1 //=== DWARFLinker.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/DWARFLinker/DWARFLinker.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/CodeGen/NonRelocatableStringpool.h"
14 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
15 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
16 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
17 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
18 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
21 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
22 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
23 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
24 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
25 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
26 #include "llvm/MC/MCDwarf.h"
27 #include "llvm/Support/DataExtractor.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/ErrorOr.h"
31 #include "llvm/Support/FormatVariadic.h"
32 #include "llvm/Support/LEB128.h"
33 #include "llvm/Support/Path.h"
34 #include "llvm/Support/ThreadPool.h"
35 #include <vector>
36
37 namespace llvm {
38
39 /// Hold the input and output of the debug info size in bytes.
40 struct DebugInfoSize {
41 uint64_t Input;
42 uint64_t Output;
43 };
44
45 /// Compute the total size of the debug info.
getDebugInfoSize(DWARFContext & Dwarf)46 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
47 uint64_t Size = 0;
48 for (auto &Unit : Dwarf.compile_units()) {
49 Size += Unit->getLength();
50 }
51 return Size;
52 }
53
54 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
55 /// CompileUnit object instead.
getUnitForOffset(const UnitListTy & Units,uint64_t Offset)56 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
57 auto CU = llvm::upper_bound(
58 Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
59 return LHS < RHS->getOrigUnit().getNextUnitOffset();
60 });
61 return CU != Units.end() ? CU->get() : nullptr;
62 }
63
64 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
65 /// The resulting DIE might be in another CompileUnit which is stored into \p
66 /// ReferencedCU. \returns null if resolving fails for any reason.
resolveDIEReference(const DWARFFile & File,const UnitListTy & Units,const DWARFFormValue & RefValue,const DWARFDie & DIE,CompileUnit * & RefCU)67 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
68 const UnitListTy &Units,
69 const DWARFFormValue &RefValue,
70 const DWARFDie &DIE,
71 CompileUnit *&RefCU) {
72 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
73 uint64_t RefOffset = *RefValue.getAsReference();
74 if ((RefCU = getUnitForOffset(Units, RefOffset)))
75 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
76 // In a file with broken references, an attribute might point to a NULL
77 // DIE.
78 if (!RefDie.isNULL())
79 return RefDie;
80 }
81
82 reportWarning("could not find referenced DIE", File, &DIE);
83 return DWARFDie();
84 }
85
86 /// \returns whether the passed \a Attr type might contain a DIE reference
87 /// suitable for ODR uniquing.
isODRAttribute(uint16_t Attr)88 static bool isODRAttribute(uint16_t Attr) {
89 switch (Attr) {
90 default:
91 return false;
92 case dwarf::DW_AT_type:
93 case dwarf::DW_AT_containing_type:
94 case dwarf::DW_AT_specification:
95 case dwarf::DW_AT_abstract_origin:
96 case dwarf::DW_AT_import:
97 return true;
98 }
99 llvm_unreachable("Improper attribute.");
100 }
101
isTypeTag(uint16_t Tag)102 static bool isTypeTag(uint16_t Tag) {
103 switch (Tag) {
104 case dwarf::DW_TAG_array_type:
105 case dwarf::DW_TAG_class_type:
106 case dwarf::DW_TAG_enumeration_type:
107 case dwarf::DW_TAG_pointer_type:
108 case dwarf::DW_TAG_reference_type:
109 case dwarf::DW_TAG_string_type:
110 case dwarf::DW_TAG_structure_type:
111 case dwarf::DW_TAG_subroutine_type:
112 case dwarf::DW_TAG_typedef:
113 case dwarf::DW_TAG_union_type:
114 case dwarf::DW_TAG_ptr_to_member_type:
115 case dwarf::DW_TAG_set_type:
116 case dwarf::DW_TAG_subrange_type:
117 case dwarf::DW_TAG_base_type:
118 case dwarf::DW_TAG_const_type:
119 case dwarf::DW_TAG_constant:
120 case dwarf::DW_TAG_file_type:
121 case dwarf::DW_TAG_namelist:
122 case dwarf::DW_TAG_packed_type:
123 case dwarf::DW_TAG_volatile_type:
124 case dwarf::DW_TAG_restrict_type:
125 case dwarf::DW_TAG_atomic_type:
126 case dwarf::DW_TAG_interface_type:
127 case dwarf::DW_TAG_unspecified_type:
128 case dwarf::DW_TAG_shared_type:
129 case dwarf::DW_TAG_immutable_type:
130 return true;
131 default:
132 break;
133 }
134 return false;
135 }
136
137 AddressesMap::~AddressesMap() = default;
138
139 DwarfEmitter::~DwarfEmitter() = default;
140
StripTemplateParameters(StringRef Name)141 static std::optional<StringRef> StripTemplateParameters(StringRef Name) {
142 // We are looking for template parameters to strip from Name. e.g.
143 //
144 // operator<<B>
145 //
146 // We look for > at the end but if it does not contain any < then we
147 // have something like operator>>. We check for the operator<=> case.
148 if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>"))
149 return {};
150
151 // How many < until we have the start of the template parameters.
152 size_t NumLeftAnglesToSkip = 1;
153
154 // If we have operator<=> then we need to skip its < as well.
155 NumLeftAnglesToSkip += Name.count("<=>");
156
157 size_t RightAngleCount = Name.count('>');
158 size_t LeftAngleCount = Name.count('<');
159
160 // If we have more < than > we have operator< or operator<<
161 // we to account for their < as well.
162 if (LeftAngleCount > RightAngleCount)
163 NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount;
164
165 size_t StartOfTemplate = 0;
166 while (NumLeftAnglesToSkip--)
167 StartOfTemplate = Name.find('<', StartOfTemplate) + 1;
168
169 return Name.substr(0, StartOfTemplate - 1);
170 }
171
getDIENames(const DWARFDie & Die,AttributesInfo & Info,OffsetsStringPool & StringPool,bool StripTemplate)172 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
173 AttributesInfo &Info,
174 OffsetsStringPool &StringPool,
175 bool StripTemplate) {
176 // This function will be called on DIEs having low_pcs and
177 // ranges. As getting the name might be more expansive, filter out
178 // blocks directly.
179 if (Die.getTag() == dwarf::DW_TAG_lexical_block)
180 return false;
181
182 if (!Info.MangledName)
183 if (const char *MangledName = Die.getLinkageName())
184 Info.MangledName = StringPool.getEntry(MangledName);
185
186 if (!Info.Name)
187 if (const char *Name = Die.getShortName())
188 Info.Name = StringPool.getEntry(Name);
189
190 if (!Info.MangledName)
191 Info.MangledName = Info.Name;
192
193 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
194 StringRef Name = Info.Name.getString();
195 if (std::optional<StringRef> StrippedName = StripTemplateParameters(Name))
196 Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
197 }
198
199 return Info.Name || Info.MangledName;
200 }
201
202 /// Resolve the relative path to a build artifact referenced by DWARF by
203 /// applying DW_AT_comp_dir.
resolveRelativeObjectPath(SmallVectorImpl<char> & Buf,DWARFDie CU)204 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
205 sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
206 }
207
208 /// Collect references to parseable Swift interfaces in imported
209 /// DW_TAG_module blocks.
analyzeImportedModule(const DWARFDie & DIE,CompileUnit & CU,swiftInterfacesMap * ParseableSwiftInterfaces,std::function<void (const Twine &,const DWARFDie &)> ReportWarning)210 static void analyzeImportedModule(
211 const DWARFDie &DIE, CompileUnit &CU,
212 swiftInterfacesMap *ParseableSwiftInterfaces,
213 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
214 if (CU.getLanguage() != dwarf::DW_LANG_Swift)
215 return;
216
217 if (!ParseableSwiftInterfaces)
218 return;
219
220 StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
221 if (!Path.endswith(".swiftinterface"))
222 return;
223 // Don't track interfaces that are part of the SDK.
224 StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
225 if (SysRoot.empty())
226 SysRoot = CU.getSysRoot();
227 if (!SysRoot.empty() && Path.startswith(SysRoot))
228 return;
229 std::optional<const char *> Name =
230 dwarf::toString(DIE.find(dwarf::DW_AT_name));
231 if (!Name)
232 return;
233 auto &Entry = (*ParseableSwiftInterfaces)[*Name];
234 // The prepend path is applied later when copying.
235 DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
236 SmallString<128> ResolvedPath;
237 if (sys::path::is_relative(Path))
238 resolveRelativeObjectPath(ResolvedPath, CUDie);
239 sys::path::append(ResolvedPath, Path);
240 if (!Entry.empty() && Entry != ResolvedPath)
241 ReportWarning(Twine("Conflicting parseable interfaces for Swift Module ") +
242 *Name + ": " + Entry + " and " + Path,
243 DIE);
244 Entry = std::string(ResolvedPath.str());
245 }
246
247 /// The distinct types of work performed by the work loop in
248 /// analyzeContextInfo.
249 enum class ContextWorklistItemType : uint8_t {
250 AnalyzeContextInfo,
251 UpdateChildPruning,
252 UpdatePruning,
253 };
254
255 /// This class represents an item in the work list. The type defines what kind
256 /// of work needs to be performed when processing the current item. Everything
257 /// but the Type and Die fields are optional based on the type.
258 struct ContextWorklistItem {
259 DWARFDie Die;
260 unsigned ParentIdx;
261 union {
262 CompileUnit::DIEInfo *OtherInfo;
263 DeclContext *Context;
264 };
265 ContextWorklistItemType Type;
266 bool InImportedModule;
267
ContextWorklistItemllvm::ContextWorklistItem268 ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
269 CompileUnit::DIEInfo *OtherInfo = nullptr)
270 : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
271 InImportedModule(false) {}
272
ContextWorklistItemllvm::ContextWorklistItem273 ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
274 bool InImportedModule)
275 : Die(Die), ParentIdx(ParentIdx), Context(Context),
276 Type(ContextWorklistItemType::AnalyzeContextInfo),
277 InImportedModule(InImportedModule) {}
278 };
279
updatePruning(const DWARFDie & Die,CompileUnit & CU,uint64_t ModulesEndOffset)280 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
281 uint64_t ModulesEndOffset) {
282 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
283
284 // Prune this DIE if it is either a forward declaration inside a
285 // DW_TAG_module or a DW_TAG_module that contains nothing but
286 // forward declarations.
287 Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
288 (isTypeTag(Die.getTag()) &&
289 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
290
291 // Only prune forward declarations inside a DW_TAG_module for which a
292 // definition exists elsewhere.
293 if (ModulesEndOffset == 0)
294 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
295 else
296 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
297 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
298
299 return Info.Prune;
300 }
301
updateChildPruning(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & ChildInfo)302 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
303 CompileUnit::DIEInfo &ChildInfo) {
304 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
305 Info.Prune &= ChildInfo.Prune;
306 }
307
308 /// Recursive helper to build the global DeclContext information and
309 /// gather the child->parent relationships in the original compile unit.
310 ///
311 /// This function uses the same work list approach as lookForDIEsToKeep.
312 ///
313 /// \return true when this DIE and all of its children are only
314 /// forward declarations to types defined in external clang modules
315 /// (i.e., forward declarations that are children of a DW_TAG_module).
analyzeContextInfo(const DWARFDie & DIE,unsigned ParentIdx,CompileUnit & CU,DeclContext * CurrentDeclContext,DeclContextTree & Contexts,uint64_t ModulesEndOffset,swiftInterfacesMap * ParseableSwiftInterfaces,std::function<void (const Twine &,const DWARFDie &)> ReportWarning)316 static void analyzeContextInfo(
317 const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
318 DeclContext *CurrentDeclContext, DeclContextTree &Contexts,
319 uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces,
320 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
321 // LIFO work list.
322 std::vector<ContextWorklistItem> Worklist;
323 Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, false);
324
325 while (!Worklist.empty()) {
326 ContextWorklistItem Current = Worklist.back();
327 Worklist.pop_back();
328
329 switch (Current.Type) {
330 case ContextWorklistItemType::UpdatePruning:
331 updatePruning(Current.Die, CU, ModulesEndOffset);
332 continue;
333 case ContextWorklistItemType::UpdateChildPruning:
334 updateChildPruning(Current.Die, CU, *Current.OtherInfo);
335 continue;
336 case ContextWorklistItemType::AnalyzeContextInfo:
337 break;
338 }
339
340 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
341 CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
342
343 // Clang imposes an ODR on modules(!) regardless of the language:
344 // "The module-id should consist of only a single identifier,
345 // which provides the name of the module being defined. Each
346 // module shall have a single definition."
347 //
348 // This does not extend to the types inside the modules:
349 // "[I]n C, this implies that if two structs are defined in
350 // different submodules with the same name, those two types are
351 // distinct types (but may be compatible types if their
352 // definitions match)."
353 //
354 // We treat non-C++ modules like namespaces for this reason.
355 if (Current.Die.getTag() == dwarf::DW_TAG_module &&
356 Current.ParentIdx == 0 &&
357 dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
358 CU.getClangModuleName()) {
359 Current.InImportedModule = true;
360 analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
361 ReportWarning);
362 }
363
364 Info.ParentIdx = Current.ParentIdx;
365 Info.InModuleScope = CU.isClangModule() || Current.InImportedModule;
366 if (CU.hasODR() || Info.InModuleScope) {
367 if (Current.Context) {
368 auto PtrInvalidPair = Contexts.getChildDeclContext(
369 *Current.Context, Current.Die, CU, Info.InModuleScope);
370 Current.Context = PtrInvalidPair.getPointer();
371 Info.Ctxt =
372 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
373 if (Info.Ctxt)
374 Info.Ctxt->setDefinedInClangModule(Info.InModuleScope);
375 } else
376 Info.Ctxt = Current.Context = nullptr;
377 }
378
379 Info.Prune = Current.InImportedModule;
380 // Add children in reverse order to the worklist to effectively process
381 // them in order.
