1 //===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines the clang::Preprocessor interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LEX_PREPROCESSOR_H 15 #define LLVM_CLANG_LEX_PREPROCESSOR_H 16 17 #include "clang/Basic/Diagnostic.h" 18 #include "clang/Basic/DiagnosticIDs.h" 19 #include "clang/Basic/IdentifierTable.h" 20 #include "clang/Basic/LLVM.h" 21 #include "clang/Basic/LangOptions.h" 22 #include "clang/Basic/Module.h" 23 #include "clang/Basic/SourceLocation.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TokenKinds.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/Lexer.h" 28 #include "clang/Lex/MacroInfo.h" 29 #include "clang/Lex/ModuleLoader.h" 30 #include "clang/Lex/ModuleMap.h" 31 #include "clang/Lex/PPCallbacks.h" 32 #include "clang/Lex/Token.h" 33 #include "clang/Lex/TokenLexer.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/FoldingSet.h" 37 #include "llvm/ADT/FunctionExtras.h" 38 #include "llvm/ADT/PointerUnion.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/ADT/SmallPtrSet.h" 41 #include "llvm/ADT/SmallVector.h" 42 #include "llvm/ADT/StringRef.h" 43 #include "llvm/ADT/TinyPtrVector.h" 44 #include "llvm/ADT/iterator_range.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/Registry.h" 48 #include <cassert> 49 #include <cstddef> 50 #include <cstdint> 51 #include <map> 52 #include <memory> 53 #include <optional> 54 #include <string> 55 #include <utility> 56 #include <vector> 57 58 namespace llvm { 59 60 template<unsigned InternalLen> class SmallString; 61 62 } // namespace llvm 63 64 namespace clang { 65 66 class CodeCompletionHandler; 67 class CommentHandler; 68 class DirectoryEntry; 69 class EmptylineHandler; 70 class ExternalPreprocessorSource; 71 class FileEntry; 72 class FileManager; 73 class HeaderSearch; 74 class MacroArgs; 75 class PragmaHandler; 76 class PragmaNamespace; 77 class PreprocessingRecord; 78 class PreprocessorLexer; 79 class PreprocessorOptions; 80 class ScratchBuffer; 81 class TargetInfo; 82 83 namespace Builtin { 84 class Context; 85 } 86 87 /// Stores token information for comparing actual tokens with 88 /// predefined values. Only handles simple tokens and identifiers. 89 class TokenValue { 90 tok::TokenKind Kind; 91 IdentifierInfo *II; 92 93 public: TokenValue(tok::TokenKind Kind)94 TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) { 95 assert(Kind != tok::raw_identifier && "Raw identifiers are not supported."); 96 assert(Kind != tok::identifier && 97 "Identifiers should be created by TokenValue(IdentifierInfo *)"); 98 assert(!tok::isLiteral(Kind) && "Literals are not supported."); 99 assert(!tok::isAnnotation(Kind) && "Annotations are not supported."); 100 } 101 TokenValue(IdentifierInfo * II)102 TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {} 103 104 bool operator==(const Token &Tok) const { 105 return Tok.getKind() == Kind && 106 (!II || II == Tok.getIdentifierInfo()); 107 } 108 }; 109 110 /// Context in which macro name is used. 111 enum MacroUse { 112 // other than #define or #undef 113 MU_Other = 0, 114 115 // macro name specified in #define 116 MU_Define = 1, 117 118 // macro name specified in #undef 119 MU_Undef = 2 120 }; 121 122 /// Engages in a tight little dance with the lexer to efficiently 123 /// preprocess tokens. 124 /// 125 /// Lexers know only about tokens within a single source file, and don't 126 /// know anything about preprocessor-level issues like the \#include stack, 127 /// token expansion, etc. 128 class Preprocessor { 129 friend class VAOptDefinitionContext; 130 friend class VariadicMacroScopeGuard; 131 132 llvm::unique_function<void(const clang::Token &)> OnToken; 133 std::shared_ptr<PreprocessorOptions> PPOpts; 134 DiagnosticsEngine *Diags; 135 LangOptions &LangOpts; 136 const TargetInfo *Target = nullptr; 137 const TargetInfo *AuxTarget = nullptr; 138 FileManager &FileMgr; 139 SourceManager &SourceMgr; 140 std::unique_ptr<ScratchBuffer> ScratchBuf; 141 HeaderSearch &HeaderInfo; 142 ModuleLoader &TheModuleLoader; 143 144 /// External source of macros. 145 ExternalPreprocessorSource *ExternalSource; 146 147 /// A BumpPtrAllocator object used to quickly allocate and release 148 /// objects internal to the Preprocessor. 149 llvm::BumpPtrAllocator BP; 150 151 /// Identifiers for builtin macros and other builtins. 152 IdentifierInfo *Ident__LINE__, *Ident__FILE__; // __LINE__, __FILE__ 153 IdentifierInfo *Ident__DATE__, *Ident__TIME__; // __DATE__, __TIME__ 154 IdentifierInfo *Ident__INCLUDE_LEVEL__; // __INCLUDE_LEVEL__ 155 IdentifierInfo *Ident__BASE_FILE__; // __BASE_FILE__ 156 IdentifierInfo *Ident__FILE_NAME__; // __FILE_NAME__ 157 IdentifierInfo *Ident__TIMESTAMP__; // __TIMESTAMP__ 158 IdentifierInfo *Ident__COUNTER__; // __COUNTER__ 159 IdentifierInfo *Ident_Pragma, *Ident__pragma; // _Pragma, __pragma 160 IdentifierInfo *Ident__identifier; // __identifier 161 IdentifierInfo *Ident__VA_ARGS__; // __VA_ARGS__ 162 IdentifierInfo *Ident__VA_OPT__; // __VA_OPT__ 163 IdentifierInfo *Ident__has_feature; // __has_feature 164 IdentifierInfo *Ident__has_extension; // __has_extension 165 IdentifierInfo *Ident__has_builtin; // __has_builtin 166 IdentifierInfo *Ident__has_constexpr_builtin; // __has_constexpr_builtin 167 IdentifierInfo *Ident__has_attribute; // __has_attribute 168 IdentifierInfo *Ident__has_include; // __has_include 169 IdentifierInfo *Ident__has_include_next; // __has_include_next 170 IdentifierInfo *Ident__has_warning; // __has_warning 171 IdentifierInfo *Ident__is_identifier; // __is_identifier 172 IdentifierInfo *Ident__building_module; // __building_module 173 IdentifierInfo *Ident__MODULE__; // __MODULE__ 174 IdentifierInfo *Ident__has_cpp_attribute; // __has_cpp_attribute 175 IdentifierInfo *Ident__has_c_attribute; // __has_c_attribute 176 IdentifierInfo *Ident__has_declspec; // __has_declspec_attribute 177 IdentifierInfo *Ident__is_target_arch; // __is_target_arch 178 IdentifierInfo *Ident__is_target_vendor; // __is_target_vendor 179 IdentifierInfo *Ident__is_target_os; // __is_target_os 180 IdentifierInfo *Ident__is_target_environment; // __is_target_environment 181 IdentifierInfo *Ident__is_target_variant_os; 182 IdentifierInfo *Ident__is_target_variant_environment; 183 IdentifierInfo *Ident__FLT_EVAL_METHOD__; // __FLT_EVAL_METHOD 184 185 // Weak, only valid (and set) while InMacroArgs is true. 186 Token* ArgMacro; 187 188 SourceLocation DATELoc, TIMELoc; 189 190 // FEM_UnsetOnCommandLine means that an explicit evaluation method was 191 // not specified on the command line. The target is queried to set the 192 // default evaluation method. 193 LangOptions::FPEvalMethodKind CurrentFPEvalMethod = 194 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; 195 196 // The most recent pragma location where the floating point evaluation 197 // method was modified. This is used to determine whether the 198 // 'pragma clang fp eval_method' was used whithin the current scope. 199 SourceLocation LastFPEvalPragmaLocation; 200 201 LangOptions::FPEvalMethodKind TUFPEvalMethod = 202 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine; 203 204 // Next __COUNTER__ value, starts at 0. 205 unsigned CounterValue = 0; 206 207 enum { 208 /// Maximum depth of \#includes. 209 MaxAllowedIncludeStackDepth = 200 210 }; 211 212 // State that is set before the preprocessor begins. 213 bool KeepComments : 1; 214 bool KeepMacroComments : 1; 215 bool SuppressIncludeNotFoundError : 1; 216 217 // State that changes while the preprocessor runs: 218 bool InMacroArgs : 1; // True if parsing fn macro invocation args. 219 220 /// Whether the preprocessor owns the header search object. 221 bool OwnsHeaderSearch : 1; 222 223 /// True if macro expansion is disabled. 224 bool DisableMacroExpansion : 1; 225 226 /// Temporarily disables DisableMacroExpansion (i.e. enables expansion) 227 /// when parsing preprocessor directives. 228 bool MacroExpansionInDirectivesOverride : 1; 229 230 class ResetMacroExpansionHelper; 231 232 /// Whether we have already loaded macros from the external source. 233 mutable bool ReadMacrosFromExternalSource : 1; 234 235 /// True if pragmas are enabled. 236 bool PragmasEnabled : 1; 237 238 /// True if the current build action is a preprocessing action. 239 bool PreprocessedOutput : 1; 240 241 /// True if we are currently preprocessing a #if or #elif directive 242 bool ParsingIfOrElifDirective; 243 244 /// True if we are pre-expanding macro arguments. 245 bool InMacroArgPreExpansion; 246 247 /// Mapping/lookup information for all identifiers in 248 /// the program, including program keywords. 249 mutable IdentifierTable Identifiers; 250 251 /// This table contains all the selectors in the program. 252 /// 253 /// Unlike IdentifierTable above, this table *isn't* populated by the 254 /// preprocessor. It is declared/expanded here because its role/lifetime is 255 /// conceptually similar to the IdentifierTable. In addition, the current 256 /// control flow (in clang::ParseAST()), make it convenient to put here. 257 /// 258 /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to 259 /// the lifetime of the preprocessor. 260 SelectorTable Selectors; 261 262 /// Information about builtins. 263 std::unique_ptr<Builtin::Context> BuiltinInfo; 264 265 /// Tracks all of the pragmas that the client registered 266 /// with this preprocessor. 267 std::unique_ptr<PragmaNamespace> PragmaHandlers; 268 269 /// Pragma handlers of the original source is stored here during the 270 /// parsing of a model file. 271 std::unique_ptr<PragmaNamespace> PragmaHandlersBackup; 272 273 /// Tracks all of the comment handlers that the client registered 274 /// with this preprocessor. 275 std::vector<CommentHandler *> CommentHandlers; 276 277 /// Empty line handler. 278 EmptylineHandler *Emptyline = nullptr; 279 280 public: 281 /// The kind of translation unit we are processing. 282 const TranslationUnitKind TUKind; 283 284 private: 285 /// The code-completion handler. 286 CodeCompletionHandler *CodeComplete = nullptr; 287 288 /// The file that we're performing code-completion for, if any. 289 const FileEntry *CodeCompletionFile = nullptr; 290 291 /// The offset in file for the code-completion point. 292 unsigned CodeCompletionOffset = 0; 293 294 /// The location for the code-completion point. This gets instantiated 295 /// when the CodeCompletionFile gets \#include'ed for preprocessing. 296 SourceLocation CodeCompletionLoc; 297 298 /// The start location for the file of the code-completion point. 299 /// 300 /// This gets instantiated when the CodeCompletionFile gets \#include'ed 301 /// for preprocessing. 302 SourceLocation CodeCompletionFileLoc; 303 304 /// The source location of the \c import contextual keyword we just 305 /// lexed, if any. 306 SourceLocation ModuleImportLoc; 307 308 /// The import path for named module that we're currently processing. 309 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> NamedModuleImportPath; 310 311 /// Whether the import is an `@import` or a standard c++ modules import. 312 bool IsAtImport = false; 313 314 /// Whether the last token we lexed was an '@'. 315 bool LastTokenWasAt = false; 316 317 /// A position within a C++20 import-seq. 318 class StdCXXImportSeq { 319 public: 320 enum State : int { 321 // Positive values represent a number of unclosed brackets. 322 AtTopLevel = 0, 323 AfterTopLevelTokenSeq = -1, 324 AfterExport = -2, 325 AfterImportSeq = -3, 326 }; 327 StdCXXImportSeq(State S)328 StdCXXImportSeq(State S) : S(S) {} 329 330 /// Saw any kind of open bracket. handleOpenBracket()331 void handleOpenBracket() { 332 S = static_cast<State>(std::max<int>(S, 0) + 1); 333 } 334 /// Saw any kind of close bracket other than '}'. handleCloseBracket()335 void handleCloseBracket() { 336 S = static_cast<State>(std::max<int>(S, 1) - 1); 337 } 338 /// Saw a close brace. handleCloseBrace()339 void handleCloseBrace() { 340 handleCloseBracket(); 341 if (S == AtTopLevel && !AfterHeaderName) 342 S = AfterTopLevelTokenSeq; 343 } 344 /// Saw a semicolon. handleSemi()345 void handleSemi() { 346 if (atTopLevel()) { 347 S = AfterTopLevelTokenSeq; 348 AfterHeaderName = false; 349 } 350 } 351 352 /// Saw an 'export' identifier. handleExport()353 void handleExport() { 354 if (S == AfterTopLevelTokenSeq) 355 S = AfterExport; 356 else if (S <= 0) 357 S = AtTopLevel; 358 } 359 /// Saw an 'import' identifier. handleImport()360 void handleImport() { 361 if (S == AfterTopLevelTokenSeq || S == AfterExport) 362 S = AfterImportSeq; 363 else if (S <= 0) 364 S = AtTopLevel; 365 } 366 367 /// Saw a 'header-name' token; do not recognize any more 'import' tokens 368 /// until we reach a top-level semicolon. handleHeaderName()369 void handleHeaderName() { 370 if (S == AfterImportSeq) 371 AfterHeaderName = true; 372 handleMisc(); 373 } 374 375 /// Saw any other token. handleMisc()376 void handleMisc() { 377 if (S <= 0) 378 S = AtTopLevel; 379 } 380 atTopLevel()381 bool atTopLevel() { return S <= 0; } afterImportSeq()382 bool afterImportSeq() { return S == AfterImportSeq; } afterTopLevelSeq()383 bool afterTopLevelSeq() { return S == AfterTopLevelTokenSeq; } 384 385 private: 386 State S; 387 /// Whether we're in the pp-import-suffix following the header-name in a 388 /// pp-import. If so, a close-brace is not sufficient to end the 389 /// top-level-token-seq of an import-seq. 390 bool AfterHeaderName = false; 391 }; 392 393 /// Our current position within a C++20 import-seq. 394 StdCXXImportSeq StdCXXImportSeqState = StdCXXImportSeq::AfterTopLevelTokenSeq; 395 396 /// Track whether we are in a Global Module Fragment 397 class TrackGMF { 398 public: 399 enum GMFState : int { 400 GMFActive = 1, 401 MaybeGMF = 0, 402 BeforeGMFIntroducer = -1, 403 GMFAbsentOrEnded = -2, 404 }; 405 TrackGMF(GMFState S)406 TrackGMF(GMFState S) : S(S) {} 407 408 /// Saw a semicolon. handleSemi()409 void handleSemi() { 410 // If it is immediately after the first instance of the module keyword, 411 // then that introduces the GMF. 412 if (S == MaybeGMF) 413 S = GMFActive; 414 } 415 416 /// Saw an 'export' identifier. handleExport()417 void handleExport() { 418 // The presence of an 'export' keyword always ends or excludes a GMF. 419 S = GMFAbsentOrEnded; 420 } 421 422 /// Saw an 'import' identifier. handleImport(bool AfterTopLevelTokenSeq)423 void handleImport(bool AfterTopLevelTokenSeq) { 424 // If we see this before any 'module' kw, then we have no GMF. 425 if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) 426 S = GMFAbsentOrEnded; 427 } 428 429 /// Saw a 'module' identifier. handleModule(bool AfterTopLevelTokenSeq)430 void handleModule(bool AfterTopLevelTokenSeq) { 431 // This was the first module identifier and not preceded by any token 432 // that would exclude a GMF. It could begin a GMF, but only if directly 433 // followed by a semicolon. 