xref: /netbsd/sys/dev/pci/if_bge.c (revision 089d55cc)
1 /*	$NetBSD: if_bge.c,v 1.388 2022/10/11 22:03:37 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.388 2022/10/11 22:03:37 andvar Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/types.h>
86 
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103 
104 /* Headers for TCP Segmentation Offload (TSO) */
105 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
106 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
107 #include <netinet/ip.h>			/* for struct ip */
108 #include <netinet/tcp.h>		/* for struct tcphdr */
109 
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118 
119 #include <dev/pci/if_bgereg.h>
120 #include <dev/pci/if_bgevar.h>
121 
122 #include <prop/proplib.h>
123 
124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125 
126 
127 /*
128  * Tunable thresholds for rx-side bge interrupt mitigation.
129  */
130 
131 /*
132  * The pairs of values below were obtained from empirical measurement
133  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
134  * interrupt for every N packets received, where N is, approximately,
135  * the second value (rx_max_bds) in each pair.  The values are chosen
136  * such that moving from one pair to the succeeding pair was observed
137  * to roughly halve interrupt rate under sustained input packet load.
138  * The values were empirically chosen to avoid overflowing internal
139  * limits on the  bcm5700: increasing rx_ticks much beyond 600
140  * results in internal wrapping and higher interrupt rates.
141  * The limit of 46 frames was chosen to match NFS workloads.
142  *
143  * These values also work well on bcm5701, bcm5704C, and (less
144  * tested) bcm5703.  On other chipsets, (including the Altima chip
145  * family), the larger values may overflow internal chip limits,
146  * leading to increasing interrupt rates rather than lower interrupt
147  * rates.
148  *
149  * Applications using heavy interrupt mitigation (interrupting every
150  * 32 or 46 frames) in both directions may need to increase the TCP
151  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
152  * full link bandwidth, due to ACKs and window updates lingering
153  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
154  */
155 static const struct bge_load_rx_thresh {
156 	int rx_ticks;
157 	int rx_max_bds; }
158 bge_rx_threshes[] = {
159 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
160 	{ 32,	2 },
161 	{ 50,	4 },
162 	{ 100,	8 },
163 	{ 192, 16 },
164 	{ 416, 32 },
165 	{ 598, 46 }
166 };
167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
168 
169 /* XXX patchable; should be sysctl'able */
170 static int bge_auto_thresh = 1;
171 static int bge_rx_thresh_lvl;
172 
173 static int bge_rxthresh_nodenum;
174 
175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
176 
177 static uint32_t bge_chipid(const struct pci_attach_args *);
178 static int bge_can_use_msi(struct bge_softc *);
179 static int bge_probe(device_t, cfdata_t, void *);
180 static void bge_attach(device_t, device_t, void *);
181 static int bge_detach(device_t, int);
182 static void bge_release_resources(struct bge_softc *);
183 
184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
189 
190 static void bge_txeof(struct bge_softc *);
191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
192 static void bge_rxeof(struct bge_softc *);
193 
194 static void bge_asf_driver_up (struct bge_softc *);
195 static void bge_tick(void *);
196 static void bge_stats_update(struct bge_softc *);
197 static void bge_stats_update_regs(struct bge_softc *);
198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
199 
200 static int bge_intr(void *);
201 static void bge_start(struct ifnet *);
202 static void bge_start_locked(struct ifnet *);
203 static int bge_ifflags_cb(struct ethercom *);
204 static int bge_ioctl(struct ifnet *, u_long, void *);
205 static int bge_init(struct ifnet *);
206 static int bge_init_locked(struct ifnet *);
207 static void bge_stop(struct ifnet *, int);
208 static void bge_stop_locked(struct ifnet *, bool);
209 static bool bge_watchdog_tick(struct ifnet *);
210 static int bge_ifmedia_upd(struct ifnet *);
211 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
212 static void bge_handle_reset_work(struct work *, void *);
213 
214 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
215 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
216 
217 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
219 static void bge_setmulti(struct bge_softc *);
220 
221 static void bge_handle_events(struct bge_softc *);
222 static int bge_alloc_jumbo_mem(struct bge_softc *);
223 static void bge_free_jumbo_mem(struct bge_softc *);
224 static void *bge_jalloc(struct bge_softc *);
225 static void bge_jfree(struct mbuf *, void *, size_t, void *);
226 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 static int bge_init_rx_ring_jumbo(struct bge_softc *);
228 static void bge_free_rx_ring_jumbo(struct bge_softc *);
229 
230 static int bge_newbuf_std(struct bge_softc *, int);
231 static int bge_init_rx_ring_std(struct bge_softc *);
232 static void bge_fill_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m);
234 
235 static void bge_free_tx_ring(struct bge_softc *m, bool);
236 static int bge_init_tx_ring(struct bge_softc *);
237 
238 static int bge_chipinit(struct bge_softc *);
239 static int bge_blockinit(struct bge_softc *);
240 static int bge_phy_addr(struct bge_softc *);
241 static uint32_t bge_readmem_ind(struct bge_softc *, int);
242 static void bge_writemem_ind(struct bge_softc *, int, int);
243 static void bge_writembx(struct bge_softc *, int, int);
244 static void bge_writembx_flush(struct bge_softc *, int, int);
245 static void bge_writemem_direct(struct bge_softc *, int, int);
246 static void bge_writereg_ind(struct bge_softc *, int, int);
247 static void bge_set_max_readrq(struct bge_softc *);
248 
249 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
250 static int bge_miibus_writereg(device_t, int, int, uint16_t);
251 static void bge_miibus_statchg(struct ifnet *);
252 
253 #define BGE_RESET_SHUTDOWN	0
254 #define	BGE_RESET_START		1
255 #define	BGE_RESET_SUSPEND	2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_wait_for_event_ack(struct bge_softc *);
260 static void bge_stop_fw(struct bge_softc *);
261 static int bge_reset(struct bge_softc *);
262 static void bge_link_upd(struct bge_softc *);
263 static void bge_sysctl_init(struct bge_softc *);
264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
265 
266 static void bge_ape_lock_init(struct bge_softc *);
267 static void bge_ape_read_fw_ver(struct bge_softc *);
268 static int bge_ape_lock(struct bge_softc *, int);
269 static void bge_ape_unlock(struct bge_softc *, int);
270 static void bge_ape_send_event(struct bge_softc *, uint32_t);
271 static void bge_ape_driver_state_change(struct bge_softc *, int);
272 
273 #ifdef BGE_DEBUG
274 #define DPRINTF(x)	if (bgedebug) printf x
275 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
276 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
277 int	bgedebug = 0;
278 int	bge_tso_debug = 0;
279 void	bge_debug_info(struct bge_softc *);
280 #else
281 #define DPRINTF(x)
282 #define DPRINTFN(n, x)
283 #define BGE_TSO_PRINTF(x)
284 #endif
285 
286 #ifdef BGE_EVENT_COUNTERS
287 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
288 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
289 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
290 #else
291 #define	BGE_EVCNT_INCR(ev)	/* nothing */
292 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
293 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
294 #endif
295 
296 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
297 /*
298  * The BCM5700 documentation seems to indicate that the hardware still has the
299  * Alteon vendor ID burned into it, though it should always be overridden by
300  * the value in the EEPROM.  We'll check for it anyway.
301  */
302 static const struct bge_product {
303 	pci_vendor_id_t		bp_vendor;
304 	pci_product_id_t	bp_product;
305 	const char		*bp_name;
306 } bge_products[] = {
307 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
308 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
309 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
310 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
311 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
312 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
313 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
314 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
315 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
316 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
317 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
318 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
319 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
320 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
321 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
322 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
323 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
324 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
325 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
326 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
327 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
328 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
329 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
330 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
331 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
332 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
333 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
334 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
335 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
336 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
337 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
338 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
339 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
340 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
341 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
342 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
343 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
344 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
345 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
346 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
347 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
348 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
349 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
350 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
351 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
352 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
353 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
354 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
355 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
356 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
357 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
358 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
359 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
360 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
361 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
362 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
363 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
364 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
365 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
366 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
367 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
368 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
369 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
370 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
371 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
372 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
373 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
374 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
375 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
376 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
377 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
378 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
379 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
380 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
381 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
382 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
383 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
384 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
385 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
386 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
387 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
388 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
389 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
390 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
391 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
392 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
393 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
394 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
395 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
396 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
397 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
398 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
399 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
400 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
401 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
402 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
403 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
404 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
405 	{ 0, 0, NULL },
406 };
407 
408 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
409 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
410 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
411 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
412 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
413 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
414 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
415 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
416 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
417 
418 static const struct bge_revision {
419 	uint32_t		br_chipid;
420 	const char		*br_name;
421 } bge_revisions[] = {
422 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
423 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
424 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
425 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
426 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
427 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
428 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
429 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
430 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
431 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
432 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
433 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
434 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
435 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
436 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
437 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
438 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
439 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
440 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
441 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
442 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
443 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
444 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
445 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
446 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
447 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
448 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
449 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
450 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
451 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
452 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
453 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
454 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
455 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
456 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
457 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
458 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
459 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
460 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
461 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
462 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
463 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
464 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
465 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
466 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
467 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
468 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
469 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
470 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
471 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
472 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
473 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
474 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
475 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
476 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
477 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
478 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
479 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
480 	/* 5754 and 5787 share the same ASIC ID */
481 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
482 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
483 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
484 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
485 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
486 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
487 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
488 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
489 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
490 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
491 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
492 
493 	{ 0, NULL }
494 };
495 
496 /*
497  * Some defaults for major revisions, so that newer steppings
498  * that we don't know about have a shot at working.
499  */
500 static const struct bge_revision bge_majorrevs[] = {
501 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
502 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
503 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
504 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
505 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
506 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
507 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
508 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
509 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
510 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
511 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
512 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
513 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
514 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
515 	/* 5754 and 5787 share the same ASIC ID */
516 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
517 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
518 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
519 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
520 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
521 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
522 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
523 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
524 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
525 
526 	{ 0, NULL }
527 };
528 
529 static int bge_allow_asf = 1;
530 
531 #ifndef BGE_WATCHDOG_TIMEOUT
532 #define BGE_WATCHDOG_TIMEOUT 5
533 #endif
534 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
535 
536 
537 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
538     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
539 
540 static uint32_t
bge_readmem_ind(struct bge_softc * sc,int off)541 bge_readmem_ind(struct bge_softc *sc, int off)
542 {
543 	pcireg_t val;
544 
545 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
546 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
547 		return 0;
548 
549 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
550 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
551 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
552 	return val;
553 }
554 
555 static void
bge_writemem_ind(struct bge_softc * sc,int off,int val)556 bge_writemem_ind(struct bge_softc *sc, int off, int val)
557 {
558 
559 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
560 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
561 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
562 }
563 
564 /*
565  * PCI Express only
566  */
567 static void
bge_set_max_readrq(struct bge_softc * sc)568 bge_set_max_readrq(struct bge_softc *sc)
569 {
570 	pcireg_t val;
571 
572 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
573 	    + PCIE_DCSR);
574 	val &= ~PCIE_DCSR_MAX_READ_REQ;
575 	switch (sc->bge_expmrq) {
576 	case 2048:
577 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
578 		break;
579 	case 4096:
580 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
581 		break;
582 	default:
583 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
584 		break;
585 	}
586 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
587 	    + PCIE_DCSR, val);
588 }
589 
590 #ifdef notdef
591 static uint32_t
bge_readreg_ind(struct bge_softc * sc,int off)592 bge_readreg_ind(struct bge_softc *sc, int off)
593 {
594 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
595 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
596 }
597 #endif
598 
599 static void
bge_writereg_ind(struct bge_softc * sc,int off,int val)600 bge_writereg_ind(struct bge_softc *sc, int off, int val)
601 {
602 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
603 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
604 }
605 
606 static void
bge_writemem_direct(struct bge_softc * sc,int off,int val)607 bge_writemem_direct(struct bge_softc *sc, int off, int val)
608 {
609 	CSR_WRITE_4(sc, off, val);
610 }
611 
612 static void
bge_writembx(struct bge_softc * sc,int off,int val)613 bge_writembx(struct bge_softc *sc, int off, int val)
614 {
615 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
616 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
617 
618 	CSR_WRITE_4(sc, off, val);
619 }
620 
621 static void
bge_writembx_flush(struct bge_softc * sc,int off,int val)622 bge_writembx_flush(struct bge_softc *sc, int off, int val)
623 {
624 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
625 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
626 
627 	CSR_WRITE_4_FLUSH(sc, off, val);
628 }
629 
630 /*
631  * Clear all stale locks and select the lock for this driver instance.
632  */
633 void
bge_ape_lock_init(struct bge_softc * sc)634 bge_ape_lock_init(struct bge_softc *sc)
635 {
636 	struct pci_attach_args *pa = &(sc->bge_pa);
637 	uint32_t bit, regbase;
638 	int i;
639 
640 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
641 		regbase = BGE_APE_LOCK_GRANT;
642 	else
643 		regbase = BGE_APE_PER_LOCK_GRANT;
644 
645 	/* Clear any stale locks. */
646 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
647 		switch (i) {
648 		case BGE_APE_LOCK_PHY0:
649 		case BGE_APE_LOCK_PHY1:
650 		case BGE_APE_LOCK_PHY2:
651 		case BGE_APE_LOCK_PHY3:
652 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
653 			break;
654 		default:
655 			if (pa->pa_function == 0)
656 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
657 			else
658 				bit = (1 << pa->pa_function);
659 		}
660 		APE_WRITE_4(sc, regbase + 4 * i, bit);
661 	}
662 
663 	/* Select the PHY lock based on the device's function number. */
664 	switch (pa->pa_function) {
665 	case 0:
666 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
667 		break;
668 	case 1:
669 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
670 		break;
671 	case 2:
672 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
673 		break;
674 	case 3:
675 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
676 		break;
677 	default:
678 		printf("%s: PHY lock not supported on function\n",
679 		    device_xname(sc->bge_dev));
680 		break;
681 	}
682 }
683 
684 /*
685  * Check for APE firmware, set flags, and print version info.
686  */
687 void
bge_ape_read_fw_ver(struct bge_softc * sc)688 bge_ape_read_fw_ver(struct bge_softc *sc)
689 {
690 	const char *fwtype;
691 	uint32_t apedata, features;
692 
693 	/* Check for a valid APE signature in shared memory. */
694 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
695 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
696 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
697 		return;
698 	}
699 
700 	/* Check if APE firmware is running. */
701 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
702 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
703 		printf("%s: APE signature found but FW status not ready! "
704 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
705 		return;
706 	}
707 
708 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
709 
710 	/* Fetch the APE firwmare type and version. */
711 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
712 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
713 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
714 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
715 		fwtype = "NCSI";
716 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
717 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
718 		fwtype = "DASH";
719 	} else
720 		fwtype = "UNKN";
721 
722 	/* Print the APE firmware version. */
723 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
724 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
725 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
726 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
727 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
728 }
729 
730 int
bge_ape_lock(struct bge_softc * sc,int locknum)731 bge_ape_lock(struct bge_softc *sc, int locknum)
732 {
733 	struct pci_attach_args *pa = &(sc->bge_pa);
734 	uint32_t bit, gnt, req, status;
735 	int i, off;
736 
737 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
738 		return 0;
739 
740 	/* Lock request/grant registers have different bases. */
741 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
742 		req = BGE_APE_LOCK_REQ;
743 		gnt = BGE_APE_LOCK_GRANT;
744 	} else {
745 		req = BGE_APE_PER_LOCK_REQ;
746 		gnt = BGE_APE_PER_LOCK_GRANT;
747 	}
748 
749 	off = 4 * locknum;
750 
751 	switch (locknum) {
752 	case BGE_APE_LOCK_GPIO:
753 		/* Lock required when using GPIO. */
754 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
755 			return 0;
756 		if (pa->pa_function == 0)
757 			bit = BGE_APE_LOCK_REQ_DRIVER0;
758 		else
759 			bit = (1 << pa->pa_function);
760 		break;
761 	case BGE_APE_LOCK_GRC:
762 		/* Lock required to reset the device. */
763 		if (pa->pa_function == 0)
764 			bit = BGE_APE_LOCK_REQ_DRIVER0;
765 		else
766 			bit = (1 << pa->pa_function);
767 		break;
768 	case BGE_APE_LOCK_MEM:
769 		/* Lock required when accessing certain APE memory. */
770 		if (pa->pa_function == 0)
771 			bit = BGE_APE_LOCK_REQ_DRIVER0;
772 		else
773 			bit = (1 << pa->pa_function);
774 		break;
775 	case BGE_APE_LOCK_PHY0:
776 	case BGE_APE_LOCK_PHY1:
777 	case BGE_APE_LOCK_PHY2:
778 	case BGE_APE_LOCK_PHY3:
779 		/* Lock required when accessing PHYs. */
780 		bit = BGE_APE_LOCK_REQ_DRIVER0;
781 		break;
782 	default:
783 		return EINVAL;
784 	}
785 
786 	/* Request a lock. */
787 	APE_WRITE_4_FLUSH(sc, req + off, bit);
788 
789 	/* Wait up to 1 second to acquire lock. */
790 	for (i = 0; i < 20000; i++) {
791 		status = APE_READ_4(sc, gnt + off);
792 		if (status == bit)
793 			break;
794 		DELAY(50);
795 	}
796 
797 	/* Handle any errors. */
798 	if (status != bit) {
799 		printf("%s: APE lock %d request failed! "
800 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
801 		    device_xname(sc->bge_dev),
802 		    locknum, req + off, bit & 0xFFFF, gnt + off,
803 		    status & 0xFFFF);
804 		/* Revoke the lock request. */
805 		APE_WRITE_4(sc, gnt + off, bit);
806 		return EBUSY;
807 	}
808 
809 	return 0;
810 }
811 
812 void
bge_ape_unlock(struct bge_softc * sc,int locknum)813 bge_ape_unlock(struct bge_softc *sc, int locknum)
814 {
815 	struct pci_attach_args *pa = &(sc->bge_pa);
816 	uint32_t bit, gnt;
817 	int off;
818 
819 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
820 		return;
821 
822 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
823 		gnt = BGE_APE_LOCK_GRANT;
824 	else
825 		gnt = BGE_APE_PER_LOCK_GRANT;
826 
827 	off = 4 * locknum;
828 
829 	switch (locknum) {
830 	case BGE_APE_LOCK_GPIO:
831 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
832 			return;
833 		if (pa->pa_function == 0)
834 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
835 		else
836 			bit = (1 << pa->pa_function);
837 		break;
838 	case BGE_APE_LOCK_GRC:
839 		if (pa->pa_function == 0)
840 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
841 		else
842 			bit = (1 << pa->pa_function);
843 		break;
844 	case BGE_APE_LOCK_MEM:
845 		if (pa->pa_function == 0)
846 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
847 		else
848 			bit = (1 << pa->pa_function);
849 		break;
850 	case BGE_APE_LOCK_PHY0:
851 	case BGE_APE_LOCK_PHY1:
852 	case BGE_APE_LOCK_PHY2:
853 	case BGE_APE_LOCK_PHY3:
854 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
855 		break;
856 	default:
857 		return;
858 	}
859 
860 	/* Write and flush for consecutive bge_ape_lock() */
861 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
862 }
863 
864 /*
865  * Send an event to the APE firmware.
866  */
867 void
bge_ape_send_event(struct bge_softc * sc,uint32_t event)868 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
869 {
870 	uint32_t apedata;
871 	int i;
872 
873 	/* NCSI does not support APE events. */
874 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
875 		return;
876 
877 	/* Wait up to 1ms for APE to service previous event. */
878 	for (i = 10; i > 0; i--) {
879 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
880 			break;
881 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
882 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
883 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
884 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
885 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
886 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
887 			break;
888 		}
889 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
890 		DELAY(100);
891 	}
892 	if (i == 0) {
893 		printf("%s: APE event 0x%08x send timed out\n",
894 		    device_xname(sc->bge_dev), event);
895 	}
896 }
897 
898 void
bge_ape_driver_state_change(struct bge_softc * sc,int kind)899 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
900 {
901 	uint32_t apedata, event;
902 
903 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
904 		return;
905 
906 	switch (kind) {
907 	case BGE_RESET_START:
908 		/* If this is the first load, clear the load counter. */
909 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
910 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
911 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
912 		else {
913 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
914 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
915 		}
916 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
917 		    BGE_APE_HOST_SEG_SIG_MAGIC);
918 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
919 		    BGE_APE_HOST_SEG_LEN_MAGIC);
920 
921 		/* Add some version info if bge(4) supports it. */
922 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
923 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
924 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
925 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
926 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
927 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
928 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 		    BGE_APE_HOST_DRVR_STATE_START);
930 		event = BGE_APE_EVENT_STATUS_STATE_START;
931 		break;
932 	case BGE_RESET_SHUTDOWN:
933 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
934 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
935 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
936 		break;
937 	case BGE_RESET_SUSPEND:
938 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
939 		break;
940 	default:
941 		return;
942 	}
943 
944 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
945 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
946 }
947 
948 static uint8_t
bge_nvram_getbyte(struct bge_softc * sc,int addr,uint8_t * dest)949 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
950 {
951 	uint32_t access, byte = 0;
952 	int i;
953 
954 	/* Lock. */
955 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
956 	for (i = 0; i < 8000; i++) {
957 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
958 			break;
959 		DELAY(20);
960 	}
961 	if (i == 8000)
962 		return 1;
963 
964 	/* Enable access. */
965 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
966 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
967 
968 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
969 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
970 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
971 		DELAY(10);
972 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
973 			DELAY(10);
974 			break;
975 		}
976 	}
977 
978 	if (i == BGE_TIMEOUT * 10) {
979 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
980 		return 1;
981 	}
982 
983 	/* Get result. */
984 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
985 
986 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
987 
988 	/* Disable access. */
989 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
990 
991 	/* Unlock. */
992 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
993 
994 	return 0;
995 }
996 
997 /*
998  * Read a sequence of bytes from NVRAM.
999  */
1000 static int
bge_read_nvram(struct bge_softc * sc,uint8_t * dest,int off,int cnt)1001 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1002 {
1003 	int error = 0, i;
1004 	uint8_t byte = 0;
1005 
1006 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1007 		return 1;
1008 
1009 	for (i = 0; i < cnt; i++) {
1010 		error = bge_nvram_getbyte(sc, off + i, &byte);
1011 		if (error)
1012 			break;
1013 		*(dest + i) = byte;
1014 	}
1015 
1016 	return error ? 1 : 0;
1017 }
1018 
1019 /*
1020  * Read a byte of data stored in the EEPROM at address 'addr.' The
1021  * BCM570x supports both the traditional bitbang interface and an
1022  * auto access interface for reading the EEPROM. We use the auto
1023  * access method.
1024  */
1025 static uint8_t
bge_eeprom_getbyte(struct bge_softc * sc,int addr,uint8_t * dest)1026 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1027 {
1028 	int i;
1029 	uint32_t byte = 0;
1030 
1031 	/*
1032 	 * Enable use of auto EEPROM access so we can avoid
1033 	 * having to use the bitbang method.
