1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/i915_drm.h>
9
10 #include "display/intel_display.h"
11 #include "display/intel_display_irq.h"
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_gt.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_irq.h"
19 #include "intel_gt_pm.h"
20 #include "intel_gt_pm_irq.h"
21 #include "intel_gt_print.h"
22 #include "intel_gt_regs.h"
23 #include "intel_mchbar_regs.h"
24 #include "intel_pcode.h"
25 #include "intel_rps.h"
26 #include "vlv_sideband.h"
27 #ifdef __linux__
28 #include "../../../platform/x86/intel_ips.h"
29 #endif
30
31 #define BUSY_MAX_EI 20u /* ms */
32
33 /*
34 * Lock protecting IPS related data structures
35 */
36 static DEFINE_SPINLOCK(mchdev_lock);
37
rps_to_gt(struct intel_rps * rps)38 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
39 {
40 return container_of(rps, struct intel_gt, rps);
41 }
42
rps_to_i915(struct intel_rps * rps)43 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
44 {
45 return rps_to_gt(rps)->i915;
46 }
47
rps_to_uncore(struct intel_rps * rps)48 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
49 {
50 return rps_to_gt(rps)->uncore;
51 }
52
rps_to_slpc(struct intel_rps * rps)53 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
54 {
55 struct intel_gt *gt = rps_to_gt(rps);
56
57 return >->uc.guc.slpc;
58 }
59
rps_uses_slpc(struct intel_rps * rps)60 static bool rps_uses_slpc(struct intel_rps *rps)
61 {
62 struct intel_gt *gt = rps_to_gt(rps);
63
64 return intel_uc_uses_guc_slpc(>->uc);
65 }
66
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)67 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
68 {
69 return mask & ~rps->pm_intrmsk_mbz;
70 }
71
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)72 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
73 {
74 intel_uncore_write_fw(uncore, reg, val);
75 }
76
rps_timer(void * arg)77 static void rps_timer(void *arg)
78 {
79 struct intel_rps *rps = arg;
80 struct intel_gt *gt = rps_to_gt(rps);
81 struct intel_engine_cs *engine;
82 ktime_t dt, last, timestamp;
83 enum intel_engine_id id;
84 s64 max_busy[3] = {};
85
86 timestamp = 0;
87 for_each_engine(engine, gt, id) {
88 s64 busy;
89 int i;
90
91 dt = intel_engine_get_busy_time(engine, ×tamp);
92 last = engine->stats.rps;
93 engine->stats.rps = dt;
94
95 busy = ktime_to_ns(ktime_sub(dt, last));
96 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
97 if (busy > max_busy[i])
98 swap(busy, max_busy[i]);
99 }
100 }
101 last = rps->pm_timestamp;
102 rps->pm_timestamp = timestamp;
103
104 if (intel_rps_is_active(rps)) {
105 s64 busy;
106 int i;
107
108 dt = ktime_sub(timestamp, last);
109
110 /*
111 * Our goal is to evaluate each engine independently, so we run
112 * at the lowest clocks required to sustain the heaviest
113 * workload. However, a task may be split into sequential
114 * dependent operations across a set of engines, such that
115 * the independent contributions do not account for high load,
116 * but overall the task is GPU bound. For example, consider
117 * video decode on vcs followed by colour post-processing
118 * on vecs, followed by general post-processing on rcs.
119 * Since multi-engines being active does imply a single
120 * continuous workload across all engines, we hedge our
121 * bets by only contributing a factor of the distributed
122 * load into our busyness calculation.
123 */
124 busy = max_busy[0];
125 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
126 if (!max_busy[i])
127 break;
128
129 busy += div_u64(max_busy[i], 1 << i);
130 }
131 GT_TRACE(gt,
132 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
133 busy, (int)div64_u64(100 * busy, dt),
134 max_busy[0], max_busy[1], max_busy[2],
135 rps->pm_interval);
136
137 if (100 * busy > rps->power.up_threshold * dt &&
138 rps->cur_freq < rps->max_freq_softlimit) {
139 rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
140 rps->pm_interval = 1;
141 queue_work(gt->i915->unordered_wq, &rps->work);
142 } else if (100 * busy < rps->power.down_threshold * dt &&
143 rps->cur_freq > rps->min_freq_softlimit) {
144 rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
145 rps->pm_interval = 1;
146 queue_work(gt->i915->unordered_wq, &rps->work);
147 } else {
148 rps->last_adj = 0;
149 }
150
151 mod_timer(&rps->timer,
152 jiffies + msecs_to_jiffies(rps->pm_interval));
153 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
154 }
155 }
156
rps_start_timer(struct intel_rps * rps)157 static void rps_start_timer(struct intel_rps *rps)
158 {
159 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
160 rps->pm_interval = 1;
161 mod_timer(&rps->timer, jiffies + 1);
162 }
163
rps_stop_timer(struct intel_rps * rps)164 static void rps_stop_timer(struct intel_rps *rps)
165 {
166 del_timer_sync(&rps->timer);
167 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
168 cancel_work_sync(&rps->work);
169 }
170
rps_pm_mask(struct intel_rps * rps,u8 val)171 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
172 {
173 u32 mask = 0;
174
175 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
176 if (val > rps->min_freq_softlimit)
177 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
178 GEN6_PM_RP_DOWN_THRESHOLD |
179 GEN6_PM_RP_DOWN_TIMEOUT);
180
181 if (val < rps->max_freq_softlimit)
182 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
183
184 mask &= rps->pm_events;
185
186 return rps_pm_sanitize_mask(rps, ~mask);
187 }
188
rps_reset_ei(struct intel_rps * rps)189 static void rps_reset_ei(struct intel_rps *rps)
190 {
191 memset(&rps->ei, 0, sizeof(rps->ei));
192 }
193
rps_enable_interrupts(struct intel_rps * rps)194 static void rps_enable_interrupts(struct intel_rps *rps)
195 {
196 struct intel_gt *gt = rps_to_gt(rps);
197
198 GEM_BUG_ON(rps_uses_slpc(rps));
199
200 GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
201 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
202
203 rps_reset_ei(rps);
204
205 spin_lock_irq(gt->irq_lock);
206 gen6_gt_pm_enable_irq(gt, rps->pm_events);
207 spin_unlock_irq(gt->irq_lock);
208
209 intel_uncore_write(gt->uncore,
210 GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
211 }
212
gen6_rps_reset_interrupts(struct intel_rps * rps)213 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
214 {
215 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
216 }
217
gen11_rps_reset_interrupts(struct intel_rps * rps)218 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
219 {
220 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
221 ;
222 }
223
rps_reset_interrupts(struct intel_rps * rps)224 static void rps_reset_interrupts(struct intel_rps *rps)
225 {
226 struct intel_gt *gt = rps_to_gt(rps);
227
228 spin_lock_irq(gt->irq_lock);
229 if (GRAPHICS_VER(gt->i915) >= 11)
230 gen11_rps_reset_interrupts(rps);
231 else
232 gen6_rps_reset_interrupts(rps);
233
234 rps->pm_iir = 0;
235 spin_unlock_irq(gt->irq_lock);
236 }
237
rps_disable_interrupts(struct intel_rps * rps)238 static void rps_disable_interrupts(struct intel_rps *rps)
239 {
240 struct intel_gt *gt = rps_to_gt(rps);
241
242 intel_uncore_write(gt->uncore,
243 GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
244
245 spin_lock_irq(gt->irq_lock);
246 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
247 spin_unlock_irq(gt->irq_lock);
248
249 intel_synchronize_irq(gt->i915);
250
251 /*
252 * Now that we will not be generating any more work, flush any
253 * outstanding tasks. As we are called on the RPS idle path,
254 * we will reset the GPU to minimum frequencies, so the current
255 * state of the worker can be discarded.
256 */
257 cancel_work_sync(&rps->work);
258
259 rps_reset_interrupts(rps);
260 GT_TRACE(gt, "interrupts:off\n");
261 }
262
263 static const struct cparams {
264 u16 i;
265 u16 t;
266 u16 m;
267 u16 c;
268 } cparams[] = {
269 { 1, 1333, 301, 28664 },
270 { 1, 1066, 294, 24460 },
271 { 1, 800, 294, 25192 },
272 { 0, 1333, 276, 27605 },
273 { 0, 1066, 276, 27605 },
274 { 0, 800, 231, 23784 },
275 };
276
gen5_rps_init(struct intel_rps * rps)277 static void gen5_rps_init(struct intel_rps *rps)
278 {
279 struct drm_i915_private *i915 = rps_to_i915(rps);
280 struct intel_uncore *uncore = rps_to_uncore(rps);
281 u8 fmax, fmin, fstart;
282 u32 rgvmodectl;
283 int c_m, i;
284
285 if (i915->fsb_freq <= 3200)
286 c_m = 0;
287 else if (i915->fsb_freq <= 4800)
288 c_m = 1;
289 else
290 c_m = 2;
291
292 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
293 if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
294 rps->ips.m = cparams[i].m;
295 rps->ips.c = cparams[i].c;
296 break;
297 }
298 }
299
300 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
301
302 /* Set up min, max, and cur for interrupt handling */
303 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
304 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
305 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
306 MEMMODE_FSTART_SHIFT;
307 drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
308 fmax, fmin, fstart);
309
310 rps->min_freq = fmax;
311 rps->efficient_freq = fstart;
312 rps->max_freq = fmin;
313 }
314
315 static unsigned long
__ips_chipset_val(struct intel_ips * ips)316 __ips_chipset_val(struct intel_ips *ips)
317 {
318 struct intel_uncore *uncore =
319 rps_to_uncore(container_of(ips, struct intel_rps, ips));
320 unsigned long now = jiffies_to_msecs(jiffies), dt;
321 unsigned long result;
322 u64 total, delta;
323
324 lockdep_assert_held(&mchdev_lock);
325
326 /*
327 * Prevent division-by-zero if we are asking too fast.
328 * Also, we don't get interesting results if we are polling
329 * faster than once in 10ms, so just return the saved value
330 * in such cases.
