1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 // * A success/failure flag indicating whether constant folding was successful.
14 // This is the 'bool' return value used by most of the code in this file. A
15 // 'false' return value indicates that constant folding has failed, and any
16 // appropriate diagnostic has already been produced.
17 //
18 // * An evaluated result, valid only if constant folding has not failed.
19 //
20 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 // where it is possible to determine the evaluated result regardless.
23 //
24 // * A set of notes indicating why the evaluation was not a constant expression
25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 // too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/SmallBitVector.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include "llvm/Support/TimeProfiler.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62 #include <optional>
63
64 #define DEBUG_TYPE "exprconstant"
65
66 using namespace clang;
67 using llvm::APFixedPoint;
68 using llvm::APInt;
69 using llvm::APSInt;
70 using llvm::APFloat;
71 using llvm::FixedPointSemantics;
72
73 namespace {
74 struct LValue;
75 class CallStackFrame;
76 class EvalInfo;
77
78 using SourceLocExprScopeGuard =
79 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80
getType(APValue::LValueBase B)81 static QualType getType(APValue::LValueBase B) {
82 return B.getType();
83 }
84
85 /// Get an LValue path entry, which is known to not be an array index, as a
86 /// field declaration.
getAsField(APValue::LValuePathEntry E)87 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89 }
90 /// Get an LValue path entry, which is known to not be an array index, as a
91 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)92 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94 }
95 /// Determine whether this LValue path entry for a base class names a virtual
96 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)97 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98 return E.getAsBaseOrMember().getInt();
99 }
100
101 /// Given an expression, determine the type used to store the result of
102 /// evaluating that expression.
getStorageType(const ASTContext & Ctx,const Expr * E)103 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104 if (E->isPRValue())
105 return E->getType();
106 return Ctx.getLValueReferenceType(E->getType());
107 }
108
109 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
getAllocSizeAttr(const CallExpr * CE)110 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111 if (const FunctionDecl *DirectCallee = CE->getDirectCallee())
112 return DirectCallee->getAttr<AllocSizeAttr>();
113 if (const Decl *IndirectCallee = CE->getCalleeDecl())
114 return IndirectCallee->getAttr<AllocSizeAttr>();
115 return nullptr;
116 }
117
118 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
119 /// This will look through a single cast.
120 ///
121 /// Returns null if we couldn't unwrap a function with alloc_size.
tryUnwrapAllocSizeCall(const Expr * E)122 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
123 if (!E->getType()->isPointerType())
124 return nullptr;
125
126 E = E->IgnoreParens();
127 // If we're doing a variable assignment from e.g. malloc(N), there will
128 // probably be a cast of some kind. In exotic cases, we might also see a
129 // top-level ExprWithCleanups. Ignore them either way.
130 if (const auto *FE = dyn_cast<FullExpr>(E))
131 E = FE->getSubExpr()->IgnoreParens();
132
133 if (const auto *Cast = dyn_cast<CastExpr>(E))
134 E = Cast->getSubExpr()->IgnoreParens();
135
136 if (const auto *CE = dyn_cast<CallExpr>(E))
137 return getAllocSizeAttr(CE) ? CE : nullptr;
138 return nullptr;
139 }
140
141 /// Determines whether or not the given Base contains a call to a function
142 /// with the alloc_size attribute.
isBaseAnAllocSizeCall(APValue::LValueBase Base)143 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
144 const auto *E = Base.dyn_cast<const Expr *>();
145 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
146 }
147
148 /// Determines whether the given kind of constant expression is only ever
149 /// used for name mangling. If so, it's permitted to reference things that we
150 /// can't generate code for (in particular, dllimported functions).
isForManglingOnly(ConstantExprKind Kind)151 static bool isForManglingOnly(ConstantExprKind Kind) {
152 switch (Kind) {
153 case ConstantExprKind::Normal:
154 case ConstantExprKind::ClassTemplateArgument:
155 case ConstantExprKind::ImmediateInvocation:
156 // Note that non-type template arguments of class type are emitted as
157 // template parameter objects.
158 return false;
159
160 case ConstantExprKind::NonClassTemplateArgument:
161 return true;
162 }
163 llvm_unreachable("unknown ConstantExprKind");
164 }
165
isTemplateArgument(ConstantExprKind Kind)166 static bool isTemplateArgument(ConstantExprKind Kind) {
167 switch (Kind) {
168 case ConstantExprKind::Normal:
169 case ConstantExprKind::ImmediateInvocation:
170 return false;
171
172 case ConstantExprKind::ClassTemplateArgument:
173 case ConstantExprKind::NonClassTemplateArgument:
174 return true;
175 }
176 llvm_unreachable("unknown ConstantExprKind");
177 }
178
179 /// The bound to claim that an array of unknown bound has.
180 /// The value in MostDerivedArraySize is undefined in this case. So, set it
181 /// to an arbitrary value that's likely to loudly break things if it's used.
182 static const uint64_t AssumedSizeForUnsizedArray =
183 std::numeric_limits<uint64_t>::max() / 2;
184
185 /// Determines if an LValue with the given LValueBase will have an unsized
186 /// array in its designator.
187 /// Find the path length and type of the most-derived subobject in the given
188 /// path, and find the size of the containing array, if any.
189 static unsigned
findMostDerivedSubobject(ASTContext & Ctx,APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray,bool & FirstEntryIsUnsizedArray)190 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
191 ArrayRef<APValue::LValuePathEntry> Path,
192 uint64_t &ArraySize, QualType &Type, bool &IsArray,
193 bool &FirstEntryIsUnsizedArray) {
194 // This only accepts LValueBases from APValues, and APValues don't support
195 // arrays that lack size info.
196 assert(!isBaseAnAllocSizeCall(Base) &&
197 "Unsized arrays shouldn't appear here");
198 unsigned MostDerivedLength = 0;
199 Type = getType(Base);
200
201 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
202 if (Type->isArrayType()) {
203 const ArrayType *AT = Ctx.getAsArrayType(Type);
204 Type = AT->getElementType();
205 MostDerivedLength = I + 1;
206 IsArray = true;
207
208 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
209 ArraySize = CAT->getSize().getZExtValue();
210 } else {
211 assert(I == 0 && "unexpected unsized array designator");
212 FirstEntryIsUnsizedArray = true;
213 ArraySize = AssumedSizeForUnsizedArray;
214 }
215 } else if (Type->isAnyComplexType()) {
216 const ComplexType *CT = Type->castAs<ComplexType>();
217 Type = CT->getElementType();
218 ArraySize = 2;
219 MostDerivedLength = I + 1;
220 IsArray = true;
221 } else if (const FieldDecl *FD = getAsField(Path[I])) {
222 Type = FD->getType();
223 ArraySize = 0;
224 MostDerivedLength = I + 1;
225 IsArray = false;
226 } else {
227 // Path[I] describes a base class.
228 ArraySize = 0;
229 IsArray = false;
230 }
231 }
232 return MostDerivedLength;
233 }
234
235 /// A path from a glvalue to a subobject of that glvalue.
236 struct SubobjectDesignator {
237 /// True if the subobject was named in a manner not supported by C++11. Such
238 /// lvalues can still be folded, but they are not core constant expressions
239 /// and we cannot perform lvalue-to-rvalue conversions on them.
240 unsigned Invalid : 1;
241
242 /// Is this a pointer one past the end of an object?
243 unsigned IsOnePastTheEnd : 1;
244
245 /// Indicator of whether the first entry is an unsized array.
246 unsigned FirstEntryIsAnUnsizedArray : 1;
247
248 /// Indicator of whether the most-derived object is an array element.
249 unsigned MostDerivedIsArrayElement : 1;
250
251 /// The length of the path to the most-derived object of which this is a
252 /// subobject.
253 unsigned MostDerivedPathLength : 28;
254
255 /// The size of the array of which the most-derived object is an element.
256 /// This will always be 0 if the most-derived object is not an array
257 /// element. 0 is not an indicator of whether or not the most-derived object
258 /// is an array, however, because 0-length arrays are allowed.
259 ///
260 /// If the current array is an unsized array, the value of this is
261 /// undefined.
262 uint64_t MostDerivedArraySize;
263
264 /// The type of the most derived object referred to by this address.
265 QualType MostDerivedType;
266
267 typedef APValue::LValuePathEntry PathEntry;
268
269 /// The entries on the path from the glvalue to the designated subobject.
270 SmallVector<PathEntry, 8> Entries;
271
SubobjectDesignator__anond52d8a670111::SubobjectDesignator272 SubobjectDesignator() : Invalid(true) {}
273
SubobjectDesignator__anond52d8a670111::SubobjectDesignator274 explicit SubobjectDesignator(QualType T)
275 : Invalid(false), IsOnePastTheEnd(false),
276 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
277 MostDerivedPathLength(0), MostDerivedArraySize(0),
278 MostDerivedType(T) {}
279
SubobjectDesignator__anond52d8a670111::SubobjectDesignator280 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
281 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
282 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
283 MostDerivedPathLength(0), MostDerivedArraySize(0) {
284 assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
285 if (!Invalid) {
286 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
287 ArrayRef<PathEntry> VEntries = V.getLValuePath();
288 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
289 if (V.getLValueBase()) {
290 bool IsArray = false;
291 bool FirstIsUnsizedArray = false;
292 MostDerivedPathLength = findMostDerivedSubobject(
293 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
294 MostDerivedType, IsArray, FirstIsUnsizedArray);
295 MostDerivedIsArrayElement = IsArray;
296 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
297 }
298 }
299 }
300
truncate__anond52d8a670111::SubobjectDesignator301 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
302 unsigned NewLength) {
303 if (Invalid)
304 return;
305
306 assert(Base && "cannot truncate path for null pointer");
307 assert(NewLength <= Entries.size() && "not a truncation");
308
309 if (NewLength == Entries.size())
310 return;
311 Entries.resize(NewLength);
312
313 bool IsArray = false;
314 bool FirstIsUnsizedArray = false;
315 MostDerivedPathLength = findMostDerivedSubobject(
316 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
317 FirstIsUnsizedArray);
318 MostDerivedIsArrayElement = IsArray;
319 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
320 }
321
setInvalid__anond52d8a670111::SubobjectDesignator322 void setInvalid() {
323 Invalid = true;
324 Entries.clear();
325 }
326
327 /// Determine whether the most derived subobject is an array without a
328 /// known bound.
isMostDerivedAnUnsizedArray__anond52d8a670111::SubobjectDesignator329 bool isMostDerivedAnUnsizedArray() const {
330 assert(!Invalid && "Calling this makes no sense on invalid designators");
331 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
332 }
333
334 /// Determine what the most derived array's size is. Results in an assertion
335 /// failure if the most derived array lacks a size.
getMostDerivedArraySize__anond52d8a670111::SubobjectDesignator336 uint64_t getMostDerivedArraySize() const {
337 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
338 return MostDerivedArraySize;
339 }
340
341 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anond52d8a670111::SubobjectDesignator342 bool isOnePastTheEnd() const {
343 assert(!Invalid);
344 if (IsOnePastTheEnd)
345 return true;
346 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
347 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
348 MostDerivedArraySize)
349 return true;
350 return false;
351 }
352
353 /// Get the range of valid index adjustments in the form
354 /// {maximum value that can be subtracted from this pointer,
355 /// maximum value that can be added to this pointer}
validIndexAdjustments__anond52d8a670111::SubobjectDesignator356 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
357 if (Invalid || isMostDerivedAnUnsizedArray())
358 return {0, 0};
359
360 // [expr.add]p4: For the purposes of these operators, a pointer to a
361 // nonarray object behaves the same as a pointer to the first element of
362 // an array of length one with the type of the object as its element type.
363 bool IsArray = MostDerivedPathLength == Entries.size() &&
364 MostDerivedIsArrayElement;
365 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
366 : (uint64_t)IsOnePastTheEnd;
367 uint64_t ArraySize =
368 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
369 return {ArrayIndex, ArraySize - ArrayIndex};
370 }
371
372 /// Check that this refers to a valid subobject.
isValidSubobject__anond52d8a670111::SubobjectDesignator373 bool isValidSubobject() const {
374 if (Invalid)
375 return false;
376 return !isOnePastTheEnd();
377 }
378 /// Check that this refers to a valid subobject, and if not, produce a
379 /// relevant diagnostic and set the designator as invalid.
380 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
381
382 /// Get the type of the designated object.
getType__anond52d8a670111::SubobjectDesignator383 QualType getType(ASTContext &Ctx) const {
384 assert(!Invalid && "invalid designator has no subobject type");
385 return MostDerivedPathLength == Entries.size()
386 ? MostDerivedType
387 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
388 }
389
390 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anond52d8a670111::SubobjectDesignator391 void addArrayUnchecked(const ConstantArrayType *CAT) {
392 Entries.push_back(PathEntry::ArrayIndex(0));
393
394 // This is a most-derived object.
395 MostDerivedType = CAT->getElementType();
396 MostDerivedIsArrayElement = true;
397 MostDerivedArraySize = CAT->getSize().getZExtValue();
398 MostDerivedPathLength = Entries.size();
399 }
400 /// Update this designator to refer to the first element within the array of
401 /// elements of type T. This is an array of unknown size.
addUnsizedArrayUnchecked__anond52d8a670111::SubobjectDesignator402 void addUnsizedArrayUnchecked(QualType ElemTy) {
403 Entries.push_back(PathEntry::ArrayIndex(0));
404
405 MostDerivedType = ElemTy;
406 MostDerivedIsArrayElement = true;
407 // The value in MostDerivedArraySize is undefined in this case. So, set it
408 // to an arbitrary value that's likely to loudly break things if it's
409 // used.
410 MostDerivedArraySize = AssumedSizeForUnsizedArray;
411 MostDerivedPathLength = Entries.size();
412 }
413 /// Update this designator to refer to the given base or member of this
414 /// object.
addDeclUnchecked__anond52d8a670111::SubobjectDesignator415 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
416 Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
417
418 // If this isn't a base class, it's a new most-derived object.
419 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
420 MostDerivedType = FD->getType();
421 MostDerivedIsArrayElement = false;
422 MostDerivedArraySize = 0;
423 MostDerivedPathLength = Entries.size();
424 }
425 }
426 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anond52d8a670111::SubobjectDesignator427 void addComplexUnchecked(QualType EltTy, bool Imag) {
428 Entries.push_back(PathEntry::ArrayIndex(Imag));
429
430 // This is technically a most-derived object, though in practice this
431 // is unlikely to matter.
432 MostDerivedType = EltTy;
433 MostDerivedIsArrayElement = true;
434 MostDerivedArraySize = 2;
435 MostDerivedPathLength = Entries.size();
436 }
437 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
438 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
439 const APSInt &N);
440 /// Add N to the address of this subobject.
adjustIndex__anond52d8a670111::SubobjectDesignator441 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
442 if (Invalid || !N) return;
443 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
444 if (isMostDerivedAnUnsizedArray()) {
445 diagnoseUnsizedArrayPointerArithmetic(Info, E);
446 // Can't verify -- trust that the user is doing the right thing (or if
447 // not, trust that the caller will catch the bad behavior).
448 // FIXME: Should we reject if this overflows, at least?
449 Entries.back() = PathEntry::ArrayIndex(
450 Entries.back().getAsArrayIndex() + TruncatedN);
451 return;
452 }
453
454 // [expr.add]p4: For the purposes of these operators, a pointer to a
455 // nonarray object behaves the same as a pointer to the first element of
456 // an array of length one with the type of the object as its element type.
457 bool IsArray = MostDerivedPathLength == Entries.size() &&
458 MostDerivedIsArrayElement;
459 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
460 : (uint64_t)IsOnePastTheEnd;
461 uint64_t ArraySize =
462 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
463
464 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
465 // Calculate the actual index in a wide enough type, so we can include
466 // it in the note.
467 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
468 (llvm::APInt&)N += ArrayIndex;
469 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
470 diagnosePointerArithmetic(Info, E, N);
471 setInvalid();
472 return;
473 }
474
475 ArrayIndex += TruncatedN;
476 assert(ArrayIndex <= ArraySize &&
477 "bounds check succeeded for out-of-bounds index");
478
479 if (IsArray)
480 Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
481 else
482 IsOnePastTheEnd = (ArrayIndex != 0);
483 }
484 };
485
486 /// A scope at the end of which an object can need to be destroyed.
487 enum class ScopeKind {
488 Block,
489 FullExpression,
490 Call
491 };
492
493 /// A reference to a particular call and its arguments.
494 struct CallRef {
CallRef__anond52d8a670111::CallRef495 CallRef() : OrigCallee(), CallIndex(0), Version() {}
CallRef__anond52d8a670111::CallRef496 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
497 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
498
operator bool__anond52d8a670111::CallRef499 explicit operator bool() const { return OrigCallee; }
500
501 /// Get the parameter that the caller initialized, corresponding to the
502 /// given parameter in the callee.
getOrigParam__anond52d8a670111::CallRef503 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
504 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
505 : PVD;
506 }
507
508 /// The callee at the point where the arguments were evaluated. This might
509 /// be different from the actual callee (a different redeclaration, or a
510 /// virtual override), but this function's parameters are the ones that
511 /// appear in the parameter map.
512 const FunctionDecl *OrigCallee;
513 /// The call index of the frame that holds the argument values.
514 unsigned CallIndex;
515 /// The version of the parameters corresponding to this call.
516 unsigned Version;
517 };
518
519 /// A stack frame in the constexpr call stack.
520 class CallStackFrame : public interp::Frame {
521 public:
522 EvalInfo &Info;
523
524 /// Parent - The caller of this stack frame.
525 CallStackFrame *Caller;
526
527 /// Callee - The function which was called.
528 const FunctionDecl *Callee;
529
530 /// This - The binding for the this pointer in this call, if any.
531 const LValue *This;
532
533 /// Information on how to find the arguments to this call. Our arguments
534 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
535 /// key and this value as the version.
536 CallRef Arguments;
537
538 /// Source location information about the default argument or default
539 /// initializer expression we're evaluating, if any.
540 CurrentSourceLocExprScope CurSourceLocExprScope;
541
542 // Note that we intentionally use std::map here so that references to
543 // values are stable.
544 typedef std::pair<const void *, unsigned> MapKeyTy;
545 typedef std::map<MapKeyTy, APValue> MapTy;
546 /// Temporaries - Temporary lvalues materialized within this stack frame.
547 MapTy Temporaries;
548
549 /// CallLoc - The location of the call expression for this call.
550 SourceLocation CallLoc;
551
552 /// Index - The call index of this call.
553 unsigned Index;
554
555 /// The stack of integers for tracking version numbers for temporaries.
556 SmallVector<unsigned, 2> TempVersionStack = {1};
557 unsigned CurTempVersion = TempVersionStack.back();
558
getTempVersion() const559 unsigned getTempVersion() const { return TempVersionStack.back(); }
560
pushTempVersion()561 void pushTempVersion() {
562 TempVersionStack.push_back(++CurTempVersion);
563 }
564
popTempVersion()565 void popTempVersion() {
566 TempVersionStack.pop_back();
567 }
568
createCall(const FunctionDecl * Callee)569 CallRef createCall(const FunctionDecl *Callee) {
570 return {Callee, Index, ++CurTempVersion};
571 }
572
573 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
574 // on the overall stack usage of deeply-recursing constexpr evaluations.
575 // (We should cache this map rather than recomputing it repeatedly.)
576 // But let's try this and see how it goes; we can look into caching the map
577 // as a later change.
578
579 /// LambdaCaptureFields - Mapping from captured variables/this to
580 /// corresponding data members in the closure class.
581 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
582 FieldDecl *LambdaThisCaptureField;
583
584 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
585 const FunctionDecl *Callee, const LValue *This,
586 CallRef Arguments);
587 ~CallStackFrame();
588
589 // Return the temporary for Key whose version number is Version.
getTemporary(const void * Key,unsigned Version)590 APValue *getTemporary(const void *Key, unsigned Version) {
591 MapKeyTy KV(Key, Version);
592 auto LB = Temporaries.lower_bound(KV);
593 if (LB != Temporaries.end() && LB->first == KV)
594 return &LB->second;
595 return nullptr;
596 }
597
598 // Return the current temporary for Key in the map.
getCurrentTemporary(const void * Key)599 APValue *getCurrentTemporary(const void *Key) {
600 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
601 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
602 return &std::prev(UB)->second;
603 return nullptr;
604 }
605
606 // Return the version number of the current temporary for Key.
getCurrentTemporaryVersion(const void * Key) const607 unsigned getCurrentTemporaryVersion(const void *Key) const {
608 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
609 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
610 return std::prev(UB)->first.second;
611 return 0;
612 }
613
614 /// Allocate storage for an object of type T in this stack frame.
615 /// Populates LV with a handle to the created object. Key identifies
616 /// the temporary within the stack frame, and must not be reused without
617 /// bumping the temporary version number.
618 template<typename KeyT>
619 APValue &createTemporary(const KeyT *Key, QualType T,
620 ScopeKind Scope, LValue &LV);
621
622 /// Allocate storage for a parameter of a function call made in this frame.
623 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
624
625 void describe(llvm::raw_ostream &OS) override;
626
getCaller() const627 Frame *getCaller() const override { return Caller; }
getCallLocation() const628 SourceLocation getCallLocation() const override { return CallLoc; }
getCallee() const629 const FunctionDecl *getCallee() const override { return Callee; }
630
isStdFunction() const631 bool isStdFunction() const {
632 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
633 if (DC->isStdNamespace())
634 return true;
635 return false;
636 }
637
638 private:
639 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
640 ScopeKind Scope);
641 };
642
643 /// Temporarily override 'this'.
644 class ThisOverrideRAII {
645 public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)646 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
647 : Frame(Frame), OldThis(Frame.This) {
648 if (Enable)
649 Frame.This = NewThis;
650 }
~ThisOverrideRAII()651 ~ThisOverrideRAII() {
652 Frame.This = OldThis;
653 }
654 private:
655 CallStackFrame &Frame;
656 const LValue *OldThis;
657 };
658
659 // A shorthand time trace scope struct, prints source range, for example
660 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}}
661 class ExprTimeTraceScope {
662 public:
ExprTimeTraceScope(const Expr * E,const ASTContext & Ctx,StringRef Name)663 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name)
664 : TimeScope(Name, [E, &Ctx] {
665 return E->getSourceRange().printToString(Ctx.getSourceManager());
666 }) {}
667
668 private:
669 llvm::TimeTraceScope TimeScope;
670 };
671 }
672
673 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
674 const LValue &This, QualType ThisType);
675 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
676 APValue::LValueBase LVBase, APValue &Value,
677 QualType T);
678
679 namespace {
680 /// A cleanup, and a flag indicating whether it is lifetime-extended.
681 class Cleanup {
682 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
683 APValue::LValueBase Base;
684 QualType T;
685
686 public:
Cleanup(APValue * Val,APValue::LValueBase Base,QualType T,ScopeKind Scope)687 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
688 ScopeKind Scope)
689 : Value(Val, Scope), Base(Base), T(T) {}
690
691 /// Determine whether this cleanup should be performed at the end of the
692 /// given kind of scope.
isDestroyedAtEndOf(ScopeKind K) const693 bool isDestroyedAtEndOf(ScopeKind K) const {
694 return (int)Value.getInt() >= (int)K;
695 }
endLifetime(EvalInfo & Info,bool RunDestructors)696 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
697 if (RunDestructors) {
698 SourceLocation Loc;
699 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
700 Loc = VD->getLocation();
701 else if (const Expr *E = Base.dyn_cast<const Expr*>())
702 Loc = E->getExprLoc();
703 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
704 }
705 *Value.getPointer() = APValue();
706 return true;
707 }
708
hasSideEffect()709 bool hasSideEffect() {
710 return T.isDestructedType();
711 }
712 };
713
714 /// A reference to an object whose construction we are currently evaluating.
715 struct ObjectUnderConstruction {
716 APValue::LValueBase Base;
717 ArrayRef<APValue::LValuePathEntry> Path;
operator ==(const ObjectUnderConstruction & LHS,const ObjectUnderConstruction & RHS)718 friend bool operator==(const ObjectUnderConstruction &LHS,
719 const ObjectUnderConstruction &RHS) {
720 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
721 }
hash_value(const ObjectUnderConstruction & Obj)722 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
723 return llvm::hash_combine(Obj.Base, Obj.Path);
724 }
725 };
726 enum class ConstructionPhase {
727 None,
728 Bases,
729 AfterBases,
730 AfterFields,
731 Destroying,
732 DestroyingBases
733 };
734 }
735
736 namespace llvm {
737 template<> struct DenseMapInfo<ObjectUnderConstruction> {
738 using Base = DenseMapInfo<APValue::LValueBase>;
getEmptyKeyllvm::DenseMapInfo739 static ObjectUnderConstruction getEmptyKey() {
740 return {Base::getEmptyKey(), {}}; }
getTombstoneKeyllvm::DenseMapInfo741 static ObjectUnderConstruction getTombstoneKey() {
742 return {Base::getTombstoneKey(), {}};
743 }
getHashValuellvm::DenseMapInfo744 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
745 return hash_value(Object);
746 }
isEqualllvm::DenseMapInfo747 static bool isEqual(const ObjectUnderConstruction &LHS,
748 const ObjectUnderConstruction &RHS) {
749 return LHS == RHS;
750 }
751 };
752 }
753
754 namespace {
755 /// A dynamically-allocated heap object.
756 struct DynAlloc {
757 /// The value of this heap-allocated object.
758 APValue Value;
759 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
760 /// or a CallExpr (the latter is for direct calls to operator new inside
761 /// std::allocator<T>::allocate).
762 const Expr *AllocExpr = nullptr;
763
764 enum Kind {
765 New,
766 ArrayNew,
767 StdAllocator
768 };
769
770 /// Get the kind of the allocation. This must match between allocation
771 /// and deallocation.
getKind__anond52d8a670411::DynAlloc772 Kind getKind() const {
773 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
774 return NE->isArray() ? ArrayNew : New;
775 assert(isa<CallExpr>(AllocExpr));
776 return StdAllocator;
777 }
778 };
779
780 struct DynAllocOrder {
operator ()__anond52d8a670411::DynAllocOrder781 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
782 return L.getIndex() < R.getIndex();
783 }
784 };
785
786 /// EvalInfo - This is a private struct used by the evaluator to capture
787 /// information about a subexpression as it is folded. It retains information
788 /// about the AST context, but also maintains information about the folded
789 /// expression.
790 ///
791 /// If an expression could be evaluated, it is still possible it is not a C
792 /// "integer constant expression" or constant expression. If not, this struct
793 /// captures information about how and why not.
794 ///
795 /// One bit of information passed *into* the request for constant folding
796 /// indicates whether the subexpression is "evaluated" or not according to C
797 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
798 /// evaluate the expression regardless of what the RHS is, but C only allows
799 /// certain things in certain situations.
800 class EvalInfo : public interp::State {
801 public:
802 ASTContext &Ctx;
803
804 /// EvalStatus - Contains information about the evaluation.
805 Expr::EvalStatus &EvalStatus;
806
807 /// CurrentCall - The top of the constexpr call stack.
808 CallStackFrame *CurrentCall;
809
810 /// CallStackDepth - The number of calls in the call stack right now.
811 unsigned CallStackDepth;
812
813 /// NextCallIndex - The next call index to assign.
814 unsigned NextCallIndex;
815
816 /// StepsLeft - The remaining number of evaluation steps we're permitted
817 /// to perform. This is essentially a limit for the number of statements
818 /// we will evaluate.
819 unsigned StepsLeft;
820
821 /// Enable the experimental new constant interpreter. If an expression is
822 /// not supported by the interpreter, an error is triggered.
823 bool EnableNewConstInterp;
824
825 /// BottomFrame - The frame in which evaluation started. This must be
826 /// initialized after CurrentCall and CallStackDepth.
827 CallStackFrame BottomFrame;
828
829 /// A stack of values whose lifetimes end at the end of some surrounding
830 /// evaluation frame.
831 llvm::SmallVector<Cleanup, 16> CleanupStack;
832
833 /// EvaluatingDecl - This is the declaration whose initializer is being
834 /// evaluated, if any.
835 APValue::LValueBase EvaluatingDecl;
836
837 enum class EvaluatingDeclKind {
838 None,
839 /// We're evaluating the construction of EvaluatingDecl.
840 Ctor,
841 /// We're evaluating the destruction of EvaluatingDecl.
842 Dtor,
843 };
844 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
845
846 /// EvaluatingDeclValue - This is the value being constructed for the
847 /// declaration whose initializer is being evaluated, if any.
848 APValue *EvaluatingDeclValue;
849
850 /// Set of objects that are currently being constructed.
851 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
852 ObjectsUnderConstruction;
853
854 /// Current heap allocations, along with the location where each was
855 /// allocated. We use std::map here because we need stable addresses
856 /// for the stored APValues.
857 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
858
859 /// The number of heap allocations performed so far in this evaluation.
860 unsigned NumHeapAllocs = 0;
861
862 struct EvaluatingConstructorRAII {
863 EvalInfo &EI;
864 ObjectUnderConstruction Object;
865 bool DidInsert;
EvaluatingConstructorRAII__anond52d8a670411::EvalInfo::EvaluatingConstructorRAII866 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
867 bool HasBases)
868 : EI(EI), Object(Object) {
869 DidInsert =
870 EI.ObjectsUnderConstruction
871 .insert({Object, HasBases ? ConstructionPhase::Bases
872 : ConstructionPhase::AfterBases})
873 .second;
874 }
finishedConstructingBases__anond52d8a670411::EvalInfo::EvaluatingConstructorRAII875 void finishedConstructingBases() {
876 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
877 }
finishedConstructingFields__anond52d8a670411::EvalInfo::EvaluatingConstructorRAII878 void finishedConstructingFields() {
879 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
880 }
~EvaluatingConstructorRAII__anond52d8a670411::EvalInfo::EvaluatingConstructorRAII881 ~EvaluatingConstructorRAII() {
882 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
883 }
884 };
885
886 struct EvaluatingDestructorRAII {
887 EvalInfo &EI;
888 ObjectUnderConstruction Object;
889 bool DidInsert;
EvaluatingDestructorRAII__anond52d8a670411::EvalInfo::EvaluatingDestructorRAII890 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
891 : EI(EI), Object(Object) {
892 DidInsert = EI.ObjectsUnderConstruction
893 .insert({Object, ConstructionPhase::Destroying})
894 .second;
895 }
startedDestroyingBases__anond52d8a670411::EvalInfo::EvaluatingDestructorRAII896 void startedDestroyingBases() {
897 EI.ObjectsUnderConstruction[Object] =
898 ConstructionPhase::DestroyingBases;
899 }
~EvaluatingDestructorRAII__anond52d8a670411::EvalInfo::EvaluatingDestructorRAII900 ~EvaluatingDestructorRAII() {
901 if (DidInsert)
902 EI.ObjectsUnderConstruction.erase(Object);
903 }
904 };
905
906 ConstructionPhase
isEvaluatingCtorDtor(APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path)907 isEvaluatingCtorDtor(APValue::LValueBase Base,
908 ArrayRef<APValue::LValuePathEntry> Path) {
909 return ObjectsUnderConstruction.lookup({Base, Path});
910 }
911
912 /// If we're currently speculatively evaluating, the outermost call stack
913 /// depth at which we can mutate state, otherwise 0.
914 unsigned SpeculativeEvaluationDepth = 0;
915
916 /// The current array initialization index, if we're performing array
917 /// initialization.
918 uint64_t ArrayInitIndex = -1;
919
920 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
921 /// notes attached to it will also be stored, otherwise they will not be.
922 bool HasActiveDiagnostic;
923
924 /// Have we emitted a diagnostic explaining why we couldn't constant
925 /// fold (not just why it's not strictly a constant expression)?
926 bool HasFoldFailureDiagnostic;
927
928 /// Whether we're checking that an expression is a potential constant
929 /// expression. If so, do not fail on constructs that could become constant
930 /// later on (such as a use of an undefined global).
931 bool CheckingPotentialConstantExpression = false;
932
933 /// Whether we're checking for an expression that has undefined behavior.
934 /// If so, we will produce warnings if we encounter an operation that is
935 /// always undefined.
936 ///
937 /// Note that we still need to evaluate the expression normally when this
938 /// is set; this is used when evaluating ICEs in C.
939 bool CheckingForUndefinedBehavior = false;
940
941 enum EvaluationMode {
942 /// Evaluate as a constant expression. Stop if we find that the expression
943 /// is not a constant expression.
944 EM_ConstantExpression,
945
946 /// Evaluate as a constant expression. Stop if we find that the expression
947 /// is not a constant expression. Some expressions can be retried in the
948 /// optimizer if we don't constant fold them here, but in an unevaluated
949 /// context we try to fold them immediately since the optimizer never
950 /// gets a chance to look at it.
951 EM_ConstantExpressionUnevaluated,
952
953 /// Fold the expression to a constant. Stop if we hit a side-effect that
954 /// we can't model.
955 EM_ConstantFold,
956
957 /// Evaluate in any way we know how. Don't worry about side-effects that
958 /// can't be modeled.