1034 	 */
1035 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1036 
1037 	/* Reset the EEPROM, load the clock period. */
1038 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1039 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1040 	DELAY(20);
1041 
1042 	/* Issue the read EEPROM command. */
1043 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1044 
1045 	/* Wait for completion */
1046 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1047 		DELAY(10);
1048 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1049 			break;
1050 	}
1051 
1052 	if (i == BGE_TIMEOUT * 10) {
1053 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1054 		return 1;
1055 	}
1056 
1057 	/* Get result. */
1058 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1059 
1060 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1061 
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Read a sequence of bytes from the EEPROM.
1067  */
1068 static int
bge_read_eeprom(struct bge_softc * sc,void * destv,int off,int cnt)1069 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1070 {
1071 	int error = 0, i;
1072 	uint8_t byte = 0;
1073 	char *dest = destv;
1074 
1075 	for (i = 0; i < cnt; i++) {
1076 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1077 		if (error)
1078 			break;
1079 		*(dest + i) = byte;
1080 	}
1081 
1082 	return error ? 1 : 0;
1083 }
1084 
1085 static int
bge_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)1086 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1087 {
1088 	struct bge_softc * const sc = device_private(dev);
1089 	uint32_t data;
1090 	uint32_t autopoll;
1091 	int rv = 0;
1092 	int i;
1093 
1094 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1095 		return -1;
1096 
1097 	/* Reading with autopolling on may trigger PCI errors */
1098 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1099 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1100 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1101 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1102 		DELAY(80);
1103 	}
1104 
1105 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1106 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1107 
1108 	for (i = 0; i < BGE_TIMEOUT; i++) {
1109 		delay(10);
1110 		data = CSR_READ_4(sc, BGE_MI_COMM);
1111 		if (!(data & BGE_MICOMM_BUSY)) {
1112 			DELAY(5);
1113 			data = CSR_READ_4(sc, BGE_MI_COMM);
1114 			break;
1115 		}
1116 	}
1117 
1118 	if (i == BGE_TIMEOUT) {
1119 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1120 		rv = ETIMEDOUT;
1121 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
1122 		/* XXX This error occurs on some devices while attaching. */
1123 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1124 		rv = EIO;
1125 	} else
1126 		*val = data & BGE_MICOMM_DATA;
1127 
1128 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1129 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1130 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1131 		DELAY(80);
1132 	}
1133 
1134 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1135 
1136 	return rv;
1137 }
1138 
1139 static int
bge_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1141 {
1142 	struct bge_softc * const sc = device_private(dev);
1143 	uint32_t data, autopoll;
1144 	int rv = 0;
1145 	int i;
1146 
1147 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1148 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1149 		return 0;
1150 
1151 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1152 		return -1;
1153 
1154 	/* Reading with autopolling on may trigger PCI errors */
1155 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1156 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1157 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1158 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1159 		DELAY(80);
1160 	}
1161 
1162 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1163 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1164 
1165 	for (i = 0; i < BGE_TIMEOUT; i++) {
1166 		delay(10);
1167 		data = CSR_READ_4(sc, BGE_MI_COMM);
1168 		if (!(data & BGE_MICOMM_BUSY)) {
1169 			delay(5);
1170 			data = CSR_READ_4(sc, BGE_MI_COMM);
1171 			break;
1172 		}
1173 	}
1174 
1175 	if (i == BGE_TIMEOUT) {
1176 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1177 		rv = ETIMEDOUT;
1178 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
1179 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1180 		rv = EIO;
1181 	}
1182 
1183 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1184 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1185 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1186 		delay(80);
1187 	}
1188 
1189 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1190 
1191 	return rv;
1192 }
1193 
1194 static void
bge_miibus_statchg(struct ifnet * ifp)1195 bge_miibus_statchg(struct ifnet *ifp)
1196 {
1197 	struct bge_softc * const sc = ifp->if_softc;
1198 	struct mii_data *mii = &sc->bge_mii;
1199 	uint32_t mac_mode, rx_mode, tx_mode;
1200 
1201 	/*
1202 	 * Get flow control negotiation result.
1203 	 */
1204 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1205 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1206 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1207 
1208 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1209 	    mii->mii_media_status & IFM_ACTIVE &&
1210 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1211 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
1212 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1213 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
1214 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1215 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1216 
1217 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1218 		return;
1219 
1220 	/* Set the port mode (MII/GMII) to match the link speed. */
1221 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1222 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1223 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1224 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1225 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1226 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1227 		mac_mode |= BGE_PORTMODE_GMII;
1228 	else
1229 		mac_mode |= BGE_PORTMODE_MII;
1230 
1231 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1232 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1233 	if ((mii->mii_media_active & IFM_FDX) != 0) {
1234 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1235 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1236 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1237 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1238 	} else
1239 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1240 
1241 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1242 	DELAY(40);
1243 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1244 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1245 }
1246 
1247 /*
1248  * Update rx threshold levels to values in a particular slot
1249  * of the interrupt-mitigation table bge_rx_threshes.
1250  */
1251 static void
bge_set_thresh(struct ifnet * ifp,int lvl)1252 bge_set_thresh(struct ifnet *ifp, int lvl)
1253 {
1254 	struct bge_softc * const sc = ifp->if_softc;
1255 
1256 	/*
1257 	 * For now, just save the new Rx-intr thresholds and record
1258 	 * that a threshold update is pending.  Updating the hardware
1259 	 * registers here (even at splhigh()) is observed to
1260 	 * occasionally cause glitches where Rx-interrupts are not
1261 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1262 	 */
1263 	mutex_enter(sc->sc_intr_lock);
1264 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1265 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1266 	sc->bge_pending_rxintr_change = true;
1267 	mutex_exit(sc->sc_intr_lock);
1268 }
1269 
1270 
1271 /*
1272  * Update Rx thresholds of all bge devices
1273  */
1274 static void
bge_update_all_threshes(int lvl)1275 bge_update_all_threshes(int lvl)
1276 {
1277 	const char * const namebuf = "bge";
1278 	const size_t namelen = strlen(namebuf);
1279 	struct ifnet *ifp;
1280 
1281 	if (lvl < 0)
1282 		lvl = 0;
1283 	else if (lvl >= NBGE_RX_THRESH)
1284 		lvl = NBGE_RX_THRESH - 1;
1285 
1286 	/*
1287 	 * Now search all the interfaces for this name/number
1288 	 */
1289 	int s = pserialize_read_enter();
1290 	IFNET_READER_FOREACH(ifp) {
1291 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1292 			continue;
1293 		/* We got a match: update if doing auto-threshold-tuning */
1294 		if (bge_auto_thresh)
1295 			bge_set_thresh(ifp, lvl);
1296 	}
1297 	pserialize_read_exit(s);
1298 }
1299 
1300 /*
1301  * Handle events that have triggered interrupts.
1302  */
1303 static void
bge_handle_events(struct bge_softc * sc)1304 bge_handle_events(struct bge_softc *sc)
1305 {
1306 
1307 	return;
1308 }
1309 
1310 /*
1311  * Memory management for jumbo frames.
1312  */
1313 
1314 static int
bge_alloc_jumbo_mem(struct bge_softc * sc)1315 bge_alloc_jumbo_mem(struct bge_softc *sc)
1316 {
1317 	char *ptr, *kva;
1318 	int i, rseg, state, error;
1319 	struct bge_jpool_entry *entry;
1320 
1321 	state = error = 0;
1322 
1323 	/* Grab a big chunk o' storage. */
1324 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1325 	    &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
1326 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1327 		return ENOBUFS;
1328 	}
1329 
1330 	state = 1;
1331 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
1332 	    rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
1333 		aprint_error_dev(sc->bge_dev,
1334 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1335 		error = ENOBUFS;
1336 		goto out;
1337 	}
1338 
1339 	state = 2;
1340 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1341 	    BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
1342 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1343 		error = ENOBUFS;
1344 		goto out;
1345 	}
1346 
1347 	state = 3;
1348 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1349 	    kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
1350 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1351 		error = ENOBUFS;
1352 		goto out;
1353 	}
1354 
1355 	state = 4;
1356 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1357 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1358 
1359 	SLIST_INIT(&sc->bge_jfree_listhead);
1360 	SLIST_INIT(&sc->bge_jinuse_listhead);
1361 
1362 	/*
1363 	 * Now divide it up into 9K pieces and save the addresses
1364 	 * in an array.
1365 	 */
1366 	ptr = sc->bge_cdata.bge_jumbo_buf;
1367 	for (i = 0; i < BGE_JSLOTS; i++) {
1368 		sc->bge_cdata.bge_jslots[i] = ptr;
1369 		ptr += BGE_JLEN;
1370 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1371 		entry->slot = i;
1372 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1373 				 entry, jpool_entries);
1374 	}
1375 out:
1376 	if (error != 0) {
1377 		switch (state) {
1378 		case 4:
1379 			bus_dmamap_unload(sc->bge_dmatag,
1380 			    sc->bge_cdata.bge_rx_jumbo_map);
1381 			/* FALLTHROUGH */
1382 		case 3:
1383 			bus_dmamap_destroy(sc->bge_dmatag,
1384 			    sc->bge_cdata.bge_rx_jumbo_map);
1385 			/* FALLTHROUGH */
1386 		case 2:
1387 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1388 			/* FALLTHROUGH */
1389 		case 1:
1390 			bus_dmamem_free(sc->bge_dmatag,
1391 			    &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
1392 			break;
1393 		default:
1394 			break;
1395 		}
1396 	}
1397 
1398 	return error;
1399 }
1400 
1401 static void
bge_free_jumbo_mem(struct bge_softc * sc)1402 bge_free_jumbo_mem(struct bge_softc *sc)
1403 {
1404 	struct bge_jpool_entry *entry, *tmp;
1405 
1406 	KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
1407 
1408 	SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
1409 		kmem_free(entry, sizeof(*entry));
1410 	}
1411 
1412 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1413 
1414 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1415 
1416 	bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
1417 
1418 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
1419 }
1420 
1421 /*
1422  * Allocate a jumbo buffer.
1423  */
1424 static void *
bge_jalloc(struct bge_softc * sc)1425 bge_jalloc(struct bge_softc *sc)
1426 {
1427 	struct bge_jpool_entry	 *entry;
1428 
1429 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1430 
1431 	if (entry == NULL) {
1432 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1433 		return NULL;
1434 	}
1435 
1436 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1437 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1438 	return sc->bge_cdata.bge_jslots[entry->slot];
1439 }
1440 
1441 /*
1442  * Release a jumbo buffer.
1443  */
1444 static void
bge_jfree(struct mbuf * m,void * buf,size_t size,void * arg)1445 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1446 {
1447 	struct bge_jpool_entry *entry;
1448 	struct bge_softc * const sc = arg;
1449 
1450 	if (sc == NULL)
1451 		panic("bge_jfree: can't find softc pointer!");
1452 
1453 	/* calculate the slot this buffer belongs to */
1454 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1455 
1456 	if (i < 0 || i >= BGE_JSLOTS)
1457 		panic("bge_jfree: asked to free buffer that we don't manage!");
1458 
1459 	mutex_enter(sc->sc_intr_lock);
1460 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1461 	if (entry == NULL)
1462 		panic("bge_jfree: buffer not in use!");
1463 	entry->slot = i;
1464 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1465 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1466 	mutex_exit(sc->sc_intr_lock);
1467 
1468 	if (__predict_true(m != NULL))
1469 		pool_cache_put(mb_cache, m);
1470 }
1471 
1472 
1473 /*
1474  * Initialize a standard receive ring descriptor.
1475  */
1476 static int
bge_newbuf_std(struct bge_softc * sc,int i)1477 bge_newbuf_std(struct bge_softc *sc, int i)
1478 {
1479 	const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
1480 	struct mbuf *m;
1481 
1482 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1483 	if (m == NULL)
1484 		return ENOBUFS;
1485 
1486 	MCLGET(m, M_DONTWAIT);
1487 	if (!(m->m_flags & M_EXT)) {
1488 		m_freem(m);
1489 		return ENOBUFS;
1490 	}
1491 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1492 
1493 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1494 	    m_adj(m, ETHER_ALIGN);
1495 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
1496 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1497 		m_freem(m);
1498 		return ENOBUFS;
1499 	}
1500 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1501 	    BUS_DMASYNC_PREREAD);
1502 	sc->bge_cdata.bge_rx_std_chain[i] = m;
1503 
1504 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1505 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1506 		i * sizeof(struct bge_rx_bd),
1507 	    sizeof(struct bge_rx_bd),
1508 	    BUS_DMASYNC_POSTWRITE);
1509 
1510 	struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
1511 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1512 	r->bge_flags = BGE_RXBDFLAG_END;
1513 	r->bge_len = m->m_len;
1514 	r->bge_idx = i;
1515 
1516 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1517 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1518 		i * sizeof(struct bge_rx_bd),
1519 	    sizeof(struct bge_rx_bd),
1520 	    BUS_DMASYNC_PREWRITE);
1521 
1522 	sc->bge_std_cnt++;
1523 
1524 	return 0;
1525 }
1526 
1527 /*
1528  * Initialize a jumbo receive ring descriptor. This allocates
1529  * a jumbo buffer from the pool managed internally by the driver.
1530  */
1531 static int
bge_newbuf_jumbo(struct bge_softc * sc,int i,struct mbuf * m)1532 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1533 {
1534 	struct mbuf *m_new = NULL;
1535 	struct bge_rx_bd *r;
1536 	void *buf = NULL;
1537 
1538 	if (m == NULL) {
1539 
1540 		/* Allocate the mbuf. */
1541 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1542 		if (m_new == NULL)
1543 			return ENOBUFS;
1544 
1545 		/* Allocate the jumbo buffer */
1546 		buf = bge_jalloc(sc);
1547 		if (buf == NULL) {
1548 			m_freem(m_new);
1549 			aprint_error_dev(sc->bge_dev,
1550 			    "jumbo allocation failed -- packet dropped!\n");
1551 			return ENOBUFS;
1552 		}
1553 
1554 		/* Attach the buffer to the mbuf. */
1555 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1556 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1557 		    bge_jfree, sc);
1558 		m_new->m_flags |= M_EXT_RW;
1559 	} else {
1560 		m_new = m;
1561 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1562 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1563 	}
1564 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1565 	    m_adj(m_new, ETHER_ALIGN);
1566 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1567 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1568 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
1569 
1570 	/* Set up the descriptor. */
1571 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1572 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1573 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1574 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1575 	r->bge_len = m_new->m_len;
1576 	r->bge_idx = i;
1577 
1578 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1579 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1580 		i * sizeof(struct bge_rx_bd),
1581 	    sizeof(struct bge_rx_bd),
1582 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1583 
1584 	return 0;
1585 }
1586 
1587 static int
bge_init_rx_ring_std(struct bge_softc * sc)1588 bge_init_rx_ring_std(struct bge_softc *sc)
1589 {
1590 	bus_dmamap_t dmamap;
1591 	int error = 0;
1592 	u_int i;
1593 
1594 	if (sc->bge_flags & BGEF_RXRING_VALID)
1595 		return 0;
1596 
1597 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1598 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1599 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap);
1600 		if (error)
1601 			goto uncreate;
1602 
1603 		sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1604 		memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
1605 		    sizeof(struct bge_rx_bd));
1606 	}
1607 
1608 	sc->bge_std = i - 1;
1609 	sc->bge_std_cnt = 0;
1610 	bge_fill_rx_ring_std(sc);
1611 
1612 	sc->bge_flags |= BGEF_RXRING_VALID;
1613 
1614 	return 0;
1615 
1616 uncreate:
1617 	while (--i) {
1618 		bus_dmamap_destroy(sc->bge_dmatag,
1619 		    sc->bge_cdata.bge_rx_std_map[i]);
1620 	}
1621 	return error;
1622 }
1623 
1624 static void
bge_fill_rx_ring_std(struct bge_softc * sc)1625 bge_fill_rx_ring_std(struct bge_softc *sc)
1626 {
1627 	int i = sc->bge_std;
1628 	bool post = false;
1629 
1630 	while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
1631 		BGE_INC(i, BGE_STD_RX_RING_CNT);
1632 
1633 		if (bge_newbuf_std(sc, i) != 0)
1634 			break;
1635 
1636 		sc->bge_std = i;
1637 		post = true;
1638 	}
1639 
1640 	if (post)
1641 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1642 }
1643 
1644 
1645 static void
bge_free_rx_ring_std(struct bge_softc * sc)1646 bge_free_rx_ring_std(struct bge_softc *sc)
1647 {
1648 
1649 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
1650 		return;
1651 
1652 	for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1653 		const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
1654 		struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
1655 		if (m != NULL) {
1656 			bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
1657 			    dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1658 			bus_dmamap_unload(sc->bge_dmatag, dmap);
1659 			m_freem(m);
1660 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1661 		}
1662 		bus_dmamap_destroy(sc->bge_dmatag,
1663 		    sc->bge_cdata.bge_rx_std_map[i]);
1664 		sc->bge_cdata.bge_rx_std_map[i] = NULL;
1665 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1666 		    sizeof(struct bge_rx_bd));
1667 	}
1668 
1669 	sc->bge_flags &= ~BGEF_RXRING_VALID;
1670 }
1671 
1672 static int
bge_init_rx_ring_jumbo(struct bge_softc * sc)1673 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1674 {
1675 	int i;
1676 	volatile struct bge_rcb *rcb;
1677 
1678 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1679 		return 0;
1680 
1681 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1682 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1683 			return ENOBUFS;
1684 	}
1685 
1686 	sc->bge_jumbo = i - 1;
1687 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1688 
1689 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1690 	rcb->bge_maxlen_flags = 0;
1691 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1692 
1693 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1694 
1695 	return 0;
1696 }
1697 
1698 static void
bge_free_rx_ring_jumbo(struct bge_softc * sc)1699 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1700 {
1701 	int i;
1702 
1703 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1704 		return;
1705 
1706 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1707 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1708 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1709 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1710 		}
1711 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1712 		    sizeof(struct bge_rx_bd));
1713 	}
1714 
1715 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1716 }
1717 
1718 static void
bge_free_tx_ring(struct bge_softc * sc,bool disable)1719 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1720 {
1721 	int i;
1722 	struct txdmamap_pool_entry *dma;
1723 
1724 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
1725 		return;
1726 
1727 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1728 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1729 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1730 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1731 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1732 					    link);
1733 			sc->txdma[i] = 0;
1734 		}
1735 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1736 		    sizeof(struct bge_tx_bd));
1737 	}
1738 
1739 	if (disable) {
1740 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1741 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1742 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1743 			if (sc->bge_dma64) {
1744 				bus_dmamap_destroy(sc->bge_dmatag32,
1745 				    dma->dmamap32);
1746 			}
1747 			kmem_free(dma, sizeof(*dma));
1748 		}
1749 		SLIST_INIT(&sc->txdma_list);
1750 	}
1751 
1752 	sc->bge_flags &= ~BGEF_TXRING_VALID;
1753 }
1754 
1755 static int
bge_init_tx_ring(struct bge_softc * sc)1756 bge_init_tx_ring(struct bge_softc *sc)
1757 {
1758 	struct ifnet * const ifp = &sc->ethercom.ec_if;
1759 	int i;
1760 	bus_dmamap_t dmamap, dmamap32;
1761 	bus_size_t maxsegsz;
1762 	struct txdmamap_pool_entry *dma;
1763 
1764 	if (sc->bge_flags & BGEF_TXRING_VALID)
1765 		return 0;
1766 
1767 	sc->bge_txcnt = 0;
1768 	sc->bge_tx_saved_considx = 0;
1769 
1770 	/* Initialize transmit producer index for host-memory send ring. */
1771 	sc->bge_tx_prodidx = 0;
1772 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1773 	/* 5700 b2 errata */
1774 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1775 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1776 
1777 	/* NIC-memory send ring not used; initialize to zero. */
1778 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1779 	/* 5700 b2 errata */
1780 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1781 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1782 
1783 	/* Limit DMA segment size for some chips */
1784 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1785 	    (ifp->if_mtu <= ETHERMTU))
1786 		maxsegsz = 2048;
1787 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1788 		maxsegsz = 4096;
1789 	else
1790 		maxsegsz = ETHER_MAX_LEN_JUMBO;
1791 
1792 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
1793 		goto alloc_done;
1794 
1795 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1796 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1797 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1798 		    &dmamap))
1799 			return ENOBUFS;
1800 		if (dmamap == NULL)
1801 			panic("dmamap NULL in bge_init_tx_ring");
1802 		if (sc->bge_dma64) {
1803 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1804 			    BGE_NTXSEG, maxsegsz, 0,
1805 			    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1806 			    &dmamap32)) {
1807 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1808 				return ENOBUFS;
1809 			}
1810 			if (dmamap32 == NULL)
1811 				panic("dmamap32 NULL in bge_init_tx_ring");
1812 		} else
1813 			dmamap32 = dmamap;
1814 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1815 		if (dma == NULL) {
1816 			aprint_error_dev(sc->bge_dev,
1817 			    "can't alloc txdmamap_pool_entry\n");
1818 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1819 			if (sc->bge_dma64)
1820 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1821 			return ENOMEM;
1822 		}
1823 		dma->dmamap = dmamap;
1824 		dma->dmamap32 = dmamap32;
1825 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1826 	}
1827 alloc_done:
1828 	sc->bge_flags |= BGEF_TXRING_VALID;
1829 
1830 	return 0;
1831 }
1832 
1833 static void
bge_setmulti(struct bge_softc * sc)1834 bge_setmulti(struct bge_softc *sc)
1835 {
1836 	struct ethercom * const ec = &sc->ethercom;
1837 	struct ether_multi	*enm;
1838 	struct ether_multistep	step;
1839 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1840 	uint32_t		h;
1841 	int			i;
1842 
1843 	KASSERT(mutex_owned(sc->sc_core_lock));
1844 	if (sc->bge_if_flags & IFF_PROMISC)
1845 		goto allmulti;
1846 
1847 	/* Now program new ones. */
1848 	ETHER_LOCK(ec);
1849 	ETHER_FIRST_MULTI(step, ec, enm);
1850 	while (enm != NULL) {
1851 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1852 			/*
1853 			 * We must listen to a range of multicast addresses.
1854 			 * For now, just accept all multicasts, rather than
1855 			 * trying to set only those filter bits needed to match
1856 			 * the range.  (At this time, the only use of address
1857 			 * ranges is for IP multicast routing, for which the
1858 			 * range is big enough to require all bits set.)