331 */
332 dt = now - ips->last_time1;
333 if (dt <= 10)
334 return ips->chipset_power;
335
336 /* FIXME: handle per-counter overflow */
337 total = intel_uncore_read(uncore, DMIEC);
338 total += intel_uncore_read(uncore, DDREC);
339 total += intel_uncore_read(uncore, CSIEC);
340
341 delta = total - ips->last_count1;
342
343 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
344
345 ips->last_count1 = total;
346 ips->last_time1 = now;
347
348 ips->chipset_power = result;
349
350 return result;
351 }
352
ips_mch_val(struct intel_uncore * uncore)353 static unsigned long ips_mch_val(struct intel_uncore *uncore)
354 {
355 unsigned int m, x, b;
356 u32 tsfs;
357
358 tsfs = intel_uncore_read(uncore, TSFS);
359 x = intel_uncore_read8(uncore, TR1);
360
361 b = tsfs & TSFS_INTR_MASK;
362 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
363
364 return m * x / 127 - b;
365 }
366
_pxvid_to_vd(u8 pxvid)367 static int _pxvid_to_vd(u8 pxvid)
368 {
369 if (pxvid == 0)
370 return 0;
371
372 if (pxvid >= 8 && pxvid < 31)
373 pxvid = 31;
374
375 return (pxvid + 2) * 125;
376 }
377
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)378 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
379 {
380 const int vd = _pxvid_to_vd(pxvid);
381
382 if (INTEL_INFO(i915)->is_mobile)
383 return max(vd - 1125, 0);
384
385 return vd;
386 }
387
__gen5_ips_update(struct intel_ips * ips)388 static void __gen5_ips_update(struct intel_ips *ips)
389 {
390 struct intel_uncore *uncore =
391 rps_to_uncore(container_of(ips, struct intel_rps, ips));
392 u64 now, delta, dt;
393 u32 count;
394
395 lockdep_assert_held(&mchdev_lock);
396
397 now = ktime_get_raw_ns();
398 dt = now - ips->last_time2;
399 do_div(dt, NSEC_PER_MSEC);
400
401 /* Don't divide by 0 */
402 if (dt <= 10)
403 return;
404
405 count = intel_uncore_read(uncore, GFXEC);
406 delta = count - ips->last_count2;
407
408 ips->last_count2 = count;
409 ips->last_time2 = now;
410
411 /* More magic constants... */
412 ips->gfx_power = div_u64(delta * 1181, dt * 10);
413 }
414
gen5_rps_update(struct intel_rps * rps)415 static void gen5_rps_update(struct intel_rps *rps)
416 {
417 spin_lock_irq(&mchdev_lock);
418 __gen5_ips_update(&rps->ips);
419 spin_unlock_irq(&mchdev_lock);
420 }
421
gen5_invert_freq(struct intel_rps * rps,unsigned int val)422 static unsigned int gen5_invert_freq(struct intel_rps *rps,
423 unsigned int val)
424 {
425 /* Invert the frequency bin into an ips delay */
426 val = rps->max_freq - val;
427 val = rps->min_freq + val;
428
429 return val;
430 }
431
__gen5_rps_set(struct intel_rps * rps,u8 val)432 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
433 {
434 struct intel_uncore *uncore = rps_to_uncore(rps);
435 u16 rgvswctl;
436
437 lockdep_assert_held(&mchdev_lock);
438
439 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
440 if (rgvswctl & MEMCTL_CMD_STS) {
441 drm_dbg(&rps_to_i915(rps)->drm,
442 "gpu busy, RCS change rejected\n");
443 return -EBUSY; /* still busy with another command */
444 }
445
446 /* Invert the frequency bin into an ips delay */
447 val = gen5_invert_freq(rps, val);
448
449 rgvswctl =
450 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
451 (val << MEMCTL_FREQ_SHIFT) |
452 MEMCTL_SFCAVM;
453 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
454 intel_uncore_posting_read16(uncore, MEMSWCTL);
455
456 rgvswctl |= MEMCTL_CMD_STS;
457 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
458
459 return 0;
460 }
461
gen5_rps_set(struct intel_rps * rps,u8 val)462 static int gen5_rps_set(struct intel_rps *rps, u8 val)
463 {
464 int err;
465
466 spin_lock_irq(&mchdev_lock);
467 err = __gen5_rps_set(rps, val);
468 spin_unlock_irq(&mchdev_lock);
469
470 return err;
471 }
472
intel_pxfreq(u32 vidfreq)473 static unsigned long intel_pxfreq(u32 vidfreq)
474 {
475 int div = (vidfreq & 0x3f0000) >> 16;
476 int post = (vidfreq & 0x3000) >> 12;
477 int pre = (vidfreq & 0x7);
478
479 if (!pre)
480 return 0;
481
482 return div * 133333 / (pre << post);
483 }
484
init_emon(struct intel_uncore * uncore)485 static unsigned int init_emon(struct intel_uncore *uncore)
486 {
487 u8 pxw[16];
488 int i;
489
490 /* Disable to program */
491 intel_uncore_write(uncore, ECR, 0);
492 intel_uncore_posting_read(uncore, ECR);
493
494 /* Program energy weights for various events */
495 intel_uncore_write(uncore, SDEW, 0x15040d00);
496 intel_uncore_write(uncore, CSIEW0, 0x007f0000);
497 intel_uncore_write(uncore, CSIEW1, 0x1e220004);
498 intel_uncore_write(uncore, CSIEW2, 0x04000004);
499
500 for (i = 0; i < 5; i++)
501 intel_uncore_write(uncore, PEW(i), 0);
502 for (i = 0; i < 3; i++)
503 intel_uncore_write(uncore, DEW(i), 0);
504
505 /* Program P-state weights to account for frequency power adjustment */
506 for (i = 0; i < 16; i++) {
507 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
508 unsigned int freq = intel_pxfreq(pxvidfreq);
509 unsigned int vid =
510 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
511 unsigned int val;
512
513 val = vid * vid * freq / 1000 * 255;
514 val /= 127 * 127 * 900;
515
516 pxw[i] = val;
517 }
518 /* Render standby states get 0 weight */
519 pxw[14] = 0;
520 pxw[15] = 0;
521
522 for (i = 0; i < 4; i++) {
523 intel_uncore_write(uncore, PXW(i),
524 pxw[i * 4 + 0] << 24 |
525 pxw[i * 4 + 1] << 16 |
526 pxw[i * 4 + 2] << 8 |
527 pxw[i * 4 + 3] << 0);
528 }
529
530 /* Adjust magic regs to magic values (more experimental results) */
531 intel_uncore_write(uncore, OGW0, 0);
532 intel_uncore_write(uncore, OGW1, 0);
533 intel_uncore_write(uncore, EG0, 0x00007f00);
534 intel_uncore_write(uncore, EG1, 0x0000000e);
535 intel_uncore_write(uncore, EG2, 0x000e0000);
536 intel_uncore_write(uncore, EG3, 0x68000300);
537 intel_uncore_write(uncore, EG4, 0x42000000);
538 intel_uncore_write(uncore, EG5, 0x00140031);
539 intel_uncore_write(uncore, EG6, 0);
540 intel_uncore_write(uncore, EG7, 0);
541
542 for (i = 0; i < 8; i++)
543 intel_uncore_write(uncore, PXWL(i), 0);
544
545 /* Enable PMON + select events */
546 intel_uncore_write(uncore, ECR, 0x80000019);
547
548 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
549 }
550
gen5_rps_enable(struct intel_rps * rps)551 static bool gen5_rps_enable(struct intel_rps *rps)
552 {
553 struct drm_i915_private *i915 = rps_to_i915(rps);
554 struct intel_uncore *uncore = rps_to_uncore(rps);
555 u8 fstart, vstart;
556 u32 rgvmodectl;
557
558 spin_lock_irq(&mchdev_lock);
559
560 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
561
562 /* Enable temp reporting */
563 intel_uncore_write16(uncore, PMMISC,
564 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
565 intel_uncore_write16(uncore, TSC1,
566 intel_uncore_read16(uncore, TSC1) | TSE);
567
568 /* 100ms RC evaluation intervals */
569 intel_uncore_write(uncore, RCUPEI, 100000);
570 intel_uncore_write(uncore, RCDNEI, 100000);
571
572 /* Set max/min thresholds to 90ms and 80ms respectively */
573 intel_uncore_write(uncore, RCBMAXAVG, 90000);
574 intel_uncore_write(uncore, RCBMINAVG, 80000);
575
576 intel_uncore_write(uncore, MEMIHYST, 1);
577
578 /* Set up min, max, and cur for interrupt handling */
579 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
580 MEMMODE_FSTART_SHIFT;
581
582 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
583 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
584
585 intel_uncore_write(uncore,
586 MEMINTREN,
587 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
588
589 intel_uncore_write(uncore, VIDSTART, vstart);
590 intel_uncore_posting_read(uncore, VIDSTART);
591
592 rgvmodectl |= MEMMODE_SWMODE_EN;
593 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
594
595 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
596 MEMCTL_CMD_STS) == 0, 10))
597 drm_err(&uncore->i915->drm,
598 "stuck trying to change perf mode\n");
599 mdelay(1);
600
601 __gen5_rps_set(rps, rps->cur_freq);
602
603 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
604 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
605 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
606 rps->ips.last_time1 = jiffies_to_msecs(jiffies);
607
608 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
609 rps->ips.last_time2 = ktime_get_raw_ns();
610
611 spin_lock(&i915->irq_lock);
612 ilk_enable_display_irq(i915, DE_PCU_EVENT);
613 spin_unlock(&i915->irq_lock);
614
615 spin_unlock_irq(&mchdev_lock);
616
617 rps->ips.corr = init_emon(uncore);
618
619 return true;
620 }
621
gen5_rps_disable(struct intel_rps * rps)622 static void gen5_rps_disable(struct intel_rps *rps)
623 {
624 struct drm_i915_private *i915 = rps_to_i915(rps);
625 struct intel_uncore *uncore = rps_to_uncore(rps);
626 u16 rgvswctl;
627
628 spin_lock_irq(&mchdev_lock);
629
630 spin_lock(&i915->irq_lock);
631 ilk_disable_display_irq(i915, DE_PCU_EVENT);
632 spin_unlock(&i915->irq_lock);
633
634 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
635
636 /* Ack interrupts, disable EFC interrupt */
637 intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
638 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
639
640 /* Go back to the starting frequency */
641 __gen5_rps_set(rps, rps->idle_freq);
642 mdelay(1);
643 rgvswctl |= MEMCTL_CMD_STS;
644 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
645 mdelay(1);
646
647 spin_unlock_irq(&mchdev_lock);
648 }
649
rps_limits(struct intel_rps * rps,u8 val)650 static u32 rps_limits(struct intel_rps *rps, u8 val)
651 {
652 u32 limits;
653
654 /*
655 * Only set the down limit when we've reached the lowest level to avoid
656 * getting more interrupts, otherwise leave this clear. This prevents a
657 * race in the hw when coming out of rc6: There's a tiny window where
658 * the hw runs at the minimal clock before selecting the desired
659 * frequency, if the down threshold expires in that window we will not
660 * receive a down interrupt.
661 */
662 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
663 limits = rps->max_freq_softlimit << 23;
664 if (val <= rps->min_freq_softlimit)
665 limits |= rps->min_freq_softlimit << 14;
666 } else {
667 limits = rps->max_freq_softlimit << 24;
668 if (val <= rps->min_freq_softlimit)
669 limits |= rps->min_freq_softlimit << 16;
670 }
671
672 return limits;
673 }
674
rps_set_power(struct intel_rps * rps,int new_power)675 static void rps_set_power(struct intel_rps *rps, int new_power)
676 {
677 struct intel_gt *gt = rps_to_gt(rps);
678 struct intel_uncore *uncore = gt->uncore;
679 u32 ei_up = 0, ei_down = 0;
680
681 lockdep_assert_held(&rps->power.mutex);
682
683 if (new_power == rps->power.mode)
684 return;
685
686 /* Note the units here are not exactly 1us, but 1280ns. */
687 switch (new_power) {
688 case LOW_POWER:
689 ei_up = 16000;
690 ei_down = 32000;
691 break;
692
693 case BETWEEN:
694 ei_up = 13000;
695 ei_down = 32000;
696 break;
697
698 case HIGH_POWER:
699 ei_up = 10000;
700 ei_down = 32000;
701 break;
702 }
703
704 /* When byt can survive without system hang with dynamic
705 * sw freq adjustments, this restriction can be lifted.