382 Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
383 for (auto Child : reverse(Current.Die.children())) {
384 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
385 Worklist.emplace_back(
386 Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
387 Worklist.emplace_back(Child, Current.Context, Idx,
388 Current.InImportedModule);
389 }
390 }
391 }
392
dieNeedsChildrenToBeMeaningful(uint32_t Tag)393 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
394 switch (Tag) {
395 default:
396 return false;
397 case dwarf::DW_TAG_class_type:
398 case dwarf::DW_TAG_common_block:
399 case dwarf::DW_TAG_lexical_block:
400 case dwarf::DW_TAG_structure_type:
401 case dwarf::DW_TAG_subprogram:
402 case dwarf::DW_TAG_subroutine_type:
403 case dwarf::DW_TAG_union_type:
404 return true;
405 }
406 llvm_unreachable("Invalid Tag");
407 }
408
cleanupAuxiliarryData(LinkContext & Context)409 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
410 Context.clear();
411
412 for (DIEBlock *I : DIEBlocks)
413 I->~DIEBlock();
414 for (DIELoc *I : DIELocs)
415 I->~DIELoc();
416
417 DIEBlocks.clear();
418 DIELocs.clear();
419 DIEAlloc.Reset();
420 }
421
422 /// Check if a variable describing DIE should be kept.
423 /// \returns updated TraversalFlags.
shouldKeepVariableDIE(AddressesMap & RelocMgr,const DWARFDie & DIE,CompileUnit::DIEInfo & MyInfo,unsigned Flags)424 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
425 const DWARFDie &DIE,
426 CompileUnit::DIEInfo &MyInfo,
427 unsigned Flags) {
428 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
429
430 // Global variables with constant value can always be kept.
431 if (!(Flags & TF_InFunctionScope) &&
432 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
433 MyInfo.InDebugMap = true;
434 return Flags | TF_Keep;
435 }
436
437 // See if there is a relocation to a valid debug map entry inside this
438 // variable's location. The order is important here. We want to always check
439 // if the variable has a valid relocation, so that the DIEInfo is filled.
440 // However, we don't want a static variable in a function to force us to keep
441 // the enclosing function, unless requested explicitly.
442 const bool HasLiveMemoryLocation = RelocMgr.isLiveVariable(DIE, MyInfo);
443 if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) &&
444 !LLVM_UNLIKELY(Options.KeepFunctionForStatic)))
445 return Flags;
446
447 if (Options.Verbose) {
448 outs() << "Keeping variable DIE:";
449 DIDumpOptions DumpOpts;
450 DumpOpts.ChildRecurseDepth = 0;
451 DumpOpts.Verbose = Options.Verbose;
452 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
453 }
454
455 return Flags | TF_Keep;
456 }
457
458 /// Check if a function describing DIE should be kept.
459 /// \returns updated TraversalFlags.
shouldKeepSubprogramDIE(AddressesMap & RelocMgr,RangesTy & Ranges,const DWARFDie & DIE,const DWARFFile & File,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)460 unsigned DWARFLinker::shouldKeepSubprogramDIE(
461 AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
462 const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
463 unsigned Flags) {
464 Flags |= TF_InFunctionScope;
465
466 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
467 if (!LowPc)
468 return Flags;
469
470 assert(LowPc && "low_pc attribute is not an address.");
471 if (!RelocMgr.isLiveSubprogram(DIE, MyInfo))
472 return Flags;
473
474 if (Options.Verbose) {
475 outs() << "Keeping subprogram DIE:";
476 DIDumpOptions DumpOpts;
477 DumpOpts.ChildRecurseDepth = 0;
478 DumpOpts.Verbose = Options.Verbose;
479 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
480 }
481
482 if (DIE.getTag() == dwarf::DW_TAG_label) {
483 if (Unit.hasLabelAt(*LowPc))
484 return Flags;
485
486 DWARFUnit &OrigUnit = Unit.getOrigUnit();
487 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
488 // that don't fall into the CU's aranges. This is wrong IMO. Debug info
489 // generation bugs aside, this is really wrong in the case of labels, where
490 // a label marking the end of a function will have a PC == CU's high_pc.
491 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
492 .value_or(UINT64_MAX) <= LowPc)
493 return Flags;
494 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
495 return Flags | TF_Keep;
496 }
497
498 Flags |= TF_Keep;
499
500 std::optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
501 if (!HighPc) {
502 reportWarning("Function without high_pc. Range will be discarded.\n", File,
503 &DIE);
504 return Flags;
505 }
506 if (*LowPc > *HighPc) {
507 reportWarning("low_pc greater than high_pc. Range will be discarded.\n",
508 File, &DIE);
509 return Flags;
510 }
511
512 // Replace the debug map range with a more accurate one.
513 Ranges.insert({*LowPc, *HighPc}, MyInfo.AddrAdjust);
514 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
515 return Flags;
516 }
517
518 /// Check if a DIE should be kept.
519 /// \returns updated TraversalFlags.
shouldKeepDIE(AddressesMap & RelocMgr,RangesTy & Ranges,const DWARFDie & DIE,const DWARFFile & File,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)520 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges,
521 const DWARFDie &DIE, const DWARFFile &File,
522 CompileUnit &Unit,
523 CompileUnit::DIEInfo &MyInfo,
524 unsigned Flags) {
525 switch (DIE.getTag()) {
526 case dwarf::DW_TAG_constant:
527 case dwarf::DW_TAG_variable:
528 return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags);
529 case dwarf::DW_TAG_subprogram:
530 case dwarf::DW_TAG_label:
531 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo,
532 Flags);
533 case dwarf::DW_TAG_base_type:
534 // DWARF Expressions may reference basic types, but scanning them
535 // is expensive. Basic types are tiny, so just keep all of them.
536 case dwarf::DW_TAG_imported_module:
537 case dwarf::DW_TAG_imported_declaration:
538 case dwarf::DW_TAG_imported_unit:
539 // We always want to keep these.
540 return Flags | TF_Keep;
541 default:
542 break;
543 }
544
545 return Flags;
546 }
547
548 /// Helper that updates the completeness of the current DIE based on the
549 /// completeness of one of its children. It depends on the incompleteness of
550 /// the children already being computed.
updateChildIncompleteness(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & ChildInfo)551 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
552 CompileUnit::DIEInfo &ChildInfo) {
553 switch (Die.getTag()) {
554 case dwarf::DW_TAG_structure_type:
555 case dwarf::DW_TAG_class_type:
556 case dwarf::DW_TAG_union_type:
557 break;
558 default:
559 return;
560 }
561
562 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
563
564 if (ChildInfo.Incomplete || ChildInfo.Prune)
565 MyInfo.Incomplete = true;
566 }
567
568 /// Helper that updates the completeness of the current DIE based on the
569 /// completeness of the DIEs it references. It depends on the incompleteness of
570 /// the referenced DIE already being computed.
updateRefIncompleteness(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & RefInfo)571 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
572 CompileUnit::DIEInfo &RefInfo) {
573 switch (Die.getTag()) {
574 case dwarf::DW_TAG_typedef:
575 case dwarf::DW_TAG_member:
576 case dwarf::DW_TAG_reference_type:
577 case dwarf::DW_TAG_ptr_to_member_type:
578 case dwarf::DW_TAG_pointer_type:
579 break;
580 default:
581 return;
582 }
583
584 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
585
586 if (MyInfo.Incomplete)
587 return;
588
589 if (RefInfo.Incomplete)
590 MyInfo.Incomplete = true;
591 }
592
593 /// Look at the children of the given DIE and decide whether they should be
594 /// kept.
lookForChildDIEsToKeep(const DWARFDie & Die,CompileUnit & CU,unsigned Flags,SmallVectorImpl<WorklistItem> & Worklist)595 void DWARFLinker::lookForChildDIEsToKeep(
596 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
597 SmallVectorImpl<WorklistItem> &Worklist) {
598 // The TF_ParentWalk flag tells us that we are currently walking up the
599 // parent chain of a required DIE, and we don't want to mark all the children
600 // of the parents as kept (consider for example a DW_TAG_namespace node in
601 // the parent chain). There are however a set of DIE types for which we want
602 // to ignore that directive and still walk their children.
603 if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
604 Flags &= ~DWARFLinker::TF_ParentWalk;
605
606 // We're finished if this DIE has no children or we're walking the parent
607 // chain.
608 if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
609 return;
610
611 // Add children in reverse order to the worklist to effectively process them
612 // in order.
613 for (auto Child : reverse(Die.children())) {
614 // Add a worklist item before every child to calculate incompleteness right
615 // after the current child is processed.
616 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
617 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
618 &ChildInfo);
619 Worklist.emplace_back(Child, CU, Flags);
620 }
621 }
622
isODRCanonicalCandidate(const DWARFDie & Die,CompileUnit & CU)623 static bool isODRCanonicalCandidate(const DWARFDie &Die, CompileUnit &CU) {
624 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
625
626 if (!Info.Ctxt || (Die.getTag() == dwarf::DW_TAG_namespace))
627 return false;
628
629 if (!CU.hasODR() && !Info.InModuleScope)
630 return false;
631
632 return !Info.Incomplete && Info.Ctxt != CU.getInfo(Info.ParentIdx).Ctxt;
633 }
634
markODRCanonicalDie(const DWARFDie & Die,CompileUnit & CU)635 void DWARFLinker::markODRCanonicalDie(const DWARFDie &Die, CompileUnit &CU) {
636 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
637
638 Info.ODRMarkingDone = true;
639 if (Info.Keep && isODRCanonicalCandidate(Die, CU) &&
640 !Info.Ctxt->hasCanonicalDIE())
641 Info.Ctxt->setHasCanonicalDIE();
642 }
643
644 /// Look at DIEs referenced by the given DIE and decide whether they should be
645 /// kept. All DIEs referenced though attributes should be kept.
lookForRefDIEsToKeep(const DWARFDie & Die,CompileUnit & CU,unsigned Flags,const UnitListTy & Units,const DWARFFile & File,SmallVectorImpl<WorklistItem> & Worklist)646 void DWARFLinker::lookForRefDIEsToKeep(
647 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
648 const UnitListTy &Units, const DWARFFile &File,
649 SmallVectorImpl<WorklistItem> &Worklist) {
650 bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
651 ? (Flags & DWARFLinker::TF_ODR)
652 : CU.hasODR();
653 DWARFUnit &Unit = CU.getOrigUnit();
654 DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
655 const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
656 uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
657
658 SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
659 for (const auto &AttrSpec : Abbrev->attributes()) {
660 DWARFFormValue Val(AttrSpec.Form);
661 if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
662 AttrSpec.Attr == dwarf::DW_AT_sibling) {
663 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
664 Unit.getFormParams());
665 continue;
666 }
667
668 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
669 CompileUnit *ReferencedCU;
670 if (auto RefDie =
671 resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
672 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
673 // If the referenced DIE has a DeclContext that has already been
674 // emitted, then do not keep the one in this CU. We'll link to
675 // the canonical DIE in cloneDieReferenceAttribute.
676 //
677 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
678 // be necessary and could be advantageously replaced by
679 // ReferencedCU->hasODR() && CU.hasODR().
680 //
681 // FIXME: compatibility with dsymutil-classic. There is no
682 // reason not to unique ref_addr references.
683 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr &&
684 isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
685 Info.Ctxt->hasCanonicalDIE())
686 continue;
687
688 // Keep a module forward declaration if there is no definition.
689 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
690 Info.Ctxt->hasCanonicalDIE()))
691 Info.Prune = false;
692 ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
693 }
694 }
695
696 unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
697
698 // Add referenced DIEs in reverse order to the worklist to effectively
699 // process them in order.
700 for (auto &P : reverse(ReferencedDIEs)) {
701 // Add a worklist item before every child to calculate incompleteness right
702 // after the current child is processed.
703 CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
704 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
705 &Info);
706 Worklist.emplace_back(P.first, P.second,
707 DWARFLinker::TF_Keep |
708 DWARFLinker::TF_DependencyWalk | ODRFlag);
709 }
710 }
711
712 /// Look at the parent of the given DIE and decide whether they should be kept.
lookForParentDIEsToKeep(unsigned AncestorIdx,CompileUnit & CU,unsigned Flags,SmallVectorImpl<WorklistItem> & Worklist)713 void DWARFLinker::lookForParentDIEsToKeep(
714 unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
715 SmallVectorImpl<WorklistItem> &Worklist) {
716 // Stop if we encounter an ancestor that's already marked as kept.
717 if (CU.getInfo(AncestorIdx).Keep)
718 return;
719
720 DWARFUnit &Unit = CU.getOrigUnit();
721 DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
722 Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
723 Worklist.emplace_back(ParentDIE, CU, Flags);
724 }
725
726 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
727 /// information in \p CU's DIEInfo.
728 ///
729 /// This function is the entry point of the DIE selection algorithm. It is
730 /// expected to walk the DIE tree in file order and (though the mediation of
731 /// its helper) call hasValidRelocation() on each DIE that might be a 'root
732 /// DIE' (See DwarfLinker class comment).
733 ///
734 /// While walking the dependencies of root DIEs, this function is also called,
735 /// but during these dependency walks the file order is not respected. The
736 /// TF_DependencyWalk flag tells us which kind of traversal we are currently
737 /// doing.
