1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement
10 /// for Large-Scale Data-Center Applications
11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
12 ///
13 /// The goal of this algorithm is to improve runtime performance of the final
14 /// executable by arranging code sections such that page table and i-cache
15 /// misses are minimized.
16 ///
17 /// Definitions:
18 /// * Cluster
19 /// * An ordered list of input sections which are laid out as a unit. At the
20 /// beginning of the algorithm each input section has its own cluster and
21 /// the weight of the cluster is the sum of the weight of all incoming
22 /// edges.
23 /// * Call-Chain Clustering (C³) Heuristic
24 /// * Defines when and how clusters are combined. Pick the highest weighted
25 /// input section then add it to its most likely predecessor if it wouldn't
26 /// penalize it too much.
27 /// * Density
28 /// * The weight of the cluster divided by the size of the cluster. This is a
29 /// proxy for the amount of execution time spent per byte of the cluster.
30 ///
31 /// It does so given a call graph profile by the following:
32 /// * Build a weighted call graph from the call graph profile
33 /// * Sort input sections by weight
34 /// * For each input section starting with the highest weight
35 /// * Find its most likely predecessor cluster
36 /// * Check if the combined cluster would be too large, or would have too low
37 /// a density.
38 /// * If not, then combine the clusters.
39 /// * Sort non-empty clusters by density
40 ///
41 //===----------------------------------------------------------------------===//
42
43 #include "CallGraphSort.h"
44 #include "InputFiles.h"
45 #include "InputSection.h"
46 #include "Symbols.h"
47 #include "llvm/Support/FileSystem.h"
48
49 #include <numeric>
50
51 using namespace llvm;
52 using namespace lld;
53 using namespace lld::elf;
54
55 namespace {
56 struct Edge {
57 int from;
58 uint64_t weight;
59 };
60
61 struct Cluster {
Cluster__anon215c4ed40111::Cluster62 Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
63
getDensity__anon215c4ed40111::Cluster64 double getDensity() const {
65 if (size == 0)
66 return 0;
67 return double(weight) / double(size);
68 }
69
70 int next;
71 int prev;
72 uint64_t size;
73 uint64_t weight = 0;
74 uint64_t initialWeight = 0;
75 Edge bestPred = {-1, 0};
76 };
77
78 class CallGraphSort {
79 public:
80 CallGraphSort();
81
82 DenseMap<const InputSectionBase *, int> run();
83
84 private:
85 std::vector<Cluster> clusters;
86 std::vector<const InputSectionBase *> sections;
87 };
88
89 // Maximum amount the combined cluster density can be worse than the original
90 // cluster to consider merging.
91 constexpr int MAX_DENSITY_DEGRADATION = 8;
92
93 // Maximum cluster size in bytes.
94 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
95 } // end anonymous namespace
96
97 using SectionPair =
98 std::pair<const InputSectionBase *, const InputSectionBase *>;
99
100 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
101 // Symbols, and generate a graph between InputSections with the provided
102 // weights.
CallGraphSort()103 CallGraphSort::CallGraphSort() {
104 MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
105 DenseMap<const InputSectionBase *, int> secToCluster;
106
107 auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
108 auto res = secToCluster.try_emplace(isec, clusters.size());
109 if (res.second) {
110 sections.push_back(isec);
111 clusters.emplace_back(clusters.size(), isec->getSize());
112 }
113 return res.first->second;
114 };
115
116 // Create the graph.
117 for (std::pair<SectionPair, uint64_t> &c : profile) {
118 const auto *fromSB = cast<InputSectionBase>(c.first.first);
119 const auto *toSB = cast<InputSectionBase>(c.first.second);
120 uint64_t weight = c.second;
121
122 // Ignore edges between input sections belonging to different output
123 // sections. This is done because otherwise we would end up with clusters
124 // containing input sections that can't actually be placed adjacently in the
125 // output. This messes with the cluster size and density calculations. We
126 // would also end up moving input sections in other output sections without
127 // moving them closer to what calls them.
128 if (fromSB->getOutputSection() != toSB->getOutputSection())
129 continue;
130
131 int from = getOrCreateNode(fromSB);
132 int to = getOrCreateNode(toSB);
133
134 clusters[to].weight += weight;
135
136 if (from == to)
137 continue;
138
139 // Remember the best edge.