706 */
707 if (IS_VALLEYVIEW(gt->i915))
708 goto skip_hw_write;
709
710 GT_TRACE(gt,
711 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
712 new_power,
713 rps->power.up_threshold, ei_up,
714 rps->power.down_threshold, ei_down);
715
716 set(uncore, GEN6_RP_UP_EI,
717 intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
718 set(uncore, GEN6_RP_UP_THRESHOLD,
719 intel_gt_ns_to_pm_interval(gt,
720 ei_up * rps->power.up_threshold * 10));
721
722 set(uncore, GEN6_RP_DOWN_EI,
723 intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
724 set(uncore, GEN6_RP_DOWN_THRESHOLD,
725 intel_gt_ns_to_pm_interval(gt,
726 ei_down *
727 rps->power.down_threshold * 10));
728
729 set(uncore, GEN6_RP_CONTROL,
730 (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
731 GEN6_RP_MEDIA_HW_NORMAL_MODE |
732 GEN6_RP_MEDIA_IS_GFX |
733 GEN6_RP_ENABLE |
734 GEN6_RP_UP_BUSY_AVG |
735 GEN6_RP_DOWN_IDLE_AVG);
736
737 skip_hw_write:
738 rps->power.mode = new_power;
739 }
740
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)741 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
742 {
743 int new_power;
744
745 new_power = rps->power.mode;
746 switch (rps->power.mode) {
747 case LOW_POWER:
748 if (val > rps->efficient_freq + 1 &&
749 val > rps->cur_freq)
750 new_power = BETWEEN;
751 break;
752
753 case BETWEEN:
754 if (val <= rps->efficient_freq &&
755 val < rps->cur_freq)
756 new_power = LOW_POWER;
757 else if (val >= rps->rp0_freq &&
758 val > rps->cur_freq)
759 new_power = HIGH_POWER;
760 break;
761
762 case HIGH_POWER:
763 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
764 val < rps->cur_freq)
765 new_power = BETWEEN;
766 break;
767 }
768 /* Max/min bins are special */
769 if (val <= rps->min_freq_softlimit)
770 new_power = LOW_POWER;
771 if (val >= rps->max_freq_softlimit)
772 new_power = HIGH_POWER;
773
774 mutex_lock(&rps->power.mutex);
775 if (rps->power.interactive)
776 new_power = HIGH_POWER;
777 rps_set_power(rps, new_power);
778 mutex_unlock(&rps->power.mutex);
779 }
780
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)781 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
782 {
783 GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
784 str_yes_no(interactive));
785
786 mutex_lock(&rps->power.mutex);
787 if (interactive) {
788 if (!rps->power.interactive++ && intel_rps_is_active(rps))
789 rps_set_power(rps, HIGH_POWER);
790 } else {
791 GEM_BUG_ON(!rps->power.interactive);
792 rps->power.interactive--;
793 }
794 mutex_unlock(&rps->power.mutex);
795 }
796
gen6_rps_set(struct intel_rps * rps,u8 val)797 static int gen6_rps_set(struct intel_rps *rps, u8 val)
798 {
799 struct intel_uncore *uncore = rps_to_uncore(rps);
800 struct drm_i915_private *i915 = rps_to_i915(rps);
801 u32 swreq;
802
803 GEM_BUG_ON(rps_uses_slpc(rps));
804
805 if (GRAPHICS_VER(i915) >= 9)
806 swreq = GEN9_FREQUENCY(val);
807 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
808 swreq = HSW_FREQUENCY(val);
809 else
810 swreq = (GEN6_FREQUENCY(val) |
811 GEN6_OFFSET(0) |
812 GEN6_AGGRESSIVE_TURBO);
813 set(uncore, GEN6_RPNSWREQ, swreq);
814
815 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
816 val, intel_gpu_freq(rps, val), swreq);
817
818 return 0;
819 }
820
vlv_rps_set(struct intel_rps * rps,u8 val)821 static int vlv_rps_set(struct intel_rps *rps, u8 val)
822 {
823 struct drm_i915_private *i915 = rps_to_i915(rps);
824 int err;
825
826 vlv_punit_get(i915);
827 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
828 vlv_punit_put(i915);
829
830 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
831 val, intel_gpu_freq(rps, val));
832
833 return err;
834 }
835
rps_set(struct intel_rps * rps,u8 val,bool update)836 static int rps_set(struct intel_rps *rps, u8 val, bool update)
837 {
838 struct drm_i915_private *i915 = rps_to_i915(rps);
839 int err;
840
841 if (val == rps->last_freq)
842 return 0;
843
844 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
845 err = vlv_rps_set(rps, val);
846 else if (GRAPHICS_VER(i915) >= 6)
847 err = gen6_rps_set(rps, val);
848 else
849 err = gen5_rps_set(rps, val);
850 if (err)
851 return err;
852
853 if (update && GRAPHICS_VER(i915) >= 6)
854 gen6_rps_set_thresholds(rps, val);
855 rps->last_freq = val;
856
857 return 0;
858 }
859
intel_rps_unpark(struct intel_rps * rps)860 void intel_rps_unpark(struct intel_rps *rps)
861 {
862 if (!intel_rps_is_enabled(rps))
863 return;
864
865 GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
866
867 /*
868 * Use the user's desired frequency as a guide, but for better
869 * performance, jump directly to RPe as our starting frequency.
870 */
871 mutex_lock(&rps->lock);
872
873 intel_rps_set_active(rps);
874 intel_rps_set(rps,
875 clamp(rps->cur_freq,
876 rps->min_freq_softlimit,
877 rps->max_freq_softlimit));
878
879 mutex_unlock(&rps->lock);
880
881 rps->pm_iir = 0;
882 if (intel_rps_has_interrupts(rps))
883 rps_enable_interrupts(rps);
884 if (intel_rps_uses_timer(rps))
885 rps_start_timer(rps);
886
887 if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
888 gen5_rps_update(rps);
889 }
890
intel_rps_park(struct intel_rps * rps)891 void intel_rps_park(struct intel_rps *rps)
892 {
893 int adj;
894
895 if (!intel_rps_is_enabled(rps))
896 return;
897
898 if (!intel_rps_clear_active(rps))
899 return;
900
901 if (intel_rps_uses_timer(rps))
902 rps_stop_timer(rps);
903 if (intel_rps_has_interrupts(rps))
904 rps_disable_interrupts(rps);
905
906 if (rps->last_freq <= rps->idle_freq)
907 return;
908
909 /*
910 * The punit delays the write of the frequency and voltage until it
911 * determines the GPU is awake. During normal usage we don't want to
912 * waste power changing the frequency if the GPU is sleeping (rc6).
913 * However, the GPU and driver is now idle and we do not want to delay
914 * switching to minimum voltage (reducing power whilst idle) as we do
915 * not expect to be woken in the near future and so must flush the
916 * change by waking the device.
917 *
918 * We choose to take the media powerwell (either would do to trick the
919 * punit into committing the voltage change) as that takes a lot less
920 * power than the render powerwell.
921 */
922 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
923 rps_set(rps, rps->idle_freq, false);
924 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
925
926 /*
927 * Since we will try and restart from the previously requested
928 * frequency on unparking, treat this idle point as a downclock
929 * interrupt and reduce the frequency for resume. If we park/unpark
930 * more frequently than the rps worker can run, we will not respond
931 * to any EI and never see a change in frequency.
932 *
933 * (Note we accommodate Cherryview's limitation of only using an
934 * even bin by applying it to all.)
935 */
936 adj = rps->last_adj;
937 if (adj < 0)
938 adj *= 2;
939 else /* CHV needs even encode values */
940 adj = -2;
941 rps->last_adj = adj;
942 rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
943 if (rps->cur_freq < rps->efficient_freq) {
944 rps->cur_freq = rps->efficient_freq;
945 rps->last_adj = 0;
946 }
947
948 GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
949 }
950
intel_rps_get_boost_frequency(struct intel_rps * rps)951 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
952 {
953 struct intel_guc_slpc *slpc;
954
955 if (rps_uses_slpc(rps)) {
956 slpc = rps_to_slpc(rps);
957
958 return slpc->boost_freq;
959 } else {
960 return intel_gpu_freq(rps, rps->boost_freq);
961 }
962 }
963
rps_set_boost_freq(struct intel_rps * rps,u32 val)964 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
965 {
966 bool boost = false;
967
968 /* Validate against (static) hardware limits */
969 val = intel_freq_opcode(rps, val);
970 if (val < rps->min_freq || val > rps->max_freq)
971 return -EINVAL;
972
973 mutex_lock(&rps->lock);
974 if (val != rps->boost_freq) {
975 rps->boost_freq = val;
976 boost = atomic_read(&rps->num_waiters);
977 }
978 mutex_unlock(&rps->lock);
979 if (boost)
980 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
981
982 return 0;
983 }
984
intel_rps_set_boost_frequency(struct intel_rps * rps,u32 freq)985 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
986 {
987 struct intel_guc_slpc *slpc;
988
989 if (rps_uses_slpc(rps)) {
990 slpc = rps_to_slpc(rps);
991
992 return intel_guc_slpc_set_boost_freq(slpc, freq);
993 } else {
994 return rps_set_boost_freq(rps, freq);
995 }
996 }
997
intel_rps_dec_waiters(struct intel_rps * rps)998 void intel_rps_dec_waiters(struct intel_rps *rps)
999 {
1000 struct intel_guc_slpc *slpc;
1001
1002 if (rps_uses_slpc(rps)) {
1003 slpc = rps_to_slpc(rps);
1004
1005 intel_guc_slpc_dec_waiters(slpc);
1006 } else {
1007 atomic_dec(&rps->num_waiters);
1008 }
1009 }
1010
intel_rps_boost(struct i915_request * rq)1011 void intel_rps_boost(struct i915_request *rq)
1012 {
1013 struct intel_guc_slpc *slpc;
1014
1015 if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1016 return;
1017
1018 /* Serializes with i915_request_retire() */
1019 if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1020 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1021
1022 if (rps_uses_slpc(rps)) {
1023 slpc = rps_to_slpc(rps);
1024
1025 if (slpc->min_freq_softlimit >= slpc->boost_freq)
1026 return;
1027
1028 /* Return if old value is non zero */
1029 if (!atomic_fetch_inc(&slpc->num_waiters)) {
1030 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1031 rq->fence.context, rq->fence.seqno);
1032 queue_work(rps_to_gt(rps)->i915->unordered_wq,
1033 &slpc->boost_work);
1034 }
1035
1036 return;
1037 }
1038
1039 if (atomic_fetch_inc(&rps->num_waiters))
1040 return;
1041
1042 if (!intel_rps_is_active(rps))
1043 return;
1044
1045 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1046 rq->fence.context, rq->fence.seqno);
1047
1048 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1049 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1050
1051 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1052 }
1053 }
1054
intel_rps_set(struct intel_rps * rps,u8 val)1055 int intel_rps_set(struct intel_rps *rps, u8 val)
1056 {
1057 int err;
1058
1059 lockdep_assert_held(&rps->lock);
1060 GEM_BUG_ON(val > rps->max_freq);
1061 GEM_BUG_ON(val < rps->min_freq);
1062
1063 if (intel_rps_is_active(rps)) {
1064 err = rps_set(rps, val, true);
1065 if (err)
1066 return err;
1067
1068 /*
1069 * Make sure we continue to get interrupts
1070 * until we hit the minimum or maximum frequencies.