1859 			 */
1860 			ETHER_UNLOCK(ec);
1861 			goto allmulti;
1862 		}
1863 
1864 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1865 
1866 		/* Just want the 7 least-significant bits. */
1867 		h &= 0x7f;
1868 
1869 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1870 		ETHER_NEXT_MULTI(step, enm);
1871 	}
1872 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1873 	ETHER_UNLOCK(ec);
1874 
1875 	goto setit;
1876 
1877  allmulti:
1878 	ETHER_LOCK(ec);
1879 	ec->ec_flags |= ETHER_F_ALLMULTI;
1880 	ETHER_UNLOCK(ec);
1881 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1882 
1883  setit:
1884 	for (i = 0; i < 4; i++)
1885 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1886 }
1887 
1888 static void
bge_sig_pre_reset(struct bge_softc * sc,int type)1889 bge_sig_pre_reset(struct bge_softc *sc, int type)
1890 {
1891 
1892 	/*
1893 	 * Some chips don't like this so only do this if ASF is enabled
1894 	 */
1895 	if (sc->bge_asf_mode)
1896 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1897 
1898 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1899 		switch (type) {
1900 		case BGE_RESET_START:
1901 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1902 			    BGE_FW_DRV_STATE_START);
1903 			break;
1904 		case BGE_RESET_SHUTDOWN:
1905 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1906 			    BGE_FW_DRV_STATE_UNLOAD);
1907 			break;
1908 		case BGE_RESET_SUSPEND:
1909 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1910 			    BGE_FW_DRV_STATE_SUSPEND);
1911 			break;
1912 		}
1913 	}
1914 
1915 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1916 		bge_ape_driver_state_change(sc, type);
1917 }
1918 
1919 static void
bge_sig_post_reset(struct bge_softc * sc,int type)1920 bge_sig_post_reset(struct bge_softc *sc, int type)
1921 {
1922 
1923 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1924 		switch (type) {
1925 		case BGE_RESET_START:
1926 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1927 			    BGE_FW_DRV_STATE_START_DONE);
1928 			/* START DONE */
1929 			break;
1930 		case BGE_RESET_SHUTDOWN:
1931 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1932 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1933 			break;
1934 		}
1935 	}
1936 
1937 	if (type == BGE_RESET_SHUTDOWN)
1938 		bge_ape_driver_state_change(sc, type);
1939 }
1940 
1941 static void
bge_sig_legacy(struct bge_softc * sc,int type)1942 bge_sig_legacy(struct bge_softc *sc, int type)
1943 {
1944 
1945 	if (sc->bge_asf_mode) {
1946 		switch (type) {
1947 		case BGE_RESET_START:
1948 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1949 			    BGE_FW_DRV_STATE_START);
1950 			break;
1951 		case BGE_RESET_SHUTDOWN:
1952 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1953 			    BGE_FW_DRV_STATE_UNLOAD);
1954 			break;
1955 		}
1956 	}
1957 }
1958 
1959 static void
bge_wait_for_event_ack(struct bge_softc * sc)1960 bge_wait_for_event_ack(struct bge_softc *sc)
1961 {
1962 	int i;
1963 
1964 	/* wait up to 2500usec */
1965 	for (i = 0; i < 250; i++) {
1966 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1967 			BGE_RX_CPU_DRV_EVENT))
1968 			break;
1969 		DELAY(10);
1970 	}
1971 }
1972 
1973 static void
bge_stop_fw(struct bge_softc * sc)1974 bge_stop_fw(struct bge_softc *sc)
1975 {
1976 
1977 	if (sc->bge_asf_mode) {
1978 		bge_wait_for_event_ack(sc);
1979 
1980 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1981 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1982 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1983 
1984 		bge_wait_for_event_ack(sc);
1985 	}
1986 }
1987 
1988 static int
bge_poll_fw(struct bge_softc * sc)1989 bge_poll_fw(struct bge_softc *sc)
1990 {
1991 	uint32_t val;
1992 	int i;
1993 
1994 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1995 		for (i = 0; i < BGE_TIMEOUT; i++) {
1996 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1997 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1998 				break;
1999 			DELAY(100);
2000 		}
2001 		if (i >= BGE_TIMEOUT) {
2002 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
2003 			return -1;
2004 		}
2005 	} else {
2006 		/*
2007 		 * Poll the value location we just wrote until
2008 		 * we see the 1's complement of the magic number.
2009 		 * This indicates that the firmware initialization
2010 		 * is complete.
2011 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2012 		 */
2013 		for (i = 0; i < BGE_TIMEOUT; i++) {
2014 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2015 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2016 				break;
2017 			DELAY(10);
2018 		}
2019 
2020 		if ((i >= BGE_TIMEOUT)
2021 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2022 			aprint_error_dev(sc->bge_dev,
2023 			    "firmware handshake timed out, val = %x\n", val);
2024 			return -1;
2025 		}
2026 	}
2027 
2028 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2029 		/* tg3 says we have to wait extra time */
2030 		delay(10 * 1000);
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 int
bge_phy_addr(struct bge_softc * sc)2037 bge_phy_addr(struct bge_softc *sc)
2038 {
2039 	struct pci_attach_args *pa = &(sc->bge_pa);
2040 	int phy_addr = 1;
2041 
2042 	/*
2043 	 * PHY address mapping for various devices.
2044 	 *
2045 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2046 	 * ---------+-------+-------+-------+-------+
2047 	 * BCM57XX  |	1   |	X   |	X   |	X   |
2048 	 * BCM5704  |	1   |	X   |	1   |	X   |
2049 	 * BCM5717  |	1   |	8   |	2   |	9   |
2050 	 * BCM5719  |	1   |	8   |	2   |	9   |
2051 	 * BCM5720  |	1   |	8   |	2   |	9   |
2052 	 *
2053 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2054 	 * ---------+-------+-------+-------+-------+
2055 	 * BCM57XX  |	X   |	X   |	X   |	X   |
2056 	 * BCM5704  |	X   |	X   |	X   |	X   |
2057 	 * BCM5717  |	X   |	X   |	X   |	X   |
2058 	 * BCM5719  |	3   |	10  |	4   |	11  |
2059 	 * BCM5720  |	X   |	X   |	X   |	X   |
2060 	 *
2061 	 * Other addresses may respond but they are not
2062 	 * IEEE compliant PHYs and should be ignored.
2063 	 */
2064 	switch (BGE_ASICREV(sc->bge_chipid)) {
2065 	case BGE_ASICREV_BCM5717:
2066 	case BGE_ASICREV_BCM5719:
2067 	case BGE_ASICREV_BCM5720:
2068 		phy_addr = pa->pa_function;
2069 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2070 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2071 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2072 		} else {
2073 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2074 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2075 		}
2076 	}
2077 
2078 	return phy_addr;
2079 }
2080 
2081 /*
2082  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2083  * self-test results.
2084  */
2085 static int
bge_chipinit(struct bge_softc * sc)2086 bge_chipinit(struct bge_softc *sc)
2087 {
2088 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2089 	int i;
2090 
2091 	/* Set endianness before we access any non-PCI registers. */
2092 	misc_ctl = BGE_INIT;
2093 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
2094 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2095 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2096 	    misc_ctl);
2097 
2098 	/*
2099 	 * Clear the MAC statistics block in the NIC's
2100 	 * internal memory.
2101 	 */
2102 	for (i = BGE_STATS_BLOCK;
2103 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2104 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2105 
2106 	for (i = BGE_STATUS_BLOCK;
2107 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2108 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2109 
2110 	/* 5717 workaround from tg3 */
2111 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2112 		/* Save */
2113 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2114 
2115 		/* Temporary modify MODE_CTL to control TLP */
2116 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2117 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2118 
2119 		/* Control TLP */
2120 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2121 		    BGE_TLP_PHYCTL1);
2122 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2123 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2124 
2125 		/* Restore */
2126 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2127 	}
2128 
2129 	if (BGE_IS_57765_FAMILY(sc)) {
2130 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2131 			/* Save */
2132 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2133 
2134 			/* Temporary modify MODE_CTL to control TLP */
2135 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2136 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2137 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2138 
2139 			/* Control TLP */
2140 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2141 			    BGE_TLP_PHYCTL5);
2142 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2143 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2144 
2145 			/* Restore */
2146 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2147 		}
2148 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2149 			/*
2150 			 * For the 57766 and non Ax versions of 57765, bootcode
2151 			 * needs to setup the PCIE Fast Training Sequence (FTS)
2152 			 * value to prevent transmit hangs.
2153 			 */
2154 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2155 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2156 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2157 
2158 			/* Save */
2159 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2160 
2161 			/* Temporary modify MODE_CTL to control TLP */
2162 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2163 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2164 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2165 
2166 			/* Control TLP */
2167 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2168 			    BGE_TLP_FTSMAX);
2169 			reg &= ~BGE_TLP_FTSMAX_MSK;
2170 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2171 			    reg | BGE_TLP_FTSMAX_VAL);
2172 
2173 			/* Restore */
2174 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2175 		}
2176 
2177 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2178 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2179 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2180 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2181 	}
2182 
2183 	/* Set up the PCI DMA control register. */
2184 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2185 	if (sc->bge_flags & BGEF_PCIE) {
2186 		/* Read watermark not used, 128 bytes for write. */
2187 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2188 		    device_xname(sc->bge_dev)));
2189 		if (sc->bge_mps >= 256)
2190 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2191 		else
2192 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2193 	} else if (sc->bge_flags & BGEF_PCIX) {
2194 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2195 		    device_xname(sc->bge_dev)));
2196 		/* PCI-X bus */
2197 		if (BGE_IS_5714_FAMILY(sc)) {
2198 			/* 256 bytes for read and write. */
2199 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2200 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2201 
2202 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2203 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2204 			else
2205 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2206 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2207 			/*
2208 			 * In the BCM5703, the DMA read watermark should
2209 			 * be set to less than or equal to the maximum
2210 			 * memory read byte count of the PCI-X command
2211 			 * register.
2212 			 */
2213 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2214 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2215 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2216 			/* 1536 bytes for read, 384 bytes for write. */
2217 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2218 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2219 		} else {
2220 			/* 384 bytes for read and write. */
2221 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2222 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2223 			    (0x0F);
2224 		}
2225 
2226 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2227 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2228 			uint32_t tmp;
2229 
2230 			/* Set ONEDMA_ATONCE for hardware workaround. */
2231 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2232 			if (tmp == 6 || tmp == 7)
2233 				dma_rw_ctl |=
2234 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2235 
2236 			/* Set PCI-X DMA write workaround. */
2237 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2238 		}
2239 	} else {
2240 		/* Conventional PCI bus: 256 bytes for read and write. */
2241 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2242 		    device_xname(sc->bge_dev)));
2243 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2244 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2245 
2246 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2247 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2248 			dma_rw_ctl |= 0x0F;
2249 	}
2250 
2251 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2252 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2253 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2254 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2255 
2256 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2257 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2258 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2259 
2260 	if (BGE_IS_57765_PLUS(sc)) {
2261 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2262 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2263 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2264 
2265 		/*
2266 		 * Enable HW workaround for controllers that misinterpret
2267 		 * a status tag update and leave interrupts permanently
2268 		 * disabled.
2269 		 */
2270 		if (!BGE_IS_57765_FAMILY(sc) &&
2271 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2272 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2273 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2274 	}
2275 
2276 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2277 	    dma_rw_ctl);
2278 
2279 	/*
2280 	 * Set up general mode register.
2281 	 */
2282 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2283 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2284 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2285 		/* Retain Host-2-BMC settings written by APE firmware. */
2286 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2287 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2288 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2289 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2290 	}
2291 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2292 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2293 
2294 	/*
2295 	 * BCM5701 B5 have a bug causing data corruption when using
2296 	 * 64-bit DMA reads, which can be terminated early and then
2297 	 * completed later as 32-bit accesses, in combination with
2298 	 * certain bridges.
2299 	 */
2300 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2301 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2302 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2303 
2304 	/*
2305 	 * Tell the firmware the driver is running
2306 	 */
2307 	if (sc->bge_asf_mode & ASF_STACKUP)
2308 		mode_ctl |= BGE_MODECTL_STACKUP;
2309 
2310 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2311 
2312 	/*
2313 	 * Disable memory write invalidate.  Apparently it is not supported
2314 	 * properly by these devices.
2315 	 */
2316 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2317 		   PCI_COMMAND_INVALIDATE_ENABLE);
2318 
2319 #ifdef __brokenalpha__
2320 	/*
2321 	 * Must insure that we do not cross an 8K (bytes) boundary
2322 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2323 	 * restriction on some ALPHA platforms with early revision
2324 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2325 	 */
2326 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2327 #endif
2328 
2329 	/* Set the timer prescaler (always 66MHz) */
2330 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2331 
2332 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2333 		DELAY(40);	/* XXX */
2334 
2335 		/* Put PHY into ready state */
2336 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2337 		DELAY(40);
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static int
bge_blockinit(struct bge_softc * sc)2344 bge_blockinit(struct bge_softc *sc)
2345 {
2346 	volatile struct bge_rcb	 *rcb;
2347 	bus_size_t rcb_addr;
2348 	struct ifnet * const ifp = &sc->ethercom.ec_if;
2349 	bge_hostaddr taddr;
2350 	uint32_t	dmactl, rdmareg, mimode, val;
2351 	int		i, limit;
2352 
2353 	/*
2354 	 * Initialize the memory window pointer register so that
2355 	 * we can access the first 32K of internal NIC RAM. This will
2356 	 * allow us to set up the TX send ring RCBs and the RX return
2357 	 * ring RCBs, plus other things which live in NIC memory.
2358 	 */
2359 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2360 
2361 	if (!BGE_IS_5705_PLUS(sc)) {
2362 		/* 57XX step 33 */
2363 		/* Configure mbuf memory pool */
2364 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2365 
2366 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2367 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2368 		else
2369 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2370 
2371 		/* 57XX step 34 */
2372 		/* Configure DMA resource pool */
2373 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2374 		    BGE_DMA_DESCRIPTORS);
2375 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2376 	}
2377 
2378 	/* 5718 step 11, 57XX step 35 */
2379 	/*
2380 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2381 	 * recommend these.
2382 	 */
2383 	if (BGE_IS_5717_PLUS(sc)) {
2384 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2385 		if (ifp->if_mtu > ETHERMTU) {
2386 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2387 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2388 		} else {
2389 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2390 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2391 		}
2392 	} else if (BGE_IS_5705_PLUS(sc)) {
2393 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2394 
2395 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2396 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2397 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2398 		} else {
2399 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2400 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2401 		}
2402 	} else {
2403 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2404 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2405 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2406 	}
2407 
2408 	/* 57XX step 36 */
2409 	/* Configure DMA resource watermarks */
2410 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2411 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2412 
2413 	/* 5718 step 13, 57XX step 38 */
2414 	/* Enable buffer manager */
2415 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2416 	/*
2417 	 * Change the arbitration algorithm of TXMBUF read request to
2418 	 * round-robin instead of priority based for BCM5719.  When
2419 	 * TXFIFO is almost empty, RDMA will hold its request until
2420 	 * TXFIFO is not almost empty.
2421 	 */
2422 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2423 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2424 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2425 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2426 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2427 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2428 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2429 
2430 	/* 57XX step 39 */
2431 	/* Poll for buffer manager start indication */
2432 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2433 		DELAY(10);
2434 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2435 			break;
2436 	}
2437 
2438 	if (i == BGE_TIMEOUT * 2) {
2439 		aprint_error_dev(sc->bge_dev,
2440 		    "buffer manager failed to start\n");
2441 		return ENXIO;
2442 	}
2443 
2444 	/* 57XX step 40 */
2445 	/* Enable flow-through queues */
2446 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2447 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2448 
2449 	/* Wait until queue initialization is complete */
2450 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2451 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2452 			break;
2453 		DELAY(10);
2454 	}
2455 
2456 	if (i == BGE_TIMEOUT * 2) {
2457 		aprint_error_dev(sc->bge_dev,
2458 		    "flow-through queue init failed\n");
2459 		return ENXIO;
2460 	}
2461 
2462 	/*
2463 	 * Summary of rings supported by the controller:
2464 	 *
2465 	 * Standard Receive Producer Ring
2466 	 * - This ring is used to feed receive buffers for "standard"
2467 	 *   sized frames (typically 1536 bytes) to the controller.
2468 	 *
2469 	 * Jumbo Receive Producer Ring
2470 	 * - This ring is used to feed receive buffers for jumbo sized
2471 	 *   frames (i.e. anything bigger than the "standard" frames)
2472 	 *   to the controller.
2473 	 *
2474 	 * Mini Receive Producer Ring
2475 	 * - This ring is used to feed receive buffers for "mini"
2476 	 *   sized frames to the controller.
2477 	 * - This feature required external memory for the controller
2478 	 *   but was never used in a production system.  Should always
2479 	 *   be disabled.
2480 	 *
2481 	 * Receive Return Ring
2482 	 * - After the controller has placed an incoming frame into a
2483 	 *   receive buffer that buffer is moved into a receive return
2484 	 *   ring.  The driver is then responsible to passing the
2485 	 *   buffer up to the stack.  Many versions of the controller
2486 	 *   support multiple RR rings.
2487 	 *
2488 	 * Send Ring
2489 	 * - This ring is used for outgoing frames.  Many versions of
2490 	 *   the controller support multiple send rings.
2491 	 */
2492 
2493 	/* 5718 step 15, 57XX step 41 */
2494 	/* Initialize the standard RX ring control block */
2495 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2496 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2497 	/* 5718 step 16 */
2498 	if (BGE_IS_57765_PLUS(sc)) {
2499 		/*
2500 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2501 		 * Bits 15-2 : Maximum RX frame size
2502 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2503 		 * Bit 0     : Reserved
2504 		 */
2505 		rcb->bge_maxlen_flags =
2506 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2507 	} else if (BGE_IS_5705_PLUS(sc)) {
2508 		/*
2509 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2510 		 * Bits 15-2 : Reserved (should be 0)
2511 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2512 		 * Bit 0     : Reserved
2513 		 */
2514 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2515 	} else {
2516 		/*
2517 		 * Ring size is always XXX entries
2518 		 * Bits 31-16: Maximum RX frame size
2519 		 * Bits 15-2 : Reserved (should be 0)
2520 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2521 		 * Bit 0     : Reserved
2522 		 */
2523 		rcb->bge_maxlen_flags =
2524 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2525 	}
2526 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2527 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2528 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2529 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2530 	else
2531 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2532 	/* Write the standard receive producer ring control block. */
2533 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2534 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2535 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2536 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2537 
2538 	/* Reset the standard receive producer ring producer index. */
2539 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2540 
2541 	/* 57XX step 42 */
2542 	/*
2543 	 * Initialize the jumbo RX ring control block
2544 	 * We set the 'ring disabled' bit in the flags
2545 	 * field until we're actually ready to start
2546 	 * using this ring (i.e. once we set the MTU
2547 	 * high enough to require it).
2548 	 */
2549 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2550 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2551 		BGE_HOSTADDR(rcb->bge_hostaddr,
2552 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2553 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2554 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2555 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2556 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2557 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2558 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2559 		else
2560 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2561 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2562 		    rcb->bge_hostaddr.bge_addr_hi);
2563 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2564 		    rcb->bge_hostaddr.bge_addr_lo);
2565 		/* Program the jumbo receive producer ring RCB parameters. */
2566 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2567 		    rcb->bge_maxlen_flags);
2568 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2569 		/* Reset the jumbo receive producer ring producer index. */
2570 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2571 	}
2572 
2573 	/* 57XX step 43 */
2574 	/* Disable the mini receive producer ring RCB. */
2575 	if (BGE_IS_5700_FAMILY(sc)) {
2576 		/* Set up dummy disabled mini ring RCB */
2577 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2578 		rcb->bge_maxlen_flags =
2579 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2580 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2581 		    rcb->bge_maxlen_flags);
2582 		/* Reset the mini receive producer ring producer index. */
2583 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2584 
2585 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2586 		    offsetof(struct bge_ring_data, bge_info),
2587 		    sizeof(struct bge_gib),
2588 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2589 	}
2590 
2591 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2592 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2593 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2594 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2595 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2596 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2597 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2598 	}
2599 	/* 5718 step 14, 57XX step 44 */
2600 	/*
2601 	 * The BD ring replenish thresholds control how often the
2602 	 * hardware fetches new BD's from the producer rings in host
2603 	 * memory.  Setting the value too low on a busy system can
2604 	 * starve the hardware and recue the throughpout.
2605 	 *
2606 	 * Set the BD ring replenish thresholds. The recommended
2607 	 * values are 1/8th the number of descriptors allocated to
2608 	 * each ring, but since we try to avoid filling the entire
2609 	 * ring we set these to the minimal value of 8.  This needs to
2610 	 * be done on several of the supported chip revisions anyway,
2611 	 * to work around HW bugs.
2612 	 */
2613 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2614 	if (BGE_IS_JUMBO_CAPABLE(sc))
2615 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2616 
2617 	/* 5718 step 18 */
2618 	if (BGE_IS_5717_PLUS(sc)) {
2619 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2620 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2621 	}
2622 
2623 	/* 57XX step 45 */
2624 	/*
2625 	 * Disable all send rings by setting the 'ring disabled' bit
2626 	 * in the flags field of all the TX send ring control blocks,
2627 	 * located in NIC memory.
2628 	 */
2629 	if (BGE_IS_5700_FAMILY(sc)) {
2630 		/* 5700 to 5704 had 16 send rings. */
2631 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2632 	} else if (BGE_IS_5717_PLUS(sc)) {
2633 		limit = BGE_TX_RINGS_5717_MAX;
2634 	} else if (BGE_IS_57765_FAMILY(sc) ||
2635 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2636 		limit = BGE_TX_RINGS_57765_MAX;
2637 	} else
2638 		limit = 1;
2639 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2640 	for (i = 0; i < limit; i++) {
2641 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2642 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2643 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2644 		rcb_addr += sizeof(struct bge_rcb);
2645 	}
2646 
2647 	/* 57XX step 46 and 47 */
2648 	/* Configure send ring RCB 0 (we use only the first ring) */
2649 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2650 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2651 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2652 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2653 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2655 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2656 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2657 	else
2658 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2659 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2660 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2661 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2662 
2663 	/* 57XX step 48 */
2664 	/*
2665 	 * Disable all receive return rings by setting the
2666 	 * 'ring diabled' bit in the flags field of all the receive
2667 	 * return ring control blocks, located in NIC memory.
2668 	 */
2669 	if (BGE_IS_5717_PLUS(sc)) {
2670 		/* Should be 17, use 16 until we get an SRAM map. */
2671 		limit = 16;
2672 	} else if (BGE_IS_5700_FAMILY(sc))
2673 		limit = BGE_RX_RINGS_MAX;
2674 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2675 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2676 	    BGE_IS_57765_FAMILY(sc))
2677 		limit = 4;
2678 	else
2679 		limit = 1;
2680 	/* Disable all receive return rings */
2681 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2682 	for (i = 0; i < limit; i++) {
2683 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2684 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2685 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2686 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2687 			BGE_RCB_FLAG_RING_DISABLED));
2688 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2689 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2690 		    (i * (sizeof(uint64_t))), 0);
2691 		rcb_addr += sizeof(struct bge_rcb);
2692 	}
2693 
2694 	/* 57XX step 49 */
2695 	/*
2696 	 * Set up receive return ring 0.  Note that the NIC address
2697 	 * for RX return rings is 0x0.  The return rings live entirely
2698 	 * within the host, so the nicaddr field in the RCB isn't used.
2699 	 */
2700 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2701 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2702 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2703 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2704 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2705 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2706 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2707 
2708 	/* 5718 step 24, 57XX step 53 */
2709 	/* Set random backoff seed for TX */
2710 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2711 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2712 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2713 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2714 	    BGE_TX_BACKOFF_SEED_MASK);
2715 
2716 	/* 5718 step 26, 57XX step 55 */
2717 	/* Set inter-packet gap */
2718 	val = 0x2620;
2719 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2720 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2721 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2722 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2723 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2724 
2725 	/* 5718 step 27, 57XX step 56 */
2726 	/*
2727 	 * Specify which ring to use for packets that don't match
2728 	 * any RX rules.
2729 	 */
2730 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2731 
2732 	/* 5718 step 28, 57XX step 57 */
2733 	/*
2734 	 * Configure number of RX lists. One interrupt distribution
2735 	 * list, sixteen active lists, one bad frames class.