434 if (AfterTopLevelTokenSeq && S == BeforeGMFIntroducer) 435 S = MaybeGMF; 436 else 437 S = GMFAbsentOrEnded; 438 } 439 440 /// Saw any other token. handleMisc()441 void handleMisc() { 442 // We saw something other than ; after the 'module' kw, so not a GMF. 443 if (S == MaybeGMF) 444 S = GMFAbsentOrEnded; 445 } 446 inGMF()447 bool inGMF() { return S == GMFActive; } 448 449 private: 450 /// Track the transitions into and out of a Global Module Fragment, 451 /// if one is present. 452 GMFState S; 453 }; 454 455 TrackGMF TrackGMFState = TrackGMF::BeforeGMFIntroducer; 456 457 /// Track the status of the c++20 module decl. 458 /// 459 /// module-declaration: 460 /// 'export'[opt] 'module' module-name module-partition[opt] 461 /// attribute-specifier-seq[opt] ';' 462 /// 463 /// module-name: 464 /// module-name-qualifier[opt] identifier 465 /// 466 /// module-partition: 467 /// ':' module-name-qualifier[opt] identifier 468 /// 469 /// module-name-qualifier: 470 /// identifier '.' 471 /// module-name-qualifier identifier '.' 472 /// 473 /// Transition state: 474 /// 475 /// NotAModuleDecl --- export ---> FoundExport 476 /// NotAModuleDecl --- module ---> ImplementationCandidate 477 /// FoundExport --- module ---> InterfaceCandidate 478 /// ImplementationCandidate --- Identifier ---> ImplementationCandidate 479 /// ImplementationCandidate --- period ---> ImplementationCandidate 480 /// ImplementationCandidate --- colon ---> ImplementationCandidate 481 /// InterfaceCandidate --- Identifier ---> InterfaceCandidate 482 /// InterfaceCandidate --- period ---> InterfaceCandidate 483 /// InterfaceCandidate --- colon ---> InterfaceCandidate 484 /// ImplementationCandidate --- Semi ---> NamedModuleImplementation 485 /// NamedModuleInterface --- Semi ---> NamedModuleInterface 486 /// NamedModuleImplementation --- Anything ---> NamedModuleImplementation 487 /// NamedModuleInterface --- Anything ---> NamedModuleInterface 488 /// 489 /// FIXME: We haven't handle attribute-specifier-seq here. It may not be bad 490 /// soon since we don't support any module attributes yet. 491 class ModuleDeclSeq { 492 enum ModuleDeclState : int { 493 NotAModuleDecl, 494 FoundExport, 495 InterfaceCandidate, 496 ImplementationCandidate, 497 NamedModuleInterface, 498 NamedModuleImplementation, 499 }; 500 501 public: ModuleDeclSeq()502 ModuleDeclSeq() : State(NotAModuleDecl) {} 503 handleExport()504 void handleExport() { 505 if (State == NotAModuleDecl) 506 State = FoundExport; 507 else if (!isNamedModule()) 508 reset(); 509 } 510 handleModule()511 void handleModule() { 512 if (State == FoundExport) 513 State = InterfaceCandidate; 514 else if (State == NotAModuleDecl) 515 State = ImplementationCandidate; 516 else if (!isNamedModule()) 517 reset(); 518 } 519 handleIdentifier(IdentifierInfo * Identifier)520 void handleIdentifier(IdentifierInfo *Identifier) { 521 if (isModuleCandidate() && Identifier) 522 Name += Identifier->getName().str(); 523 else if (!isNamedModule()) 524 reset(); 525 } 526 handleColon()527 void handleColon() { 528 if (isModuleCandidate()) 529 Name += ":"; 530 else if (!isNamedModule()) 531 reset(); 532 } 533 handlePeriod()534 void handlePeriod() { 535 if (isModuleCandidate()) 536 Name += "."; 537 else if (!isNamedModule()) 538 reset(); 539 } 540 handleSemi()541 void handleSemi() { 542 if (!Name.empty() && isModuleCandidate()) { 543 if (State == InterfaceCandidate) 544 State = NamedModuleInterface; 545 else if (State == ImplementationCandidate) 546 State = NamedModuleImplementation; 547 else 548 llvm_unreachable("Unimaged ModuleDeclState."); 549 } else if (!isNamedModule()) 550 reset(); 551 } 552 handleMisc()553 void handleMisc() { 554 if (!isNamedModule()) 555 reset(); 556 } 557 isModuleCandidate()558 bool isModuleCandidate() const { 559 return State == InterfaceCandidate || State == ImplementationCandidate; 560 } 561 isNamedModule()562 bool isNamedModule() const { 563 return State == NamedModuleInterface || 564 State == NamedModuleImplementation; 565 } 566 isNamedInterface()567 bool isNamedInterface() const { return State == NamedModuleInterface; } 568 isImplementationUnit()569 bool isImplementationUnit() const { 570 return State == NamedModuleImplementation && !getName().contains(':'); 571 } 572 getName()573 StringRef getName() const { 574 assert(isNamedModule() && "Can't get name from a non named module"); 575 return Name; 576 } 577 getPrimaryName()578 StringRef getPrimaryName() const { 579 assert(isNamedModule() && "Can't get name from a non named module"); 580 return getName().split(':').first; 581 } 582 reset()583 void reset() { 584 Name.clear(); 585 State = NotAModuleDecl; 586 } 587 588 private: 589 ModuleDeclState State; 590 std::string Name; 591 }; 592 593 ModuleDeclSeq ModuleDeclState; 594 595 /// Whether the module import expects an identifier next. Otherwise, 596 /// it expects a '.' or ';'. 597 bool ModuleImportExpectsIdentifier = false; 598 599 /// The identifier and source location of the currently-active 600 /// \#pragma clang arc_cf_code_audited begin. 601 std::pair<IdentifierInfo *, SourceLocation> PragmaARCCFCodeAuditedInfo; 602 603 /// The source location of the currently-active 604 /// \#pragma clang assume_nonnull begin. 605 SourceLocation PragmaAssumeNonNullLoc; 606 607 /// Set only for preambles which end with an active 608 /// \#pragma clang assume_nonnull begin. 609 /// 610 /// When the preamble is loaded into the main file, 611 /// `PragmaAssumeNonNullLoc` will be set to this to 612 /// replay the unterminated assume_nonnull. 613 SourceLocation PreambleRecordedPragmaAssumeNonNullLoc; 614 615 /// True if we hit the code-completion point. 616 bool CodeCompletionReached = false; 617 618 /// The code completion token containing the information 619 /// on the stem that is to be code completed. 620 IdentifierInfo *CodeCompletionII = nullptr; 621 622 /// Range for the code completion token. 623 SourceRange CodeCompletionTokenRange; 624 625 /// The directory that the main file should be considered to occupy, 626 /// if it does not correspond to a real file (as happens when building a 627 /// module). 628 const DirectoryEntry *MainFileDir = nullptr; 629 630 /// The number of bytes that we will initially skip when entering the 631 /// main file, along with a flag that indicates whether skipping this number 632 /// of bytes will place the lexer at the start of a line. 633 /// 634 /// This is used when loading a precompiled preamble. 635 std::pair<int, bool> SkipMainFilePreamble; 636 637 /// Whether we hit an error due to reaching max allowed include depth. Allows 638 /// to avoid hitting the same error over and over again. 639 bool HasReachedMaxIncludeDepth = false; 640 641 /// The number of currently-active calls to Lex. 642 /// 643 /// Lex is reentrant, and asking for an (end-of-phase-4) token can often 644 /// require asking for multiple additional tokens. This counter makes it 645 /// possible for Lex to detect whether it's producing a token for the end 646 /// of phase 4 of translation or for some other situation. 647 unsigned LexLevel = 0; 648 649 /// The number of (LexLevel 0) preprocessor tokens. 650 unsigned TokenCount = 0; 651 652 /// Preprocess every token regardless of LexLevel. 653 bool PreprocessToken = false; 654 655 /// The maximum number of (LexLevel 0) tokens before issuing a -Wmax-tokens 656 /// warning, or zero for unlimited. 657 unsigned MaxTokens = 0; 658 SourceLocation MaxTokensOverrideLoc; 659 660 public: 661 struct PreambleSkipInfo { 662 SourceLocation HashTokenLoc; 663 SourceLocation IfTokenLoc; 664 bool FoundNonSkipPortion; 665 bool FoundElse; 666 SourceLocation ElseLoc; 667 PreambleSkipInfoPreambleSkipInfo668 PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc, 669 bool FoundNonSkipPortion, bool FoundElse, 670 SourceLocation ElseLoc) 671 : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc), 672 FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse), 673 ElseLoc(ElseLoc) {} 674 }; 675 676 using IncludedFilesSet = llvm::DenseSet<const FileEntry *>; 677 678 private: 679 friend class ASTReader; 680 friend class MacroArgs; 681 682 class PreambleConditionalStackStore { 683 enum State { 684 Off = 0, 685 Recording = 1, 686 Replaying = 2, 687 }; 688 689 public: 690 PreambleConditionalStackStore() = default; 691 startRecording()692 void startRecording() { ConditionalStackState = Recording; } startReplaying()693 void startReplaying() { ConditionalStackState = Replaying; } isRecording()694 bool isRecording() const { return ConditionalStackState == Recording; } isReplaying()695 bool isReplaying() const { return ConditionalStackState == Replaying; } 696 getStack()697 ArrayRef<PPConditionalInfo> getStack() const { 698 return ConditionalStack; 699 } 700 doneReplaying()701 void doneReplaying() { 702 ConditionalStack.clear(); 703 ConditionalStackState = Off; 704 } 705 setStack(ArrayRef<PPConditionalInfo> s)706 void setStack(ArrayRef<PPConditionalInfo> s) { 707 if (!isRecording() && !isReplaying()) 708 return; 709 ConditionalStack.clear(); 710 ConditionalStack.append(s.begin(), s.end()); 711 } 712 hasRecordedPreamble()713 bool hasRecordedPreamble() const { return !ConditionalStack.empty(); } 714 reachedEOFWhileSkipping()715 bool reachedEOFWhileSkipping() const { return SkipInfo.has_value(); } 716 clearSkipInfo()717 void clearSkipInfo() { SkipInfo.reset(); } 718 719 std::optional<PreambleSkipInfo> SkipInfo; 720 721 private: 722 SmallVector<PPConditionalInfo, 4> ConditionalStack; 723 State ConditionalStackState = Off; 724 } PreambleConditionalStack; 725 726 /// The current top of the stack that we're lexing from if 727 /// not expanding a macro and we are lexing directly from source code. 728 /// 729 /// Only one of CurLexer, or CurTokenLexer will be non-null. 730 std::unique_ptr<Lexer> CurLexer; 731 732 /// The current top of the stack what we're lexing from 733 /// if not expanding a macro. 734 /// 735 /// This is an alias for CurLexer. 736 PreprocessorLexer *CurPPLexer = nullptr; 737 738 /// Used to find the current FileEntry, if CurLexer is non-null 739 /// and if applicable. 740 /// 741 /// This allows us to implement \#include_next and find directory-specific 742 /// properties. 743 ConstSearchDirIterator CurDirLookup = nullptr; 744 745 /// The current macro we are expanding, if we are expanding a macro. 746 /// 747 /// One of CurLexer and CurTokenLexer must be null. 748 std::unique_ptr<TokenLexer> CurTokenLexer; 749 750 /// The kind of lexer we're currently working with. 751 enum CurLexerKind { 752 CLK_Lexer, 753 CLK_TokenLexer, 754 CLK_CachingLexer, 755 CLK_DependencyDirectivesLexer, 756 CLK_LexAfterModuleImport 757 } CurLexerKind = CLK_Lexer; 758 759 /// If the current lexer is for a submodule that is being built, this 760 /// is that submodule. 761 Module *CurLexerSubmodule = nullptr; 762 763 /// Keeps track of the stack of files currently 764 /// \#included, and macros currently being expanded from, not counting 765 /// CurLexer/CurTokenLexer. 766 struct IncludeStackInfo { 767 enum CurLexerKind CurLexerKind; 768 Module *TheSubmodule; 769 std::unique_ptr<Lexer> TheLexer; 770 PreprocessorLexer *ThePPLexer; 771 std::unique_ptr<TokenLexer> TheTokenLexer; 772 ConstSearchDirIterator TheDirLookup; 773 774 // The following constructors are completely useless copies of the default 775 // versions, only needed to pacify MSVC. IncludeStackInfoIncludeStackInfo776 IncludeStackInfo(enum CurLexerKind CurLexerKind, Module *TheSubmodule, 777 std::unique_ptr<Lexer> &&TheLexer, 778 PreprocessorLexer *ThePPLexer, 779 std::unique_ptr<TokenLexer> &&TheTokenLexer, 780 ConstSearchDirIterator TheDirLookup) 781 : CurLexerKind(std::move(CurLexerKind)), 782 TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)), 783 ThePPLexer(std::move(ThePPLexer)), 784 TheTokenLexer(std::move(TheTokenLexer)), 785 TheDirLookup(std::move(TheDirLookup)) {} 786 }; 787 std::vector<IncludeStackInfo> IncludeMacroStack; 788 789 /// Actions invoked when some preprocessor activity is 790 /// encountered (e.g. a file is \#included, etc). 791 std::unique_ptr<PPCallbacks> Callbacks; 792 793 struct MacroExpandsInfo { 794 Token Tok; 795 MacroDefinition MD; 796 SourceRange Range; 797 MacroExpandsInfoMacroExpandsInfo798 MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range) 799 : Tok(Tok), MD(MD), Range(Range) {} 800 }; 801 SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks; 802 803 /// Information about a name that has been used to define a module macro. 804 struct ModuleMacroInfo { 805 /// The most recent macro directive for this identifier. 806 MacroDirective *MD; 807 808 /// The active module macros for this identifier. 809 llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros; 810 811 /// The generation number at which we last updated ActiveModuleMacros. 812 /// \see Preprocessor::VisibleModules. 813 unsigned ActiveModuleMacrosGeneration = 0; 814 815 /// Whether this macro name is ambiguous. 816 bool IsAmbiguous = false; 817 818 /// The module macros that are overridden by this macro. 819 llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros; 820 ModuleMacroInfoModuleMacroInfo821 ModuleMacroInfo(MacroDirective *MD) : MD(MD) {} 822 }; 823 824 /// The state of a macro for an identifier. 