1071 */
1072 if (intel_rps_has_interrupts(rps)) {
1073 struct intel_uncore *uncore = rps_to_uncore(rps);
1074
1075 set(uncore,
1076 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1077
1078 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1079 }
1080 }
1081
1082 rps->cur_freq = val;
1083 return 0;
1084 }
1085
intel_rps_read_state_cap(struct intel_rps * rps)1086 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1087 {
1088 struct drm_i915_private *i915 = rps_to_i915(rps);
1089 struct intel_uncore *uncore = rps_to_uncore(rps);
1090
1091 if (IS_PONTEVECCHIO(i915))
1092 return intel_uncore_read(uncore, PVC_RP_STATE_CAP);
1093 else if (IS_XEHPSDV(i915))
1094 return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1095 else if (IS_GEN9_LP(i915))
1096 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1097 else
1098 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1099 }
1100
1101 static void
mtl_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1102 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1103 {
1104 struct intel_uncore *uncore = rps_to_uncore(rps);
1105 u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1106 intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1107 intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1108 u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1109 intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1110 intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1111
1112 /* MTL values are in units of 16.67 MHz */
1113 caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1114 caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1115 caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1116 }
1117
1118 static void
__gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1119 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1120 {
1121 struct drm_i915_private *i915 = rps_to_i915(rps);
1122 u32 rp_state_cap;
1123
1124 rp_state_cap = intel_rps_read_state_cap(rps);
1125
1126 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1127 if (IS_GEN9_LP(i915)) {
1128 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1129 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1130 caps->min_freq = (rp_state_cap >> 0) & 0xff;
1131 } else {
1132 caps->rp0_freq = (rp_state_cap >> 0) & 0xff;
1133 if (GRAPHICS_VER(i915) >= 10)
1134 caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1135 intel_uncore_read(to_gt(i915)->uncore,
1136 GEN10_FREQ_INFO_REC));
1137 else
1138 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1139 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1140 }
1141
1142 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1143 /*
1144 * In this case rp_state_cap register reports frequencies in
1145 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1146 * units of 16.67 MHz
1147 */
1148 caps->rp0_freq *= GEN9_FREQ_SCALER;
1149 caps->rp1_freq *= GEN9_FREQ_SCALER;
1150 caps->min_freq *= GEN9_FREQ_SCALER;
1151 }
1152 }
1153
1154 /**
1155 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1156 * @rps: the intel_rps structure
1157 * @caps: returned freq caps
1158 *
1159 * Returned "caps" frequencies should be converted to MHz using
1160 * intel_gpu_freq()
1161 */
gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1162 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1163 {
1164 struct drm_i915_private *i915 = rps_to_i915(rps);
1165
1166 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1167 return mtl_get_freq_caps(rps, caps);
1168 else
1169 return __gen6_rps_get_freq_caps(rps, caps);
1170 }
1171
gen6_rps_init(struct intel_rps * rps)1172 static void gen6_rps_init(struct intel_rps *rps)
1173 {
1174 struct drm_i915_private *i915 = rps_to_i915(rps);
1175 struct intel_rps_freq_caps caps;
1176
1177 gen6_rps_get_freq_caps(rps, &caps);
1178 rps->rp0_freq = caps.rp0_freq;
1179 rps->rp1_freq = caps.rp1_freq;
1180 rps->min_freq = caps.min_freq;
1181
1182 /* hw_max = RP0 until we check for overclocking */
1183 rps->max_freq = rps->rp0_freq;
1184
1185 rps->efficient_freq = rps->rp1_freq;
1186 if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1187 IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1188 u32 ddcc_status = 0;
1189 u32 mult = 1;
1190
1191 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1192 mult = GEN9_FREQ_SCALER;
1193 if (snb_pcode_read(rps_to_gt(rps)->uncore,
1194 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1195 &ddcc_status, NULL) == 0)
1196 rps->efficient_freq =
1197 clamp_t(u32,
1198 ((ddcc_status >> 8) & 0xff) * mult,
1199 rps->min_freq,
1200 rps->max_freq);
1201 }
1202 }
1203
rps_reset(struct intel_rps * rps)1204 static bool rps_reset(struct intel_rps *rps)
1205 {
1206 struct drm_i915_private *i915 = rps_to_i915(rps);
1207
1208 /* force a reset */
1209 rps->power.mode = -1;
1210 rps->last_freq = -1;
1211
1212 if (rps_set(rps, rps->min_freq, true)) {
1213 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1214 return false;
1215 }
1216
1217 rps->cur_freq = rps->min_freq;
1218 return true;
1219 }
1220
1221 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1222 static bool gen9_rps_enable(struct intel_rps *rps)
1223 {
1224 struct intel_gt *gt = rps_to_gt(rps);
1225 struct intel_uncore *uncore = gt->uncore;
1226
1227 /* Program defaults and thresholds for RPS */
1228 if (GRAPHICS_VER(gt->i915) == 9)
1229 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1230 GEN9_FREQUENCY(rps->rp1_freq));
1231
1232 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1233
1234 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1235
1236 return rps_reset(rps);
1237 }
1238
gen8_rps_enable(struct intel_rps * rps)1239 static bool gen8_rps_enable(struct intel_rps *rps)
1240 {
1241 struct intel_uncore *uncore = rps_to_uncore(rps);
1242
1243 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1244 HSW_FREQUENCY(rps->rp1_freq));
1245
1246 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1247
1248 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1249
1250 return rps_reset(rps);
1251 }
1252
gen6_rps_enable(struct intel_rps * rps)1253 static bool gen6_rps_enable(struct intel_rps *rps)
1254 {
1255 struct intel_uncore *uncore = rps_to_uncore(rps);
1256
1257 /* Power down if completely idle for over 50ms */
1258 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1259 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1260
1261 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1262 GEN6_PM_RP_DOWN_THRESHOLD |
1263 GEN6_PM_RP_DOWN_TIMEOUT);
1264
1265 return rps_reset(rps);
1266 }
1267
chv_rps_max_freq(struct intel_rps * rps)1268 static int chv_rps_max_freq(struct intel_rps *rps)
1269 {
1270 struct drm_i915_private *i915 = rps_to_i915(rps);
1271 struct intel_gt *gt = rps_to_gt(rps);
1272 u32 val;
1273
1274 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1275
1276 switch (gt->info.sseu.eu_total) {
1277 case 8:
1278 /* (2 * 4) config */
1279 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1280 break;
1281 case 12:
1282 /* (2 * 6) config */
1283 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1284 break;
1285 case 16:
1286 /* (2 * 8) config */
1287 default:
1288 /* Setting (2 * 8) Min RP0 for any other combination */
1289 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1290 break;
1291 }
1292
1293 return val & FB_GFX_FREQ_FUSE_MASK;
1294 }
1295
chv_rps_rpe_freq(struct intel_rps * rps)1296 static int chv_rps_rpe_freq(struct intel_rps *rps)
1297 {
1298 struct drm_i915_private *i915 = rps_to_i915(rps);
1299 u32 val;
1300
1301 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1302 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1303
1304 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1305 }
1306
chv_rps_guar_freq(struct intel_rps * rps)1307 static int chv_rps_guar_freq(struct intel_rps *rps)
1308 {
1309 struct drm_i915_private *i915 = rps_to_i915(rps);
1310 u32 val;
1311
1312 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1313
1314 return val & FB_GFX_FREQ_FUSE_MASK;
1315 }
1316
chv_rps_min_freq(struct intel_rps * rps)1317 static u32 chv_rps_min_freq(struct intel_rps *rps)
1318 {
1319 struct drm_i915_private *i915 = rps_to_i915(rps);
1320 u32 val;
1321
1322 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1323 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1324
1325 return val & FB_GFX_FREQ_FUSE_MASK;
1326 }
1327
chv_rps_enable(struct intel_rps * rps)1328 static bool chv_rps_enable(struct intel_rps *rps)
1329 {
1330 struct intel_uncore *uncore = rps_to_uncore(rps);
1331 struct drm_i915_private *i915 = rps_to_i915(rps);
1332 u32 val;
1333
1334 /* 1: Program defaults and thresholds for RPS*/
1335 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1336 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1337 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1338 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1339 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1340
1341 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1342
1343 /* 2: Enable RPS */
1344 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1345 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1346 GEN6_RP_MEDIA_IS_GFX |
1347 GEN6_RP_ENABLE |
1348 GEN6_RP_UP_BUSY_AVG |
1349 GEN6_RP_DOWN_IDLE_AVG);
1350
1351 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1352 GEN6_PM_RP_DOWN_THRESHOLD |
1353 GEN6_PM_RP_DOWN_TIMEOUT);
1354
1355 /* Setting Fixed Bias */
1356 vlv_punit_get(i915);
1357
1358 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1359 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1360
1361 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1362
1363 vlv_punit_put(i915);
1364
1365 /* RPS code assumes GPLL is used */
1366 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1367 "GPLL not enabled\n");
1368
1369 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1370 str_yes_no(val & GPLLENABLE));
1371 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1372
1373 return rps_reset(rps);
1374 }
1375
vlv_rps_guar_freq(struct intel_rps * rps)1376 static int vlv_rps_guar_freq(struct intel_rps *rps)
1377 {
1378 struct drm_i915_private *i915 = rps_to_i915(rps);
1379 u32 val, rp1;
1380
1381 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1382
1383 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1384 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1385
1386 return rp1;
1387 }
1388
vlv_rps_max_freq(struct intel_rps * rps)1389 static int vlv_rps_max_freq(struct intel_rps *rps)
1390 {
1391 struct drm_i915_private *i915 = rps_to_i915(rps);
1392 u32 val, rp0;
1393
1394 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1395
1396 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1397 /* Clamp to max */
1398 rp0 = min_t(u32, rp0, 0xea);
1399
1400 return rp0;
1401 }
1402
vlv_rps_rpe_freq(struct intel_rps * rps)1403 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1404 {
1405 struct drm_i915_private *i915 = rps_to_i915(rps);
1406 u32 val, rpe;
1407
1408 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1409 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1410 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1411 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1412
1413 return rpe;
1414 }
1415
vlv_rps_min_freq(struct intel_rps * rps)1416 static int vlv_rps_min_freq(struct intel_rps *rps)
1417 {
1418 struct drm_i915_private *i915 = rps_to_i915(rps);
1419 u32 val;
1420
1421 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1422 /*
1423 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1424 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1425 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1426 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1427 * to make sure it matches what Punit accepts.