959 EM_IgnoreSideEffects,
960 } EvalMode;
961
962 /// Are we checking whether the expression is a potential constant
963 /// expression?
checkingPotentialConstantExpression() const964 bool checkingPotentialConstantExpression() const override {
965 return CheckingPotentialConstantExpression;
966 }
967
968 /// Are we checking an expression for overflow?
969 // FIXME: We should check for any kind of undefined or suspicious behavior
970 // in such constructs, not just overflow.
checkingForUndefinedBehavior() const971 bool checkingForUndefinedBehavior() const override {
972 return CheckingForUndefinedBehavior;
973 }
974
EvalInfo(const ASTContext & C,Expr::EvalStatus & S,EvaluationMode Mode)975 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
976 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
977 CallStackDepth(0), NextCallIndex(1),
978 StepsLeft(C.getLangOpts().ConstexprStepLimit),
979 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
980 BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
981 EvaluatingDecl((const ValueDecl *)nullptr),
982 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
983 HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
984
~EvalInfo()985 ~EvalInfo() {
986 discardCleanups();
987 }
988
getCtx() const989 ASTContext &getCtx() const override { return Ctx; }
990
setEvaluatingDecl(APValue::LValueBase Base,APValue & Value,EvaluatingDeclKind EDK=EvaluatingDeclKind::Ctor)991 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
992 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
993 EvaluatingDecl = Base;
994 IsEvaluatingDecl = EDK;
995 EvaluatingDeclValue = &Value;
996 }
997
CheckCallLimit(SourceLocation Loc)998 bool CheckCallLimit(SourceLocation Loc) {
999 // Don't perform any constexpr calls (other than the call we're checking)
1000 // when checking a potential constant expression.
1001 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
1002 return false;
1003 if (NextCallIndex == 0) {
1004 // NextCallIndex has wrapped around.
1005 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
1006 return false;
1007 }
1008 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
1009 return true;
1010 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1011 << getLangOpts().ConstexprCallDepth;
1012 return false;
1013 }
1014
1015 std::pair<CallStackFrame *, unsigned>
getCallFrameAndDepth(unsigned CallIndex)1016 getCallFrameAndDepth(unsigned CallIndex) {
1017 assert(CallIndex && "no call index in getCallFrameAndDepth");
1018 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1019 // be null in this loop.
1020 unsigned Depth = CallStackDepth;
1021 CallStackFrame *Frame = CurrentCall;
1022 while (Frame->Index > CallIndex) {
1023 Frame = Frame->Caller;
1024 --Depth;
1025 }
1026 if (Frame->Index == CallIndex)
1027 return {Frame, Depth};
1028 return {nullptr, 0};
1029 }
1030
nextStep(const Stmt * S)1031 bool nextStep(const Stmt *S) {
1032 if (!StepsLeft) {
1033 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1034 return false;
1035 }
1036 --StepsLeft;
1037 return true;
1038 }
1039
1040 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1041
lookupDynamicAlloc(DynamicAllocLValue DA)1042 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) {
1043 std::optional<DynAlloc *> Result;
1044 auto It = HeapAllocs.find(DA);
1045 if (It != HeapAllocs.end())
1046 Result = &It->second;
1047 return Result;
1048 }
1049
1050 /// Get the allocated storage for the given parameter of the given call.
getParamSlot(CallRef Call,const ParmVarDecl * PVD)1051 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1052 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1053 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1054 : nullptr;
1055 }
1056
1057 /// Information about a stack frame for std::allocator<T>::[de]allocate.
1058 struct StdAllocatorCaller {
1059 unsigned FrameIndex;
1060 QualType ElemType;
operator bool__anond52d8a670411::EvalInfo::StdAllocatorCaller1061 explicit operator bool() const { return FrameIndex != 0; };
1062 };
1063
getStdAllocatorCaller(StringRef FnName) const1064 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1065 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1066 Call = Call->Caller) {
1067 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1068 if (!MD)
1069 continue;
1070 const IdentifierInfo *FnII = MD->getIdentifier();
1071 if (!FnII || !FnII->isStr(FnName))
1072 continue;
1073
1074 const auto *CTSD =
1075 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1076 if (!CTSD)
1077 continue;
1078
1079 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1080 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1081 if (CTSD->isInStdNamespace() && ClassII &&
1082 ClassII->isStr("allocator") && TAL.size() >= 1 &&
1083 TAL[0].getKind() == TemplateArgument::Type)
1084 return {Call->Index, TAL[0].getAsType()};
1085 }
1086
1087 return {};
1088 }
1089
performLifetimeExtension()1090 void performLifetimeExtension() {
1091 // Disable the cleanups for lifetime-extended temporaries.
1092 llvm::erase_if(CleanupStack, [](Cleanup &C) {
1093 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression);
1094 });
1095 }
1096
1097 /// Throw away any remaining cleanups at the end of evaluation. If any
1098 /// cleanups would have had a side-effect, note that as an unmodeled
1099 /// side-effect and return false. Otherwise, return true.
discardCleanups()1100 bool discardCleanups() {
1101 for (Cleanup &C : CleanupStack) {
1102 if (C.hasSideEffect() && !noteSideEffect()) {
1103 CleanupStack.clear();
1104 return false;
1105 }
1106 }
1107 CleanupStack.clear();
1108 return true;
1109 }
1110
1111 private:
getCurrentFrame()1112 interp::Frame *getCurrentFrame() override { return CurrentCall; }
getBottomFrame() const1113 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1114
hasActiveDiagnostic()1115 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
setActiveDiagnostic(bool Flag)1116 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1117
setFoldFailureDiagnostic(bool Flag)1118 void setFoldFailureDiagnostic(bool Flag) override {
1119 HasFoldFailureDiagnostic = Flag;
1120 }
1121
getEvalStatus() const1122 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1123
1124 // If we have a prior diagnostic, it will be noting that the expression
1125 // isn't a constant expression. This diagnostic is more important,
1126 // unless we require this evaluation to produce a constant expression.
1127 //
1128 // FIXME: We might want to show both diagnostics to the user in
1129 // EM_ConstantFold mode.
hasPriorDiagnostic()1130 bool hasPriorDiagnostic() override {
1131 if (!EvalStatus.Diag->empty()) {
1132 switch (EvalMode) {
1133 case EM_ConstantFold:
1134 case EM_IgnoreSideEffects:
1135 if (!HasFoldFailureDiagnostic)
1136 break;
1137 // We've already failed to fold something. Keep that diagnostic.
1138 [[fallthrough]];
1139 case EM_ConstantExpression:
1140 case EM_ConstantExpressionUnevaluated:
1141 setActiveDiagnostic(false);
1142 return true;
1143 }
1144 }
1145 return false;
1146 }
1147
getCallStackDepth()1148 unsigned getCallStackDepth() override { return CallStackDepth; }
1149
1150 public:
1151 /// Should we continue evaluation after encountering a side-effect that we
1152 /// couldn't model?
keepEvaluatingAfterSideEffect()1153 bool keepEvaluatingAfterSideEffect() {
1154 switch (EvalMode) {
1155 case EM_IgnoreSideEffects:
1156 return true;
1157
1158 case EM_ConstantExpression:
1159 case EM_ConstantExpressionUnevaluated:
1160 case EM_ConstantFold:
1161 // By default, assume any side effect might be valid in some other
1162 // evaluation of this expression from a different context.
1163 return checkingPotentialConstantExpression() ||
1164 checkingForUndefinedBehavior();
1165 }
1166 llvm_unreachable("Missed EvalMode case");
1167 }
1168
1169 /// Note that we have had a side-effect, and determine whether we should
1170 /// keep evaluating.
noteSideEffect()1171 bool noteSideEffect() {
1172 EvalStatus.HasSideEffects = true;
1173 return keepEvaluatingAfterSideEffect();
1174 }
1175
1176 /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior()1177 bool keepEvaluatingAfterUndefinedBehavior() {
1178 switch (EvalMode) {
1179 case EM_IgnoreSideEffects:
1180 case EM_ConstantFold:
1181 return true;
1182
1183 case EM_ConstantExpression:
1184 case EM_ConstantExpressionUnevaluated:
1185 return checkingForUndefinedBehavior();
1186 }
1187 llvm_unreachable("Missed EvalMode case");
1188 }
1189
1190 /// Note that we hit something that was technically undefined behavior, but
1191 /// that we can evaluate past it (such as signed overflow or floating-point
1192 /// division by zero.)
noteUndefinedBehavior()1193 bool noteUndefinedBehavior() override {
1194 EvalStatus.HasUndefinedBehavior = true;
1195 return keepEvaluatingAfterUndefinedBehavior();
1196 }
1197
1198 /// Should we continue evaluation as much as possible after encountering a
1199 /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure() const1200 bool keepEvaluatingAfterFailure() const override {
1201 if (!StepsLeft)
1202 return false;
1203
1204 switch (EvalMode) {
1205 case EM_ConstantExpression:
1206 case EM_ConstantExpressionUnevaluated:
1207 case EM_ConstantFold:
1208 case EM_IgnoreSideEffects:
1209 return checkingPotentialConstantExpression() ||
1210 checkingForUndefinedBehavior();
1211 }
1212 llvm_unreachable("Missed EvalMode case");
1213 }
1214
1215 /// Notes that we failed to evaluate an expression that other expressions
1216 /// directly depend on, and determine if we should keep evaluating. This
1217 /// should only be called if we actually intend to keep evaluating.
1218 ///
1219 /// Call noteSideEffect() instead if we may be able to ignore the value that
1220 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1221 ///
1222 /// (Foo(), 1) // use noteSideEffect
1223 /// (Foo() || true) // use noteSideEffect
1224 /// Foo() + 1 // use noteFailure
noteFailure()1225 [[nodiscard]] bool noteFailure() {
1226 // Failure when evaluating some expression often means there is some
1227 // subexpression whose evaluation was skipped. Therefore, (because we
1228 // don't track whether we skipped an expression when unwinding after an
1229 // evaluation failure) every evaluation failure that bubbles up from a
1230 // subexpression implies that a side-effect has potentially happened. We
1231 // skip setting the HasSideEffects flag to true until we decide to
1232 // continue evaluating after that point, which happens here.
1233 bool KeepGoing = keepEvaluatingAfterFailure();
1234 EvalStatus.HasSideEffects |= KeepGoing;
1235 return KeepGoing;
1236 }
1237
1238 class ArrayInitLoopIndex {
1239 EvalInfo &Info;
1240 uint64_t OuterIndex;
1241
1242 public:
ArrayInitLoopIndex(EvalInfo & Info)1243 ArrayInitLoopIndex(EvalInfo &Info)
1244 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1245 Info.ArrayInitIndex = 0;
1246 }
~ArrayInitLoopIndex()1247 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1248
operator uint64_t&()1249 operator uint64_t&() { return Info.ArrayInitIndex; }
1250 };
1251 };
1252
1253 /// Object used to treat all foldable expressions as constant expressions.
1254 struct FoldConstant {
1255 EvalInfo &Info;
1256 bool Enabled;
1257 bool HadNoPriorDiags;
1258 EvalInfo::EvaluationMode OldMode;
1259
FoldConstant__anond52d8a670411::FoldConstant1260 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1261 : Info(Info),
1262 Enabled(Enabled),
1263 HadNoPriorDiags(Info.EvalStatus.Diag &&
1264 Info.EvalStatus.Diag->empty() &&
1265 !Info.EvalStatus.HasSideEffects),
1266 OldMode(Info.EvalMode) {
1267 if (Enabled)
1268 Info.EvalMode = EvalInfo::EM_ConstantFold;
1269 }
keepDiagnostics__anond52d8a670411::FoldConstant1270 void keepDiagnostics() { Enabled = false; }
~FoldConstant__anond52d8a670411::FoldConstant1271 ~FoldConstant() {
1272 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1273 !Info.EvalStatus.HasSideEffects)
1274 Info.EvalStatus.Diag->clear();
1275 Info.EvalMode = OldMode;
1276 }
1277 };
1278
1279 /// RAII object used to set the current evaluation mode to ignore
1280 /// side-effects.
1281 struct IgnoreSideEffectsRAII {
1282 EvalInfo &Info;
1283 EvalInfo::EvaluationMode OldMode;
IgnoreSideEffectsRAII__anond52d8a670411::IgnoreSideEffectsRAII1284 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1285 : Info(Info), OldMode(Info.EvalMode) {
1286 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1287 }
1288
~IgnoreSideEffectsRAII__anond52d8a670411::IgnoreSideEffectsRAII1289 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1290 };
1291
1292 /// RAII object used to optionally suppress diagnostics and side-effects from
1293 /// a speculative evaluation.
1294 class SpeculativeEvaluationRAII {
1295 EvalInfo *Info = nullptr;
1296 Expr::EvalStatus OldStatus;
1297 unsigned OldSpeculativeEvaluationDepth;
1298
moveFromAndCancel(SpeculativeEvaluationRAII && Other)1299 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1300 Info = Other.Info;
1301 OldStatus = Other.OldStatus;
1302 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1303 Other.Info = nullptr;
1304 }
1305
maybeRestoreState()1306 void maybeRestoreState() {
1307 if (!Info)
1308 return;
1309
1310 Info->EvalStatus = OldStatus;
1311 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1312 }
1313
1314 public:
1315 SpeculativeEvaluationRAII() = default;
1316
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)1317 SpeculativeEvaluationRAII(
1318 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1319 : Info(&Info), OldStatus(Info.EvalStatus),
1320 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1321 Info.EvalStatus.Diag = NewDiag;
1322 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1323 }
1324
1325 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)1326 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1327 moveFromAndCancel(std::move(Other));
1328 }
1329
operator =(SpeculativeEvaluationRAII && Other)1330 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1331 maybeRestoreState();
1332 moveFromAndCancel(std::move(Other));
1333 return *this;
1334 }
1335
~SpeculativeEvaluationRAII()1336 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1337 };
1338
1339 /// RAII object wrapping a full-expression or block scope, and handling
1340 /// the ending of the lifetime of temporaries created within it.
1341 template<ScopeKind Kind>
1342 class ScopeRAII {
1343 EvalInfo &Info;
1344 unsigned OldStackSize;
1345 public:
ScopeRAII(EvalInfo & Info)1346 ScopeRAII(EvalInfo &Info)
1347 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1348 // Push a new temporary version. This is needed to distinguish between
1349 // temporaries created in different iterations of a loop.
1350 Info.CurrentCall->pushTempVersion();
1351 }
destroy(bool RunDestructors=true)1352 bool destroy(bool RunDestructors = true) {
1353 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1354 OldStackSize = -1U;
1355 return OK;
1356 }
~ScopeRAII()1357 ~ScopeRAII() {
1358 if (OldStackSize != -1U)
1359 destroy(false);
1360 // Body moved to a static method to encourage the compiler to inline away
1361 // instances of this class.
1362 Info.CurrentCall->popTempVersion();
1363 }
1364 private:
cleanup(EvalInfo & Info,bool RunDestructors,unsigned OldStackSize)1365 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1366 unsigned OldStackSize) {
1367 assert(OldStackSize <= Info.CleanupStack.size() &&
1368 "running cleanups out of order?");
1369
1370 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1371 // for a full-expression scope.
1372 bool Success = true;
1373 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1374 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1375 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1376 Success = false;
1377 break;
1378 }
1379 }
1380 }
1381
1382 // Compact any retained cleanups.
1383 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1384 if (Kind != ScopeKind::Block)
1385 NewEnd =
1386 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1387 return C.isDestroyedAtEndOf(Kind);
1388 });
1389 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1390 return Success;
1391 }
1392 };
1393 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1394 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1395 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1396 }
1397
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)1398 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1399 CheckSubobjectKind CSK) {
1400 if (Invalid)
1401 return false;
1402 if (isOnePastTheEnd()) {
1403 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1404 << CSK;
1405 setInvalid();
1406 return false;
1407 }
1408 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1409 // must actually be at least one array element; even a VLA cannot have a
1410 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1411 return true;
1412 }
1413
diagnoseUnsizedArrayPointerArithmetic(EvalInfo & Info,const Expr * E)1414 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1415 const Expr *E) {
1416 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1417 // Do not set the designator as invalid: we can represent this situation,
1418 // and correct handling of __builtin_object_size requires us to do so.
1419 }
1420
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,const APSInt & N)1421 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1422 const Expr *E,
1423 const APSInt &N) {
1424 // If we're complaining, we must be able to statically determine the size of
1425 // the most derived array.
1426 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1427 Info.CCEDiag(E, diag::note_constexpr_array_index)
1428 << N << /*array*/ 0
1429 << static_cast<unsigned>(getMostDerivedArraySize());
1430 else
1431 Info.CCEDiag(E, diag::note_constexpr_array_index)
1432 << N << /*non-array*/ 1;
1433 setInvalid();
1434 }
1435
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,CallRef Call)1436 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1437 const FunctionDecl *Callee, const LValue *This,
1438 CallRef Call)
1439 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1440 Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1441 Info.CurrentCall = this;
1442 ++Info.CallStackDepth;
1443 }
1444
~CallStackFrame()1445 CallStackFrame::~CallStackFrame() {
1446 assert(Info.CurrentCall == this && "calls retired out of order");
1447 --Info.CallStackDepth;
1448 Info.CurrentCall = Caller;
1449 }
1450
isRead(AccessKinds AK)1451 static bool isRead(AccessKinds AK) {
1452 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1453 }
1454
isModification(AccessKinds AK)1455 static bool isModification(AccessKinds AK) {
1456 switch (AK) {
1457 case AK_Read:
1458 case AK_ReadObjectRepresentation:
1459 case AK_MemberCall:
1460 case AK_DynamicCast:
1461 case AK_TypeId:
1462 return false;
1463 case AK_Assign:
1464 case AK_Increment:
1465 case AK_Decrement:
1466 case AK_Construct:
1467 case AK_Destroy:
1468 return true;
1469 }
1470 llvm_unreachable("unknown access kind");
1471 }
1472
isAnyAccess(AccessKinds AK)1473 static bool isAnyAccess(AccessKinds AK) {
1474 return isRead(AK) || isModification(AK);
1475 }
1476
1477 /// Is this an access per the C++ definition?
isFormalAccess(AccessKinds AK)1478 static bool isFormalAccess(AccessKinds AK) {
1479 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1480 }
1481
1482 /// Is this kind of axcess valid on an indeterminate object value?
isValidIndeterminateAccess(AccessKinds AK)1483 static bool isValidIndeterminateAccess(AccessKinds AK) {
1484 switch (AK) {
1485 case AK_Read:
1486 case AK_Increment:
1487 case AK_Decrement:
1488 // These need the object's value.
1489 return false;
1490
1491 case AK_ReadObjectRepresentation:
1492 case AK_Assign:
1493 case AK_Construct:
1494 case AK_Destroy:
1495 // Construction and destruction don't need the value.
1496 return true;
1497
1498 case AK_MemberCall:
1499 case AK_DynamicCast:
1500 case AK_TypeId:
1501 // These aren't really meaningful on scalars.
1502 return true;
1503 }
1504 llvm_unreachable("unknown access kind");
1505 }
1506
1507 namespace {
1508 struct ComplexValue {
1509 private:
1510 bool IsInt;
1511
1512 public:
1513 APSInt IntReal, IntImag;
1514 APFloat FloatReal, FloatImag;
1515
ComplexValue__anond52d8a670711::ComplexValue1516 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1517
makeComplexFloat__anond52d8a670711::ComplexValue1518 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anond52d8a670711::ComplexValue1519 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anond52d8a670711::ComplexValue1520 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anond52d8a670711::ComplexValue1521 APFloat &getComplexFloatImag() { return FloatImag; }
1522
makeComplexInt__anond52d8a670711::ComplexValue1523 void makeComplexInt() { IsInt = true; }
isComplexInt__anond52d8a670711::ComplexValue1524 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anond52d8a670711::ComplexValue1525 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anond52d8a670711::ComplexValue1526 APSInt &getComplexIntImag() { return IntImag; }
1527
moveInto__anond52d8a670711::ComplexValue1528 void moveInto(APValue &v) const {
1529 if (isComplexFloat())
1530 v = APValue(FloatReal, FloatImag);
1531 else
1532 v = APValue(IntReal, IntImag);
1533 }
setFrom__anond52d8a670711::ComplexValue1534 void setFrom(const APValue &v) {
1535 assert(v.isComplexFloat() || v.isComplexInt());
1536 if (v.isComplexFloat()) {
1537 makeComplexFloat();
1538 FloatReal = v.getComplexFloatReal();
1539 FloatImag = v.getComplexFloatImag();
1540 } else {
1541 makeComplexInt();
1542 IntReal = v.getComplexIntReal();
1543 IntImag = v.getComplexIntImag();
1544 }
1545 }
1546 };
1547
1548 struct LValue {
1549 APValue::LValueBase Base;
1550 CharUnits Offset;
1551 SubobjectDesignator Designator;
1552 bool IsNullPtr : 1;
1553 bool InvalidBase : 1;
1554
getLValueBase__anond52d8a670711::LValue1555 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anond52d8a670711::LValue1556 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anond52d8a670711::LValue1557 const CharUnits &getLValueOffset() const { return Offset; }
getLValueDesignator__anond52d8a670711::LValue1558 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anond52d8a670711::LValue1559 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
isNullPointer__anond52d8a670711::LValue1560 bool isNullPointer() const { return IsNullPtr;}
1561
getLValueCallIndex__anond52d8a670711::LValue1562 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
getLValueVersion__anond52d8a670711::LValue1563 unsigned getLValueVersion() const { return Base.getVersion(); }
1564
moveInto__anond52d8a670711::LValue1565 void moveInto(APValue &V) const {
1566 if (Designator.Invalid)
1567 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1568 else {
1569 assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1570 V = APValue(Base, Offset, Designator.Entries,
1571 Designator.IsOnePastTheEnd, IsNullPtr);
1572 }
1573 }
setFrom__anond52d8a670711::LValue1574 void setFrom(ASTContext &Ctx, const APValue &V) {
1575 assert(V.isLValue() && "Setting LValue from a non-LValue?");
1576 Base = V.getLValueBase();
1577 Offset = V.getLValueOffset();
1578 InvalidBase = false;
1579 Designator = SubobjectDesignator(Ctx, V);
1580 IsNullPtr = V.isNullPointer();
1581 }
1582
set__anond52d8a670711::LValue1583 void set(APValue::LValueBase B, bool BInvalid = false) {
1584 #ifndef NDEBUG
1585 // We only allow a few types of invalid bases. Enforce that here.
1586 if (BInvalid) {
1587 const auto *E = B.get<const Expr *>();
1588 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1589 "Unexpected type of invalid base");
1590 }
1591 #endif
1592
1593 Base = B;
1594 Offset = CharUnits::fromQuantity(0);
1595 InvalidBase = BInvalid;
1596 Designator = SubobjectDesignator(getType(B));
1597 IsNullPtr = false;
1598 }
1599
setNull__anond52d8a670711::LValue1600 void setNull(ASTContext &Ctx, QualType PointerTy) {
1601 Base = (const ValueDecl *)nullptr;
1602 Offset =
1603 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1604 InvalidBase = false;
1605 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1606 IsNullPtr = true;
1607 }
1608
setInvalid__anond52d8a670711::LValue1609 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1610 set(B, true);
1611 }
1612
toString__anond52d8a670711::LValue1613 std::string toString(ASTContext &Ctx, QualType T) const {
1614 APValue Printable;
1615 moveInto(Printable);
1616 return Printable.getAsString(Ctx, T);
1617 }
1618
1619 private:
1620 // Check that this LValue is not based on a null pointer. If it is, produce
1621 // a diagnostic and mark the designator as invalid.
1622 template <typename GenDiagType>
checkNullPointerDiagnosingWith__anond52d8a670711::LValue1623 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1624 if (Designator.Invalid)
1625 return false;
1626 if (IsNullPtr) {
1627 GenDiag();
1628 Designator.setInvalid();
1629 return false;
1630 }
1631 return true;
1632 }
1633
1634 public:
checkNullPointer__anond52d8a670711::LValue1635 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1636 CheckSubobjectKind CSK) {
1637 return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1638 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1639 });
1640 }
1641
checkNullPointerForFoldAccess__anond52d8a670711::LValue1642 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1643 AccessKinds AK) {
1644 return checkNullPointerDiagnosingWith([&Info, E, AK] {
1645 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1646 });
1647 }
1648
1649 // Check this LValue refers to an object. If not, set the designator to be
1650 // invalid and emit a diagnostic.
checkSubobject__anond52d8a670711::LValue1651 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1652 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1653 Designator.checkSubobject(Info, E, CSK);
1654 }
1655
addDecl__anond52d8a670711::LValue1656 void addDecl(EvalInfo &Info, const Expr *E,
1657 const Decl *D, bool Virtual = false) {
1658 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1659 Designator.addDeclUnchecked(D, Virtual);
1660 }
addUnsizedArray__anond52d8a670711::LValue1661 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1662 if (!Designator.Entries.empty()) {
1663 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1664 Designator.setInvalid();
1665 return;
1666 }
1667 if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1668 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1669 Designator.FirstEntryIsAnUnsizedArray = true;
1670 Designator.addUnsizedArrayUnchecked(ElemTy);
1671 }
1672 }
addArray__anond52d8a670711::LValue1673 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1674 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1675 Designator.addArrayUnchecked(CAT);
1676 }
addComplex__anond52d8a670711::LValue1677 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1678 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1679 Designator.addComplexUnchecked(EltTy, Imag);
1680 }
clearIsNullPointer__anond52d8a670711::LValue1681 void clearIsNullPointer() {
1682 IsNullPtr = false;
1683 }
adjustOffsetAndIndex__anond52d8a670711::LValue1684 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1685 const APSInt &Index, CharUnits ElementSize) {
1686 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1687 // but we're not required to diagnose it and it's valid in C++.)
1688 if (!Index)
1689 return;
1690
1691 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1692 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1693 // offsets.
1694 uint64_t Offset64 = Offset.getQuantity();
1695 uint64_t ElemSize64 = ElementSize.getQuantity();
1696 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1697 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1698
1699 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1700 Designator.adjustIndex(Info, E, Index);
1701 clearIsNullPointer();
1702 }
adjustOffset__anond52d8a670711::LValue1703 void adjustOffset(CharUnits N) {
1704 Offset += N;
1705 if (N.getQuantity())
1706 clearIsNullPointer();
1707 }
1708 };
1709
1710 struct MemberPtr {
MemberPtr__anond52d8a670711::MemberPtr1711 MemberPtr() {}
MemberPtr__anond52d8a670711::MemberPtr1712 explicit MemberPtr(const ValueDecl *Decl)
1713 : DeclAndIsDerivedMember(Decl, false) {}
1714
1715 /// The member or (direct or indirect) field referred to by this member
1716 /// pointer, or 0 if this is a null member pointer.
getDecl__anond52d8a670711::MemberPtr1717 const ValueDecl *getDecl() const {
1718 return DeclAndIsDerivedMember.getPointer();
1719 }
1720 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anond52d8a670711::MemberPtr1721 bool isDerivedMember() const {
1722 return DeclAndIsDerivedMember.getInt();
1723 }
1724 /// Get the class which the declaration actually lives in.
getContainingRecord__anond52d8a670711::MemberPtr1725 const CXXRecordDecl *getContainingRecord() const {
1726 return cast<CXXRecordDecl>(
1727 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1728 }
1729
moveInto__anond52d8a670711::MemberPtr1730 void moveInto(APValue &V) const {
1731 V = APValue(getDecl(), isDerivedMember(), Path);
1732 }
setFrom__anond52d8a670711::MemberPtr1733 void setFrom(const APValue &V) {
1734 assert(V.isMemberPointer());
1735 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1736 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1737 Path.clear();
1738 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1739 Path.insert(Path.end(), P.begin(), P.end());
1740 }
1741
1742 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1743 /// whether the member is a member of some class derived from the class type
1744 /// of the member pointer.
1745 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1746 /// Path - The path of base/derived classes from the member declaration's
1747 /// class (exclusive) to the class type of the member pointer (inclusive).
1748 SmallVector<const CXXRecordDecl*, 4> Path;
1749
1750 /// Perform a cast towards the class of the Decl (either up or down the
1751 /// hierarchy).
castBack__anond52d8a670711::MemberPtr1752 bool castBack(const CXXRecordDecl *Class) {
1753 assert(!Path.empty());
1754 const CXXRecordDecl *Expected;
1755 if (Path.size() >= 2)
1756 Expected = Path[Path.size() - 2];
1757 else
1758 Expected = getContainingRecord();
1759 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1760 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1761 // if B does not contain the original member and is not a base or
1762 // derived class of the class containing the original member, the result
1763 // of the cast is undefined.
1764 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1765 // (D::*). We consider that to be a language defect.
1766 return false;
1767 }
1768 Path.pop_back();
1769 return true;
1770 }
1771 /// Perform a base-to-derived member pointer cast.
castToDerived__anond52d8a670711::MemberPtr1772 bool castToDerived(const CXXRecordDecl *Derived) {
1773 if (!getDecl())
1774 return true;
1775 if (!isDerivedMember()) {
1776 Path.push_back(Derived);
1777 return true;
1778 }
1779 if (!castBack(Derived))
1780 return false;
1781 if (Path.empty())
1782 DeclAndIsDerivedMember.setInt(false);
1783 return true;
1784 }
1785 /// Perform a derived-to-base member pointer cast.
castToBase__anond52d8a670711::MemberPtr1786 bool castToBase(const CXXRecordDecl *Base) {
1787 if (!getDecl())
1788 return true;
1789 if (Path.empty())
1790 DeclAndIsDerivedMember.setInt(true);
1791 if (isDerivedMember()) {
1792 Path.push_back(Base);
1793 return true;
1794 }
1795 return castBack(Base);
1796 }
1797 };
1798
1799 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1800 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1801 if (!LHS.getDecl() || !RHS.getDecl())
1802 return !LHS.getDecl() && !RHS.getDecl();
1803 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1804 return false;
1805 return LHS.Path == RHS.Path;
1806 }
1807 }
1808
1809 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1810 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1811 const LValue &This, const Expr *E,
1812 bool AllowNonLiteralTypes = false);
1813 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1814 bool InvalidBaseOK = false);
1815 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1816 bool InvalidBaseOK = false);
1817 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1818 EvalInfo &Info);
1819 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1820 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1821 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1822 EvalInfo &Info);
1823 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1824 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1825 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1826 EvalInfo &Info);
1827 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1828 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
1829 EvalInfo &Info);
1830
1831 /// Evaluate an integer or fixed point expression into an APResult.
1832 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1833 EvalInfo &Info);
1834
1835 /// Evaluate only a fixed point expression into an APResult.
1836 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1837 EvalInfo &Info);
1838
1839 //===----------------------------------------------------------------------===//
1840 // Misc utilities
1841 //===----------------------------------------------------------------------===//
1842
1843 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1844 /// preserving its value (by extending by up to one bit as needed).
negateAsSigned(APSInt & Int)1845 static void negateAsSigned(APSInt &Int) {
1846 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1847 Int = Int.extend(Int.getBitWidth() + 1);
1848 Int.setIsSigned(true);
1849 }
1850 Int = -Int;
1851 }
1852
1853 template<typename KeyT>
createTemporary(const KeyT * Key,QualType T,ScopeKind Scope,LValue & LV)1854 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1855 ScopeKind Scope, LValue &LV) {
1856 unsigned Version = getTempVersion();
1857 APValue::LValueBase Base(Key, Index, Version);
1858 LV.set(Base);
1859 return createLocal(Base, Key, T, Scope);
1860 }
1861
1862 /// Allocate storage for a parameter of a function call made in this frame.
createParam(CallRef Args,const ParmVarDecl * PVD,LValue & LV)1863 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1864 LValue &LV) {
1865 assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1866 APValue::LValueBase Base(PVD, Index, Args.Version);
1867 LV.set(Base);
1868 // We always destroy parameters at the end of the call, even if we'd allow
1869 // them to live to the end of the full-expression at runtime, in order to
1870 // give portable results and match other compilers.
1871 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1872 }
1873
createLocal(APValue::LValueBase Base,const void * Key,QualType T,ScopeKind Scope)1874 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1875 QualType T, ScopeKind Scope) {
1876 assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1877 unsigned Version = Base.getVersion();
1878 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1879 assert(Result.isAbsent() && "local created multiple times");
1880
1881 // If we're creating a local immediately in the operand of a speculative
1882 // evaluation, don't register a cleanup to be run outside the speculative
1883 // evaluation context, since we won't actually be able to initialize this
1884 // object.