825 class MacroState { 826 mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State; 827 getModuleInfo(Preprocessor & PP,const IdentifierInfo * II)828 ModuleMacroInfo *getModuleInfo(Preprocessor &PP, 829 const IdentifierInfo *II) const { 830 if (II->isOutOfDate()) 831 PP.updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II)); 832 // FIXME: Find a spare bit on IdentifierInfo and store a 833 // HasModuleMacros flag. 834 if (!II->hasMacroDefinition() || 835 (!PP.getLangOpts().Modules && 836 !PP.getLangOpts().ModulesLocalVisibility) || 837 !PP.CurSubmoduleState->VisibleModules.getGeneration()) 838 return nullptr; 839 840 auto *Info = State.dyn_cast<ModuleMacroInfo*>(); 841 if (!Info) { 842 Info = new (PP.getPreprocessorAllocator()) 843 ModuleMacroInfo(State.get<MacroDirective *>()); 844 State = Info; 845 } 846 847 if (PP.CurSubmoduleState->VisibleModules.getGeneration() != 848 Info->ActiveModuleMacrosGeneration) 849 PP.updateModuleMacroInfo(II, *Info); 850 return Info; 851 } 852 853 public: MacroState()854 MacroState() : MacroState(nullptr) {} MacroState(MacroDirective * MD)855 MacroState(MacroDirective *MD) : State(MD) {} 856 MacroState(MacroState && O)857 MacroState(MacroState &&O) noexcept : State(O.State) { 858 O.State = (MacroDirective *)nullptr; 859 } 860 861 MacroState &operator=(MacroState &&O) noexcept { 862 auto S = O.State; 863 O.State = (MacroDirective *)nullptr; 864 State = S; 865 return *this; 866 } 867 ~MacroState()868 ~MacroState() { 869 if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) 870 Info->~ModuleMacroInfo(); 871 } 872 getLatest()873 MacroDirective *getLatest() const { 874 if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) 875 return Info->MD; 876 return State.get<MacroDirective*>(); 877 } 878 setLatest(MacroDirective * MD)879 void setLatest(MacroDirective *MD) { 880 if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) 881 Info->MD = MD; 882 else 883 State = MD; 884 } 885 isAmbiguous(Preprocessor & PP,const IdentifierInfo * II)886 bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const { 887 auto *Info = getModuleInfo(PP, II); 888 return Info ? Info->IsAmbiguous : false; 889 } 890 891 ArrayRef<ModuleMacro *> getActiveModuleMacros(Preprocessor & PP,const IdentifierInfo * II)892 getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const { 893 if (auto *Info = getModuleInfo(PP, II)) 894 return Info->ActiveModuleMacros; 895 return std::nullopt; 896 } 897 findDirectiveAtLoc(SourceLocation Loc,SourceManager & SourceMgr)898 MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc, 899 SourceManager &SourceMgr) const { 900 // FIXME: Incorporate module macros into the result of this. 901 if (auto *Latest = getLatest()) 902 return Latest->findDirectiveAtLoc(Loc, SourceMgr); 903 return {}; 904 } 905 overrideActiveModuleMacros(Preprocessor & PP,IdentifierInfo * II)906 void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) { 907 if (auto *Info = getModuleInfo(PP, II)) { 908 Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), 909 Info->ActiveModuleMacros.begin(), 910 Info->ActiveModuleMacros.end()); 911 Info->ActiveModuleMacros.clear(); 912 Info->IsAmbiguous = false; 913 } 914 } 915 getOverriddenMacros()916 ArrayRef<ModuleMacro*> getOverriddenMacros() const { 917 if (auto *Info = State.dyn_cast<ModuleMacroInfo*>()) 918 return Info->OverriddenMacros; 919 return std::nullopt; 920 } 921 setOverriddenMacros(Preprocessor & PP,ArrayRef<ModuleMacro * > Overrides)922 void setOverriddenMacros(Preprocessor &PP, 923 ArrayRef<ModuleMacro *> Overrides) { 924 auto *Info = State.dyn_cast<ModuleMacroInfo*>(); 925 if (!Info) { 926 if (Overrides.empty()) 927 return; 928 Info = new (PP.getPreprocessorAllocator()) 929 ModuleMacroInfo(State.get<MacroDirective *>()); 930 State = Info; 931 } 932 Info->OverriddenMacros.clear(); 933 Info->OverriddenMacros.insert(Info->OverriddenMacros.end(), 934 Overrides.begin(), Overrides.end()); 935 Info->ActiveModuleMacrosGeneration = 0; 936 } 937 }; 938 939 /// For each IdentifierInfo that was associated with a macro, we 940 /// keep a mapping to the history of all macro definitions and #undefs in 941 /// the reverse order (the latest one is in the head of the list). 942 /// 943 /// This mapping lives within the \p CurSubmoduleState. 944 using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>; 945 946 struct SubmoduleState; 947 948 /// Information about a submodule that we're currently building. 949 struct BuildingSubmoduleInfo { 950 /// The module that we are building. 951 Module *M; 952 953 /// The location at which the module was included. 954 SourceLocation ImportLoc; 955 956 /// Whether we entered this submodule via a pragma. 957 bool IsPragma; 958 959 /// The previous SubmoduleState. 960 SubmoduleState *OuterSubmoduleState; 961 962 /// The number of pending module macro names when we started building this. 963 unsigned OuterPendingModuleMacroNames; 964 BuildingSubmoduleInfoBuildingSubmoduleInfo965 BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma, 966 SubmoduleState *OuterSubmoduleState, 967 unsigned OuterPendingModuleMacroNames) 968 : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma), 969 OuterSubmoduleState(OuterSubmoduleState), 970 OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {} 971 }; 972 SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack; 973 974 /// Information about a submodule's preprocessor state. 975 struct SubmoduleState { 976 /// The macros for the submodule. 977 MacroMap Macros; 978 979 /// The set of modules that are visible within the submodule. 980 VisibleModuleSet VisibleModules; 981 982 // FIXME: CounterValue? 983 // FIXME: PragmaPushMacroInfo? 984 }; 985 std::map<Module *, SubmoduleState> Submodules; 986 987 /// The preprocessor state for preprocessing outside of any submodule. 988 SubmoduleState NullSubmoduleState; 989 990 /// The current submodule state. Will be \p NullSubmoduleState if we're not 991 /// in a submodule. 992 SubmoduleState *CurSubmoduleState; 993 994 /// The files that have been included. 995 IncludedFilesSet IncludedFiles; 996 997 /// The set of top-level modules that affected preprocessing, but were not 998 /// imported. 999 llvm::SmallSetVector<Module *, 2> AffectingClangModules; 1000 1001 /// The set of known macros exported from modules. 1002 llvm::FoldingSet<ModuleMacro> ModuleMacros; 1003 1004 /// The names of potential module macros that we've not yet processed. 1005 llvm::SmallVector<const IdentifierInfo *, 32> PendingModuleMacroNames; 1006 1007 /// The list of module macros, for each identifier, that are not overridden by 1008 /// any other module macro. 1009 llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>> 1010 LeafModuleMacros; 1011 1012 /// Macros that we want to warn because they are not used at the end 1013 /// of the translation unit. 1014 /// 1015 /// We store just their SourceLocations instead of 1016 /// something like MacroInfo*. The benefit of this is that when we are 1017 /// deserializing from PCH, we don't need to deserialize identifier & macros 1018 /// just so that we can report that they are unused, we just warn using 1019 /// the SourceLocations of this set (that will be filled by the ASTReader). 1020 using WarnUnusedMacroLocsTy = llvm::SmallDenseSet<SourceLocation, 32>; 1021 WarnUnusedMacroLocsTy WarnUnusedMacroLocs; 1022 1023 /// This is a pair of an optional message and source location used for pragmas 1024 /// that annotate macros like pragma clang restrict_expansion and pragma clang 1025 /// deprecated. This pair stores the optional message and the location of the 1026 /// annotation pragma for use producing diagnostics and notes. 1027 using MsgLocationPair = std::pair<std::string, SourceLocation>; 1028 1029 struct MacroAnnotationInfo { 1030 SourceLocation Location; 1031 std::string Message; 1032 }; 1033 1034 struct MacroAnnotations { 1035 std::optional<MacroAnnotationInfo> DeprecationInfo; 1036 std::optional<MacroAnnotationInfo> RestrictExpansionInfo; 1037 std::optional<SourceLocation> FinalAnnotationLoc; 1038 makeDeprecationMacroAnnotations1039 static MacroAnnotations makeDeprecation(SourceLocation Loc, 1040 std::string Msg) { 1041 return MacroAnnotations{MacroAnnotationInfo{Loc, std::move(Msg)}, 1042 std::nullopt, std::nullopt}; 1043 } 1044 makeRestrictExpansionMacroAnnotations1045 static MacroAnnotations makeRestrictExpansion(SourceLocation Loc, 1046 std::string Msg) { 1047 return MacroAnnotations{ 1048 std::nullopt, MacroAnnotationInfo{Loc, std::move(Msg)}, std::nullopt}; 1049 } 1050 makeFinalMacroAnnotations1051 static MacroAnnotations makeFinal(SourceLocation Loc) { 1052 return MacroAnnotations{std::nullopt, std::nullopt, Loc}; 1053 } 1054 }; 1055 1056 /// Warning information for macro annotations. 1057 llvm::DenseMap<const IdentifierInfo *, MacroAnnotations> AnnotationInfos; 1058 1059 /// A "freelist" of MacroArg objects that can be 1060 /// reused for quick allocation. 1061 MacroArgs *MacroArgCache = nullptr; 1062 1063 /// For each IdentifierInfo used in a \#pragma push_macro directive, 1064 /// we keep a MacroInfo stack used to restore the previous macro value. 1065 llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>> 1066 PragmaPushMacroInfo; 1067 1068 // Various statistics we track for performance analysis. 1069 unsigned NumDirectives = 0; 1070 unsigned NumDefined = 0; 1071 unsigned NumUndefined = 0; 1072 unsigned NumPragma = 0; 1073 unsigned NumIf = 0; 1074 unsigned NumElse = 0; 1075 unsigned NumEndif = 0; 1076 unsigned NumEnteredSourceFiles = 0; 1077 unsigned MaxIncludeStackDepth = 0; 1078 unsigned NumMacroExpanded = 0; 1079 unsigned NumFnMacroExpanded = 0; 1080 unsigned NumBuiltinMacroExpanded = 0; 1081 unsigned NumFastMacroExpanded = 0; 1082 unsigned NumTokenPaste = 0; 1083 unsigned NumFastTokenPaste = 0; 1084 unsigned NumSkipped = 0; 1085 1086 /// The predefined macros that preprocessor should use from the 1087 /// command line etc. 1088 std::string Predefines; 1089 1090 /// The file ID for the preprocessor predefines. 1091 FileID PredefinesFileID; 1092 1093 /// The file ID for the PCH through header. 1094 FileID PCHThroughHeaderFileID; 1095 1096 /// Whether tokens are being skipped until a #pragma hdrstop is seen. 1097 bool SkippingUntilPragmaHdrStop = false; 1098 1099 /// Whether tokens are being skipped until the through header is seen. 1100 bool SkippingUntilPCHThroughHeader = false; 1101 1102 /// \{ 1103 /// Cache of macro expanders to reduce malloc traffic. 1104 enum { TokenLexerCacheSize = 8 }; 1105 unsigned NumCachedTokenLexers; 1106 std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize]; 1107 /// \} 1108 1109 /// Keeps macro expanded tokens for TokenLexers. 1110 // 1111 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 1112 /// going to lex in the cache and when it finishes the tokens are removed 1113 /// from the end of the cache. 1114 SmallVector<Token, 16> MacroExpandedTokens; 1115 std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack; 1116 1117 /// A record of the macro definitions and expansions that 1118 /// occurred during preprocessing. 1119 /// 1120 /// This is an optional side structure that can be enabled with 1121 /// \c createPreprocessingRecord() prior to preprocessing. 1122 PreprocessingRecord *Record = nullptr; 1123 1124 /// Cached tokens state. 1125 using CachedTokensTy = SmallVector<Token, 1>; 1126 1127 /// Cached tokens are stored here when we do backtracking or 1128 /// lookahead. They are "lexed" by the CachingLex() method. 1129 CachedTokensTy CachedTokens; 1130 1131 /// The position of the cached token that CachingLex() should 1132 /// "lex" next. 1133 /// 1134 /// If it points beyond the CachedTokens vector, it means that a normal 1135 /// Lex() should be invoked. 1136 CachedTokensTy::size_type CachedLexPos = 0; 1137 1138 /// Stack of backtrack positions, allowing nested backtracks. 1139 /// 1140 /// The EnableBacktrackAtThisPos() method pushes a position to 1141 /// indicate where CachedLexPos should be set when the BackTrack() method is 1142 /// invoked (at which point the last position is popped). 1143 std::vector<CachedTokensTy::size_type> BacktrackPositions; 1144 1145 /// True if \p Preprocessor::SkipExcludedConditionalBlock() is running. 1146 /// This is used to guard against calling this function recursively. 1147 /// 1148 /// See comments at the use-site for more context about why it is needed. 1149 bool SkippingExcludedConditionalBlock = false; 1150 1151 /// Keeps track of skipped range mappings that were recorded while skipping 1152 /// excluded conditional directives. It maps the source buffer pointer at 1153 /// the beginning of a skipped block, to the number of bytes that should be 1154 /// skipped. 1155 llvm::DenseMap<const char *, unsigned> RecordedSkippedRanges; 1156 1157 void updateOutOfDateIdentifier(IdentifierInfo &II) const; 1158 1159 public: 1160 Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, 1161 DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM, 1162 HeaderSearch &Headers, ModuleLoader &TheModuleLoader, 1163 IdentifierInfoLookup *IILookup = nullptr, 1164 bool OwnsHeaderSearch = false, 1165 TranslationUnitKind TUKind = TU_Complete); 1166 1167 ~Preprocessor(); 1168 1169 /// Initialize the preprocessor using information about the target. 1170 /// 1171 /// \param Target is owned by the caller and must remain valid for the 1172 /// lifetime of the preprocessor. 1173 /// \param AuxTarget is owned by the caller and must remain valid for 1174 /// the lifetime of the preprocessor. 1175 void Initialize(const TargetInfo &Target, 1176 const TargetInfo *AuxTarget = nullptr); 1177 1178 /// Initialize the preprocessor to parse a model file 1179 /// 1180 /// To parse model files the preprocessor of the original source is reused to 1181 /// preserver the identifier table. However to avoid some duplicate 1182 /// information in the preprocessor some cleanup is needed before it is used 1183 /// to parse model files. This method does that cleanup. 