1428 */
1429 return max_t(u32, val, 0xc0);
1430 }
1431
vlv_rps_enable(struct intel_rps * rps)1432 static bool vlv_rps_enable(struct intel_rps *rps)
1433 {
1434 struct intel_uncore *uncore = rps_to_uncore(rps);
1435 struct drm_i915_private *i915 = rps_to_i915(rps);
1436 u32 val;
1437
1438 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1439 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1440 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1441 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1442 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1443
1444 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1445
1446 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1447 GEN6_RP_MEDIA_TURBO |
1448 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1449 GEN6_RP_MEDIA_IS_GFX |
1450 GEN6_RP_ENABLE |
1451 GEN6_RP_UP_BUSY_AVG |
1452 GEN6_RP_DOWN_IDLE_CONT);
1453
1454 /* WaGsvRC0ResidencyMethod:vlv */
1455 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1456
1457 vlv_punit_get(i915);
1458
1459 /* Setting Fixed Bias */
1460 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1461 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1462
1463 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1464
1465 vlv_punit_put(i915);
1466
1467 /* RPS code assumes GPLL is used */
1468 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1469 "GPLL not enabled\n");
1470
1471 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1472 str_yes_no(val & GPLLENABLE));
1473 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1474
1475 return rps_reset(rps);
1476 }
1477
__ips_gfx_val(struct intel_ips * ips)1478 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1479 {
1480 struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1481 struct intel_uncore *uncore = rps_to_uncore(rps);
1482 unsigned int t, state1, state2;
1483 u32 pxvid, ext_v;
1484 u64 corr, corr2;
1485
1486 lockdep_assert_held(&mchdev_lock);
1487
1488 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1489 pxvid = (pxvid >> 24) & 0x7f;
1490 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1491
1492 state1 = ext_v;
1493
1494 /* Revel in the empirically derived constants */
1495
1496 /* Correction factor in 1/100000 units */
1497 t = ips_mch_val(uncore);
1498 if (t > 80)
1499 corr = t * 2349 + 135940;
1500 else if (t >= 50)
1501 corr = t * 964 + 29317;
1502 else /* < 50 */
1503 corr = t * 301 + 1004;
1504
1505 corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1506 corr2 = div_u64(corr, 100000) * ips->corr;
1507
1508 state2 = div_u64(corr2 * state1, 10000);
1509 state2 /= 100; /* convert to mW */
1510
1511 __gen5_ips_update(ips);
1512
1513 return ips->gfx_power + state2;
1514 }
1515
has_busy_stats(struct intel_rps * rps)1516 static bool has_busy_stats(struct intel_rps *rps)
1517 {
1518 struct intel_engine_cs *engine;
1519 enum intel_engine_id id;
1520
1521 for_each_engine(engine, rps_to_gt(rps), id) {
1522 if (!intel_engine_supports_stats(engine))
1523 return false;
1524 }
1525
1526 return true;
1527 }
1528
intel_rps_enable(struct intel_rps * rps)1529 void intel_rps_enable(struct intel_rps *rps)
1530 {
1531 struct drm_i915_private *i915 = rps_to_i915(rps);
1532 struct intel_uncore *uncore = rps_to_uncore(rps);
1533 bool enabled = false;
1534
1535 if (!HAS_RPS(i915))
1536 return;
1537
1538 if (rps_uses_slpc(rps))
1539 return;
1540
1541 intel_gt_check_clock_frequency(rps_to_gt(rps));
1542
1543 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1544 if (rps->max_freq <= rps->min_freq)
1545 /* leave disabled, no room for dynamic reclocking */;
1546 else if (IS_CHERRYVIEW(i915))
1547 enabled = chv_rps_enable(rps);
1548 else if (IS_VALLEYVIEW(i915))
1549 enabled = vlv_rps_enable(rps);
1550 else if (GRAPHICS_VER(i915) >= 9)
1551 enabled = gen9_rps_enable(rps);
1552 else if (GRAPHICS_VER(i915) >= 8)
1553 enabled = gen8_rps_enable(rps);
1554 else if (GRAPHICS_VER(i915) >= 6)
1555 enabled = gen6_rps_enable(rps);
1556 else if (IS_IRONLAKE_M(i915))
1557 enabled = gen5_rps_enable(rps);
1558 else
1559 MISSING_CASE(GRAPHICS_VER(i915));
1560 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1561 if (!enabled)
1562 return;
1563
1564 GT_TRACE(rps_to_gt(rps),
1565 "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1566 rps->min_freq, rps->max_freq,
1567 intel_gpu_freq(rps, rps->min_freq),
1568 intel_gpu_freq(rps, rps->max_freq),
1569 rps->power.up_threshold,
1570 rps->power.down_threshold);
1571
1572 GEM_BUG_ON(rps->max_freq < rps->min_freq);
1573 GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1574
1575 GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1576 GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1577
1578 if (has_busy_stats(rps))
1579 intel_rps_set_timer(rps);
1580 else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1581 intel_rps_set_interrupts(rps);
1582 else
1583 /* Ironlake currently uses intel_ips.ko */ {}
1584
1585 intel_rps_set_enabled(rps);
1586 }
1587
gen6_rps_disable(struct intel_rps * rps)1588 static void gen6_rps_disable(struct intel_rps *rps)
1589 {
1590 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1591 }
1592
intel_rps_disable(struct intel_rps * rps)1593 void intel_rps_disable(struct intel_rps *rps)
1594 {
1595 struct drm_i915_private *i915 = rps_to_i915(rps);
1596
1597 if (!intel_rps_is_enabled(rps))
1598 return;
1599
1600 intel_rps_clear_enabled(rps);
1601 intel_rps_clear_interrupts(rps);
1602 intel_rps_clear_timer(rps);
1603
1604 if (GRAPHICS_VER(i915) >= 6)
1605 gen6_rps_disable(rps);
1606 else if (IS_IRONLAKE_M(i915))
1607 gen5_rps_disable(rps);
1608 }
1609
byt_gpu_freq(struct intel_rps * rps,int val)1610 static int byt_gpu_freq(struct intel_rps *rps, int val)
1611 {
1612 /*
1613 * N = val - 0xb7
1614 * Slow = Fast = GPLL ref * N
1615 */
1616 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1617 }
1618
byt_freq_opcode(struct intel_rps * rps,int val)1619 static int byt_freq_opcode(struct intel_rps *rps, int val)
1620 {
1621 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1622 }
1623
chv_gpu_freq(struct intel_rps * rps,int val)1624 static int chv_gpu_freq(struct intel_rps *rps, int val)
1625 {
1626 /*
1627 * N = val / 2
1628 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1629 */
1630 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1631 }
1632
chv_freq_opcode(struct intel_rps * rps,int val)1633 static int chv_freq_opcode(struct intel_rps *rps, int val)
1634 {
1635 /* CHV needs even values */
1636 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1637 }
1638
intel_gpu_freq(struct intel_rps * rps,int val)1639 int intel_gpu_freq(struct intel_rps *rps, int val)
1640 {
1641 struct drm_i915_private *i915 = rps_to_i915(rps);
1642
1643 if (GRAPHICS_VER(i915) >= 9)
1644 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1645 GEN9_FREQ_SCALER);
1646 else if (IS_CHERRYVIEW(i915))
1647 return chv_gpu_freq(rps, val);
1648 else if (IS_VALLEYVIEW(i915))
1649 return byt_gpu_freq(rps, val);
1650 else if (GRAPHICS_VER(i915) >= 6)
1651 return val * GT_FREQUENCY_MULTIPLIER;
1652 else
1653 return val;
1654 }
1655
intel_freq_opcode(struct intel_rps * rps,int val)1656 int intel_freq_opcode(struct intel_rps *rps, int val)
1657 {
1658 struct drm_i915_private *i915 = rps_to_i915(rps);
1659
1660 if (GRAPHICS_VER(i915) >= 9)
1661 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1662 GT_FREQUENCY_MULTIPLIER);
1663 else if (IS_CHERRYVIEW(i915))
1664 return chv_freq_opcode(rps, val);
1665 else if (IS_VALLEYVIEW(i915))
1666 return byt_freq_opcode(rps, val);
1667 else if (GRAPHICS_VER(i915) >= 6)
1668 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1669 else
1670 return val;
1671 }
1672
vlv_init_gpll_ref_freq(struct intel_rps * rps)1673 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1674 {
1675 struct drm_i915_private *i915 = rps_to_i915(rps);
1676
1677 rps->gpll_ref_freq =
1678 vlv_get_cck_clock(i915, "GPLL ref",
1679 CCK_GPLL_CLOCK_CONTROL,
1680 i915->czclk_freq);
1681
1682 drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1683 rps->gpll_ref_freq);
1684 }
1685
vlv_rps_init(struct intel_rps * rps)1686 static void vlv_rps_init(struct intel_rps *rps)
1687 {
1688 struct drm_i915_private *i915 = rps_to_i915(rps);
1689
1690 vlv_iosf_sb_get(i915,
1691 BIT(VLV_IOSF_SB_PUNIT) |
1692 BIT(VLV_IOSF_SB_NC) |
1693 BIT(VLV_IOSF_SB_CCK));
1694
1695 vlv_init_gpll_ref_freq(rps);
1696
1697 rps->max_freq = vlv_rps_max_freq(rps);
1698 rps->rp0_freq = rps->max_freq;
1699 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1700 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1701
1702 rps->efficient_freq = vlv_rps_rpe_freq(rps);
1703 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1704 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1705
1706 rps->rp1_freq = vlv_rps_guar_freq(rps);
1707 drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1708 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1709
1710 rps->min_freq = vlv_rps_min_freq(rps);
1711 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1712 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1713
1714 vlv_iosf_sb_put(i915,
1715 BIT(VLV_IOSF_SB_PUNIT) |
1716 BIT(VLV_IOSF_SB_NC) |
1717 BIT(VLV_IOSF_SB_CCK));
1718 }
1719
chv_rps_init(struct intel_rps * rps)1720 static void chv_rps_init(struct intel_rps *rps)
1721 {
1722 struct drm_i915_private *i915 = rps_to_i915(rps);
1723
1724 vlv_iosf_sb_get(i915,
1725 BIT(VLV_IOSF_SB_PUNIT) |
1726 BIT(VLV_IOSF_SB_NC) |
1727 BIT(VLV_IOSF_SB_CCK));
1728
1729 vlv_init_gpll_ref_freq(rps);
1730
1731 rps->max_freq = chv_rps_max_freq(rps);
1732 rps->rp0_freq = rps->max_freq;
1733 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1734 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1735
1736 rps->efficient_freq = chv_rps_rpe_freq(rps);
1737 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1738 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1739
1740 rps->rp1_freq = chv_rps_guar_freq(rps);
1741 drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1742 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1743
1744 rps->min_freq = chv_rps_min_freq(rps);
1745 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1746 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1747
1748 vlv_iosf_sb_put(i915,
1749 BIT(VLV_IOSF_SB_PUNIT) |
1750 BIT(VLV_IOSF_SB_NC) |
1751 BIT(VLV_IOSF_SB_CCK));
1752
1753 drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1754 rps->rp1_freq | rps->min_freq) & 1,
1755 "Odd GPU freq values\n");
1756 }
1757
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1758 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1759 {
1760 ei->ktime = ktime_get_raw();
1761 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1762 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1763 }
1764
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1765 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1766 {
1767 struct intel_uncore *uncore = rps_to_uncore(rps);
1768 const struct intel_rps_ei *prev = &rps->ei;
1769 struct intel_rps_ei now;
1770 u32 events = 0;
1771
1772 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1773 return 0;
1774
1775 vlv_c0_read(uncore, &now);
1776
1777 #ifdef __linux__
1778 if (prev->ktime) {
1779 #else
1780 if (ktime_to_ns(prev->ktime)) {
1781 #endif
1782 u64 time, c0;
1783 u32 render, media;
1784
1785 time = ktime_us_delta(now.ktime, prev->ktime);
1786
1787 time *= rps_to_i915(rps)->czclk_freq;
1788
1789 /* Workload can be split between render + media,
1790 * e.g. SwapBuffers being blitted in X after being rendered in
1791 * mesa. To account for this we need to combine both engines
1792 * into our activity counter.