1885 if (Index <= Info.SpeculativeEvaluationDepth) {
1886 if (T.isDestructedType())
1887 Info.noteSideEffect();
1888 } else {
1889 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1890 }
1891 return Result;
1892 }
1893
createHeapAlloc(const Expr * E,QualType T,LValue & LV)1894 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1895 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1896 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1897 return nullptr;
1898 }
1899
1900 DynamicAllocLValue DA(NumHeapAllocs++);
1901 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1902 auto Result = HeapAllocs.emplace(std::piecewise_construct,
1903 std::forward_as_tuple(DA), std::tuple<>());
1904 assert(Result.second && "reused a heap alloc index?");
1905 Result.first->second.AllocExpr = E;
1906 return &Result.first->second.Value;
1907 }
1908
1909 /// Produce a string describing the given constexpr call.
describe(raw_ostream & Out)1910 void CallStackFrame::describe(raw_ostream &Out) {
1911 unsigned ArgIndex = 0;
1912 bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1913 !isa<CXXConstructorDecl>(Callee) &&
1914 cast<CXXMethodDecl>(Callee)->isInstance();
1915
1916 if (!IsMemberCall)
1917 Out << *Callee << '(';
1918
1919 if (This && IsMemberCall) {
1920 APValue Val;
1921 This->moveInto(Val);
1922 Val.printPretty(Out, Info.Ctx,
1923 This->Designator.MostDerivedType);
1924 // FIXME: Add parens around Val if needed.
1925 Out << "->" << *Callee << '(';
1926 IsMemberCall = false;
1927 }
1928
1929 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1930 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1931 if (ArgIndex > (unsigned)IsMemberCall)
1932 Out << ", ";
1933
1934 const ParmVarDecl *Param = *I;
1935 APValue *V = Info.getParamSlot(Arguments, Param);
1936 if (V)
1937 V->printPretty(Out, Info.Ctx, Param->getType());
1938 else
1939 Out << "<...>";
1940
1941 if (ArgIndex == 0 && IsMemberCall)
1942 Out << "->" << *Callee << '(';
1943 }
1944
1945 Out << ')';
1946 }
1947
1948 /// Evaluate an expression to see if it had side-effects, and discard its
1949 /// result.
1950 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1951 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1952 assert(!E->isValueDependent());
1953 APValue Scratch;
1954 if (!Evaluate(Scratch, Info, E))
1955 // We don't need the value, but we might have skipped a side effect here.
1956 return Info.noteSideEffect();
1957 return true;
1958 }
1959
1960 /// Should this call expression be treated as a no-op?
IsNoOpCall(const CallExpr * E)1961 static bool IsNoOpCall(const CallExpr *E) {
1962 unsigned Builtin = E->getBuiltinCallee();
1963 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1964 Builtin == Builtin::BI__builtin___NSStringMakeConstantString ||
1965 Builtin == Builtin::BI__builtin_function_start);
1966 }
1967
IsGlobalLValue(APValue::LValueBase B)1968 static bool IsGlobalLValue(APValue::LValueBase B) {
1969 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1970 // constant expression of pointer type that evaluates to...
1971
1972 // ... a null pointer value, or a prvalue core constant expression of type
1973 // std::nullptr_t.
1974 if (!B) return true;
1975
1976 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1977 // ... the address of an object with static storage duration,
1978 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1979 return VD->hasGlobalStorage();
1980 if (isa<TemplateParamObjectDecl>(D))
1981 return true;
1982 // ... the address of a function,
1983 // ... the address of a GUID [MS extension],
1984 // ... the address of an unnamed global constant
1985 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D);
1986 }
1987
1988 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1989 return true;
1990
1991 const Expr *E = B.get<const Expr*>();
1992 switch (E->getStmtClass()) {
1993 default:
1994 return false;
1995 case Expr::CompoundLiteralExprClass: {
1996 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1997 return CLE->isFileScope() && CLE->isLValue();
1998 }
1999 case Expr::MaterializeTemporaryExprClass:
2000 // A materialized temporary might have been lifetime-extended to static
2001 // storage duration.
2002 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
2003 // A string literal has static storage duration.
2004 case Expr::StringLiteralClass:
2005 case Expr::PredefinedExprClass:
2006 case Expr::ObjCStringLiteralClass:
2007 case Expr::ObjCEncodeExprClass:
2008 return true;
2009 case Expr::ObjCBoxedExprClass:
2010 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2011 case Expr::CallExprClass:
2012 return IsNoOpCall(cast<CallExpr>(E));
2013 // For GCC compatibility, &&label has static storage duration.
2014 case Expr::AddrLabelExprClass:
2015 return true;
2016 // A Block literal expression may be used as the initialization value for
2017 // Block variables at global or local static scope.
2018 case Expr::BlockExprClass:
2019 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2020 // The APValue generated from a __builtin_source_location will be emitted as a
2021 // literal.
2022 case Expr::SourceLocExprClass:
2023 return true;
2024 case Expr::ImplicitValueInitExprClass:
2025 // FIXME:
2026 // We can never form an lvalue with an implicit value initialization as its
2027 // base through expression evaluation, so these only appear in one case: the
2028 // implicit variable declaration we invent when checking whether a constexpr
2029 // constructor can produce a constant expression. We must assume that such
2030 // an expression might be a global lvalue.
2031 return true;
2032 }
2033 }
2034
GetLValueBaseDecl(const LValue & LVal)2035 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2036 return LVal.Base.dyn_cast<const ValueDecl*>();
2037 }
2038
IsLiteralLValue(const LValue & Value)2039 static bool IsLiteralLValue(const LValue &Value) {
2040 if (Value.getLValueCallIndex())
2041 return false;
2042 const Expr *E = Value.Base.dyn_cast<const Expr*>();
2043 return E && !isa<MaterializeTemporaryExpr>(E);
2044 }
2045
IsWeakLValue(const LValue & Value)2046 static bool IsWeakLValue(const LValue &Value) {
2047 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2048 return Decl && Decl->isWeak();
2049 }
2050
isZeroSized(const LValue & Value)2051 static bool isZeroSized(const LValue &Value) {
2052 const ValueDecl *Decl = GetLValueBaseDecl(Value);
2053 if (Decl && isa<VarDecl>(Decl)) {
2054 QualType Ty = Decl->getType();
2055 if (Ty->isArrayType())
2056 return Ty->isIncompleteType() ||
2057 Decl->getASTContext().getTypeSize(Ty) == 0;
2058 }
2059 return false;
2060 }
2061
HasSameBase(const LValue & A,const LValue & B)2062 static bool HasSameBase(const LValue &A, const LValue &B) {
2063 if (!A.getLValueBase())
2064 return !B.getLValueBase();
2065 if (!B.getLValueBase())
2066 return false;
2067
2068 if (A.getLValueBase().getOpaqueValue() !=
2069 B.getLValueBase().getOpaqueValue())
2070 return false;
2071
2072 return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2073 A.getLValueVersion() == B.getLValueVersion();
2074 }
2075
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)2076 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2077 assert(Base && "no location for a null lvalue");
2078 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2079
2080 // For a parameter, find the corresponding call stack frame (if it still
2081 // exists), and point at the parameter of the function definition we actually
2082 // invoked.
2083 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2084 unsigned Idx = PVD->getFunctionScopeIndex();
2085 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2086 if (F->Arguments.CallIndex == Base.getCallIndex() &&
2087 F->Arguments.Version == Base.getVersion() && F->Callee &&
2088 Idx < F->Callee->getNumParams()) {
2089 VD = F->Callee->getParamDecl(Idx);
2090 break;
2091 }
2092 }
2093 }
2094
2095 if (VD)
2096 Info.Note(VD->getLocation(), diag::note_declared_at);
2097 else if (const Expr *E = Base.dyn_cast<const Expr*>())
2098 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2099 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2100 // FIXME: Produce a note for dangling pointers too.
2101 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA))
2102 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2103 diag::note_constexpr_dynamic_alloc_here);
2104 }
2105 // We have no information to show for a typeid(T) object.
2106 }
2107
2108 enum class CheckEvaluationResultKind {
2109 ConstantExpression,
2110 FullyInitialized,
2111 };
2112
2113 /// Materialized temporaries that we've already checked to determine if they're
2114 /// initializsed by a constant expression.
2115 using CheckedTemporaries =
2116 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2117
2118 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2119 EvalInfo &Info, SourceLocation DiagLoc,
2120 QualType Type, const APValue &Value,
2121 ConstantExprKind Kind,
2122 SourceLocation SubobjectLoc,
2123 CheckedTemporaries &CheckedTemps);
2124
2125 /// Check that this reference or pointer core constant expression is a valid
2126 /// value for an address or reference constant expression. Return true if we
2127 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal,ConstantExprKind Kind,CheckedTemporaries & CheckedTemps)2128 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2129 QualType Type, const LValue &LVal,
2130 ConstantExprKind Kind,
2131 CheckedTemporaries &CheckedTemps) {
2132 bool IsReferenceType = Type->isReferenceType();
2133
2134 APValue::LValueBase Base = LVal.getLValueBase();
2135 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2136
2137 const Expr *BaseE = Base.dyn_cast<const Expr *>();
2138 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2139
2140 // Additional restrictions apply in a template argument. We only enforce the
2141 // C++20 restrictions here; additional syntactic and semantic restrictions
2142 // are applied elsewhere.
2143 if (isTemplateArgument(Kind)) {
2144 int InvalidBaseKind = -1;
2145 StringRef Ident;
2146 if (Base.is<TypeInfoLValue>())
2147 InvalidBaseKind = 0;
2148 else if (isa_and_nonnull<StringLiteral>(BaseE))
2149 InvalidBaseKind = 1;
2150 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2151 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2152 InvalidBaseKind = 2;
2153 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2154 InvalidBaseKind = 3;
2155 Ident = PE->getIdentKindName();
2156 }
2157
2158 if (InvalidBaseKind != -1) {
2159 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2160 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2161 << Ident;
2162 return false;
2163 }
2164 }
2165
2166 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2167 if (FD->isConsteval()) {
2168 Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2169 << !Type->isAnyPointerType();
2170 Info.Note(FD->getLocation(), diag::note_declared_at);
2171 return false;
2172 }
2173 }
2174
2175 // Check that the object is a global. Note that the fake 'this' object we
2176 // manufacture when checking potential constant expressions is conservatively
2177 // assumed to be global here.
2178 if (!IsGlobalLValue(Base)) {
2179 if (Info.getLangOpts().CPlusPlus11) {
2180 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2181 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD
2182 << BaseVD;
2183 auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD);
2184 if (VarD && VarD->isConstexpr()) {
2185 // Non-static local constexpr variables have unintuitive semantics:
2186 // constexpr int a = 1;
2187 // constexpr const int *p = &a;
2188 // ... is invalid because the address of 'a' is not constant. Suggest
2189 // adding a 'static' in this case.
2190 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2191 << VarD
2192 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2193 } else {
2194 NoteLValueLocation(Info, Base);
2195 }
2196 } else {
2197 Info.FFDiag(Loc);
2198 }
2199 // Don't allow references to temporaries to escape.
2200 return false;
2201 }
2202 assert((Info.checkingPotentialConstantExpression() ||
2203 LVal.getLValueCallIndex() == 0) &&
2204 "have call index for global lvalue");
2205
2206 if (Base.is<DynamicAllocLValue>()) {
2207 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2208 << IsReferenceType << !Designator.Entries.empty();
2209 NoteLValueLocation(Info, Base);
2210 return false;
2211 }
2212
2213 if (BaseVD) {
2214 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2215 // Check if this is a thread-local variable.
2216 if (Var->getTLSKind())
2217 // FIXME: Diagnostic!
2218 return false;
2219
2220 // A dllimport variable never acts like a constant, unless we're
2221 // evaluating a value for use only in name mangling.
2222 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2223 // FIXME: Diagnostic!
2224 return false;
2225
2226 // In CUDA/HIP device compilation, only device side variables have
2227 // constant addresses.
2228 if (Info.getCtx().getLangOpts().CUDA &&
2229 Info.getCtx().getLangOpts().CUDAIsDevice &&
2230 Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) {
2231 if ((!Var->hasAttr<CUDADeviceAttr>() &&
2232 !Var->hasAttr<CUDAConstantAttr>() &&
2233 !Var->getType()->isCUDADeviceBuiltinSurfaceType() &&
2234 !Var->getType()->isCUDADeviceBuiltinTextureType()) ||
2235 Var->hasAttr<HIPManagedAttr>())
2236 return false;
2237 }
2238 }
2239 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2240 // __declspec(dllimport) must be handled very carefully:
2241 // We must never initialize an expression with the thunk in C++.
2242 // Doing otherwise would allow the same id-expression to yield
2243 // different addresses for the same function in different translation
2244 // units. However, this means that we must dynamically initialize the
2245 // expression with the contents of the import address table at runtime.
2246 //
2247 // The C language has no notion of ODR; furthermore, it has no notion of
2248 // dynamic initialization. This means that we are permitted to
2249 // perform initialization with the address of the thunk.
2250 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2251 FD->hasAttr<DLLImportAttr>())
2252 // FIXME: Diagnostic!
2253 return false;
2254 }
2255 } else if (const auto *MTE =
2256 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2257 if (CheckedTemps.insert(MTE).second) {
2258 QualType TempType = getType(Base);
2259 if (TempType.isDestructedType()) {
2260 Info.FFDiag(MTE->getExprLoc(),
2261 diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2262 << TempType;
2263 return false;
2264 }
2265
2266 APValue *V = MTE->getOrCreateValue(false);
2267 assert(V && "evasluation result refers to uninitialised temporary");
2268 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2269 Info, MTE->getExprLoc(), TempType, *V,
2270 Kind, SourceLocation(), CheckedTemps))
2271 return false;
2272 }
2273 }
2274
2275 // Allow address constant expressions to be past-the-end pointers. This is
2276 // an extension: the standard requires them to point to an object.
2277 if (!IsReferenceType)
2278 return true;
2279
2280 // A reference constant expression must refer to an object.
2281 if (!Base) {
2282 // FIXME: diagnostic
2283 Info.CCEDiag(Loc);
2284 return true;
2285 }
2286
2287 // Does this refer one past the end of some object?
2288 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2289 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2290 << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2291 NoteLValueLocation(Info, Base);
2292 }
2293
2294 return true;
2295 }
2296
2297 /// Member pointers are constant expressions unless they point to a
2298 /// non-virtual dllimport member function.
CheckMemberPointerConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const APValue & Value,ConstantExprKind Kind)2299 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2300 SourceLocation Loc,
2301 QualType Type,
2302 const APValue &Value,
2303 ConstantExprKind Kind) {
2304 const ValueDecl *Member = Value.getMemberPointerDecl();
2305 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2306 if (!FD)
2307 return true;
2308 if (FD->isConsteval()) {
2309 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2310 Info.Note(FD->getLocation(), diag::note_declared_at);
2311 return false;
2312 }
2313 return isForManglingOnly(Kind) || FD->isVirtual() ||
2314 !FD->hasAttr<DLLImportAttr>();
2315 }
2316
2317 /// Check that this core constant expression is of literal type, and if not,
2318 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)2319 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2320 const LValue *This = nullptr) {
2321 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx))
2322 return true;
2323
2324 // C++1y: A constant initializer for an object o [...] may also invoke
2325 // constexpr constructors for o and its subobjects even if those objects
2326 // are of non-literal class types.
2327 //
2328 // C++11 missed this detail for aggregates, so classes like this:
2329 // struct foo_t { union { int i; volatile int j; } u; };
2330 // are not (obviously) initializable like so:
2331 // __attribute__((__require_constant_initialization__))
2332 // static const foo_t x = {{0}};
2333 // because "i" is a subobject with non-literal initialization (due to the
2334 // volatile member of the union). See:
2335 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2336 // Therefore, we use the C++1y behavior.
2337 if (This && Info.EvaluatingDecl == This->getLValueBase())
2338 return true;
2339
2340 // Prvalue constant expressions must be of literal types.
2341 if (Info.getLangOpts().CPlusPlus11)
2342 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2343 << E->getType();
2344 else
2345 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2346 return false;
2347 }
2348
CheckEvaluationResult(CheckEvaluationResultKind CERK,EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind,SourceLocation SubobjectLoc,CheckedTemporaries & CheckedTemps)2349 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2350 EvalInfo &Info, SourceLocation DiagLoc,
2351 QualType Type, const APValue &Value,
2352 ConstantExprKind Kind,
2353 SourceLocation SubobjectLoc,
2354 CheckedTemporaries &CheckedTemps) {
2355 if (!Value.hasValue()) {
2356 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2357 << true << Type;
2358 if (SubobjectLoc.isValid())
2359 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2360 return false;
2361 }
2362
2363 // We allow _Atomic(T) to be initialized from anything that T can be
2364 // initialized from.
2365 if (const AtomicType *AT = Type->getAs<AtomicType>())
2366 Type = AT->getValueType();
2367
2368 // Core issue 1454: For a literal constant expression of array or class type,
2369 // each subobject of its value shall have been initialized by a constant
2370 // expression.
2371 if (Value.isArray()) {
2372 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2373 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2374 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2375 Value.getArrayInitializedElt(I), Kind,
2376 SubobjectLoc, CheckedTemps))
2377 return false;
2378 }
2379 if (!Value.hasArrayFiller())
2380 return true;
2381 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2382 Value.getArrayFiller(), Kind, SubobjectLoc,
2383 CheckedTemps);
2384 }
2385 if (Value.isUnion() && Value.getUnionField()) {
2386 return CheckEvaluationResult(
2387 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2388 Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2389 CheckedTemps);
2390 }
2391 if (Value.isStruct()) {
2392 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2393 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2394 unsigned BaseIndex = 0;
2395 for (const CXXBaseSpecifier &BS : CD->bases()) {
2396 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2397 Value.getStructBase(BaseIndex), Kind,
2398 BS.getBeginLoc(), CheckedTemps))
2399 return false;
2400 ++BaseIndex;
2401 }
2402 }
2403 for (const auto *I : RD->fields()) {
2404 if (I->isUnnamedBitfield())
2405 continue;
2406
2407 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2408 Value.getStructField(I->getFieldIndex()),
2409 Kind, I->getLocation(), CheckedTemps))
2410 return false;
2411 }
2412 }
2413
2414 if (Value.isLValue() &&
2415 CERK == CheckEvaluationResultKind::ConstantExpression) {
2416 LValue LVal;
2417 LVal.setFrom(Info.Ctx, Value);
2418 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2419 CheckedTemps);
2420 }
2421
2422 if (Value.isMemberPointer() &&
2423 CERK == CheckEvaluationResultKind::ConstantExpression)
2424 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2425
2426 // Everything else is fine.
2427 return true;
2428 }
2429
2430 /// Check that this core constant expression value is a valid value for a
2431 /// constant expression. If not, report an appropriate diagnostic. Does not
2432 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind)2433 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2434 QualType Type, const APValue &Value,
2435 ConstantExprKind Kind) {
2436 // Nothing to check for a constant expression of type 'cv void'.
2437 if (Type->isVoidType())
2438 return true;
2439
2440 CheckedTemporaries CheckedTemps;
2441 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2442 Info, DiagLoc, Type, Value, Kind,
2443 SourceLocation(), CheckedTemps);
2444 }
2445
2446 /// Check that this evaluated value is fully-initialized and can be loaded by
2447 /// an lvalue-to-rvalue conversion.
CheckFullyInitialized(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)2448 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2449 QualType Type, const APValue &Value) {
2450 CheckedTemporaries CheckedTemps;
2451 return CheckEvaluationResult(
2452 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2453 ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2454 }
2455
2456 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2457 /// "the allocated storage is deallocated within the evaluation".
CheckMemoryLeaks(EvalInfo & Info)2458 static bool CheckMemoryLeaks(EvalInfo &Info) {
2459 if (!Info.HeapAllocs.empty()) {
2460 // We can still fold to a constant despite a compile-time memory leak,
2461 // so long as the heap allocation isn't referenced in the result (we check
2462 // that in CheckConstantExpression).
2463 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2464 diag::note_constexpr_memory_leak)
2465 << unsigned(Info.HeapAllocs.size() - 1);
2466 }
2467 return true;
2468 }
2469
EvalPointerValueAsBool(const APValue & Value,bool & Result)2470 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2471 // A null base expression indicates a null pointer. These are always
2472 // evaluatable, and they are false unless the offset is zero.
2473 if (!Value.getLValueBase()) {
2474 // TODO: Should a non-null pointer with an offset of zero evaluate to true?
2475 Result = !Value.getLValueOffset().isZero();
2476 return true;
2477 }
2478
2479 // We have a non-null base. These are generally known to be true, but if it's
2480 // a weak declaration it can be null at runtime.
2481 Result = true;
2482 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2483 return !Decl || !Decl->isWeak();
2484 }
2485
HandleConversionToBool(const APValue & Val,bool & Result)2486 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2487 // TODO: This function should produce notes if it fails.
2488 switch (Val.getKind()) {
2489 case APValue::None:
2490 case APValue::Indeterminate:
2491 return false;
2492 case APValue::Int:
2493 Result = Val.getInt().getBoolValue();
2494 return true;
2495 case APValue::FixedPoint:
2496 Result = Val.getFixedPoint().getBoolValue();
2497 return true;
2498 case APValue::Float:
2499 Result = !Val.getFloat().isZero();
2500 return true;
2501 case APValue::ComplexInt:
2502 Result = Val.getComplexIntReal().getBoolValue() ||
2503 Val.getComplexIntImag().getBoolValue();
2504 return true;
2505 case APValue::ComplexFloat:
2506 Result = !Val.getComplexFloatReal().isZero() ||
2507 !Val.getComplexFloatImag().isZero();
2508 return true;
2509 case APValue::LValue:
2510 return EvalPointerValueAsBool(Val, Result);
2511 case APValue::MemberPointer:
2512 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) {
2513 return false;
2514 }
2515 Result = Val.getMemberPointerDecl();
2516 return true;
2517 case APValue::Vector:
2518 case APValue::Array:
2519 case APValue::Struct:
2520 case APValue::Union:
2521 case APValue::AddrLabelDiff:
2522 return false;
2523 }
2524
2525 llvm_unreachable("unknown APValue kind");
2526 }
2527
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)2528 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2529 EvalInfo &Info) {
2530 assert(!E->isValueDependent());
2531 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition");
2532 APValue Val;
2533 if (!Evaluate(Val, Info, E))
2534 return false;
2535 return HandleConversionToBool(Val, Result);
2536 }
2537
2538 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)2539 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2540 const T &SrcValue, QualType DestType) {
2541 Info.CCEDiag(E, diag::note_constexpr_overflow)
2542 << SrcValue << DestType;
2543 return Info.noteUndefinedBehavior();
2544 }
2545
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)2546 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2547 QualType SrcType, const APFloat &Value,
2548 QualType DestType, APSInt &Result) {
2549 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2550 // Determine whether we are converting to unsigned or signed.
2551 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2552
2553 Result = APSInt(DestWidth, !DestSigned);
2554 bool ignored;
2555 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2556 & APFloat::opInvalidOp)
2557 return HandleOverflow(Info, E, Value, DestType);
2558 return true;
2559 }
2560
2561 /// Get rounding mode to use in evaluation of the specified expression.
2562 ///
2563 /// If rounding mode is unknown at compile time, still try to evaluate the
2564 /// expression. If the result is exact, it does not depend on rounding mode.
2565 /// So return "tonearest" mode instead of "dynamic".
getActiveRoundingMode(EvalInfo & Info,const Expr * E)2566 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) {
2567 llvm::RoundingMode RM =
2568 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2569 if (RM == llvm::RoundingMode::Dynamic)
2570 RM = llvm::RoundingMode::NearestTiesToEven;
2571 return RM;
2572 }
2573
2574 /// Check if the given evaluation result is allowed for constant evaluation.
checkFloatingPointResult(EvalInfo & Info,const Expr * E,APFloat::opStatus St)2575 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2576 APFloat::opStatus St) {
2577 // In a constant context, assume that any dynamic rounding mode or FP
2578 // exception state matches the default floating-point environment.
2579 if (Info.InConstantContext)
2580 return true;
2581
2582 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2583 if ((St & APFloat::opInexact) &&
2584 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2585 // Inexact result means that it depends on rounding mode. If the requested
2586 // mode is dynamic, the evaluation cannot be made in compile time.
2587 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2588 return false;
2589 }
2590
2591 if ((St != APFloat::opOK) &&
2592 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2593 FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
2594 FPO.getAllowFEnvAccess())) {
2595 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2596 return false;
2597 }
2598
2599 if ((St & APFloat::opStatus::opInvalidOp) &&
2600 FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
2601 // There is no usefully definable result.
2602 Info.FFDiag(E);
2603 return false;
2604 }
2605
2606 // FIXME: if:
2607 // - evaluation triggered other FP exception, and
2608 // - exception mode is not "ignore", and
2609 // - the expression being evaluated is not a part of global variable
2610 // initializer,
2611 // the evaluation probably need to be rejected.
2612 return true;
2613 }
2614
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)2615 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2616 QualType SrcType, QualType DestType,
2617 APFloat &Result) {
2618 assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2619 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2620 APFloat::opStatus St;
2621 APFloat Value = Result;
2622 bool ignored;
2623 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2624 return checkFloatingPointResult(Info, E, St);
2625 }
2626
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)2627 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2628 QualType DestType, QualType SrcType,
2629 const APSInt &Value) {
2630 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2631 // Figure out if this is a truncate, extend or noop cast.
2632 // If the input is signed, do a sign extend, noop, or truncate.
2633 APSInt Result = Value.extOrTrunc(DestWidth);
2634 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2635 if (DestType->isBooleanType())
2636 Result = Value.getBoolValue();
2637 return Result;
2638 }
2639
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,const FPOptions FPO,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)2640 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2641 const FPOptions FPO,
2642 QualType SrcType, const APSInt &Value,
2643 QualType DestType, APFloat &Result) {
2644 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2645 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2646 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM);
2647 return checkFloatingPointResult(Info, E, St);
2648 }
2649
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)2650 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2651 APValue &Value, const FieldDecl *FD) {
2652 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2653
2654 if (!Value.isInt()) {
2655 // Trying to store a pointer-cast-to-integer into a bitfield.
2656 // FIXME: In this case, we should provide the diagnostic for casting
2657 // a pointer to an integer.
2658 assert(Value.isLValue() && "integral value neither int nor lvalue?");
2659 Info.FFDiag(E);
2660 return false;
2661 }
2662
2663 APSInt &Int = Value.getInt();
2664 unsigned OldBitWidth = Int.getBitWidth();
2665 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2666 if (NewBitWidth < OldBitWidth)
2667 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2668 return true;
2669 }
2670
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)2671 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2672 llvm::APInt &Res) {
2673 APValue SVal;
2674 if (!Evaluate(SVal, Info, E))
2675 return false;
2676 if (SVal.isInt()) {
2677 Res = SVal.getInt();
2678 return true;
2679 }
2680 if (SVal.isFloat()) {
2681 Res = SVal.getFloat().bitcastToAPInt();
2682 return true;
2683 }
2684 if (SVal.isVector()) {
2685 QualType VecTy = E->getType();
2686 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2687 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2688 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2689 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2690 Res = llvm::APInt::getZero(VecSize);
2691 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2692 APValue &Elt = SVal.getVectorElt(i);
2693 llvm::APInt EltAsInt;
2694 if (Elt.isInt()) {
2695 EltAsInt = Elt.getInt();
2696 } else if (Elt.isFloat()) {
2697 EltAsInt = Elt.getFloat().bitcastToAPInt();
2698 } else {
2699 // Don't try to handle vectors of anything other than int or float
2700 // (not sure if it's possible to hit this case).
2701 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2702 return false;
2703 }
2704 unsigned BaseEltSize = EltAsInt.getBitWidth();
2705 if (BigEndian)
2706 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2707 else
2708 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2709 }
2710 return true;
2711 }
2712 // Give up if the input isn't an int, float, or vector. For example, we
2713 // reject "(v4i16)(intptr_t)&a".
2714 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2715 return false;
2716 }
2717
2718 /// Perform the given integer operation, which is known to need at most BitWidth
2719 /// bits, and check for overflow in the original type (if that type was not an
2720 /// unsigned type).
2721 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)2722 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2723 const APSInt &LHS, const APSInt &RHS,
2724 unsigned BitWidth, Operation Op,
2725 APSInt &Result) {
2726 if (LHS.isUnsigned()) {
2727 Result = Op(LHS, RHS);
2728 return true;
2729 }
2730
2731 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2732 Result = Value.trunc(LHS.getBitWidth());
2733 if (Result.extend(BitWidth) != Value) {
2734 if (Info.checkingForUndefinedBehavior())
2735 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2736 diag::warn_integer_constant_overflow)
2737 << toString(Result, 10) << E->getType();
2738 return HandleOverflow(Info, E, Value, E->getType());
2739 }
2740 return true;
2741 }
2742
2743 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)2744 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2745 BinaryOperatorKind Opcode, APSInt RHS,
2746 APSInt &Result) {
2747 bool HandleOverflowResult = true;
2748 switch (Opcode) {
2749 default:
2750 Info.FFDiag(E);
2751 return false;
2752 case BO_Mul:
2753 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2754 std::multiplies<APSInt>(), Result);
2755 case BO_Add:
2756 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2757 std::plus<APSInt>(), Result);
2758 case BO_Sub:
2759 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2760 std::minus<APSInt>(), Result);
2761 case BO_And: Result = LHS & RHS; return true;
2762 case BO_Xor: Result = LHS ^ RHS; return true;
2763 case BO_Or: Result = LHS | RHS; return true;
2764 case BO_Div:
2765 case BO_Rem:
2766 if (RHS == 0) {
2767 Info.FFDiag(E, diag::note_expr_divide_by_zero);
2768 return false;
2769 }
2770 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2771 // this operation and gives the two's complement result.
2772 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() &&
2773 LHS.isMinSignedValue())
2774 HandleOverflowResult = HandleOverflow(
2775 Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
2776 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2777 return HandleOverflowResult;
2778 case BO_Shl: {
2779 if (Info.getLangOpts().OpenCL)
2780 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2781 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2782 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2783 RHS.isUnsigned());
2784 else if (RHS.isSigned() && RHS.isNegative()) {
2785 // During constant-folding, a negative shift is an opposite shift. Such
2786 // a shift is not a constant expression.
2787 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2788 RHS = -RHS;
2789 goto shift_right;
2790 }
2791 shift_left:
2792 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2793 // the shifted type.
2794 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2795 if (SA != RHS) {
2796 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2797 << RHS << E->getType() << LHS.getBitWidth();
2798 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2799 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2800 // operand, and must not overflow the corresponding unsigned type.
2801 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2802 // E1 x 2^E2 module 2^N.
2803 if (LHS.isNegative())
2804 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2805 else if (LHS.countLeadingZeros() < SA)
2806 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2807 }
2808 Result = LHS << SA;
2809 return true;
2810 }
2811 case BO_Shr: {
2812 if (Info.getLangOpts().OpenCL)
2813 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2814 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2815 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2816 RHS.isUnsigned());
2817 else if (RHS.isSigned() && RHS.isNegative()) {
2818 // During constant-folding, a negative shift is an opposite shift. Such a
2819 // shift is not a constant expression.
2820 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2821 RHS = -RHS;
2822 goto shift_left;
2823 }
2824 shift_right:
2825 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2826 // shifted type.
2827 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2828 if (SA != RHS)
2829 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2830 << RHS << E->getType() << LHS.getBitWidth();
2831 Result = LHS >> SA;
2832 return true;
2833 }
2834
2835 case BO_LT: Result = LHS < RHS; return true;
2836 case BO_GT: Result = LHS > RHS; return true;
2837 case BO_LE: Result = LHS <= RHS; return true;
2838 case BO_GE: Result = LHS >= RHS; return true;
2839 case BO_EQ: Result = LHS == RHS; return true;
2840 case BO_NE: Result = LHS != RHS; return true;
2841 case BO_Cmp:
2842 llvm_unreachable("BO_Cmp should be handled elsewhere");
2843 }
2844 }
2845
2846 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const BinaryOperator * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)2847 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2848 APFloat &LHS, BinaryOperatorKind Opcode,
2849 const APFloat &RHS) {
2850 llvm::RoundingMode RM = getActiveRoundingMode(Info, E);
2851 APFloat::opStatus St;
2852 switch (Opcode) {
2853 default:
2854 Info.FFDiag(E);
2855 return false;
2856 case BO_Mul:
2857 St = LHS.multiply(RHS, RM);
2858 break;
2859 case BO_Add:
2860 St = LHS.add(RHS, RM);
2861 break;
2862 case BO_Sub:
2863 St = LHS.subtract(RHS, RM);
2864 break;
2865 case BO_Div:
2866 // [expr.mul]p4:
2867 // If the second operand of / or % is zero the behavior is undefined.
2868 if (RHS.isZero())
2869 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2870 St = LHS.divide(RHS, RM);
2871 break;
2872 }
2873
2874 // [expr.pre]p4:
2875 // If during the evaluation of an expression, the result is not
2876 // mathematically defined [...], the behavior is undefined.