2736 	 */
2737 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2738 
2739 	/* 5718 step 29, 57XX step 58 */
2740 	/* Inialize RX list placement stats mask. */
2741 	if (BGE_IS_575X_PLUS(sc)) {
2742 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2743 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2744 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2745 	} else
2746 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2747 
2748 	/* 5718 step 30, 57XX step 59 */
2749 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2750 
2751 	/* 5718 step 33, 57XX step 62 */
2752 	/* Disable host coalescing until we get it set up */
2753 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2754 
2755 	/* 5718 step 34, 57XX step 63 */
2756 	/* Poll to make sure it's shut down. */
2757 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2758 		DELAY(10);
2759 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2760 			break;
2761 	}
2762 
2763 	if (i == BGE_TIMEOUT * 2) {
2764 		aprint_error_dev(sc->bge_dev,
2765 		    "host coalescing engine failed to idle\n");
2766 		return ENXIO;
2767 	}
2768 
2769 	/* 5718 step 35, 36, 37 */
2770 	/* Set up host coalescing defaults */
2771 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2772 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2773 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2774 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2775 	if (!(BGE_IS_5705_PLUS(sc))) {
2776 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2777 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2778 	}
2779 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2780 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2781 
2782 	/* Set up address of statistics block */
2783 	if (BGE_IS_5700_FAMILY(sc)) {
2784 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2785 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2786 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2787 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2788 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2789 	}
2790 
2791 	/* 5718 step 38 */
2792 	/* Set up address of status block */
2793 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2794 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2795 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2796 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2797 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2798 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2799 
2800 	/* Set up status block size. */
2801 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2802 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2803 		val = BGE_STATBLKSZ_FULL;
2804 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2805 	} else {
2806 		val = BGE_STATBLKSZ_32BYTE;
2807 		bzero(&sc->bge_rdata->bge_status_block, 32);
2808 	}
2809 
2810 	/* 5718 step 39, 57XX step 73 */
2811 	/* Turn on host coalescing state machine */
2812 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2813 
2814 	/* 5718 step 40, 57XX step 74 */
2815 	/* Turn on RX BD completion state machine and enable attentions */
2816 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2817 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2818 
2819 	/* 5718 step 41, 57XX step 75 */
2820 	/* Turn on RX list placement state machine */
2821 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2822 
2823 	/* 57XX step 76 */
2824 	/* Turn on RX list selector state machine. */
2825 	if (!(BGE_IS_5705_PLUS(sc)))
2826 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2827 
2828 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2829 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2830 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2831 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2832 
2833 	if (sc->bge_flags & BGEF_FIBER_TBI)
2834 		val |= BGE_PORTMODE_TBI;
2835 	else if (sc->bge_flags & BGEF_FIBER_MII)
2836 		val |= BGE_PORTMODE_GMII;
2837 	else
2838 		val |= BGE_PORTMODE_MII;
2839 
2840 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
2841 	/* Allow APE to send/receive frames. */
2842 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2843 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2844 
2845 	/* Turn on DMA, clear stats */
2846 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2847 	/* 5718 step 44 */
2848 	DELAY(40);
2849 
2850 	/* 5718 step 45, 57XX step 79 */
2851 	/* Set misc. local control, enable interrupts on attentions */
2852 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2853 	if (BGE_IS_5717_PLUS(sc)) {
2854 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2855 		/* 5718 step 46 */
2856 		DELAY(100);
2857 	}
2858 
2859 	/* 57XX step 81 */
2860 	/* Turn on DMA completion state machine */
2861 	if (!(BGE_IS_5705_PLUS(sc)))
2862 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2863 
2864 	/* 5718 step 47, 57XX step 82 */
2865 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2866 
2867 	/* 5718 step 48 */
2868 	/* Enable host coalescing bug fix. */
2869 	if (BGE_IS_5755_PLUS(sc))
2870 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2871 
2872 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2873 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2874 
2875 	/* Turn on write DMA state machine */
2876 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2877 	/* 5718 step 49 */
2878 	DELAY(40);
2879 
2880 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2881 
2882 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2883 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2884 
2885 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2886 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2887 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2888 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2889 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2890 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2891 
2892 	if (sc->bge_flags & BGEF_PCIE)
2893 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2894 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2895 		if (ifp->if_mtu <= ETHERMTU)
2896 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
2897 	}
2898 	if (sc->bge_flags & BGEF_TSO) {
2899 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2900 		if (BGE_IS_5717_PLUS(sc))
2901 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2902 	}
2903 
2904 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2905 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2906 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2907 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
2908 		/*
2909 		 * Allow multiple outstanding read requests from
2910 		 * non-LSO read DMA engine.
2911 		 */
2912 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2913 	}
2914 
2915 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2916 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2917 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2918 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2919 	    BGE_IS_57765_PLUS(sc)) {
2920 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2921 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2922 		else
2923 			rdmareg = BGE_RDMA_RSRVCTRL;
2924 		dmactl = CSR_READ_4(sc, rdmareg);
2925 		/*
2926 		 * Adjust tx margin to prevent TX data corruption and
2927 		 * fix internal FIFO overflow.
2928 		 */
2929 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2930 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2931 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2932 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2933 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2934 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2935 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2936 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2937 		}
2938 		/*
2939 		 * Enable fix for read DMA FIFO overruns.
2940 		 * The fix is to limit the number of RX BDs
2941 		 * the hardware would fetch at a time.
2942 		 */
2943 		CSR_WRITE_4(sc, rdmareg, dmactl |
2944 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2945 	}
2946 
2947 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2948 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2949 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2950 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2951 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2952 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2953 		/*
2954 		 * Allow 4KB burst length reads for non-LSO frames.
2955 		 * Enable 512B burst length reads for buffer descriptors.
2956 		 */
2957 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2958 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2959 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2960 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2961 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2962 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2963 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2964 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2965 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2966 	}
2967 	/* Turn on read DMA state machine */
2968 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2969 	/* 5718 step 52 */
2970 	delay(40);
2971 
2972 	if (sc->bge_flags & BGEF_RDMA_BUG) {
2973 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2974 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2975 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2976 				break;
2977 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2978 				break;
2979 		}
2980 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2981 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2982 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2983 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2984 			else
2985 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2986 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2987 		}
2988 	}
2989 
2990 	/* 5718 step 56, 57XX step 84 */
2991 	/* Turn on RX data completion state machine */
2992 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2993 
2994 	/* Turn on RX data and RX BD initiator state machine */
2995 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2996 
2997 	/* 57XX step 85 */
2998 	/* Turn on Mbuf cluster free state machine */
2999 	if (!BGE_IS_5705_PLUS(sc))
3000 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3001 
3002 	/* 5718 step 57, 57XX step 86 */
3003 	/* Turn on send data completion state machine */
3004 	val = BGE_SDCMODE_ENABLE;
3005 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3006 		val |= BGE_SDCMODE_CDELAY;
3007 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3008 
3009 	/* 5718 step 58 */
3010 	/* Turn on send BD completion state machine */
3011 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3012 
3013 	/* 57XX step 88 */
3014 	/* Turn on RX BD initiator state machine */
3015 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3016 
3017 	/* 5718 step 60, 57XX step 90 */
3018 	/* Turn on send data initiator state machine */
3019 	if (sc->bge_flags & BGEF_TSO) {
3020 		/* XXX: magic value from Linux driver */
3021 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3022 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
3023 	} else
3024 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3025 
3026 	/* 5718 step 61, 57XX step 91 */
3027 	/* Turn on send BD initiator state machine */
3028 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3029 
3030 	/* 5718 step 62, 57XX step 92 */
3031 	/* Turn on send BD selector state machine */
3032 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3033 
3034 	/* 5718 step 31, 57XX step 60 */
3035 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3036 	/* 5718 step 32, 57XX step 61 */
3037 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3038 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3039 
3040 	/* ack/clear link change events */
3041 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3042 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3043 	    BGE_MACSTAT_LINK_CHANGED);
3044 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3045 
3046 	/*
3047 	 * Enable attention when the link has changed state for
3048 	 * devices that use auto polling.
3049 	 */
3050 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3051 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3052 	} else {
3053 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3054 			mimode = BGE_MIMODE_500KHZ_CONST;
3055 		else
3056 			mimode = BGE_MIMODE_BASE;
3057 		/* 5718 step 68. 5718 step 69 (optionally). */
3058 		if (BGE_IS_5700_FAMILY(sc) ||
3059 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3060 			mimode |= BGE_MIMODE_AUTOPOLL;
3061 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3062 		}
3063 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3064 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3065 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3066 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3067 			    BGE_EVTENB_MI_INTERRUPT);
3068 	}
3069 
3070 	/*
3071 	 * Clear any pending link state attention.
3072 	 * Otherwise some link state change events may be lost until attention
3073 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3074 	 * It's not necessary on newer BCM chips - perhaps enabling link
3075 	 * state change attentions implies clearing pending attention.
3076 	 */
3077 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3078 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3079 	    BGE_MACSTAT_LINK_CHANGED);
3080 
3081 	/* Enable link state change attentions. */
3082 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3083 
3084 	return 0;
3085 }
3086 
3087 static const struct bge_revision *
bge_lookup_rev(uint32_t chipid)3088 bge_lookup_rev(uint32_t chipid)
3089 {
3090 	const struct bge_revision *br;
3091 
3092 	for (br = bge_revisions; br->br_name != NULL; br++) {
3093 		if (br->br_chipid == chipid)
3094 			return br;
3095 	}
3096 
3097 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3098 		if (br->br_chipid == BGE_ASICREV(chipid))
3099 			return br;
3100 	}
3101 
3102 	return NULL;
3103 }
3104 
3105 static const struct bge_product *
bge_lookup(const struct pci_attach_args * pa)3106 bge_lookup(const struct pci_attach_args *pa)
3107 {
3108 	const struct bge_product *bp;
3109 
3110 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3111 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3112 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3113 			return bp;
3114 	}
3115 
3116 	return NULL;
3117 }
3118 
3119 static uint32_t
bge_chipid(const struct pci_attach_args * pa)3120 bge_chipid(const struct pci_attach_args *pa)
3121 {
3122 	uint32_t id;
3123 
3124 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3125 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3126 
3127 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3128 		switch (PCI_PRODUCT(pa->pa_id)) {
3129 		case PCI_PRODUCT_BROADCOM_BCM5717:
3130 		case PCI_PRODUCT_BROADCOM_BCM5718:
3131 		case PCI_PRODUCT_BROADCOM_BCM5719:
3132 		case PCI_PRODUCT_BROADCOM_BCM5720:
3133 		case PCI_PRODUCT_BROADCOM_BCM5725:
3134 		case PCI_PRODUCT_BROADCOM_BCM5727:
3135 		case PCI_PRODUCT_BROADCOM_BCM5762:
3136 		case PCI_PRODUCT_BROADCOM_BCM57764:
3137 		case PCI_PRODUCT_BROADCOM_BCM57767:
3138 		case PCI_PRODUCT_BROADCOM_BCM57787:
3139 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3140 			    BGE_PCI_GEN2_PRODID_ASICREV);
3141 			break;
3142 		case PCI_PRODUCT_BROADCOM_BCM57761:
3143 		case PCI_PRODUCT_BROADCOM_BCM57762:
3144 		case PCI_PRODUCT_BROADCOM_BCM57765:
3145 		case PCI_PRODUCT_BROADCOM_BCM57766:
3146 		case PCI_PRODUCT_BROADCOM_BCM57781:
3147 		case PCI_PRODUCT_BROADCOM_BCM57782:
3148 		case PCI_PRODUCT_BROADCOM_BCM57785:
3149 		case PCI_PRODUCT_BROADCOM_BCM57786:
3150 		case PCI_PRODUCT_BROADCOM_BCM57791:
3151 		case PCI_PRODUCT_BROADCOM_BCM57795:
3152 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3153 			    BGE_PCI_GEN15_PRODID_ASICREV);
3154 			break;
3155 		default:
3156 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3157 			    BGE_PCI_PRODID_ASICREV);
3158 			break;
3159 		}
3160 	}
3161 
3162 	return id;
3163 }
3164 
3165 /*
3166  * Return true if MSI can be used with this device.
3167  */
3168 static int
bge_can_use_msi(struct bge_softc * sc)3169 bge_can_use_msi(struct bge_softc *sc)
3170 {
3171 	int can_use_msi = 0;
3172 
3173 	switch (BGE_ASICREV(sc->bge_chipid)) {
3174 	case BGE_ASICREV_BCM5714_A0:
3175 	case BGE_ASICREV_BCM5714:
3176 		/*
3177 		 * Apparently, MSI doesn't work when these chips are
3178 		 * configured in single-port mode.
3179 		 */
3180 		break;
3181 	case BGE_ASICREV_BCM5750:
3182 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3183 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3184 			can_use_msi = 1;
3185 		break;
3186 	default:
3187 		if (BGE_IS_575X_PLUS(sc))
3188 			can_use_msi = 1;
3189 	}
3190 	return can_use_msi;
3191 }
3192 
3193 /*
3194  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3195  * against our list and return its name if we find a match. Note
3196  * that since the Broadcom controller contains VPD support, we
3197  * can get the device name string from the controller itself instead
3198  * of the compiled-in string. This is a little slow, but it guarantees
3199  * we'll always announce the right product name.
3200  */
3201 static int
bge_probe(device_t parent,cfdata_t match,void * aux)3202 bge_probe(device_t parent, cfdata_t match, void *aux)
3203 {
3204 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3205 
3206 	if (bge_lookup(pa) != NULL)
3207 		return 1;
3208 
3209 	return 0;
3210 }
3211 
3212 static void
bge_attach(device_t parent,device_t self,void * aux)3213 bge_attach(device_t parent, device_t self, void *aux)
3214 {
3215 	struct bge_softc * const sc = device_private(self);
3216 	struct pci_attach_args * const pa = aux;
3217 	prop_dictionary_t dict;
3218 	const struct bge_product *bp;
3219 	const struct bge_revision *br;
3220 	pci_chipset_tag_t	pc;
3221 	const char		*intrstr = NULL;
3222 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3223 	uint32_t		command;
3224 	struct ifnet		*ifp;
3225 	struct mii_data * const mii = &sc->bge_mii;
3226 	uint32_t		misccfg, mimode, macmode;
3227 	void *			kva;
3228 	u_char			eaddr[ETHER_ADDR_LEN];
3229 	pcireg_t		memtype, subid, reg;
3230 	bus_addr_t		memaddr;
3231 	uint32_t		pm_ctl;
3232 	bool			no_seeprom;
3233 	int			capmask, trys;
3234 	int			mii_flags;
3235 	int			map_flags;
3236 	char intrbuf[PCI_INTRSTR_LEN];
3237 
3238 	bp = bge_lookup(pa);
3239 	KASSERT(bp != NULL);
3240 
3241 	sc->sc_pc = pa->pa_pc;
3242 	sc->sc_pcitag = pa->pa_tag;
3243 	sc->bge_dev = self;
3244 
3245 	sc->bge_pa = *pa;
3246 	pc = sc->sc_pc;
3247 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3248 
3249 	aprint_naive(": Ethernet controller\n");
3250 	aprint_normal(": %s Ethernet\n", bp->bp_name);
3251 
3252 	/*
3253 	 * Map control/status registers.
3254 	 */
3255 	DPRINTFN(5, ("Map control/status regs\n"));
3256 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3257 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3258 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3259 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3260 
3261 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3262 		aprint_error_dev(sc->bge_dev,
3263 		    "failed to enable memory mapping!\n");
3264 		return;
3265 	}
3266 
3267 	DPRINTFN(5, ("pci_mem_find\n"));
3268 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3269 	switch (memtype) {
3270 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3271 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3272 #if 0
3273 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3274 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3275 		    &memaddr, &sc->bge_bsize) == 0)
3276 			break;
3277 #else
3278 		/*
3279 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3280 		 * system get NMI on boot (PR#48451). This problem might not be
3281 		 * the driver's bug but our PCI common part's bug. Until we
3282 		 * find a real reason, we ignore the prefetchable bit.
3283 		 */
3284 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3285 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3286 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3287 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3288 			    map_flags, &sc->bge_bhandle) == 0) {
3289 				sc->bge_btag = pa->pa_memt;
3290 				break;
3291 			}
3292 		}
3293 #endif
3294 		/* FALLTHROUGH */
3295 	default:
3296 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3297 		return;
3298 	}
3299 
3300 	sc->bge_stopping = false;
3301 	sc->bge_txrx_stopping = false;
3302 
3303 	/* Save various chip information. */
3304 	sc->bge_chipid = bge_chipid(pa);
3305 	sc->bge_phy_addr = bge_phy_addr(sc);
3306 
3307 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3308 	    &sc->bge_pciecap, NULL) != 0) {
3309 		/* PCIe */
3310 		sc->bge_flags |= BGEF_PCIE;
3311 		/* Extract supported maximum payload size. */
3312 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3313 		    sc->bge_pciecap + PCIE_DCAP);
3314 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3315 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3316 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3317 			sc->bge_expmrq = 2048;
3318 		else
3319 			sc->bge_expmrq = 4096;
3320 		bge_set_max_readrq(sc);
3321 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3322 		/* PCIe without PCIe cap */
3323 		sc->bge_flags |= BGEF_PCIE;
3324 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3325 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3326 		/* PCI-X */
3327 		sc->bge_flags |= BGEF_PCIX;
3328 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3329 			&sc->bge_pcixcap, NULL) == 0)
3330 			aprint_error_dev(sc->bge_dev,
3331 			    "unable to find PCIX capability\n");
3332 	}
3333 
3334 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3335 		/*
3336 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3337 		 * can clobber the chip's PCI config-space power control
3338 		 * registers, leaving the card in D3 powersave state. We do
3339 		 * not have memory-mapped registers in this state, so force
3340 		 * device into D0 state before starting initialization.
3341 		 */
3342 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3343 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3344 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3345 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3346 		DELAY(1000);	/* 27 usec is allegedly sufficient */
3347 	}
3348 
3349 	/* Save chipset family. */
3350 	switch (BGE_ASICREV(sc->bge_chipid)) {
3351 	case BGE_ASICREV_BCM5717:
3352 	case BGE_ASICREV_BCM5719:
3353 	case BGE_ASICREV_BCM5720:
3354 		sc->bge_flags |= BGEF_5717_PLUS;
3355 		/* FALLTHROUGH */
3356 	case BGE_ASICREV_BCM5762:
3357 	case BGE_ASICREV_BCM57765:
3358 	case BGE_ASICREV_BCM57766:
3359 		if (!BGE_IS_5717_PLUS(sc))
3360 			sc->bge_flags |= BGEF_57765_FAMILY;
3361 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3362 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3363 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3364 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3365 			/*
3366 			 * Enable work around for DMA engine miscalculation
3367 			 * of TXMBUF available space.
3368 			 */
3369 			sc->bge_flags |= BGEF_RDMA_BUG;
3370 
3371 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3372 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3373 				/* Jumbo frame on BCM5719 A0 does not work. */
3374 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3375 			}
3376 		}
3377 		break;
3378 	case BGE_ASICREV_BCM5755:
3379 	case BGE_ASICREV_BCM5761:
3380 	case BGE_ASICREV_BCM5784:
3381 	case BGE_ASICREV_BCM5785:
3382 	case BGE_ASICREV_BCM5787:
3383 	case BGE_ASICREV_BCM57780:
3384 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3385 		break;
3386 	case BGE_ASICREV_BCM5700:
3387 	case BGE_ASICREV_BCM5701:
3388 	case BGE_ASICREV_BCM5703:
3389 	case BGE_ASICREV_BCM5704:
3390 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3391 		break;
3392 	case BGE_ASICREV_BCM5714_A0:
3393 	case BGE_ASICREV_BCM5780:
3394 	case BGE_ASICREV_BCM5714:
3395 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3396 		/* FALLTHROUGH */
3397 	case BGE_ASICREV_BCM5750:
3398 	case BGE_ASICREV_BCM5752:
3399 	case BGE_ASICREV_BCM5906:
3400 		sc->bge_flags |= BGEF_575X_PLUS;
3401 		/* FALLTHROUGH */
3402 	case BGE_ASICREV_BCM5705:
3403 		sc->bge_flags |= BGEF_5705_PLUS;
3404 		break;
3405 	}
3406 
3407 	/* Identify chips with APE processor. */
3408 	switch (BGE_ASICREV(sc->bge_chipid)) {
3409 	case BGE_ASICREV_BCM5717:
3410 	case BGE_ASICREV_BCM5719:
3411 	case BGE_ASICREV_BCM5720:
3412 	case BGE_ASICREV_BCM5761:
3413 	case BGE_ASICREV_BCM5762:
3414 		sc->bge_flags |= BGEF_APE;
3415 		break;
3416 	}
3417 
3418 	/*
3419 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3420 	 * not actually a MAC controller bug but an issue with the embedded
3421 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3422 	 */
3423 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3424 		sc->bge_flags |= BGEF_40BIT_BUG;
3425 
3426 	/* Chips with APE need BAR2 access for APE registers/memory. */
3427 	if ((sc->bge_flags & BGEF_APE) != 0) {
3428 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3429 #if 0
3430 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3431 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3432 			&sc->bge_apesize)) {
3433 			aprint_error_dev(sc->bge_dev,
3434 			    "couldn't map BAR2 memory\n");
3435 			return;
3436 		}
3437 #else
3438 		/*
3439 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3440 		 * system get NMI on boot (PR#48451). This problem might not be
3441 		 * the driver's bug but our PCI common part's bug. Until we
3442 		 * find a real reason, we ignore the prefetchable bit.
3443 		 */
3444 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3445 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3446 			aprint_error_dev(sc->bge_dev,
3447 			    "couldn't map BAR2 memory\n");
3448 			return;
3449 		}
3450 
3451 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3452 		if (bus_space_map(pa->pa_memt, memaddr,
3453 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3454 			aprint_error_dev(sc->bge_dev,
3455 			    "couldn't map BAR2 memory\n");
3456 			return;
3457 		}
3458 		sc->bge_apetag = pa->pa_memt;
3459 #endif
3460 
3461 		/* Enable APE register/memory access by host driver. */
3462 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3463 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3464 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3465 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3466 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3467 
3468 		bge_ape_lock_init(sc);
3469 		bge_ape_read_fw_ver(sc);
3470 	}
3471 
3472 	/* Identify the chips that use an CPMU. */
3473 	if (BGE_IS_5717_PLUS(sc) ||
3474 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3475 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3476 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3477 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3478 		sc->bge_flags |= BGEF_CPMU_PRESENT;
3479 
3480 	/*
3481 	 * When using the BCM5701 in PCI-X mode, data corruption has
3482 	 * been observed in the first few bytes of some received packets.
3483 	 * Aligning the packet buffer in memory eliminates the corruption.
3484 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3485 	 * which do not support unaligned accesses, we will realign the
3486 	 * payloads by copying the received packets.