738 ///
739 /// The recursive algorithm is implemented iteratively as a work list because
740 /// very deep recursion could exhaust the stack for large projects. The work
741 /// list acts as a scheduler for different types of work that need to be
742 /// performed.
743 ///
744 /// The recursive nature of the algorithm is simulated by running the "main"
745 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
746 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
747 /// fixing up a computed property (UpdateChildIncompleteness,
748 /// UpdateRefIncompleteness).
749 ///
750 /// The return value indicates whether the DIE is incomplete.
lookForDIEsToKeep(AddressesMap & AddressesMap,RangesTy & Ranges,const UnitListTy & Units,const DWARFDie & Die,const DWARFFile & File,CompileUnit & Cu,unsigned Flags)751 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
752 RangesTy &Ranges, const UnitListTy &Units,
753 const DWARFDie &Die, const DWARFFile &File,
754 CompileUnit &Cu, unsigned Flags) {
755 // LIFO work list.
756 SmallVector<WorklistItem, 4> Worklist;
757 Worklist.emplace_back(Die, Cu, Flags);
758
759 while (!Worklist.empty()) {
760 WorklistItem Current = Worklist.pop_back_val();
761
762 // Look at the worklist type to decide what kind of work to perform.
763 switch (Current.Type) {
764 case WorklistItemType::UpdateChildIncompleteness:
765 updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
766 continue;
767 case WorklistItemType::UpdateRefIncompleteness:
768 updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
769 continue;
770 case WorklistItemType::LookForChildDIEsToKeep:
771 lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
772 continue;
773 case WorklistItemType::LookForRefDIEsToKeep:
774 lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
775 Worklist);
776 continue;
777 case WorklistItemType::LookForParentDIEsToKeep:
778 lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
779 Worklist);
780 continue;
781 case WorklistItemType::MarkODRCanonicalDie:
782 markODRCanonicalDie(Current.Die, Current.CU);
783 continue;
784 case WorklistItemType::LookForDIEsToKeep:
785 break;
786 }
787
788 unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
789 CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
790
791 if (MyInfo.Prune) {
792 // We're walking the dependencies of a module forward declaration that was
793 // kept because there is no definition.
794 if (Current.Flags & TF_DependencyWalk)
795 MyInfo.Prune = false;
796 else
797 continue;
798 }
799
800 // If the Keep flag is set, we are marking a required DIE's dependencies.
801 // If our target is already marked as kept, we're all set.
802 bool AlreadyKept = MyInfo.Keep;
803 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
804 continue;
805
806 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
807 // because it would screw up the relocation finding logic.
808 if (!(Current.Flags & TF_DependencyWalk))
809 Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File,
810 Current.CU, MyInfo, Current.Flags);
811
812 // We need to mark context for the canonical die in the end of normal
813 // traversing(not TF_DependencyWalk) or after normal traversing if die
814 // was not marked as kept.
815 if (!(Current.Flags & TF_DependencyWalk) ||
816 (MyInfo.ODRMarkingDone && !MyInfo.Keep)) {
817 if (Current.CU.hasODR() || MyInfo.InModuleScope)
818 Worklist.emplace_back(Current.Die, Current.CU,
819 WorklistItemType::MarkODRCanonicalDie);
820 }
821
822 // Finish by looking for child DIEs. Because of the LIFO worklist we need
823 // to schedule that work before any subsequent items are added to the
824 // worklist.
825 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
826 WorklistItemType::LookForChildDIEsToKeep);
827
828 if (AlreadyKept || !(Current.Flags & TF_Keep))
829 continue;
830
831 // If it is a newly kept DIE mark it as well as all its dependencies as
832 // kept.
833 MyInfo.Keep = true;
834
835 // We're looking for incomplete types.
836 MyInfo.Incomplete =
837 Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
838 Current.Die.getTag() != dwarf::DW_TAG_member &&
839 dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
840
841 // After looking at the parent chain, look for referenced DIEs. Because of
842 // the LIFO worklist we need to schedule that work before any subsequent
843 // items are added to the worklist.
844 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
845 WorklistItemType::LookForRefDIEsToKeep);
846
847 bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
848 : Current.CU.hasODR();
849 unsigned ODRFlag = UseOdr ? TF_ODR : 0;
850 unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
851
852 // Now schedule the parent walk.
853 Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
854 }
855 }
856
857 #ifndef NDEBUG
858 /// A broken link in the keep chain. By recording both the parent and the child
859 /// we can show only broken links for DIEs with multiple children.
860 struct BrokenLink {
BrokenLinkllvm::BrokenLink861 BrokenLink(DWARFDie Parent, DWARFDie Child) : Parent(Parent), Child(Child) {}
862 DWARFDie Parent;
863 DWARFDie Child;
864 };
865
866 /// Verify the keep chain by looking for DIEs that are kept but who's parent
867 /// isn't.
verifyKeepChain(CompileUnit & CU)868 static void verifyKeepChain(CompileUnit &CU) {
869 std::vector<DWARFDie> Worklist;
870 Worklist.push_back(CU.getOrigUnit().getUnitDIE());
871
872 // List of broken links.
873 std::vector<BrokenLink> BrokenLinks;
874
875 while (!Worklist.empty()) {
876 const DWARFDie Current = Worklist.back();
877 Worklist.pop_back();
878
879 const bool CurrentDieIsKept = CU.getInfo(Current).Keep;
880
881 for (DWARFDie Child : reverse(Current.children())) {
882 Worklist.push_back(Child);
883
884 const bool ChildDieIsKept = CU.getInfo(Child).Keep;
885 if (!CurrentDieIsKept && ChildDieIsKept)
886 BrokenLinks.emplace_back(Current, Child);
887 }
888 }
889
890 if (!BrokenLinks.empty()) {
891 for (BrokenLink Link : BrokenLinks) {
892 WithColor::error() << formatv(
893 "Found invalid link in keep chain between {0:x} and {1:x}\n",
894 Link.Parent.getOffset(), Link.Child.getOffset());
895
896 errs() << "Parent:";
897 Link.Parent.dump(errs(), 0, {});
898 CU.getInfo(Link.Parent).dump();
899
900 errs() << "Child:";
901 Link.Child.dump(errs(), 2, {});
902 CU.getInfo(Link.Child).dump();
903 }
904 report_fatal_error("invalid keep chain");
905 }
906 }
907 #endif
908
909 /// Assign an abbreviation number to \p Abbrev.
910 ///
911 /// Our DIEs get freed after every DebugMapObject has been processed,
912 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
913 /// the instances hold by the DIEs. When we encounter an abbreviation
914 /// that we don't know, we create a permanent copy of it.
assignAbbrev(DIEAbbrev & Abbrev)915 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
916 // Check the set for priors.
917 FoldingSetNodeID ID;
918 Abbrev.Profile(ID);
919 void *InsertToken;
920 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
921
922 // If it's newly added.
923 if (InSet) {
924 // Assign existing abbreviation number.
925 Abbrev.setNumber(InSet->getNumber());
926 } else {
927 // Add to abbreviation list.
928 Abbreviations.push_back(
929 std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
930 for (const auto &Attr : Abbrev.getData())
931 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
932 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
933 // Assign the unique abbreviation number.
934 Abbrev.setNumber(Abbreviations.size());
935 Abbreviations.back()->setNumber(Abbreviations.size());
936 }
937 }
938
cloneStringAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,const DWARFUnit &,OffsetsStringPool & StringPool,AttributesInfo & Info)939 unsigned DWARFLinker::DIECloner::cloneStringAttribute(
940 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
941 const DWARFUnit &, OffsetsStringPool &StringPool, AttributesInfo &Info) {
942 std::optional<const char *> String = dwarf::toString(Val);
943 if (!String)
944 return 0;
945
946 // Switch everything to out of line strings.
947 auto StringEntry = StringPool.getEntry(*String);
948
949 // Update attributes info.
950 if (AttrSpec.Attr == dwarf::DW_AT_name)
951 Info.Name = StringEntry;
952 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
953 AttrSpec.Attr == dwarf::DW_AT_linkage_name)
954 Info.MangledName = StringEntry;
955
956 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
957 DIEInteger(StringEntry.getOffset()));
958
959 return 4;
960 }
961
cloneDieReferenceAttribute(DIE & Die,const DWARFDie & InputDIE,AttributeSpec AttrSpec,unsigned AttrSize,const DWARFFormValue & Val,const DWARFFile & File,CompileUnit & Unit)962 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
963 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
964 unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
965 CompileUnit &Unit) {
966 const DWARFUnit &U = Unit.getOrigUnit();
967 uint64_t Ref = *Val.getAsReference();
968
969 DIE *NewRefDie = nullptr;
970 CompileUnit *RefUnit = nullptr;
971
972 DWARFDie RefDie =
973 Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
974
975 // If the referenced DIE is not found, drop the attribute.
976 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
977 return 0;
978
979 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
980
981 // If we already have emitted an equivalent DeclContext, just point
982 // at it.
983 if (isODRAttribute(AttrSpec.Attr) && RefInfo.Ctxt &&
984 RefInfo.Ctxt->getCanonicalDIEOffset()) {
985 assert(RefInfo.Ctxt->hasCanonicalDIE() &&
986 "Offset to canonical die is set, but context is not marked");
987 DIEInteger Attr(RefInfo.Ctxt->getCanonicalDIEOffset());
988 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
989 dwarf::DW_FORM_ref_addr, Attr);
990 return U.getRefAddrByteSize();
991 }
992
993 if (!RefInfo.Clone) {
994 // We haven't cloned this DIE yet. Just create an empty one and
995 // store it. It'll get really cloned when we process it.
996 RefInfo.UnclonedReference = true;
997 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
998 }
999 NewRefDie = RefInfo.Clone;
1000
1001 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
1002 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
1003 // We cannot currently rely on a DIEEntry to emit ref_addr
1004 // references, because the implementation calls back to DwarfDebug
1005 // to find the unit offset. (We don't have a DwarfDebug)
1006 // FIXME: we should be able to design DIEEntry reliance on
1007 // DwarfDebug away.
1008 uint64_t Attr;
1009 if (Ref < InputDIE.getOffset() && !RefInfo.UnclonedReference) {
1010 // We have already cloned that DIE.
1011 uint32_t NewRefOffset =
1012 RefUnit->getStartOffset() + NewRefDie->getOffset();
1013 Attr = NewRefOffset;
1014 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1015 dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
1016 } else {
1017 // A forward reference. Note and fixup later.
1018 Attr = 0xBADDEF;
1019 Unit.noteForwardReference(
1020 NewRefDie, RefUnit, RefInfo.Ctxt,
1021 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1022 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
1023 }
1024 return U.getRefAddrByteSize();
1025 }
1026
1027 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1028 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
1029
1030 return AttrSize;
1031 }
1032
cloneExpression(DataExtractor & Data,DWARFExpression Expression,const DWARFFile & File,CompileUnit & Unit,SmallVectorImpl<uint8_t> & OutputBuffer)1033 void DWARFLinker::DIECloner::cloneExpression(
1034 DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
1035 CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
1036 using Encoding = DWARFExpression::Operation::Encoding;
1037
1038 uint64_t OpOffset = 0;
1039 for (auto &Op : Expression) {
1040 auto Description = Op.getDescription();
1041 // DW_OP_const_type is variable-length and has 3
1042 // operands. DWARFExpression thus far only supports 2.
1043 auto Op0 = Description.Op[0];
1044 auto Op1 = Description.Op[1];
1045 if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
1046 (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
1047 Linker.reportWarning("Unsupported DW_OP encoding.", File);
1048
1049 if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
1050 (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
1051 // This code assumes that the other non-typeref operand fits into 1 byte.
1052 assert(OpOffset < Op.getEndOffset());
1053 uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
1054 assert(ULEBsize <= 16);
1055
1056 // Copy over the operation.
1057 OutputBuffer.push_back(Op.getCode());
1058 uint64_t RefOffset;
1059 if (Op1 == Encoding::SizeNA) {
1060 RefOffset = Op.getRawOperand(0);
1061 } else {
1062 OutputBuffer.push_back(Op.getRawOperand(0));
1063 RefOffset = Op.getRawOperand(1);
1064 }
1065 uint32_t Offset = 0;
1066 // Look up the base type. For DW_OP_convert, the operand may be 0 to
1067 // instead indicate the generic type. The same holds for
1068 // DW_OP_reinterpret, which is currently not supported.
1069 if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
1070 RefOffset += Unit.getOrigUnit().getOffset();
1071 auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
1072 CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
1073 if (DIE *Clone = Info.Clone)
1074 Offset = Clone->getOffset();
1075 else
1076 Linker.reportWarning(
1077 "base type ref doesn't point to DW_TAG_base_type.", File);
1078 }
1079 uint8_t ULEB[16];
1080 unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
1081 if (RealSize > ULEBsize) {
1082 // Emit the generic type as a fallback.
1083 RealSize = encodeULEB128(0, ULEB, ULEBsize);
1084 Linker.reportWarning("base type ref doesn't fit.", File);
1085 }
1086 assert(RealSize == ULEBsize && "padding failed");
1087 ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
1088 OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
1089 } else {
1090 // Copy over everything else unmodified.