1184 void InitializeForModelFile(); 1185 1186 /// Cleanup after model file parsing 1187 void FinalizeForModelFile(); 1188 1189 /// Retrieve the preprocessor options used to initialize this 1190 /// preprocessor. getPreprocessorOpts()1191 PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; } 1192 getDiagnostics()1193 DiagnosticsEngine &getDiagnostics() const { return *Diags; } setDiagnostics(DiagnosticsEngine & D)1194 void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; } 1195 getLangOpts()1196 const LangOptions &getLangOpts() const { return LangOpts; } getTargetInfo()1197 const TargetInfo &getTargetInfo() const { return *Target; } getAuxTargetInfo()1198 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; } getFileManager()1199 FileManager &getFileManager() const { return FileMgr; } getSourceManager()1200 SourceManager &getSourceManager() const { return SourceMgr; } getHeaderSearchInfo()1201 HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; } 1202 getIdentifierTable()1203 IdentifierTable &getIdentifierTable() { return Identifiers; } getIdentifierTable()1204 const IdentifierTable &getIdentifierTable() const { return Identifiers; } getSelectorTable()1205 SelectorTable &getSelectorTable() { return Selectors; } getBuiltinInfo()1206 Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; } getPreprocessorAllocator()1207 llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; } 1208 setExternalSource(ExternalPreprocessorSource * Source)1209 void setExternalSource(ExternalPreprocessorSource *Source) { 1210 ExternalSource = Source; 1211 } 1212 getExternalSource()1213 ExternalPreprocessorSource *getExternalSource() const { 1214 return ExternalSource; 1215 } 1216 1217 /// Retrieve the module loader associated with this preprocessor. getModuleLoader()1218 ModuleLoader &getModuleLoader() const { return TheModuleLoader; } 1219 hadModuleLoaderFatalFailure()1220 bool hadModuleLoaderFatalFailure() const { 1221 return TheModuleLoader.HadFatalFailure; 1222 } 1223 1224 /// Retrieve the number of Directives that have been processed by the 1225 /// Preprocessor. getNumDirectives()1226 unsigned getNumDirectives() const { 1227 return NumDirectives; 1228 } 1229 1230 /// True if we are currently preprocessing a #if or #elif directive isParsingIfOrElifDirective()1231 bool isParsingIfOrElifDirective() const { 1232 return ParsingIfOrElifDirective; 1233 } 1234 1235 /// Control whether the preprocessor retains comments in output. SetCommentRetentionState(bool KeepComments,bool KeepMacroComments)1236 void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) { 1237 this->KeepComments = KeepComments | KeepMacroComments; 1238 this->KeepMacroComments = KeepMacroComments; 1239 } 1240 getCommentRetentionState()1241 bool getCommentRetentionState() const { return KeepComments; } 1242 setPragmasEnabled(bool Enabled)1243 void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; } getPragmasEnabled()1244 bool getPragmasEnabled() const { return PragmasEnabled; } 1245 SetSuppressIncludeNotFoundError(bool Suppress)1246 void SetSuppressIncludeNotFoundError(bool Suppress) { 1247 SuppressIncludeNotFoundError = Suppress; 1248 } 1249 GetSuppressIncludeNotFoundError()1250 bool GetSuppressIncludeNotFoundError() { 1251 return SuppressIncludeNotFoundError; 1252 } 1253 1254 /// Sets whether the preprocessor is responsible for producing output or if 1255 /// it is producing tokens to be consumed by Parse and Sema. setPreprocessedOutput(bool IsPreprocessedOutput)1256 void setPreprocessedOutput(bool IsPreprocessedOutput) { 1257 PreprocessedOutput = IsPreprocessedOutput; 1258 } 1259 1260 /// Returns true if the preprocessor is responsible for generating output, 1261 /// false if it is producing tokens to be consumed by Parse and Sema. isPreprocessedOutput()1262 bool isPreprocessedOutput() const { return PreprocessedOutput; } 1263 1264 /// Return true if we are lexing directly from the specified lexer. isCurrentLexer(const PreprocessorLexer * L)1265 bool isCurrentLexer(const PreprocessorLexer *L) const { 1266 return CurPPLexer == L; 1267 } 1268 1269 /// Return the current lexer being lexed from. 1270 /// 1271 /// Note that this ignores any potentially active macro expansions and _Pragma 1272 /// expansions going on at the time. getCurrentLexer()1273 PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; } 1274 1275 /// Return the current file lexer being lexed from. 1276 /// 1277 /// Note that this ignores any potentially active macro expansions and _Pragma 1278 /// expansions going on at the time. 1279 PreprocessorLexer *getCurrentFileLexer() const; 1280 1281 /// Return the submodule owning the file being lexed. This may not be 1282 /// the current module if we have changed modules since entering the file. getCurrentLexerSubmodule()1283 Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; } 1284 1285 /// Returns the FileID for the preprocessor predefines. getPredefinesFileID()1286 FileID getPredefinesFileID() const { return PredefinesFileID; } 1287 1288 /// \{ 1289 /// Accessors for preprocessor callbacks. 1290 /// 1291 /// Note that this class takes ownership of any PPCallbacks object given to 1292 /// it. getPPCallbacks()1293 PPCallbacks *getPPCallbacks() const { return Callbacks.get(); } addPPCallbacks(std::unique_ptr<PPCallbacks> C)1294 void addPPCallbacks(std::unique_ptr<PPCallbacks> C) { 1295 if (Callbacks) 1296 C = std::make_unique<PPChainedCallbacks>(std::move(C), 1297 std::move(Callbacks)); 1298 Callbacks = std::move(C); 1299 } 1300 /// \} 1301 1302 /// Get the number of tokens processed so far. getTokenCount()1303 unsigned getTokenCount() const { return TokenCount; } 1304 1305 /// Get the max number of tokens before issuing a -Wmax-tokens warning. getMaxTokens()1306 unsigned getMaxTokens() const { return MaxTokens; } 1307 overrideMaxTokens(unsigned Value,SourceLocation Loc)1308 void overrideMaxTokens(unsigned Value, SourceLocation Loc) { 1309 MaxTokens = Value; 1310 MaxTokensOverrideLoc = Loc; 1311 }; 1312 getMaxTokensOverrideLoc()1313 SourceLocation getMaxTokensOverrideLoc() const { return MaxTokensOverrideLoc; } 1314 1315 /// Register a function that would be called on each token in the final 1316 /// expanded token stream. 1317 /// This also reports annotation tokens produced by the parser. setTokenWatcher(llvm::unique_function<void (const clang::Token &)> F)1318 void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) { 1319 OnToken = std::move(F); 1320 } 1321 setPreprocessToken(bool Preprocess)1322 void setPreprocessToken(bool Preprocess) { PreprocessToken = Preprocess; } 1323 isMacroDefined(StringRef Id)1324 bool isMacroDefined(StringRef Id) { 1325 return isMacroDefined(&Identifiers.get(Id)); 1326 } isMacroDefined(const IdentifierInfo * II)1327 bool isMacroDefined(const IdentifierInfo *II) { 1328 return II->hasMacroDefinition() && 1329 (!getLangOpts().Modules || (bool)getMacroDefinition(II)); 1330 } 1331 1332 /// Determine whether II is defined as a macro within the module M, 1333 /// if that is a module that we've already preprocessed. Does not check for 1334 /// macros imported into M. isMacroDefinedInLocalModule(const IdentifierInfo * II,Module * M)1335 bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) { 1336 if (!II->hasMacroDefinition()) 1337 return false; 1338 auto I = Submodules.find(M); 1339 if (I == Submodules.end()) 1340 return false; 1341 auto J = I->second.Macros.find(II); 1342 if (J == I->second.Macros.end()) 1343 return false; 1344 auto *MD = J->second.getLatest(); 1345 return MD && MD->isDefined(); 1346 } 1347 getMacroDefinition(const IdentifierInfo * II)1348 MacroDefinition getMacroDefinition(const IdentifierInfo *II) { 1349 if (!II->hasMacroDefinition()) 1350 return {}; 1351 1352 MacroState &S = CurSubmoduleState->Macros[II]; 1353 auto *MD = S.getLatest(); 1354 while (MD && isa<VisibilityMacroDirective>(MD)) 1355 MD = MD->getPrevious(); 1356 return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(MD), 1357 S.getActiveModuleMacros(*this, II), 1358 S.isAmbiguous(*this, II)); 1359 } 1360 getMacroDefinitionAtLoc(const IdentifierInfo * II,SourceLocation Loc)1361 MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II, 1362 SourceLocation Loc) { 1363 if (!II->hadMacroDefinition()) 1364 return {}; 1365 1366 MacroState &S = CurSubmoduleState->Macros[II]; 1367 MacroDirective::DefInfo DI; 1368 if (auto *MD = S.getLatest()) 1369 DI = MD->findDirectiveAtLoc(Loc, getSourceManager()); 1370 // FIXME: Compute the set of active module macros at the specified location. 1371 return MacroDefinition(DI.getDirective(), 1372 S.getActiveModuleMacros(*this, II), 1373 S.isAmbiguous(*this, II)); 1374 } 1375 1376 /// Given an identifier, return its latest non-imported MacroDirective 1377 /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd. getLocalMacroDirective(const IdentifierInfo * II)1378 MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const { 1379 if (!II->hasMacroDefinition()) 1380 return nullptr; 1381 1382 auto *MD = getLocalMacroDirectiveHistory(II); 1383 if (!MD || MD->getDefinition().isUndefined()) 1384 return nullptr; 1385 1386 return MD; 1387 } 1388 getMacroInfo(const IdentifierInfo * II)1389 const MacroInfo *getMacroInfo(const IdentifierInfo *II) const { 1390 return const_cast<Preprocessor*>(this)->getMacroInfo(II); 1391 } 1392 getMacroInfo(const IdentifierInfo * II)1393 MacroInfo *getMacroInfo(const IdentifierInfo *II) { 1394 if (!II->hasMacroDefinition()) 1395 return nullptr; 1396 if (auto MD = getMacroDefinition(II)) 1397 return MD.getMacroInfo(); 1398 return nullptr; 1399 } 1400 1401 /// Given an identifier, return the latest non-imported macro 1402 /// directive for that identifier. 1403 /// 1404 /// One can iterate over all previous macro directives from the most recent 1405 /// one. 1406 MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const; 1407 1408 /// Add a directive to the macro directive history for this identifier. 1409 void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD); appendDefMacroDirective(IdentifierInfo * II,MacroInfo * MI,SourceLocation Loc)1410 DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI, 1411 SourceLocation Loc) { 1412 DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc); 1413 appendMacroDirective(II, MD); 1414 return MD; 1415 } appendDefMacroDirective(IdentifierInfo * II,MacroInfo * MI)1416 DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, 1417 MacroInfo *MI) { 1418 return appendDefMacroDirective(II, MI, MI->getDefinitionLoc()); 1419 } 1420 1421 /// Set a MacroDirective that was loaded from a PCH file. 1422 void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED, 1423 MacroDirective *MD); 1424 1425 /// Register an exported macro for a module and identifier. 1426 ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro, 1427 ArrayRef<ModuleMacro *> Overrides, bool &IsNew); 1428 ModuleMacro *getModuleMacro(Module *Mod, const IdentifierInfo *II); 1429 1430 /// Get the list of leaf (non-overridden) module macros for a name. getLeafModuleMacros(const IdentifierInfo * II)1431 ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const { 1432 if (II->isOutOfDate()) 1433 updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II)); 1434 auto I = LeafModuleMacros.find(II); 1435 if (I != LeafModuleMacros.end()) 1436 return I->second; 1437 return std::nullopt; 1438 } 1439 1440 /// Get the list of submodules that we're currently building. getBuildingSubmodules()1441 ArrayRef<BuildingSubmoduleInfo> getBuildingSubmodules() const { 1442 return BuildingSubmoduleStack; 1443 } 1444 1445 /// \{ 1446 /// Iterators for the macro history table. Currently defined macros have 1447 /// IdentifierInfo::hasMacroDefinition() set and an empty 1448 /// MacroInfo::getUndefLoc() at the head of the list. 1449 using macro_iterator = MacroMap::const_iterator; 1450 1451 macro_iterator macro_begin(bool IncludeExternalMacros = true) const; 1452 macro_iterator macro_end(bool IncludeExternalMacros = true) const; 1453 1454 llvm::iterator_range<macro_iterator> 1455 macros(bool IncludeExternalMacros = true) const { 1456 macro_iterator begin = macro_begin(IncludeExternalMacros); 1457 macro_iterator end = macro_end(IncludeExternalMacros); 1458 return llvm::make_range(begin, end); 1459 } 1460 1461 /// \} 1462 1463 /// Mark the given clang module as affecting the current clang module or translation unit. markClangModuleAsAffecting(Module * M)1464 void markClangModuleAsAffecting(Module *M) { 1465 assert(M->isModuleMapModule()); 1466 if (!BuildingSubmoduleStack.empty()) { 1467 if (M != BuildingSubmoduleStack.back().M) 1468 BuildingSubmoduleStack.back().M->AffectingClangModules.insert(M); 1469 } else { 1470 AffectingClangModules.insert(M); 1471 } 1472 } 1473 1474 /// Get the set of top-level clang modules that affected preprocessing, but were not 1475 /// imported. getAffectingClangModules()1476 const llvm::SmallSetVector<Module *, 2> &getAffectingClangModules() const { 1477 return AffectingClangModules; 1478 } 1479 1480 /// Mark the file as included. 1481 /// Returns true if this is the first time the file was included. markIncluded(const FileEntry * File)1482 bool markIncluded(const FileEntry *File) { 1483 HeaderInfo.getFileInfo(File); 1484 return IncludedFiles.insert(File).second; 1485 } 1486 1487 /// Return true if this header has already been included. alreadyIncluded(const FileEntry * File)1488 bool alreadyIncluded(const FileEntry *File) const { 1489 return IncludedFiles.count(File); 1490 } 1491 1492 /// Get the set of included files. getIncludedFiles()1493 IncludedFilesSet &getIncludedFiles() { return IncludedFiles; } getIncludedFiles()1494 const IncludedFilesSet &getIncludedFiles() const { return IncludedFiles; } 1495 1496 /// Return the name of the macro defined before \p Loc that has 1497 /// spelling \p Tokens. If there are multiple macros with same spelling, 1498 /// return the last one defined. 1499 StringRef getLastMacroWithSpelling(SourceLocation Loc, 1500 ArrayRef<TokenValue> Tokens) const; 1501 1502 /// Get the predefines for this processor. 1503 /// Used by some third-party tools to inspect and add predefines (see 1504 /// https://github.com/llvm/llvm-project/issues/57483). getPredefines()1505 const std::string &getPredefines() const { return Predefines; } 1506 1507 /// Set the predefines for this Preprocessor. 1508 /// 1509 /// These predefines are automatically injected when parsing the main file. setPredefines(std::string P)1510 void setPredefines(std::string P) { Predefines = std::move(P); } 1511 1512 /// Return information about the specified preprocessor 1513 /// identifier token. getIdentifierInfo(StringRef Name)1514 IdentifierInfo *getIdentifierInfo(StringRef Name) const { 1515 return &Identifiers.get(Name); 1516 } 1517 1518 /// Add the specified pragma handler to this preprocessor. 1519 /// 1520 /// If \p Namespace is non-null, then it is a token required to exist on the 1521 /// pragma line before the pragma string starts, e.g. "STDC" or "GCC". 1522 void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler); AddPragmaHandler(PragmaHandler * Handler)1523 void AddPragmaHandler(PragmaHandler *Handler) { 1524 AddPragmaHandler(StringRef(), Handler); 1525 } 1526 1527 /// Remove the specific pragma handler from this preprocessor. 1528 /// 1529 /// If \p Namespace is non-null, then it should be the namespace that 1530 /// \p Handler was added to. It is an error to remove a handler that 1531 /// has not been registered. 1532 void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler); RemovePragmaHandler(PragmaHandler * Handler)1533 void RemovePragmaHandler(PragmaHandler *Handler) { 1534 RemovePragmaHandler(StringRef(), Handler); 1535 } 1536 1537 /// Install empty handlers for all pragmas (making them ignored). 1538 void IgnorePragmas(); 1539 1540 /// Set empty line handler. setEmptylineHandler(EmptylineHandler * Handler)1541 void setEmptylineHandler(EmptylineHandler *Handler) { Emptyline = Handler; } 1542 getEmptylineHandler()1543 EmptylineHandler *getEmptylineHandler() const { return Emptyline; } 1544 1545 /// Add the specified comment handler to the preprocessor. 1546 void addCommentHandler(CommentHandler *Handler); 1547 1548 /// Remove the specified comment handler. 1549 /// 1550 /// It is an error to remove a handler that has not been registered. 