3487 	 */
3488 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3489 	    sc->bge_flags & BGEF_PCIX)
3490 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
3491 
3492 	if (BGE_IS_5700_FAMILY(sc))
3493 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3494 
3495 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3496 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3497 
3498 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3499 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3500 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3501 		sc->bge_flags |= BGEF_IS_5788;
3502 
3503 	/*
3504 	 * Some controllers seem to require a special firmware to use
3505 	 * TSO. But the firmware is not available to FreeBSD and Linux
3506 	 * claims that the TSO performed by the firmware is slower than
3507 	 * hardware based TSO. Moreover the firmware based TSO has one
3508 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3509 	 * header is greater than 80 bytes. The workaround for the TSO
3510 	 * bug exist but it seems it's too expensive than not using
3511 	 * TSO at all. Some hardwares also have the TSO bug so limit
3512 	 * the TSO to the controllers that are not affected TSO issues
3513 	 * (e.g. 5755 or higher).
3514 	 */
3515 	if (BGE_IS_5755_PLUS(sc)) {
3516 		/*
3517 		 * BCM5754 and BCM5787 shares the same ASIC id so
3518 		 * explicit device id check is required.
3519 		 */
3520 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3521 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3522 			sc->bge_flags |= BGEF_TSO;
3523 		/* TSO on BCM5719 A0 does not work. */
3524 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3525 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3526 			sc->bge_flags &= ~BGEF_TSO;
3527 	}
3528 
3529 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3530 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3531 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3532 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3533 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3534 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3535 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3536 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3537 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3538 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3539 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3540 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3541 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3542 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3543 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3544 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3545 		/* These chips are 10/100 only. */
3546 		capmask &= ~BMSR_EXTSTAT;
3547 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3548 	}
3549 
3550 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3551 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3552 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3553 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3554 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3555 
3556 	/* Set various PHY bug flags. */
3557 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3558 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3559 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3560 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3561 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3562 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3563 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3564 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3565 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3566 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3567 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3568 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3569 	if (BGE_IS_5705_PLUS(sc) &&
3570 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3571 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3572 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3573 	    !BGE_IS_57765_PLUS(sc)) {
3574 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3575 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3576 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3577 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3578 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3579 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3580 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3581 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3582 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3583 		} else
3584 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3585 	}
3586 
3587 	/*
3588 	 * SEEPROM check.
3589 	 * First check if firmware knows we do not have SEEPROM.
3590 	 */
3591 	if (prop_dictionary_get_bool(device_properties(self),
3592 	    "without-seeprom", &no_seeprom) && no_seeprom)
3593 		sc->bge_flags |= BGEF_NO_EEPROM;
3594 
3595 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3596 		sc->bge_flags |= BGEF_NO_EEPROM;
3597 
3598 	/* Now check the 'ROM failed' bit on the RX CPU */
3599 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3600 		sc->bge_flags |= BGEF_NO_EEPROM;
3601 
3602 	sc->bge_asf_mode = 0;
3603 	/* No ASF if APE present. */
3604 	if ((sc->bge_flags & BGEF_APE) == 0) {
3605 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3606 			BGE_SRAM_DATA_SIG_MAGIC)) {
3607 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3608 			    BGE_HWCFG_ASF) {
3609 				sc->bge_asf_mode |= ASF_ENABLE;
3610 				sc->bge_asf_mode |= ASF_STACKUP;
3611 				if (BGE_IS_575X_PLUS(sc))
3612 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3613 			}
3614 		}
3615 	}
3616 
3617 	int counts[PCI_INTR_TYPE_SIZE] = {
3618 		[PCI_INTR_TYPE_INTX] = 1,
3619 		[PCI_INTR_TYPE_MSI] = 1,
3620 		[PCI_INTR_TYPE_MSIX] = 1,
3621 	};
3622 	int max_type = PCI_INTR_TYPE_MSIX;
3623 
3624 	if (!bge_can_use_msi(sc)) {
3625 		/* MSI broken, allow only INTx */
3626 		max_type = PCI_INTR_TYPE_INTX;
3627 	}
3628 
3629 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3630 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3631 		return;
3632 	}
3633 
3634 	DPRINTFN(5, ("pci_intr_string\n"));
3635 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3636 	    sizeof(intrbuf));
3637 	DPRINTFN(5, ("pci_intr_establish\n"));
3638 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3639 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3640 	if (sc->bge_intrhand == NULL) {
3641 		pci_intr_release(pc, sc->bge_pihp, 1);
3642 		sc->bge_pihp = NULL;
3643 
3644 		aprint_error_dev(self, "couldn't establish interrupt");
3645 		if (intrstr != NULL)
3646 			aprint_error(" at %s", intrstr);
3647 		aprint_error("\n");
3648 		return;
3649 	}
3650 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3651 
3652 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3653 	case PCI_INTR_TYPE_MSIX:
3654 	case PCI_INTR_TYPE_MSI:
3655 		KASSERT(bge_can_use_msi(sc));
3656 		sc->bge_flags |= BGEF_MSI;
3657 		break;
3658 	default:
3659 		/* nothing to do */
3660 		break;
3661 	}
3662 
3663 	char wqname[MAXCOMLEN];
3664 	snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
3665 	int error = workqueue_create(&sc->sc_reset_wq, wqname,
3666 	    bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
3667 	    WQ_MPSAFE);
3668 	if (error) {
3669 		aprint_error_dev(sc->bge_dev,
3670 		    "unable to create reset workqueue\n");
3671 		return;
3672 	}
3673 
3674 
3675 	/*
3676 	 * All controllers except BCM5700 supports tagged status but
3677 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3678 	 * MSI on BCM5717 does not work.
3679 	 */
3680 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3681 		sc->bge_flags |= BGEF_TAGGED_STATUS;
3682 
3683 	/*
3684 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3685 	 * lock in bge_reset().
3686 	 */
3687 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3688 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3689 	delay(1000);
3690 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3691 
3692 	bge_stop_fw(sc);
3693 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3694 	if (bge_reset(sc))
3695 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3696 
3697 	/*
3698 	 * Read the hardware config word in the first 32k of NIC internal
3699 	 * memory, or fall back to the config word in the EEPROM.
3700 	 * Note: on some BCM5700 cards, this value appears to be unset.
3701 	 */
3702 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3703 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3704 	    BGE_SRAM_DATA_SIG_MAGIC) {
3705 		uint32_t tmp;
3706 
3707 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3708 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3709 		    BGE_SRAM_DATA_VER_SHIFT;
3710 		if ((0 < tmp) && (tmp < 0x100))
3711 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3712 		if (sc->bge_flags & BGEF_PCIE)
3713 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3714 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3715 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3716 		if (BGE_IS_5717_PLUS(sc))
3717 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3718 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3719 		bge_read_eeprom(sc, (void *)&hwcfg,
3720 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3721 		hwcfg = be32toh(hwcfg);
3722 	}
3723 	aprint_normal_dev(sc->bge_dev,
3724 	    "HW config %08x, %08x, %08x, %08x %08x\n",
3725 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3726 
3727 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3728 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3729 
3730 	if (bge_chipinit(sc)) {
3731 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3732 		bge_release_resources(sc);
3733 		return;
3734 	}
3735 
3736 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3737 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3738 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3739 		DELAY(100);
3740 	}
3741 
3742 	/* Set MI_MODE */
3743 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3744 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3745 		mimode |= BGE_MIMODE_500KHZ_CONST;
3746 	else
3747 		mimode |= BGE_MIMODE_BASE;
3748 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3749 	DELAY(80);
3750 
3751 	/*
3752 	 * Get station address from the EEPROM.
3753 	 */
3754 	if (bge_get_eaddr(sc, eaddr)) {
3755 		aprint_error_dev(sc->bge_dev,
3756 		    "failed to read station address\n");
3757 		bge_release_resources(sc);
3758 		return;
3759 	}
3760 
3761 	br = bge_lookup_rev(sc->bge_chipid);
3762 
3763 	if (br == NULL) {
3764 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3765 		    sc->bge_chipid);
3766 	} else {
3767 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3768 		    br->br_name, sc->bge_chipid);
3769 	}
3770 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3771 
3772 	/* Allocate the general information block and ring buffers. */
3773 	if (pci_dma64_available(pa)) {
3774 		sc->bge_dmatag = pa->pa_dmat64;
3775 		sc->bge_dmatag32 = pa->pa_dmat;
3776 		sc->bge_dma64 = true;
3777 	} else {
3778 		sc->bge_dmatag = pa->pa_dmat;
3779 		sc->bge_dmatag32 = pa->pa_dmat;
3780 		sc->bge_dma64 = false;
3781 	}
3782 
3783 	/* 40bit DMA workaround */
3784 	if (sizeof(bus_addr_t) > 4) {
3785 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3786 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3787 
3788 			if (bus_dmatag_subregion(olddmatag, 0,
3789 			    (bus_addr_t)__MASK(40),
3790 			    &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
3791 				aprint_error_dev(self,
3792 				    "WARNING: failed to restrict dma range,"
3793 				    " falling back to parent bus dma range\n");
3794 				sc->bge_dmatag = olddmatag;
3795 			}
3796 		}
3797 	}
3798 	SLIST_INIT(&sc->txdma_list);
3799 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3800 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3801 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3802 		&sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
3803 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3804 		return;
3805 	}
3806 	DPRINTFN(5, ("bus_dmamem_map\n"));
3807 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3808 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3809 			   BUS_DMA_WAITOK)) {
3810 		aprint_error_dev(sc->bge_dev,
3811 		    "can't map DMA buffers (%zu bytes)\n",
3812 		    sizeof(struct bge_ring_data));
3813 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3814 		    sc->bge_ring_rseg);
3815 		return;
3816 	}
3817 	DPRINTFN(5, ("bus_dmamap_create\n"));
3818 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3819 	    sizeof(struct bge_ring_data), 0,
3820 	    BUS_DMA_WAITOK, &sc->bge_ring_map)) {
3821 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3822 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3823 				 sizeof(struct bge_ring_data));
3824 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3825 		    sc->bge_ring_rseg);
3826 		return;
3827 	}
3828 	DPRINTFN(5, ("bus_dmamap_load\n"));
3829 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3830 			    sizeof(struct bge_ring_data), NULL,
3831 			    BUS_DMA_WAITOK)) {
3832 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3833 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3834 				 sizeof(struct bge_ring_data));
3835 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3836 		    sc->bge_ring_rseg);
3837 		return;
3838 	}
3839 
3840 	DPRINTFN(5, ("bzero\n"));
3841 	sc->bge_rdata = (struct bge_ring_data *)kva;
3842 
3843 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3844 
3845 	/* Try to allocate memory for jumbo buffers. */
3846 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3847 		if (bge_alloc_jumbo_mem(sc)) {
3848 			aprint_error_dev(sc->bge_dev,
3849 			    "jumbo buffer allocation failed\n");
3850 		} else
3851 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3852 	}
3853 
3854 	/* Set default tuneable values. */
3855 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3856 	sc->bge_rx_coal_ticks = 150;
3857 	sc->bge_rx_max_coal_bds = 64;
3858 	sc->bge_tx_coal_ticks = 300;
3859 	sc->bge_tx_max_coal_bds = 400;
3860 	if (BGE_IS_5705_PLUS(sc)) {
3861 		sc->bge_tx_coal_ticks = (12 * 5);
3862 		sc->bge_tx_max_coal_bds = (12 * 5);
3863 			aprint_verbose_dev(sc->bge_dev,
3864 			    "setting short Tx thresholds\n");
3865 	}
3866 
3867 	if (BGE_IS_5717_PLUS(sc))
3868 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3869 	else if (BGE_IS_5705_PLUS(sc))
3870 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3871 	else
3872 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3873 
3874 	sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3875 	sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
3876 
3877 	/* Set up ifnet structure */
3878 	ifp = &sc->ethercom.ec_if;
3879 	ifp->if_softc = sc;
3880 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3881 	ifp->if_extflags = IFEF_MPSAFE;
3882 	ifp->if_ioctl = bge_ioctl;
3883 	ifp->if_stop = bge_stop;
3884 	ifp->if_start = bge_start;
3885 	ifp->if_init = bge_init;
3886 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3887 	IFQ_SET_READY(&ifp->if_snd);
3888 	DPRINTFN(5, ("strcpy if_xname\n"));
3889 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3890 
3891 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3892 		sc->ethercom.ec_if.if_capabilities |=
3893 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3894 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3895 		sc->ethercom.ec_if.if_capabilities |=
3896 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3897 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3898 #endif
3899 	sc->ethercom.ec_capabilities |=
3900 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3901 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3902 
3903 	if (sc->bge_flags & BGEF_TSO)
3904 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3905 
3906 	/*
3907 	 * Do MII setup.
3908 	 */
3909 	DPRINTFN(5, ("mii setup\n"));
3910 	mii->mii_ifp = ifp;
3911 	mii->mii_readreg = bge_miibus_readreg;
3912 	mii->mii_writereg = bge_miibus_writereg;
3913 	mii->mii_statchg = bge_miibus_statchg;
3914 
3915 	/*
3916 	 * Figure out what sort of media we have by checking the hardware
3917 	 * config word.  Note: on some BCM5700 cards, this value appears to be
3918 	 * unset. If that's the case, we have to rely on identifying the NIC
3919 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3920 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
3921 	 */
3922 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3923 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3924 		if (BGE_IS_5705_PLUS(sc)) {
3925 			sc->bge_flags |= BGEF_FIBER_MII;
3926 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3927 		} else
3928 			sc->bge_flags |= BGEF_FIBER_TBI;
3929 	}
3930 
3931 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
3932 	if (BGE_IS_JUMBO_CAPABLE(sc))
3933 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3934 
3935 	/* set phyflags and chipid before mii_attach() */
3936 	dict = device_properties(self);
3937 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3938 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3939 
3940 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3941 	macmode &= ~BGE_MACMODE_PORTMODE;
3942 	/* Initialize ifmedia structures. */
3943 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3944 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3945 		    macmode | BGE_PORTMODE_TBI);
3946 		DELAY(40);
3947 
3948 		struct ifmedia * const ifm = &sc->bge_ifmedia;
3949 		sc->ethercom.ec_ifmedia = ifm;
3950 
3951 		ifmedia_init_with_lock(ifm, IFM_IMASK,
3952 		    bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock);
3953 		ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL);
3954 		ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
3955 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
3956 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
3957 		/* Pretend the user requested this setting */
3958 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3959 	} else {
3960 		uint16_t phyreg;
3961 		int rv;
3962 		/*
3963 		 * Do transceiver setup and tell the firmware the
3964 		 * driver is down so we can try to get access the
3965 		 * probe if ASF is running.  Retry a couple of times
3966 		 * if we get a conflict with the ASF firmware accessing
3967 		 * the PHY.
3968 		 */
3969 		if (sc->bge_flags & BGEF_FIBER_MII)
3970 			macmode |= BGE_PORTMODE_GMII;
3971 		else
3972 			macmode |= BGE_PORTMODE_MII;
3973 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3974 		DELAY(40);
3975 
3976 		/*
3977 		 * Do transceiver setup and tell the firmware the
3978 		 * driver is down so we can try to get access the
3979 		 * probe if ASF is running.  Retry a couple of times
3980 		 * if we get a conflict with the ASF firmware accessing
3981 		 * the PHY.
3982 		 */
3983 		trys = 0;
3984 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3985 		sc->ethercom.ec_mii = mii;
3986 		ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd,
3987 		    bge_ifmedia_sts, sc->sc_intr_lock);
3988 		mii_flags = MIIF_DOPAUSE;
3989 		if (sc->bge_flags & BGEF_FIBER_MII)
3990 			mii_flags |= MIIF_HAVEFIBER;
3991 again:
3992 		bge_asf_driver_up(sc);
3993 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3994 		    MII_BMCR, &phyreg);
3995 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3996 			int i;
3997 
3998 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3999 			    MII_BMCR, BMCR_RESET);
4000 			/* Wait up to 500ms for it to complete. */
4001 			for (i = 0; i < 500; i++) {
4002 				bge_miibus_readreg(sc->bge_dev,
4003 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
4004 				if ((phyreg & BMCR_RESET) == 0)
4005 					break;
4006 				DELAY(1000);
4007 			}
4008 		}
4009 
4010 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
4011 		    MII_OFFSET_ANY, mii_flags);
4012 
4013 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
4014 			goto again;
4015 
4016 		if (LIST_EMPTY(&mii->mii_phys)) {
4017 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4018 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
4019 			    0, NULL);
4020 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
4021 		} else
4022 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
4023 
4024 		/*
4025 		 * Now tell the firmware we are going up after probing the PHY
4026 		 */
4027 		if (sc->bge_asf_mode & ASF_STACKUP)
4028 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4029 	}
4030 
4031 	/*
4032 	 * Call MI attach routine.
4033 	 */
4034 	DPRINTFN(5, ("if_initialize\n"));
4035 	if_initialize(ifp);
4036 	ifp->if_percpuq = if_percpuq_create(ifp);
4037 	if_deferred_start_init(ifp, NULL);
4038 	if_register(ifp);
4039 
4040 	DPRINTFN(5, ("ether_ifattach\n"));
4041 	ether_ifattach(ifp, eaddr);
4042 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4043 
4044 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4045 		RND_TYPE_NET, RND_FLAG_DEFAULT);
4046 #ifdef BGE_EVENT_COUNTERS
4047 	/*
4048 	 * Attach event counters.
4049 	 */
4050 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4051 	    NULL, device_xname(sc->bge_dev), "intr");
4052 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4053 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
4054 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4055 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
4056 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4057 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
4058 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4059 	    NULL, device_xname(sc->bge_dev), "tx_xon");
4060 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4061 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
4062 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4063 	    NULL, device_xname(sc->bge_dev), "rx_xon");
4064 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4065 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
4066 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4067 	    NULL, device_xname(sc->bge_dev), "xoffentered");
4068 #endif /* BGE_EVENT_COUNTERS */
4069 	DPRINTFN(5, ("callout_init\n"));
4070 	callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
4071 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4072 
4073 	if (pmf_device_register(self, NULL, NULL))
4074 		pmf_class_network_register(self, ifp);
4075 	else
4076 		aprint_error_dev(self, "couldn't establish power handler\n");
4077 
4078 	bge_sysctl_init(sc);
4079 
4080 #ifdef BGE_DEBUG
4081 	bge_debug_info(sc);
4082 #endif
4083 }
4084 
4085 /*
4086  * Stop all chip I/O so that the kernel's probe routines don't
4087  * get confused by errant DMAs when rebooting.
4088  */
4089 static int
bge_detach(device_t self,int flags __unused)4090 bge_detach(device_t self, int flags __unused)
4091 {
4092 	struct bge_softc * const sc = device_private(self);
4093 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4094 
4095 	IFNET_LOCK(ifp);
4096 
4097 	/* Stop the interface. Callouts are stopped in it. */
4098 	bge_stop(ifp, 1);
4099 	sc->bge_detaching = true;
4100 
4101 	IFNET_UNLOCK(ifp);
4102 
4103 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4104 
4105 	ether_ifdetach(ifp);
4106 	if_detach(ifp);
4107 
4108 	/* Delete all remaining media. */
4109 	ifmedia_fini(&sc->bge_mii.mii_media);
4110 
4111 	bge_release_resources(sc);
4112 
4113 	return 0;
4114 }
4115 
4116 static void
bge_release_resources(struct bge_softc * sc)4117 bge_release_resources(struct bge_softc *sc)
4118 {
4119 
4120 	/* Detach sysctl */
4121 	if (sc->bge_log != NULL)
4122 		sysctl_teardown(&sc->bge_log);
4123 
4124 #ifdef BGE_EVENT_COUNTERS
4125 	/* Detach event counters. */
4126 	evcnt_detach(&sc->bge_ev_intr);
4127 	evcnt_detach(&sc->bge_ev_intr_spurious);
4128 	evcnt_detach(&sc->bge_ev_intr_spurious2);
4129 	evcnt_detach(&sc->bge_ev_tx_xoff);
4130 	evcnt_detach(&sc->bge_ev_tx_xon);
4131 	evcnt_detach(&sc->bge_ev_rx_xoff);
4132 	evcnt_detach(&sc->bge_ev_rx_xon);
4133 	evcnt_detach(&sc->bge_ev_rx_macctl);
4134 	evcnt_detach(&sc->bge_ev_xoffentered);
4135 #endif /* BGE_EVENT_COUNTERS */
4136 
4137 	/* Disestablish the interrupt handler */
4138 	if (sc->bge_intrhand != NULL) {
4139 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4140 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4141 		sc->bge_intrhand = NULL;
4142 	}
4143 
4144 	if (sc->bge_cdata.bge_jumbo_buf != NULL)
4145 		bge_free_jumbo_mem(sc);
4146 
4147 	if (sc->bge_dmatag != NULL) {
4148 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4149 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4150 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4151 		    sizeof(struct bge_ring_data));
4152 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4153 		    sc->bge_ring_rseg);
4154 	}
4155 
4156 	/* Unmap the device registers */
4157 	if (sc->bge_bsize != 0) {
4158 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4159 		sc->bge_bsize = 0;
4160 	}
4161 
4162 	/* Unmap the APE registers */
4163 	if (sc->bge_apesize != 0) {
4164 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4165 		    sc->bge_apesize);
4166 		sc->bge_apesize = 0;
4167 	}
4168 }
4169 
4170 static int
bge_reset(struct bge_softc * sc)4171 bge_reset(struct bge_softc *sc)
4172 {
4173 	uint32_t cachesize, command;
4174 	uint32_t reset, mac_mode, mac_mode_mask;
4175 	pcireg_t devctl, reg;
4176 	int i, val;
4177 	void (*write_op)(struct bge_softc *, int, int);
4178 
4179 	/* Make mask for BGE_MAC_MODE register. */
4180 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4181 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4182 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4183 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4184 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4185 
4186 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4187 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4188 		if (sc->bge_flags & BGEF_PCIE)
4189 			write_op = bge_writemem_direct;
4190 		else
4191 			write_op = bge_writemem_ind;
4192 	} else
4193 		write_op = bge_writereg_ind;
4194 
4195 	/* 57XX step 4 */
4196 	/* Acquire the NVM lock */
4197 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4198 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4199 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4200 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4201 		for (i = 0; i < 8000; i++) {
4202 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4203 			    BGE_NVRAMSWARB_GNT1)
4204 				break;
4205 			DELAY(20);
4206 		}
4207 		if (i == 8000) {
4208 			printf("%s: NVRAM lock timedout!\n",
4209 			    device_xname(sc->bge_dev));
4210 		}
4211 	}
4212 
4213 	/* Take APE lock when performing reset. */
4214 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4215 
4216 	/* 57XX step 3 */
4217 	/* Save some important PCI state. */
4218 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4219 	/* 5718 reset step 3 */
4220 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4221 
4222 	/* 5718 reset step 5, 57XX step 5b-5d */
4223 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4224 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4225 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4226 
4227 	/* XXX ???: Disable fastboot on controllers that support it. */
4228 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4229 	    BGE_IS_5755_PLUS(sc))
4230 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4231 
4232 	/* 5718 reset step 2, 57XX step 6 */
4233 	/*
4234 	 * Write the magic number to SRAM at offset 0xB50.
4235 	 * When firmware finishes its initialization it will
4236 	 * write ~BGE_MAGIC_NUMBER to the same location.
4237 	 */
4238 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4239 
4240 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4241 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4242 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4243 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4244 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4245 	}
4246 
4247 	/* 5718 reset step 6, 57XX step 7 */
4248 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4249 	/*
4250 	 * XXX: from FreeBSD/Linux; no documentation
4251 	 */
4252 	if (sc->bge_flags & BGEF_PCIE) {
4253 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4254 		    !BGE_IS_57765_PLUS(sc) &&
4255 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4256 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4257 			/* PCI Express 1.0 system */
4258 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4259 			    BGE_PHY_PCIE_SCRAM_MODE);
4260 		}
4261 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4262 			/*
4263 			 * Prevent PCI Express link training
4264 			 * during global reset.