1793 */
1794 render = now.render_c0 - prev->render_c0;
1795 media = now.media_c0 - prev->media_c0;
1796 c0 = max(render, media);
1797 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1798
1799 if (c0 > time * rps->power.up_threshold)
1800 events = GEN6_PM_RP_UP_THRESHOLD;
1801 else if (c0 < time * rps->power.down_threshold)
1802 events = GEN6_PM_RP_DOWN_THRESHOLD;
1803 }
1804
1805 rps->ei = now;
1806 return events;
1807 }
1808
1809 static void rps_work(struct work_struct *work)
1810 {
1811 struct intel_rps *rps = container_of(work, typeof(*rps), work);
1812 struct intel_gt *gt = rps_to_gt(rps);
1813 struct drm_i915_private *i915 = rps_to_i915(rps);
1814 bool client_boost = false;
1815 int new_freq, adj, min, max;
1816 u32 pm_iir = 0;
1817
1818 spin_lock_irq(gt->irq_lock);
1819 pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1820 client_boost = atomic_read(&rps->num_waiters);
1821 spin_unlock_irq(gt->irq_lock);
1822
1823 /* Make sure we didn't queue anything we're not going to process. */
1824 if (!pm_iir && !client_boost)
1825 goto out;
1826
1827 mutex_lock(&rps->lock);
1828 if (!intel_rps_is_active(rps)) {
1829 mutex_unlock(&rps->lock);
1830 return;
1831 }
1832
1833 pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1834
1835 adj = rps->last_adj;
1836 new_freq = rps->cur_freq;
1837 min = rps->min_freq_softlimit;
1838 max = rps->max_freq_softlimit;
1839 if (client_boost)
1840 max = rps->max_freq;
1841
1842 GT_TRACE(gt,
1843 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1844 pm_iir, str_yes_no(client_boost),
1845 adj, new_freq, min, max);
1846
1847 if (client_boost && new_freq < rps->boost_freq) {
1848 new_freq = rps->boost_freq;
1849 adj = 0;
1850 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1851 if (adj > 0)
1852 adj *= 2;
1853 else /* CHV needs even encode values */
1854 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1855
1856 if (new_freq >= rps->max_freq_softlimit)
1857 adj = 0;
1858 } else if (client_boost) {
1859 adj = 0;
1860 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1861 if (rps->cur_freq > rps->efficient_freq)
1862 new_freq = rps->efficient_freq;
1863 else if (rps->cur_freq > rps->min_freq_softlimit)
1864 new_freq = rps->min_freq_softlimit;
1865 adj = 0;
1866 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1867 if (adj < 0)
1868 adj *= 2;
1869 else /* CHV needs even encode values */
1870 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1871
1872 if (new_freq <= rps->min_freq_softlimit)
1873 adj = 0;
1874 } else { /* unknown event */
1875 adj = 0;
1876 }
1877
1878 /*
1879 * sysfs frequency limits may have snuck in while
1880 * servicing the interrupt
1881 */
1882 new_freq += adj;
1883 new_freq = clamp_t(int, new_freq, min, max);
1884
1885 if (intel_rps_set(rps, new_freq)) {
1886 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1887 adj = 0;
1888 }
1889 rps->last_adj = adj;
1890
1891 mutex_unlock(&rps->lock);
1892
1893 out:
1894 spin_lock_irq(gt->irq_lock);
1895 gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1896 spin_unlock_irq(gt->irq_lock);
1897 }
1898
1899 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1900 {
1901 struct intel_gt *gt = rps_to_gt(rps);
1902 const u32 events = rps->pm_events & pm_iir;
1903
1904 lockdep_assert_held(gt->irq_lock);
1905
1906 if (unlikely(!events))
1907 return;
1908
1909 GT_TRACE(gt, "irq events:%x\n", events);
1910
1911 gen6_gt_pm_mask_irq(gt, events);
1912
1913 rps->pm_iir |= events;
1914 queue_work(gt->i915->unordered_wq, &rps->work);
1915 }
1916
1917 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1918 {
1919 struct intel_gt *gt = rps_to_gt(rps);
1920 u32 events;
1921
1922 events = pm_iir & rps->pm_events;
1923 if (events) {
1924 spin_lock(gt->irq_lock);
1925
1926 GT_TRACE(gt, "irq events:%x\n", events);
1927
1928 gen6_gt_pm_mask_irq(gt, events);
1929 rps->pm_iir |= events;
1930
1931 queue_work(gt->i915->unordered_wq, &rps->work);
1932 spin_unlock(gt->irq_lock);
1933 }
1934
1935 if (GRAPHICS_VER(gt->i915) >= 8)
1936 return;
1937
1938 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1939 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1940
1941 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1942 drm_dbg(&rps_to_i915(rps)->drm,
1943 "Command parser error, pm_iir 0x%08x\n", pm_iir);
1944 }
1945
1946 void gen5_rps_irq_handler(struct intel_rps *rps)
1947 {
1948 struct intel_uncore *uncore = rps_to_uncore(rps);
1949 u32 busy_up, busy_down, max_avg, min_avg;
1950 u8 new_freq;
1951
1952 spin_lock(&mchdev_lock);
1953
1954 intel_uncore_write16(uncore,
1955 MEMINTRSTS,
1956 intel_uncore_read(uncore, MEMINTRSTS));
1957
1958 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1959 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1960 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1961 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1962 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1963
1964 /* Handle RCS change request from hw */
1965 new_freq = rps->cur_freq;
1966 if (busy_up > max_avg)
1967 new_freq++;
1968 else if (busy_down < min_avg)
1969 new_freq--;
1970 new_freq = clamp(new_freq,
1971 rps->min_freq_softlimit,
1972 rps->max_freq_softlimit);
1973
1974 if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1975 rps->cur_freq = new_freq;
1976
1977 spin_unlock(&mchdev_lock);
1978 }
1979
1980 void intel_rps_init_early(struct intel_rps *rps)
1981 {
1982 rw_init(&rps->lock, "rpslk");
1983 rw_init(&rps->power.mutex, "rpspwr");
1984
1985 INIT_WORK(&rps->work, rps_work);
1986 #ifdef __linux__
1987 timer_setup(&rps->timer, rps_timer, 0);
1988 #else
1989 timeout_set(&rps->timer, rps_timer, rps);
1990 #endif
1991
1992 atomic_set(&rps->num_waiters, 0);
1993 }
1994
1995 void intel_rps_init(struct intel_rps *rps)
1996 {
1997 struct drm_i915_private *i915 = rps_to_i915(rps);
1998
1999 if (rps_uses_slpc(rps))
2000 return;
2001
2002 if (IS_CHERRYVIEW(i915))
2003 chv_rps_init(rps);
2004 else if (IS_VALLEYVIEW(i915))
2005 vlv_rps_init(rps);
2006 else if (GRAPHICS_VER(i915) >= 6)
2007 gen6_rps_init(rps);
2008 else if (IS_IRONLAKE_M(i915))
2009 gen5_rps_init(rps);
2010
2011 /* Derive initial user preferences/limits from the hardware limits */
2012 rps->max_freq_softlimit = rps->max_freq;
2013 rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2014 rps->min_freq_softlimit = rps->min_freq;
2015 rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2016
2017 /* After setting max-softlimit, find the overclock max freq */
2018 if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2019 u32 params = 0;
2020
2021 snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, ¶ms, NULL);
2022 if (params & BIT(31)) { /* OC supported */
2023 drm_dbg(&i915->drm,
2024 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2025 (rps->max_freq & 0xff) * 50,
2026 (params & 0xff) * 50);
2027 rps->max_freq = params & 0xff;
2028 }
2029 }
2030
2031 /* Set default thresholds in % */
2032 rps->power.up_threshold = 95;
2033 rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2034 rps->power.down_threshold = 85;
2035 rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2036
2037 /* Finally allow us to boost to max by default */
2038 rps->boost_freq = rps->max_freq;
2039 rps->idle_freq = rps->min_freq;
2040
2041 /* Start in the middle, from here we will autotune based on workload */
2042 rps->cur_freq = rps->efficient_freq;
2043
2044 rps->pm_intrmsk_mbz = 0;
2045
2046 /*
2047 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2048 * if GEN6_PM_UP_EI_EXPIRED is masked.
2049 *
2050 * TODO: verify if this can be reproduced on VLV,CHV.
2051 */
2052 if (GRAPHICS_VER(i915) <= 7)
2053 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2054
2055 if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2056 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2057
2058 /* GuC needs ARAT expired interrupt unmasked */
2059 if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2060 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2061 }
2062
2063 void intel_rps_sanitize(struct intel_rps *rps)
2064 {
2065 if (rps_uses_slpc(rps))
2066 return;
2067
2068 if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2069 rps_disable_interrupts(rps);
2070 }
2071
2072 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2073 {
2074 struct drm_i915_private *i915 = rps_to_i915(rps);
2075 i915_reg_t rpstat;
2076
2077 rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2078
2079 return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2080 }
2081
2082 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2083 {
2084 struct drm_i915_private *i915 = rps_to_i915(rps);
2085 u32 cagf;
2086
2087 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2088 cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2089 else if (GRAPHICS_VER(i915) >= 12)
2090 cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2091 else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2092 cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2093 else if (GRAPHICS_VER(i915) >= 9)
2094 cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2095 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2096 cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2097 else if (GRAPHICS_VER(i915) >= 6)
2098 cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2099 else
2100 cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2101
2102 return cagf;
2103 }
2104
2105 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2106 {
2107 struct drm_i915_private *i915 = rps_to_i915(rps);
2108 struct intel_uncore *uncore = rps_to_uncore(rps);
2109 i915_reg_t r = INVALID_MMIO_REG;
2110 u32 freq;
2111
2112 /*
2113 * For Gen12+ reading freq from HW does not need a forcewake and
2114 * registers will return 0 freq when GT is in RC6
2115 */
2116 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2117 r = MTL_MIRROR_TARGET_WP1;
2118 } else if (GRAPHICS_VER(i915) >= 12) {
2119 r = GEN12_RPSTAT1;
2120 } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2121 vlv_punit_get(i915);
2122 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2123 vlv_punit_put(i915);
2124 } else if (GRAPHICS_VER(i915) >= 6) {
2125 r = GEN6_RPSTAT1;
2126 } else {
2127 r = MEMSTAT_ILK;
2128 }
2129
2130 if (i915_mmio_reg_valid(r))
2131 freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2132
2133 return intel_rps_get_cagf(rps, freq);
2134 }
2135
2136 static u32 read_cagf(struct intel_rps *rps)
2137 {
2138 return __read_cagf(rps, true);
2139 }
2140
2141 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2142 {
2143 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2144 intel_wakeref_t wakeref;
2145 u32 freq = 0;
2146
2147 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2148 freq = intel_gpu_freq(rps, read_cagf(rps));
2149
2150 return freq;
2151 }
2152
2153 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2154 {
2155 return intel_gpu_freq(rps, __read_cagf(rps, false));
2156 }
2157
2158 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2159 {
2160 struct intel_uncore *uncore = rps_to_uncore(rps);
2161 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2162 intel_wakeref_t wakeref;
2163 u32 freq = 0;
2164
2165 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2166 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2167
2168 return freq;
2169 }
2170
2171 static u32 intel_rps_get_req(u32 pureq)
2172 {
2173 u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2174
2175 return req;
2176 }
2177
2178 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2179 {
2180 u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2181
2182 return intel_gpu_freq(rps, freq);
2183 }
2184
2185 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2186 {
2187 if (rps_uses_slpc(rps))
2188 return intel_rps_read_punit_req_frequency(rps);
2189 else
2190 return intel_gpu_freq(rps, rps->cur_freq);
2191 }
2192
2193 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2194 {
2195 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2196
2197 if (rps_uses_slpc(rps))
2198 return slpc->max_freq_softlimit;
2199 else
2200 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2201 }
2202
2203 /**
2204 * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2205 * @rps: the intel_rps structure
2206 *
2207 * Returns the max frequency in a raw format. In newer platforms raw is in
2208 * units of 50 MHz.