1551 void removeCommentHandler(CommentHandler *Handler); 1552 1553 /// Set the code completion handler to the given object. setCodeCompletionHandler(CodeCompletionHandler & Handler)1554 void setCodeCompletionHandler(CodeCompletionHandler &Handler) { 1555 CodeComplete = &Handler; 1556 } 1557 1558 /// Retrieve the current code-completion handler. getCodeCompletionHandler()1559 CodeCompletionHandler *getCodeCompletionHandler() const { 1560 return CodeComplete; 1561 } 1562 1563 /// Clear out the code completion handler. clearCodeCompletionHandler()1564 void clearCodeCompletionHandler() { 1565 CodeComplete = nullptr; 1566 } 1567 1568 /// Hook used by the lexer to invoke the "included file" code 1569 /// completion point. 1570 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); 1571 1572 /// Hook used by the lexer to invoke the "natural language" code 1573 /// completion point. 1574 void CodeCompleteNaturalLanguage(); 1575 1576 /// Set the code completion token for filtering purposes. setCodeCompletionIdentifierInfo(IdentifierInfo * Filter)1577 void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) { 1578 CodeCompletionII = Filter; 1579 } 1580 1581 /// Set the code completion token range for detecting replacement range later 1582 /// on. setCodeCompletionTokenRange(const SourceLocation Start,const SourceLocation End)1583 void setCodeCompletionTokenRange(const SourceLocation Start, 1584 const SourceLocation End) { 1585 CodeCompletionTokenRange = {Start, End}; 1586 } getCodeCompletionTokenRange()1587 SourceRange getCodeCompletionTokenRange() const { 1588 return CodeCompletionTokenRange; 1589 } 1590 1591 /// Get the code completion token for filtering purposes. getCodeCompletionFilter()1592 StringRef getCodeCompletionFilter() { 1593 if (CodeCompletionII) 1594 return CodeCompletionII->getName(); 1595 return {}; 1596 } 1597 1598 /// Retrieve the preprocessing record, or NULL if there is no 1599 /// preprocessing record. getPreprocessingRecord()1600 PreprocessingRecord *getPreprocessingRecord() const { return Record; } 1601 1602 /// Create a new preprocessing record, which will keep track of 1603 /// all macro expansions, macro definitions, etc. 1604 void createPreprocessingRecord(); 1605 1606 /// Returns true if the FileEntry is the PCH through header. 1607 bool isPCHThroughHeader(const FileEntry *FE); 1608 1609 /// True if creating a PCH with a through header. 1610 bool creatingPCHWithThroughHeader(); 1611 1612 /// True if using a PCH with a through header. 1613 bool usingPCHWithThroughHeader(); 1614 1615 /// True if creating a PCH with a #pragma hdrstop. 1616 bool creatingPCHWithPragmaHdrStop(); 1617 1618 /// True if using a PCH with a #pragma hdrstop. 1619 bool usingPCHWithPragmaHdrStop(); 1620 1621 /// Skip tokens until after the #include of the through header or 1622 /// until after a #pragma hdrstop. 1623 void SkipTokensWhileUsingPCH(); 1624 1625 /// Process directives while skipping until the through header or 1626 /// #pragma hdrstop is found. 1627 void HandleSkippedDirectiveWhileUsingPCH(Token &Result, 1628 SourceLocation HashLoc); 1629 1630 /// Enter the specified FileID as the main source file, 1631 /// which implicitly adds the builtin defines etc. 1632 void EnterMainSourceFile(); 1633 1634 /// Inform the preprocessor callbacks that processing is complete. 1635 void EndSourceFile(); 1636 1637 /// Add a source file to the top of the include stack and 1638 /// start lexing tokens from it instead of the current buffer. 1639 /// 1640 /// Emits a diagnostic, doesn't enter the file, and returns true on error. 1641 bool EnterSourceFile(FileID FID, ConstSearchDirIterator Dir, 1642 SourceLocation Loc, bool IsFirstIncludeOfFile = true); 1643 1644 /// Add a Macro to the top of the include stack and start lexing 1645 /// tokens from it instead of the current buffer. 1646 /// 1647 /// \param Args specifies the tokens input to a function-like macro. 1648 /// \param ILEnd specifies the location of the ')' for a function-like macro 1649 /// or the identifier for an object-like macro. 1650 void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro, 1651 MacroArgs *Args); 1652 1653 private: 1654 /// Add a "macro" context to the top of the include stack, 1655 /// which will cause the lexer to start returning the specified tokens. 1656 /// 1657 /// If \p DisableMacroExpansion is true, tokens lexed from the token stream 1658 /// will not be subject to further macro expansion. Otherwise, these tokens 1659 /// will be re-macro-expanded when/if expansion is enabled. 1660 /// 1661 /// If \p OwnsTokens is false, this method assumes that the specified stream 1662 /// of tokens has a permanent owner somewhere, so they do not need to be 1663 /// copied. If it is true, it assumes the array of tokens is allocated with 1664 /// \c new[] and the Preprocessor will delete[] it. 1665 /// 1666 /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag 1667 /// set, see the flag documentation for details. 1668 void EnterTokenStream(const Token *Toks, unsigned NumToks, 1669 bool DisableMacroExpansion, bool OwnsTokens, 1670 bool IsReinject); 1671 1672 public: EnterTokenStream(std::unique_ptr<Token[]> Toks,unsigned NumToks,bool DisableMacroExpansion,bool IsReinject)1673 void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks, 1674 bool DisableMacroExpansion, bool IsReinject) { 1675 EnterTokenStream(Toks.release(), NumToks, DisableMacroExpansion, true, 1676 IsReinject); 1677 } 1678 EnterTokenStream(ArrayRef<Token> Toks,bool DisableMacroExpansion,bool IsReinject)1679 void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion, 1680 bool IsReinject) { 1681 EnterTokenStream(Toks.data(), Toks.size(), DisableMacroExpansion, false, 1682 IsReinject); 1683 } 1684 1685 /// Pop the current lexer/macro exp off the top of the lexer stack. 1686 /// 1687 /// This should only be used in situations where the current state of the 1688 /// top-of-stack lexer is known. 1689 void RemoveTopOfLexerStack(); 1690 1691 /// From the point that this method is called, and until 1692 /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor 1693 /// keeps track of the lexed tokens so that a subsequent Backtrack() call will 1694 /// make the Preprocessor re-lex the same tokens. 1695 /// 1696 /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can 1697 /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will 1698 /// be combined with the EnableBacktrackAtThisPos calls in reverse order. 1699 /// 1700 /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack 1701 /// at some point after EnableBacktrackAtThisPos. If you don't, caching of 1702 /// tokens will continue indefinitely. 1703 /// 1704 void EnableBacktrackAtThisPos(); 1705 1706 /// Disable the last EnableBacktrackAtThisPos call. 1707 void CommitBacktrackedTokens(); 1708 1709 /// Make Preprocessor re-lex the tokens that were lexed since 1710 /// EnableBacktrackAtThisPos() was previously called. 1711 void Backtrack(); 1712 1713 /// True if EnableBacktrackAtThisPos() was called and 1714 /// caching of tokens is on. isBacktrackEnabled()1715 bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); } 1716 1717 /// Lex the next token for this preprocessor. 1718 void Lex(Token &Result); 1719 1720 /// Lex a token, forming a header-name token if possible. 1721 bool LexHeaderName(Token &Result, bool AllowMacroExpansion = true); 1722 1723 bool LexAfterModuleImport(Token &Result); 1724 void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks); 1725 1726 void makeModuleVisible(Module *M, SourceLocation Loc); 1727 getModuleImportLoc(Module * M)1728 SourceLocation getModuleImportLoc(Module *M) const { 1729 return CurSubmoduleState->VisibleModules.getImportLoc(M); 1730 } 1731 1732 /// Lex a string literal, which may be the concatenation of multiple 1733 /// string literals and may even come from macro expansion. 1734 /// \returns true on success, false if a error diagnostic has been generated. LexStringLiteral(Token & Result,std::string & String,const char * DiagnosticTag,bool AllowMacroExpansion)1735 bool LexStringLiteral(Token &Result, std::string &String, 1736 const char *DiagnosticTag, bool AllowMacroExpansion) { 1737 if (AllowMacroExpansion) 1738 Lex(Result); 1739 else 1740 LexUnexpandedToken(Result); 1741 return FinishLexStringLiteral(Result, String, DiagnosticTag, 1742 AllowMacroExpansion); 1743 } 1744 1745 /// Complete the lexing of a string literal where the first token has 1746 /// already been lexed (see LexStringLiteral). 1747 bool FinishLexStringLiteral(Token &Result, std::string &String, 1748 const char *DiagnosticTag, 1749 bool AllowMacroExpansion); 1750 1751 /// Lex a token. If it's a comment, keep lexing until we get 1752 /// something not a comment. 1753 /// 1754 /// This is useful in -E -C mode where comments would foul up preprocessor 1755 /// directive handling. LexNonComment(Token & Result)1756 void LexNonComment(Token &Result) { 1757 do 1758 Lex(Result); 1759 while (Result.getKind() == tok::comment); 1760 } 1761 1762 /// Just like Lex, but disables macro expansion of identifier tokens. LexUnexpandedToken(Token & Result)1763 void LexUnexpandedToken(Token &Result) { 1764 // Disable macro expansion. 1765 bool OldVal = DisableMacroExpansion; 1766 DisableMacroExpansion = true; 1767 // Lex the token. 1768 Lex(Result); 1769 1770 // Reenable it. 1771 DisableMacroExpansion = OldVal; 1772 } 1773 1774 /// Like LexNonComment, but this disables macro expansion of 1775 /// identifier tokens. LexUnexpandedNonComment(Token & Result)1776 void LexUnexpandedNonComment(Token &Result) { 1777 do 1778 LexUnexpandedToken(Result); 1779 while (Result.getKind() == tok::comment); 1780 } 1781 1782 /// Parses a simple integer literal to get its numeric value. Floating 1783 /// point literals and user defined literals are rejected. Used primarily to 1784 /// handle pragmas that accept integer arguments. 1785 bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value); 1786 1787 /// Disables macro expansion everywhere except for preprocessor directives. SetMacroExpansionOnlyInDirectives()1788 void SetMacroExpansionOnlyInDirectives() { 1789 DisableMacroExpansion = true; 1790 MacroExpansionInDirectivesOverride = true; 1791 } 1792 1793 /// Peeks ahead N tokens and returns that token without consuming any 1794 /// tokens. 1795 /// 1796 /// LookAhead(0) returns the next token that would be returned by Lex(), 1797 /// LookAhead(1) returns the token after it, etc. This returns normal 1798 /// tokens after phase 5. As such, it is equivalent to using 1799 /// 'Lex', not 'LexUnexpandedToken'. LookAhead(unsigned N)1800 const Token &LookAhead(unsigned N) { 1801 assert(LexLevel == 0 && "cannot use lookahead while lexing"); 1802 if (CachedLexPos + N < CachedTokens.size()) 1803 return CachedTokens[CachedLexPos+N]; 1804 else 1805 return PeekAhead(N+1); 1806 } 1807 1808 /// When backtracking is enabled and tokens are cached, 1809 /// this allows to revert a specific number of tokens. 1810 /// 1811 /// Note that the number of tokens being reverted should be up to the last 1812 /// backtrack position, not more. RevertCachedTokens(unsigned N)1813 void RevertCachedTokens(unsigned N) { 1814 assert(isBacktrackEnabled() && 1815 "Should only be called when tokens are cached for backtracking"); 1816 assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back()) 1817 && "Should revert tokens up to the last backtrack position, not more"); 1818 assert(signed(CachedLexPos) - signed(N) >= 0 && 1819 "Corrupted backtrack positions ?"); 1820 CachedLexPos -= N; 1821 } 1822 1823 /// Enters a token in the token stream to be lexed next. 1824 /// 1825 /// If BackTrack() is called afterwards, the token will remain at the 1826 /// insertion point. 1827 /// If \p IsReinject is true, resulting token will have Token::IsReinjected 1828 /// flag set. See the flag documentation for details. EnterToken(const Token & Tok,bool IsReinject)1829 void EnterToken(const Token &Tok, bool IsReinject) { 1830 if (LexLevel) { 1831 // It's not correct in general to enter caching lex mode while in the 1832 // middle of a nested lexing action. 1833 auto TokCopy = std::make_unique<Token[]>(1); 1834 TokCopy[0] = Tok; 1835 EnterTokenStream(std::move(TokCopy), 1, true, IsReinject); 1836 } else { 1837 EnterCachingLexMode(); 1838 assert(IsReinject && "new tokens in the middle of cached stream"); 1839 CachedTokens.insert(CachedTokens.begin()+CachedLexPos, Tok); 1840 } 1841 } 1842 1843 /// We notify the Preprocessor that if it is caching tokens (because 1844 /// backtrack is enabled) it should replace the most recent cached tokens 1845 /// with the given annotation token. This function has no effect if 1846 /// backtracking is not enabled. 1847 /// 1848 /// Note that the use of this function is just for optimization, so that the 1849 /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is 1850 /// invoked. AnnotateCachedTokens(const Token & Tok)1851 void AnnotateCachedTokens(const Token &Tok) { 1852 assert(Tok.isAnnotation() && "Expected annotation token"); 1853 if (CachedLexPos != 0 && isBacktrackEnabled()) 1854 AnnotatePreviousCachedTokens(Tok); 1855 } 1856 1857 /// Get the location of the last cached token, suitable for setting the end 1858 /// location of an annotation token. getLastCachedTokenLocation()1859 SourceLocation getLastCachedTokenLocation() const { 1860 assert(CachedLexPos != 0); 1861 return CachedTokens[CachedLexPos-1].getLastLoc(); 1862 } 1863 1864 /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in 1865 /// CachedTokens. 1866 bool IsPreviousCachedToken(const Token &Tok) const; 1867 1868 /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens 1869 /// in \p NewToks. 1870 /// 1871 /// Useful when a token needs to be split in smaller ones and CachedTokens 1872 /// most recent token must to be updated to reflect that. 1873 void ReplacePreviousCachedToken(ArrayRef<Token> NewToks); 1874 1875 /// Replace the last token with an annotation token. 1876 /// 1877 /// Like AnnotateCachedTokens(), this routine replaces an 1878 /// already-parsed (and resolved) token with an annotation 1879 /// token. However, this routine only replaces the last token with 1880 /// the annotation token; it does not affect any other cached 1881 /// tokens. This function has no effect if backtracking is not 1882 /// enabled. ReplaceLastTokenWithAnnotation(const Token & Tok)1883 void ReplaceLastTokenWithAnnotation(const Token &Tok) { 1884 assert(Tok.isAnnotation() && "Expected annotation token"); 1885 if (CachedLexPos != 0 && isBacktrackEnabled()) 1886 CachedTokens[CachedLexPos-1] = Tok; 1887 } 1888 1889 /// Enter an annotation token into the token stream. 