4265 			 */
4266 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4267 			reset |= (1 << 29);
4268 		}
4269 	}
4270 
4271 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4272 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4273 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4274 		    i | BGE_VCPU_STATUS_DRV_RESET);
4275 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4276 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4277 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4278 	}
4279 
4280 	/*
4281 	 * Set GPHY Power Down Override to leave GPHY
4282 	 * powered up in D0 uninitialized.
4283 	 */
4284 	if (BGE_IS_5705_PLUS(sc) &&
4285 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4286 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4287 
4288 	/* Issue global reset */
4289 	write_op(sc, BGE_MISC_CFG, reset);
4290 
4291 	/* 5718 reset step 7, 57XX step 8 */
4292 	if (sc->bge_flags & BGEF_PCIE)
4293 		delay(100*1000); /* too big */
4294 	else
4295 		delay(1000);
4296 
4297 	if (sc->bge_flags & BGEF_PCIE) {
4298 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4299 			DELAY(500000);
4300 			/* XXX: Magic Numbers */
4301 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4302 			    BGE_PCI_UNKNOWN0);
4303 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4304 			    BGE_PCI_UNKNOWN0,
4305 			    reg | (1 << 15));
4306 		}
4307 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4308 		    sc->bge_pciecap + PCIE_DCSR);
4309 		/* Clear enable no snoop and disable relaxed ordering. */
4310 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4311 		    PCIE_DCSR_ENA_NO_SNOOP);
4312 
4313 		/* Set PCIE max payload size to 128 for older PCIe devices */
4314 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4315 			devctl &= ~(0x00e0);
4316 		/* Clear device status register. Write 1b to clear */
4317 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4318 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4319 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4320 		    sc->bge_pciecap + PCIE_DCSR, devctl);
4321 		bge_set_max_readrq(sc);
4322 	}
4323 
4324 	/* From Linux: dummy read to flush PCI posted writes */
4325 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4326 
4327 	/*
4328 	 * Reset some of the PCI state that got zapped by reset
4329 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4330 	 * set, too.
4331 	 */
4332 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4333 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4334 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4335 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4336 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4337 	    (sc->bge_flags & BGEF_PCIX) != 0)
4338 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4339 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4340 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4341 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4342 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4343 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4344 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4345 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4346 
4347 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
4348 	if (sc->bge_flags & BGEF_PCIX) {
4349 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4350 		    + PCIX_CMD);
4351 		/* Set max memory read byte count to 2K */
4352 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4353 			reg &= ~PCIX_CMD_BYTECNT_MASK;
4354 			reg |= PCIX_CMD_BCNT_2048;
4355 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4356 			/*
4357 			 * For 5704, set max outstanding split transaction
4358 			 * field to 0 (0 means it supports 1 request)
4359 			 */
4360 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
4361 			    | PCIX_CMD_BYTECNT_MASK);
4362 			reg |= PCIX_CMD_BCNT_2048;
4363 		}
4364 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4365 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4366 	}
4367 
4368 	/* 5718 reset step 10, 57XX step 12 */
4369 	/* Enable memory arbiter. */
4370 	if (BGE_IS_5714_FAMILY(sc)) {
4371 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4372 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4373 	} else
4374 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4375 
4376 	/* XXX 5721, 5751 and 5752 */
4377 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4378 		/* Step 19: */
4379 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4380 		/* Step 20: */
4381 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4382 	}
4383 
4384 	/* 5718 reset step 12, 57XX step 15 and 16 */
4385 	/* Fix up byte swapping */
4386 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4387 
4388 	/* 5718 reset step 13, 57XX step 17 */
4389 	/* Poll until the firmware initialization is complete */
4390 	bge_poll_fw(sc);
4391 
4392 	/* 57XX step 21 */
4393 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4394 		pcireg_t msidata;
4395 
4396 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4397 		    BGE_PCI_MSI_DATA);
4398 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4399 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4400 		    msidata);
4401 	}
4402 
4403 	/* 57XX step 18 */
4404 	/* Write mac mode. */
4405 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4406 	/* Restore mac_mode_mask's bits using mac_mode */
4407 	val = (val & ~mac_mode_mask) | mac_mode;
4408 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4409 	DELAY(40);
4410 
4411 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4412 
4413 	/*
4414 	 * The 5704 in TBI mode apparently needs some special
4415 	 * adjustment to insure the SERDES drive level is set
4416 	 * to 1.2V.
4417 	 */
4418 	if (sc->bge_flags & BGEF_FIBER_TBI &&
4419 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4420 		uint32_t serdescfg;
4421 
4422 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4423 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4424 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4425 	}
4426 
4427 	if (sc->bge_flags & BGEF_PCIE &&
4428 	    !BGE_IS_57765_PLUS(sc) &&
4429 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4430 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4431 		uint32_t v;
4432 
4433 		/* Enable PCI Express bug fix */
4434 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4435 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4436 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4437 	}
4438 
4439 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4440 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4441 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4442 
4443 	return 0;
4444 }
4445 
4446 /*
4447  * Frame reception handling. This is called if there's a frame
4448  * on the receive return list.
4449  *
4450  * Note: we have to be able to handle two possibilities here:
4451  * 1) the frame is from the jumbo receive ring
4452  * 2) the frame is from the standard receive ring
4453  */
4454 
4455 static void
bge_rxeof(struct bge_softc * sc)4456 bge_rxeof(struct bge_softc *sc)
4457 {
4458 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4459 	uint16_t rx_prod, rx_cons;
4460 	int stdcnt = 0, jumbocnt = 0;
4461 	bus_dmamap_t dmamap;
4462 	bus_addr_t offset, toff;
4463 	bus_size_t tlen;
4464 	int tosync;
4465 
4466 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4467 	    offsetof(struct bge_ring_data, bge_status_block),
4468 	    sizeof(struct bge_status_block),
4469 	    BUS_DMASYNC_POSTREAD);
4470 
4471 	rx_cons = sc->bge_rx_saved_considx;
4472 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4473 
4474 	/* Nothing to do */
4475 	if (rx_cons == rx_prod)
4476 		return;
4477 
4478 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4479 	tosync = rx_prod - rx_cons;
4480 
4481 	if (tosync != 0)
4482 		rnd_add_uint32(&sc->rnd_source, tosync);
4483 
4484 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4485 
4486 	if (tosync < 0) {
4487 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4488 		    sizeof(struct bge_rx_bd);
4489 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4490 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4491 		tosync = rx_prod;
4492 		toff = offset;
4493 	}
4494 
4495 	if (tosync != 0) {
4496 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4497 		    toff, tosync * sizeof(struct bge_rx_bd),
4498 		    BUS_DMASYNC_POSTREAD);
4499 	}
4500 
4501 	while (rx_cons != rx_prod) {
4502 		struct bge_rx_bd	*cur_rx;
4503 		uint32_t		rxidx;
4504 		struct mbuf		*m = NULL;
4505 
4506 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4507 
4508 		rxidx = cur_rx->bge_idx;
4509 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4510 
4511 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4512 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4513 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4514 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4515 			jumbocnt++;
4516 			bus_dmamap_sync(sc->bge_dmatag,
4517 			    sc->bge_cdata.bge_rx_jumbo_map,
4518 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4519 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4520 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4521 				if_statinc(ifp, if_ierrors);
4522 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4523 				continue;
4524 			}
4525 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4526 					     NULL) == ENOBUFS) {
4527 				if_statinc(ifp, if_ierrors);
4528 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4529 				continue;
4530 			}
4531 		} else {
4532 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4533 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4534 
4535 			stdcnt++;
4536 			sc->bge_std_cnt--;
4537 
4538 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4539 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4540 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4541 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4542 
4543 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4544 				m_free(m);
4545 				if_statinc(ifp, if_ierrors);
4546 				continue;
4547 			}
4548 		}
4549 
4550 #ifndef __NO_STRICT_ALIGNMENT
4551 		/*
4552 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4553 		 * the Rx buffer has the layer-2 header unaligned.
4554 		 * If our CPU requires alignment, re-align by copying.
4555 		 */
4556 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4557 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4558 				cur_rx->bge_len);
4559 			m->m_data += ETHER_ALIGN;
4560 		}
4561 #endif
4562 
4563 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4564 		m_set_rcvif(m, ifp);
4565 
4566 		bge_rxcsum(sc, cur_rx, m);
4567 
4568 		/*
4569 		 * If we received a packet with a vlan tag, pass it
4570 		 * to vlan_input() instead of ether_input().
4571 		 */
4572 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4573 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
4574 
4575 		if_percpuq_enqueue(ifp->if_percpuq, m);
4576 	}
4577 
4578 	sc->bge_rx_saved_considx = rx_cons;
4579 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4580 	if (stdcnt)
4581 		bge_fill_rx_ring_std(sc);
4582 	if (jumbocnt)
4583 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4584 }
4585 
4586 static void
bge_rxcsum(struct bge_softc * sc,struct bge_rx_bd * cur_rx,struct mbuf * m)4587 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4588 {
4589 
4590 	if (BGE_IS_57765_PLUS(sc)) {
4591 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4592 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4593 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4594 			if ((cur_rx->bge_error_flag &
4595 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4596 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4597 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4598 				m->m_pkthdr.csum_data =
4599 				    cur_rx->bge_tcp_udp_csum;
4600 				m->m_pkthdr.csum_flags |=
4601 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4602 			}
4603 		}
4604 	} else {
4605 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4606 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4607 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4608 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4609 		/*
4610 		 * Rx transport checksum-offload may also
4611 		 * have bugs with packets which, when transmitted,
4612 		 * were `runts' requiring padding.
4613 		 */
4614 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4615 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4616 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4617 			m->m_pkthdr.csum_data =
4618 			    cur_rx->bge_tcp_udp_csum;
4619 			m->m_pkthdr.csum_flags |=
4620 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4621 		}
4622 	}
4623 }
4624 
4625 static void
bge_txeof(struct bge_softc * sc)4626 bge_txeof(struct bge_softc *sc)
4627 {
4628 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4629 	struct bge_tx_bd *cur_tx = NULL;
4630 	struct txdmamap_pool_entry *dma;
4631 	bus_addr_t offset, toff;
4632 	bus_size_t tlen;
4633 	int tosync;
4634 	struct mbuf *m;
4635 
4636 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4637 	    offsetof(struct bge_ring_data, bge_status_block),
4638 	    sizeof(struct bge_status_block),
4639 	    BUS_DMASYNC_POSTREAD);
4640 
4641 	const uint16_t hw_cons_idx =
4642 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
4643 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4644 	tosync = hw_cons_idx - sc->bge_tx_saved_considx;
4645 
4646 	if (tosync != 0)
4647 		rnd_add_uint32(&sc->rnd_source, tosync);
4648 
4649 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4650 
4651 	if (tosync < 0) {
4652 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4653 		    sizeof(struct bge_tx_bd);
4654 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4655 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4656 		tosync = hw_cons_idx;
4657 		toff = offset;
4658 	}
4659 
4660 	if (tosync != 0) {
4661 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4662 		    toff, tosync * sizeof(struct bge_tx_bd),
4663 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4664 	}
4665 
4666 	/*
4667 	 * Go through our tx ring and free mbufs for those
4668 	 * frames that have been sent.
4669 	 */
4670 	while (sc->bge_tx_saved_considx != hw_cons_idx) {
4671 		uint32_t idx = sc->bge_tx_saved_considx;
4672 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4673 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4674 			if_statinc(ifp, if_opackets);
4675 		m = sc->bge_cdata.bge_tx_chain[idx];
4676 		if (m != NULL) {
4677 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4678 			dma = sc->txdma[idx];
4679 			if (dma->is_dma32) {
4680 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4681 				    0, dma->dmamap32->dm_mapsize,
4682 				    BUS_DMASYNC_POSTWRITE);
4683 				bus_dmamap_unload(
4684 				    sc->bge_dmatag32, dma->dmamap32);
4685 			} else {
4686 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4687 				    0, dma->dmamap->dm_mapsize,
4688 				    BUS_DMASYNC_POSTWRITE);
4689 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4690 			}
4691 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4692 			sc->txdma[idx] = NULL;
4693 
4694 			m_freem(m);
4695 		}
4696 		sc->bge_txcnt--;
4697 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4698 		sc->bge_tx_sending = false;
4699 	}
4700 }
4701 
4702 static int
bge_intr(void * xsc)4703 bge_intr(void *xsc)
4704 {
4705 	struct bge_softc * const sc = xsc;
4706 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4707 	uint32_t pcistate, statusword, statustag;
4708 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4709 
4710 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4711 	if (BGE_IS_5717_PLUS(sc))
4712 		intrmask = 0;
4713 
4714 	mutex_enter(sc->sc_intr_lock);
4715 	if (sc->bge_txrx_stopping) {
4716 		mutex_exit(sc->sc_intr_lock);
4717 		return 1;
4718 	}
4719 
4720 	/*
4721 	 * It is possible for the interrupt to arrive before
4722 	 * the status block is updated prior to the interrupt.
4723 	 * Reading the PCI State register will confirm whether the
4724 	 * interrupt is ours and will flush the status block.
4725 	 */
4726 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4727 
4728 	/* read status word from status block */
4729 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4730 	    offsetof(struct bge_ring_data, bge_status_block),
4731 	    sizeof(struct bge_status_block),
4732 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4733 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4734 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4735 
4736 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4737 		if (sc->bge_lasttag == statustag &&
4738 		    (~pcistate & intrmask)) {
4739 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4740 			mutex_exit(sc->sc_intr_lock);
4741 			return 0;
4742 		}
4743 		sc->bge_lasttag = statustag;
4744 	} else {
4745 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
4746 		    !(~pcistate & intrmask)) {
4747 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4748 			mutex_exit(sc->sc_intr_lock);
4749 			return 0;
4750 		}
4751 		statustag = 0;
4752 	}
4753 	/* Ack interrupt and stop others from occurring. */
4754 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4755 	BGE_EVCNT_INCR(sc->bge_ev_intr);
4756 
4757 	/* clear status word */
4758 	sc->bge_rdata->bge_status_block.bge_status = 0;
4759 
4760 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4761 	    offsetof(struct bge_ring_data, bge_status_block),
4762 	    sizeof(struct bge_status_block),
4763 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4764 
4765 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4766 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4767 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4768 		bge_link_upd(sc);
4769 
4770 	/* Check RX return ring producer/consumer */
4771 	bge_rxeof(sc);
4772 
4773 	/* Check TX ring producer/consumer */
4774 	bge_txeof(sc);
4775 
4776 	if (sc->bge_pending_rxintr_change) {
4777 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4778 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4779 
4780 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4781 		DELAY(10);
4782 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4783 
4784 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4785 		DELAY(10);
4786 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4787 
4788 		sc->bge_pending_rxintr_change = false;
4789 	}
4790 	bge_handle_events(sc);
4791 
4792 	/* Re-enable interrupts. */
4793 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4794 
4795 	if_schedule_deferred_start(ifp);
4796 
4797 	mutex_exit(sc->sc_intr_lock);
4798 
4799 	return 1;
4800 }
4801 
4802 static void
bge_asf_driver_up(struct bge_softc * sc)4803 bge_asf_driver_up(struct bge_softc *sc)
4804 {
4805 	if (sc->bge_asf_mode & ASF_STACKUP) {
4806 		/* Send ASF heartbeat approx. every 2s */
4807 		if (sc->bge_asf_count)
4808 			sc->bge_asf_count --;
4809 		else {
4810 			sc->bge_asf_count = 2;
4811 
4812 			bge_wait_for_event_ack(sc);
4813 
4814 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4815 			    BGE_FW_CMD_DRV_ALIVE3);
4816 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4817 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4818 			    BGE_FW_HB_TIMEOUT_SEC);
4819 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4820 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4821 			    BGE_RX_CPU_DRV_EVENT);
4822 		}
4823 	}
4824 }
4825 
4826 static void
bge_tick(void * xsc)4827 bge_tick(void *xsc)
4828 {
4829 	struct bge_softc * const sc = xsc;
4830 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4831 	struct mii_data * const mii = &sc->bge_mii;
4832 
4833 	mutex_enter(sc->sc_core_lock);
4834 	if (sc->bge_stopping) {
4835 		mutex_exit(sc->sc_core_lock);
4836 		return;
4837 	}
4838 
4839 	if (BGE_IS_5705_PLUS(sc))
4840 		bge_stats_update_regs(sc);
4841 	else
4842 		bge_stats_update(sc);
4843 
4844 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4845 		/*
4846 		 * Since in TBI mode auto-polling can't be used we should poll
4847 		 * link status manually. Here we register pending link event
4848 		 * and trigger interrupt.
4849 		 */
4850 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4851 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4852 	} else {
4853 		/*
4854 		 * Do not touch PHY if we have link up. This could break
4855 		 * IPMI/ASF mode or produce extra input errors.
4856 		 * (extra input errors was reported for bcm5701 & bcm5704).
4857 		 */
4858 		if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4859 			mutex_enter(sc->sc_intr_lock);
4860 			mii_tick(mii);
4861 			mutex_exit(sc->sc_intr_lock);
4862 		}
4863 	}
4864 
4865 	bge_asf_driver_up(sc);
4866 
4867 	const bool ok = bge_watchdog_tick(ifp);
4868 	if (ok)
4869 		callout_schedule(&sc->bge_timeout, hz);
4870 
4871 	mutex_exit(sc->sc_core_lock);
4872 }
4873 
4874 static void
bge_stats_update_regs(struct bge_softc * sc)4875 bge_stats_update_regs(struct bge_softc *sc)
4876 {
4877 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4878 
4879 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4880 
4881 	if_statadd_ref(nsr, if_collisions,
4882 	    CSR_READ_4(sc, BGE_MAC_STATS +
4883 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4884 
4885 	/*
4886 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4887 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4888 	 * (silicon bug). There's no reliable workaround so just
4889 	 * ignore the counter
4890 	 */
4891 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4892 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4893 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4894 		if_statadd_ref(nsr, if_ierrors,
4895 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4896 	}
4897 	if_statadd_ref(nsr, if_ierrors,
4898 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4899 	if_statadd_ref(nsr, if_ierrors,
4900 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4901 
4902 	IF_STAT_PUTREF(ifp);
4903 
4904 	if (sc->bge_flags & BGEF_RDMA_BUG) {
4905 		uint32_t val, ucast, mcast, bcast;
4906 
4907 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4908 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4909 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4910 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4911 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4912 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4913 
4914 		/*
4915 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4916 		 * frames, it's safe to disable workaround for DMA engine's
4917 		 * miscalculation of TXMBUF space.
4918 		 */
4919 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4920 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4921 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4922 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4923 			else
4924 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4925 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4926 			sc->bge_flags &= ~BGEF_RDMA_BUG;
4927 		}
4928 	}
4929 }
4930 
4931 static void
bge_stats_update(struct bge_softc * sc)4932 bge_stats_update(struct bge_softc *sc)
4933 {
4934 	struct ifnet * const ifp = &sc->ethercom.ec_if;
4935 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4936 
4937 #define READ_STAT(sc, stats, stat) \
4938 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4939 
4940 	uint64_t collisions =
4941 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4942 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4943 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4944 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4945 
4946 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4947 	sc->bge_if_collisions = collisions;
4948 
4949 
4950 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4951 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4952 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4953 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4954 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4955 		      READ_STAT(sc, stats,
4956 				xoffPauseFramesReceived.bge_addr_lo));
4957 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4958 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4959 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4960 		      READ_STAT(sc, stats,
4961 				macControlFramesReceived.bge_addr_lo));
4962 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4963 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4964 
4965 #undef READ_STAT
4966 }
4967 
4968 /*
4969  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4970  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4971  * but when such padded frames employ the  bge IP/TCP checksum offload,
4972  * the hardware checksum assist gives incorrect results (possibly
4973  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4974  * If we pad such runts with zeros, the onboard checksum comes out correct.
4975  */
4976 static inline int
bge_cksum_pad(struct mbuf * pkt)4977 bge_cksum_pad(struct mbuf *pkt)
4978 {
4979 	struct mbuf *last = NULL;
4980 	int padlen;
4981 
4982 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4983 
4984 	/* if there's only the packet-header and we can pad there, use it. */
4985 	if (pkt->m_pkthdr.len == pkt->m_len &&
4986 	    M_TRAILINGSPACE(pkt) >= padlen) {
4987 		last = pkt;
4988 	} else {
4989 		/*
4990 		 * Walk packet chain to find last mbuf. We will either
4991 		 * pad there, or append a new mbuf and pad it
4992 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4993 		 */
4994 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4995 			continue; /* do nothing */
4996 		}
4997 
4998 		/* `last' now points to last in chain. */
4999 		if (M_TRAILINGSPACE(last) < padlen) {
5000 			/* Allocate new empty mbuf, pad it. Compact later. */
5001 			struct mbuf *n;
5002 			MGET(n, M_DONTWAIT, MT_DATA);
5003 			if (n == NULL)
5004 				return ENOBUFS;
5005 			n->m_len = 0;
5006 			last->m_next = n;
5007 			last = n;
5008 		}
5009 	}
5010 
5011 	KDASSERT(!M_READONLY(last));
5012 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
5013 
5014 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
5015 	memset(mtod(last, char *) + last->m_len, 0, padlen);
5016 	last->m_len += padlen;
5017 	pkt->m_pkthdr.len += padlen;
5018 	return 0;
5019 }
5020 
5021 /*
5022  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5023  */
5024 static inline int
bge_compact_dma_runt(struct mbuf * pkt)5025 bge_compact_dma_runt(struct mbuf *pkt)
5026 {
5027 	struct mbuf	*m, *prev;
5028 	int		totlen;
5029 
5030 	prev = NULL;
5031 	totlen = 0;
5032 
5033 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
5034 		int mlen = m->m_len;
5035 		int shortfall = 8 - mlen ;
5036 
5037 		totlen += mlen;
5038 		if (mlen == 0)
5039 			continue;
5040 		if (mlen >= 8)
5041 			continue;
5042 
5043 		/*
5044 		 * If we get here, mbuf data is too small for DMA engine.
5045 		 * Try to fix by shuffling data to prev or next in chain.
5046 		 * If that fails, do a compacting deep-copy of the whole chain.
5047 		 */
5048 
5049 		/* Internal frag. If fits in prev, copy it there. */
5050 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5051 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5052 			prev->m_len += mlen;
5053 			m->m_len = 0;
5054 			/* XXX stitch chain */
5055 			prev->m_next = m_free(m);
5056 			m = prev;
5057 			continue;
5058 		} else if (m->m_next != NULL &&
5059 			    M_TRAILINGSPACE(m) >= shortfall &&
5060 			    m->m_next->m_len >= (8 + shortfall)) {
5061 		    /* m is writable and have enough data in next, pull up. */
5062 
5063 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
5064 			    shortfall);
5065 			m->m_len += shortfall;
5066 			m->m_next->m_len -= shortfall;
5067 			m->m_next->m_data += shortfall;
5068 		} else if (m->m_next == NULL || 1) {
5069 			/*
5070 			 * Got a runt at the very end of the packet.