2877 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2878 if (LHS.isNaN()) {
2879 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2880 return Info.noteUndefinedBehavior();
2881 }
2882
2883 return checkFloatingPointResult(Info, E, St);
2884 }
2885
handleLogicalOpForVector(const APInt & LHSValue,BinaryOperatorKind Opcode,const APInt & RHSValue,APInt & Result)2886 static bool handleLogicalOpForVector(const APInt &LHSValue,
2887 BinaryOperatorKind Opcode,
2888 const APInt &RHSValue, APInt &Result) {
2889 bool LHS = (LHSValue != 0);
2890 bool RHS = (RHSValue != 0);
2891
2892 if (Opcode == BO_LAnd)
2893 Result = LHS && RHS;
2894 else
2895 Result = LHS || RHS;
2896 return true;
2897 }
handleLogicalOpForVector(const APFloat & LHSValue,BinaryOperatorKind Opcode,const APFloat & RHSValue,APInt & Result)2898 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2899 BinaryOperatorKind Opcode,
2900 const APFloat &RHSValue, APInt &Result) {
2901 bool LHS = !LHSValue.isZero();
2902 bool RHS = !RHSValue.isZero();
2903
2904 if (Opcode == BO_LAnd)
2905 Result = LHS && RHS;
2906 else
2907 Result = LHS || RHS;
2908 return true;
2909 }
2910
handleLogicalOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2911 static bool handleLogicalOpForVector(const APValue &LHSValue,
2912 BinaryOperatorKind Opcode,
2913 const APValue &RHSValue, APInt &Result) {
2914 // The result is always an int type, however operands match the first.
2915 if (LHSValue.getKind() == APValue::Int)
2916 return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2917 RHSValue.getInt(), Result);
2918 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2919 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2920 RHSValue.getFloat(), Result);
2921 }
2922
2923 template <typename APTy>
2924 static bool
handleCompareOpForVectorHelper(const APTy & LHSValue,BinaryOperatorKind Opcode,const APTy & RHSValue,APInt & Result)2925 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2926 const APTy &RHSValue, APInt &Result) {
2927 switch (Opcode) {
2928 default:
2929 llvm_unreachable("unsupported binary operator");
2930 case BO_EQ:
2931 Result = (LHSValue == RHSValue);
2932 break;
2933 case BO_NE:
2934 Result = (LHSValue != RHSValue);
2935 break;
2936 case BO_LT:
2937 Result = (LHSValue < RHSValue);
2938 break;
2939 case BO_GT:
2940 Result = (LHSValue > RHSValue);
2941 break;
2942 case BO_LE:
2943 Result = (LHSValue <= RHSValue);
2944 break;
2945 case BO_GE:
2946 Result = (LHSValue >= RHSValue);
2947 break;
2948 }
2949
2950 // The boolean operations on these vector types use an instruction that
2951 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1
2952 // to -1 to make sure that we produce the correct value.
2953 Result.negate();
2954
2955 return true;
2956 }
2957
handleCompareOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2958 static bool handleCompareOpForVector(const APValue &LHSValue,
2959 BinaryOperatorKind Opcode,
2960 const APValue &RHSValue, APInt &Result) {
2961 // The result is always an int type, however operands match the first.
2962 if (LHSValue.getKind() == APValue::Int)
2963 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2964 RHSValue.getInt(), Result);
2965 assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2966 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2967 RHSValue.getFloat(), Result);
2968 }
2969
2970 // Perform binary operations for vector types, in place on the LHS.
handleVectorVectorBinOp(EvalInfo & Info,const BinaryOperator * E,BinaryOperatorKind Opcode,APValue & LHSValue,const APValue & RHSValue)2971 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2972 BinaryOperatorKind Opcode,
2973 APValue &LHSValue,
2974 const APValue &RHSValue) {
2975 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2976 "Operation not supported on vector types");
2977
2978 const auto *VT = E->getType()->castAs<VectorType>();
2979 unsigned NumElements = VT->getNumElements();
2980 QualType EltTy = VT->getElementType();
2981
2982 // In the cases (typically C as I've observed) where we aren't evaluating
2983 // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2984 // just give up.
2985 if (!LHSValue.isVector()) {
2986 assert(LHSValue.isLValue() &&
2987 "A vector result that isn't a vector OR uncalculated LValue");
2988 Info.FFDiag(E);
2989 return false;
2990 }
2991
2992 assert(LHSValue.getVectorLength() == NumElements &&
2993 RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2994
2995 SmallVector<APValue, 4> ResultElements;
2996
2997 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2998 APValue LHSElt = LHSValue.getVectorElt(EltNum);
2999 APValue RHSElt = RHSValue.getVectorElt(EltNum);
3000
3001 if (EltTy->isIntegerType()) {
3002 APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
3003 EltTy->isUnsignedIntegerType()};
3004 bool Success = true;
3005
3006 if (BinaryOperator::isLogicalOp(Opcode))
3007 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3008 else if (BinaryOperator::isComparisonOp(Opcode))
3009 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
3010 else
3011 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
3012 RHSElt.getInt(), EltResult);
3013
3014 if (!Success) {
3015 Info.FFDiag(E);
3016 return false;
3017 }
3018 ResultElements.emplace_back(EltResult);
3019
3020 } else if (EltTy->isFloatingType()) {
3021 assert(LHSElt.getKind() == APValue::Float &&
3022 RHSElt.getKind() == APValue::Float &&
3023 "Mismatched LHS/RHS/Result Type");
3024 APFloat LHSFloat = LHSElt.getFloat();
3025
3026 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3027 RHSElt.getFloat())) {
3028 Info.FFDiag(E);
3029 return false;
3030 }
3031
3032 ResultElements.emplace_back(LHSFloat);
3033 }
3034 }
3035
3036 LHSValue = APValue(ResultElements.data(), ResultElements.size());
3037 return true;
3038 }
3039
3040 /// Cast an lvalue referring to a base subobject to a derived class, by
3041 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)3042 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3043 const RecordDecl *TruncatedType,
3044 unsigned TruncatedElements) {
3045 SubobjectDesignator &D = Result.Designator;
3046
3047 // Check we actually point to a derived class object.
3048 if (TruncatedElements == D.Entries.size())
3049 return true;
3050 assert(TruncatedElements >= D.MostDerivedPathLength &&
3051 "not casting to a derived class");
3052 if (!Result.checkSubobject(Info, E, CSK_Derived))
3053 return false;
3054
3055 // Truncate the path to the subobject, and remove any derived-to-base offsets.
3056 const RecordDecl *RD = TruncatedType;
3057 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3058 if (RD->isInvalidDecl()) return false;
3059 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3060 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3061 if (isVirtualBaseClass(D.Entries[I]))
3062 Result.Offset -= Layout.getVBaseClassOffset(Base);
3063 else
3064 Result.Offset -= Layout.getBaseClassOffset(Base);
3065 RD = Base;
3066 }
3067 D.Entries.resize(TruncatedElements);
3068 return true;
3069 }
3070
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)3071 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3072 const CXXRecordDecl *Derived,
3073 const CXXRecordDecl *Base,
3074 const ASTRecordLayout *RL = nullptr) {
3075 if (!RL) {
3076 if (Derived->isInvalidDecl()) return false;
3077 RL = &Info.Ctx.getASTRecordLayout(Derived);
3078 }
3079
3080 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3081 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3082 return true;
3083 }
3084
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)3085 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3086 const CXXRecordDecl *DerivedDecl,
3087 const CXXBaseSpecifier *Base) {
3088 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3089
3090 if (!Base->isVirtual())
3091 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3092
3093 SubobjectDesignator &D = Obj.Designator;
3094 if (D.Invalid)
3095 return false;
3096
3097 // Extract most-derived object and corresponding type.
3098 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3099 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3100 return false;
3101
3102 // Find the virtual base class.
3103 if (DerivedDecl->isInvalidDecl()) return false;
3104 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3105 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3106 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3107 return true;
3108 }
3109
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)3110 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3111 QualType Type, LValue &Result) {
3112 for (CastExpr::path_const_iterator PathI = E->path_begin(),
3113 PathE = E->path_end();
3114 PathI != PathE; ++PathI) {
3115 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3116 *PathI))
3117 return false;
3118 Type = (*PathI)->getType();
3119 }
3120 return true;
3121 }
3122
3123 /// Cast an lvalue referring to a derived class to a known base subobject.
CastToBaseClass(EvalInfo & Info,const Expr * E,LValue & Result,const CXXRecordDecl * DerivedRD,const CXXRecordDecl * BaseRD)3124 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3125 const CXXRecordDecl *DerivedRD,
3126 const CXXRecordDecl *BaseRD) {
3127 CXXBasePaths Paths(/*FindAmbiguities=*/false,
3128 /*RecordPaths=*/true, /*DetectVirtual=*/false);
3129 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3130 llvm_unreachable("Class must be derived from the passed in base class!");
3131
3132 for (CXXBasePathElement &Elem : Paths.front())
3133 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3134 return false;
3135 return true;
3136 }
3137
3138 /// Update LVal to refer to the given field, which must be a member of the type
3139 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)3140 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3141 const FieldDecl *FD,
3142 const ASTRecordLayout *RL = nullptr) {
3143 if (!RL) {
3144 if (FD->getParent()->isInvalidDecl()) return false;
3145 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3146 }
3147
3148 unsigned I = FD->getFieldIndex();
3149 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3150 LVal.addDecl(Info, E, FD);
3151 return true;
3152 }
3153
3154 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)3155 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3156 LValue &LVal,
3157 const IndirectFieldDecl *IFD) {
3158 for (const auto *C : IFD->chain())
3159 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3160 return false;
3161 return true;
3162 }
3163
3164 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)3165 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3166 QualType Type, CharUnits &Size) {
3167 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3168 // extension.
3169 if (Type->isVoidType() || Type->isFunctionType()) {
3170 Size = CharUnits::One();
3171 return true;
3172 }
3173
3174 if (Type->isDependentType()) {
3175 Info.FFDiag(Loc);
3176 return false;
3177 }
3178
3179 if (!Type->isConstantSizeType()) {
3180 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3181 // FIXME: Better diagnostic.
3182 Info.FFDiag(Loc);
3183 return false;
3184 }
3185
3186 Size = Info.Ctx.getTypeSizeInChars(Type);
3187 return true;
3188 }
3189
3190 /// Update a pointer value to model pointer arithmetic.
3191 /// \param Info - Information about the ongoing evaluation.
3192 /// \param E - The expression being evaluated, for diagnostic purposes.
3193 /// \param LVal - The pointer value to be updated.
3194 /// \param EltTy - The pointee type represented by LVal.
3195 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,APSInt Adjustment)3196 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3197 LValue &LVal, QualType EltTy,
3198 APSInt Adjustment) {
3199 CharUnits SizeOfPointee;
3200 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3201 return false;
3202
3203 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3204 return true;
3205 }
3206
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)3207 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3208 LValue &LVal, QualType EltTy,
3209 int64_t Adjustment) {
3210 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3211 APSInt::get(Adjustment));
3212 }
3213
3214 /// Update an lvalue to refer to a component of a complex number.
3215 /// \param Info - Information about the ongoing evaluation.
3216 /// \param LVal - The lvalue to be updated.
3217 /// \param EltTy - The complex number's component type.
3218 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)3219 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3220 LValue &LVal, QualType EltTy,
3221 bool Imag) {
3222 if (Imag) {
3223 CharUnits SizeOfComponent;
3224 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3225 return false;
3226 LVal.Offset += SizeOfComponent;
3227 }
3228 LVal.addComplex(Info, E, EltTy, Imag);
3229 return true;
3230 }
3231
3232 /// Try to evaluate the initializer for a variable declaration.
3233 ///
3234 /// \param Info Information about the ongoing evaluation.
3235 /// \param E An expression to be used when printing diagnostics.
3236 /// \param VD The variable whose initializer should be obtained.
3237 /// \param Version The version of the variable within the frame.
3238 /// \param Frame The frame in which the variable was created. Must be null
3239 /// if this variable is not local to the evaluation.
3240 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,unsigned Version,APValue * & Result)3241 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3242 const VarDecl *VD, CallStackFrame *Frame,
3243 unsigned Version, APValue *&Result) {
3244 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3245
3246 // If this is a local variable, dig out its value.
3247 if (Frame) {
3248 Result = Frame->getTemporary(VD, Version);
3249 if (Result)
3250 return true;
3251
3252 if (!isa<ParmVarDecl>(VD)) {
3253 // Assume variables referenced within a lambda's call operator that were
3254 // not declared within the call operator are captures and during checking
3255 // of a potential constant expression, assume they are unknown constant
3256 // expressions.
3257 assert(isLambdaCallOperator(Frame->Callee) &&
3258 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3259 "missing value for local variable");
3260 if (Info.checkingPotentialConstantExpression())
3261 return false;
3262 // FIXME: This diagnostic is bogus; we do support captures. Is this code
3263 // still reachable at all?
3264 Info.FFDiag(E->getBeginLoc(),
3265 diag::note_unimplemented_constexpr_lambda_feature_ast)
3266 << "captures not currently allowed";
3267 return false;
3268 }
3269 }
3270
3271 // If we're currently evaluating the initializer of this declaration, use that
3272 // in-flight value.
3273 if (Info.EvaluatingDecl == Base) {
3274 Result = Info.EvaluatingDeclValue;
3275 return true;
3276 }
3277
3278 if (isa<ParmVarDecl>(VD)) {
3279 // Assume parameters of a potential constant expression are usable in
3280 // constant expressions.
3281 if (!Info.checkingPotentialConstantExpression() ||
3282 !Info.CurrentCall->Callee ||
3283 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3284 if (Info.getLangOpts().CPlusPlus11) {
3285 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3286 << VD;
3287 NoteLValueLocation(Info, Base);
3288 } else {
3289 Info.FFDiag(E);
3290 }
3291 }
3292 return false;
3293 }
3294
3295 // Dig out the initializer, and use the declaration which it's attached to.
3296 // FIXME: We should eventually check whether the variable has a reachable
3297 // initializing declaration.
3298 const Expr *Init = VD->getAnyInitializer(VD);
3299 if (!Init) {
3300 // Don't diagnose during potential constant expression checking; an
3301 // initializer might be added later.
3302 if (!Info.checkingPotentialConstantExpression()) {
3303 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3304 << VD;
3305 NoteLValueLocation(Info, Base);
3306 }
3307 return false;
3308 }
3309
3310 if (Init->isValueDependent()) {
3311 // The DeclRefExpr is not value-dependent, but the variable it refers to
3312 // has a value-dependent initializer. This should only happen in
3313 // constant-folding cases, where the variable is not actually of a suitable
3314 // type for use in a constant expression (otherwise the DeclRefExpr would
3315 // have been value-dependent too), so diagnose that.
3316 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3317 if (!Info.checkingPotentialConstantExpression()) {
3318 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3319 ? diag::note_constexpr_ltor_non_constexpr
3320 : diag::note_constexpr_ltor_non_integral, 1)
3321 << VD << VD->getType();
3322 NoteLValueLocation(Info, Base);
3323 }
3324 return false;
3325 }
3326
3327 // Check that we can fold the initializer. In C++, we will have already done
3328 // this in the cases where it matters for conformance.
3329 if (!VD->evaluateValue()) {
3330 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3331 NoteLValueLocation(Info, Base);
3332 return false;
3333 }
3334
3335 // Check that the variable is actually usable in constant expressions. For a
3336 // const integral variable or a reference, we might have a non-constant
3337 // initializer that we can nonetheless evaluate the initializer for. Such
3338 // variables are not usable in constant expressions. In C++98, the
3339 // initializer also syntactically needs to be an ICE.
3340 //
3341 // FIXME: We don't diagnose cases that aren't potentially usable in constant
3342 // expressions here; doing so would regress diagnostics for things like
3343 // reading from a volatile constexpr variable.
3344 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3345 VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3346 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3347 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3348 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3349 NoteLValueLocation(Info, Base);
3350 }
3351
3352 // Never use the initializer of a weak variable, not even for constant
3353 // folding. We can't be sure that this is the definition that will be used.
3354 if (VD->isWeak()) {
3355 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3356 NoteLValueLocation(Info, Base);
3357 return false;
3358 }
3359
3360 Result = VD->getEvaluatedValue();
3361 return true;
3362 }
3363
3364 /// Get the base index of the given base class within an APValue representing
3365 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)3366 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3367 const CXXRecordDecl *Base) {
3368 Base = Base->getCanonicalDecl();
3369 unsigned Index = 0;
3370 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3371 E = Derived->bases_end(); I != E; ++I, ++Index) {
3372 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3373 return Index;
3374 }
3375
3376 llvm_unreachable("base class missing from derived class's bases list");
3377 }
3378
3379 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)3380 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3381 uint64_t Index) {
3382 assert(!isa<SourceLocExpr>(Lit) &&
3383 "SourceLocExpr should have already been converted to a StringLiteral");
3384
3385 // FIXME: Support MakeStringConstant
3386 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3387 std::string Str;
3388 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3389 assert(Index <= Str.size() && "Index too large");
3390 return APSInt::getUnsigned(Str.c_str()[Index]);
3391 }
3392
3393 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3394 Lit = PE->getFunctionName();
3395 const StringLiteral *S = cast<StringLiteral>(Lit);
3396 const ConstantArrayType *CAT =
3397 Info.Ctx.getAsConstantArrayType(S->getType());
3398 assert(CAT && "string literal isn't an array");
3399 QualType CharType = CAT->getElementType();
3400 assert(CharType->isIntegerType() && "unexpected character type");
3401
3402 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3403 CharType->isUnsignedIntegerType());
3404 if (Index < S->getLength())
3405 Value = S->getCodeUnit(Index);
3406 return Value;
3407 }
3408
3409 // Expand a string literal into an array of characters.
3410 //
3411 // FIXME: This is inefficient; we should probably introduce something similar
3412 // to the LLVM ConstantDataArray to make this cheaper.
expandStringLiteral(EvalInfo & Info,const StringLiteral * S,APValue & Result,QualType AllocType=QualType ())3413 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3414 APValue &Result,
3415 QualType AllocType = QualType()) {
3416 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3417 AllocType.isNull() ? S->getType() : AllocType);
3418 assert(CAT && "string literal isn't an array");
3419 QualType CharType = CAT->getElementType();
3420 assert(CharType->isIntegerType() && "unexpected character type");
3421
3422 unsigned Elts = CAT->getSize().getZExtValue();
3423 Result = APValue(APValue::UninitArray(),
3424 std::min(S->getLength(), Elts), Elts);
3425 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3426 CharType->isUnsignedIntegerType());
3427 if (Result.hasArrayFiller())
3428 Result.getArrayFiller() = APValue(Value);
3429 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3430 Value = S->getCodeUnit(I);
3431 Result.getArrayInitializedElt(I) = APValue(Value);
3432 }
3433 }
3434
3435 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)3436 static void expandArray(APValue &Array, unsigned Index) {
3437 unsigned Size = Array.getArraySize();
3438 assert(Index < Size);
3439
3440 // Always at least double the number of elements for which we store a value.
3441 unsigned OldElts = Array.getArrayInitializedElts();
3442 unsigned NewElts = std::max(Index+1, OldElts * 2);
3443 NewElts = std::min(Size, std::max(NewElts, 8u));
3444
3445 // Copy the data across.
3446 APValue NewValue(APValue::UninitArray(), NewElts, Size);
3447 for (unsigned I = 0; I != OldElts; ++I)
3448 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3449 for (unsigned I = OldElts; I != NewElts; ++I)
3450 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3451 if (NewValue.hasArrayFiller())
3452 NewValue.getArrayFiller() = Array.getArrayFiller();
3453 Array.swap(NewValue);
3454 }
3455
3456 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3457 /// conversion. If it's of class type, we may assume that the copy operation
3458 /// is trivial. Note that this is never true for a union type with fields
3459 /// (because the copy always "reads" the active member) and always true for
3460 /// a non-class type.
3461 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
isReadByLvalueToRvalueConversion(QualType T)3462 static bool isReadByLvalueToRvalueConversion(QualType T) {
3463 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3464 return !RD || isReadByLvalueToRvalueConversion(RD);
3465 }
isReadByLvalueToRvalueConversion(const CXXRecordDecl * RD)3466 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3467 // FIXME: A trivial copy of a union copies the object representation, even if
3468 // the union is empty.
3469 if (RD->isUnion())
3470 return !RD->field_empty();
3471 if (RD->isEmpty())
3472 return false;
3473
3474 for (auto *Field : RD->fields())
3475 if (!Field->isUnnamedBitfield() &&
3476 isReadByLvalueToRvalueConversion(Field->getType()))
3477 return true;
3478
3479 for (auto &BaseSpec : RD->bases())
3480 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3481 return true;
3482
3483 return false;
3484 }
3485
3486 /// Diagnose an attempt to read from any unreadable field within the specified
3487 /// type, which might be a class type.
diagnoseMutableFields(EvalInfo & Info,const Expr * E,AccessKinds AK,QualType T)3488 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3489 QualType T) {
3490 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3491 if (!RD)
3492 return false;
3493
3494 if (!RD->hasMutableFields())
3495 return false;
3496
3497 for (auto *Field : RD->fields()) {
3498 // If we're actually going to read this field in some way, then it can't
3499 // be mutable. If we're in a union, then assigning to a mutable field
3500 // (even an empty one) can change the active member, so that's not OK.
3501 // FIXME: Add core issue number for the union case.
3502 if (Field->isMutable() &&
3503 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3504 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3505 Info.Note(Field->getLocation(), diag::note_declared_at);
3506 return true;
3507 }
3508
3509 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3510 return true;
3511 }
3512
3513 for (auto &BaseSpec : RD->bases())
3514 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3515 return true;
3516
3517 // All mutable fields were empty, and thus not actually read.
3518 return false;
3519 }
3520
lifetimeStartedInEvaluation(EvalInfo & Info,APValue::LValueBase Base,bool MutableSubobject=false)3521 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3522 APValue::LValueBase Base,
3523 bool MutableSubobject = false) {
3524 // A temporary or transient heap allocation we created.
3525 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>())
3526 return true;
3527
3528 switch (Info.IsEvaluatingDecl) {
3529 case EvalInfo::EvaluatingDeclKind::None:
3530 return false;
3531
3532 case EvalInfo::EvaluatingDeclKind::Ctor:
3533 // The variable whose initializer we're evaluating.
3534 if (Info.EvaluatingDecl == Base)
3535 return true;
3536
3537 // A temporary lifetime-extended by the variable whose initializer we're
3538 // evaluating.
3539 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3540 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3541 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3542 return false;
3543
3544 case EvalInfo::EvaluatingDeclKind::Dtor:
3545 // C++2a [expr.const]p6:
3546 // [during constant destruction] the lifetime of a and its non-mutable
3547 // subobjects (but not its mutable subobjects) [are] considered to start
3548 // within e.
3549 if (MutableSubobject || Base != Info.EvaluatingDecl)
3550 return false;
3551 // FIXME: We can meaningfully extend this to cover non-const objects, but
3552 // we will need special handling: we should be able to access only
3553 // subobjects of such objects that are themselves declared const.
3554 QualType T = getType(Base);
3555 return T.isConstQualified() || T->isReferenceType();
3556 }
3557
3558 llvm_unreachable("unknown evaluating decl kind");
3559 }
3560
3561 namespace {
3562 /// A handle to a complete object (an object that is not a subobject of
3563 /// another object).
3564 struct CompleteObject {
3565 /// The identity of the object.
3566 APValue::LValueBase Base;
3567 /// The value of the complete object.
3568 APValue *Value;
3569 /// The type of the complete object.
3570 QualType Type;
3571
CompleteObject__anond52d8a670a11::CompleteObject3572 CompleteObject() : Value(nullptr) {}
CompleteObject__anond52d8a670a11::CompleteObject3573 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3574 : Base(Base), Value(Value), Type(Type) {}
3575
mayAccessMutableMembers__anond52d8a670a11::CompleteObject3576 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3577 // If this isn't a "real" access (eg, if it's just accessing the type
3578 // info), allow it. We assume the type doesn't change dynamically for
3579 // subobjects of constexpr objects (even though we'd hit UB here if it
3580 // did). FIXME: Is this right?
3581 if (!isAnyAccess(AK))
3582 return true;
3583
3584 // In C++14 onwards, it is permitted to read a mutable member whose
3585 // lifetime began within the evaluation.
3586 // FIXME: Should we also allow this in C++11?
3587 if (!Info.getLangOpts().CPlusPlus14)
3588 return false;
3589 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3590 }
3591
operator bool__anond52d8a670a11::CompleteObject3592 explicit operator bool() const { return !Type.isNull(); }
3593 };
3594 } // end anonymous namespace
3595
getSubobjectType(QualType ObjType,QualType SubobjType,bool IsMutable=false)3596 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3597 bool IsMutable = false) {
3598 // C++ [basic.type.qualifier]p1:
3599 // - A const object is an object of type const T or a non-mutable subobject
3600 // of a const object.
3601 if (ObjType.isConstQualified() && !IsMutable)
3602 SubobjType.addConst();
3603 // - A volatile object is an object of type const T or a subobject of a
3604 // volatile object.
3605 if (ObjType.isVolatileQualified())
3606 SubobjType.addVolatile();
3607 return SubobjType;
3608 }
3609
3610 /// Find the designated sub-object of an rvalue.
3611 template<typename SubobjectHandler>
3612 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)3613 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3614 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3615 if (Sub.Invalid)
3616 // A diagnostic will have already been produced.
3617 return handler.failed();
3618 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3619 if (Info.getLangOpts().CPlusPlus11)
3620 Info.FFDiag(E, Sub.isOnePastTheEnd()
3621 ? diag::note_constexpr_access_past_end
3622 : diag::note_constexpr_access_unsized_array)
3623 << handler.AccessKind;
3624 else
3625 Info.FFDiag(E);
3626 return handler.failed();
3627 }
3628
3629 APValue *O = Obj.Value;
3630 QualType ObjType = Obj.Type;
3631 const FieldDecl *LastField = nullptr;
3632 const FieldDecl *VolatileField = nullptr;
3633
3634 // Walk the designator's path to find the subobject.
3635 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3636 // Reading an indeterminate value is undefined, but assigning over one is OK.
3637 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3638 (O->isIndeterminate() &&
3639 !isValidIndeterminateAccess(handler.AccessKind))) {
3640 if (!Info.checkingPotentialConstantExpression())
3641 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3642 << handler.AccessKind << O->isIndeterminate();
3643 return handler.failed();
3644 }
3645
3646 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3647 // const and volatile semantics are not applied on an object under
3648 // {con,de}struction.
3649 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3650 ObjType->isRecordType() &&
3651 Info.isEvaluatingCtorDtor(
3652 Obj.Base,
3653 llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) !=
3654 ConstructionPhase::None) {
3655 ObjType = Info.Ctx.getCanonicalType(ObjType);
3656 ObjType.removeLocalConst();
3657 ObjType.removeLocalVolatile();
3658 }
3659
3660 // If this is our last pass, check that the final object type is OK.
3661 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3662 // Accesses to volatile objects are prohibited.
3663 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3664 if (Info.getLangOpts().CPlusPlus) {
3665 int DiagKind;
3666 SourceLocation Loc;
3667 const NamedDecl *Decl = nullptr;
3668 if (VolatileField) {
3669 DiagKind = 2;
3670 Loc = VolatileField->getLocation();
3671 Decl = VolatileField;
3672 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3673 DiagKind = 1;
3674 Loc = VD->getLocation();
3675 Decl = VD;
3676 } else {
3677 DiagKind = 0;
3678 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3679 Loc = E->getExprLoc();
3680 }
3681 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3682 << handler.AccessKind << DiagKind << Decl;
3683 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3684 } else {
3685 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3686 }
3687 return handler.failed();
3688 }
3689
3690 // If we are reading an object of class type, there may still be more
3691 // things we need to check: if there are any mutable subobjects, we
3692 // cannot perform this read. (This only happens when performing a trivial
3693 // copy or assignment.)
3694 if (ObjType->isRecordType() &&
3695 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3696 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3697 return handler.failed();
3698 }
3699
3700 if (I == N) {
3701 if (!handler.found(*O, ObjType))
3702 return false;
3703
3704 // If we modified a bit-field, truncate it to the right width.
3705 if (isModification(handler.AccessKind) &&
3706 LastField && LastField->isBitField() &&
3707 !truncateBitfieldValue(Info, E, *O, LastField))
3708 return false;
3709
3710 return true;
3711 }
3712
3713 LastField = nullptr;
3714 if (ObjType->isArrayType()) {
3715 // Next subobject is an array element.
3716 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3717 assert(CAT && "vla in literal type?");
3718 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3719 if (CAT->getSize().ule(Index)) {
3720 // Note, it should not be possible to form a pointer with a valid
3721 // designator which points more than one past the end of the array.
3722 if (Info.getLangOpts().CPlusPlus11)
3723 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3724 << handler.AccessKind;
3725 else
3726 Info.FFDiag(E);
3727 return handler.failed();
3728 }
3729
3730 ObjType = CAT->getElementType();
3731
3732 if (O->getArrayInitializedElts() > Index)
3733 O = &O->getArrayInitializedElt(Index);
3734 else if (!isRead(handler.AccessKind)) {
3735 expandArray(*O, Index);
3736 O = &O->getArrayInitializedElt(Index);
3737 } else
3738 O = &O->getArrayFiller();
3739 } else if (ObjType->isAnyComplexType()) {
3740 // Next subobject is a complex number.
3741 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3742 if (Index > 1) {
3743 if (Info.getLangOpts().CPlusPlus11)
3744 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3745 << handler.AccessKind;
3746 else
3747 Info.FFDiag(E);
3748 return handler.failed();
3749 }
3750
3751 ObjType = getSubobjectType(
3752 ObjType, ObjType->castAs<ComplexType>()->getElementType());
3753
3754 assert(I == N - 1 && "extracting subobject of scalar?");
3755 if (O->isComplexInt()) {
3756 return handler.found(Index ? O->getComplexIntImag()
3757 : O->getComplexIntReal(), ObjType);
3758 } else {
3759 assert(O->isComplexFloat());
3760 return handler.found(Index ? O->getComplexFloatImag()
3761 : O->getComplexFloatReal(), ObjType);
3762 }
3763 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3764 if (Field->isMutable() &&
3765 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3766 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3767 << handler.AccessKind << Field;
3768 Info.Note(Field->getLocation(), diag::note_declared_at);
3769 return handler.failed();
3770 }
3771
3772 // Next subobject is a class, struct or union field.
3773 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3774 if (RD->isUnion()) {
3775 const FieldDecl *UnionField = O->getUnionField();
3776 if (!UnionField ||
3777 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3778 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3779 // Placement new onto an inactive union member makes it active.
3780 O->setUnion(Field, APValue());
3781 } else {
3782 // FIXME: If O->getUnionValue() is absent, report that there's no
3783 // active union member rather than reporting the prior active union
3784 // member. We'll need to fix nullptr_t to not use APValue() as its
3785 // representation first.
3786 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3787 << handler.AccessKind << Field << !UnionField << UnionField;
3788 return handler.failed();
3789 }
3790 }
3791 O = &O->getUnionValue();
3792 } else
3793 O = &O->getStructField(Field->getFieldIndex());
3794
3795 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3796 LastField = Field;
3797 if (Field->getType().isVolatileQualified())
3798 VolatileField = Field;
3799 } else {
3800 // Next subobject is a base class.
3801 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3802 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3803 O = &O->getStructBase(getBaseIndex(Derived, Base));
3804
3805 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3806 }
3807 }
3808 }
3809
3810 namespace {
3811 struct ExtractSubobjectHandler {
3812 EvalInfo &Info;
3813 const Expr *E;
3814 APValue &Result;
3815 const AccessKinds AccessKind;
3816
3817 typedef bool result_type;
failed__anond52d8a670b11::ExtractSubobjectHandler3818 bool failed() { return false; }
found__anond52d8a670b11::ExtractSubobjectHandler3819 bool found(APValue &Subobj, QualType SubobjType) {
3820 Result = Subobj;
3821 if (AccessKind == AK_ReadObjectRepresentation)
3822 return true;
3823 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3824 }
found__anond52d8a670b11::ExtractSubobjectHandler3825 bool found(APSInt &Value, QualType SubobjType) {
3826 Result = APValue(Value);
3827 return true;
3828 }
found__anond52d8a670b11::ExtractSubobjectHandler3829 bool found(APFloat &Value, QualType SubobjType) {
3830 Result = APValue(Value);
3831 return true;
3832 }
3833 };
3834 } // end anonymous namespace
3835
3836 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result,AccessKinds AK=AK_Read)3837 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3838 const CompleteObject &Obj,
3839 const SubobjectDesignator &Sub, APValue &Result,
3840 AccessKinds AK = AK_Read) {
3841 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3842 ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3843 return findSubobject(Info, E, Obj, Sub, Handler);
3844 }
3845
3846 namespace {
3847 struct ModifySubobjectHandler {
3848 EvalInfo &Info;
3849 APValue &NewVal;
3850 const Expr *E;
3851
3852 typedef bool result_type;
3853 static const AccessKinds AccessKind = AK_Assign;
3854
checkConst__anond52d8a670c11::ModifySubobjectHandler3855 bool checkConst(QualType QT) {
3856 // Assigning to a const object has undefined behavior.
3857 if (QT.isConstQualified()) {
3858 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3859 return false;
3860 }
3861 return true;
3862 }
3863
failed__anond52d8a670c11::ModifySubobjectHandler3864 bool failed() { return false; }
found__anond52d8a670c11::ModifySubobjectHandler3865 bool found(APValue &Subobj, QualType SubobjType) {
3866 if (!checkConst(SubobjType))
3867 return false;
3868 // We've been given ownership of NewVal, so just swap it in.