1890 void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind, 1891 void *AnnotationVal); 1892 1893 /// Determine whether it's possible for a future call to Lex to produce an 1894 /// annotation token created by a previous call to EnterAnnotationToken. mightHavePendingAnnotationTokens()1895 bool mightHavePendingAnnotationTokens() { 1896 return CurLexerKind != CLK_Lexer; 1897 } 1898 1899 /// Update the current token to represent the provided 1900 /// identifier, in order to cache an action performed by typo correction. TypoCorrectToken(const Token & Tok)1901 void TypoCorrectToken(const Token &Tok) { 1902 assert(Tok.getIdentifierInfo() && "Expected identifier token"); 1903 if (CachedLexPos != 0 && isBacktrackEnabled()) 1904 CachedTokens[CachedLexPos-1] = Tok; 1905 } 1906 1907 /// Recompute the current lexer kind based on the CurLexer/ 1908 /// CurTokenLexer pointers. 1909 void recomputeCurLexerKind(); 1910 1911 /// Returns true if incremental processing is enabled isIncrementalProcessingEnabled()1912 bool isIncrementalProcessingEnabled() const { 1913 return getLangOpts().IncrementalExtensions; 1914 } 1915 1916 /// Enables the incremental processing 1917 void enableIncrementalProcessing(bool value = true) { 1918 // FIXME: Drop this interface. 1919 const_cast<LangOptions &>(getLangOpts()).IncrementalExtensions = value; 1920 } 1921 1922 /// Specify the point at which code-completion will be performed. 1923 /// 1924 /// \param File the file in which code completion should occur. If 1925 /// this file is included multiple times, code-completion will 1926 /// perform completion the first time it is included. If NULL, this 1927 /// function clears out the code-completion point. 1928 /// 1929 /// \param Line the line at which code completion should occur 1930 /// (1-based). 1931 /// 1932 /// \param Column the column at which code completion should occur 1933 /// (1-based). 1934 /// 1935 /// \returns true if an error occurred, false otherwise. 1936 bool SetCodeCompletionPoint(const FileEntry *File, 1937 unsigned Line, unsigned Column); 1938 1939 /// Determine if we are performing code completion. isCodeCompletionEnabled()1940 bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; } 1941 1942 /// Returns the location of the code-completion point. 1943 /// 1944 /// Returns an invalid location if code-completion is not enabled or the file 1945 /// containing the code-completion point has not been lexed yet. getCodeCompletionLoc()1946 SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; } 1947 1948 /// Returns the start location of the file of code-completion point. 1949 /// 1950 /// Returns an invalid location if code-completion is not enabled or the file 1951 /// containing the code-completion point has not been lexed yet. getCodeCompletionFileLoc()1952 SourceLocation getCodeCompletionFileLoc() const { 1953 return CodeCompletionFileLoc; 1954 } 1955 1956 /// Returns true if code-completion is enabled and we have hit the 1957 /// code-completion point. isCodeCompletionReached()1958 bool isCodeCompletionReached() const { return CodeCompletionReached; } 1959 1960 /// Note that we hit the code-completion point. setCodeCompletionReached()1961 void setCodeCompletionReached() { 1962 assert(isCodeCompletionEnabled() && "Code-completion not enabled!"); 1963 CodeCompletionReached = true; 1964 // Silence any diagnostics that occur after we hit the code-completion. 1965 getDiagnostics().setSuppressAllDiagnostics(true); 1966 } 1967 1968 /// The location of the currently-active \#pragma clang 1969 /// arc_cf_code_audited begin. 1970 /// 1971 /// Returns an invalid location if there is no such pragma active. 1972 std::pair<IdentifierInfo *, SourceLocation> getPragmaARCCFCodeAuditedInfo()1973 getPragmaARCCFCodeAuditedInfo() const { 1974 return PragmaARCCFCodeAuditedInfo; 1975 } 1976 1977 /// Set the location of the currently-active \#pragma clang 1978 /// arc_cf_code_audited begin. An invalid location ends the pragma. setPragmaARCCFCodeAuditedInfo(IdentifierInfo * Ident,SourceLocation Loc)1979 void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident, 1980 SourceLocation Loc) { 1981 PragmaARCCFCodeAuditedInfo = {Ident, Loc}; 1982 } 1983 1984 /// The location of the currently-active \#pragma clang 1985 /// assume_nonnull begin. 1986 /// 1987 /// Returns an invalid location if there is no such pragma active. getPragmaAssumeNonNullLoc()1988 SourceLocation getPragmaAssumeNonNullLoc() const { 1989 return PragmaAssumeNonNullLoc; 1990 } 1991 1992 /// Set the location of the currently-active \#pragma clang 1993 /// assume_nonnull begin. An invalid location ends the pragma. setPragmaAssumeNonNullLoc(SourceLocation Loc)1994 void setPragmaAssumeNonNullLoc(SourceLocation Loc) { 1995 PragmaAssumeNonNullLoc = Loc; 1996 } 1997 1998 /// Get the location of the recorded unterminated \#pragma clang 1999 /// assume_nonnull begin in the preamble, if one exists. 2000 /// 2001 /// Returns an invalid location if the premable did not end with 2002 /// such a pragma active or if there is no recorded preamble. getPreambleRecordedPragmaAssumeNonNullLoc()2003 SourceLocation getPreambleRecordedPragmaAssumeNonNullLoc() const { 2004 return PreambleRecordedPragmaAssumeNonNullLoc; 2005 } 2006 2007 /// Record the location of the unterminated \#pragma clang 2008 /// assume_nonnull begin in the preamble. setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc)2009 void setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc) { 2010 PreambleRecordedPragmaAssumeNonNullLoc = Loc; 2011 } 2012 2013 /// Set the directory in which the main file should be considered 2014 /// to have been found, if it is not a real file. setMainFileDir(const DirectoryEntry * Dir)2015 void setMainFileDir(const DirectoryEntry *Dir) { 2016 MainFileDir = Dir; 2017 } 2018 2019 /// Instruct the preprocessor to skip part of the main source file. 2020 /// 2021 /// \param Bytes The number of bytes in the preamble to skip. 2022 /// 2023 /// \param StartOfLine Whether skipping these bytes puts the lexer at the 2024 /// start of a line. setSkipMainFilePreamble(unsigned Bytes,bool StartOfLine)2025 void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) { 2026 SkipMainFilePreamble.first = Bytes; 2027 SkipMainFilePreamble.second = StartOfLine; 2028 } 2029 2030 /// Forwarding function for diagnostics. This emits a diagnostic at 2031 /// the specified Token's location, translating the token's start 2032 /// position in the current buffer into a SourcePosition object for rendering. Diag(SourceLocation Loc,unsigned DiagID)2033 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const { 2034 return Diags->Report(Loc, DiagID); 2035 } 2036 Diag(const Token & Tok,unsigned DiagID)2037 DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const { 2038 return Diags->Report(Tok.getLocation(), DiagID); 2039 } 2040 2041 /// Return the 'spelling' of the token at the given 2042 /// location; does not go up to the spelling location or down to the 2043 /// expansion location. 2044 /// 2045 /// \param buffer A buffer which will be used only if the token requires 2046 /// "cleaning", e.g. if it contains trigraphs or escaped newlines 2047 /// \param invalid If non-null, will be set \c true if an error occurs. 2048 StringRef getSpelling(SourceLocation loc, 2049 SmallVectorImpl<char> &buffer, 2050 bool *invalid = nullptr) const { 2051 return Lexer::getSpelling(loc, buffer, SourceMgr, LangOpts, invalid); 2052 } 2053 2054 /// Return the 'spelling' of the Tok token. 2055 /// 2056 /// The spelling of a token is the characters used to represent the token in 2057 /// the source file after trigraph expansion and escaped-newline folding. In 2058 /// particular, this wants to get the true, uncanonicalized, spelling of 2059 /// things like digraphs, UCNs, etc. 2060 /// 2061 /// \param Invalid If non-null, will be set \c true if an error occurs. 2062 std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const { 2063 return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid); 2064 } 2065 2066 /// Get the spelling of a token into a preallocated buffer, instead 2067 /// of as an std::string. 2068 /// 2069 /// The caller is required to allocate enough space for the token, which is 2070 /// guaranteed to be at least Tok.getLength() bytes long. The length of the 2071 /// actual result is returned. 2072 /// 2073 /// Note that this method may do two possible things: it may either fill in 2074 /// the buffer specified with characters, or it may *change the input pointer* 2075 /// to point to a constant buffer with the data already in it (avoiding a 2076 /// copy). The caller is not allowed to modify the returned buffer pointer 2077 /// if an internal buffer is returned. 2078 unsigned getSpelling(const Token &Tok, const char *&Buffer, 2079 bool *Invalid = nullptr) const { 2080 return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid); 2081 } 2082 2083 /// Get the spelling of a token into a SmallVector. 2084 /// 2085 /// Note that the returned StringRef may not point to the 2086 /// supplied buffer if a copy can be avoided. 2087 StringRef getSpelling(const Token &Tok, 2088 SmallVectorImpl<char> &Buffer, 2089 bool *Invalid = nullptr) const; 2090 2091 /// Relex the token at the specified location. 2092 /// \returns true if there was a failure, false on success. 2093 bool getRawToken(SourceLocation Loc, Token &Result, 2094 bool IgnoreWhiteSpace = false) { 2095 return Lexer::getRawToken(Loc, Result, SourceMgr, LangOpts, IgnoreWhiteSpace); 2096 } 2097 2098 /// Given a Token \p Tok that is a numeric constant with length 1, 2099 /// return the character. 2100 char 2101 getSpellingOfSingleCharacterNumericConstant(const Token &Tok, 2102 bool *Invalid = nullptr) const { 2103 assert(Tok.is(tok::numeric_constant) && 2104 Tok.getLength() == 1 && "Called on unsupported token"); 2105 assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1"); 2106 2107 // If the token is carrying a literal data pointer, just use it. 2108 if (const char *D = Tok.getLiteralData()) 2109 return *D; 2110 2111 // Otherwise, fall back on getCharacterData, which is slower, but always 2112 // works. 2113 return *SourceMgr.getCharacterData(Tok.getLocation(), Invalid); 2114 } 2115 2116 /// Retrieve the name of the immediate macro expansion. 2117 /// 2118 /// This routine starts from a source location, and finds the name of the 2119 /// macro responsible for its immediate expansion. It looks through any 2120 /// intervening macro argument expansions to compute this. It returns a 2121 /// StringRef that refers to the SourceManager-owned buffer of the source 2122 /// where that macro name is spelled. Thus, the result shouldn't out-live 2123 /// the SourceManager. getImmediateMacroName(SourceLocation Loc)2124 StringRef getImmediateMacroName(SourceLocation Loc) { 2125 return Lexer::getImmediateMacroName(Loc, SourceMgr, getLangOpts()); 2126 } 2127 2128 /// Plop the specified string into a scratch buffer and set the 2129 /// specified token's location and length to it. 2130 /// 2131 /// If specified, the source location provides a location of the expansion 2132 /// point of the token. 2133 void CreateString(StringRef Str, Token &Tok, 2134 SourceLocation ExpansionLocStart = SourceLocation(), 2135 SourceLocation ExpansionLocEnd = SourceLocation()); 2136 2137 /// Split the first Length characters out of the token starting at TokLoc 2138 /// and return a location pointing to the split token. Re-lexing from the 2139 /// split token will return the split token rather than the original. 2140 SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length); 2141 2142 /// Computes the source location just past the end of the 2143 /// token at this source location. 2144 /// 2145 /// This routine can be used to produce a source location that 2146 /// points just past the end of the token referenced by \p Loc, and 2147 /// is generally used when a diagnostic needs to point just after a 2148 /// token where it expected something different that it received. If 2149 /// the returned source location would not be meaningful (e.g., if 2150 /// it points into a macro), this routine returns an invalid 2151 /// source location. 2152 /// 2153 /// \param Offset an offset from the end of the token, where the source 2154 /// location should refer to. The default offset (0) produces a source 2155 /// location pointing just past the end of the token; an offset of 1 produces 2156 /// a source location pointing to the last character in the token, etc. 2157 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) { 2158 return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts); 2159 } 2160 2161 /// Returns true if the given MacroID location points at the first 2162 /// token of the macro expansion. 2163 /// 2164 /// \param MacroBegin If non-null and function returns true, it is set to 2165 /// begin location of the macro. 2166 bool isAtStartOfMacroExpansion(SourceLocation loc, 2167 SourceLocation *MacroBegin = nullptr) const { 2168 return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts, 2169 MacroBegin); 2170 } 2171 2172 /// Returns true if the given MacroID location points at the last 2173 /// token of the macro expansion. 2174 /// 2175 /// \param MacroEnd If non-null and function returns true, it is set to 2176 /// end location of the macro. 2177 bool isAtEndOfMacroExpansion(SourceLocation loc, 2178 SourceLocation *MacroEnd = nullptr) const { 2179 return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd); 2180 } 2181 2182 /// Print the token to stderr, used for debugging. 2183 void DumpToken(const Token &Tok, bool DumpFlags = false) const; 2184 void DumpLocation(SourceLocation Loc) const; 2185 void DumpMacro(const MacroInfo &MI) const; 2186 void dumpMacroInfo(const IdentifierInfo *II); 2187 2188 /// Given a location that specifies the start of a 2189 /// token, return a new location that specifies a character within the token. AdvanceToTokenCharacter(SourceLocation TokStart,unsigned Char)2190 SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, 2191 unsigned Char) const { 2192 return Lexer::AdvanceToTokenCharacter(TokStart, Char, SourceMgr, LangOpts); 2193 } 2194 2195 /// Increment the counters for the number of token paste operations 2196 /// performed. 