1091 StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
1092 OutputBuffer.append(Bytes.begin(), Bytes.end());
1093 }
1094 OpOffset = Op.getEndOffset();
1095 }
1096 }
1097
cloneBlockAttribute(DIE & Die,const DWARFFile & File,CompileUnit & Unit,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize,bool IsLittleEndian)1098 unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
1099 DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec,
1100 const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) {
1101 DIEValueList *Attr;
1102 DIEValue Value;
1103 DIELoc *Loc = nullptr;
1104 DIEBlock *Block = nullptr;
1105 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1106 Loc = new (DIEAlloc) DIELoc;
1107 Linker.DIELocs.push_back(Loc);
1108 } else {
1109 Block = new (DIEAlloc) DIEBlock;
1110 Linker.DIEBlocks.push_back(Block);
1111 }
1112 Attr = Loc ? static_cast<DIEValueList *>(Loc)
1113 : static_cast<DIEValueList *>(Block);
1114
1115 if (Loc)
1116 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1117 dwarf::Form(AttrSpec.Form), Loc);
1118 else
1119 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1120 dwarf::Form(AttrSpec.Form), Block);
1121
1122 // If the block is a DWARF Expression, clone it into the temporary
1123 // buffer using cloneExpression(), otherwise copy the data directly.
1124 SmallVector<uint8_t, 32> Buffer;
1125 ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1126 if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) &&
1127 (Val.isFormClass(DWARFFormValue::FC_Block) ||
1128 Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
1129 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1130 DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
1131 IsLittleEndian, OrigUnit.getAddressByteSize());
1132 DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
1133 OrigUnit.getFormParams().Format);
1134 cloneExpression(Data, Expr, File, Unit, Buffer);
1135 Bytes = Buffer;
1136 }
1137 for (auto Byte : Bytes)
1138 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1139 dwarf::DW_FORM_data1, DIEInteger(Byte));
1140
1141 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1142 // the DIE class, this "if" could be replaced by
1143 // Attr->setSize(Bytes.size()).
1144 if (Loc)
1145 Loc->setSize(Bytes.size());
1146 else
1147 Block->setSize(Bytes.size());
1148
1149 Die.addValue(DIEAlloc, Value);
1150 return AttrSize;
1151 }
1152
cloneAddressAttribute(DIE & Die,AttributeSpec AttrSpec,unsigned AttrSize,const DWARFFormValue & Val,const CompileUnit & Unit,AttributesInfo & Info)1153 unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
1154 DIE &Die, AttributeSpec AttrSpec, unsigned AttrSize,
1155 const DWARFFormValue &Val, const CompileUnit &Unit, AttributesInfo &Info) {
1156 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1157 if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1158 Info.HasLowPc = true;
1159 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1160 dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue()));
1161 return AttrSize;
1162 }
1163
1164 dwarf::Form Form = AttrSpec.Form;
1165 uint64_t Addr = 0;
1166 if (Form == dwarf::DW_FORM_addrx) {
1167 if (std::optional<uint64_t> AddrOffsetSectionBase =
1168 Unit.getOrigUnit().getAddrOffsetSectionBase()) {
1169 uint64_t StartOffset =
1170 *AddrOffsetSectionBase +
1171 Val.getRawUValue() * Unit.getOrigUnit().getAddressByteSize();
1172 uint64_t EndOffset =
1173 StartOffset + Unit.getOrigUnit().getAddressByteSize();
1174 if (llvm::Expected<uint64_t> RelocAddr =
1175 ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset))
1176 Addr = *RelocAddr;
1177 else
1178 Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile);
1179 } else
1180 Linker.reportWarning("no base offset for address table", ObjFile);
1181
1182 // Generation of DWARFv5 .debug_addr table is not supported yet.
1183 // Convert attribute into the dwarf::DW_FORM_addr.
1184 Form = dwarf::DW_FORM_addr;
1185 } else
1186 Addr = *Val.getAsAddress();
1187
1188 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1189 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1190 Die.getTag() == dwarf::DW_TAG_lexical_block ||
1191 Die.getTag() == dwarf::DW_TAG_label) {
1192 // The low_pc of a block or inline subroutine might get
1193 // relocated because it happens to match the low_pc of the
1194 // enclosing subprogram. To prevent issues with that, always use
1195 // the low_pc from the input DIE if relocations have been applied.
1196 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1197 ? Info.OrigLowPc
1198 : Addr) +
1199 Info.PCOffset;
1200 } else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1201 if (std::optional<uint64_t> LowPC = Unit.getLowPc())
1202 Addr = *LowPC;
1203 else
1204 return 0;
1205 }
1206 Info.HasLowPc = true;
1207 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1208 if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1209 if (uint64_t HighPc = Unit.getHighPc())
1210 Addr = HighPc;
1211 else
1212 return 0;
1213 } else
1214 // If we have a high_pc recorded for the input DIE, use
1215 // it. Otherwise (when no relocations where applied) just use the
1216 // one we just decoded.
1217 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1218 } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) {
1219 // Relocate a return PC address within a call site entry.
1220 if (Die.getTag() == dwarf::DW_TAG_call_site)
1221 Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) +
1222 Info.PCOffset;
1223 } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) {
1224 // Relocate the address of a branch instruction within a call site entry.
1225 if (Die.getTag() == dwarf::DW_TAG_call_site)
1226 Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset;
1227 }
1228
1229 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1230 static_cast<dwarf::Form>(Form), DIEInteger(Addr));
1231 return Unit.getOrigUnit().getAddressByteSize();
1232 }
1233
cloneScalarAttribute(DIE & Die,const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize,AttributesInfo & Info)1234 unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
1235 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1236 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1237 unsigned AttrSize, AttributesInfo &Info) {
1238 uint64_t Value;
1239
1240 // Check for the offset to the macro table. If offset is incorrect then we
1241 // need to remove the attribute.
1242 if (AttrSpec.Attr == dwarf::DW_AT_macro_info) {
1243 if (std::optional<uint64_t> Offset = Val.getAsSectionOffset()) {
1244 const DWARFDebugMacro *Macro = File.Dwarf->getDebugMacinfo();
1245 if (Macro == nullptr || !Macro->hasEntryForOffset(*Offset))
1246 return 0;
1247 }
1248 }
1249
1250 if (AttrSpec.Attr == dwarf::DW_AT_macros) {
1251 if (std::optional<uint64_t> Offset = Val.getAsSectionOffset()) {
1252 const DWARFDebugMacro *Macro = File.Dwarf->getDebugMacro();
1253 if (Macro == nullptr || !Macro->hasEntryForOffset(*Offset))
1254 return 0;
1255 }
1256 }
1257
1258 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1259 if (auto OptionalValue = Val.getAsUnsignedConstant())
1260 Value = *OptionalValue;
1261 else if (auto OptionalValue = Val.getAsSignedConstant())
1262 Value = *OptionalValue;
1263 else if (auto OptionalValue = Val.getAsSectionOffset())
1264 Value = *OptionalValue;
1265 else {
1266 Linker.reportWarning(
1267 "Unsupported scalar attribute form. Dropping attribute.", File,
1268 &InputDIE);
1269 return 0;
1270 }
1271 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1272 Info.IsDeclaration = true;
1273 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1274 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1275 return AttrSize;
1276 }
1277
1278 if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1279 Die.getTag() == dwarf::DW_TAG_compile_unit) {
1280 std::optional<uint64_t> LowPC = Unit.getLowPc();
1281 if (!LowPC)
1282 return 0;
1283 // Dwarf >= 4 high_pc is an size, not an address.
1284 Value = Unit.getHighPc() - *LowPC;
1285 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1286 Value = *Val.getAsSectionOffset();
1287 else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1288 Value = *Val.getAsSignedConstant();
1289 else if (auto OptionalValue = Val.getAsUnsignedConstant())
1290 Value = *OptionalValue;
1291 else {
1292 Linker.reportWarning(
1293 "Unsupported scalar attribute form. Dropping attribute.", File,
1294 &InputDIE);
1295 return 0;
1296 }
1297 PatchLocation Patch =
1298 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1299 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1300 if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1301 Unit.noteRangeAttribute(Die, Patch);
1302 Info.HasRanges = true;
1303 }
1304
1305 // A more generic way to check for location attributes would be
1306 // nice, but it's very unlikely that any other attribute needs a
1307 // location list.
1308 // FIXME: use DWARFAttribute::mayHaveLocationDescription().
1309 else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1310 AttrSpec.Attr == dwarf::DW_AT_frame_base) {
1311 Unit.noteLocationAttribute(Patch, Info.PCOffset);
1312 } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1313 Info.IsDeclaration = true;
1314
1315 return AttrSize;
1316 }
1317
1318 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1319 /// value \p Val, and add it to \p Die.
1320 /// \returns the size of the cloned attribute.
cloneAttribute(DIE & Die,const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,OffsetsStringPool & StringPool,const DWARFFormValue & Val,const AttributeSpec AttrSpec,unsigned AttrSize,AttributesInfo & Info,bool IsLittleEndian)1321 unsigned DWARFLinker::DIECloner::cloneAttribute(
1322 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1323 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1324 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
1325 bool IsLittleEndian) {
1326 const DWARFUnit &U = Unit.getOrigUnit();
1327
1328 switch (AttrSpec.Form) {
1329 case dwarf::DW_FORM_strp:
1330 case dwarf::DW_FORM_string:
1331 case dwarf::DW_FORM_strx:
1332 case dwarf::DW_FORM_strx1:
1333 case dwarf::DW_FORM_strx2:
1334 case dwarf::DW_FORM_strx3:
1335 case dwarf::DW_FORM_strx4:
1336 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1337 case dwarf::DW_FORM_ref_addr:
1338 case dwarf::DW_FORM_ref1:
1339 case dwarf::DW_FORM_ref2:
1340 case dwarf::DW_FORM_ref4:
1341 case dwarf::DW_FORM_ref8:
1342 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1343 File, Unit);
1344 case dwarf::DW_FORM_block:
1345 case dwarf::DW_FORM_block1:
1346 case dwarf::DW_FORM_block2:
1347 case dwarf::DW_FORM_block4:
1348 case dwarf::DW_FORM_exprloc:
1349 return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize,
1350 IsLittleEndian);
1351 case dwarf::DW_FORM_addr:
1352 case dwarf::DW_FORM_addrx:
1353 return cloneAddressAttribute(Die, AttrSpec, AttrSize, Val, Unit, Info);
1354 case dwarf::DW_FORM_data1:
1355 case dwarf::DW_FORM_data2:
1356 case dwarf::DW_FORM_data4:
1357 case dwarf::DW_FORM_data8:
1358 case dwarf::DW_FORM_udata:
1359 case dwarf::DW_FORM_sdata:
1360 case dwarf::DW_FORM_sec_offset:
1361 case dwarf::DW_FORM_flag:
1362 case dwarf::DW_FORM_flag_present:
1363 return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
1364 AttrSize, Info);
1365 default:
1366 Linker.reportWarning("Unsupported attribute form " +
1367 dwarf::FormEncodingString(AttrSpec.Form) +
1368 " in cloneAttribute. Dropping.",
1369 File, &InputDIE);
1370 }
1371
1372 return 0;
1373 }
1374
isObjCSelector(StringRef Name)1375 static bool isObjCSelector(StringRef Name) {
1376 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1377 (Name[1] == '[');
1378 }
1379
addObjCAccelerator(CompileUnit & Unit,const DIE * Die,DwarfStringPoolEntryRef Name,OffsetsStringPool & StringPool,bool SkipPubSection)1380 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1381 const DIE *Die,
1382 DwarfStringPoolEntryRef Name,
1383 OffsetsStringPool &StringPool,
1384 bool SkipPubSection) {
1385 assert(isObjCSelector(Name.getString()) && "not an objc selector");
1386 // Objective C method or class function.
1387 // "- [Class(Category) selector :withArg ...]"
1388 StringRef ClassNameStart(Name.getString().drop_front(2));
1389 size_t FirstSpace = ClassNameStart.find(' ');
1390 if (FirstSpace == StringRef::npos)
1391 return;
1392
1393 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1394 if (!SelectorStart.size())
1395 return;
1396
1397 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1398 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1399
1400 // Add an entry for the class name that points to this
1401 // method/class function.
1402 StringRef ClassName(ClassNameStart.data(), FirstSpace);
1403 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1404
1405 if (ClassName[ClassName.size() - 1] == ')') {
1406 size_t OpenParens = ClassName.find('(');
1407 if (OpenParens != StringRef::npos) {
1408 StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1409 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1410 SkipPubSection);
1411
1412 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1413 // FIXME: The missing space here may be a bug, but
1414 // dsymutil-classic also does it this way.
1415 MethodNameNoCategory.append(std::string(SelectorStart));
1416 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1417 SkipPubSection);
1418 }
1419 }
1420 }
1421
shouldSkipAttribute(bool Update,DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,uint16_t Tag,bool InDebugMap,bool SkipPC,bool InFunctionScope)1422 static bool shouldSkipAttribute(
1423 bool Update, DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1424 uint16_t Tag, bool InDebugMap, bool SkipPC, bool InFunctionScope) {
1425 switch (AttrSpec.Attr) {
1426 default:
1427 return false;
1428 case dwarf::DW_AT_low_pc:
1429 case dwarf::DW_AT_high_pc:
1430 case dwarf::DW_AT_ranges:
1431 return !Update && SkipPC;
1432 case dwarf::DW_AT_str_offsets_base:
1433 // FIXME: Use the string offset table with Dwarf 5.
1434 return true;
1435 case dwarf::DW_AT_location:
1436 case dwarf::DW_AT_frame_base:
1437 // FIXME: for some reason dsymutil-classic keeps the location attributes
1438 // when they are of block type (i.e. not location lists). This is totally
1439 // wrong for globals where we will keep a wrong address. It is mostly
1440 // harmless for locals, but there is no point in keeping these anyway when
1441 // the function wasn't linked.