140 Cluster &toC = clusters[to];
141 if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
142 toC.bestPred.from = from;
143 toC.bestPred.weight = weight;
144 }
145 }
146 for (Cluster &c : clusters)
147 c.initialWeight = c.weight;
148 }
149
150 // It's bad to merge clusters which would degrade the density too much.
isNewDensityBad(Cluster & a,Cluster & b)151 static bool isNewDensityBad(Cluster &a, Cluster &b) {
152 double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
153 return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
154 }
155
156 // Find the leader of V's belonged cluster (represented as an equivalence
157 // class). We apply union-find path-halving technique (simple to implement) in
158 // the meantime as it decreases depths and the time complexity.
getLeader(int * leaders,int v)159 static int getLeader(int *leaders, int v) {
160 while (leaders[v] != v) {
161 leaders[v] = leaders[leaders[v]];
162 v = leaders[v];
163 }
164 return v;
165 }
166
mergeClusters(std::vector<Cluster> & cs,Cluster & into,int intoIdx,Cluster & from,int fromIdx)167 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
168 Cluster &from, int fromIdx) {
169 int tail1 = into.prev, tail2 = from.prev;
170 into.prev = tail2;
171 cs[tail2].next = intoIdx;
172 from.prev = tail1;
173 cs[tail1].next = fromIdx;
174 into.size += from.size;
175 into.weight += from.weight;
176 from.size = 0;
177 from.weight = 0;
178 }
179
180 // Group InputSections into clusters using the Call-Chain Clustering heuristic
181 // then sort the clusters by density.
run()182 DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
183 std::vector<int> sorted(clusters.size());
184 std::unique_ptr<int[]> leaders(new int[clusters.size()]);
185
186 std::iota(leaders.get(), leaders.get() + clusters.size(), 0);
187 std::iota(sorted.begin(), sorted.end(), 0);
188 llvm::stable_sort(sorted, [&](int a, int b) {
189 return clusters[a].getDensity() > clusters[b].getDensity();
190 });
191
192 for (int l : sorted) {
193 // The cluster index is the same as the index of its leader here because
194 // clusters[L] has not been merged into another cluster yet.
195 Cluster &c = clusters[l];
196
197 // Don't consider merging if the edge is unlikely.
198 if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
199 continue;
200
201 int predL = getLeader(leaders.get(), c.bestPred.from);
202 if (l == predL)
203 continue;
204
205 Cluster *predC = &clusters[predL];
206 if (c.size + predC->size > MAX_CLUSTER_SIZE)
207 continue;
208
209 if (isNewDensityBad(*predC, c))
210 continue;
211
212 leaders[l] = predL;
213 mergeClusters(clusters, *predC, predL, c, l);
214 }
215
216 // Sort remaining non-empty clusters by density.
217 sorted.clear();
218 for (int i = 0, e = (int)clusters.size(); i != e; ++i)
219 if (clusters[i].size > 0)
220 sorted.push_back(i);
221 llvm::stable_sort(sorted, [&](int a, int b) {
222 return clusters[a].getDensity() > clusters[b].getDensity();
223 });
224
225 DenseMap<const InputSectionBase *, int> orderMap;
226 int curOrder = 1;
227 for (int leader : sorted) {
228 for (int i = leader;;) {
229 orderMap[sections[i]] = curOrder++;
230 i = clusters[i].next;
231 if (i == leader)
232 break;
233 }
234 }
235 if (!config->printSymbolOrder.empty()) {
236 std::error_code ec;
237 raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
238 if (ec) {
239 error("cannot open " + config->printSymbolOrder + ": " + ec.message());
240 return orderMap;
241 }
242
243 // Print the symbols ordered by C3, in the order of increasing curOrder
244 // Instead of sorting all the orderMap, just repeat the loops above.
245 for (int leader : sorted)
246 for (int i = leader;;) {
247 // Search all the symbols in the file of the section
248 // and find out a Defined symbol with name that is within the section.
249 for (Symbol *sym : sections[i]->file->getSymbols())
250 if (!sym->isSection()) // Filter out section-type symbols here.
251 if (auto *d = dyn_cast<Defined>(sym))
252 if (sections[i] == d->section)
253 os << sym->getName() << "\n";
254 i = clusters[i].next;
255 if (i == leader)
256 break;
257 }
258 }
259
260 return orderMap;
261 }
262
263 // Sort sections by the profile data provided by --callgraph-profile-file.
264 //
265 // This first builds a call graph based on the profile data then merges sections
266 // according to the C³ heuristic. All clusters are then sorted by a density
267 // metric to further improve locality.
computeCallGraphProfileOrder()268 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
269 return CallGraphSort().run();
270 }
271