5071 			 * borrow data from the tail of the preceding mbuf and
5072 			 * update its length in-place. (The original data is
5073 			 * still valid, so we can do this even if prev is not
5074 			 * writable.)
5075 			 */
5076 
5077 			/*
5078 			 * If we'd make prev a runt, just move all of its data.
5079 			 */
5080 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5081 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5082 
5083 			if ((prev->m_len - shortfall) < 8)
5084 				shortfall = prev->m_len;
5085 
5086 #ifdef notyet	/* just do the safe slow thing for now */
5087 			if (!M_READONLY(m)) {
5088 				if (M_LEADINGSPACE(m) < shorfall) {
5089 					void *m_dat;
5090 					m_dat = M_BUFADDR(m);
5091 					memmove(m_dat, mtod(m, void*),
5092 					    m->m_len);
5093 					m->m_data = m_dat;
5094 				}
5095 			} else
5096 #endif	/* just do the safe slow thing */
5097 			{
5098 				struct mbuf * n = NULL;
5099 				int newprevlen = prev->m_len - shortfall;
5100 
5101 				MGET(n, M_NOWAIT, MT_DATA);
5102 				if (n == NULL)
5103 				   return ENOBUFS;
5104 				KASSERT(m->m_len + shortfall < MLEN
5105 					/*,
5106 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5107 
5108 				/* first copy the data we're stealing from prev */
5109 				memcpy(n->m_data, prev->m_data + newprevlen,
5110 				    shortfall);
5111 
5112 				/* update prev->m_len accordingly */
5113 				prev->m_len -= shortfall;
5114 
5115 				/* copy data from runt m */
5116 				memcpy(n->m_data + shortfall, m->m_data,
5117 				    m->m_len);
5118 
5119 				/* n holds what we stole from prev, plus m */
5120 				n->m_len = shortfall + m->m_len;
5121 
5122 				/* stitch n into chain and free m */
5123 				n->m_next = m->m_next;
5124 				prev->m_next = n;
5125 				/* KASSERT(m->m_next == NULL); */
5126 				m->m_next = NULL;
5127 				m_free(m);
5128 				m = n;	/* for continuing loop */
5129 			}
5130 		}
5131 	}
5132 	return 0;
5133 }
5134 
5135 /*
5136  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5137  * pointers to descriptors.
5138  */
5139 static int
bge_encap(struct bge_softc * sc,struct mbuf * m_head,uint32_t * txidx)5140 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5141 {
5142 	struct bge_tx_bd	*f, *prev_f;
5143 	uint32_t		frag, cur;
5144 	uint16_t		csum_flags = 0;
5145 	uint16_t		txbd_tso_flags = 0;
5146 	struct txdmamap_pool_entry *dma;
5147 	bus_dmamap_t dmamap;
5148 	bus_dma_tag_t dmatag;
5149 	int			i = 0;
5150 	int			use_tso, maxsegsize, error;
5151 	bool			have_vtag;
5152 	uint16_t		vtag;
5153 	bool			remap;
5154 
5155 	if (m_head->m_pkthdr.csum_flags) {
5156 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5157 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5158 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5159 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5160 	}
5161 
5162 	/*
5163 	 * If we were asked to do an outboard checksum, and the NIC
5164 	 * has the bug where it sometimes adds in the Ethernet padding,
5165 	 * explicitly pad with zeros so the cksum will be correct either way.
5166 	 * (For now, do this for all chip versions, until newer
5167 	 * are confirmed to not require the workaround.)
5168 	 */
5169 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5170 #ifdef notyet
5171 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5172 #endif
5173 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5174 		goto check_dma_bug;
5175 
5176 	if (bge_cksum_pad(m_head) != 0)
5177 		return ENOBUFS;
5178 
5179 check_dma_bug:
5180 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5181 		goto doit;
5182 
5183 	/*
5184 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5185 	 * less than eight bytes.  If we encounter a teeny mbuf
5186 	 * at the end of a chain, we can pad.  Otherwise, copy.
5187 	 */
5188 	if (bge_compact_dma_runt(m_head) != 0)
5189 		return ENOBUFS;
5190 
5191 doit:
5192 	dma = SLIST_FIRST(&sc->txdma_list);
5193 	if (dma == NULL) {
5194 		return ENOBUFS;
5195 	}
5196 	dmamap = dma->dmamap;
5197 	dmatag = sc->bge_dmatag;
5198 	dma->is_dma32 = false;
5199 
5200 	/*
5201 	 * Set up any necessary TSO state before we start packing...
5202 	 */
5203 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5204 	if (!use_tso) {
5205 		maxsegsize = 0;
5206 	} else {	/* TSO setup */
5207 		unsigned  mss;
5208 		struct ether_header *eh;
5209 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5210 		unsigned bge_hlen;
5211 		struct mbuf * m0 = m_head;
5212 		struct ip *ip;
5213 		struct tcphdr *th;
5214 		int iphl, hlen;
5215 
5216 		/*
5217 		 * XXX It would be nice if the mbuf pkthdr had offset
5218 		 * fields for the protocol headers.
5219 		 */
5220 
5221 		eh = mtod(m0, struct ether_header *);
5222 		switch (htons(eh->ether_type)) {
5223 		case ETHERTYPE_IP:
5224 			offset = ETHER_HDR_LEN;
5225 			break;
5226 
5227 		case ETHERTYPE_VLAN:
5228 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5229 			break;
5230 
5231 		default:
5232 			/*
5233 			 * Don't support this protocol or encapsulation.
5234 			 */
5235 			return ENOBUFS;
5236 		}
5237 
5238 		/*
5239 		 * TCP/IP headers are in the first mbuf; we can do
5240 		 * this the easy way.
5241 		 */
5242 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5243 		hlen = iphl + offset;
5244 		if (__predict_false(m0->m_len <
5245 				    (hlen + sizeof(struct tcphdr)))) {
5246 
5247 			aprint_error_dev(sc->bge_dev,
5248 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5249 			    "not handled yet\n",
5250 			    m0->m_len, hlen+ sizeof(struct tcphdr));
5251 #ifdef NOTYET
5252 			/*
5253 			 * XXX jonathan@NetBSD.org: untested.
5254 			 * how to force this branch to be taken?
5255 			 */
5256 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5257 
5258 			m_copydata(m0, offset, sizeof(ip), &ip);
5259 			m_copydata(m0, hlen, sizeof(th), &th);
5260 
5261 			ip.ip_len = 0;
5262 
5263 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5264 			    sizeof(ip.ip_len), &ip.ip_len);
5265 
5266 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5267 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5268 
5269 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5270 			    sizeof(th.th_sum), &th.th_sum);
5271 
5272 			hlen += th.th_off << 2;
5273 			iptcp_opt_words	= hlen;
5274 #else
5275 			/*
5276 			 * if_wm "hard" case not yet supported, can we not
5277 			 * mandate it out of existence?
5278 			 */
5279 			(void) ip; (void)th; (void) ip_tcp_hlen;
5280 
5281 			return ENOBUFS;
5282 #endif
5283 		} else {
5284 			ip = (struct ip *) (mtod(m0, char *) + offset);
5285 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5286 			ip_tcp_hlen = iphl +  (th->th_off << 2);
5287 
5288 			/* Total IP/TCP options, in 32-bit words */
5289 			iptcp_opt_words = (ip_tcp_hlen
5290 					   - sizeof(struct tcphdr)
5291 					   - sizeof(struct ip)) >> 2;
5292 		}
5293 		if (BGE_IS_575X_PLUS(sc)) {
5294 			th->th_sum = 0;
5295 			csum_flags = 0;
5296 		} else {
5297 			/*
5298 			 * XXX jonathan@NetBSD.org: 5705 untested.
5299 			 * Requires TSO firmware patch for 5701/5703/5704.
5300 			 */
5301 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5302 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5303 		}
5304 
5305 		mss = m_head->m_pkthdr.segsz;
5306 		txbd_tso_flags |=
5307 		    BGE_TXBDFLAG_CPU_PRE_DMA |
5308 		    BGE_TXBDFLAG_CPU_POST_DMA;
5309 
5310 		/*
5311 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5312 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5313 		 * the NIC copies 40 bytes of IP/TCP header from the
5314 		 * supplied header into the IP/TCP header portion of
5315 		 * each post-TSO-segment. If the supplied packet has IP or
5316 		 * TCP options, we need to tell the NIC to copy those extra
5317 		 * bytes into each  post-TSO header, in addition to the normal
5318 		 * 40-byte IP/TCP header (and to leave space accordingly).
5319 		 * Unfortunately, the driver encoding of option length
5320 		 * varies across different ASIC families.
5321 		 */
5322 		tcp_seg_flags = 0;
5323 		bge_hlen = ip_tcp_hlen >> 2;
5324 		if (BGE_IS_5717_PLUS(sc)) {
5325 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
5326 			txbd_tso_flags |=
5327 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5328 		} else if (BGE_IS_5705_PLUS(sc)) {
5329 			tcp_seg_flags = bge_hlen << 11;
5330 		} else {
5331 			/* XXX iptcp_opt_words or bge_hlen ? */
5332 			txbd_tso_flags |= iptcp_opt_words << 12;
5333 		}
5334 		maxsegsize = mss | tcp_seg_flags;
5335 		ip->ip_len = htons(mss + ip_tcp_hlen);
5336 		ip->ip_sum = 0;
5337 
5338 	}	/* TSO setup */
5339 
5340 	have_vtag = vlan_has_tag(m_head);
5341 	if (have_vtag)
5342 		vtag = vlan_get_tag(m_head);
5343 
5344 	/*
5345 	 * Start packing the mbufs in this chain into
5346 	 * the fragment pointers. Stop when we run out
5347 	 * of fragments or hit the end of the mbuf chain.
5348 	 */
5349 	remap = true;
5350 load_again:
5351 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5352 	if (__predict_false(error)) {
5353 		if (error == EFBIG && remap) {
5354 			struct mbuf *m;
5355 			remap = false;
5356 			m = m_defrag(m_head, M_NOWAIT);
5357 			if (m != NULL) {
5358 				KASSERT(m == m_head);
5359 				goto load_again;
5360 			}
5361 		}
5362 		return error;
5363 	}
5364 	/*
5365 	 * Sanity check: avoid coming within 16 descriptors
5366 	 * of the end of the ring.
5367 	 */
5368 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5369 		BGE_TSO_PRINTF(("%s: "
5370 		    " dmamap_load_mbuf too close to ring wrap\n",
5371 		    device_xname(sc->bge_dev)));
5372 		goto fail_unload;
5373 	}
5374 
5375 	/* Iterate over dmap-map fragments. */
5376 	f = prev_f = NULL;
5377 	cur = frag = *txidx;
5378 
5379 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5380 		f = &sc->bge_rdata->bge_tx_ring[frag];
5381 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5382 			break;
5383 
5384 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5385 		f->bge_len = dmamap->dm_segs[i].ds_len;
5386 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5387 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5388 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5389 		    (prev_f != NULL &&
5390 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5391 		   ) {
5392 			/*
5393 			 * watchdog timeout issue was observed with TSO,
5394 			 * limiting DMA address space to 32bits seems to
5395 			 * address the issue.
5396 			 */
5397 			bus_dmamap_unload(dmatag, dmamap);
5398 			dmatag = sc->bge_dmatag32;
5399 			dmamap = dma->dmamap32;
5400 			dma->is_dma32 = true;
5401 			remap = true;
5402 			goto load_again;
5403 		}
5404 
5405 		/*
5406 		 * For 5751 and follow-ons, for TSO we must turn
5407 		 * off checksum-assist flag in the tx-descr, and
5408 		 * supply the ASIC-revision-specific encoding
5409 		 * of TSO flags and segsize.
5410 		 */
5411 		if (use_tso) {
5412 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5413 				f->bge_rsvd = maxsegsize;
5414 				f->bge_flags = csum_flags | txbd_tso_flags;
5415 			} else {
5416 				f->bge_rsvd = 0;
5417 				f->bge_flags =
5418 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5419 			}
5420 		} else {
5421 			f->bge_rsvd = 0;
5422 			f->bge_flags = csum_flags;
5423 		}
5424 
5425 		if (have_vtag) {
5426 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5427 			f->bge_vlan_tag = vtag;
5428 		} else {
5429 			f->bge_vlan_tag = 0;
5430 		}
5431 		prev_f = f;
5432 		cur = frag;
5433 		BGE_INC(frag, BGE_TX_RING_CNT);
5434 	}
5435 
5436 	if (i < dmamap->dm_nsegs) {
5437 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5438 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5439 		goto fail_unload;
5440 	}
5441 
5442 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5443 	    BUS_DMASYNC_PREWRITE);
5444 
5445 	if (frag == sc->bge_tx_saved_considx) {
5446 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5447 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5448 
5449 		goto fail_unload;
5450 	}
5451 
5452 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5453 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5454 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5455 	sc->txdma[cur] = dma;
5456 	sc->bge_txcnt += dmamap->dm_nsegs;
5457 
5458 	*txidx = frag;
5459 
5460 	return 0;
5461 
5462 fail_unload:
5463 	bus_dmamap_unload(dmatag, dmamap);
5464 
5465 	return ENOBUFS;
5466 }
5467 
5468 
5469 static void
bge_start(struct ifnet * ifp)5470 bge_start(struct ifnet *ifp)
5471 {
5472 	struct bge_softc * const sc = ifp->if_softc;
5473 
5474 	mutex_enter(sc->sc_intr_lock);
5475 	if (!sc->bge_txrx_stopping)
5476 		bge_start_locked(ifp);
5477 	mutex_exit(sc->sc_intr_lock);
5478 }
5479 
5480 /*
5481  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5482  * to the mbuf data regions directly in the transmit descriptors.
5483  */
5484 static void
bge_start_locked(struct ifnet * ifp)5485 bge_start_locked(struct ifnet *ifp)
5486 {
5487 	struct bge_softc * const sc = ifp->if_softc;
5488 	struct mbuf *m_head = NULL;
5489 	struct mbuf *m;
5490 	uint32_t prodidx;
5491 	int pkts = 0;
5492 	int error;
5493 
5494 	KASSERT(mutex_owned(sc->sc_intr_lock));
5495 
5496 	prodidx = sc->bge_tx_prodidx;
5497 
5498 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5499 		IFQ_POLL(&ifp->if_snd, m_head);
5500 		if (m_head == NULL)
5501 			break;
5502 
5503 #if 0
5504 		/*
5505 		 * XXX
5506 		 * safety overkill.  If this is a fragmented packet chain
5507 		 * with delayed TCP/UDP checksums, then only encapsulate
5508 		 * it if we have enough descriptors to handle the entire
5509 		 * chain at once.
5510 		 * (paranoia -- may not actually be needed)
5511 		 */
5512 		if (m_head->m_flags & M_FIRSTFRAG &&
5513 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5514 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5515 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5516 				ifp->if_flags |= IFF_OACTIVE;
5517 				break;
5518 			}
5519 		}
5520 #endif
5521 
5522 		/*
5523 		 * Pack the data into the transmit ring. If we
5524 		 * don't have room, set the OACTIVE flag and wait
5525 		 * for the NIC to drain the ring.
5526 		 */
5527 		error = bge_encap(sc, m_head, &prodidx);
5528 		if (__predict_false(error)) {
5529 			if (SLIST_EMPTY(&sc->txdma_list)) {
5530 				/* just wait for the transmit ring to drain */
5531 				break;
5532 			}
5533 			IFQ_DEQUEUE(&ifp->if_snd, m);
5534 			KASSERT(m == m_head);
5535 			m_freem(m_head);
5536 			continue;
5537 		}
5538 
5539 		/* now we are committed to transmit the packet */
5540 		IFQ_DEQUEUE(&ifp->if_snd, m);
5541 		KASSERT(m == m_head);
5542 		pkts++;
5543 
5544 		/*
5545 		 * If there's a BPF listener, bounce a copy of this frame
5546 		 * to him.
5547 		 */
5548 		bpf_mtap(ifp, m_head, BPF_D_OUT);
5549 	}
5550 	if (pkts == 0)
5551 		return;
5552 
5553 	/* Transmit */
5554 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5555 	/* 5700 b2 errata */
5556 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5557 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5558 
5559 	sc->bge_tx_prodidx = prodidx;
5560 	sc->bge_tx_lastsent = time_uptime;
5561 	sc->bge_tx_sending = true;
5562 }
5563 
5564 static int
bge_init(struct ifnet * ifp)5565 bge_init(struct ifnet *ifp)
5566 {
5567 	struct bge_softc * const sc = ifp->if_softc;
5568 
5569 	KASSERT(IFNET_LOCKED(ifp));
5570 
5571 	if (sc->bge_detaching)
5572 		return ENXIO;
5573 
5574 	mutex_enter(sc->sc_core_lock);
5575 	int ret = bge_init_locked(ifp);
5576 	mutex_exit(sc->sc_core_lock);
5577 
5578 	return ret;
5579 }
5580 
5581 
5582 static int
bge_init_locked(struct ifnet * ifp)5583 bge_init_locked(struct ifnet *ifp)
5584 {
5585 	struct bge_softc * const sc = ifp->if_softc;
5586 	const uint16_t *m;
5587 	uint32_t mode, reg;
5588 	int error = 0;
5589 
5590 	ASSERT_SLEEPABLE();
5591 	KASSERT(IFNET_LOCKED(ifp));
5592 	KASSERT(mutex_owned(sc->sc_core_lock));
5593 	KASSERT(ifp == &sc->ethercom.ec_if);
5594 
5595 	/* Cancel pending I/O and flush buffers. */
5596 	bge_stop_locked(ifp, false);
5597 
5598 	bge_stop_fw(sc);
5599 	bge_sig_pre_reset(sc, BGE_RESET_START);
5600 	bge_reset(sc);
5601 	bge_sig_legacy(sc, BGE_RESET_START);
5602 
5603 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5604 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5605 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5606 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
5607 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5608 
5609 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5610 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5611 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5612 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5613 
5614 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5615 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5616 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5617 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5618 
5619 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5620 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5621 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5622 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5623 	}
5624 
5625 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5626 		pcireg_t aercap;
5627 
5628 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5629 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5630 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
5631 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5632 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5633 
5634 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5635 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5636 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
5637 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5638 
5639 		/* Clear correctable error */
5640 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5641 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
5642 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5643 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
5644 
5645 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5646 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5647 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5648 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5649 	}
5650 
5651 	bge_sig_post_reset(sc, BGE_RESET_START);
5652 
5653 	bge_chipinit(sc);
5654 
5655 	/*
5656 	 * Init the various state machines, ring
5657 	 * control blocks and firmware.
5658 	 */
5659 	error = bge_blockinit(sc);
5660 	if (error != 0) {
5661 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5662 		    error);
5663 		return error;
5664 	}
5665 
5666 	/* 5718 step 25, 57XX step 54 */
5667 	/* Specify MTU. */
5668 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5669 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5670 
5671 	/* 5718 step 23 */
5672 	/* Load our MAC address. */
5673 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5674 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5675 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5676 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5677 
5678 	/* Enable or disable promiscuous mode as needed. */
5679 	if (ifp->if_flags & IFF_PROMISC)
5680 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5681 	else
5682 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5683 
5684 	/* Program multicast filter. */
5685 	bge_setmulti(sc);
5686 
5687 	/* Init RX ring. */
5688 	bge_init_rx_ring_std(sc);
5689 
5690 	/*
5691 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5692 	 * memory to insure that the chip has in fact read the first
5693 	 * entry of the ring.
5694 	 */
5695 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5696 		u_int i;
5697 		for (i = 0; i < 10; i++) {
5698 			DELAY(20);
5699 			uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5700 			if (v == (MCLBYTES - ETHER_ALIGN))
5701 				break;
5702 		}
5703 		if (i == 10)
5704 			aprint_error_dev(sc->bge_dev,
5705 			    "5705 A0 chip failed to load RX ring\n");
5706 	}
5707 
5708 	/* Init jumbo RX ring. */
5709 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5710 		bge_init_rx_ring_jumbo(sc);
5711 
5712 	/* Init our RX return ring index */
5713 	sc->bge_rx_saved_considx = 0;
5714 
5715 	/* Init TX ring. */
5716 	bge_init_tx_ring(sc);
5717 
5718 	/* 5718 step 63, 57XX step 94 */
5719 	/* Enable TX MAC state machine lockup fix. */
5720 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5721 	if (BGE_IS_5755_PLUS(sc) ||
5722 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5723 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5724 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5725 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5726 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5727 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5728 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5729 	}
5730 
5731 	/* Turn on transmitter */
5732 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5733 	/* 5718 step 64 */
5734 	DELAY(100);
5735 
5736 	/* 5718 step 65, 57XX step 95 */
5737 	/* Turn on receiver */
5738 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5739 	if (BGE_IS_5755_PLUS(sc))
5740 		mode |= BGE_RXMODE_IPV6_ENABLE;
5741 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5742 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5743 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5744 	/* 5718 step 66 */
5745 	DELAY(10);
5746 
5747 	/* 5718 step 12, 57XX step 37 */
5748 	/*
5749 	 * XXX Doucments of 5718 series and 577xx say the recommended value
5750 	 * is 1, but tg3 set 1 only on 57765 series.
5751 	 */
5752 	if (BGE_IS_57765_PLUS(sc))
5753 		reg = 1;
5754 	else
5755 		reg = 2;
5756 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5757 
5758 	/* Tell firmware we're alive. */
5759 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5760 
5761 	/* Enable host interrupts. */
5762 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5763 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5764 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5765 
5766 	mutex_enter(sc->sc_intr_lock);
5767 	if ((error = bge_ifmedia_upd(ifp)) == 0) {
5768 		sc->bge_stopping = false;
5769 		sc->bge_txrx_stopping = false;
5770 
5771 		/* IFNET_LOCKED asserted above */
5772 		ifp->if_flags |= IFF_RUNNING;
5773 
5774 		callout_schedule(&sc->bge_timeout, hz);
5775 	}
5776 	mutex_exit(sc->sc_intr_lock);
5777 
5778 	sc->bge_if_flags = ifp->if_flags;
5779 
5780 	return error;
5781 }
5782 
5783 /*
5784  * Set media options.
5785  */
5786 static int
bge_ifmedia_upd(struct ifnet * ifp)5787 bge_ifmedia_upd(struct ifnet *ifp)
5788 {
5789 	struct bge_softc * const sc = ifp->if_softc;
5790 	struct mii_data * const mii = &sc->bge_mii;
5791 	struct ifmedia * const ifm = &sc->bge_ifmedia;
5792 	int rc;
5793 
5794 	KASSERT(mutex_owned(sc->sc_intr_lock));
5795 
5796 	/* If this is a 1000baseX NIC, enable the TBI port. */
5797 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5798 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5799 			return EINVAL;
5800 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5801 		case IFM_AUTO:
5802 			/*
5803 			 * The BCM5704 ASIC appears to have a special
5804 			 * mechanism for programming the autoneg
5805 			 * advertisement registers in TBI mode.