1442 return !Update &&
1443 (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1444 !InDebugMap)) &&
1445 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1446 }
1447 }
1448
cloneDIE(const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,OffsetsStringPool & StringPool,int64_t PCOffset,uint32_t OutOffset,unsigned Flags,bool IsLittleEndian,DIE * Die)1449 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1450 const DWARFFile &File, CompileUnit &Unit,
1451 OffsetsStringPool &StringPool,
1452 int64_t PCOffset, uint32_t OutOffset,
1453 unsigned Flags, bool IsLittleEndian,
1454 DIE *Die) {
1455 DWARFUnit &U = Unit.getOrigUnit();
1456 unsigned Idx = U.getDIEIndex(InputDIE);
1457 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1458
1459 // Should the DIE appear in the output?
1460 if (!Unit.getInfo(Idx).Keep)
1461 return nullptr;
1462
1463 uint64_t Offset = InputDIE.getOffset();
1464 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1465 if (!Die) {
1466 // The DIE might have been already created by a forward reference
1467 // (see cloneDieReferenceAttribute()).
1468 if (!Info.Clone)
1469 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1470 Die = Info.Clone;
1471 }
1472
1473 assert(Die->getTag() == InputDIE.getTag());
1474 Die->setOffset(OutOffset);
1475 if (isODRCanonicalCandidate(InputDIE, Unit) && Info.Ctxt &&
1476 (Info.Ctxt->getCanonicalDIEOffset() == 0)) {
1477 if (!Info.Ctxt->hasCanonicalDIE())
1478 Info.Ctxt->setHasCanonicalDIE();
1479 // We are about to emit a DIE that is the root of its own valid
1480 // DeclContext tree. Make the current offset the canonical offset
1481 // for this context.
1482 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1483 }
1484
1485 // Extract and clone every attribute.
1486 DWARFDataExtractor Data = U.getDebugInfoExtractor();
1487 // Point to the next DIE (generally there is always at least a NULL
1488 // entry after the current one). If this is a lone
1489 // DW_TAG_compile_unit without any children, point to the next unit.
1490 uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
1491 ? U.getDIEAtIndex(Idx + 1).getOffset()
1492 : U.getNextUnitOffset();
1493 AttributesInfo AttrInfo;
1494
1495 // We could copy the data only if we need to apply a relocation to it. After
1496 // testing, it seems there is no performance downside to doing the copy
1497 // unconditionally, and it makes the code simpler.
1498 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1499 Data =
1500 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1501
1502 // Modify the copy with relocated addresses.
1503 if (ObjFile.Addresses->applyValidRelocs(DIECopy, Offset,
1504 Data.isLittleEndian())) {
1505 // If we applied relocations, we store the value of high_pc that was
1506 // potentially stored in the input DIE. If high_pc is an address
1507 // (Dwarf version == 2), then it might have been relocated to a
1508 // totally unrelated value (because the end address in the object
1509 // file might be start address of another function which got moved
1510 // independently by the linker). The computation of the actual
1511 // high_pc value is done in cloneAddressAttribute().
1512 AttrInfo.OrigHighPc =
1513 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1514 // Also store the low_pc. It might get relocated in an
1515 // inline_subprogram that happens at the beginning of its
1516 // inlining function.
1517 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1518 std::numeric_limits<uint64_t>::max());
1519 AttrInfo.OrigCallReturnPc =
1520 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0);
1521 AttrInfo.OrigCallPc =
1522 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0);
1523 }
1524
1525 // Reset the Offset to 0 as we will be working on the local copy of
1526 // the data.
1527 Offset = 0;
1528
1529 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1530 Offset += getULEB128Size(Abbrev->getCode());
1531
1532 // We are entering a subprogram. Get and propagate the PCOffset.
1533 if (Die->getTag() == dwarf::DW_TAG_subprogram)
1534 PCOffset = Info.AddrAdjust;
1535 AttrInfo.PCOffset = PCOffset;
1536
1537 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1538 Flags |= TF_InFunctionScope;
1539 if (!Info.InDebugMap && LLVM_LIKELY(!Update))
1540 Flags |= TF_SkipPC;
1541 } else if (Abbrev->getTag() == dwarf::DW_TAG_variable) {
1542 // Function-local globals could be in the debug map even when the function
1543 // is not, e.g., inlined functions.
1544 if ((Flags & TF_InFunctionScope) && Info.InDebugMap)
1545 Flags &= ~TF_SkipPC;
1546 }
1547
1548 for (const auto &AttrSpec : Abbrev->attributes()) {
1549 if (shouldSkipAttribute(Update, AttrSpec, Die->getTag(), Info.InDebugMap,
1550 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1551 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1552 U.getFormParams());
1553 continue;
1554 }
1555
1556 DWARFFormValue Val(AttrSpec.Form);
1557 uint64_t AttrSize = Offset;
1558 Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1559 AttrSize = Offset - AttrSize;
1560
1561 OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val,
1562 AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
1563 }
1564
1565 // Look for accelerator entries.
1566 uint16_t Tag = InputDIE.getTag();
1567 // FIXME: This is slightly wrong. An inline_subroutine without a
1568 // low_pc, but with AT_ranges might be interesting to get into the
1569 // accelerator tables too. For now stick with dsymutil's behavior.
1570 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1571 Tag != dwarf::DW_TAG_compile_unit &&
1572 getDIENames(InputDIE, AttrInfo, StringPool,
1573 Tag != dwarf::DW_TAG_inlined_subroutine)) {
1574 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1575 Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1576 Tag == dwarf::DW_TAG_inlined_subroutine);
1577 if (AttrInfo.Name) {
1578 if (AttrInfo.NameWithoutTemplate)
1579 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1580 /* SkipPubSection */ true);
1581 Unit.addNameAccelerator(Die, AttrInfo.Name,
1582 Tag == dwarf::DW_TAG_inlined_subroutine);
1583 }
1584 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1585 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1586 /* SkipPubSection =*/true);
1587
1588 } else if (Tag == dwarf::DW_TAG_namespace) {
1589 if (!AttrInfo.Name)
1590 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1591 Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1592 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1593 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1594 AttrInfo.Name.getString()[0]) {
1595 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
1596 uint64_t RuntimeLang =
1597 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1598 .value_or(0);
1599 bool ObjCClassIsImplementation =
1600 (RuntimeLang == dwarf::DW_LANG_ObjC ||
1601 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1602 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1603 .value_or(0);
1604 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1605 Hash);
1606 }
1607
1608 // Determine whether there are any children that we want to keep.
1609 bool HasChildren = false;
1610 for (auto Child : InputDIE.children()) {
1611 unsigned Idx = U.getDIEIndex(Child);
1612 if (Unit.getInfo(Idx).Keep) {
1613 HasChildren = true;
1614 break;
1615 }
1616 }
1617
1618 DIEAbbrev NewAbbrev = Die->generateAbbrev();
1619 if (HasChildren)
1620 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1621 // Assign a permanent abbrev number
1622 Linker.assignAbbrev(NewAbbrev);
1623 Die->setAbbrevNumber(NewAbbrev.getNumber());
1624
1625 // Add the size of the abbreviation number to the output offset.
1626 OutOffset += getULEB128Size(Die->getAbbrevNumber());
1627
1628 if (!HasChildren) {
1629 // Update our size.
1630 Die->setSize(OutOffset - Die->getOffset());
1631 return Die;
1632 }
1633
1634 // Recursively clone children.
1635 for (auto Child : InputDIE.children()) {
1636 if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset,
1637 OutOffset, Flags, IsLittleEndian)) {
1638 Die->addChild(Clone);
1639 OutOffset = Clone->getOffset() + Clone->getSize();
1640 }
1641 }
1642
1643 // Account for the end of children marker.
1644 OutOffset += sizeof(int8_t);
1645 // Update our size.
1646 Die->setSize(OutOffset - Die->getOffset());
1647 return Die;
1648 }
1649
1650 /// Patch the input object file relevant debug_ranges entries
1651 /// and emit them in the output file. Update the relevant attributes
1652 /// to point at the new entries.
patchRangesForUnit(const CompileUnit & Unit,DWARFContext & OrigDwarf,const DWARFFile & File) const1653 void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit,
1654 DWARFContext &OrigDwarf,
1655 const DWARFFile &File) const {
1656 DWARFDebugRangeList RangeList;
1657 const auto &FunctionRanges = Unit.getFunctionRanges();
1658 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1659 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1660 OrigDwarf.getDWARFObj().getRangesSection(),
1661 OrigDwarf.isLittleEndian(), AddressSize);
1662 std::optional<std::pair<AddressRange, int64_t>> CachedRange;
1663 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1664 auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1665 uint64_t UnitBaseAddress =
1666 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), 0);
1667
1668 for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1669 uint64_t Offset = RangeAttribute.get();
1670 RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize());
1671 if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1672 llvm::consumeError(std::move(E));
1673 reportWarning("invalid range list ignored.", File);
1674 RangeList.clear();
1675 }
1676 const auto &Entries = RangeList.getEntries();
1677
1678 uint64_t BaseAddress = UnitBaseAddress;
1679 AddressRanges LinkedRanges;
1680
1681 if (!Entries.empty()) {
1682 for (const auto &Range : Entries) {
1683 if (Range.isBaseAddressSelectionEntry(
1684 Unit.getOrigUnit().getAddressByteSize())) {
1685 BaseAddress = Range.EndAddress;
1686 continue;
1687 }
1688
1689 if (!CachedRange ||
1690 !CachedRange->first.contains(Range.StartAddress + BaseAddress))
1691 CachedRange = FunctionRanges.getRangeValueThatContains(
1692 Range.StartAddress + BaseAddress);
1693
1694 // All range entries should lie in the function range.
1695 if (!CachedRange) {
1696 reportWarning("inconsistent range data.", File);
1697 continue;
1698 }
1699
1700 LinkedRanges.insert(
1701 {Range.StartAddress + BaseAddress + CachedRange->second,
1702 Range.EndAddress + BaseAddress + CachedRange->second});
1703 }
1704 }
1705
1706 TheDwarfEmitter->emitDwarfDebugRangesTableFragment(Unit, LinkedRanges);
1707 }
1708 }
1709
1710 /// Generate the debug_aranges entries for \p Unit and if the
1711 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1712 /// contribution for this attribute.
1713 /// FIXME: this could actually be done right in patchRangesForUnit,
1714 /// but for the sake of initial bit-for-bit compatibility with legacy
1715 /// dsymutil, we have to do it in a delayed pass.
generateUnitRanges(CompileUnit & Unit) const1716 void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const {
1717 auto Attr = Unit.getUnitRangesAttribute();
1718 if (Attr)
1719 Attr->set(TheDwarfEmitter->getRangesSectionSize());
1720 TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1721 }
1722
1723 /// Insert the new line info sequence \p Seq into the current
1724 /// set of already linked line info \p Rows.
insertLineSequence(std::vector<DWARFDebugLine::Row> & Seq,std::vector<DWARFDebugLine::Row> & Rows)1725 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1726 std::vector<DWARFDebugLine::Row> &Rows) {
1727 if (Seq.empty())
1728 return;
1729
1730 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1731 llvm::append_range(Rows, Seq);
1732 Seq.clear();
1733 return;
1734 }
1735
1736 object::SectionedAddress Front = Seq.front().Address;
1737 auto InsertPoint = partition_point(
1738 Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
1739
1740 // FIXME: this only removes the unneeded end_sequence if the
1741 // sequences have been inserted in order. Using a global sort like
1742 // described in patchLineTableForUnit() and delaying the end_sequene
1743 // elimination to emitLineTableForUnit() we can get rid of all of them.
1744 if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
1745 InsertPoint->EndSequence) {
1746 *InsertPoint = Seq.front();
1747 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1748 } else {
1749 Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1750 }
1751
1752 Seq.clear();
1753 }
1754
patchStmtList(DIE & Die,DIEInteger Offset)1755 static void patchStmtList(DIE &Die, DIEInteger Offset) {
1756 for (auto &V : Die.values())
1757 if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1758 V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1759 return;
1760 }
1761
1762 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1763 }
1764
1765 /// Extract the line table for \p Unit from \p OrigDwarf, and
1766 /// recreate a relocated version of these for the address ranges that
1767 /// are present in the binary.
patchLineTableForUnit(CompileUnit & Unit,DWARFContext & OrigDwarf,const DWARFFile & File)1768 void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit,
1769 DWARFContext &OrigDwarf,
1770 const DWARFFile &File) {
1771 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1772 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1773 if (!StmtList)
1774 return;
1775
1776 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1777 if (auto *OutputDIE = Unit.getOutputUnitDIE())
1778 patchStmtList(*OutputDIE,
1779 DIEInteger(TheDwarfEmitter->getLineSectionSize()));
1780
1781 RangesTy &Ranges = File.Addresses->getValidAddressRanges();
1782
1783 // Parse the original line info for the unit.
1784 DWARFDebugLine::LineTable LineTable;
1785 uint64_t StmtOffset = *StmtList;
1786 DWARFDataExtractor LineExtractor(
1787 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1788 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1789 if (needToTranslateStrings())
1790 return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset);
1791
1792 if (Error Err =
1793 LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1794 &Unit.getOrigUnit(), OrigDwarf.getWarningHandler()))
1795 OrigDwarf.getWarningHandler()(std::move(Err));
1796
1797 // This vector is the output line table.
1798 std::vector<DWARFDebugLine::Row> NewRows;
1799 NewRows.reserve(LineTable.Rows.size());
1800
1801 // Current sequence of rows being extracted, before being inserted
1802 // in NewRows.
