878         break;
1879       default:
1880         break;
1881       }
1882     }
1883 
1884     // This transform works with scalable and fixed vectors
1885     // TODO: Identify and allow other scalable transforms
1886     if (isa<VectorType>(I.getType())) {
1887       MadeChange |= scalarizeBinopOrCmp(I);
1888       MadeChange |= scalarizeLoadExtract(I);
1889       MadeChange |= scalarizeVPIntrinsic(I);
1890     }
1891 
1892     if (Opcode == Instruction::Store)
1893       MadeChange |= foldSingleElementStore(I);
1894 
1895     // If this is an early pipeline invocation of this pass, we are done.
1896     if (TryEarlyFoldsOnly)
1897       return;
1898 
1899     // Otherwise, try folds that improve codegen but may interfere with
1900     // early IR canonicalizations.
1901     // The type checking is for run-time efficiency. We can avoid wasting time
1902     // dispatching to folding functions if there's no chance of matching.
1903     if (IsFixedVectorType) {
1904       switch (Opcode) {
1905       case Instruction::InsertElement:
1906         MadeChange |= foldInsExtFNeg(I);
1907         break;
1908       case Instruction::ShuffleVector:
1909         MadeChange |= foldShuffleOfBinops(I);
1910         MadeChange |= foldSelectShuffle(I);
1911         break;
1912       case Instruction::BitCast:
1913         MadeChange |= foldBitcastShuffle(I);
1914         break;
1915       }
1916     } else {
1917       switch (Opcode) {
1918       case Instruction::Call:
1919         MadeChange |= foldShuffleFromReductions(I);
1920         break;
1921       case Instruction::ICmp:
1922       case Instruction::FCmp:
1923         MadeChange |= foldExtractExtract(I);
1924         break;
1925       default:
1926         if (Instruction::isBinaryOp(Opcode)) {
1927           MadeChange |= foldExtractExtract(I);
1928           MadeChange |= foldExtractedCmps(I);
1929         }
1930         break;
1931       }
1932     }
1933   };
1934 
1935   for (BasicBlock &BB : F) {
1936     // Ignore unreachable basic blocks.
1937     if (!DT.isReachableFromEntry(&BB))
1938       continue;
1939     // Use early increment range so that we can erase instructions in loop.
1940     for (Instruction &I : make_early_inc_range(BB)) {
1941       if (I.isDebugOrPseudoInst())
1942         continue;
1943       FoldInst(I);
1944     }
1945   }
1946 
1947   while (!Worklist.isEmpty()) {
1948     Instruction *I = Worklist.removeOne();
1949     if (!I)
1950       continue;
1951 
1952     if (isInstructionTriviallyDead(I)) {
1953       eraseInstruction(*I);
1954       continue;
1955     }
1956 
1957     FoldInst(*I);
1958   }
1959 
1960   return MadeChange;
1961 }
1962 
run(Function & F,FunctionAnalysisManager & FAM)1963 PreservedAnalyses VectorCombinePass::run(Function &F,
1964                                          FunctionAnalysisManager &FAM) {
1965   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1966   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1967   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1968   AAResults &AA = FAM.getResult<AAManager>(F);
1969   VectorCombine Combiner(F, TTI, DT, AA, AC, TryEarlyFoldsOnly);
1970   if (!Combiner.run())
1971     return PreservedAnalyses::all();
1972   PreservedAnalyses PA;
1973   PA.preserveSet<CFGAnalyses>();
1974   return PA;
1975 }
1976