3869 Subobj.swap(NewVal);
3870 return true;
3871 }
found__anond52d8a670c11::ModifySubobjectHandler3872 bool found(APSInt &Value, QualType SubobjType) {
3873 if (!checkConst(SubobjType))
3874 return false;
3875 if (!NewVal.isInt()) {
3876 // Maybe trying to write a cast pointer value into a complex?
3877 Info.FFDiag(E);
3878 return false;
3879 }
3880 Value = NewVal.getInt();
3881 return true;
3882 }
found__anond52d8a670c11::ModifySubobjectHandler3883 bool found(APFloat &Value, QualType SubobjType) {
3884 if (!checkConst(SubobjType))
3885 return false;
3886 Value = NewVal.getFloat();
3887 return true;
3888 }
3889 };
3890 } // end anonymous namespace
3891
3892 const AccessKinds ModifySubobjectHandler::AccessKind;
3893
3894 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)3895 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3896 const CompleteObject &Obj,
3897 const SubobjectDesignator &Sub,
3898 APValue &NewVal) {
3899 ModifySubobjectHandler Handler = { Info, NewVal, E };
3900 return findSubobject(Info, E, Obj, Sub, Handler);
3901 }
3902
3903 /// Find the position where two subobject designators diverge, or equivalently
3904 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)3905 static unsigned FindDesignatorMismatch(QualType ObjType,
3906 const SubobjectDesignator &A,
3907 const SubobjectDesignator &B,
3908 bool &WasArrayIndex) {
3909 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3910 for (/**/; I != N; ++I) {
3911 if (!ObjType.isNull() &&
3912 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3913 // Next subobject is an array element.
3914 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3915 WasArrayIndex = true;
3916 return I;
3917 }
3918 if (ObjType->isAnyComplexType())
3919 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3920 else
3921 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3922 } else {
3923 if (A.Entries[I].getAsBaseOrMember() !=
3924 B.Entries[I].getAsBaseOrMember()) {
3925 WasArrayIndex = false;
3926 return I;
3927 }
3928 if (const FieldDecl *FD = getAsField(A.Entries[I]))
3929 // Next subobject is a field.
3930 ObjType = FD->getType();
3931 else
3932 // Next subobject is a base class.
3933 ObjType = QualType();
3934 }
3935 }
3936 WasArrayIndex = false;
3937 return I;
3938 }
3939
3940 /// Determine whether the given subobject designators refer to elements of the
3941 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)3942 static bool AreElementsOfSameArray(QualType ObjType,
3943 const SubobjectDesignator &A,
3944 const SubobjectDesignator &B) {
3945 if (A.Entries.size() != B.Entries.size())
3946 return false;
3947
3948 bool IsArray = A.MostDerivedIsArrayElement;
3949 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3950 // A is a subobject of the array element.
3951 return false;
3952
3953 // If A (and B) designates an array element, the last entry will be the array
3954 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3955 // of length 1' case, and the entire path must match.
3956 bool WasArrayIndex;
3957 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3958 return CommonLength >= A.Entries.size() - IsArray;
3959 }
3960
3961 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)3962 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3963 AccessKinds AK, const LValue &LVal,
3964 QualType LValType) {
3965 if (LVal.InvalidBase) {
3966 Info.FFDiag(E);
3967 return CompleteObject();
3968 }
3969
3970 if (!LVal.Base) {
3971 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3972 return CompleteObject();
3973 }
3974
3975 CallStackFrame *Frame = nullptr;
3976 unsigned Depth = 0;
3977 if (LVal.getLValueCallIndex()) {
3978 std::tie(Frame, Depth) =
3979 Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3980 if (!Frame) {
3981 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3982 << AK << LVal.Base.is<const ValueDecl*>();
3983 NoteLValueLocation(Info, LVal.Base);
3984 return CompleteObject();
3985 }
3986 }
3987
3988 bool IsAccess = isAnyAccess(AK);
3989
3990 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3991 // is not a constant expression (even if the object is non-volatile). We also
3992 // apply this rule to C++98, in order to conform to the expected 'volatile'
3993 // semantics.
3994 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3995 if (Info.getLangOpts().CPlusPlus)
3996 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3997 << AK << LValType;
3998 else
3999 Info.FFDiag(E);
4000 return CompleteObject();
4001 }
4002
4003 // Compute value storage location and type of base object.
4004 APValue *BaseVal = nullptr;
4005 QualType BaseType = getType(LVal.Base);
4006
4007 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
4008 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4009 // This is the object whose initializer we're evaluating, so its lifetime
4010 // started in the current evaluation.
4011 BaseVal = Info.EvaluatingDeclValue;
4012 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
4013 // Allow reading from a GUID declaration.
4014 if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
4015 if (isModification(AK)) {
4016 // All the remaining cases do not permit modification of the object.
4017 Info.FFDiag(E, diag::note_constexpr_modify_global);
4018 return CompleteObject();
4019 }
4020 APValue &V = GD->getAsAPValue();
4021 if (V.isAbsent()) {
4022 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
4023 << GD->getType();
4024 return CompleteObject();
4025 }
4026 return CompleteObject(LVal.Base, &V, GD->getType());
4027 }
4028
4029 // Allow reading the APValue from an UnnamedGlobalConstantDecl.
4030 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) {
4031 if (isModification(AK)) {
4032 Info.FFDiag(E, diag::note_constexpr_modify_global);
4033 return CompleteObject();
4034 }
4035 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()),
4036 GCD->getType());
4037 }
4038
4039 // Allow reading from template parameter objects.
4040 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4041 if (isModification(AK)) {
4042 Info.FFDiag(E, diag::note_constexpr_modify_global);
4043 return CompleteObject();
4044 }
4045 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4046 TPO->getType());
4047 }
4048
4049 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4050 // In C++11, constexpr, non-volatile variables initialized with constant
4051 // expressions are constant expressions too. Inside constexpr functions,
4052 // parameters are constant expressions even if they're non-const.
4053 // In C++1y, objects local to a constant expression (those with a Frame) are
4054 // both readable and writable inside constant expressions.
4055 // In C, such things can also be folded, although they are not ICEs.
4056 const VarDecl *VD = dyn_cast<VarDecl>(D);
4057 if (VD) {
4058 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4059 VD = VDef;
4060 }
4061 if (!VD || VD->isInvalidDecl()) {
4062 Info.FFDiag(E);
4063 return CompleteObject();
4064 }
4065
4066 bool IsConstant = BaseType.isConstant(Info.Ctx);
4067
4068 // Unless we're looking at a local variable or argument in a constexpr call,
4069 // the variable we're reading must be const.
4070 if (!Frame) {
4071 if (IsAccess && isa<ParmVarDecl>(VD)) {
4072 // Access of a parameter that's not associated with a frame isn't going
4073 // to work out, but we can leave it to evaluateVarDeclInit to provide a
4074 // suitable diagnostic.
4075 } else if (Info.getLangOpts().CPlusPlus14 &&
4076 lifetimeStartedInEvaluation(Info, LVal.Base)) {
4077 // OK, we can read and modify an object if we're in the process of
4078 // evaluating its initializer, because its lifetime began in this
4079 // evaluation.
4080 } else if (isModification(AK)) {
4081 // All the remaining cases do not permit modification of the object.
4082 Info.FFDiag(E, diag::note_constexpr_modify_global);
4083 return CompleteObject();
4084 } else if (VD->isConstexpr()) {
4085 // OK, we can read this variable.
4086 } else if (BaseType->isIntegralOrEnumerationType()) {
4087 if (!IsConstant) {
4088 if (!IsAccess)
4089 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4090 if (Info.getLangOpts().CPlusPlus) {
4091 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4092 Info.Note(VD->getLocation(), diag::note_declared_at);
4093 } else {
4094 Info.FFDiag(E);
4095 }
4096 return CompleteObject();
4097 }
4098 } else if (!IsAccess) {
4099 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4100 } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4101 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4102 // This variable might end up being constexpr. Don't diagnose it yet.
4103 } else if (IsConstant) {
4104 // Keep evaluating to see what we can do. In particular, we support
4105 // folding of const floating-point types, in order to make static const
4106 // data members of such types (supported as an extension) more useful.
4107 if (Info.getLangOpts().CPlusPlus) {
4108 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4109 ? diag::note_constexpr_ltor_non_constexpr
4110 : diag::note_constexpr_ltor_non_integral, 1)
4111 << VD << BaseType;
4112 Info.Note(VD->getLocation(), diag::note_declared_at);
4113 } else {
4114 Info.CCEDiag(E);
4115 }
4116 } else {
4117 // Never allow reading a non-const value.
4118 if (Info.getLangOpts().CPlusPlus) {
4119 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4120 ? diag::note_constexpr_ltor_non_constexpr
4121 : diag::note_constexpr_ltor_non_integral, 1)
4122 << VD << BaseType;
4123 Info.Note(VD->getLocation(), diag::note_declared_at);
4124 } else {
4125 Info.FFDiag(E);
4126 }
4127 return CompleteObject();
4128 }
4129 }
4130
4131 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4132 return CompleteObject();
4133 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4134 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
4135 if (!Alloc) {
4136 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4137 return CompleteObject();
4138 }
4139 return CompleteObject(LVal.Base, &(*Alloc)->Value,
4140 LVal.Base.getDynamicAllocType());
4141 } else {
4142 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4143
4144 if (!Frame) {
4145 if (const MaterializeTemporaryExpr *MTE =
4146 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4147 assert(MTE->getStorageDuration() == SD_Static &&
4148 "should have a frame for a non-global materialized temporary");
4149
4150 // C++20 [expr.const]p4: [DR2126]
4151 // An object or reference is usable in constant expressions if it is
4152 // - a temporary object of non-volatile const-qualified literal type
4153 // whose lifetime is extended to that of a variable that is usable
4154 // in constant expressions
4155 //
4156 // C++20 [expr.const]p5:
4157 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4158 // - a non-volatile glvalue that refers to an object that is usable
4159 // in constant expressions, or
4160 // - a non-volatile glvalue of literal type that refers to a
4161 // non-volatile object whose lifetime began within the evaluation
4162 // of E;
4163 //
4164 // C++11 misses the 'began within the evaluation of e' check and
4165 // instead allows all temporaries, including things like:
4166 // int &&r = 1;
4167 // int x = ++r;
4168 // constexpr int k = r;
4169 // Therefore we use the C++14-onwards rules in C++11 too.
4170 //
4171 // Note that temporaries whose lifetimes began while evaluating a
4172 // variable's constructor are not usable while evaluating the
4173 // corresponding destructor, not even if they're of const-qualified
4174 // types.
4175 if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4176 !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4177 if (!IsAccess)
4178 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4179 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4180 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4181 return CompleteObject();
4182 }
4183
4184 BaseVal = MTE->getOrCreateValue(false);
4185 assert(BaseVal && "got reference to unevaluated temporary");
4186 } else {
4187 if (!IsAccess)
4188 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4189 APValue Val;
4190 LVal.moveInto(Val);
4191 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4192 << AK
4193 << Val.getAsString(Info.Ctx,
4194 Info.Ctx.getLValueReferenceType(LValType));
4195 NoteLValueLocation(Info, LVal.Base);
4196 return CompleteObject();
4197 }
4198 } else {
4199 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4200 assert(BaseVal && "missing value for temporary");
4201 }
4202 }
4203
4204 // In C++14, we can't safely access any mutable state when we might be
4205 // evaluating after an unmodeled side effect. Parameters are modeled as state
4206 // in the caller, but aren't visible once the call returns, so they can be
4207 // modified in a speculatively-evaluated call.
4208 //
4209 // FIXME: Not all local state is mutable. Allow local constant subobjects
4210 // to be read here (but take care with 'mutable' fields).
4211 unsigned VisibleDepth = Depth;
4212 if (llvm::isa_and_nonnull<ParmVarDecl>(
4213 LVal.Base.dyn_cast<const ValueDecl *>()))
4214 ++VisibleDepth;
4215 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4216 Info.EvalStatus.HasSideEffects) ||
4217 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4218 return CompleteObject();
4219
4220 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4221 }
4222
4223 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4224 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4225 /// glvalue referred to by an entity of reference type.
4226 ///
4227 /// \param Info - Information about the ongoing evaluation.
4228 /// \param Conv - The expression for which we are performing the conversion.
4229 /// Used for diagnostics.
4230 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4231 /// case of a non-class type).
4232 /// \param LVal - The glvalue on which we are attempting to perform this action.
4233 /// \param RVal - The produced value will be placed here.
4234 /// \param WantObjectRepresentation - If true, we're looking for the object
4235 /// representation rather than the value, and in particular,
4236 /// there is no requirement that the result be fully initialized.
4237 static bool
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal,bool WantObjectRepresentation=false)4238 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4239 const LValue &LVal, APValue &RVal,
4240 bool WantObjectRepresentation = false) {
4241 if (LVal.Designator.Invalid)
4242 return false;
4243
4244 // Check for special cases where there is no existing APValue to look at.
4245 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4246
4247 AccessKinds AK =
4248 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4249
4250 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4251 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4252 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4253 // initializer until now for such expressions. Such an expression can't be
4254 // an ICE in C, so this only matters for fold.
4255 if (Type.isVolatileQualified()) {
4256 Info.FFDiag(Conv);
4257 return false;
4258 }
4259
4260 APValue Lit;
4261 if (!Evaluate(Lit, Info, CLE->getInitializer()))
4262 return false;
4263
4264 // According to GCC info page:
4265 //
4266 // 6.28 Compound Literals
4267 //
4268 // As an optimization, G++ sometimes gives array compound literals longer
4269 // lifetimes: when the array either appears outside a function or has a
4270 // const-qualified type. If foo and its initializer had elements of type
4271 // char *const rather than char *, or if foo were a global variable, the
4272 // array would have static storage duration. But it is probably safest
4273 // just to avoid the use of array compound literals in C++ code.
4274 //
4275 // Obey that rule by checking constness for converted array types.
4276
4277 QualType CLETy = CLE->getType();
4278 if (CLETy->isArrayType() && !Type->isArrayType()) {
4279 if (!CLETy.isConstant(Info.Ctx)) {
4280 Info.FFDiag(Conv);
4281 Info.Note(CLE->getExprLoc(), diag::note_declared_at);
4282 return false;
4283 }
4284 }
4285
4286 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4287 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4288 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4289 // Special-case character extraction so we don't have to construct an
4290 // APValue for the whole string.
4291 assert(LVal.Designator.Entries.size() <= 1 &&
4292 "Can only read characters from string literals");
4293 if (LVal.Designator.Entries.empty()) {
4294 // Fail for now for LValue to RValue conversion of an array.
4295 // (This shouldn't show up in C/C++, but it could be triggered by a
4296 // weird EvaluateAsRValue call from a tool.)
4297 Info.FFDiag(Conv);
4298 return false;
4299 }
4300 if (LVal.Designator.isOnePastTheEnd()) {
4301 if (Info.getLangOpts().CPlusPlus11)
4302 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4303 else
4304 Info.FFDiag(Conv);
4305 return false;
4306 }
4307 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4308 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4309 return true;
4310 }
4311 }
4312
4313 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4314 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4315 }
4316
4317 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)4318 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4319 QualType LValType, APValue &Val) {
4320 if (LVal.Designator.Invalid)
4321 return false;
4322
4323 if (!Info.getLangOpts().CPlusPlus14) {
4324 Info.FFDiag(E);
4325 return false;
4326 }
4327
4328 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4329 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4330 }
4331
4332 namespace {
4333 struct CompoundAssignSubobjectHandler {
4334 EvalInfo &Info;
4335 const CompoundAssignOperator *E;
4336 QualType PromotedLHSType;
4337 BinaryOperatorKind Opcode;
4338 const APValue &RHS;
4339
4340 static const AccessKinds AccessKind = AK_Assign;
4341
4342 typedef bool result_type;
4343
checkConst__anond52d8a670d11::CompoundAssignSubobjectHandler4344 bool checkConst(QualType QT) {
4345 // Assigning to a const object has undefined behavior.
4346 if (QT.isConstQualified()) {
4347 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4348 return false;
4349 }
4350 return true;
4351 }
4352
failed__anond52d8a670d11::CompoundAssignSubobjectHandler4353 bool failed() { return false; }
found__anond52d8a670d11::CompoundAssignSubobjectHandler4354 bool found(APValue &Subobj, QualType SubobjType) {
4355 switch (Subobj.getKind()) {
4356 case APValue::Int:
4357 return found(Subobj.getInt(), SubobjType);
4358 case APValue::Float:
4359 return found(Subobj.getFloat(), SubobjType);
4360 case APValue::ComplexInt:
4361 case APValue::ComplexFloat:
4362 // FIXME: Implement complex compound assignment.
4363 Info.FFDiag(E);
4364 return false;
4365 case APValue::LValue:
4366 return foundPointer(Subobj, SubobjType);
4367 case APValue::Vector:
4368 return foundVector(Subobj, SubobjType);
4369 default:
4370 // FIXME: can this happen?
4371 Info.FFDiag(E);
4372 return false;
4373 }
4374 }
4375
foundVector__anond52d8a670d11::CompoundAssignSubobjectHandler4376 bool foundVector(APValue &Value, QualType SubobjType) {
4377 if (!checkConst(SubobjType))
4378 return false;
4379
4380 if (!SubobjType->isVectorType()) {
4381 Info.FFDiag(E);
4382 return false;
4383 }
4384 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4385 }
4386
found__anond52d8a670d11::CompoundAssignSubobjectHandler4387 bool found(APSInt &Value, QualType SubobjType) {
4388 if (!checkConst(SubobjType))
4389 return false;
4390
4391 if (!SubobjType->isIntegerType()) {
4392 // We don't support compound assignment on integer-cast-to-pointer
4393 // values.
4394 Info.FFDiag(E);
4395 return false;
4396 }
4397
4398 if (RHS.isInt()) {
4399 APSInt LHS =
4400 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4401 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4402 return false;
4403 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4404 return true;
4405 } else if (RHS.isFloat()) {
4406 const FPOptions FPO = E->getFPFeaturesInEffect(
4407 Info.Ctx.getLangOpts());
4408 APFloat FValue(0.0);
4409 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4410 PromotedLHSType, FValue) &&
4411 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4412 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4413 Value);
4414 }
4415
4416 Info.FFDiag(E);
4417 return false;
4418 }
found__anond52d8a670d11::CompoundAssignSubobjectHandler4419 bool found(APFloat &Value, QualType SubobjType) {
4420 return checkConst(SubobjType) &&
4421 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4422 Value) &&
4423 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4424 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4425 }
foundPointer__anond52d8a670d11::CompoundAssignSubobjectHandler4426 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4427 if (!checkConst(SubobjType))
4428 return false;
4429
4430 QualType PointeeType;
4431 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4432 PointeeType = PT->getPointeeType();
4433
4434 if (PointeeType.isNull() || !RHS.isInt() ||
4435 (Opcode != BO_Add && Opcode != BO_Sub)) {
4436 Info.FFDiag(E);
4437 return false;
4438 }
4439
4440 APSInt Offset = RHS.getInt();
4441 if (Opcode == BO_Sub)
4442 negateAsSigned(Offset);
4443
4444 LValue LVal;
4445 LVal.setFrom(Info.Ctx, Subobj);
4446 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4447 return false;
4448 LVal.moveInto(Subobj);
4449 return true;
4450 }
4451 };
4452 } // end anonymous namespace
4453
4454 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4455
4456 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const CompoundAssignOperator * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)4457 static bool handleCompoundAssignment(EvalInfo &Info,
4458 const CompoundAssignOperator *E,
4459 const LValue &LVal, QualType LValType,
4460 QualType PromotedLValType,
4461 BinaryOperatorKind Opcode,
4462 const APValue &RVal) {
4463 if (LVal.Designator.Invalid)
4464 return false;
4465
4466 if (!Info.getLangOpts().CPlusPlus14) {
4467 Info.FFDiag(E);
4468 return false;
4469 }
4470
4471 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4472 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4473 RVal };
4474 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4475 }
4476
4477 namespace {
4478 struct IncDecSubobjectHandler {
4479 EvalInfo &Info;
4480 const UnaryOperator *E;
4481 AccessKinds AccessKind;
4482 APValue *Old;
4483
4484 typedef bool result_type;
4485
checkConst__anond52d8a670e11::IncDecSubobjectHandler4486 bool checkConst(QualType QT) {
4487 // Assigning to a const object has undefined behavior.
4488 if (QT.isConstQualified()) {
4489 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4490 return false;
4491 }
4492 return true;
4493 }
4494
failed__anond52d8a670e11::IncDecSubobjectHandler4495 bool failed() { return false; }
found__anond52d8a670e11::IncDecSubobjectHandler4496 bool found(APValue &Subobj, QualType SubobjType) {
4497 // Stash the old value. Also clear Old, so we don't clobber it later
4498 // if we're post-incrementing a complex.
4499 if (Old) {
4500 *Old = Subobj;
4501 Old = nullptr;
4502 }
4503
4504 switch (Subobj.getKind()) {
4505 case APValue::Int:
4506 return found(Subobj.getInt(), SubobjType);
4507 case APValue::Float:
4508 return found(Subobj.getFloat(), SubobjType);
4509 case APValue::ComplexInt:
4510 return found(Subobj.getComplexIntReal(),
4511 SubobjType->castAs<ComplexType>()->getElementType()
4512 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4513 case APValue::ComplexFloat:
4514 return found(Subobj.getComplexFloatReal(),
4515 SubobjType->castAs<ComplexType>()->getElementType()
4516 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4517 case APValue::LValue:
4518 return foundPointer(Subobj, SubobjType);
4519 default:
4520 // FIXME: can this happen?
4521 Info.FFDiag(E);
4522 return false;
4523 }
4524 }
found__anond52d8a670e11::IncDecSubobjectHandler4525 bool found(APSInt &Value, QualType SubobjType) {
4526 if (!checkConst(SubobjType))
4527 return false;
4528
4529 if (!SubobjType->isIntegerType()) {
4530 // We don't support increment / decrement on integer-cast-to-pointer
4531 // values.
4532 Info.FFDiag(E);
4533 return false;
4534 }
4535
4536 if (Old) *Old = APValue(Value);
4537
4538 // bool arithmetic promotes to int, and the conversion back to bool
4539 // doesn't reduce mod 2^n, so special-case it.
4540 if (SubobjType->isBooleanType()) {
4541 if (AccessKind == AK_Increment)
4542 Value = 1;
4543 else
4544 Value = !Value;
4545 return true;
4546 }
4547
4548 bool WasNegative = Value.isNegative();
4549 if (AccessKind == AK_Increment) {
4550 ++Value;
4551
4552 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4553 APSInt ActualValue(Value, /*IsUnsigned*/true);
4554 return HandleOverflow(Info, E, ActualValue, SubobjType);
4555 }
4556 } else {
4557 --Value;
4558
4559 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4560 unsigned BitWidth = Value.getBitWidth();
4561 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4562 ActualValue.setBit(BitWidth);
4563 return HandleOverflow(Info, E, ActualValue, SubobjType);
4564 }
4565 }
4566 return true;
4567 }
found__anond52d8a670e11::IncDecSubobjectHandler4568 bool found(APFloat &Value, QualType SubobjType) {
4569 if (!checkConst(SubobjType))
4570 return false;
4571
4572 if (Old) *Old = APValue(Value);
4573
4574 APFloat One(Value.getSemantics(), 1);
4575 if (AccessKind == AK_Increment)
4576 Value.add(One, APFloat::rmNearestTiesToEven);
4577 else
4578 Value.subtract(One, APFloat::rmNearestTiesToEven);
4579 return true;
4580 }
foundPointer__anond52d8a670e11::IncDecSubobjectHandler4581 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4582 if (!checkConst(SubobjType))
4583 return false;
4584
4585 QualType PointeeType;
4586 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4587 PointeeType = PT->getPointeeType();
4588 else {
4589 Info.FFDiag(E);
4590 return false;
4591 }
4592
4593 LValue LVal;
4594 LVal.setFrom(Info.Ctx, Subobj);
4595 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4596 AccessKind == AK_Increment ? 1 : -1))
4597 return false;
4598 LVal.moveInto(Subobj);
4599 return true;
4600 }
4601 };
4602 } // end anonymous namespace
4603
4604 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)4605 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4606 QualType LValType, bool IsIncrement, APValue *Old) {
4607 if (LVal.Designator.Invalid)
4608 return false;
4609
4610 if (!Info.getLangOpts().CPlusPlus14) {
4611 Info.FFDiag(E);
4612 return false;
4613 }
4614
4615 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4616 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4617 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4618 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4619 }
4620
4621 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)4622 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4623 LValue &This) {
4624 if (Object->getType()->isPointerType() && Object->isPRValue())
4625 return EvaluatePointer(Object, This, Info);
4626
4627 if (Object->isGLValue())
4628 return EvaluateLValue(Object, This, Info);
4629
4630 if (Object->getType()->isLiteralType(Info.Ctx))
4631 return EvaluateTemporary(Object, This, Info);
4632
4633 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4634 return false;
4635 }
4636
4637 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4638 /// lvalue referring to the result.
4639 ///
4640 /// \param Info - Information about the ongoing evaluation.
4641 /// \param LV - An lvalue referring to the base of the member pointer.
4642 /// \param RHS - The member pointer expression.
4643 /// \param IncludeMember - Specifies whether the member itself is included in
4644 /// the resulting LValue subobject designator. This is not possible when
4645 /// creating a bound member function.
4646 /// \return The field or method declaration to which the member pointer refers,
4647 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)4648 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4649 QualType LVType,
4650 LValue &LV,
4651 const Expr *RHS,
4652 bool IncludeMember = true) {
4653 MemberPtr MemPtr;
4654 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4655 return nullptr;
4656
4657 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4658 // member value, the behavior is undefined.
4659 if (!MemPtr.getDecl()) {
4660 // FIXME: Specific diagnostic.
4661 Info.FFDiag(RHS);
4662 return nullptr;
4663 }
4664
4665 if (MemPtr.isDerivedMember()) {
4666 // This is a member of some derived class. Truncate LV appropriately.
4667 // The end of the derived-to-base path for the base object must match the
4668 // derived-to-base path for the member pointer.
4669 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4670 LV.Designator.Entries.size()) {
4671 Info.FFDiag(RHS);
4672 return nullptr;
4673 }
4674 unsigned PathLengthToMember =
4675 LV.Designator.Entries.size() - MemPtr.Path.size();
4676 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4677 const CXXRecordDecl *LVDecl = getAsBaseClass(
4678 LV.Designator.Entries[PathLengthToMember + I]);
4679 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4680 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4681 Info.FFDiag(RHS);
4682 return nullptr;
4683 }
4684 }
4685
4686 // Truncate the lvalue to the appropriate derived class.
4687 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4688 PathLengthToMember))
4689 return nullptr;
4690 } else if (!MemPtr.Path.empty()) {
4691 // Extend the LValue path with the member pointer's path.
4692 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4693 MemPtr.Path.size() + IncludeMember);
4694
4695 // Walk down to the appropriate base class.
4696 if (const PointerType *PT = LVType->getAs<PointerType>())
4697 LVType = PT->getPointeeType();
4698 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4699 assert(RD && "member pointer access on non-class-type expression");
4700 // The first class in the path is that of the lvalue.
4701 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4702 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4703 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4704 return nullptr;
4705 RD = Base;
4706 }
4707 // Finally cast to the class containing the member.
4708 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4709 MemPtr.getContainingRecord()))
4710 return nullptr;
4711 }
4712
4713 // Add the member. Note that we cannot build bound member functions here.
4714 if (IncludeMember) {
4715 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4716 if (!HandleLValueMember(Info, RHS, LV, FD))
4717 return nullptr;
4718 } else if (const IndirectFieldDecl *IFD =
4719 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4720 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4721 return nullptr;
4722 } else {
4723 llvm_unreachable("can't construct reference to bound member function");
4724 }
4725 }
4726
4727 return MemPtr.getDecl();
4728 }
4729
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)4730 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4731 const BinaryOperator *BO,
4732 LValue &LV,
4733 bool IncludeMember = true) {
4734 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4735
4736 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4737 if (Info.noteFailure()) {
4738 MemberPtr MemPtr;
4739 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4740 }
4741 return nullptr;
4742 }
4743
4744 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4745 BO->getRHS(), IncludeMember);
4746 }
4747
4748 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4749 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)4750 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4751 LValue &Result) {
4752 SubobjectDesignator &D = Result.Designator;
4753 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4754 return false;
4755
4756 QualType TargetQT = E->getType();
4757 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4758 TargetQT = PT->getPointeeType();
4759
4760 // Check this cast lands within the final derived-to-base subobject path.
4761 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4762 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4763 << D.MostDerivedType << TargetQT;
4764 return false;
4765 }
4766
4767 // Check the type of the final cast. We don't need to check the path,
4768 // since a cast can only be formed if the path is unique.
4769 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4770 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4771 const CXXRecordDecl *FinalType;
4772 if (NewEntriesSize == D.MostDerivedPathLength)
4773 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4774 else
4775 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4776 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4777 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4778 << D.MostDerivedType << TargetQT;
4779 return false;
4780 }
4781
4782 // Truncate the lvalue to the appropriate derived class.
4783 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4784 }
4785
4786 /// Get the value to use for a default-initialized object of type T.
4787 /// Return false if it encounters something invalid.
getDefaultInitValue(QualType T,APValue & Result)4788 static bool getDefaultInitValue(QualType T, APValue &Result) {
4789 bool Success = true;
4790 if (auto *RD = T->getAsCXXRecordDecl()) {
4791 if (RD->isInvalidDecl()) {
4792 Result = APValue();
4793 return false;
4794 }
4795 if (RD->isUnion()) {
4796 Result = APValue((const FieldDecl *)nullptr);
4797 return true;
4798 }
4799 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4800 std::distance(RD->field_begin(), RD->field_end()));
4801
4802 unsigned Index = 0;
4803 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4804 End = RD->bases_end();
4805 I != End; ++I, ++Index)
4806 Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4807
4808 for (const auto *I : RD->fields()) {
4809 if (I->isUnnamedBitfield())
4810 continue;
4811 Success &= getDefaultInitValue(I->getType(),
4812 Result.getStructField(I->getFieldIndex()));
4813 }
4814 return Success;
4815 }
4816
4817 if (auto *AT =
4818 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4819 Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4820 if (Result.hasArrayFiller())
4821 Success &=
4822 getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4823
4824 return Success;
4825 }
4826
4827 Result = APValue::IndeterminateValue();
4828 return true;
4829 }
4830
4831 namespace {
4832 enum EvalStmtResult {
4833 /// Evaluation failed.
4834 ESR_Failed,
4835 /// Hit a 'return' statement.
4836 ESR_Returned,
4837 /// Evaluation succeeded.
4838 ESR_Succeeded,
4839 /// Hit a 'continue' statement.
4840 ESR_Continue,
4841 /// Hit a 'break' statement.
4842 ESR_Break,
4843 /// Still scanning for 'case' or 'default' statement.
4844 ESR_CaseNotFound
4845 };
4846 }
4847
EvaluateVarDecl(EvalInfo & Info,const VarDecl * VD)4848 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4849 if (VD->isInvalidDecl())
4850 return false;
4851 // We don't need to evaluate the initializer for a static local.
4852 if (!VD->hasLocalStorage())
4853 return true;
4854
4855 LValue Result;
4856 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4857 ScopeKind::Block, Result);
4858
4859 const Expr *InitE = VD->getInit();
4860 if (!InitE) {
4861 if (VD->getType()->isDependentType())
4862 return Info.noteSideEffect();
4863 return getDefaultInitValue(VD->getType(), Val);
4864 }
4865 if (InitE->isValueDependent())
4866 return false;
4867
4868 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4869 // Wipe out any partially-computed value, to allow tracking that this
4870 // evaluation failed.
4871 Val = APValue();
4872 return false;
4873 }
4874
4875 return true;
4876 }
4877
EvaluateDecl(EvalInfo & Info,const Decl * D)4878 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4879 bool OK = true;
4880
4881 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4882 OK &= EvaluateVarDecl(Info, VD);
4883
4884 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4885 for (auto *BD : DD->bindings())
4886 if (auto *VD = BD->getHoldingVar())
4887 OK &= EvaluateDecl(Info, VD);
4888
4889 return OK;
4890 }
4891
EvaluateDependentExpr(const Expr * E,EvalInfo & Info)4892 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) {
4893 assert(E->isValueDependent());
4894 if (Info.noteSideEffect())
4895 return true;
4896 assert(E->containsErrors() && "valid value-dependent expression should never "
4897 "reach invalid code path.");
4898 return false;
4899 }
4900
4901 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)4902 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4903 const Expr *Cond, bool &Result) {
4904 if (Cond->isValueDependent())
4905 return false;
4906 FullExpressionRAII Scope(Info);
4907 if (CondDecl && !EvaluateDecl(Info, CondDecl))
4908 return false;
4909 if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4910 return false;
4911 return Scope.destroy();
4912 }
4913
4914 namespace {
4915 /// A location where the result (returned value) of evaluating a
4916 /// statement should be stored.
4917 struct StmtResult {
4918 /// The APValue that should be filled in with the returned value.
4919 APValue &Value;
4920 /// The location containing the result, if any (used to support RVO).