5806 			 */
5807 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5808 				uint32_t sgdig;
5809 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5810 				if (sgdig & BGE_SGDIGSTS_DONE) {
5811 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5812 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5813 					sgdig |= BGE_SGDIGCFG_AUTO |
5814 					    BGE_SGDIGCFG_PAUSE_CAP |
5815 					    BGE_SGDIGCFG_ASYM_PAUSE;
5816 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5817 					    sgdig | BGE_SGDIGCFG_SEND);
5818 					DELAY(5);
5819 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5820 					    sgdig);
5821 				}
5822 			}
5823 			break;
5824 		case IFM_1000_SX:
5825 			if ((ifm->ifm_media & IFM_FDX) != 0) {
5826 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5827 				    BGE_MACMODE_HALF_DUPLEX);
5828 			} else {
5829 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5830 				    BGE_MACMODE_HALF_DUPLEX);
5831 			}
5832 			DELAY(40);
5833 			break;
5834 		default:
5835 			return EINVAL;
5836 		}
5837 		/* XXX 802.3x flow control for 1000BASE-SX */
5838 		return 0;
5839 	}
5840 
5841 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5842 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5843 		uint32_t reg;
5844 
5845 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5846 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5847 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5848 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5849 		}
5850 	}
5851 
5852 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5853 	if ((rc = mii_mediachg(mii)) == ENXIO)
5854 		return 0;
5855 
5856 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5857 		uint32_t reg;
5858 
5859 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5860 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5861 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5862 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5863 			delay(40);
5864 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5865 		}
5866 	}
5867 
5868 	/*
5869 	 * Force an interrupt so that we will call bge_link_upd
5870 	 * if needed and clear any pending link state attention.
5871 	 * Without this we are not getting any further interrupts
5872 	 * for link state changes and thus will not UP the link and
5873 	 * not be able to send in bge_start. The only way to get
5874 	 * things working was to receive a packet and get a RX intr.
5875 	 */
5876 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5877 	    sc->bge_flags & BGEF_IS_5788)
5878 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5879 	else
5880 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5881 
5882 	return rc;
5883 }
5884 
5885 /*
5886  * Report current media status.
5887  */
5888 static void
bge_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)5889 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5890 {
5891 	struct bge_softc * const sc = ifp->if_softc;
5892 	struct mii_data * const mii = &sc->bge_mii;
5893 
5894 	KASSERT(mutex_owned(sc->sc_intr_lock));
5895 
5896 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5897 		ifmr->ifm_status = IFM_AVALID;
5898 		ifmr->ifm_active = IFM_ETHER;
5899 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5900 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5901 			ifmr->ifm_status |= IFM_ACTIVE;
5902 		ifmr->ifm_active |= IFM_1000_SX;
5903 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5904 			ifmr->ifm_active |= IFM_HDX;
5905 		else
5906 			ifmr->ifm_active |= IFM_FDX;
5907 		return;
5908 	}
5909 
5910 	mii_pollstat(mii);
5911 	ifmr->ifm_status = mii->mii_media_status;
5912 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5913 	    sc->bge_flowflags;
5914 }
5915 
5916 static int
bge_ifflags_cb(struct ethercom * ec)5917 bge_ifflags_cb(struct ethercom *ec)
5918 {
5919 	struct ifnet * const ifp = &ec->ec_if;
5920 	struct bge_softc * const sc = ifp->if_softc;
5921 	int ret = 0;
5922 
5923 	KASSERT(IFNET_LOCKED(ifp));
5924 	mutex_enter(sc->sc_core_lock);
5925 
5926 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
5927 
5928 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
5929 		ret = ENETRESET;
5930 	} else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
5931 		if ((ifp->if_flags & IFF_PROMISC) == 0)
5932 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5933 		else
5934 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5935 
5936 		bge_setmulti(sc);
5937 	}
5938 
5939 	sc->bge_if_flags = ifp->if_flags;
5940 	mutex_exit(sc->sc_core_lock);
5941 
5942 	return ret;
5943 }
5944 
5945 static int
bge_ioctl(struct ifnet * ifp,u_long command,void * data)5946 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5947 {
5948 	struct bge_softc * const sc = ifp->if_softc;
5949 	struct ifreq * const ifr = (struct ifreq *) data;
5950 	int error = 0;
5951 
5952 	switch (command) {
5953 	case SIOCADDMULTI:
5954 	case SIOCDELMULTI:
5955 		break;
5956 	default:
5957 		KASSERT(IFNET_LOCKED(ifp));
5958 	}
5959 
5960 	const int s = splnet();
5961 
5962 	switch (command) {
5963 	case SIOCSIFMEDIA:
5964 		mutex_enter(sc->sc_core_lock);
5965 		/* XXX Flow control is not supported for 1000BASE-SX */
5966 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5967 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5968 			sc->bge_flowflags = 0;
5969 		}
5970 
5971 		/* Flow control requires full-duplex mode. */
5972 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5973 		    (ifr->ifr_media & IFM_FDX) == 0) {
5974 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5975 		}
5976 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5977 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5978 				/* We can do both TXPAUSE and RXPAUSE. */
5979 				ifr->ifr_media |=
5980 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5981 			}
5982 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5983 		}
5984 		mutex_exit(sc->sc_core_lock);
5985 
5986 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5987 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5988 			    command);
5989 		} else {
5990 			struct mii_data * const mii = &sc->bge_mii;
5991 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5992 			    command);
5993 		}
5994 		break;
5995 	default:
5996 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5997 			break;
5998 
5999 		error = 0;
6000 
6001 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
6002 			mutex_enter(sc->sc_core_lock);
6003 			if (sc->bge_if_flags & IFF_RUNNING) {
6004 				bge_setmulti(sc);
6005 			}
6006 			mutex_exit(sc->sc_core_lock);
6007 		}
6008 		break;
6009 	}
6010 
6011 	splx(s);
6012 
6013 	return error;
6014 }
6015 
6016 static bool
bge_watchdog_check(struct bge_softc * const sc)6017 bge_watchdog_check(struct bge_softc * const sc)
6018 {
6019 
6020 	KASSERT(mutex_owned(sc->sc_core_lock));
6021 
6022 	if (!sc->bge_tx_sending)
6023 		return true;
6024 
6025 	if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
6026 		return true;
6027 
6028 	/* If pause frames are active then don't reset the hardware. */
6029 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6030 		const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
6031 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6032 			/*
6033 			 * If link partner has us in XOFF state then wait for
6034 			 * the condition to clear.
6035 			 */
6036 			CSR_WRITE_4(sc, BGE_RX_STS, status);
6037 			sc->bge_tx_lastsent = time_uptime;
6038 			return true;
6039 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6040 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
6041 			/*
6042 			 * If link partner has us in XOFF state then wait for
6043 			 * the condition to clear.
6044 			 */
6045 			CSR_WRITE_4(sc, BGE_RX_STS, status);
6046 			sc->bge_tx_lastsent = time_uptime;
6047 			return true;
6048 		}
6049 		/*
6050 		 * Any other condition is unexpected and the controller
6051 		 * should be reset.
6052 		 */
6053 	}
6054 
6055 	return false;
6056 }
6057 
6058 static bool
bge_watchdog_tick(struct ifnet * ifp)6059 bge_watchdog_tick(struct ifnet *ifp)
6060 {
6061 	struct bge_softc * const sc = ifp->if_softc;
6062 
6063 	KASSERT(mutex_owned(sc->sc_core_lock));
6064 
6065 	if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
6066 		return true;
6067 
6068 	if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
6069 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
6070 
6071 	return false;
6072 }
6073 
6074 /*
6075  * Perform an interface watchdog reset.
6076  */
6077 static void
bge_handle_reset_work(struct work * work,void * arg)6078 bge_handle_reset_work(struct work *work, void *arg)
6079 {
6080 	struct bge_softc * const sc = arg;
6081 	struct ifnet * const ifp = &sc->ethercom.ec_if;
6082 
6083 	printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
6084 
6085 	/* Don't want ioctl operations to happen */
6086 	IFNET_LOCK(ifp);
6087 
6088 	/* reset the interface. */
6089 	bge_init(ifp);
6090 
6091 	IFNET_UNLOCK(ifp);
6092 
6093 	/*
6094 	 * There are still some upper layer processing which call
6095 	 * ifp->if_start(). e.g. ALTQ or one CPU system
6096 	 */
6097 	/* Try to get more packets going. */
6098 	ifp->if_start(ifp);
6099 
6100 	atomic_store_relaxed(&sc->sc_reset_pending, 0);
6101 }
6102 
6103 static void
bge_stop_block(struct bge_softc * sc,bus_addr_t reg,uint32_t bit)6104 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6105 {
6106 	int i;
6107 
6108 	BGE_CLRBIT_FLUSH(sc, reg, bit);
6109 
6110 	for (i = 0; i < 1000; i++) {
6111 		delay(100);
6112 		if ((CSR_READ_4(sc, reg) & bit) == 0)
6113 			return;
6114 	}
6115 
6116 	/*
6117 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6118 	 * on some environment (and once after boot?)
6119 	 */
6120 	if (reg != BGE_SRS_MODE)
6121 		aprint_error_dev(sc->bge_dev,
6122 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6123 		    (u_long)reg, bit);
6124 }
6125 
6126 
6127 static void
bge_stop(struct ifnet * ifp,int disable)6128 bge_stop(struct ifnet *ifp, int disable)
6129 {
6130 	struct bge_softc * const sc = ifp->if_softc;
6131 
6132 	ASSERT_SLEEPABLE();
6133 	KASSERT(IFNET_LOCKED(ifp));
6134 
6135 	mutex_enter(sc->sc_core_lock);
6136 	bge_stop_locked(ifp, disable ? true : false);
6137 	mutex_exit(sc->sc_core_lock);
6138 }
6139 
6140 /*
6141  * Stop the adapter and free any mbufs allocated to the
6142  * RX and TX lists.
6143  */
6144 static void
bge_stop_locked(struct ifnet * ifp,bool disable)6145 bge_stop_locked(struct ifnet *ifp, bool disable)
6146 {
6147 	struct bge_softc * const sc = ifp->if_softc;
6148 
6149 	ASSERT_SLEEPABLE();
6150 	KASSERT(IFNET_LOCKED(ifp));
6151 	KASSERT(mutex_owned(sc->sc_core_lock));
6152 
6153 	sc->bge_stopping = true;
6154 
6155 	mutex_enter(sc->sc_intr_lock);
6156 	sc->bge_txrx_stopping = true;
6157 	mutex_exit(sc->sc_intr_lock);
6158 
6159 	callout_halt(&sc->bge_timeout, sc->sc_core_lock);
6160 
6161 	/* Disable host interrupts. */
6162 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6163 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6164 
6165 	/*
6166 	 * Tell firmware we're shutting down.
6167 	 */
6168 	bge_stop_fw(sc);
6169 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6170 
6171 	/*
6172 	 * Disable all of the receiver blocks.
6173 	 */
6174 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6175 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6176 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6177 	if (BGE_IS_5700_FAMILY(sc))
6178 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6179 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6180 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6181 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6182 
6183 	/*
6184 	 * Disable all of the transmit blocks.
6185 	 */
6186 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6187 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6188 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6189 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6190 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6191 	if (BGE_IS_5700_FAMILY(sc))
6192 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6193 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6194 
6195 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6196 	delay(40);
6197 
6198 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6199 
6200 	/*
6201 	 * Shut down all of the memory managers and related
6202 	 * state machines.
6203 	 */
6204 	/* 5718 step 5a,5b */
6205 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6206 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6207 	if (BGE_IS_5700_FAMILY(sc))
6208 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6209 
6210 	/* 5718 step 5c,5d */
6211 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6212 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6213 
6214 	if (BGE_IS_5700_FAMILY(sc)) {
6215 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6216 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6217 	}
6218 
6219 	bge_reset(sc);
6220 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6221 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6222 
6223 	/*
6224 	 * Keep the ASF firmware running if up.
6225 	 */
6226 	if (sc->bge_asf_mode & ASF_STACKUP)
6227 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6228 	else
6229 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6230 
6231 	/* Free the RX lists. */
6232 	bge_free_rx_ring_std(sc);
6233 
6234 	/* Free jumbo RX list. */
6235 	if (BGE_IS_JUMBO_CAPABLE(sc))
6236 		bge_free_rx_ring_jumbo(sc);
6237 
6238 	/* Free TX buffers. */
6239 	bge_free_tx_ring(sc, disable);
6240 
6241 	/*
6242 	 * Isolate/power down the PHY.
6243 	 */
6244 	if (!(sc->bge_flags & BGEF_FIBER_TBI)) {
6245 		mutex_enter(sc->sc_intr_lock);
6246 		mii_down(&sc->bge_mii);
6247 		mutex_exit(sc->sc_intr_lock);
6248 	}
6249 
6250 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6251 
6252 	/* Clear MAC's link state (PHY may still have link UP). */
6253 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6254 
6255 	ifp->if_flags &= ~IFF_RUNNING;
6256 
6257 	sc->bge_if_flags = ifp->if_flags;
6258 }
6259 
6260 static void
bge_link_upd(struct bge_softc * sc)6261 bge_link_upd(struct bge_softc *sc)
6262 {
6263 	struct ifnet * const ifp = &sc->ethercom.ec_if;
6264 	struct mii_data * const mii = &sc->bge_mii;
6265 	uint32_t status;
6266 	uint16_t phyval;
6267 	int link;
6268 
6269 	KASSERT(sc->sc_intr_lock);
6270 
6271 	/* Clear 'pending link event' flag */
6272 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6273 
6274 	/*
6275 	 * Process link state changes.
6276 	 * Grrr. The link status word in the status block does
6277 	 * not work correctly on the BCM5700 rev AX and BX chips,
6278 	 * according to all available information. Hence, we have
6279 	 * to enable MII interrupts in order to properly obtain
6280 	 * async link changes. Unfortunately, this also means that
6281 	 * we have to read the MAC status register to detect link
6282 	 * changes, thereby adding an additional register access to
6283 	 * the interrupt handler.
6284 	 */
6285 
6286 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6287 		status = CSR_READ_4(sc, BGE_MAC_STS);
6288 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6289 			mii_pollstat(mii);
6290 
6291 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6292 			    mii->mii_media_status & IFM_ACTIVE &&
6293 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6294 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6295 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6296 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6297 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6298 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6299 
6300 			/* Clear the interrupt */
6301 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6302 			    BGE_EVTENB_MI_INTERRUPT);
6303 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6304 			    BRGPHY_MII_ISR, &phyval);
6305 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6306 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6307 		}
6308 		return;
6309 	}
6310 
6311 	if (sc->bge_flags & BGEF_FIBER_TBI) {
6312 		status = CSR_READ_4(sc, BGE_MAC_STS);
6313 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6314 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6315 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6316 				if (BGE_ASICREV(sc->bge_chipid)
6317 				    == BGE_ASICREV_BCM5704) {
6318 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6319 					    BGE_MACMODE_TBI_SEND_CFGS);
6320 					DELAY(40);
6321 				}
6322 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6323 				if_link_state_change(ifp, LINK_STATE_UP);
6324 			}
6325 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6326 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6327 			if_link_state_change(ifp, LINK_STATE_DOWN);
6328 		}
6329 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6330 		/*
6331 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6332 		 * bit in status word always set. Workaround this bug by
6333 		 * reading PHY link status directly.
6334 		 */
6335 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6336 		    BGE_STS_LINK : 0;
6337 
6338 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6339 			mii_pollstat(mii);
6340 
6341 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6342 			    mii->mii_media_status & IFM_ACTIVE &&
6343 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6344 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6345 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6346 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6347 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6348 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6349 		}
6350 	} else {
6351 		/*
6352 		 * For controllers that call mii_tick, we have to poll
6353 		 * link status.
6354 		 */
6355 		mii_pollstat(mii);
6356 	}
6357 
6358 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6359 		uint32_t reg, scale;
6360 
6361 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6362 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6363 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6364 			scale = 65;
6365 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6366 			scale = 6;
6367 		else
6368 			scale = 12;
6369 
6370 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6371 		    ~BGE_MISCCFG_TIMER_PRESCALER;
6372 		reg |= scale << 1;
6373 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6374 	}
6375 	/* Clear the attention */
6376 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6377 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6378 	    BGE_MACSTAT_LINK_CHANGED);
6379 }
6380 
6381 static int
bge_sysctl_verify(SYSCTLFN_ARGS)6382 bge_sysctl_verify(SYSCTLFN_ARGS)
6383 {
6384 	int error, t;
6385 	struct sysctlnode node;
6386 
6387 	node = *rnode;
6388 	t = *(int*)rnode->sysctl_data;
6389 	node.sysctl_data = &t;
6390 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
6391 	if (error || newp == NULL)
6392 		return error;
6393 
6394 #if 0
6395 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6396 	    node.sysctl_num, rnode->sysctl_num));
6397 #endif
6398 
6399 	if (node.sysctl_num == bge_rxthresh_nodenum) {
6400 		if (t < 0 || t >= NBGE_RX_THRESH)
6401 			return EINVAL;
6402 		bge_update_all_threshes(t);
6403 	} else
6404 		return EINVAL;
6405 
6406 	*(int*)rnode->sysctl_data = t;
6407 
6408 	return 0;
6409 }
6410 
6411 /*
6412  * Set up sysctl(3) MIB, hw.bge.*.
6413  */
6414 static void
bge_sysctl_init(struct bge_softc * sc)6415 bge_sysctl_init(struct bge_softc *sc)
6416 {
6417 	int rc, bge_root_num;
6418 	const struct sysctlnode *node;
6419 
6420 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6421 	    0, CTLTYPE_NODE, "bge",
6422 	    SYSCTL_DESCR("BGE interface controls"),
6423 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6424 		goto out;
6425 	}
6426 
6427 	bge_root_num = node->sysctl_num;
6428 
6429 	/* BGE Rx interrupt mitigation level */
6430 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6431 	    CTLFLAG_READWRITE,
6432 	    CTLTYPE_INT, "rx_lvl",
6433 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6434 	    bge_sysctl_verify, 0,
6435 	    &bge_rx_thresh_lvl,
6436 	    0, CTL_HW, bge_root_num, CTL_CREATE,
6437 	    CTL_EOL)) != 0) {
6438 		goto out;
6439 	}
6440 
6441 	bge_rxthresh_nodenum = node->sysctl_num;
6442 
6443 #ifdef BGE_DEBUG
6444 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6445 	    CTLFLAG_READWRITE,
6446 	    CTLTYPE_BOOL, "trigger_reset",
6447 	    SYSCTL_DESCR("Trigger an interface reset"),
6448 	    NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
6449 	    CTL_EOL)) != 0) {
6450 		goto out;
6451 	}
6452 #endif
6453 	return;
6454 
6455 out:
6456 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6457 }
6458 
6459 #ifdef BGE_DEBUG
6460 void
bge_debug_info(struct bge_softc * sc)6461 bge_debug_info(struct bge_softc *sc)
6462 {
6463 
6464 	printf("Hardware Flags:\n");
6465 	if (BGE_IS_57765_PLUS(sc))
6466 		printf(" - 57765 Plus\n");
6467 	if (BGE_IS_5717_PLUS(sc))
6468 		printf(" - 5717 Plus\n");
6469 	if (BGE_IS_5755_PLUS(sc))
6470 		printf(" - 5755 Plus\n");
6471 	if (BGE_IS_575X_PLUS(sc))
6472 		printf(" - 575X Plus\n");
6473 	if (BGE_IS_5705_PLUS(sc))
6474 		printf(" - 5705 Plus\n");
6475 	if (BGE_IS_5714_FAMILY(sc))
6476 		printf(" - 5714 Family\n");
6477 	if (BGE_IS_5700_FAMILY(sc))
6478 		printf(" - 5700 Family\n");
6479 	if (sc->bge_flags & BGEF_IS_5788)
6480 		printf(" - 5788\n");
6481 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6482 		printf(" - Supports Jumbo Frames\n");
6483 	if (sc->bge_flags & BGEF_NO_EEPROM)
6484 		printf(" - No EEPROM\n");
6485 	if (sc->bge_flags & BGEF_PCIX)
6486 		printf(" - PCI-X Bus\n");
6487 	if (sc->bge_flags & BGEF_PCIE)
6488 		printf(" - PCI Express Bus\n");
6489 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6490 		printf(" - RX Alignment Bug\n");
6491 	if (sc->bge_flags & BGEF_APE)
6492 		printf(" - APE\n");
6493 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
6494 		printf(" - CPMU\n");
6495 	if (sc->bge_flags & BGEF_TSO)
6496 		printf(" - TSO\n");
6497 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
6498 		printf(" - TAGGED_STATUS\n");
6499 
6500 	/* PHY related */
6501 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6502 		printf(" - No 3 LEDs\n");
6503 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6504 		printf(" - CRC bug\n");
6505 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6506 		printf(" - ADC bug\n");
6507 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6508 		printf(" - 5704 A0 bug\n");
6509 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6510 		printf(" - jitter bug\n");
6511 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6512 		printf(" - BER bug\n");
6513 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6514 		printf(" - adjust trim\n");
6515 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6516 		printf(" - no wirespeed\n");
6517 
6518 	/* ASF related */
6519 	if (sc->bge_asf_mode & ASF_ENABLE)
6520 		printf(" - ASF enable\n");
6521 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6522 		printf(" - ASF new handshake\n");
6523 	if (sc->bge_asf_mode & ASF_STACKUP)
6524 		printf(" - ASF stackup\n");
6525 }
6526 #endif /* BGE_DEBUG */
6527 
6528 static int
bge_get_eaddr_fw(struct bge_softc * sc,uint8_t ether_addr[])6529 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6530 {
6531 	prop_dictionary_t dict;
6532 	prop_data_t ea;
6533 
6534 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6535 		return 1;
6536 
6537 	dict = device_properties(sc->bge_dev);
6538 	ea = prop_dictionary_get(dict, "mac-address");
6539 	if (ea != NULL) {
6540 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6541 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6542 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6543 		return 0;
6544 	}
6545 
6546 	return 1;
6547 }
6548 
6549 static int
bge_get_eaddr_mem(struct bge_softc * sc,uint8_t ether_addr[])6550 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6551 {
6552 	uint32_t mac_addr;
6553 
6554 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6555 	if ((mac_addr >> 16) == 0x484b) {
6556 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6557 		ether_addr[1] = (uint8_t)mac_addr;
6558 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6559 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6560 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6561 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6562 		ether_addr[5] = (uint8_t)mac_addr;
6563 		return 0;
6564 	}
6565 	return 1;
6566 }
6567 
6568 static int
bge_get_eaddr_nvram(struct bge_softc * sc,uint8_t ether_addr[])6569 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6570 {
6571 	int mac_offset = BGE_EE_MAC_OFFSET;
6572 
6573 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6574 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6575 
6576 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6577 	    ETHER_ADDR_LEN));
6578 }
6579 
6580 static int
bge_get_eaddr_eeprom(struct bge_softc * sc,uint8_t ether_addr[])6581 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6582 {
6583 
6584 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6585 		return 1;
6586 
6587 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6588 	   ETHER_ADDR_LEN));
6589 }
6590 
6591 static int
bge_get_eaddr(struct bge_softc * sc,uint8_t eaddr[])6592 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6593 {
6594 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6595 		/* NOTE: Order is critical */
6596 		bge_get_eaddr_fw,
6597 		bge_get_eaddr_mem,
6598 		bge_get_eaddr_nvram,
6599 		bge_get_eaddr_eeprom,
6600 		NULL
6601 	};
6602 	const bge_eaddr_fcn_t *func;
6603 
6604 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6605 		if ((*func)(sc, eaddr) == 0)
6606 			break;
6607 	}
6608 	return *func == NULL ? ENXIO : 0;
6609 }
6610