2209 */
2210 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2211 {
2212 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2213 u32 freq;
2214
2215 if (rps_uses_slpc(rps)) {
2216 return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2217 GT_FREQUENCY_MULTIPLIER);
2218 } else {
2219 freq = rps->max_freq;
2220 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2221 /* Convert GT frequency to 50 MHz units */
2222 freq /= GEN9_FREQ_SCALER;
2223 }
2224 return freq;
2225 }
2226 }
2227
2228 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2229 {
2230 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2231
2232 if (rps_uses_slpc(rps))
2233 return slpc->rp0_freq;
2234 else
2235 return intel_gpu_freq(rps, rps->rp0_freq);
2236 }
2237
2238 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2239 {
2240 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2241
2242 if (rps_uses_slpc(rps))
2243 return slpc->rp1_freq;
2244 else
2245 return intel_gpu_freq(rps, rps->rp1_freq);
2246 }
2247
2248 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2249 {
2250 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2251
2252 if (rps_uses_slpc(rps))
2253 return slpc->min_freq;
2254 else
2255 return intel_gpu_freq(rps, rps->min_freq);
2256 }
2257
2258 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2259 {
2260 struct intel_gt *gt = rps_to_gt(rps);
2261 struct drm_i915_private *i915 = gt->i915;
2262 struct intel_uncore *uncore = gt->uncore;
2263 struct intel_rps_freq_caps caps;
2264 u32 rp_state_limits;
2265 u32 gt_perf_status;
2266 u32 rpmodectl, rpinclimit, rpdeclimit;
2267 u32 rpstat, cagf, reqf;
2268 u32 rpcurupei, rpcurup, rpprevup;
2269 u32 rpcurdownei, rpcurdown, rpprevdown;
2270 u32 rpupei, rpupt, rpdownei, rpdownt;
2271 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2272
2273 rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2274 gen6_rps_get_freq_caps(rps, &caps);
2275 if (IS_GEN9_LP(i915))
2276 gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2277 else
2278 gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2279
2280 /* RPSTAT1 is in the GT power well */
2281 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2282
2283 reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2284 if (GRAPHICS_VER(i915) >= 9) {
2285 reqf >>= 23;
2286 } else {
2287 reqf &= ~GEN6_TURBO_DISABLE;
2288 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2289 reqf >>= 24;
2290 else
2291 reqf >>= 25;
2292 }
2293 reqf = intel_gpu_freq(rps, reqf);
2294
2295 rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2296 rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2297 rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2298
2299 rpstat = intel_rps_read_rpstat(rps);
2300 rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2301 rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2302 rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2303 rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2304 rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2305 rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2306
2307 rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2308 rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2309
2310 rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2311 rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2312
2313 cagf = intel_rps_read_actual_frequency(rps);
2314
2315 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2316
2317 if (GRAPHICS_VER(i915) >= 11) {
2318 pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2319 pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2320 /*
2321 * The equivalent to the PM ISR & IIR cannot be read
2322 * without affecting the current state of the system
2323 */
2324 pm_isr = 0;
2325 pm_iir = 0;
2326 } else if (GRAPHICS_VER(i915) >= 8) {
2327 pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2328 pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2329 pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2330 pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2331 } else {
2332 pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2333 pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2334 pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2335 pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2336 }
2337 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2338
2339 drm_printf(p, "Video Turbo Mode: %s\n",
2340 str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2341 drm_printf(p, "HW control enabled: %s\n",
2342 str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2343 drm_printf(p, "SW control enabled: %s\n",
2344 str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2345
2346 drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2347 pm_ier, pm_imr, pm_mask);
2348 if (GRAPHICS_VER(i915) <= 10)
2349 drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2350 pm_isr, pm_iir);
2351 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2352 rps->pm_intrmsk_mbz);
2353 drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2354 drm_printf(p, "Render p-state ratio: %d\n",
2355 (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2356 drm_printf(p, "Render p-state VID: %d\n",
2357 gt_perf_status & 0xff);
2358 drm_printf(p, "Render p-state limit: %d\n",
2359 rp_state_limits & 0xff);
2360 drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2361 drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2362 drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2363 drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2364 drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2365 drm_printf(p, "CAGF: %dMHz\n", cagf);
2366 drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2367 rpcurupei,
2368 intel_gt_pm_interval_to_ns(gt, rpcurupei));
2369 drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2370 rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2371 drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2372 rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2373 drm_printf(p, "Up threshold: %d%%\n",
2374 rps->power.up_threshold);
2375 drm_printf(p, "RP UP EI: %d (%lldns)\n",
2376 rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2377 drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2378 rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2379
2380 drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2381 rpcurdownei,
2382 intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2383 drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2384 rpcurdown,
2385 intel_gt_pm_interval_to_ns(gt, rpcurdown));
2386 drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2387 rpprevdown,
2388 intel_gt_pm_interval_to_ns(gt, rpprevdown));
2389 drm_printf(p, "Down threshold: %d%%\n",
2390 rps->power.down_threshold);
2391 drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2392 rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2393 drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2394 rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2395
2396 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2397 intel_gpu_freq(rps, caps.min_freq));
2398 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2399 intel_gpu_freq(rps, caps.rp1_freq));
2400 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2401 intel_gpu_freq(rps, caps.rp0_freq));
2402 drm_printf(p, "Max overclocked frequency: %dMHz\n",
2403 intel_gpu_freq(rps, rps->max_freq));
2404
2405 drm_printf(p, "Current freq: %d MHz\n",
2406 intel_gpu_freq(rps, rps->cur_freq));
2407 drm_printf(p, "Actual freq: %d MHz\n", cagf);
2408 drm_printf(p, "Idle freq: %d MHz\n",
2409 intel_gpu_freq(rps, rps->idle_freq));
2410 drm_printf(p, "Min freq: %d MHz\n",
2411 intel_gpu_freq(rps, rps->min_freq));
2412 drm_printf(p, "Boost freq: %d MHz\n",
2413 intel_gpu_freq(rps, rps->boost_freq));
2414 drm_printf(p, "Max freq: %d MHz\n",
2415 intel_gpu_freq(rps, rps->max_freq));
2416 drm_printf(p,
2417 "efficient (RPe) frequency: %d MHz\n",
2418 intel_gpu_freq(rps, rps->efficient_freq));
2419 }
2420
2421 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2422 {
2423 struct intel_gt *gt = rps_to_gt(rps);
2424 struct intel_uncore *uncore = gt->uncore;
2425 struct intel_rps_freq_caps caps;
2426 u32 pm_mask;
2427
2428 gen6_rps_get_freq_caps(rps, &caps);
2429 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2430
2431 drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2432 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2433 rps->pm_intrmsk_mbz);
2434 drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2435 drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2436 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2437 intel_gpu_freq(rps, caps.min_freq));
2438 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2439 intel_gpu_freq(rps, caps.rp1_freq));
2440 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2441 intel_gpu_freq(rps, caps.rp0_freq));
2442 drm_printf(p, "Current freq: %d MHz\n",
2443 intel_rps_get_requested_frequency(rps));
2444 drm_printf(p, "Actual freq: %d MHz\n",
2445 intel_rps_read_actual_frequency(rps));
2446 drm_printf(p, "Min freq: %d MHz\n",
2447 intel_rps_get_min_frequency(rps));
2448 drm_printf(p, "Boost freq: %d MHz\n",
2449 intel_rps_get_boost_frequency(rps));
2450 drm_printf(p, "Max freq: %d MHz\n",
2451 intel_rps_get_max_frequency(rps));
2452 drm_printf(p,
2453 "efficient (RPe) frequency: %d MHz\n",
2454 intel_gpu_freq(rps, caps.rp1_freq));
2455 }
2456
2457 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2458 {
2459 if (rps_uses_slpc(rps))
2460 return slpc_frequency_dump(rps, p);
2461 else
2462 return rps_frequency_dump(rps, p);
2463 }
2464
2465 static int set_max_freq(struct intel_rps *rps, u32 val)
2466 {
2467 struct drm_i915_private *i915 = rps_to_i915(rps);
2468 int ret = 0;
2469
2470 mutex_lock(&rps->lock);
2471
2472 val = intel_freq_opcode(rps, val);
2473 if (val < rps->min_freq ||
2474 val > rps->max_freq ||
2475 val < rps->min_freq_softlimit) {
2476 ret = -EINVAL;
2477 goto unlock;
2478 }
2479
2480 if (val > rps->rp0_freq)
2481 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2482 intel_gpu_freq(rps, val));
2483
2484 rps->max_freq_softlimit = val;
2485
2486 val = clamp_t(int, rps->cur_freq,
2487 rps->min_freq_softlimit,
2488 rps->max_freq_softlimit);
2489
2490 /*
2491 * We still need *_set_rps to process the new max_delay and
2492 * update the interrupt limits and PMINTRMSK even though
2493 * frequency request may be unchanged.
2494 */
2495 intel_rps_set(rps, val);
2496
2497 unlock:
2498 mutex_unlock(&rps->lock);
2499
2500 return ret;
2501 }
2502
2503 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2504 {
2505 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2506
2507 if (rps_uses_slpc(rps))
2508 return intel_guc_slpc_set_max_freq(slpc, val);
2509 else
2510 return set_max_freq(rps, val);
2511 }
2512
2513 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2514 {
2515 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2516
2517 if (rps_uses_slpc(rps))
2518 return slpc->min_freq_softlimit;
2519 else
2520 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2521 }
2522
2523 /**
2524 * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2525 * @rps: the intel_rps structure
2526 *
2527 * Returns the min frequency in a raw format. In newer platforms raw is in
2528 * units of 50 MHz.