4921 const LValue *Slot;
4922 };
4923
4924 struct TempVersionRAII {
4925 CallStackFrame &Frame;
4926
TempVersionRAII__anond52d8a671011::TempVersionRAII4927 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4928 Frame.pushTempVersion();
4929 }
4930
~TempVersionRAII__anond52d8a671011::TempVersionRAII4931 ~TempVersionRAII() {
4932 Frame.popTempVersion();
4933 }
4934 };
4935
4936 }
4937
4938 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4939 const Stmt *S,
4940 const SwitchCase *SC = nullptr);
4941
4942 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)4943 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4944 const Stmt *Body,
4945 const SwitchCase *Case = nullptr) {
4946 BlockScopeRAII Scope(Info);
4947
4948 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4949 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4950 ESR = ESR_Failed;
4951
4952 switch (ESR) {
4953 case ESR_Break:
4954 return ESR_Succeeded;
4955 case ESR_Succeeded:
4956 case ESR_Continue:
4957 return ESR_Continue;
4958 case ESR_Failed:
4959 case ESR_Returned:
4960 case ESR_CaseNotFound:
4961 return ESR;
4962 }
4963 llvm_unreachable("Invalid EvalStmtResult!");
4964 }
4965
4966 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)4967 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4968 const SwitchStmt *SS) {
4969 BlockScopeRAII Scope(Info);
4970
4971 // Evaluate the switch condition.
4972 APSInt Value;
4973 {
4974 if (const Stmt *Init = SS->getInit()) {
4975 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4976 if (ESR != ESR_Succeeded) {
4977 if (ESR != ESR_Failed && !Scope.destroy())
4978 ESR = ESR_Failed;
4979 return ESR;
4980 }
4981 }
4982
4983 FullExpressionRAII CondScope(Info);
4984 if (SS->getConditionVariable() &&
4985 !EvaluateDecl(Info, SS->getConditionVariable()))
4986 return ESR_Failed;
4987 if (SS->getCond()->isValueDependent()) {
4988 if (!EvaluateDependentExpr(SS->getCond(), Info))
4989 return ESR_Failed;
4990 } else {
4991 if (!EvaluateInteger(SS->getCond(), Value, Info))
4992 return ESR_Failed;
4993 }
4994 if (!CondScope.destroy())
4995 return ESR_Failed;
4996 }
4997
4998 // Find the switch case corresponding to the value of the condition.
4999 // FIXME: Cache this lookup.
5000 const SwitchCase *Found = nullptr;
5001 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
5002 SC = SC->getNextSwitchCase()) {
5003 if (isa<DefaultStmt>(SC)) {
5004 Found = SC;
5005 continue;
5006 }
5007
5008 const CaseStmt *CS = cast<CaseStmt>(SC);
5009 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
5010 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
5011 : LHS;
5012 if (LHS <= Value && Value <= RHS) {
5013 Found = SC;
5014 break;
5015 }
5016 }
5017
5018 if (!Found)
5019 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5020
5021 // Search the switch body for the switch case and evaluate it from there.
5022 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
5023 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
5024 return ESR_Failed;
5025
5026 switch (ESR) {
5027 case ESR_Break:
5028 return ESR_Succeeded;
5029 case ESR_Succeeded:
5030 case ESR_Continue:
5031 case ESR_Failed:
5032 case ESR_Returned:
5033 return ESR;
5034 case ESR_CaseNotFound:
5035 // This can only happen if the switch case is nested within a statement
5036 // expression. We have no intention of supporting that.
5037 Info.FFDiag(Found->getBeginLoc(),
5038 diag::note_constexpr_stmt_expr_unsupported);
5039 return ESR_Failed;
5040 }
5041 llvm_unreachable("Invalid EvalStmtResult!");
5042 }
5043
CheckLocalVariableDeclaration(EvalInfo & Info,const VarDecl * VD)5044 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) {
5045 // An expression E is a core constant expression unless the evaluation of E
5046 // would evaluate one of the following: [C++2b] - a control flow that passes
5047 // through a declaration of a variable with static or thread storage duration
5048 // unless that variable is usable in constant expressions.
5049 if (VD->isLocalVarDecl() && VD->isStaticLocal() &&
5050 !VD->isUsableInConstantExpressions(Info.Ctx)) {
5051 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local)
5052 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD;
5053 return false;
5054 }
5055 return true;
5056 }
5057
5058 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)5059 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
5060 const Stmt *S, const SwitchCase *Case) {
5061 if (!Info.nextStep(S))
5062 return ESR_Failed;
5063
5064 // If we're hunting down a 'case' or 'default' label, recurse through
5065 // substatements until we hit the label.
5066 if (Case) {
5067 switch (S->getStmtClass()) {
5068 case Stmt::CompoundStmtClass:
5069 // FIXME: Precompute which substatement of a compound statement we
5070 // would jump to, and go straight there rather than performing a
5071 // linear scan each time.
5072 case Stmt::LabelStmtClass:
5073 case Stmt::AttributedStmtClass:
5074 case Stmt::DoStmtClass:
5075 break;
5076
5077 case Stmt::CaseStmtClass:
5078 case Stmt::DefaultStmtClass:
5079 if (Case == S)
5080 Case = nullptr;
5081 break;
5082
5083 case Stmt::IfStmtClass: {
5084 // FIXME: Precompute which side of an 'if' we would jump to, and go
5085 // straight there rather than scanning both sides.
5086 const IfStmt *IS = cast<IfStmt>(S);
5087
5088 // Wrap the evaluation in a block scope, in case it's a DeclStmt
5089 // preceded by our switch label.
5090 BlockScopeRAII Scope(Info);
5091
5092 // Step into the init statement in case it brings an (uninitialized)
5093 // variable into scope.
5094 if (const Stmt *Init = IS->getInit()) {
5095 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5096 if (ESR != ESR_CaseNotFound) {
5097 assert(ESR != ESR_Succeeded);
5098 return ESR;
5099 }
5100 }
5101
5102 // Condition variable must be initialized if it exists.
5103 // FIXME: We can skip evaluating the body if there's a condition
5104 // variable, as there can't be any case labels within it.
5105 // (The same is true for 'for' statements.)
5106
5107 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5108 if (ESR == ESR_Failed)
5109 return ESR;
5110 if (ESR != ESR_CaseNotFound)
5111 return Scope.destroy() ? ESR : ESR_Failed;
5112 if (!IS->getElse())
5113 return ESR_CaseNotFound;
5114
5115 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5116 if (ESR == ESR_Failed)
5117 return ESR;
5118 if (ESR != ESR_CaseNotFound)
5119 return Scope.destroy() ? ESR : ESR_Failed;
5120 return ESR_CaseNotFound;
5121 }
5122
5123 case Stmt::WhileStmtClass: {
5124 EvalStmtResult ESR =
5125 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5126 if (ESR != ESR_Continue)
5127 return ESR;
5128 break;
5129 }
5130
5131 case Stmt::ForStmtClass: {
5132 const ForStmt *FS = cast<ForStmt>(S);
5133 BlockScopeRAII Scope(Info);
5134
5135 // Step into the init statement in case it brings an (uninitialized)
5136 // variable into scope.
5137 if (const Stmt *Init = FS->getInit()) {
5138 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5139 if (ESR != ESR_CaseNotFound) {
5140 assert(ESR != ESR_Succeeded);
5141 return ESR;
5142 }
5143 }
5144
5145 EvalStmtResult ESR =
5146 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5147 if (ESR != ESR_Continue)
5148 return ESR;
5149 if (const auto *Inc = FS->getInc()) {
5150 if (Inc->isValueDependent()) {
5151 if (!EvaluateDependentExpr(Inc, Info))
5152 return ESR_Failed;
5153 } else {
5154 FullExpressionRAII IncScope(Info);
5155 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5156 return ESR_Failed;
5157 }
5158 }
5159 break;
5160 }
5161
5162 case Stmt::DeclStmtClass: {
5163 // Start the lifetime of any uninitialized variables we encounter. They
5164 // might be used by the selected branch of the switch.
5165 const DeclStmt *DS = cast<DeclStmt>(S);
5166 for (const auto *D : DS->decls()) {
5167 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5168 if (!CheckLocalVariableDeclaration(Info, VD))
5169 return ESR_Failed;
5170 if (VD->hasLocalStorage() && !VD->getInit())
5171 if (!EvaluateVarDecl(Info, VD))
5172 return ESR_Failed;
5173 // FIXME: If the variable has initialization that can't be jumped
5174 // over, bail out of any immediately-surrounding compound-statement
5175 // too. There can't be any case labels here.
5176 }
5177 }
5178 return ESR_CaseNotFound;
5179 }
5180
5181 default:
5182 return ESR_CaseNotFound;
5183 }
5184 }
5185
5186 switch (S->getStmtClass()) {
5187 default:
5188 if (const Expr *E = dyn_cast<Expr>(S)) {
5189 if (E->isValueDependent()) {
5190 if (!EvaluateDependentExpr(E, Info))
5191 return ESR_Failed;
5192 } else {
5193 // Don't bother evaluating beyond an expression-statement which couldn't
5194 // be evaluated.
5195 // FIXME: Do we need the FullExpressionRAII object here?
5196 // VisitExprWithCleanups should create one when necessary.
5197 FullExpressionRAII Scope(Info);
5198 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5199 return ESR_Failed;
5200 }
5201 return ESR_Succeeded;
5202 }
5203
5204 Info.FFDiag(S->getBeginLoc());
5205 return ESR_Failed;
5206
5207 case Stmt::NullStmtClass:
5208 return ESR_Succeeded;
5209
5210 case Stmt::DeclStmtClass: {
5211 const DeclStmt *DS = cast<DeclStmt>(S);
5212 for (const auto *D : DS->decls()) {
5213 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
5214 if (VD && !CheckLocalVariableDeclaration(Info, VD))
5215 return ESR_Failed;
5216 // Each declaration initialization is its own full-expression.
5217 FullExpressionRAII Scope(Info);
5218 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5219 return ESR_Failed;
5220 if (!Scope.destroy())
5221 return ESR_Failed;
5222 }
5223 return ESR_Succeeded;
5224 }
5225
5226 case Stmt::ReturnStmtClass: {
5227 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5228 FullExpressionRAII Scope(Info);
5229 if (RetExpr && RetExpr->isValueDependent()) {
5230 EvaluateDependentExpr(RetExpr, Info);
5231 // We know we returned, but we don't know what the value is.
5232 return ESR_Failed;
5233 }
5234 if (RetExpr &&
5235 !(Result.Slot
5236 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5237 : Evaluate(Result.Value, Info, RetExpr)))
5238 return ESR_Failed;
5239 return Scope.destroy() ? ESR_Returned : ESR_Failed;
5240 }
5241
5242 case Stmt::CompoundStmtClass: {
5243 BlockScopeRAII Scope(Info);
5244
5245 const CompoundStmt *CS = cast<CompoundStmt>(S);
5246 for (const auto *BI : CS->body()) {
5247 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5248 if (ESR == ESR_Succeeded)
5249 Case = nullptr;
5250 else if (ESR != ESR_CaseNotFound) {
5251 if (ESR != ESR_Failed && !Scope.destroy())
5252 return ESR_Failed;
5253 return ESR;
5254 }
5255 }
5256 if (Case)
5257 return ESR_CaseNotFound;
5258 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5259 }
5260
5261 case Stmt::IfStmtClass: {
5262 const IfStmt *IS = cast<IfStmt>(S);
5263
5264 // Evaluate the condition, as either a var decl or as an expression.
5265 BlockScopeRAII Scope(Info);
5266 if (const Stmt *Init = IS->getInit()) {
5267 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5268 if (ESR != ESR_Succeeded) {
5269 if (ESR != ESR_Failed && !Scope.destroy())
5270 return ESR_Failed;
5271 return ESR;
5272 }
5273 }
5274 bool Cond;
5275 if (IS->isConsteval()) {
5276 Cond = IS->isNonNegatedConsteval();
5277 // If we are not in a constant context, if consteval should not evaluate
5278 // to true.
5279 if (!Info.InConstantContext)
5280 Cond = !Cond;
5281 } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(),
5282 Cond))
5283 return ESR_Failed;
5284
5285 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5286 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5287 if (ESR != ESR_Succeeded) {
5288 if (ESR != ESR_Failed && !Scope.destroy())
5289 return ESR_Failed;
5290 return ESR;
5291 }
5292 }
5293 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5294 }
5295
5296 case Stmt::WhileStmtClass: {
5297 const WhileStmt *WS = cast<WhileStmt>(S);
5298 while (true) {
5299 BlockScopeRAII Scope(Info);
5300 bool Continue;
5301 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5302 Continue))
5303 return ESR_Failed;
5304 if (!Continue)
5305 break;
5306
5307 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5308 if (ESR != ESR_Continue) {
5309 if (ESR != ESR_Failed && !Scope.destroy())
5310 return ESR_Failed;
5311 return ESR;
5312 }
5313 if (!Scope.destroy())
5314 return ESR_Failed;
5315 }
5316 return ESR_Succeeded;
5317 }
5318
5319 case Stmt::DoStmtClass: {
5320 const DoStmt *DS = cast<DoStmt>(S);
5321 bool Continue;
5322 do {
5323 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5324 if (ESR != ESR_Continue)
5325 return ESR;
5326 Case = nullptr;
5327
5328 if (DS->getCond()->isValueDependent()) {
5329 EvaluateDependentExpr(DS->getCond(), Info);
5330 // Bailout as we don't know whether to keep going or terminate the loop.
5331 return ESR_Failed;
5332 }
5333 FullExpressionRAII CondScope(Info);
5334 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5335 !CondScope.destroy())
5336 return ESR_Failed;
5337 } while (Continue);
5338 return ESR_Succeeded;
5339 }
5340
5341 case Stmt::ForStmtClass: {
5342 const ForStmt *FS = cast<ForStmt>(S);
5343 BlockScopeRAII ForScope(Info);
5344 if (FS->getInit()) {
5345 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5346 if (ESR != ESR_Succeeded) {
5347 if (ESR != ESR_Failed && !ForScope.destroy())
5348 return ESR_Failed;
5349 return ESR;
5350 }
5351 }
5352 while (true) {
5353 BlockScopeRAII IterScope(Info);
5354 bool Continue = true;
5355 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5356 FS->getCond(), Continue))
5357 return ESR_Failed;
5358 if (!Continue)
5359 break;
5360
5361 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5362 if (ESR != ESR_Continue) {
5363 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5364 return ESR_Failed;
5365 return ESR;
5366 }
5367
5368 if (const auto *Inc = FS->getInc()) {
5369 if (Inc->isValueDependent()) {
5370 if (!EvaluateDependentExpr(Inc, Info))
5371 return ESR_Failed;
5372 } else {
5373 FullExpressionRAII IncScope(Info);
5374 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy())
5375 return ESR_Failed;
5376 }
5377 }
5378
5379 if (!IterScope.destroy())
5380 return ESR_Failed;
5381 }
5382 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5383 }
5384
5385 case Stmt::CXXForRangeStmtClass: {
5386 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5387 BlockScopeRAII Scope(Info);
5388
5389 // Evaluate the init-statement if present.
5390 if (FS->getInit()) {
5391 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5392 if (ESR != ESR_Succeeded) {
5393 if (ESR != ESR_Failed && !Scope.destroy())
5394 return ESR_Failed;
5395 return ESR;
5396 }
5397 }
5398
5399 // Initialize the __range variable.
5400 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5401 if (ESR != ESR_Succeeded) {
5402 if (ESR != ESR_Failed && !Scope.destroy())
5403 return ESR_Failed;
5404 return ESR;
5405 }
5406
5407 // In error-recovery cases it's possible to get here even if we failed to
5408 // synthesize the __begin and __end variables.
5409 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond())
5410 return ESR_Failed;
5411
5412 // Create the __begin and __end iterators.
5413 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5414 if (ESR != ESR_Succeeded) {
5415 if (ESR != ESR_Failed && !Scope.destroy())
5416 return ESR_Failed;
5417 return ESR;
5418 }
5419 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5420 if (ESR != ESR_Succeeded) {
5421 if (ESR != ESR_Failed && !Scope.destroy())
5422 return ESR_Failed;
5423 return ESR;
5424 }
5425
5426 while (true) {
5427 // Condition: __begin != __end.
5428 {
5429 if (FS->getCond()->isValueDependent()) {
5430 EvaluateDependentExpr(FS->getCond(), Info);
5431 // We don't know whether to keep going or terminate the loop.
5432 return ESR_Failed;
5433 }
5434 bool Continue = true;
5435 FullExpressionRAII CondExpr(Info);
5436 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5437 return ESR_Failed;
5438 if (!Continue)
5439 break;
5440 }
5441
5442 // User's variable declaration, initialized by *__begin.
5443 BlockScopeRAII InnerScope(Info);
5444 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5445 if (ESR != ESR_Succeeded) {
5446 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5447 return ESR_Failed;
5448 return ESR;
5449 }
5450
5451 // Loop body.
5452 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5453 if (ESR != ESR_Continue) {
5454 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5455 return ESR_Failed;
5456 return ESR;
5457 }
5458 if (FS->getInc()->isValueDependent()) {
5459 if (!EvaluateDependentExpr(FS->getInc(), Info))
5460 return ESR_Failed;
5461 } else {
5462 // Increment: ++__begin
5463 if (!EvaluateIgnoredValue(Info, FS->getInc()))
5464 return ESR_Failed;
5465 }
5466
5467 if (!InnerScope.destroy())
5468 return ESR_Failed;
5469 }
5470
5471 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5472 }
5473
5474 case Stmt::SwitchStmtClass:
5475 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5476
5477 case Stmt::ContinueStmtClass:
5478 return ESR_Continue;
5479
5480 case Stmt::BreakStmtClass:
5481 return ESR_Break;
5482
5483 case Stmt::LabelStmtClass:
5484 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5485
5486 case Stmt::AttributedStmtClass:
5487 // As a general principle, C++11 attributes can be ignored without
5488 // any semantic impact.
5489 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5490 Case);
5491
5492 case Stmt::CaseStmtClass:
5493 case Stmt::DefaultStmtClass:
5494 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5495 case Stmt::CXXTryStmtClass:
5496 // Evaluate try blocks by evaluating all sub statements.
5497 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5498 }
5499 }
5500
5501 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5502 /// default constructor. If so, we'll fold it whether or not it's marked as
5503 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5504 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)5505 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5506 const CXXConstructorDecl *CD,
5507 bool IsValueInitialization) {
5508 if (!CD->isTrivial() || !CD->isDefaultConstructor())
5509 return false;
5510
5511 // Value-initialization does not call a trivial default constructor, so such a
5512 // call is a core constant expression whether or not the constructor is
5513 // constexpr.
5514 if (!CD->isConstexpr() && !IsValueInitialization) {
5515 if (Info.getLangOpts().CPlusPlus11) {
5516 // FIXME: If DiagDecl is an implicitly-declared special member function,
5517 // we should be much more explicit about why it's not constexpr.
5518 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5519 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5520 Info.Note(CD->getLocation(), diag::note_declared_at);
5521 } else {
5522 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5523 }
5524 }
5525 return true;
5526 }
5527
5528 /// CheckConstexprFunction - Check that a function can be called in a constant
5529 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)5530 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5531 const FunctionDecl *Declaration,
5532 const FunctionDecl *Definition,
5533 const Stmt *Body) {
5534 // Potential constant expressions can contain calls to declared, but not yet
5535 // defined, constexpr functions.
5536 if (Info.checkingPotentialConstantExpression() && !Definition &&
5537 Declaration->isConstexpr())
5538 return false;
5539
5540 // Bail out if the function declaration itself is invalid. We will
5541 // have produced a relevant diagnostic while parsing it, so just
5542 // note the problematic sub-expression.
5543 if (Declaration->isInvalidDecl()) {
5544 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5545 return false;
5546 }
5547
5548 // DR1872: An instantiated virtual constexpr function can't be called in a
5549 // constant expression (prior to C++20). We can still constant-fold such a
5550 // call.
5551 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5552 cast<CXXMethodDecl>(Declaration)->isVirtual())
5553 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5554
5555 if (Definition && Definition->isInvalidDecl()) {
5556 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5557 return false;
5558 }
5559
5560 // Can we evaluate this function call?
5561 if (Definition && Definition->isConstexpr() && Body)
5562 return true;
5563
5564 if (Info.getLangOpts().CPlusPlus11) {
5565 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5566
5567 // If this function is not constexpr because it is an inherited
5568 // non-constexpr constructor, diagnose that directly.
5569 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5570 if (CD && CD->isInheritingConstructor()) {
5571 auto *Inherited = CD->getInheritedConstructor().getConstructor();
5572 if (!Inherited->isConstexpr())
5573 DiagDecl = CD = Inherited;
5574 }
5575
5576 // FIXME: If DiagDecl is an implicitly-declared special member function
5577 // or an inheriting constructor, we should be much more explicit about why
5578 // it's not constexpr.
5579 if (CD && CD->isInheritingConstructor())
5580 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5581 << CD->getInheritedConstructor().getConstructor()->getParent();
5582 else
5583 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5584 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5585 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5586 } else {
5587 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5588 }
5589 return false;
5590 }
5591
5592 namespace {
5593 struct CheckDynamicTypeHandler {
5594 AccessKinds AccessKind;
5595 typedef bool result_type;
failed__anond52d8a671111::CheckDynamicTypeHandler5596 bool failed() { return false; }
found__anond52d8a671111::CheckDynamicTypeHandler5597 bool found(APValue &Subobj, QualType SubobjType) { return true; }
found__anond52d8a671111::CheckDynamicTypeHandler5598 bool found(APSInt &Value, QualType SubobjType) { return true; }
found__anond52d8a671111::CheckDynamicTypeHandler5599 bool found(APFloat &Value, QualType SubobjType) { return true; }
5600 };
5601 } // end anonymous namespace
5602
5603 /// Check that we can access the notional vptr of an object / determine its
5604 /// dynamic type.
checkDynamicType(EvalInfo & Info,const Expr * E,const LValue & This,AccessKinds AK,bool Polymorphic)5605 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5606 AccessKinds AK, bool Polymorphic) {
5607 if (This.Designator.Invalid)
5608 return false;
5609
5610 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5611
5612 if (!Obj)
5613 return false;
5614
5615 if (!Obj.Value) {
5616 // The object is not usable in constant expressions, so we can't inspect
5617 // its value to see if it's in-lifetime or what the active union members
5618 // are. We can still check for a one-past-the-end lvalue.
5619 if (This.Designator.isOnePastTheEnd() ||
5620 This.Designator.isMostDerivedAnUnsizedArray()) {
5621 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5622 ? diag::note_constexpr_access_past_end
5623 : diag::note_constexpr_access_unsized_array)
5624 << AK;
5625 return false;
5626 } else if (Polymorphic) {
5627 // Conservatively refuse to perform a polymorphic operation if we would
5628 // not be able to read a notional 'vptr' value.
5629 APValue Val;
5630 This.moveInto(Val);
5631 QualType StarThisType =
5632 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5633 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5634 << AK << Val.getAsString(Info.Ctx, StarThisType);
5635 return false;
5636 }
5637 return true;
5638 }
5639
5640 CheckDynamicTypeHandler Handler{AK};
5641 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5642 }
5643
5644 /// Check that the pointee of the 'this' pointer in a member function call is
5645 /// either within its lifetime or in its period of construction or destruction.
5646 static bool
checkNonVirtualMemberCallThisPointer(EvalInfo & Info,const Expr * E,const LValue & This,const CXXMethodDecl * NamedMember)5647 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5648 const LValue &This,
5649 const CXXMethodDecl *NamedMember) {
5650 return checkDynamicType(
5651 Info, E, This,
5652 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5653 }
5654
5655 struct DynamicType {
5656 /// The dynamic class type of the object.
5657 const CXXRecordDecl *Type;
5658 /// The corresponding path length in the lvalue.
5659 unsigned PathLength;
5660 };
5661
getBaseClassType(SubobjectDesignator & Designator,unsigned PathLength)5662 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5663 unsigned PathLength) {
5664 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5665 Designator.Entries.size() && "invalid path length");
5666 return (PathLength == Designator.MostDerivedPathLength)
5667 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5668 : getAsBaseClass(Designator.Entries[PathLength - 1]);
5669 }
5670
5671 /// Determine the dynamic type of an object.
ComputeDynamicType(EvalInfo & Info,const Expr * E,LValue & This,AccessKinds AK)5672 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info,
5673 const Expr *E,
5674 LValue &This,
5675 AccessKinds AK) {
5676 // If we don't have an lvalue denoting an object of class type, there is no
5677 // meaningful dynamic type. (We consider objects of non-class type to have no
5678 // dynamic type.)
5679 if (!checkDynamicType(Info, E, This, AK, true))
5680 return std::nullopt;
5681
5682 // Refuse to compute a dynamic type in the presence of virtual bases. This
5683 // shouldn't happen other than in constant-folding situations, since literal
5684 // types can't have virtual bases.
5685 //
5686 // Note that consumers of DynamicType assume that the type has no virtual
5687 // bases, and will need modifications if this restriction is relaxed.
5688 const CXXRecordDecl *Class =
5689 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5690 if (!Class || Class->getNumVBases()) {
5691 Info.FFDiag(E);
5692 return std::nullopt;
5693 }
5694
5695 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5696 // binary search here instead. But the overwhelmingly common case is that
5697 // we're not in the middle of a constructor, so it probably doesn't matter
5698 // in practice.
5699 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5700 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5701 PathLength <= Path.size(); ++PathLength) {
5702 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5703 Path.slice(0, PathLength))) {
5704 case ConstructionPhase::Bases:
5705 case ConstructionPhase::DestroyingBases:
5706 // We're constructing or destroying a base class. This is not the dynamic
5707 // type.
5708 break;
5709
5710 case ConstructionPhase::None:
5711 case ConstructionPhase::AfterBases:
5712 case ConstructionPhase::AfterFields:
5713 case ConstructionPhase::Destroying:
5714 // We've finished constructing the base classes and not yet started
5715 // destroying them again, so this is the dynamic type.
5716 return DynamicType{getBaseClassType(This.Designator, PathLength),
5717 PathLength};
5718 }
5719 }
5720
5721 // CWG issue 1517: we're constructing a base class of the object described by
5722 // 'This', so that object has not yet begun its period of construction and
5723 // any polymorphic operation on it results in undefined behavior.
5724 Info.FFDiag(E);
5725 return std::nullopt;
5726 }
5727
5728 /// Perform virtual dispatch.
HandleVirtualDispatch(EvalInfo & Info,const Expr * E,LValue & This,const CXXMethodDecl * Found,llvm::SmallVectorImpl<QualType> & CovariantAdjustmentPath)5729 static const CXXMethodDecl *HandleVirtualDispatch(
5730 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5731 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5732 std::optional<DynamicType> DynType = ComputeDynamicType(
5733 Info, E, This,
5734 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5735 if (!DynType)
5736 return nullptr;
5737
5738 // Find the final overrider. It must be declared in one of the classes on the
5739 // path from the dynamic type to the static type.
5740 // FIXME: If we ever allow literal types to have virtual base classes, that
5741 // won't be true.
5742 const CXXMethodDecl *Callee = Found;
5743 unsigned PathLength = DynType->PathLength;
5744 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5745 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5746 const CXXMethodDecl *Overrider =
5747 Found->getCorrespondingMethodDeclaredInClass(Class, false);
5748 if (Overrider) {
5749 Callee = Overrider;
5750 break;
5751 }
5752 }
5753
5754 // C++2a [class.abstract]p6:
5755 // the effect of making a virtual call to a pure virtual function [...] is
5756 // undefined
5757 if (Callee->isPure()) {
5758 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5759 Info.Note(Callee->getLocation(), diag::note_declared_at);
5760 return nullptr;
5761 }
5762
5763 // If necessary, walk the rest of the path to determine the sequence of
5764 // covariant adjustment steps to apply.
5765 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5766 Found->getReturnType())) {
5767 CovariantAdjustmentPath.push_back(Callee->getReturnType());
5768 for (unsigned CovariantPathLength = PathLength + 1;
5769 CovariantPathLength != This.Designator.Entries.size();
5770 ++CovariantPathLength) {
5771 const CXXRecordDecl *NextClass =
5772 getBaseClassType(This.Designator, CovariantPathLength);
5773 const CXXMethodDecl *Next =
5774 Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5775 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5776 Next->getReturnType(), CovariantAdjustmentPath.back()))
5777 CovariantAdjustmentPath.push_back(Next->getReturnType());
5778 }
5779 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5780 CovariantAdjustmentPath.back()))
5781 CovariantAdjustmentPath.push_back(Found->getReturnType());
5782 }
5783
5784 // Perform 'this' adjustment.
5785 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5786 return nullptr;
5787
5788 return Callee;
5789 }
5790
5791 /// Perform the adjustment from a value returned by a virtual function to
5792 /// a value of the statically expected type, which may be a pointer or
5793 /// reference to a base class of the returned type.
HandleCovariantReturnAdjustment(EvalInfo & Info,const Expr * E,APValue & Result,ArrayRef<QualType> Path)5794 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5795 APValue &Result,
5796 ArrayRef<QualType> Path) {
5797 assert(Result.isLValue() &&
5798 "unexpected kind of APValue for covariant return");
5799 if (Result.isNullPointer())
5800 return true;
5801
5802 LValue LVal;
5803 LVal.setFrom(Info.Ctx, Result);
5804
5805 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5806 for (unsigned I = 1; I != Path.size(); ++I) {
5807 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5808 assert(OldClass && NewClass && "unexpected kind of covariant return");
5809 if (OldClass != NewClass &&
5810 !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5811 return false;
5812 OldClass = NewClass;
5813 }
5814
5815 LVal.moveInto(Result);
5816 return true;
5817 }
5818
5819 /// Determine whether \p Base, which is known to be a direct base class of
5820 /// \p Derived, is a public base class.
isBaseClassPublic(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)5821 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5822 const CXXRecordDecl *Base) {
5823 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5824 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5825 if (BaseClass && declaresSameEntity(BaseClass, Base))
5826 return BaseSpec.getAccessSpecifier() == AS_public;
5827 }
5828 llvm_unreachable("Base is not a direct base of Derived");
5829 }
5830
5831 /// Apply the given dynamic cast operation on the provided lvalue.
5832 ///
5833 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5834 /// to find a suitable target subobject.
HandleDynamicCast(EvalInfo & Info,const ExplicitCastExpr * E,LValue & Ptr)5835 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5836 LValue &Ptr) {
5837 // We can't do anything with a non-symbolic pointer value.
5838 SubobjectDesignator &D = Ptr.Designator;
5839 if (D.Invalid)
5840 return false;
5841
5842 // C++ [expr.dynamic.cast]p6:
5843 // If v is a null pointer value, the result is a null pointer value.
5844 if (Ptr.isNullPointer() && !E->isGLValue())
5845 return true;
5846
5847 // For all the other cases, we need the pointer to point to an object within
5848 // its lifetime / period of construction / destruction, and we need to know
5849 // its dynamic type.
5850 std::optional<DynamicType> DynType =
5851 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5852 if (!DynType)
5853 return false;
5854
5855 // C++ [expr.dynamic.cast]p7:
5856 // If T is "pointer to cv void", then the result is a pointer to the most
5857 // derived object
5858 if (E->getType()->isVoidPointerType())
5859 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5860
5861 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5862 assert(C && "dynamic_cast target is not void pointer nor class");
5863 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5864
5865 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5866 // C++ [expr.dynamic.cast]p9:
5867 if (!E->isGLValue()) {
5868 // The value of a failed cast to pointer type is the null pointer value
5869 // of the required result type.
5870 Ptr.setNull(Info.Ctx, E->getType());
5871 return true;
5872 }
5873
5874 // A failed cast to reference type throws [...] std::bad_cast.
5875 unsigned DiagKind;
5876 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5877 DynType->Type->isDerivedFrom(C)))
5878 DiagKind = 0;
5879 else if (!Paths || Paths->begin() == Paths->end())
5880 DiagKind = 1;
5881 else if (Paths->isAmbiguous(CQT))
5882 DiagKind = 2;
5883 else {
5884 assert(Paths->front().Access != AS_public && "why did the cast fail?");
5885 DiagKind = 3;
5886 }
5887 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5888 << DiagKind << Ptr.Designator.getType(Info.Ctx)
5889 << Info.Ctx.getRecordType(DynType->Type)
5890 << E->getType().getUnqualifiedType();
5891 return false;
5892 };
5893
5894 // Runtime check, phase 1:
5895 // Walk from the base subobject towards the derived object looking for the
5896 // target type.
5897 for (int PathLength = Ptr.Designator.Entries.size();
5898 PathLength >= (int)DynType->PathLength; --PathLength) {
5899 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5900 if (declaresSameEntity(Class, C))
5901 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5902 // We can only walk across public inheritance edges.
5903 if (PathLength > (int)DynType->PathLength &&
5904 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5905 Class))
5906 return RuntimeCheckFailed(nullptr);
5907 }
5908
5909 // Runtime check, phase 2:
5910 // Search the dynamic type for an unambiguous public base of type C.