2197 /// 2198 /// If fast was specified, this is a 'fast paste' case we handled. IncrementPasteCounter(bool isFast)2199 void IncrementPasteCounter(bool isFast) { 2200 if (isFast) 2201 ++NumFastTokenPaste; 2202 else 2203 ++NumTokenPaste; 2204 } 2205 2206 void PrintStats(); 2207 2208 size_t getTotalMemory() const; 2209 2210 /// When the macro expander pastes together a comment (/##/) in Microsoft 2211 /// mode, this method handles updating the current state, returning the 2212 /// token on the next source line. 2213 void HandleMicrosoftCommentPaste(Token &Tok); 2214 2215 //===--------------------------------------------------------------------===// 2216 // Preprocessor callback methods. These are invoked by a lexer as various 2217 // directives and events are found. 2218 2219 /// Given a tok::raw_identifier token, look up the 2220 /// identifier information for the token and install it into the token, 2221 /// updating the token kind accordingly. 2222 IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const; 2223 2224 private: 2225 llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons; 2226 2227 public: 2228 /// Specifies the reason for poisoning an identifier. 2229 /// 2230 /// If that identifier is accessed while poisoned, then this reason will be 2231 /// used instead of the default "poisoned" diagnostic. 2232 void SetPoisonReason(IdentifierInfo *II, unsigned DiagID); 2233 2234 /// Display reason for poisoned identifier. 2235 void HandlePoisonedIdentifier(Token & Identifier); 2236 MaybeHandlePoisonedIdentifier(Token & Identifier)2237 void MaybeHandlePoisonedIdentifier(Token & Identifier) { 2238 if(IdentifierInfo * II = Identifier.getIdentifierInfo()) { 2239 if(II->isPoisoned()) { 2240 HandlePoisonedIdentifier(Identifier); 2241 } 2242 } 2243 } 2244 2245 private: 2246 /// Identifiers used for SEH handling in Borland. These are only 2247 /// allowed in particular circumstances 2248 // __except block 2249 IdentifierInfo *Ident__exception_code, 2250 *Ident___exception_code, 2251 *Ident_GetExceptionCode; 2252 // __except filter expression 2253 IdentifierInfo *Ident__exception_info, 2254 *Ident___exception_info, 2255 *Ident_GetExceptionInfo; 2256 // __finally 2257 IdentifierInfo *Ident__abnormal_termination, 2258 *Ident___abnormal_termination, 2259 *Ident_AbnormalTermination; 2260 2261 const char *getCurLexerEndPos(); 2262 void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod); 2263 2264 public: 2265 void PoisonSEHIdentifiers(bool Poison = true); // Borland 2266 2267 /// Callback invoked when the lexer reads an identifier and has 2268 /// filled in the tokens IdentifierInfo member. 2269 /// 2270 /// This callback potentially macro expands it or turns it into a named 2271 /// token (like 'for'). 2272 /// 2273 /// \returns true if we actually computed a token, false if we need to 2274 /// lex again. 2275 bool HandleIdentifier(Token &Identifier); 2276 2277 /// Callback invoked when the lexer hits the end of the current file. 2278 /// 2279 /// This either returns the EOF token and returns true, or 2280 /// pops a level off the include stack and returns false, at which point the 2281 /// client should call lex again. 2282 bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false); 2283 2284 /// Callback invoked when the current TokenLexer hits the end of its 2285 /// token stream. 2286 bool HandleEndOfTokenLexer(Token &Result); 2287 2288 /// Callback invoked when the lexer sees a # token at the start of a 2289 /// line. 2290 /// 2291 /// This consumes the directive, modifies the lexer/preprocessor state, and 2292 /// advances the lexer(s) so that the next token read is the correct one. 2293 void HandleDirective(Token &Result); 2294 2295 /// Ensure that the next token is a tok::eod token. 2296 /// 2297 /// If not, emit a diagnostic and consume up until the eod. 2298 /// If \p EnableMacros is true, then we consider macros that expand to zero 2299 /// tokens as being ok. 2300 /// 2301 /// \return The location of the end of the directive (the terminating 2302 /// newline). 2303 SourceLocation CheckEndOfDirective(const char *DirType, 2304 bool EnableMacros = false); 2305 2306 /// Read and discard all tokens remaining on the current line until 2307 /// the tok::eod token is found. Returns the range of the skipped tokens. 2308 SourceRange DiscardUntilEndOfDirective(); 2309 2310 /// Returns true if the preprocessor has seen a use of 2311 /// __DATE__ or __TIME__ in the file so far. SawDateOrTime()2312 bool SawDateOrTime() const { 2313 return DATELoc != SourceLocation() || TIMELoc != SourceLocation(); 2314 } getCounterValue()2315 unsigned getCounterValue() const { return CounterValue; } setCounterValue(unsigned V)2316 void setCounterValue(unsigned V) { CounterValue = V; } 2317 getCurrentFPEvalMethod()2318 LangOptions::FPEvalMethodKind getCurrentFPEvalMethod() const { 2319 assert(CurrentFPEvalMethod != LangOptions::FEM_UnsetOnCommandLine && 2320 "FPEvalMethod should be set either from command line or from the " 2321 "target info"); 2322 return CurrentFPEvalMethod; 2323 } 2324 getTUFPEvalMethod()2325 LangOptions::FPEvalMethodKind getTUFPEvalMethod() const { 2326 return TUFPEvalMethod; 2327 } 2328 getLastFPEvalPragmaLocation()2329 SourceLocation getLastFPEvalPragmaLocation() const { 2330 return LastFPEvalPragmaLocation; 2331 } 2332 setCurrentFPEvalMethod(SourceLocation PragmaLoc,LangOptions::FPEvalMethodKind Val)2333 void setCurrentFPEvalMethod(SourceLocation PragmaLoc, 2334 LangOptions::FPEvalMethodKind Val) { 2335 assert(Val != LangOptions::FEM_UnsetOnCommandLine && 2336 "FPEvalMethod should never be set to FEM_UnsetOnCommandLine"); 2337 // This is the location of the '#pragma float_control" where the 2338 // execution state is modifed. 2339 LastFPEvalPragmaLocation = PragmaLoc; 2340 CurrentFPEvalMethod = Val; 2341 TUFPEvalMethod = Val; 2342 } 2343 setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val)2344 void setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val) { 2345 assert(Val != LangOptions::FEM_UnsetOnCommandLine && 2346 "TUPEvalMethod should never be set to FEM_UnsetOnCommandLine"); 2347 TUFPEvalMethod = Val; 2348 } 2349 2350 /// Retrieves the module that we're currently building, if any. 2351 Module *getCurrentModule(); 2352 2353 /// Retrieves the module whose implementation we're current compiling, if any. 2354 Module *getCurrentModuleImplementation(); 2355 2356 /// If we are preprocessing a named module. isInNamedModule()2357 bool isInNamedModule() const { return ModuleDeclState.isNamedModule(); } 2358 2359 /// If we are proprocessing a named interface unit. 2360 /// Note that a module implementation partition is not considered as an 2361 /// named interface unit here although it is importable 2362 /// to ease the parsing. isInNamedInterfaceUnit()2363 bool isInNamedInterfaceUnit() const { 2364 return ModuleDeclState.isNamedInterface(); 2365 } 2366 2367 /// Get the named module name we're preprocessing. 2368 /// Requires we're preprocessing a named module. getNamedModuleName()2369 StringRef getNamedModuleName() const { return ModuleDeclState.getName(); } 2370 2371 /// If we are implementing an implementation module unit. 2372 /// Note that the module implementation partition is not considered as an 2373 /// implementation unit. isInImplementationUnit()2374 bool isInImplementationUnit() const { 2375 return ModuleDeclState.isImplementationUnit(); 2376 } 2377 2378 /// If we're importing a standard C++20 Named Modules. isInImportingCXXNamedModules()2379 bool isInImportingCXXNamedModules() const { 2380 // NamedModuleImportPath will be non-empty only if we're importing 2381 // Standard C++ named modules. 2382 return !NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules && 2383 !IsAtImport; 2384 } 2385 2386 /// Allocate a new MacroInfo object with the provided SourceLocation. 2387 MacroInfo *AllocateMacroInfo(SourceLocation L); 2388 2389 /// Turn the specified lexer token into a fully checked and spelled 2390 /// filename, e.g. as an operand of \#include. 2391 /// 2392 /// The caller is expected to provide a buffer that is large enough to hold 2393 /// the spelling of the filename, but is also expected to handle the case 2394 /// when this method decides to use a different buffer. 2395 /// 2396 /// \returns true if the input filename was in <>'s or false if it was 2397 /// in ""'s. 2398 bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer); 2399 2400 /// Given a "foo" or \<foo> reference, look up the indicated file. 2401 /// 2402 /// Returns std::nullopt on failure. \p isAngled indicates whether the file 2403 /// reference is for system \#include's or not (i.e. using <> instead of ""). 2404 OptionalFileEntryRef 2405 LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled, 2406 ConstSearchDirIterator FromDir, const FileEntry *FromFile, 2407 ConstSearchDirIterator *CurDir, SmallVectorImpl<char> *SearchPath, 2408 SmallVectorImpl<char> *RelativePath, 2409 ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped, 2410 bool *IsFrameworkFound, bool SkipCache = false, 2411 bool OpenFile = true, bool CacheFailures = true); 2412 2413 /// Return true if we're in the top-level file, not in a \#include. 2414 bool isInPrimaryFile() const; 2415 2416 /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is 2417 /// followed by EOD. Return true if the token is not a valid on-off-switch. 2418 bool LexOnOffSwitch(tok::OnOffSwitch &Result); 2419 2420 bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef, 2421 bool *ShadowFlag = nullptr); 2422 2423 void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma); 2424 Module *LeaveSubmodule(bool ForPragma); 2425 2426 private: 2427 friend void TokenLexer::ExpandFunctionArguments(); 2428 PushIncludeMacroStack()2429 void PushIncludeMacroStack() { 2430 assert(CurLexerKind != CLK_CachingLexer && "cannot push a caching lexer"); 2431 IncludeMacroStack.emplace_back(CurLexerKind, CurLexerSubmodule, 2432 std::move(CurLexer), CurPPLexer, 2433 std::move(CurTokenLexer), CurDirLookup); 2434 CurPPLexer = nullptr; 2435 } 2436 PopIncludeMacroStack()2437 void PopIncludeMacroStack() { 2438 CurLexer = std::move(IncludeMacroStack.back().TheLexer); 2439 CurPPLexer = IncludeMacroStack.back().ThePPLexer; 2440 CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer); 2441 CurDirLookup = IncludeMacroStack.back().TheDirLookup; 2442 CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule; 2443 CurLexerKind = IncludeMacroStack.back().CurLexerKind; 2444 IncludeMacroStack.pop_back(); 2445 } 2446 2447 void PropagateLineStartLeadingSpaceInfo(Token &Result); 2448 2449 /// Determine whether we need to create module macros for #defines in the 2450 /// current context. 2451 bool needModuleMacros() const; 2452 2453 /// Update the set of active module macros and ambiguity flag for a module 2454 /// macro name. 2455 void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info); 2456 2457 DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI, 2458 SourceLocation Loc); 2459 UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc); 2460 VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc, 2461 bool isPublic); 2462 2463 /// Lex and validate a macro name, which occurs after a 2464 /// \#define or \#undef. 2465 /// 2466 /// \param MacroNameTok Token that represents the name defined or undefined. 2467 /// \param IsDefineUndef Kind if preprocessor directive. 2468 /// \param ShadowFlag Points to flag that is set if macro name shadows 2469 /// a keyword. 2470 /// 2471 /// This emits a diagnostic, sets the token kind to eod, 2472 /// and discards the rest of the macro line if the macro name is invalid. 2473 void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other, 2474 bool *ShadowFlag = nullptr); 2475 2476 /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the 2477 /// entire line) of the macro's tokens and adds them to MacroInfo, and while 2478 /// doing so performs certain validity checks including (but not limited to): 2479 /// - # (stringization) is followed by a macro parameter 2480 /// \param MacroNameTok - Token that represents the macro name 2481 /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard 2482 /// 2483 /// Either returns a pointer to a MacroInfo object OR emits a diagnostic and 2484 /// returns a nullptr if an invalid sequence of tokens is encountered. 2485 MacroInfo *ReadOptionalMacroParameterListAndBody( 2486 const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard); 2487 2488 /// The ( starting an argument list of a macro definition has just been read. 2489 /// Lex the rest of the parameters and the closing ), updating \p MI with 2490 /// what we learn and saving in \p LastTok the last token read. 2491 /// Return true if an error occurs parsing the arg list. 2492 bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok); 2493 2494 /// Provide a suggestion for a typoed directive. If there is no typo, then 2495 /// just skip suggesting. 2496 /// 2497 /// \param Tok - Token that represents the directive 2498 /// \param Directive - String reference for the directive name 2499 void SuggestTypoedDirective(const Token &Tok, StringRef Directive) const; 2500 2501 /// We just read a \#if or related directive and decided that the 2502 /// subsequent tokens are in the \#if'd out portion of the 2503 /// file. Lex the rest of the file, until we see an \#endif. If \p 2504 /// FoundNonSkipPortion is true, then we have already emitted code for part of 2505 /// this \#if directive, so \#else/\#elif blocks should never be entered. If 2506 /// \p FoundElse is false, then \#else directives are ok, if not, then we have 2507 /// already seen one so a \#else directive is a duplicate. When this returns, 2508 /// the caller can lex the first valid token. 2509 void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc, 2510 SourceLocation IfTokenLoc, 2511 bool FoundNonSkipPortion, bool FoundElse, 2512 SourceLocation ElseLoc = SourceLocation()); 2513 2514 /// Information about the result for evaluating an expression for a 2515 /// preprocessor directive. 2516 struct DirectiveEvalResult { 2517 /// Whether the expression was evaluated as true or not. 2518 bool Conditional; 2519 2520 /// True if the expression contained identifiers that were undefined. 2521 bool IncludedUndefinedIds; 2522 2523 /// The source range for the expression. 2524 SourceRange ExprRange; 2525 }; 2526 2527 /// Evaluate an integer constant expression that may occur after a 2528 /// \#if or \#elif directive and return a \p DirectiveEvalResult object. 2529 /// 2530 /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro. 2531 DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro); 2532 2533 /// Process a '__has_include("path")' expression. 2534 /// 2535 /// Returns true if successful. 2536 bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II); 2537 2538 /// Process '__has_include_next("path")' expression. 2539 /// 2540 /// Returns true if successful. 