1803 std::vector<DWARFDebugLine::Row> Seq;
1804 const auto &FunctionRanges = Unit.getFunctionRanges();
1805 std::optional<std::pair<AddressRange, int64_t>> CurrRange;
1806
1807 // FIXME: This logic is meant to generate exactly the same output as
1808 // Darwin's classic dsymutil. There is a nicer way to implement this
1809 // by simply putting all the relocated line info in NewRows and simply
1810 // sorting NewRows before passing it to emitLineTableForUnit. This
1811 // should be correct as sequences for a function should stay
1812 // together in the sorted output. There are a few corner cases that
1813 // look suspicious though, and that required to implement the logic
1814 // this way. Revisit that once initial validation is finished.
1815
1816 // Iterate over the object file line info and extract the sequences
1817 // that correspond to linked functions.
1818 for (auto &Row : LineTable.Rows) {
1819 // Check whether we stepped out of the range. The range is
1820 // half-open, but consider accept the end address of the range if
1821 // it is marked as end_sequence in the input (because in that
1822 // case, the relocation offset is accurate and that entry won't
1823 // serve as the start of another function).
1824 if (!CurrRange || !CurrRange->first.contains(Row.Address.Address) ||
1825 (Row.Address.Address == CurrRange->first.end() && !Row.EndSequence)) {
1826 // We just stepped out of a known range. Insert a end_sequence
1827 // corresponding to the end of the range.
1828 uint64_t StopAddress =
1829 CurrRange ? CurrRange->first.end() + CurrRange->second : -1ULL;
1830 CurrRange = FunctionRanges.getRangeValueThatContains(Row.Address.Address);
1831 if (!CurrRange) {
1832 if (StopAddress != -1ULL) {
1833 // Try harder by looking in the Address ranges map.
1834 // There are corner cases where this finds a
1835 // valid entry. It's unclear if this is right or wrong, but
1836 // for now do as dsymutil.
1837 // FIXME: Understand exactly what cases this addresses and
1838 // potentially remove it along with the Ranges map.
1839 if (std::optional<std::pair<AddressRange, int64_t>> Range =
1840 Ranges.getRangeValueThatContains(Row.Address.Address))
1841 StopAddress = Row.Address.Address + (*Range).second;
1842 }
1843 }
1844 if (StopAddress != -1ULL && !Seq.empty()) {
1845 // Insert end sequence row with the computed end address, but
1846 // the same line as the previous one.
1847 auto NextLine = Seq.back();
1848 NextLine.Address.Address = StopAddress;
1849 NextLine.EndSequence = 1;
1850 NextLine.PrologueEnd = 0;
1851 NextLine.BasicBlock = 0;
1852 NextLine.EpilogueBegin = 0;
1853 Seq.push_back(NextLine);
1854 insertLineSequence(Seq, NewRows);
1855 }
1856
1857 if (!CurrRange)
1858 continue;
1859 }
1860
1861 // Ignore empty sequences.
1862 if (Row.EndSequence && Seq.empty())
1863 continue;
1864
1865 // Relocate row address and add it to the current sequence.
1866 Row.Address.Address += CurrRange->second;
1867 Seq.emplace_back(Row);
1868
1869 if (Row.EndSequence)
1870 insertLineSequence(Seq, NewRows);
1871 }
1872
1873 // Finished extracting, now emit the line tables.
1874 // FIXME: LLVM hard-codes its prologue values. We just copy the
1875 // prologue over and that works because we act as both producer and
1876 // consumer. It would be nicer to have a real configurable line
1877 // table emitter.
1878 if (LineTable.Prologue.getVersion() < 2 ||
1879 LineTable.Prologue.getVersion() > 5 ||
1880 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
1881 LineTable.Prologue.OpcodeBase > 13)
1882 reportWarning("line table parameters mismatch. Cannot emit.", File);
1883 else {
1884 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
1885 // DWARF v5 has an extra 2 bytes of information before the header_length
1886 // field.
1887 if (LineTable.Prologue.getVersion() == 5)
1888 PrologueEnd += 2;
1889 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
1890 MCDwarfLineTableParams Params;
1891 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
1892 Params.DWARF2LineBase = LineTable.Prologue.LineBase;
1893 Params.DWARF2LineRange = LineTable.Prologue.LineRange;
1894 TheDwarfEmitter->emitLineTableForUnit(
1895 Params, LineData.slice(*StmtList + 4, PrologueEnd),
1896 LineTable.Prologue.MinInstLength, NewRows,
1897 Unit.getOrigUnit().getAddressByteSize());
1898 }
1899 }
1900
rememberUnitForMacroOffset(CompileUnit & Unit)1901 void DWARFLinker::DIECloner::rememberUnitForMacroOffset(CompileUnit &Unit) {
1902 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1903 DWARFDie OrigUnitDie = OrigUnit.getUnitDIE();
1904
1905 if (std::optional<uint64_t> MacroAttr =
1906 dwarf::toSectionOffset(OrigUnitDie.find(dwarf::DW_AT_macros))) {
1907 UnitMacroMap.insert(std::make_pair(*MacroAttr, &Unit));
1908 return;
1909 }
1910
1911 if (std::optional<uint64_t> MacroAttr =
1912 dwarf::toSectionOffset(OrigUnitDie.find(dwarf::DW_AT_macro_info))) {
1913 UnitMacroMap.insert(std::make_pair(*MacroAttr, &Unit));
1914 return;
1915 }
1916 }
1917
emitAcceleratorEntriesForUnit(CompileUnit & Unit)1918 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
1919 for (DwarfLinkerAccelTableKind AccelTableKind : Options.AccelTables) {
1920 switch (AccelTableKind) {
1921 case DwarfLinkerAccelTableKind::Apple: {
1922 // Add namespaces.
1923 for (const auto &Namespace : Unit.getNamespaces())
1924 AppleNamespaces.addName(Namespace.Name, Namespace.Die->getOffset() +
1925 Unit.getStartOffset());
1926 // Add names.
1927 for (const auto &Pubname : Unit.getPubnames())
1928 AppleNames.addName(Pubname.Name,
1929 Pubname.Die->getOffset() + Unit.getStartOffset());
1930 // Add types.
1931 for (const auto &Pubtype : Unit.getPubtypes())
1932 AppleTypes.addName(
1933 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
1934 Pubtype.Die->getTag(),
1935 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
1936 : 0,
1937 Pubtype.QualifiedNameHash);
1938 // Add ObjC names.
1939 for (const auto &ObjC : Unit.getObjC())
1940 AppleObjc.addName(ObjC.Name,
1941 ObjC.Die->getOffset() + Unit.getStartOffset());
1942 } break;
1943 case DwarfLinkerAccelTableKind::Pub: {
1944 TheDwarfEmitter->emitPubNamesForUnit(Unit);
1945 TheDwarfEmitter->emitPubTypesForUnit(Unit);
1946 } break;
1947 case DwarfLinkerAccelTableKind::DebugNames: {
1948 for (const auto &Namespace : Unit.getNamespaces())
1949 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
1950 Namespace.Die->getTag(), Unit.getUniqueID());
1951 for (const auto &Pubname : Unit.getPubnames())
1952 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
1953 Pubname.Die->getTag(), Unit.getUniqueID());
1954 for (const auto &Pubtype : Unit.getPubtypes())
1955 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
1956 Pubtype.Die->getTag(), Unit.getUniqueID());
1957 } break;
1958 }
1959 }
1960 }
1961
1962 /// Read the frame info stored in the object, and emit the
1963 /// patched frame descriptions for the resulting file.
1964 ///
1965 /// This is actually pretty easy as the data of the CIEs and FDEs can
1966 /// be considered as black boxes and moved as is. The only thing to do
1967 /// is to patch the addresses in the headers.
patchFrameInfoForObject(const DWARFFile & File,RangesTy & Ranges,DWARFContext & OrigDwarf,unsigned AddrSize)1968 void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File,
1969 RangesTy &Ranges,
1970 DWARFContext &OrigDwarf,
1971 unsigned AddrSize) {
1972 StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
1973 if (FrameData.empty())
1974 return;
1975
1976 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
1977 uint64_t InputOffset = 0;
1978
1979 // Store the data of the CIEs defined in this object, keyed by their
1980 // offsets.
1981 DenseMap<uint64_t, StringRef> LocalCIES;
1982
1983 while (Data.isValidOffset(InputOffset)) {
1984 uint64_t EntryOffset = InputOffset;
1985 uint32_t InitialLength = Data.getU32(&InputOffset);
1986 if (InitialLength == 0xFFFFFFFF)
1987 return reportWarning("Dwarf64 bits no supported", File);
1988
1989 uint32_t CIEId = Data.getU32(&InputOffset);
1990 if (CIEId == 0xFFFFFFFF) {
1991 // This is a CIE, store it.
1992 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
1993 LocalCIES[EntryOffset] = CIEData;
1994 // The -4 is to account for the CIEId we just read.
1995 InputOffset += InitialLength - 4;
1996 continue;
1997 }
1998
1999 uint64_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
2000
2001 // Some compilers seem to emit frame info that doesn't start at
2002 // the function entry point, thus we can't just lookup the address
2003 // in the debug map. Use the AddressInfo's range map to see if the FDE
2004 // describes something that we can relocate.
2005 std::optional<std::pair<AddressRange, int64_t>> Range =
2006 Ranges.getRangeValueThatContains(Loc);
2007 if (!Range) {
2008 // The +4 is to account for the size of the InitialLength field itself.
2009 InputOffset = EntryOffset + InitialLength + 4;
2010 continue;
2011 }
2012
2013 // This is an FDE, and we have a mapping.
2014 // Have we already emitted a corresponding CIE?
2015 StringRef CIEData = LocalCIES[CIEId];
2016 if (CIEData.empty())
2017 return reportWarning("Inconsistent debug_frame content. Dropping.", File);
2018
2019 // Look if we already emitted a CIE that corresponds to the
2020 // referenced one (the CIE data is the key of that lookup).
2021 auto IteratorInserted = EmittedCIEs.insert(
2022 std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
2023 // If there is no CIE yet for this ID, emit it.
2024 if (IteratorInserted.second) {
2025 LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
2026 IteratorInserted.first->getValue() = LastCIEOffset;
2027 TheDwarfEmitter->emitCIE(CIEData);
2028 }
2029
2030 // Emit the FDE with updated address and CIE pointer.
2031 // (4 + AddrSize) is the size of the CIEId + initial_location
2032 // fields that will get reconstructed by emitFDE().
2033 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
2034 TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize,
2035 Loc + Range->second,
2036 FrameData.substr(InputOffset, FDERemainingBytes));
2037 InputOffset += FDERemainingBytes;
2038 }
2039 }
2040
hashFullyQualifiedName(DWARFDie DIE,CompileUnit & U,const DWARFFile & File,int ChildRecurseDepth)2041 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
2042 CompileUnit &U,
2043 const DWARFFile &File,
2044 int ChildRecurseDepth) {
2045 const char *Name = nullptr;
2046 DWARFUnit *OrigUnit = &U.getOrigUnit();
2047 CompileUnit *CU = &U;
2048 std::optional<DWARFFormValue> Ref;
2049
2050 while (true) {
2051 if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
2052 Name = CurrentName;
2053
2054 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
2055 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
2056 break;
2057
2058 if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
2059 break;
2060
2061 CompileUnit *RefCU;
2062 if (auto RefDIE =
2063 Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
2064 CU = RefCU;
2065 OrigUnit = &RefCU->getOrigUnit();
2066 DIE = RefDIE;
2067 }
2068 }
2069
2070 unsigned Idx = OrigUnit->getDIEIndex(DIE);
2071 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
2072 Name = "(anonymous namespace)";
2073
2074 if (CU->getInfo(Idx).ParentIdx == 0 ||
2075 // FIXME: dsymutil-classic compatibility. Ignore modules.
2076 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
2077 dwarf::DW_TAG_module)
2078 return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
2079
2080 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
2081 return djbHash(
2082 (Name ? Name : ""),
2083 djbHash((Name ? "::" : ""),
2084 hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
2085 }
2086
getDwoId(const DWARFDie & CUDie)2087 static uint64_t getDwoId(const DWARFDie &CUDie) {
2088 auto DwoId = dwarf::toUnsigned(
2089 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
2090 if (DwoId)
2091 return *DwoId;
2092 return 0;
2093 }
2094
remapPath(StringRef Path,const objectPrefixMap & ObjectPrefixMap)2095 static std::string remapPath(StringRef Path,
2096 const objectPrefixMap &ObjectPrefixMap) {
2097 if (ObjectPrefixMap.empty())
2098 return Path.str();
2099
2100 SmallString<256> p = Path;
2101 for (const auto &Entry : ObjectPrefixMap)
2102 if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
2103 break;
2104 return p.str().str();
2105 }
2106
getPCMFile(const DWARFDie & CUDie,objectPrefixMap * ObjectPrefixMap)2107 static std::string getPCMFile(const DWARFDie &CUDie,
2108 objectPrefixMap *ObjectPrefixMap) {
2109 std::string PCMFile = dwarf::toString(
2110 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2111
2112 if (PCMFile.empty())
2113 return PCMFile;
2114
2115 if (ObjectPrefixMap)
2116 PCMFile = remapPath(PCMFile, *ObjectPrefixMap);
2117
2118 return PCMFile;
2119 }
2120
isClangModuleRef(const DWARFDie & CUDie,std::string & PCMFile,LinkContext & Context,unsigned Indent,bool Quiet)2121 std::pair<bool, bool> DWARFLinker::isClangModuleRef(const DWARFDie &CUDie,
2122 std::string &PCMFile,
2123 LinkContext &Context,
2124 unsigned Indent,
2125 bool Quiet) {
2126 if (PCMFile.empty())
2127 return std::make_pair(false, false);
2128
2129 // Clang module DWARF skeleton CUs abuse this for the path to the module.