5911 CXXBasePaths Paths(/*FindAmbiguities=*/true,
5912 /*RecordPaths=*/true, /*DetectVirtual=*/false);
5913 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5914 Paths.front().Access == AS_public) {
5915 // Downcast to the dynamic type...
5916 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5917 return false;
5918 // ... then upcast to the chosen base class subobject.
5919 for (CXXBasePathElement &Elem : Paths.front())
5920 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5921 return false;
5922 return true;
5923 }
5924
5925 // Otherwise, the runtime check fails.
5926 return RuntimeCheckFailed(&Paths);
5927 }
5928
5929 namespace {
5930 struct StartLifetimeOfUnionMemberHandler {
5931 EvalInfo &Info;
5932 const Expr *LHSExpr;
5933 const FieldDecl *Field;
5934 bool DuringInit;
5935 bool Failed = false;
5936 static const AccessKinds AccessKind = AK_Assign;
5937
5938 typedef bool result_type;
failed__anond52d8a671311::StartLifetimeOfUnionMemberHandler5939 bool failed() { return Failed; }
found__anond52d8a671311::StartLifetimeOfUnionMemberHandler5940 bool found(APValue &Subobj, QualType SubobjType) {
5941 // We are supposed to perform no initialization but begin the lifetime of
5942 // the object. We interpret that as meaning to do what default
5943 // initialization of the object would do if all constructors involved were
5944 // trivial:
5945 // * All base, non-variant member, and array element subobjects' lifetimes
5946 // begin
5947 // * No variant members' lifetimes begin
5948 // * All scalar subobjects whose lifetimes begin have indeterminate values
5949 assert(SubobjType->isUnionType());
5950 if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5951 // This union member is already active. If it's also in-lifetime, there's
5952 // nothing to do.
5953 if (Subobj.getUnionValue().hasValue())
5954 return true;
5955 } else if (DuringInit) {
5956 // We're currently in the process of initializing a different union
5957 // member. If we carried on, that initialization would attempt to
5958 // store to an inactive union member, resulting in undefined behavior.
5959 Info.FFDiag(LHSExpr,
5960 diag::note_constexpr_union_member_change_during_init);
5961 return false;
5962 }
5963 APValue Result;
5964 Failed = !getDefaultInitValue(Field->getType(), Result);
5965 Subobj.setUnion(Field, Result);
5966 return true;
5967 }
found__anond52d8a671311::StartLifetimeOfUnionMemberHandler5968 bool found(APSInt &Value, QualType SubobjType) {
5969 llvm_unreachable("wrong value kind for union object");
5970 }
found__anond52d8a671311::StartLifetimeOfUnionMemberHandler5971 bool found(APFloat &Value, QualType SubobjType) {
5972 llvm_unreachable("wrong value kind for union object");
5973 }
5974 };
5975 } // end anonymous namespace
5976
5977 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5978
5979 /// Handle a builtin simple-assignment or a call to a trivial assignment
5980 /// operator whose left-hand side might involve a union member access. If it
5981 /// does, implicitly start the lifetime of any accessed union elements per
5982 /// C++20 [class.union]5.
HandleUnionActiveMemberChange(EvalInfo & Info,const Expr * LHSExpr,const LValue & LHS)5983 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5984 const LValue &LHS) {
5985 if (LHS.InvalidBase || LHS.Designator.Invalid)
5986 return false;
5987
5988 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5989 // C++ [class.union]p5:
5990 // define the set S(E) of subexpressions of E as follows:
5991 unsigned PathLength = LHS.Designator.Entries.size();
5992 for (const Expr *E = LHSExpr; E != nullptr;) {
5993 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
5994 if (auto *ME = dyn_cast<MemberExpr>(E)) {
5995 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5996 // Note that we can't implicitly start the lifetime of a reference,
5997 // so we don't need to proceed any further if we reach one.
5998 if (!FD || FD->getType()->isReferenceType())
5999 break;
6000
6001 // ... and also contains A.B if B names a union member ...
6002 if (FD->getParent()->isUnion()) {
6003 // ... of a non-class, non-array type, or of a class type with a
6004 // trivial default constructor that is not deleted, or an array of
6005 // such types.
6006 auto *RD =
6007 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6008 if (!RD || RD->hasTrivialDefaultConstructor())
6009 UnionPathLengths.push_back({PathLength - 1, FD});
6010 }
6011
6012 E = ME->getBase();
6013 --PathLength;
6014 assert(declaresSameEntity(FD,
6015 LHS.Designator.Entries[PathLength]
6016 .getAsBaseOrMember().getPointer()));
6017
6018 // -- If E is of the form A[B] and is interpreted as a built-in array
6019 // subscripting operator, S(E) is [S(the array operand, if any)].
6020 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
6021 // Step over an ArrayToPointerDecay implicit cast.
6022 auto *Base = ASE->getBase()->IgnoreImplicit();
6023 if (!Base->getType()->isArrayType())
6024 break;
6025
6026 E = Base;
6027 --PathLength;
6028
6029 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6030 // Step over a derived-to-base conversion.
6031 E = ICE->getSubExpr();
6032 if (ICE->getCastKind() == CK_NoOp)
6033 continue;
6034 if (ICE->getCastKind() != CK_DerivedToBase &&
6035 ICE->getCastKind() != CK_UncheckedDerivedToBase)
6036 break;
6037 // Walk path backwards as we walk up from the base to the derived class.
6038 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
6039 --PathLength;
6040 (void)Elt;
6041 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
6042 LHS.Designator.Entries[PathLength]
6043 .getAsBaseOrMember().getPointer()));
6044 }
6045
6046 // -- Otherwise, S(E) is empty.
6047 } else {
6048 break;
6049 }
6050 }
6051
6052 // Common case: no unions' lifetimes are started.
6053 if (UnionPathLengths.empty())
6054 return true;
6055
6056 // if modification of X [would access an inactive union member], an object
6057 // of the type of X is implicitly created
6058 CompleteObject Obj =
6059 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
6060 if (!Obj)
6061 return false;
6062 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
6063 llvm::reverse(UnionPathLengths)) {
6064 // Form a designator for the union object.
6065 SubobjectDesignator D = LHS.Designator;
6066 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
6067
6068 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
6069 ConstructionPhase::AfterBases;
6070 StartLifetimeOfUnionMemberHandler StartLifetime{
6071 Info, LHSExpr, LengthAndField.second, DuringInit};
6072 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
6073 return false;
6074 }
6075
6076 return true;
6077 }
6078
EvaluateCallArg(const ParmVarDecl * PVD,const Expr * Arg,CallRef Call,EvalInfo & Info,bool NonNull=false)6079 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
6080 CallRef Call, EvalInfo &Info,
6081 bool NonNull = false) {
6082 LValue LV;
6083 // Create the parameter slot and register its destruction. For a vararg
6084 // argument, create a temporary.
6085 // FIXME: For calling conventions that destroy parameters in the callee,
6086 // should we consider performing destruction when the function returns
6087 // instead?
6088 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
6089 : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
6090 ScopeKind::Call, LV);
6091 if (!EvaluateInPlace(V, Info, LV, Arg))
6092 return false;
6093
6094 // Passing a null pointer to an __attribute__((nonnull)) parameter results in
6095 // undefined behavior, so is non-constant.
6096 if (NonNull && V.isLValue() && V.isNullPointer()) {
6097 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
6098 return false;
6099 }
6100
6101 return true;
6102 }
6103
6104 /// Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,CallRef Call,EvalInfo & Info,const FunctionDecl * Callee,bool RightToLeft=false)6105 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
6106 EvalInfo &Info, const FunctionDecl *Callee,
6107 bool RightToLeft = false) {
6108 bool Success = true;
6109 llvm::SmallBitVector ForbiddenNullArgs;
6110 if (Callee->hasAttr<NonNullAttr>()) {
6111 ForbiddenNullArgs.resize(Args.size());
6112 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
6113 if (!Attr->args_size()) {
6114 ForbiddenNullArgs.set();
6115 break;
6116 } else
6117 for (auto Idx : Attr->args()) {
6118 unsigned ASTIdx = Idx.getASTIndex();
6119 if (ASTIdx >= Args.size())
6120 continue;
6121 ForbiddenNullArgs[ASTIdx] = true;
6122 }
6123 }
6124 }
6125 for (unsigned I = 0; I < Args.size(); I++) {
6126 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
6127 const ParmVarDecl *PVD =
6128 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
6129 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
6130 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
6131 // If we're checking for a potential constant expression, evaluate all
6132 // initializers even if some of them fail.
6133 if (!Info.noteFailure())
6134 return false;
6135 Success = false;
6136 }
6137 }
6138 return Success;
6139 }
6140
6141 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6142 /// constructor or assignment operator.
handleTrivialCopy(EvalInfo & Info,const ParmVarDecl * Param,const Expr * E,APValue & Result,bool CopyObjectRepresentation)6143 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6144 const Expr *E, APValue &Result,
6145 bool CopyObjectRepresentation) {
6146 // Find the reference argument.
6147 CallStackFrame *Frame = Info.CurrentCall;
6148 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6149 if (!RefValue) {
6150 Info.FFDiag(E);
6151 return false;
6152 }
6153
6154 // Copy out the contents of the RHS object.
6155 LValue RefLValue;
6156 RefLValue.setFrom(Info.Ctx, *RefValue);
6157 return handleLValueToRValueConversion(
6158 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6159 CopyObjectRepresentation);
6160 }
6161
6162 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,CallRef Call,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)6163 static bool HandleFunctionCall(SourceLocation CallLoc,
6164 const FunctionDecl *Callee, const LValue *This,
6165 ArrayRef<const Expr *> Args, CallRef Call,
6166 const Stmt *Body, EvalInfo &Info,
6167 APValue &Result, const LValue *ResultSlot) {
6168 if (!Info.CheckCallLimit(CallLoc))
6169 return false;
6170
6171 CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6172
6173 // For a trivial copy or move assignment, perform an APValue copy. This is
6174 // essential for unions, where the operations performed by the assignment
6175 // operator cannot be represented as statements.
6176 //
6177 // Skip this for non-union classes with no fields; in that case, the defaulted
6178 // copy/move does not actually read the object.
6179 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6180 if (MD && MD->isDefaulted() &&
6181 (MD->getParent()->isUnion() ||
6182 (MD->isTrivial() &&
6183 isReadByLvalueToRvalueConversion(MD->getParent())))) {
6184 assert(This &&
6185 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6186 APValue RHSValue;
6187 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6188 MD->getParent()->isUnion()))
6189 return false;
6190 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6191 RHSValue))
6192 return false;
6193 This->moveInto(Result);
6194 return true;
6195 } else if (MD && isLambdaCallOperator(MD)) {
6196 // We're in a lambda; determine the lambda capture field maps unless we're
6197 // just constexpr checking a lambda's call operator. constexpr checking is
6198 // done before the captures have been added to the closure object (unless
6199 // we're inferring constexpr-ness), so we don't have access to them in this
6200 // case. But since we don't need the captures to constexpr check, we can
6201 // just ignore them.
6202 if (!Info.checkingPotentialConstantExpression())
6203 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6204 Frame.LambdaThisCaptureField);
6205 }
6206
6207 StmtResult Ret = {Result, ResultSlot};
6208 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6209 if (ESR == ESR_Succeeded) {
6210 if (Callee->getReturnType()->isVoidType())
6211 return true;
6212 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6213 }
6214 return ESR == ESR_Returned;
6215 }
6216
6217 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,CallRef Call,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6218 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6219 CallRef Call,
6220 const CXXConstructorDecl *Definition,
6221 EvalInfo &Info, APValue &Result) {
6222 SourceLocation CallLoc = E->getExprLoc();
6223 if (!Info.CheckCallLimit(CallLoc))
6224 return false;
6225
6226 const CXXRecordDecl *RD = Definition->getParent();
6227 if (RD->getNumVBases()) {
6228 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6229 return false;
6230 }
6231
6232 EvalInfo::EvaluatingConstructorRAII EvalObj(
6233 Info,
6234 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6235 RD->getNumBases());
6236 CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6237
6238 // FIXME: Creating an APValue just to hold a nonexistent return value is
6239 // wasteful.
6240 APValue RetVal;
6241 StmtResult Ret = {RetVal, nullptr};
6242
6243 // If it's a delegating constructor, delegate.
6244 if (Definition->isDelegatingConstructor()) {
6245 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6246 if ((*I)->getInit()->isValueDependent()) {
6247 if (!EvaluateDependentExpr((*I)->getInit(), Info))
6248 return false;
6249 } else {
6250 FullExpressionRAII InitScope(Info);
6251 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6252 !InitScope.destroy())
6253 return false;
6254 }
6255 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6256 }
6257
6258 // For a trivial copy or move constructor, perform an APValue copy. This is
6259 // essential for unions (or classes with anonymous union members), where the
6260 // operations performed by the constructor cannot be represented by
6261 // ctor-initializers.
6262 //
6263 // Skip this for empty non-union classes; we should not perform an
6264 // lvalue-to-rvalue conversion on them because their copy constructor does not
6265 // actually read them.
6266 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6267 (Definition->getParent()->isUnion() ||
6268 (Definition->isTrivial() &&
6269 isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6270 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6271 Definition->getParent()->isUnion());
6272 }
6273
6274 // Reserve space for the struct members.
6275 if (!Result.hasValue()) {
6276 if (!RD->isUnion())
6277 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6278 std::distance(RD->field_begin(), RD->field_end()));
6279 else
6280 // A union starts with no active member.
6281 Result = APValue((const FieldDecl*)nullptr);
6282 }
6283
6284 if (RD->isInvalidDecl()) return false;
6285 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6286
6287 // A scope for temporaries lifetime-extended by reference members.
6288 BlockScopeRAII LifetimeExtendedScope(Info);
6289
6290 bool Success = true;
6291 unsigned BasesSeen = 0;
6292 #ifndef NDEBUG
6293 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6294 #endif
6295 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6296 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6297 // We might be initializing the same field again if this is an indirect
6298 // field initialization.
6299 if (FieldIt == RD->field_end() ||
6300 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6301 assert(Indirect && "fields out of order?");
6302 return;
6303 }
6304
6305 // Default-initialize any fields with no explicit initializer.
6306 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6307 assert(FieldIt != RD->field_end() && "missing field?");
6308 if (!FieldIt->isUnnamedBitfield())
6309 Success &= getDefaultInitValue(
6310 FieldIt->getType(),
6311 Result.getStructField(FieldIt->getFieldIndex()));
6312 }
6313 ++FieldIt;
6314 };
6315 for (const auto *I : Definition->inits()) {
6316 LValue Subobject = This;
6317 LValue SubobjectParent = This;
6318 APValue *Value = &Result;
6319
6320 // Determine the subobject to initialize.
6321 FieldDecl *FD = nullptr;
6322 if (I->isBaseInitializer()) {
6323 QualType BaseType(I->getBaseClass(), 0);
6324 #ifndef NDEBUG
6325 // Non-virtual base classes are initialized in the order in the class
6326 // definition. We have already checked for virtual base classes.
6327 assert(!BaseIt->isVirtual() && "virtual base for literal type");
6328 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6329 "base class initializers not in expected order");
6330 ++BaseIt;
6331 #endif
6332 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6333 BaseType->getAsCXXRecordDecl(), &Layout))
6334 return false;
6335 Value = &Result.getStructBase(BasesSeen++);
6336 } else if ((FD = I->getMember())) {
6337 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6338 return false;
6339 if (RD->isUnion()) {
6340 Result = APValue(FD);
6341 Value = &Result.getUnionValue();
6342 } else {
6343 SkipToField(FD, false);
6344 Value = &Result.getStructField(FD->getFieldIndex());
6345 }
6346 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6347 // Walk the indirect field decl's chain to find the object to initialize,
6348 // and make sure we've initialized every step along it.
6349 auto IndirectFieldChain = IFD->chain();
6350 for (auto *C : IndirectFieldChain) {
6351 FD = cast<FieldDecl>(C);
6352 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6353 // Switch the union field if it differs. This happens if we had
6354 // preceding zero-initialization, and we're now initializing a union
6355 // subobject other than the first.
6356 // FIXME: In this case, the values of the other subobjects are
6357 // specified, since zero-initialization sets all padding bits to zero.
6358 if (!Value->hasValue() ||
6359 (Value->isUnion() && Value->getUnionField() != FD)) {
6360 if (CD->isUnion())
6361 *Value = APValue(FD);
6362 else
6363 // FIXME: This immediately starts the lifetime of all members of
6364 // an anonymous struct. It would be preferable to strictly start
6365 // member lifetime in initialization order.
6366 Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6367 }
6368 // Store Subobject as its parent before updating it for the last element
6369 // in the chain.
6370 if (C == IndirectFieldChain.back())
6371 SubobjectParent = Subobject;
6372 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6373 return false;
6374 if (CD->isUnion())
6375 Value = &Value->getUnionValue();
6376 else {
6377 if (C == IndirectFieldChain.front() && !RD->isUnion())
6378 SkipToField(FD, true);
6379 Value = &Value->getStructField(FD->getFieldIndex());
6380 }
6381 }
6382 } else {
6383 llvm_unreachable("unknown base initializer kind");
6384 }
6385
6386 // Need to override This for implicit field initializers as in this case
6387 // This refers to innermost anonymous struct/union containing initializer,
6388 // not to currently constructed class.
6389 const Expr *Init = I->getInit();
6390 if (Init->isValueDependent()) {
6391 if (!EvaluateDependentExpr(Init, Info))
6392 return false;
6393 } else {
6394 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6395 isa<CXXDefaultInitExpr>(Init));
6396 FullExpressionRAII InitScope(Info);
6397 if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6398 (FD && FD->isBitField() &&
6399 !truncateBitfieldValue(Info, Init, *Value, FD))) {
6400 // If we're checking for a potential constant expression, evaluate all
6401 // initializers even if some of them fail.
6402 if (!Info.noteFailure())
6403 return false;
6404 Success = false;
6405 }
6406 }
6407
6408 // This is the point at which the dynamic type of the object becomes this
6409 // class type.
6410 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6411 EvalObj.finishedConstructingBases();
6412 }
6413
6414 // Default-initialize any remaining fields.
6415 if (!RD->isUnion()) {
6416 for (; FieldIt != RD->field_end(); ++FieldIt) {
6417 if (!FieldIt->isUnnamedBitfield())
6418 Success &= getDefaultInitValue(
6419 FieldIt->getType(),
6420 Result.getStructField(FieldIt->getFieldIndex()));
6421 }
6422 }
6423
6424 EvalObj.finishedConstructingFields();
6425
6426 return Success &&
6427 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6428 LifetimeExtendedScope.destroy();
6429 }
6430
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6431 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6432 ArrayRef<const Expr*> Args,
6433 const CXXConstructorDecl *Definition,
6434 EvalInfo &Info, APValue &Result) {
6435 CallScopeRAII CallScope(Info);
6436 CallRef Call = Info.CurrentCall->createCall(Definition);
6437 if (!EvaluateArgs(Args, Call, Info, Definition))
6438 return false;
6439
6440 return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6441 CallScope.destroy();
6442 }
6443
HandleDestructionImpl(EvalInfo & Info,SourceLocation CallLoc,const LValue & This,APValue & Value,QualType T)6444 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6445 const LValue &This, APValue &Value,
6446 QualType T) {
6447 // Objects can only be destroyed while they're within their lifetimes.
6448 // FIXME: We have no representation for whether an object of type nullptr_t
6449 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6450 // as indeterminate instead?
6451 if (Value.isAbsent() && !T->isNullPtrType()) {
6452 APValue Printable;
6453 This.moveInto(Printable);
6454 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6455 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6456 return false;
6457 }
6458
6459 // Invent an expression for location purposes.
6460 // FIXME: We shouldn't need to do this.
6461 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_PRValue);
6462
6463 // For arrays, destroy elements right-to-left.
6464 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6465 uint64_t Size = CAT->getSize().getZExtValue();
6466 QualType ElemT = CAT->getElementType();
6467
6468 LValue ElemLV = This;
6469 ElemLV.addArray(Info, &LocE, CAT);
6470 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6471 return false;
6472
6473 // Ensure that we have actual array elements available to destroy; the
6474 // destructors might mutate the value, so we can't run them on the array
6475 // filler.
6476 if (Size && Size > Value.getArrayInitializedElts())
6477 expandArray(Value, Value.getArraySize() - 1);
6478
6479 for (; Size != 0; --Size) {
6480 APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6481 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6482 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6483 return false;
6484 }
6485
6486 // End the lifetime of this array now.
6487 Value = APValue();
6488 return true;
6489 }
6490
6491 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6492 if (!RD) {
6493 if (T.isDestructedType()) {
6494 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6495 return false;
6496 }
6497
6498 Value = APValue();
6499 return true;
6500 }
6501
6502 if (RD->getNumVBases()) {
6503 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6504 return false;
6505 }
6506
6507 const CXXDestructorDecl *DD = RD->getDestructor();
6508 if (!DD && !RD->hasTrivialDestructor()) {
6509 Info.FFDiag(CallLoc);
6510 return false;
6511 }
6512
6513 if (!DD || DD->isTrivial() ||
6514 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6515 // A trivial destructor just ends the lifetime of the object. Check for
6516 // this case before checking for a body, because we might not bother
6517 // building a body for a trivial destructor. Note that it doesn't matter
6518 // whether the destructor is constexpr in this case; all trivial
6519 // destructors are constexpr.
6520 //
6521 // If an anonymous union would be destroyed, some enclosing destructor must
6522 // have been explicitly defined, and the anonymous union destruction should
6523 // have no effect.
6524 Value = APValue();
6525 return true;
6526 }
6527
6528 if (!Info.CheckCallLimit(CallLoc))
6529 return false;
6530
6531 const FunctionDecl *Definition = nullptr;
6532 const Stmt *Body = DD->getBody(Definition);
6533
6534 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6535 return false;
6536
6537 CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6538
6539 // We're now in the period of destruction of this object.
6540 unsigned BasesLeft = RD->getNumBases();
6541 EvalInfo::EvaluatingDestructorRAII EvalObj(
6542 Info,
6543 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6544 if (!EvalObj.DidInsert) {
6545 // C++2a [class.dtor]p19:
6546 // the behavior is undefined if the destructor is invoked for an object
6547 // whose lifetime has ended
6548 // (Note that formally the lifetime ends when the period of destruction
6549 // begins, even though certain uses of the object remain valid until the
6550 // period of destruction ends.)
6551 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6552 return false;
6553 }
6554
6555 // FIXME: Creating an APValue just to hold a nonexistent return value is
6556 // wasteful.
6557 APValue RetVal;
6558 StmtResult Ret = {RetVal, nullptr};
6559 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6560 return false;
6561
6562 // A union destructor does not implicitly destroy its members.
6563 if (RD->isUnion())
6564 return true;
6565
6566 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6567
6568 // We don't have a good way to iterate fields in reverse, so collect all the
6569 // fields first and then walk them backwards.
6570 SmallVector<FieldDecl*, 16> Fields(RD->fields());
6571 for (const FieldDecl *FD : llvm::reverse(Fields)) {
6572 if (FD->isUnnamedBitfield())
6573 continue;
6574
6575 LValue Subobject = This;
6576 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6577 return false;
6578
6579 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6580 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6581 FD->getType()))
6582 return false;
6583 }
6584
6585 if (BasesLeft != 0)
6586 EvalObj.startedDestroyingBases();
6587
6588 // Destroy base classes in reverse order.
6589 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6590 --BasesLeft;
6591
6592 QualType BaseType = Base.getType();
6593 LValue Subobject = This;
6594 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6595 BaseType->getAsCXXRecordDecl(), &Layout))
6596 return false;
6597
6598 APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6599 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6600 BaseType))
6601 return false;
6602 }
6603 assert(BasesLeft == 0 && "NumBases was wrong?");
6604
6605 // The period of destruction ends now. The object is gone.
6606 Value = APValue();
6607 return true;
6608 }
6609
6610 namespace {
6611 struct DestroyObjectHandler {
6612 EvalInfo &Info;
6613 const Expr *E;
6614 const LValue &This;
6615 const AccessKinds AccessKind;
6616
6617 typedef bool result_type;
failed__anond52d8a671511::DestroyObjectHandler6618 bool failed() { return false; }
found__anond52d8a671511::DestroyObjectHandler6619 bool found(APValue &Subobj, QualType SubobjType) {
6620 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6621 SubobjType);
6622 }
found__anond52d8a671511::DestroyObjectHandler6623 bool found(APSInt &Value, QualType SubobjType) {
6624 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6625 return false;
6626 }
found__anond52d8a671511::DestroyObjectHandler6627 bool found(APFloat &Value, QualType SubobjType) {
6628 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6629 return false;
6630 }
6631 };
6632 }
6633
6634 /// Perform a destructor or pseudo-destructor call on the given object, which
6635 /// might in general not be a complete object.
HandleDestruction(EvalInfo & Info,const Expr * E,const LValue & This,QualType ThisType)6636 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6637 const LValue &This, QualType ThisType) {
6638 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6639 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6640 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6641 }
6642
6643 /// Destroy and end the lifetime of the given complete object.
HandleDestruction(EvalInfo & Info,SourceLocation Loc,APValue::LValueBase LVBase,APValue & Value,QualType T)6644 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6645 APValue::LValueBase LVBase, APValue &Value,
6646 QualType T) {
6647 // If we've had an unmodeled side-effect, we can't rely on mutable state
6648 // (such as the object we're about to destroy) being correct.
6649 if (Info.EvalStatus.HasSideEffects)
6650 return false;
6651
6652 LValue LV;
6653 LV.set({LVBase});
6654 return HandleDestructionImpl(Info, Loc, LV, Value, T);
6655 }
6656
6657 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
HandleOperatorNewCall(EvalInfo & Info,const CallExpr * E,LValue & Result)6658 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6659 LValue &Result) {
6660 if (Info.checkingPotentialConstantExpression() ||
6661 Info.SpeculativeEvaluationDepth)
6662 return false;
6663
6664 // This is permitted only within a call to std::allocator<T>::allocate.
6665 auto Caller = Info.getStdAllocatorCaller("allocate");
6666 if (!Caller) {
6667 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6668 ? diag::note_constexpr_new_untyped
6669 : diag::note_constexpr_new);
6670 return false;
6671 }
6672
6673 QualType ElemType = Caller.ElemType;
6674 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6675 Info.FFDiag(E->getExprLoc(),
6676 diag::note_constexpr_new_not_complete_object_type)
6677 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6678 return false;
6679 }
6680
6681 APSInt ByteSize;
6682 if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6683 return false;
6684 bool IsNothrow = false;
6685 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6686 EvaluateIgnoredValue(Info, E->getArg(I));
6687 IsNothrow |= E->getType()->isNothrowT();
6688 }
6689
6690 CharUnits ElemSize;
6691 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6692 return false;
6693 APInt Size, Remainder;
6694 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6695 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6696 if (Remainder != 0) {
6697 // This likely indicates a bug in the implementation of 'std::allocator'.
6698 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6699 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6700 return false;
6701 }
6702
6703 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6704 if (IsNothrow) {
6705 Result.setNull(Info.Ctx, E->getType());
6706 return true;
6707 }
6708
6709 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6710 return false;
6711 }
6712
6713 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6714 ArrayType::Normal, 0);
6715 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6716 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6717 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6718 return true;
6719 }
6720
hasVirtualDestructor(QualType T)6721 static bool hasVirtualDestructor(QualType T) {
6722 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6723 if (CXXDestructorDecl *DD = RD->getDestructor())
6724 return DD->isVirtual();
6725 return false;
6726 }
6727
getVirtualOperatorDelete(QualType T)6728 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6729 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6730 if (CXXDestructorDecl *DD = RD->getDestructor())
6731 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6732 return nullptr;
6733 }
6734
6735 /// Check that the given object is a suitable pointer to a heap allocation that
6736 /// still exists and is of the right kind for the purpose of a deletion.
6737 ///
6738 /// On success, returns the heap allocation to deallocate. On failure, produces
6739 /// a diagnostic and returns std::nullopt.
CheckDeleteKind(EvalInfo & Info,const Expr * E,const LValue & Pointer,DynAlloc::Kind DeallocKind)6740 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6741 const LValue &Pointer,
6742 DynAlloc::Kind DeallocKind) {
6743 auto PointerAsString = [&] {
6744 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6745 };
6746
6747 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6748 if (!DA) {
6749 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6750 << PointerAsString();
6751 if (Pointer.Base)
6752 NoteLValueLocation(Info, Pointer.Base);
6753 return std::nullopt;
6754 }
6755
6756 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6757 if (!Alloc) {
6758 Info.FFDiag(E, diag::note_constexpr_double_delete);
6759 return std::nullopt;
6760 }
6761
6762 QualType AllocType = Pointer.Base.getDynamicAllocType();
6763 if (DeallocKind != (*Alloc)->getKind()) {
6764 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6765 << DeallocKind << (*Alloc)->getKind() << AllocType;
6766 NoteLValueLocation(Info, Pointer.Base);
6767 return std::nullopt;
6768 }
6769
6770 bool Subobject = false;
6771 if (DeallocKind == DynAlloc::New) {
6772 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6773 Pointer.Designator.isOnePastTheEnd();
6774 } else {
6775 Subobject = Pointer.Designator.Entries.size() != 1 ||
6776 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6777 }
6778 if (Subobject) {
6779 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6780 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6781 return std::nullopt;
6782 }
6783
6784 return Alloc;
6785 }
6786
6787 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
HandleOperatorDeleteCall(EvalInfo & Info,const CallExpr * E)6788 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6789 if (Info.checkingPotentialConstantExpression() ||
6790 Info.SpeculativeEvaluationDepth)
6791 return false;
6792
6793 // This is permitted only within a call to std::allocator<T>::deallocate.
6794 if (!Info.getStdAllocatorCaller("deallocate")) {
6795 Info.FFDiag(E->getExprLoc());
6796 return true;
6797 }
6798
6799 LValue Pointer;
6800 if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6801 return false;
6802 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6803 EvaluateIgnoredValue(Info, E->getArg(I));
6804
6805 if (Pointer.Designator.Invalid)
6806 return false;
6807
6808 // Deleting a null pointer would have no effect, but it's not permitted by
6809 // std::allocator<T>::deallocate's contract.
6810 if (Pointer.isNullPointer()) {
6811 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null);
6812 return true;
6813 }
6814
6815 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6816 return false;
6817
6818 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6819 return true;
6820 }
6821
6822 //===----------------------------------------------------------------------===//
6823 // Generic Evaluation
6824 //===----------------------------------------------------------------------===//
6825 namespace {
6826
6827 class BitCastBuffer {
6828 // FIXME: We're going to need bit-level granularity when we support
6829 // bit-fields.
6830 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6831 // we don't support a host or target where that is the case. Still, we should
6832 // use a more generic type in case we ever do.
6833 SmallVector<std::optional<unsigned char>, 32> Bytes;
6834
6835 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6836 "Need at least 8 bit unsigned char");
6837
6838 bool TargetIsLittleEndian;
6839
6840 public:
BitCastBuffer(CharUnits Width,bool TargetIsLittleEndian)6841 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6842 : Bytes(Width.getQuantity()),
6843 TargetIsLittleEndian(TargetIsLittleEndian) {}
6844
readObject(CharUnits Offset,CharUnits Width,SmallVectorImpl<unsigned char> & Output) const6845 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width,
6846 SmallVectorImpl<unsigned char> &Output) const {
6847 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6848 // If a byte of an integer is uninitialized, then the whole integer is
6849 // uninitialized.
6850 if (!Bytes[I.getQuantity()])
6851 return false;
6852 Output.push_back(*Bytes[I.getQuantity()]);
6853 }
6854 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6855 std::reverse(Output.begin(), Output.end());
6856 return true;
6857 }
6858
writeObject(CharUnits Offset,SmallVectorImpl<unsigned char> & Input)6859 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6860 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6861 std::reverse(Input.begin(), Input.end());
6862
6863 size_t Index = 0;
6864 for (unsigned char Byte : Input) {
6865 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6866 Bytes[Offset.getQuantity() + Index] = Byte;
6867 ++Index;
6868 }
6869 }
6870
size()6871 size_t size() { return Bytes.size(); }
6872 };
6873
6874 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6875 /// target would represent the value at runtime.
6876 class APValueToBufferConverter {
6877 EvalInfo &Info;
6878 BitCastBuffer Buffer;
6879 const CastExpr *BCE;
6880
APValueToBufferConverter(EvalInfo & Info,CharUnits ObjectWidth,const CastExpr * BCE)6881 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6882 const CastExpr *BCE)
6883 : Info(Info),
6884 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6885 BCE(BCE) {}
6886
visit(const APValue & Val,QualType Ty)6887 bool visit(const APValue &Val, QualType Ty) {
6888 return visit(Val, Ty, CharUnits::fromQuantity(0));
6889 }
6890
6891 // Write out Val with type Ty into Buffer starting at Offset.
visit(const APValue & Val,QualType Ty,CharUnits Offset)6892 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6893 assert((size_t)Offset.getQuantity() <= Buffer.size());
6894
6895 // As a special case, nullptr_t has an indeterminate value.