2541 bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II); 2542 2543 /// Get the directory and file from which to start \#include_next lookup. 2544 std::pair<ConstSearchDirIterator, const FileEntry *> 2545 getIncludeNextStart(const Token &IncludeNextTok) const; 2546 2547 /// Install the standard preprocessor pragmas: 2548 /// \#pragma GCC poison/system_header/dependency and \#pragma once. 2549 void RegisterBuiltinPragmas(); 2550 2551 /// Register builtin macros such as __LINE__ with the identifier table. 2552 void RegisterBuiltinMacros(); 2553 2554 /// If an identifier token is read that is to be expanded as a macro, handle 2555 /// it and return the next token as 'Tok'. If we lexed a token, return true; 2556 /// otherwise the caller should lex again. 2557 bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD); 2558 2559 /// Cache macro expanded tokens for TokenLexers. 2560 // 2561 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 2562 /// going to lex in the cache and when it finishes the tokens are removed 2563 /// from the end of the cache. 2564 Token *cacheMacroExpandedTokens(TokenLexer *tokLexer, 2565 ArrayRef<Token> tokens); 2566 2567 void removeCachedMacroExpandedTokensOfLastLexer(); 2568 2569 /// Determine whether the next preprocessor token to be 2570 /// lexed is a '('. If so, consume the token and return true, if not, this 2571 /// method should have no observable side-effect on the lexed tokens. 2572 bool isNextPPTokenLParen(); 2573 2574 /// After reading "MACRO(", this method is invoked to read all of the formal 2575 /// arguments specified for the macro invocation. Returns null on error. 2576 MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI, 2577 SourceLocation &MacroEnd); 2578 2579 /// If an identifier token is read that is to be expanded 2580 /// as a builtin macro, handle it and return the next token as 'Tok'. 2581 void ExpandBuiltinMacro(Token &Tok); 2582 2583 /// Read a \c _Pragma directive, slice it up, process it, then 2584 /// return the first token after the directive. 2585 /// This assumes that the \c _Pragma token has just been read into \p Tok. 2586 void Handle_Pragma(Token &Tok); 2587 2588 /// Like Handle_Pragma except the pragma text is not enclosed within 2589 /// a string literal. 2590 void HandleMicrosoft__pragma(Token &Tok); 2591 2592 /// Add a lexer to the top of the include stack and 2593 /// start lexing tokens from it instead of the current buffer. 2594 void EnterSourceFileWithLexer(Lexer *TheLexer, ConstSearchDirIterator Dir); 2595 2596 /// Set the FileID for the preprocessor predefines. setPredefinesFileID(FileID FID)2597 void setPredefinesFileID(FileID FID) { 2598 assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!"); 2599 PredefinesFileID = FID; 2600 } 2601 2602 /// Set the FileID for the PCH through header. 2603 void setPCHThroughHeaderFileID(FileID FID); 2604 2605 /// Returns true if we are lexing from a file and not a 2606 /// pragma or a macro. IsFileLexer(const Lexer * L,const PreprocessorLexer * P)2607 static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) { 2608 return L ? !L->isPragmaLexer() : P != nullptr; 2609 } 2610 IsFileLexer(const IncludeStackInfo & I)2611 static bool IsFileLexer(const IncludeStackInfo& I) { 2612 return IsFileLexer(I.TheLexer.get(), I.ThePPLexer); 2613 } 2614 IsFileLexer()2615 bool IsFileLexer() const { 2616 return IsFileLexer(CurLexer.get(), CurPPLexer); 2617 } 2618 2619 //===--------------------------------------------------------------------===// 2620 // Caching stuff. 2621 void CachingLex(Token &Result); 2622 InCachingLexMode()2623 bool InCachingLexMode() const { 2624 // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means 2625 // that we are past EOF, not that we are in CachingLex mode. 2626 return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty(); 2627 } 2628 2629 void EnterCachingLexMode(); 2630 void EnterCachingLexModeUnchecked(); 2631 ExitCachingLexMode()2632 void ExitCachingLexMode() { 2633 if (InCachingLexMode()) 2634 RemoveTopOfLexerStack(); 2635 } 2636 2637 const Token &PeekAhead(unsigned N); 2638 void AnnotatePreviousCachedTokens(const Token &Tok); 2639 2640 //===--------------------------------------------------------------------===// 2641 /// Handle*Directive - implement the various preprocessor directives. These 2642 /// should side-effect the current preprocessor object so that the next call 2643 /// to Lex() will return the appropriate token next. 2644 void HandleLineDirective(); 2645 void HandleDigitDirective(Token &Tok); 2646 void HandleUserDiagnosticDirective(Token &Tok, bool isWarning); 2647 void HandleIdentSCCSDirective(Token &Tok); 2648 void HandleMacroPublicDirective(Token &Tok); 2649 void HandleMacroPrivateDirective(); 2650 2651 /// An additional notification that can be produced by a header inclusion or 2652 /// import to tell the parser what happened. 2653 struct ImportAction { 2654 enum ActionKind { 2655 None, 2656 ModuleBegin, 2657 ModuleImport, 2658 HeaderUnitImport, 2659 SkippedModuleImport, 2660 Failure, 2661 } Kind; 2662 Module *ModuleForHeader = nullptr; 2663 2664 ImportAction(ActionKind AK, Module *Mod = nullptr) KindImportAction2665 : Kind(AK), ModuleForHeader(Mod) { 2666 assert((AK == None || Mod || AK == Failure) && 2667 "no module for module action"); 2668 } 2669 }; 2670 2671 OptionalFileEntryRef LookupHeaderIncludeOrImport( 2672 ConstSearchDirIterator *CurDir, StringRef &Filename, 2673 SourceLocation FilenameLoc, CharSourceRange FilenameRange, 2674 const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl, 2675 bool &IsMapped, ConstSearchDirIterator LookupFrom, 2676 const FileEntry *LookupFromFile, StringRef &LookupFilename, 2677 SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath, 2678 ModuleMap::KnownHeader &SuggestedModule, bool isAngled); 2679 2680 // File inclusion. 2681 void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok, 2682 ConstSearchDirIterator LookupFrom = nullptr, 2683 const FileEntry *LookupFromFile = nullptr); 2684 ImportAction 2685 HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok, 2686 Token &FilenameTok, SourceLocation EndLoc, 2687 ConstSearchDirIterator LookupFrom = nullptr, 2688 const FileEntry *LookupFromFile = nullptr); 2689 void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok); 2690 void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok); 2691 void HandleImportDirective(SourceLocation HashLoc, Token &Tok); 2692 void HandleMicrosoftImportDirective(Token &Tok); 2693 2694 public: 2695 /// Check that the given module is available, producing a diagnostic if not. 2696 /// \return \c true if the check failed (because the module is not available). 2697 /// \c false if the module appears to be usable. 2698 static bool checkModuleIsAvailable(const LangOptions &LangOpts, 2699 const TargetInfo &TargetInfo, 2700 DiagnosticsEngine &Diags, Module *M); 2701 2702 // Module inclusion testing. 2703 /// Find the module that owns the source or header file that 2704 /// \p Loc points to. If the location is in a file that was included 2705 /// into a module, or is outside any module, returns nullptr. 2706 Module *getModuleForLocation(SourceLocation Loc, bool AllowTextual); 2707 2708 /// We want to produce a diagnostic at location IncLoc concerning an 2709 /// unreachable effect at location MLoc (eg, where a desired entity was 2710 /// declared or defined). Determine whether the right way to make MLoc 2711 /// reachable is by #include, and if so, what header should be included. 2712 /// 2713 /// This is not necessarily fast, and might load unexpected module maps, so 2714 /// should only be called by code that intends to produce an error. 2715 /// 2716 /// \param IncLoc The location at which the missing effect was detected. 2717 /// \param MLoc A location within an unimported module at which the desired 2718 /// effect occurred. 2719 /// \return A file that can be #included to provide the desired effect. Null 2720 /// if no such file could be determined or if a #include is not 2721 /// appropriate (eg, if a module should be imported instead). 2722 const FileEntry *getHeaderToIncludeForDiagnostics(SourceLocation IncLoc, 2723 SourceLocation MLoc); 2724 isRecordingPreamble()2725 bool isRecordingPreamble() const { 2726 return PreambleConditionalStack.isRecording(); 2727 } 2728 hasRecordedPreamble()2729 bool hasRecordedPreamble() const { 2730 return PreambleConditionalStack.hasRecordedPreamble(); 2731 } 2732 getPreambleConditionalStack()2733 ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const { 2734 return PreambleConditionalStack.getStack(); 2735 } 2736 setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s)2737 void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) { 2738 PreambleConditionalStack.setStack(s); 2739 } 2740 setReplayablePreambleConditionalStack(ArrayRef<PPConditionalInfo> s,std::optional<PreambleSkipInfo> SkipInfo)2741 void setReplayablePreambleConditionalStack( 2742 ArrayRef<PPConditionalInfo> s, std::optional<PreambleSkipInfo> SkipInfo) { 2743 PreambleConditionalStack.startReplaying(); 2744 PreambleConditionalStack.setStack(s); 2745 PreambleConditionalStack.SkipInfo = SkipInfo; 2746 } 2747 getPreambleSkipInfo()2748 std::optional<PreambleSkipInfo> getPreambleSkipInfo() const { 2749 return PreambleConditionalStack.SkipInfo; 2750 } 2751 2752 private: 2753 /// After processing predefined file, initialize the conditional stack from 2754 /// the preamble. 2755 void replayPreambleConditionalStack(); 2756 2757 // Macro handling. 2758 void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterHeaderGuard); 2759 void HandleUndefDirective(); 2760 2761 // Conditional Inclusion. 2762 void HandleIfdefDirective(Token &Result, const Token &HashToken, 2763 bool isIfndef, bool ReadAnyTokensBeforeDirective); 2764 void HandleIfDirective(Token &IfToken, const Token &HashToken, 2765 bool ReadAnyTokensBeforeDirective); 2766 void HandleEndifDirective(Token &EndifToken); 2767 void HandleElseDirective(Token &Result, const Token &HashToken); 2768 void HandleElifFamilyDirective(Token &ElifToken, const Token &HashToken, 2769 tok::PPKeywordKind Kind); 2770 2771 // Pragmas. 2772 void HandlePragmaDirective(PragmaIntroducer Introducer); 2773 2774 public: 2775 void HandlePragmaOnce(Token &OnceTok); 2776 void HandlePragmaMark(Token &MarkTok); 2777 void HandlePragmaPoison(); 2778 void HandlePragmaSystemHeader(Token &SysHeaderTok); 2779 void HandlePragmaDependency(Token &DependencyTok); 2780 void HandlePragmaPushMacro(Token &Tok); 2781 void HandlePragmaPopMacro(Token &Tok); 2782 void HandlePragmaIncludeAlias(Token &Tok); 2783 void HandlePragmaModuleBuild(Token &Tok); 2784 void HandlePragmaHdrstop(Token &Tok); 2785 IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok); 2786 2787 // Return true and store the first token only if any CommentHandler 2788 // has inserted some tokens and getCommentRetentionState() is false. 2789 bool HandleComment(Token &result, SourceRange Comment); 2790 2791 /// A macro is used, update information about macros that need unused 2792 /// warnings. 2793 void markMacroAsUsed(MacroInfo *MI); 2794 addMacroDeprecationMsg(const IdentifierInfo * II,std::string Msg,SourceLocation AnnotationLoc)2795 void addMacroDeprecationMsg(const IdentifierInfo *II, std::string Msg, 2796 SourceLocation AnnotationLoc) { 2797 auto Annotations = AnnotationInfos.find(II); 2798 if (Annotations == AnnotationInfos.end()) 2799 AnnotationInfos.insert(std::make_pair( 2800 II, 2801 MacroAnnotations::makeDeprecation(AnnotationLoc, std::move(Msg)))); 2802 else 2803 Annotations->second.DeprecationInfo = 2804 MacroAnnotationInfo{AnnotationLoc, std::move(Msg)}; 2805 } 2806 addRestrictExpansionMsg(const IdentifierInfo * II,std::string Msg,SourceLocation AnnotationLoc)2807 void addRestrictExpansionMsg(const IdentifierInfo *II, std::string Msg, 2808 SourceLocation AnnotationLoc) { 2809 auto Annotations = AnnotationInfos.find(II); 2810 if (Annotations == AnnotationInfos.end()) 2811 AnnotationInfos.insert( 2812 std::make_pair(II, MacroAnnotations::makeRestrictExpansion( 2813 AnnotationLoc, std::move(Msg)))); 2814 else 2815 Annotations->second.RestrictExpansionInfo = 2816 MacroAnnotationInfo{AnnotationLoc, std::move(Msg)}; 2817 } 2818 addFinalLoc(const IdentifierInfo * II,SourceLocation AnnotationLoc)2819 void addFinalLoc(const IdentifierInfo *II, SourceLocation AnnotationLoc) { 2820 auto Annotations = AnnotationInfos.find(II); 2821 if (Annotations == AnnotationInfos.end()) 2822 AnnotationInfos.insert( 2823 std::make_pair(II, MacroAnnotations::makeFinal(AnnotationLoc))); 2824 else 2825 Annotations->second.FinalAnnotationLoc = AnnotationLoc; 2826 } 2827 getMacroAnnotations(const IdentifierInfo * II)2828 const MacroAnnotations &getMacroAnnotations(const IdentifierInfo *II) const { 2829 return AnnotationInfos.find(II)->second; 2830 } 2831 emitMacroExpansionWarnings(const Token & Identifier)2832 void emitMacroExpansionWarnings(const Token &Identifier) const { 2833 if (Identifier.getIdentifierInfo()->isDeprecatedMacro()) 2834 emitMacroDeprecationWarning(Identifier); 2835 2836 if (Identifier.getIdentifierInfo()->isRestrictExpansion() && 2837 !SourceMgr.isInMainFile(Identifier.getLocation())) 2838 emitRestrictExpansionWarning(Identifier); 2839 } 2840 2841 static void processPathForFileMacro(SmallVectorImpl<char> &Path, 2842 const LangOptions &LangOpts, 2843 const TargetInfo &TI); 2844 2845 private: 2846 void emitMacroDeprecationWarning(const Token &Identifier) const; 2847 void emitRestrictExpansionWarning(const Token &Identifier) const; 2848 void emitFinalMacroWarning(const Token &Identifier, bool IsUndef) const; 2849 }; 2850 2851 /// Abstract base class that describes a handler that will receive 2852 /// source ranges for each of the comments encountered in the source file. 2853 class CommentHandler { 2854 public: 2855 virtual ~CommentHandler(); 2856 2857 // The handler shall return true if it has pushed any tokens 2858 // to be read using e.g. EnterToken or EnterTokenStream. 2859 virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0; 2860 }; 2861 2862 /// Abstract base class that describes a handler that will receive 2863 /// source ranges for empty lines encountered in the source file. 2864 class EmptylineHandler { 2865 public: 2866 virtual ~EmptylineHandler(); 2867 2868 // The handler handles empty lines. 2869 virtual void HandleEmptyline(SourceRange Range) = 0; 2870 }; 2871 2872 /// Registry of pragma handlers added by plugins 2873 using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>; 2874 2875 } // namespace clang 2876 2877 #endif // LLVM_CLANG_LEX_PREPROCESSOR_H 2878