2130 uint64_t DwoId = getDwoId(CUDie);
2131
2132 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2133 if (Name.empty()) {
2134 if (!Quiet)
2135 reportWarning("Anonymous module skeleton CU for " + PCMFile,
2136 Context.File);
2137 return std::make_pair(true, true);
2138 }
2139
2140 if (!Quiet && Options.Verbose) {
2141 outs().indent(Indent);
2142 outs() << "Found clang module reference " << PCMFile;
2143 }
2144
2145 auto Cached = ClangModules.find(PCMFile);
2146 if (Cached != ClangModules.end()) {
2147 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2148 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2149 // ASTFileSignatures will change randomly when a module is rebuilt.
2150 if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2151 reportWarning(Twine("hash mismatch: this object file was built against a "
2152 "different version of the module ") +
2153 PCMFile,
2154 Context.File);
2155 if (!Quiet && Options.Verbose)
2156 outs() << " [cached].\n";
2157 return std::make_pair(true, true);
2158 }
2159
2160 return std::make_pair(true, false);
2161 }
2162
registerModuleReference(const DWARFDie & CUDie,LinkContext & Context,objFileLoader Loader,CompileUnitHandler OnCUDieLoaded,unsigned Indent)2163 bool DWARFLinker::registerModuleReference(const DWARFDie &CUDie,
2164 LinkContext &Context,
2165 objFileLoader Loader,
2166 CompileUnitHandler OnCUDieLoaded,
2167 unsigned Indent) {
2168 std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap);
2169 std::pair<bool, bool> IsClangModuleRef =
2170 isClangModuleRef(CUDie, PCMFile, Context, Indent, false);
2171
2172 if (!IsClangModuleRef.first)
2173 return false;
2174
2175 if (IsClangModuleRef.second)
2176 return true;
2177
2178 if (Options.Verbose)
2179 outs() << " ...\n";
2180
2181 // Cyclic dependencies are disallowed by Clang, but we still
2182 // shouldn't run into an infinite loop, so mark it as processed now.
2183 ClangModules.insert({PCMFile, getDwoId(CUDie)});
2184
2185 if (Error E = loadClangModule(Loader, CUDie, PCMFile, Context, OnCUDieLoaded,
2186 Indent + 2)) {
2187 consumeError(std::move(E));
2188 return false;
2189 }
2190 return true;
2191 }
2192
loadClangModule(objFileLoader Loader,const DWARFDie & CUDie,const std::string & PCMFile,LinkContext & Context,CompileUnitHandler OnCUDieLoaded,unsigned Indent)2193 Error DWARFLinker::loadClangModule(objFileLoader Loader, const DWARFDie &CUDie,
2194 const std::string &PCMFile,
2195 LinkContext &Context,
2196 CompileUnitHandler OnCUDieLoaded,
2197 unsigned Indent) {
2198
2199 uint64_t DwoId = getDwoId(CUDie);
2200 std::string ModuleName = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2201
2202 /// Using a SmallString<0> because loadClangModule() is recursive.
2203 SmallString<0> Path(Options.PrependPath);
2204 if (sys::path::is_relative(PCMFile))
2205 resolveRelativeObjectPath(Path, CUDie);
2206 sys::path::append(Path, PCMFile);
2207 // Don't use the cached binary holder because we have no thread-safety
2208 // guarantee and the lifetime is limited.
2209
2210 if (Loader == nullptr) {
2211 reportError("Could not load clang module: loader is not specified.\n",
2212 Context.File);
2213 return Error::success();
2214 }
2215
2216 auto ErrOrObj = Loader(Context.File.FileName, Path);
2217 if (!ErrOrObj)
2218 return Error::success();
2219
2220 std::unique_ptr<CompileUnit> Unit;
2221 for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
2222 OnCUDieLoaded(*CU);
2223 // Recursively get all modules imported by this one.
2224 auto ChildCUDie = CU->getUnitDIE();
2225 if (!ChildCUDie)
2226 continue;
2227 if (!registerModuleReference(ChildCUDie, Context, Loader, OnCUDieLoaded,
2228 Indent)) {
2229 if (Unit) {
2230 std::string Err =
2231 (PCMFile +
2232 ": Clang modules are expected to have exactly 1 compile unit.\n");
2233 reportError(Err, Context.File);
2234 return make_error<StringError>(Err, inconvertibleErrorCode());
2235 }
2236 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2237 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2238 // ASTFileSignatures will change randomly when a module is rebuilt.
2239 uint64_t PCMDwoId = getDwoId(ChildCUDie);
2240 if (PCMDwoId != DwoId) {
2241 if (Options.Verbose)
2242 reportWarning(
2243 Twine("hash mismatch: this object file was built against a "
2244 "different version of the module ") +
2245 PCMFile,
2246 Context.File);
2247 // Update the cache entry with the DwoId of the module loaded from disk.
2248 ClangModules[PCMFile] = PCMDwoId;
2249 }
2250
2251 // Add this module.
2252 Unit = std::make_unique<CompileUnit>(*CU, UniqueUnitID++, !Options.NoODR,
2253 ModuleName);
2254 }
2255 }
2256
2257 if (Unit)
2258 Context.ModuleUnits.emplace_back(RefModuleUnit{*ErrOrObj, std::move(Unit)});
2259
2260 return Error::success();
2261 }
2262
cloneAllCompileUnits(DWARFContext & DwarfContext,const DWARFFile & File,OffsetsStringPool & StringPool,bool IsLittleEndian)2263 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
2264 DWARFContext &DwarfContext, const DWARFFile &File,
2265 OffsetsStringPool &StringPool, bool IsLittleEndian) {
2266 uint64_t OutputDebugInfoSize =
2267 Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize();
2268 const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
2269
2270 for (auto &CurrentUnit : CompileUnits) {
2271 const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2272 const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11;
2273 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2274 CurrentUnit->setStartOffset(OutputDebugInfoSize);
2275 if (!InputDIE) {
2276 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2277 continue;
2278 }
2279 if (CurrentUnit->getInfo(0).Keep) {
2280 // Clone the InputDIE into your Unit DIE in our compile unit since it
2281 // already has a DIE inside of it.
2282 CurrentUnit->createOutputDIE();
2283 rememberUnitForMacroOffset(*CurrentUnit);
2284 cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */,
2285 UnitHeaderSize, 0, IsLittleEndian,
2286 CurrentUnit->getOutputUnitDIE());
2287 }
2288
2289 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2290
2291 if (!Linker.Options.NoOutput) {
2292 assert(Emitter);
2293
2294 if (LLVM_LIKELY(!Linker.Options.Update) ||
2295 Linker.needToTranslateStrings())
2296 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File);
2297
2298 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2299
2300 if (LLVM_UNLIKELY(Linker.Options.Update))
2301 continue;
2302
2303 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File);
2304 auto ProcessExpr = [&](StringRef Bytes,
2305 SmallVectorImpl<uint8_t> &Buffer) {
2306 DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
2307 DataExtractor Data(Bytes, IsLittleEndian,
2308 OrigUnit.getAddressByteSize());
2309 cloneExpression(Data,
2310 DWARFExpression(Data, OrigUnit.getAddressByteSize(),
2311 OrigUnit.getFormParams().Format),
2312 File, *CurrentUnit, Buffer);
2313 };
2314 Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr);
2315 }
2316 }
2317
2318 if (!Linker.Options.NoOutput) {
2319 assert(Emitter);
2320 // Emit macro tables.
2321 Emitter->emitMacroTables(File.Dwarf, UnitMacroMap, StringPool);
2322
2323 // Emit all the compile unit's debug information.
2324 for (auto &CurrentUnit : CompileUnits) {
2325 if (LLVM_LIKELY(!Linker.Options.Update))
2326 Linker.generateUnitRanges(*CurrentUnit);
2327
2328 CurrentUnit->fixupForwardReferences();
2329
2330 if (!CurrentUnit->getOutputUnitDIE())
2331 continue;
2332
2333 unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2334
2335 assert(Emitter->getDebugInfoSectionSize() ==
2336 CurrentUnit->getStartOffset());
2337 Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion);
2338 Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
2339 assert(Emitter->getDebugInfoSectionSize() ==
2340 CurrentUnit->computeNextUnitOffset(DwarfVersion));
2341 }
2342 }
2343
2344 return OutputDebugInfoSize - StartOutputDebugInfoSize;
2345 }
2346
emitPaperTrailWarnings(const DWARFFile & File,OffsetsStringPool & StringPool)2347 bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File,
2348 OffsetsStringPool &StringPool) {
2349
2350 if (File.Warnings.empty())
2351 return false;
2352
2353 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2354 CUDie->setOffset(11);
2355 StringRef Producer;
2356 StringRef WarningHeader;
2357
2358 switch (DwarfLinkerClientID) {
2359 case DwarfLinkerClient::Dsymutil:
2360 Producer = StringPool.internString("dsymutil");
2361 WarningHeader = "dsymutil_warning";
2362 break;
2363
2364 default:
2365 Producer = StringPool.internString("dwarfopt");
2366 WarningHeader = "dwarfopt_warning";
2367 break;
2368 }
2369
2370 StringRef FileName = StringPool.internString(File.FileName);
2371 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
2372 DIEInteger(StringPool.getStringOffset(Producer)));
2373 DIEBlock *String = new (DIEAlloc) DIEBlock();
2374 DIEBlocks.push_back(String);
2375 for (auto &C : FileName)
2376 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2377 DIEInteger(C));
2378 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2379 DIEInteger(0));
2380
2381 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2382 for (const auto &Warning : File.Warnings) {
2383 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2384 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2385 DIEInteger(StringPool.getStringOffset(WarningHeader)));
2386 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2387 DIEInteger(1));
2388 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2389 DIEInteger(StringPool.getStringOffset(Warning)));
2390 }
2391 unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 +
2392 File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */;
2393 DIEAbbrev Abbrev = CUDie->generateAbbrev();
2394 assignAbbrev(Abbrev);
2395 CUDie->setAbbrevNumber(Abbrev.getNumber());
2396 Size += getULEB128Size(Abbrev.getNumber());
2397 // Abbreviation ordering needed for classic compatibility.
2398 for (auto &Child : CUDie->children()) {
2399 Abbrev = Child.generateAbbrev();
2400 assignAbbrev(Abbrev);
2401 Child.setAbbrevNumber(Abbrev.getNumber());
2402 Size += getULEB128Size(Abbrev.getNumber());
2403 }
2404 CUDie->setSize(Size);
2405 TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie);
2406
2407 return true;
2408 }
2409
copyInvariantDebugSection(DWARFContext & Dwarf)2410 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
2411 if (!needToTranslateStrings())
2412 TheDwarfEmitter->emitSectionContents(
2413 Dwarf.getDWARFObj().getLineSection().Data, "debug_line");
2414 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
2415 "debug_loc");
2416 TheDwarfEmitter->emitSectionContents(
2417 Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges");
2418 TheDwarfEmitter->emitSectionContents(
2419 Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame");
2420 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
2421 "debug_aranges");
2422 }
2423
addObjectFile(DWARFFile & File,objFileLoader Loader,CompileUnitHandler OnCUDieLoaded)2424 void DWARFLinker::addObjectFile(DWARFFile &File, objFileLoader Loader,
2425 CompileUnitHandler OnCUDieLoaded) {
2426 ObjectContexts.emplace_back(LinkContext(File));
2427
2428 if (ObjectContexts.back().File.Dwarf) {
2429 for (const std::unique_ptr<DWARFUnit> &CU :
2430 ObjectContexts.back().File.Dwarf->compile_units()) {
2431 DWARFDie CUDie = CU->getUnitDIE();
2432
2433 if (!CUDie)
2434 continue;
2435
2436 OnCUDieLoaded(*CU);
2437
2438 if (!LLVM_UNLIKELY(Options.Update))
2439 registerModuleReference(CUDie, ObjectContexts.back(), Loader,
2440 OnCUDieLoaded);
2441 }
2442 }
2443 }
2444
link()2445 Error DWARFLinker::link() {
2446 assert(Options.NoOutput || TheDwarfEmitter);
2447 assert((Options.TargetDWARFVersion != 0) &&
2448 "TargetDWARFVersion should be set");
2449
2450 // First populate the data structure we need for each iteration of the
2451 // parallel loop.
2452 unsigned NumObjects = ObjectContexts.size();
2453
2454 // This Dwarf string pool which is used for emission. It must be used
2455 // serially as the order of calling getStringOffset matters for
2456 // reproducibility.
2457 OffsetsStringPool OffsetsStringPool(StringsTranslator, true);
2458
2459 // ODR Contexts for the optimize.
2460 DeclContextTree ODRContexts;
2461
2462 for (LinkContext &OptContext : ObjectContexts) {
2463 if (Options.Verbose) {
2464 if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil)
2465 outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
2466 else
2467 outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n";
2468 }
2469
2470 if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool))
2471 continue;
2472
2473 if (!OptContext.File.Dwarf)
2474 continue;
2475
2476 if (Options.VerifyInputDWARF)
2477 verify(OptContext.File);
2478
2479 // Look for relocations that correspond to address map entries.