2529 */
2530 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2531 {
2532 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2533 u32 freq;
2534
2535 if (rps_uses_slpc(rps)) {
2536 return DIV_ROUND_CLOSEST(slpc->min_freq,
2537 GT_FREQUENCY_MULTIPLIER);
2538 } else {
2539 freq = rps->min_freq;
2540 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2541 /* Convert GT frequency to 50 MHz units */
2542 freq /= GEN9_FREQ_SCALER;
2543 }
2544 return freq;
2545 }
2546 }
2547
2548 static int set_min_freq(struct intel_rps *rps, u32 val)
2549 {
2550 int ret = 0;
2551
2552 mutex_lock(&rps->lock);
2553
2554 val = intel_freq_opcode(rps, val);
2555 if (val < rps->min_freq ||
2556 val > rps->max_freq ||
2557 val > rps->max_freq_softlimit) {
2558 ret = -EINVAL;
2559 goto unlock;
2560 }
2561
2562 rps->min_freq_softlimit = val;
2563
2564 val = clamp_t(int, rps->cur_freq,
2565 rps->min_freq_softlimit,
2566 rps->max_freq_softlimit);
2567
2568 /*
2569 * We still need *_set_rps to process the new min_delay and
2570 * update the interrupt limits and PMINTRMSK even though
2571 * frequency request may be unchanged.
2572 */
2573 intel_rps_set(rps, val);
2574
2575 unlock:
2576 mutex_unlock(&rps->lock);
2577
2578 return ret;
2579 }
2580
2581 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2582 {
2583 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2584
2585 if (rps_uses_slpc(rps))
2586 return intel_guc_slpc_set_min_freq(slpc, val);
2587 else
2588 return set_min_freq(rps, val);
2589 }
2590
2591 u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2592 {
2593 return rps->power.up_threshold;
2594 }
2595
2596 static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2597 {
2598 int ret;
2599
2600 if (val > 100)
2601 return -EINVAL;
2602
2603 ret = mutex_lock_interruptible(&rps->lock);
2604 if (ret)
2605 return ret;
2606
2607 if (*threshold == val)
2608 goto out_unlock;
2609
2610 *threshold = val;
2611
2612 /* Force reset. */
2613 rps->last_freq = -1;
2614 mutex_lock(&rps->power.mutex);
2615 rps->power.mode = -1;
2616 mutex_unlock(&rps->power.mutex);
2617
2618 intel_rps_set(rps, clamp(rps->cur_freq,
2619 rps->min_freq_softlimit,
2620 rps->max_freq_softlimit));
2621
2622 out_unlock:
2623 mutex_unlock(&rps->lock);
2624
2625 return ret;
2626 }
2627
2628 int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2629 {
2630 return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2631 }
2632
2633 u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2634 {
2635 return rps->power.down_threshold;
2636 }
2637
2638 int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2639 {
2640 return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2641 }
2642
2643 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2644 {
2645 struct intel_uncore *uncore = rps_to_uncore(rps);
2646 u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2647
2648 /* Allow punit to process software requests */
2649 intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2650 }
2651
2652 void intel_rps_raise_unslice(struct intel_rps *rps)
2653 {
2654 struct intel_uncore *uncore = rps_to_uncore(rps);
2655
2656 mutex_lock(&rps->lock);
2657
2658 if (rps_uses_slpc(rps)) {
2659 /* RP limits have not been initialized yet for SLPC path */
2660 struct intel_rps_freq_caps caps;
2661
2662 gen6_rps_get_freq_caps(rps, &caps);
2663
2664 intel_rps_set_manual(rps, true);
2665 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2666 ((caps.rp0_freq <<
2667 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2668 GEN9_IGNORE_SLICE_RATIO));
2669 intel_rps_set_manual(rps, false);
2670 } else {
2671 intel_rps_set(rps, rps->rp0_freq);
2672 }
2673
2674 mutex_unlock(&rps->lock);
2675 }
2676
2677 void intel_rps_lower_unslice(struct intel_rps *rps)
2678 {
2679 struct intel_uncore *uncore = rps_to_uncore(rps);
2680
2681 mutex_lock(&rps->lock);
2682
2683 if (rps_uses_slpc(rps)) {
2684 /* RP limits have not been initialized yet for SLPC path */
2685 struct intel_rps_freq_caps caps;
2686
2687 gen6_rps_get_freq_caps(rps, &caps);
2688
2689 intel_rps_set_manual(rps, true);
2690 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2691 ((caps.min_freq <<
2692 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2693 GEN9_IGNORE_SLICE_RATIO));
2694 intel_rps_set_manual(rps, false);
2695 } else {
2696 intel_rps_set(rps, rps->min_freq);
2697 }
2698
2699 mutex_unlock(&rps->lock);
2700 }
2701
2702 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2703 {
2704 struct intel_gt *gt = rps_to_gt(rps);
2705 intel_wakeref_t wakeref;
2706 u32 val;
2707
2708 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2709 val = intel_uncore_read(gt->uncore, reg32);
2710
2711 return val;
2712 }
2713
2714 bool rps_read_mask_mmio(struct intel_rps *rps,
2715 i915_reg_t reg32, u32 mask)
2716 {
2717 return rps_read_mmio(rps, reg32) & mask;
2718 }
2719
2720 /* External interface for intel_ips.ko */
2721
2722 static struct drm_i915_private __rcu *ips_mchdev;
2723
2724 /*
2725 * Tells the intel_ips driver that the i915 driver is now loaded, if
2726 * IPS got loaded first.
2727 *
2728 * This awkward dance is so that neither module has to depend on the
2729 * other in order for IPS to do the appropriate communication of
2730 * GPU turbo limits to i915.
2731 */
2732 static void
2733 ips_ping_for_i915_load(void)
2734 {
2735 #ifdef __linux__
2736 void (*link)(void);
2737
2738 link = symbol_get(ips_link_to_i915_driver);
2739 if (link) {
2740 link();
2741 symbol_put(ips_link_to_i915_driver);
2742 }
2743 #endif
2744 }
2745
2746 void intel_rps_driver_register(struct intel_rps *rps)
2747 {
2748 struct intel_gt *gt = rps_to_gt(rps);
2749
2750 /*
2751 * We only register the i915 ips part with intel-ips once everything is
2752 * set up, to avoid intel-ips sneaking in and reading bogus values.
2753 */
2754 if (GRAPHICS_VER(gt->i915) == 5) {
2755 GEM_BUG_ON(ips_mchdev);
2756 rcu_assign_pointer(ips_mchdev, gt->i915);
2757 ips_ping_for_i915_load();
2758 }
2759 }
2760
2761 void intel_rps_driver_unregister(struct intel_rps *rps)
2762 {
2763 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2764 rcu_assign_pointer(ips_mchdev, NULL);
2765 }
2766
2767 static struct drm_i915_private *mchdev_get(void)
2768 {
2769 struct drm_i915_private *i915;
2770
2771 rcu_read_lock();
2772 i915 = rcu_dereference(ips_mchdev);
2773 if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2774 i915 = NULL;
2775 rcu_read_unlock();
2776
2777 return i915;
2778 }
2779
2780 /**
2781 * i915_read_mch_val - return value for IPS use
2782 *
2783 * Calculate and return a value for the IPS driver to use when deciding whether
2784 * we have thermal and power headroom to increase CPU or GPU power budget.
2785 */
2786 unsigned long i915_read_mch_val(void)
2787 {
2788 struct drm_i915_private *i915;
2789 unsigned long chipset_val = 0;
2790 unsigned long graphics_val = 0;
2791 intel_wakeref_t wakeref;
2792
2793 i915 = mchdev_get();
2794 if (!i915)
2795 return 0;
2796
2797 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2798 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2799
2800 spin_lock_irq(&mchdev_lock);
2801 chipset_val = __ips_chipset_val(ips);
2802 graphics_val = __ips_gfx_val(ips);
2803 spin_unlock_irq(&mchdev_lock);
2804 }
2805
2806 drm_dev_put(&i915->drm);
2807 return chipset_val + graphics_val;
2808 }
2809 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2810
2811 /**
2812 * i915_gpu_raise - raise GPU frequency limit
2813 *
2814 * Raise the limit; IPS indicates we have thermal headroom.
2815 */
2816 bool i915_gpu_raise(void)
2817 {
2818 struct drm_i915_private *i915;
2819 struct intel_rps *rps;
2820
2821 i915 = mchdev_get();
2822 if (!i915)
2823 return false;
2824
2825 rps = &to_gt(i915)->rps;
2826
2827 spin_lock_irq(&mchdev_lock);
2828 if (rps->max_freq_softlimit < rps->max_freq)
2829 rps->max_freq_softlimit++;
2830 spin_unlock_irq(&mchdev_lock);
2831
2832 drm_dev_put(&i915->drm);
2833 return true;
2834 }
2835 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2836
2837 /**
2838 * i915_gpu_lower - lower GPU frequency limit
2839 *
2840 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2841 * frequency maximum.
2842 */
2843 bool i915_gpu_lower(void)
2844 {
2845 struct drm_i915_private *i915;
2846 struct intel_rps *rps;
2847
2848 i915 = mchdev_get();
2849 if (!i915)
2850 return false;
2851
2852 rps = &to_gt(i915)->rps;
2853
2854 spin_lock_irq(&mchdev_lock);
2855 if (rps->max_freq_softlimit > rps->min_freq)
2856 rps->max_freq_softlimit--;
2857 spin_unlock_irq(&mchdev_lock);
2858
2859 drm_dev_put(&i915->drm);
2860 return true;
2861 }
2862 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2863
2864 /**
2865 * i915_gpu_busy - indicate GPU business to IPS
2866 *
2867 * Tell the IPS driver whether or not the GPU is busy.
2868 */
2869 bool i915_gpu_busy(void)
2870 {
2871 struct drm_i915_private *i915;
2872 bool ret;
2873
2874 i915 = mchdev_get();
2875 if (!i915)
2876 return false;
2877
2878 ret = to_gt(i915)->awake;
2879
2880 drm_dev_put(&i915->drm);
2881 return ret;
2882 }
2883 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2884
2885 /**
2886 * i915_gpu_turbo_disable - disable graphics turbo
2887 *
2888 * Disable graphics turbo by resetting the max frequency and setting the
2889 * current frequency to the default.
2890 */
2891 bool i915_gpu_turbo_disable(void)
2892 {
2893 struct drm_i915_private *i915;
2894 struct intel_rps *rps;
2895 bool ret;
2896
2897 i915 = mchdev_get();
2898 if (!i915)
2899 return false;
2900
2901 rps = &to_gt(i915)->rps;
2902
2903 spin_lock_irq(&mchdev_lock);
2904 rps->max_freq_softlimit = rps->min_freq;
2905 ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2906 spin_unlock_irq(&mchdev_lock);
2907
2908 drm_dev_put(&i915->drm);
2909 return ret;
2910 }
2911 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2912
2913 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2914 #include "selftest_rps.c"
2915 #include "selftest_slpc.c"
2916 #endif
2917