2480
2481 // there was findvalidrelocations previously ... probably we need to gather
2482 // info here
2483 if (LLVM_LIKELY(!Options.Update) &&
2484 !OptContext.File.Addresses->hasValidRelocs()) {
2485 if (Options.Verbose)
2486 outs() << "No valid relocations found. Skipping.\n";
2487
2488 // Set "Skip" flag as a signal to other loops that we should not
2489 // process this iteration.
2490 OptContext.Skip = true;
2491 continue;
2492 }
2493
2494 // Setup access to the debug info.
2495 if (!OptContext.File.Dwarf)
2496 continue;
2497
2498 // Check whether type units are presented.
2499 if (!OptContext.File.Dwarf->types_section_units().empty()) {
2500 reportWarning("type units are not currently supported: file will "
2501 "be skipped",
2502 OptContext.File);
2503 OptContext.Skip = true;
2504 continue;
2505 }
2506
2507 // Check for unsupported sections. Following sections can be referenced
2508 // from .debug_info section. Current DWARFLinker implementation does not
2509 // support or update references to these tables. Thus we report warning
2510 // and skip corresponding object file.
2511 if (!OptContext.File.Dwarf->getDWARFObj()
2512 .getRnglistsSection()
2513 .Data.empty()) {
2514 reportWarning("'.debug_rnglists' is not currently supported: file "
2515 "will be skipped",
2516 OptContext.File);
2517 OptContext.Skip = true;
2518 continue;
2519 }
2520
2521 if (!OptContext.File.Dwarf->getDWARFObj()
2522 .getLoclistsSection()
2523 .Data.empty()) {
2524 reportWarning("'.debug_loclists' is not currently supported: file "
2525 "will be skipped",
2526 OptContext.File);
2527 OptContext.Skip = true;
2528 continue;
2529 }
2530
2531 // In a first phase, just read in the debug info and load all clang modules.
2532 OptContext.CompileUnits.reserve(
2533 OptContext.File.Dwarf->getNumCompileUnits());
2534
2535 for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
2536 auto CUDie = CU->getUnitDIE(false);
2537 if (Options.Verbose) {
2538 outs() << "Input compilation unit:";
2539 DIDumpOptions DumpOpts;
2540 DumpOpts.ChildRecurseDepth = 0;
2541 DumpOpts.Verbose = Options.Verbose;
2542 CUDie.dump(outs(), 0, DumpOpts);
2543 }
2544 }
2545
2546 for (auto &CU : OptContext.ModuleUnits) {
2547 if (Error Err =
2548 cloneModuleUnit(OptContext, CU, ODRContexts, OffsetsStringPool))
2549 reportWarning(toString(std::move(Err)), CU.File);
2550 }
2551 }
2552
2553 // At this point we know how much data we have emitted. We use this value to
2554 // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2555 // is already emitted, without being affected by canonical die offsets set
2556 // later. This prevents undeterminism when analyze and clone execute
2557 // concurrently, as clone set the canonical DIE offset and analyze reads it.
2558 const uint64_t ModulesEndOffset =
2559 Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize();
2560
2561 // These variables manage the list of processed object files.
2562 // The mutex and condition variable are to ensure that this is thread safe.
2563 std::mutex ProcessedFilesMutex;
2564 std::condition_variable ProcessedFilesConditionVariable;
2565 BitVector ProcessedFiles(NumObjects, false);
2566
2567 // Analyzing the context info is particularly expensive so it is executed in
2568 // parallel with emitting the previous compile unit.
2569 auto AnalyzeLambda = [&](size_t I) {
2570 auto &Context = ObjectContexts[I];
2571
2572 if (Context.Skip || !Context.File.Dwarf)
2573 return;
2574
2575 for (const auto &CU : Context.File.Dwarf->compile_units()) {
2576 // The !isClangModuleRef condition effectively skips over fully resolved
2577 // skeleton units.
2578 auto CUDie = CU->getUnitDIE();
2579 std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap);
2580
2581 if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2582 !isClangModuleRef(CUDie, PCMFile, Context, 0, true).first) {
2583 Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
2584 *CU, UniqueUnitID++, !Options.NoODR && !Options.Update, ""));
2585 }
2586 }
2587
2588 // Now build the DIE parent links that we will use during the next phase.
2589 for (auto &CurrentUnit : Context.CompileUnits) {
2590 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2591 if (!CUDie)
2592 continue;
2593 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2594 *CurrentUnit, &ODRContexts.getRoot(), ODRContexts,
2595 ModulesEndOffset, Options.ParseableSwiftInterfaces,
2596 [&](const Twine &Warning, const DWARFDie &DIE) {
2597 reportWarning(Warning, Context.File, &DIE);
2598 });
2599 }
2600 };
2601
2602 // For each object file map how many bytes were emitted.
2603 StringMap<DebugInfoSize> SizeByObject;
2604
2605 // And then the remaining work in serial again.
2606 // Note, although this loop runs in serial, it can run in parallel with
2607 // the analyzeContextInfo loop so long as we process files with indices >=
2608 // than those processed by analyzeContextInfo.
2609 auto CloneLambda = [&](size_t I) {
2610 auto &OptContext = ObjectContexts[I];
2611 if (OptContext.Skip || !OptContext.File.Dwarf)
2612 return;
2613
2614 // Then mark all the DIEs that need to be present in the generated output
2615 // and collect some information about them.
2616 // Note that this loop can not be merged with the previous one because
2617 // cross-cu references require the ParentIdx to be setup for every CU in
2618 // the object file before calling this.
2619 if (LLVM_UNLIKELY(Options.Update)) {
2620 for (auto &CurrentUnit : OptContext.CompileUnits)
2621 CurrentUnit->markEverythingAsKept();
2622 copyInvariantDebugSection(*OptContext.File.Dwarf);
2623 } else {
2624 for (auto &CurrentUnit : OptContext.CompileUnits) {
2625 lookForDIEsToKeep(*OptContext.File.Addresses,
2626 OptContext.File.Addresses->getValidAddressRanges(),
2627 OptContext.CompileUnits,
2628 CurrentUnit->getOrigUnit().getUnitDIE(),
2629 OptContext.File, *CurrentUnit, 0);
2630 #ifndef NDEBUG
2631 verifyKeepChain(*CurrentUnit);
2632 #endif
2633 }
2634 }
2635
2636 // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2637 // array again (in the same way findValidRelocsInDebugInfo() did). We
2638 // need to reset the NextValidReloc index to the beginning.
2639 if (OptContext.File.Addresses->hasValidRelocs() ||
2640 LLVM_UNLIKELY(Options.Update)) {
2641 SizeByObject[OptContext.File.FileName].Input =
2642 getDebugInfoSize(*OptContext.File.Dwarf);
2643 SizeByObject[OptContext.File.FileName].Output =
2644 DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
2645 OptContext.CompileUnits, Options.Update)
2646 .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
2647 OffsetsStringPool,
2648 OptContext.File.Dwarf->isLittleEndian());
2649 }
2650 if (!Options.NoOutput && !OptContext.CompileUnits.empty() &&
2651 LLVM_LIKELY(!Options.Update))
2652 patchFrameInfoForObject(
2653 OptContext.File, OptContext.File.Addresses->getValidAddressRanges(),
2654 *OptContext.File.Dwarf,
2655 OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2656
2657 // Clean-up before starting working on the next object.
2658 cleanupAuxiliarryData(OptContext);
2659 };
2660
2661 auto EmitLambda = [&]() {
2662 // Emit everything that's global.
2663 if (!Options.NoOutput) {
2664 TheDwarfEmitter->emitAbbrevs(Abbreviations, Options.TargetDWARFVersion);
2665 TheDwarfEmitter->emitStrings(OffsetsStringPool);
2666 for (DwarfLinkerAccelTableKind TableKind : Options.AccelTables) {
2667 switch (TableKind) {
2668 case DwarfLinkerAccelTableKind::Apple:
2669 TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
2670 TheDwarfEmitter->emitAppleNames(AppleNames);
2671 TheDwarfEmitter->emitAppleTypes(AppleTypes);
2672 TheDwarfEmitter->emitAppleObjc(AppleObjc);
2673 break;
2674 case DwarfLinkerAccelTableKind::Pub:
2675 // Already emitted by emitAcceleratorEntriesForUnit.
2676 // Already emitted by emitAcceleratorEntriesForUnit.
2677 break;
2678 case DwarfLinkerAccelTableKind::DebugNames:
2679 TheDwarfEmitter->emitDebugNames(DebugNames);
2680 break;
2681 }
2682 }
2683 }
2684 };
2685
2686 auto AnalyzeAll = [&]() {
2687 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2688 AnalyzeLambda(I);
2689
2690 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2691 ProcessedFiles.set(I);
2692 ProcessedFilesConditionVariable.notify_one();
2693 }
2694 };
2695
2696 auto CloneAll = [&]() {
2697 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2698 {
2699 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2700 if (!ProcessedFiles[I]) {
2701 ProcessedFilesConditionVariable.wait(
2702 LockGuard, [&]() { return ProcessedFiles[I]; });
2703 }
2704 }
2705
2706 CloneLambda(I);
2707 }
2708 EmitLambda();
2709 };
2710
2711 // To limit memory usage in the single threaded case, analyze and clone are
2712 // run sequentially so the OptContext is freed after processing each object
2713 // in endDebugObject.
2714 if (Options.Threads == 1) {
2715 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2716 AnalyzeLambda(I);
2717 CloneLambda(I);
2718 }
2719 EmitLambda();
2720 } else {
2721 ThreadPool Pool(hardware_concurrency(2));
2722 Pool.async(AnalyzeAll);
2723 Pool.async(CloneAll);
2724 Pool.wait();
2725 }
2726
2727 if (Options.Statistics) {
2728 // Create a vector sorted in descending order by output size.
2729 std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
2730 for (auto &E : SizeByObject)
2731 Sorted.emplace_back(E.first(), E.second);
2732 llvm::sort(Sorted, [](auto &LHS, auto &RHS) {
2733 return LHS.second.Output > RHS.second.Output;
2734 });
2735
2736 auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
2737 const float Difference = Output - Input;
2738 const float Sum = Input + Output;
2739 if (Sum == 0)
2740 return 0;
2741 return (Difference / (Sum / 2));
2742 };
2743
2744 int64_t InputTotal = 0;
2745 int64_t OutputTotal = 0;
2746 const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n";
2747
2748 // Print header.
2749 outs() << ".debug_info section size (in bytes)\n";
2750 outs() << "----------------------------------------------------------------"
2751 "---------------\n";
2752 outs() << "Filename Object "
2753 " dSYM Change\n";
2754 outs() << "----------------------------------------------------------------"
2755 "---------------\n";
2756
2757 // Print body.
2758 for (auto &E : Sorted) {
2759 InputTotal += E.second.Input;
2760 OutputTotal += E.second.Output;
2761 llvm::outs() << formatv(
2762 FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
2763 E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
2764 }
2765 // Print total and footer.
2766 outs() << "----------------------------------------------------------------"
2767 "---------------\n";
2768 llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
2769 ComputePercentange(InputTotal, OutputTotal));
2770 outs() << "----------------------------------------------------------------"
2771 "---------------\n\n";
2772 }
2773
2774 return Error::success();
2775 }
2776
cloneModuleUnit(LinkContext & Context,RefModuleUnit & Unit,DeclContextTree & ODRContexts,OffsetsStringPool & OffsetsStringPool,unsigned Indent)2777 Error DWARFLinker::cloneModuleUnit(LinkContext &Context, RefModuleUnit &Unit,
2778 DeclContextTree &ODRContexts,
2779 OffsetsStringPool &OffsetsStringPool,
2780 unsigned Indent) {
2781 assert(Unit.Unit.get() != nullptr);
2782
2783 if (!Unit.Unit->getOrigUnit().getUnitDIE().hasChildren())
2784 return Error::success();
2785
2786 if (Options.Verbose) {
2787 outs().indent(Indent);
2788 outs() << "cloning .debug_info from " << Unit.File.FileName << "\n";
2789 }
2790
2791 // Analyze context for the module.
2792 analyzeContextInfo(Unit.Unit->getOrigUnit().getUnitDIE(), 0, *(Unit.Unit),
2793 &ODRContexts.getRoot(), ODRContexts, 0,
2794 Options.ParseableSwiftInterfaces,
2795 [&](const Twine &Warning, const DWARFDie &DIE) {
2796 reportWarning(Warning, Context.File, &DIE);
2797 });
2798 // Keep everything.
2799 Unit.Unit->markEverythingAsKept();
2800
2801 // Clone unit.
2802 UnitListTy CompileUnits;
2803 CompileUnits.emplace_back(std::move(Unit.Unit));
2804 assert(TheDwarfEmitter);
2805 DIECloner(*this, TheDwarfEmitter, Unit.File, DIEAlloc, CompileUnits,
2806 Options.Update)
2807 .cloneAllCompileUnits(*Unit.File.Dwarf, Unit.File, OffsetsStringPool,
2808 Unit.File.Dwarf->isLittleEndian());
2809 return Error::success();
2810 }
2811
verify(const DWARFFile & File)2812 bool DWARFLinker::verify(const DWARFFile &File) {
2813 assert(File.Dwarf);
2814
2815 DIDumpOptions DumpOpts;
2816 if (!File.Dwarf->verify(llvm::outs(), DumpOpts.noImplicitRecursion())) {
2817 reportWarning("input verification failed", File);
2818 return false;
2819 }
2820 return true;
2821 }
2822
2823 } // namespace llvm
2824