6896 if (Ty->isNullPtrType())
6897 return true;
6898
6899 // Dig through Src to find the byte at SrcOffset.
6900 switch (Val.getKind()) {
6901 case APValue::Indeterminate:
6902 case APValue::None:
6903 return true;
6904
6905 case APValue::Int:
6906 return visitInt(Val.getInt(), Ty, Offset);
6907 case APValue::Float:
6908 return visitFloat(Val.getFloat(), Ty, Offset);
6909 case APValue::Array:
6910 return visitArray(Val, Ty, Offset);
6911 case APValue::Struct:
6912 return visitRecord(Val, Ty, Offset);
6913
6914 case APValue::ComplexInt:
6915 case APValue::ComplexFloat:
6916 case APValue::Vector:
6917 case APValue::FixedPoint:
6918 // FIXME: We should support these.
6919
6920 case APValue::Union:
6921 case APValue::MemberPointer:
6922 case APValue::AddrLabelDiff: {
6923 Info.FFDiag(BCE->getBeginLoc(),
6924 diag::note_constexpr_bit_cast_unsupported_type)
6925 << Ty;
6926 return false;
6927 }
6928
6929 case APValue::LValue:
6930 llvm_unreachable("LValue subobject in bit_cast?");
6931 }
6932 llvm_unreachable("Unhandled APValue::ValueKind");
6933 }
6934
visitRecord(const APValue & Val,QualType Ty,CharUnits Offset)6935 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6936 const RecordDecl *RD = Ty->getAsRecordDecl();
6937 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6938
6939 // Visit the base classes.
6940 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6941 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6942 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6943 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6944
6945 if (!visitRecord(Val.getStructBase(I), BS.getType(),
6946 Layout.getBaseClassOffset(BaseDecl) + Offset))
6947 return false;
6948 }
6949 }
6950
6951 // Visit the fields.
6952 unsigned FieldIdx = 0;
6953 for (FieldDecl *FD : RD->fields()) {
6954 if (FD->isBitField()) {
6955 Info.FFDiag(BCE->getBeginLoc(),
6956 diag::note_constexpr_bit_cast_unsupported_bitfield);
6957 return false;
6958 }
6959
6960 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6961
6962 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6963 "only bit-fields can have sub-char alignment");
6964 CharUnits FieldOffset =
6965 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6966 QualType FieldTy = FD->getType();
6967 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6968 return false;
6969 ++FieldIdx;
6970 }
6971
6972 return true;
6973 }
6974
visitArray(const APValue & Val,QualType Ty,CharUnits Offset)6975 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6976 const auto *CAT =
6977 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6978 if (!CAT)
6979 return false;
6980
6981 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6982 unsigned NumInitializedElts = Val.getArrayInitializedElts();
6983 unsigned ArraySize = Val.getArraySize();
6984 // First, initialize the initialized elements.
6985 for (unsigned I = 0; I != NumInitializedElts; ++I) {
6986 const APValue &SubObj = Val.getArrayInitializedElt(I);
6987 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6988 return false;
6989 }
6990
6991 // Next, initialize the rest of the array using the filler.
6992 if (Val.hasArrayFiller()) {
6993 const APValue &Filler = Val.getArrayFiller();
6994 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6995 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6996 return false;
6997 }
6998 }
6999
7000 return true;
7001 }
7002
visitInt(const APSInt & Val,QualType Ty,CharUnits Offset)7003 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
7004 APSInt AdjustedVal = Val;
7005 unsigned Width = AdjustedVal.getBitWidth();
7006 if (Ty->isBooleanType()) {
7007 Width = Info.Ctx.getTypeSize(Ty);
7008 AdjustedVal = AdjustedVal.extend(Width);
7009 }
7010
7011 SmallVector<unsigned char, 8> Bytes(Width / 8);
7012 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
7013 Buffer.writeObject(Offset, Bytes);
7014 return true;
7015 }
7016
visitFloat(const APFloat & Val,QualType Ty,CharUnits Offset)7017 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
7018 APSInt AsInt(Val.bitcastToAPInt());
7019 return visitInt(AsInt, Ty, Offset);
7020 }
7021
7022 public:
7023 static std::optional<BitCastBuffer>
convert(EvalInfo & Info,const APValue & Src,const CastExpr * BCE)7024 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) {
7025 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
7026 APValueToBufferConverter Converter(Info, DstSize, BCE);
7027 if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
7028 return std::nullopt;
7029 return Converter.Buffer;
7030 }
7031 };
7032
7033 /// Write an BitCastBuffer into an APValue.
7034 class BufferToAPValueConverter {
7035 EvalInfo &Info;
7036 const BitCastBuffer &Buffer;
7037 const CastExpr *BCE;
7038
BufferToAPValueConverter(EvalInfo & Info,const BitCastBuffer & Buffer,const CastExpr * BCE)7039 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
7040 const CastExpr *BCE)
7041 : Info(Info), Buffer(Buffer), BCE(BCE) {}
7042
7043 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
7044 // with an invalid type, so anything left is a deficiency on our part (FIXME).
7045 // Ideally this will be unreachable.
unsupportedType(QualType Ty)7046 std::nullopt_t unsupportedType(QualType Ty) {
7047 Info.FFDiag(BCE->getBeginLoc(),
7048 diag::note_constexpr_bit_cast_unsupported_type)
7049 << Ty;
7050 return std::nullopt;
7051 }
7052
unrepresentableValue(QualType Ty,const APSInt & Val)7053 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) {
7054 Info.FFDiag(BCE->getBeginLoc(),
7055 diag::note_constexpr_bit_cast_unrepresentable_value)
7056 << Ty << toString(Val, /*Radix=*/10);
7057 return std::nullopt;
7058 }
7059
visit(const BuiltinType * T,CharUnits Offset,const EnumType * EnumSugar=nullptr)7060 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
7061 const EnumType *EnumSugar = nullptr) {
7062 if (T->isNullPtrType()) {
7063 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
7064 return APValue((Expr *)nullptr,
7065 /*Offset=*/CharUnits::fromQuantity(NullValue),
7066 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
7067 }
7068
7069 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
7070
7071 // Work around floating point types that contain unused padding bytes. This
7072 // is really just `long double` on x86, which is the only fundamental type
7073 // with padding bytes.
7074 if (T->isRealFloatingType()) {
7075 const llvm::fltSemantics &Semantics =
7076 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7077 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
7078 assert(NumBits % 8 == 0);
7079 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
7080 if (NumBytes != SizeOf)
7081 SizeOf = NumBytes;
7082 }
7083
7084 SmallVector<uint8_t, 8> Bytes;
7085 if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
7086 // If this is std::byte or unsigned char, then its okay to store an
7087 // indeterminate value.
7088 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
7089 bool IsUChar =
7090 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
7091 T->isSpecificBuiltinType(BuiltinType::Char_U));
7092 if (!IsStdByte && !IsUChar) {
7093 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
7094 Info.FFDiag(BCE->getExprLoc(),
7095 diag::note_constexpr_bit_cast_indet_dest)
7096 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
7097 return std::nullopt;
7098 }
7099
7100 return APValue::IndeterminateValue();
7101 }
7102
7103 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
7104 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
7105
7106 if (T->isIntegralOrEnumerationType()) {
7107 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
7108
7109 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
7110 if (IntWidth != Val.getBitWidth()) {
7111 APSInt Truncated = Val.trunc(IntWidth);
7112 if (Truncated.extend(Val.getBitWidth()) != Val)
7113 return unrepresentableValue(QualType(T, 0), Val);
7114 Val = Truncated;
7115 }
7116
7117 return APValue(Val);
7118 }
7119
7120 if (T->isRealFloatingType()) {
7121 const llvm::fltSemantics &Semantics =
7122 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
7123 return APValue(APFloat(Semantics, Val));
7124 }
7125
7126 return unsupportedType(QualType(T, 0));
7127 }
7128
visit(const RecordType * RTy,CharUnits Offset)7129 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
7130 const RecordDecl *RD = RTy->getAsRecordDecl();
7131 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
7132
7133 unsigned NumBases = 0;
7134 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7135 NumBases = CXXRD->getNumBases();
7136
7137 APValue ResultVal(APValue::UninitStruct(), NumBases,
7138 std::distance(RD->field_begin(), RD->field_end()));
7139
7140 // Visit the base classes.
7141 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
7142 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
7143 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
7144 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
7145 if (BaseDecl->isEmpty() ||
7146 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7147 continue;
7148
7149 std::optional<APValue> SubObj = visitType(
7150 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7151 if (!SubObj)
7152 return std::nullopt;
7153 ResultVal.getStructBase(I) = *SubObj;
7154 }
7155 }
7156
7157 // Visit the fields.
7158 unsigned FieldIdx = 0;
7159 for (FieldDecl *FD : RD->fields()) {
7160 // FIXME: We don't currently support bit-fields. A lot of the logic for
7161 // this is in CodeGen, so we need to factor it around.
7162 if (FD->isBitField()) {
7163 Info.FFDiag(BCE->getBeginLoc(),
7164 diag::note_constexpr_bit_cast_unsupported_bitfield);
7165 return std::nullopt;
7166 }
7167
7168 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7169 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7170
7171 CharUnits FieldOffset =
7172 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7173 Offset;
7174 QualType FieldTy = FD->getType();
7175 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7176 if (!SubObj)
7177 return std::nullopt;
7178 ResultVal.getStructField(FieldIdx) = *SubObj;
7179 ++FieldIdx;
7180 }
7181
7182 return ResultVal;
7183 }
7184
visit(const EnumType * Ty,CharUnits Offset)7185 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7186 QualType RepresentationType = Ty->getDecl()->getIntegerType();
7187 assert(!RepresentationType.isNull() &&
7188 "enum forward decl should be caught by Sema");
7189 const auto *AsBuiltin =
7190 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7191 // Recurse into the underlying type. Treat std::byte transparently as
7192 // unsigned char.
7193 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7194 }
7195
visit(const ConstantArrayType * Ty,CharUnits Offset)7196 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7197 size_t Size = Ty->getSize().getLimitedValue();
7198 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7199
7200 APValue ArrayValue(APValue::UninitArray(), Size, Size);
7201 for (size_t I = 0; I != Size; ++I) {
7202 std::optional<APValue> ElementValue =
7203 visitType(Ty->getElementType(), Offset + I * ElementWidth);
7204 if (!ElementValue)
7205 return std::nullopt;
7206 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7207 }
7208
7209 return ArrayValue;
7210 }
7211
visit(const Type * Ty,CharUnits Offset)7212 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7213 return unsupportedType(QualType(Ty, 0));
7214 }
7215
visitType(QualType Ty,CharUnits Offset)7216 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7217 QualType Can = Ty.getCanonicalType();
7218
7219 switch (Can->getTypeClass()) {
7220 #define TYPE(Class, Base) \
7221 case Type::Class: \
7222 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7223 #define ABSTRACT_TYPE(Class, Base)
7224 #define NON_CANONICAL_TYPE(Class, Base) \
7225 case Type::Class: \
7226 llvm_unreachable("non-canonical type should be impossible!");
7227 #define DEPENDENT_TYPE(Class, Base) \
7228 case Type::Class: \
7229 llvm_unreachable( \
7230 "dependent types aren't supported in the constant evaluator!");
7231 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
7232 case Type::Class: \
7233 llvm_unreachable("either dependent or not canonical!");
7234 #include "clang/AST/TypeNodes.inc"
7235 }
7236 llvm_unreachable("Unhandled Type::TypeClass");
7237 }
7238
7239 public:
7240 // Pull out a full value of type DstType.
convert(EvalInfo & Info,BitCastBuffer & Buffer,const CastExpr * BCE)7241 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7242 const CastExpr *BCE) {
7243 BufferToAPValueConverter Converter(Info, Buffer, BCE);
7244 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7245 }
7246 };
7247
checkBitCastConstexprEligibilityType(SourceLocation Loc,QualType Ty,EvalInfo * Info,const ASTContext & Ctx,bool CheckingDest)7248 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7249 QualType Ty, EvalInfo *Info,
7250 const ASTContext &Ctx,
7251 bool CheckingDest) {
7252 Ty = Ty.getCanonicalType();
7253
7254 auto diag = [&](int Reason) {
7255 if (Info)
7256 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7257 << CheckingDest << (Reason == 4) << Reason;
7258 return false;
7259 };
7260 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7261 if (Info)
7262 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7263 << NoteTy << Construct << Ty;
7264 return false;
7265 };
7266
7267 if (Ty->isUnionType())
7268 return diag(0);
7269 if (Ty->isPointerType())
7270 return diag(1);
7271 if (Ty->isMemberPointerType())
7272 return diag(2);
7273 if (Ty.isVolatileQualified())
7274 return diag(3);
7275
7276 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7277 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7278 for (CXXBaseSpecifier &BS : CXXRD->bases())
7279 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7280 CheckingDest))
7281 return note(1, BS.getType(), BS.getBeginLoc());
7282 }
7283 for (FieldDecl *FD : Record->fields()) {
7284 if (FD->getType()->isReferenceType())
7285 return diag(4);
7286 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7287 CheckingDest))
7288 return note(0, FD->getType(), FD->getBeginLoc());
7289 }
7290 }
7291
7292 if (Ty->isArrayType() &&
7293 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7294 Info, Ctx, CheckingDest))
7295 return false;
7296
7297 return true;
7298 }
7299
checkBitCastConstexprEligibility(EvalInfo * Info,const ASTContext & Ctx,const CastExpr * BCE)7300 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7301 const ASTContext &Ctx,
7302 const CastExpr *BCE) {
7303 bool DestOK = checkBitCastConstexprEligibilityType(
7304 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7305 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7306 BCE->getBeginLoc(),
7307 BCE->getSubExpr()->getType(), Info, Ctx, false);
7308 return SourceOK;
7309 }
7310
handleLValueToRValueBitCast(EvalInfo & Info,APValue & DestValue,APValue & SourceValue,const CastExpr * BCE)7311 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7312 APValue &SourceValue,
7313 const CastExpr *BCE) {
7314 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7315 "no host or target supports non 8-bit chars");
7316 assert(SourceValue.isLValue() &&
7317 "LValueToRValueBitcast requires an lvalue operand!");
7318
7319 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7320 return false;
7321
7322 LValue SourceLValue;
7323 APValue SourceRValue;
7324 SourceLValue.setFrom(Info.Ctx, SourceValue);
7325 if (!handleLValueToRValueConversion(
7326 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7327 SourceRValue, /*WantObjectRepresentation=*/true))
7328 return false;
7329
7330 // Read out SourceValue into a char buffer.
7331 std::optional<BitCastBuffer> Buffer =
7332 APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7333 if (!Buffer)
7334 return false;
7335
7336 // Write out the buffer into a new APValue.
7337 std::optional<APValue> MaybeDestValue =
7338 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7339 if (!MaybeDestValue)
7340 return false;
7341
7342 DestValue = std::move(*MaybeDestValue);
7343 return true;
7344 }
7345
7346 template <class Derived>
7347 class ExprEvaluatorBase
7348 : public ConstStmtVisitor<Derived, bool> {
7349 private:
getDerived()7350 Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)7351 bool DerivedSuccess(const APValue &V, const Expr *E) {
7352 return getDerived().Success(V, E);
7353 }
DerivedZeroInitialization(const Expr * E)7354 bool DerivedZeroInitialization(const Expr *E) {
7355 return getDerived().ZeroInitialization(E);
7356 }
7357
7358 // Check whether a conditional operator with a non-constant condition is a
7359 // potential constant expression. If neither arm is a potential constant
7360 // expression, then the conditional operator is not either.
7361 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)7362 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7363 assert(Info.checkingPotentialConstantExpression());
7364
7365 // Speculatively evaluate both arms.
7366 SmallVector<PartialDiagnosticAt, 8> Diag;
7367 {
7368 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7369 StmtVisitorTy::Visit(E->getFalseExpr());
7370 if (Diag.empty())
7371 return;
7372 }
7373
7374 {
7375 SpeculativeEvaluationRAII Speculate(Info, &Diag);
7376 Diag.clear();
7377 StmtVisitorTy::Visit(E->getTrueExpr());
7378 if (Diag.empty())
7379 return;
7380 }
7381
7382 Error(E, diag::note_constexpr_conditional_never_const);
7383 }
7384
7385
7386 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)7387 bool HandleConditionalOperator(const ConditionalOperator *E) {
7388 bool BoolResult;
7389 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7390 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7391 CheckPotentialConstantConditional(E);
7392 return false;
7393 }
7394 if (Info.noteFailure()) {
7395 StmtVisitorTy::Visit(E->getTrueExpr());
7396 StmtVisitorTy::Visit(E->getFalseExpr());
7397 }
7398 return false;
7399 }
7400
7401 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7402 return StmtVisitorTy::Visit(EvalExpr);
7403 }
7404
7405 protected:
7406 EvalInfo &Info;
7407 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7408 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7409
CCEDiag(const Expr * E,diag::kind D)7410 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7411 return Info.CCEDiag(E, D);
7412 }
7413
ZeroInitialization(const Expr * E)7414 bool ZeroInitialization(const Expr *E) { return Error(E); }
7415
IsConstantEvaluatedBuiltinCall(const CallExpr * E)7416 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) {
7417 unsigned BuiltinOp = E->getBuiltinCallee();
7418 return BuiltinOp != 0 &&
7419 Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp);
7420 }
7421
7422 public:
ExprEvaluatorBase(EvalInfo & Info)7423 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7424
getEvalInfo()7425 EvalInfo &getEvalInfo() { return Info; }
7426
7427 /// Report an evaluation error. This should only be called when an error is
7428 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)7429 bool Error(const Expr *E, diag::kind D) {
7430 Info.FFDiag(E, D);
7431 return false;
7432 }
Error(const Expr * E)7433 bool Error(const Expr *E) {
7434 return Error(E, diag::note_invalid_subexpr_in_const_expr);
7435 }
7436
VisitStmt(const Stmt *)7437 bool VisitStmt(const Stmt *) {
7438 llvm_unreachable("Expression evaluator should not be called on stmts");
7439 }
VisitExpr(const Expr * E)7440 bool VisitExpr(const Expr *E) {
7441 return Error(E);
7442 }
7443
VisitConstantExpr(const ConstantExpr * E)7444 bool VisitConstantExpr(const ConstantExpr *E) {
7445 if (E->hasAPValueResult())
7446 return DerivedSuccess(E->getAPValueResult(), E);
7447
7448 return StmtVisitorTy::Visit(E->getSubExpr());
7449 }
7450
VisitParenExpr(const ParenExpr * E)7451 bool VisitParenExpr(const ParenExpr *E)
7452 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)7453 bool VisitUnaryExtension(const UnaryOperator *E)
7454 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)7455 bool VisitUnaryPlus(const UnaryOperator *E)
7456 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)7457 bool VisitChooseExpr(const ChooseExpr *E)
7458 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)7459 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7460 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)7461 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7462 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)7463 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7464 TempVersionRAII RAII(*Info.CurrentCall);
7465 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7466 return StmtVisitorTy::Visit(E->getExpr());
7467 }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)7468 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7469 TempVersionRAII RAII(*Info.CurrentCall);
7470 // The initializer may not have been parsed yet, or might be erroneous.
7471 if (!E->getExpr())
7472 return Error(E);
7473 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7474 return StmtVisitorTy::Visit(E->getExpr());
7475 }
7476
VisitExprWithCleanups(const ExprWithCleanups * E)7477 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7478 FullExpressionRAII Scope(Info);
7479 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7480 }
7481
7482 // Temporaries are registered when created, so we don't care about
7483 // CXXBindTemporaryExpr.
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)7484 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7485 return StmtVisitorTy::Visit(E->getSubExpr());
7486 }
7487
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)7488 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7489 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7490 return static_cast<Derived*>(this)->VisitCastExpr(E);
7491 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)7492 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7493 if (!Info.Ctx.getLangOpts().CPlusPlus20)
7494 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7495 return static_cast<Derived*>(this)->VisitCastExpr(E);
7496 }
VisitBuiltinBitCastExpr(const BuiltinBitCastExpr * E)7497 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7498 return static_cast<Derived*>(this)->VisitCastExpr(E);
7499 }
7500
VisitBinaryOperator(const BinaryOperator * E)7501 bool VisitBinaryOperator(const BinaryOperator *E) {
7502 switch (E->getOpcode()) {
7503 default:
7504 return Error(E);
7505
7506 case BO_Comma:
7507 VisitIgnoredValue(E->getLHS());
7508 return StmtVisitorTy::Visit(E->getRHS());
7509
7510 case BO_PtrMemD:
7511 case BO_PtrMemI: {
7512 LValue Obj;
7513 if (!HandleMemberPointerAccess(Info, E, Obj))
7514 return false;
7515 APValue Result;
7516 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7517 return false;
7518 return DerivedSuccess(Result, E);
7519 }
7520 }
7521 }
7522
VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator * E)7523 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7524 return StmtVisitorTy::Visit(E->getSemanticForm());
7525 }
7526
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)7527 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7528 // Evaluate and cache the common expression. We treat it as a temporary,
7529 // even though it's not quite the same thing.
7530 LValue CommonLV;
7531 if (!Evaluate(Info.CurrentCall->createTemporary(
7532 E->getOpaqueValue(),
7533 getStorageType(Info.Ctx, E->getOpaqueValue()),
7534 ScopeKind::FullExpression, CommonLV),
7535 Info, E->getCommon()))
7536 return false;
7537
7538 return HandleConditionalOperator(E);
7539 }
7540
VisitConditionalOperator(const ConditionalOperator * E)7541 bool VisitConditionalOperator(const ConditionalOperator *E) {
7542 bool IsBcpCall = false;
7543 // If the condition (ignoring parens) is a __builtin_constant_p call,
7544 // the result is a constant expression if it can be folded without
7545 // side-effects. This is an important GNU extension. See GCC PR38377
7546 // for discussion.
7547 if (const CallExpr *CallCE =
7548 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7549 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7550 IsBcpCall = true;
7551
7552 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7553 // constant expression; we can't check whether it's potentially foldable.
7554 // FIXME: We should instead treat __builtin_constant_p as non-constant if
7555 // it would return 'false' in this mode.
7556 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7557 return false;
7558
7559 FoldConstant Fold(Info, IsBcpCall);
7560 if (!HandleConditionalOperator(E)) {
7561 Fold.keepDiagnostics();
7562 return false;
7563 }
7564
7565 return true;
7566 }
7567
VisitOpaqueValueExpr(const OpaqueValueExpr * E)7568 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7569 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7570 return DerivedSuccess(*Value, E);
7571
7572 const Expr *Source = E->getSourceExpr();
7573 if (!Source)
7574 return Error(E);
7575 if (Source == E) {
7576 assert(0 && "OpaqueValueExpr recursively refers to itself");
7577 return Error(E);
7578 }
7579 return StmtVisitorTy::Visit(Source);
7580 }
7581
VisitPseudoObjectExpr(const PseudoObjectExpr * E)7582 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7583 for (const Expr *SemE : E->semantics()) {
7584 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7585 // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7586 // result expression: there could be two different LValues that would
7587 // refer to the same object in that case, and we can't model that.
7588 if (SemE == E->getResultExpr())
7589 return Error(E);
7590
7591 // Unique OVEs get evaluated if and when we encounter them when
7592 // emitting the rest of the semantic form, rather than eagerly.
7593 if (OVE->isUnique())
7594 continue;
7595
7596 LValue LV;
7597 if (!Evaluate(Info.CurrentCall->createTemporary(
7598 OVE, getStorageType(Info.Ctx, OVE),
7599 ScopeKind::FullExpression, LV),
7600 Info, OVE->getSourceExpr()))
7601 return false;
7602 } else if (SemE == E->getResultExpr()) {
7603 if (!StmtVisitorTy::Visit(SemE))
7604 return false;
7605 } else {
7606 if (!EvaluateIgnoredValue(Info, SemE))
7607 return false;
7608 }
7609 }
7610 return true;
7611 }
7612
VisitCallExpr(const CallExpr * E)7613 bool VisitCallExpr(const CallExpr *E) {
7614 APValue Result;
7615 if (!handleCallExpr(E, Result, nullptr))
7616 return false;
7617 return DerivedSuccess(Result, E);
7618 }
7619
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)7620 bool handleCallExpr(const CallExpr *E, APValue &Result,
7621 const LValue *ResultSlot) {
7622 CallScopeRAII CallScope(Info);
7623
7624 const Expr *Callee = E->getCallee()->IgnoreParens();
7625 QualType CalleeType = Callee->getType();
7626
7627 const FunctionDecl *FD = nullptr;
7628 LValue *This = nullptr, ThisVal;
7629 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
7630 bool HasQualifier = false;
7631
7632 CallRef Call;
7633
7634 // Extract function decl and 'this' pointer from the callee.
7635 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7636 const CXXMethodDecl *Member = nullptr;
7637 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7638 // Explicit bound member calls, such as x.f() or p->g();
7639 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7640 return false;
7641 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7642 if (!Member)
7643 return Error(Callee);
7644 This = &ThisVal;
7645 HasQualifier = ME->hasQualifier();
7646 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7647 // Indirect bound member calls ('.*' or '->*').
7648 const ValueDecl *D =
7649 HandleMemberPointerAccess(Info, BE, ThisVal, false);
7650 if (!D)
7651 return false;
7652 Member = dyn_cast<CXXMethodDecl>(D);
7653 if (!Member)
7654 return Error(Callee);
7655 This = &ThisVal;
7656 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7657 if (!Info.getLangOpts().CPlusPlus20)
7658 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7659 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7660 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7661 } else
7662 return Error(Callee);
7663 FD = Member;
7664 } else if (CalleeType->isFunctionPointerType()) {
7665 LValue CalleeLV;
7666 if (!EvaluatePointer(Callee, CalleeLV, Info))
7667 return false;
7668
7669 if (!CalleeLV.getLValueOffset().isZero())
7670 return Error(Callee);
7671 FD = dyn_cast_or_null<FunctionDecl>(
7672 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7673 if (!FD)
7674 return Error(Callee);
7675 // Don't call function pointers which have been cast to some other type.
7676 // Per DR (no number yet), the caller and callee can differ in noexcept.
7677 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7678 CalleeType->getPointeeType(), FD->getType())) {
7679 return Error(E);
7680 }
7681
7682 // For an (overloaded) assignment expression, evaluate the RHS before the
7683 // LHS.
7684 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7685 if (OCE && OCE->isAssignmentOp()) {
7686 assert(Args.size() == 2 && "wrong number of arguments in assignment");
7687 Call = Info.CurrentCall->createCall(FD);
7688 if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7689 Info, FD, /*RightToLeft=*/true))
7690 return false;
7691 }
7692
7693 // Overloaded operator calls to member functions are represented as normal
7694 // calls with '*this' as the first argument.
7695 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7696 if (MD && !MD->isStatic()) {
7697 // FIXME: When selecting an implicit conversion for an overloaded
7698 // operator delete, we sometimes try to evaluate calls to conversion
7699 // operators without a 'this' parameter!
7700 if (Args.empty())
7701 return Error(E);
7702
7703 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7704 return false;
7705 This = &ThisVal;
7706
7707 // If this is syntactically a simple assignment using a trivial
7708 // assignment operator, start the lifetimes of union members as needed,
7709 // per C++20 [class.union]5.
7710 if (Info.getLangOpts().CPlusPlus20 && OCE &&
7711 OCE->getOperator() == OO_Equal && MD->isTrivial() &&
7712 !HandleUnionActiveMemberChange(Info, Args[0], ThisVal))
7713 return false;
7714
7715 Args = Args.slice(1);
7716 } else if (MD && MD->isLambdaStaticInvoker()) {
7717 // Map the static invoker for the lambda back to the call operator.
7718 // Conveniently, we don't have to slice out the 'this' argument (as is
7719 // being done for the non-static case), since a static member function
7720 // doesn't have an implicit argument passed in.
7721 const CXXRecordDecl *ClosureClass = MD->getParent();
7722 assert(
7723 ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7724 "Number of captures must be zero for conversion to function-ptr");
7725
7726 const CXXMethodDecl *LambdaCallOp =
7727 ClosureClass->getLambdaCallOperator();
7728
7729 // Set 'FD', the function that will be called below, to the call
7730 // operator. If the closure object represents a generic lambda, find
7731 // the corresponding specialization of the call operator.
7732
7733 if (ClosureClass->isGenericLambda()) {
7734 assert(MD->isFunctionTemplateSpecialization() &&
7735 "A generic lambda's static-invoker function must be a "
7736 "template specialization");
7737 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7738 FunctionTemplateDecl *CallOpTemplate =
7739 LambdaCallOp->getDescribedFunctionTemplate();
7740 void *InsertPos = nullptr;
7741 FunctionDecl *CorrespondingCallOpSpecialization =
7742 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7743 assert(CorrespondingCallOpSpecialization &&
7744 "We must always have a function call operator specialization "
7745 "that corresponds to our static invoker specialization");
7746 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7747 } else
7748 FD = LambdaCallOp;
7749 } else if (FD->isReplaceableGlobalAllocationFunction()) {
7750 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7751 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7752 LValue Ptr;
7753 if (!HandleOperatorNewCall(Info, E, Ptr))
7754 return false;
7755 Ptr.moveInto(Result);
7756 return CallScope.destroy();
7757 } else {
7758 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7759 }
7760 }
7761 } else
7762 return Error(E);
7763
7764 // Evaluate the arguments now if we've not already done so.
7765 if (!Call) {
7766 Call = Info.CurrentCall->createCall(FD);
7767 if (!EvaluateArgs(Args, Call, Info, FD))
7768 return false;
7769 }
7770
7771 SmallVector<QualType, 4> CovariantAdjustmentPath;
7772 if (This) {
7773 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7774 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7775 // Perform virtual dispatch, if necessary.
7776 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7777 CovariantAdjustmentPath);
7778 if (!FD)
7779 return false;
7780 } else {
7781 // Check that the 'this' pointer points to an object of the right type.
7782 // FIXME: If this is an assignment operator call, we may need to change
7783 // the active union member before we check this.
7784 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7785 return false;
7786 }
7787 }
7788
7789 // Destructor calls are different enough that they have their own codepath.
7790 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7791 assert(This && "no 'this' pointer for destructor call");
7792 return HandleDestruction(Info, E, *This,
7793 Info.Ctx.getRecordType(DD->getParent())) &&
7794 CallScope.destroy();
7795 }
7796
7797 const FunctionDecl *Definition = nullptr;
7798 Stmt *Body = FD->getBody(Definition);
7799
7800 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7801 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7802 Body, Info, Result, ResultSlot))
7803 return false;
7804
7805 if (!CovariantAdjustmentPath.empty() &&
7806 !HandleCovariantReturnAdjustment(Info, E, Result,
7807 CovariantAdjustmentPath))
7808 return false;
7809
7810 return CallScope.destroy();
7811 }
7812
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)7813 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7814 return StmtVisitorTy::Visit(E->getInitializer());
7815 }
VisitInitListExpr(const InitListExpr * E)7816 bool VisitInitListExpr(const InitListExpr *E) {
7817 if (E->getNumInits() == 0)
7818 return DerivedZeroInitialization(E);
7819 if (E->getNumInits() == 1)
7820 return StmtVisitorTy::Visit(E->getInit(0));
7821 return Error(E);
7822 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)7823 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7824 return DerivedZeroInitialization(E);
7825 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)7826 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7827 return DerivedZeroInitialization(E);
7828 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)7829 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7830 return DerivedZeroInitialization(E);
7831 }
7832
7833 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)7834 bool VisitMemberExpr(const MemberExpr *E) {
7835 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7836 "missing temporary materialization conversion");
7837 assert(!E->isArrow() && "missing call to bound member function?");
7838
7839 APValue Val;
7840 if (!Evaluate(Val, Info, E->getBase()))
7841 return false;
7842
7843 QualType BaseTy = E->getBase()->getType();
7844
7845 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7846 if (!FD) return Error(E);
7847 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7848 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7849 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7850
7851 // Note: there is no lvalue base here. But this case should only ever
7852 // happen in C or in C++98, where we cannot be evaluating a constexpr
7853 // constructor, which is the only case the base matters.
7854 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7855 SubobjectDesignator Designator(BaseTy);
7856 Designator.addDeclUnchecked(FD);
7857
7858 APValue Result;
7859 return extractSubobject(Info, E, Obj, Designator, Result) &&
7860 DerivedSuccess(Result, E);
7861 }
7862
VisitExtVectorElementExpr(const ExtVectorElementExpr * E)7863 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7864 APValue Val;
7865 if (!Evaluate(Val, Info, E->getBase()))
7866 return false;
7867
7868 if (Val.isVector()) {
7869 SmallVector<uint32_t, 4> Indices;
7870 E->getEncodedElementAccess(Indices);
7871 if (Indices.size() == 1) {
7872 // Return scalar.
7873 return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7874 } else {
7875 // Construct new APValue vector.
7876 SmallVector<APValue, 4> Elts;
7877 for (unsigned I = 0; I < Indices.size(); ++I) {
7878 Elts.push_back(Val.getVectorElt(Indices[I]));
7879 }
7880 APValue VecResult(Elts.data(), Indices.size());
7881 return DerivedSuccess(VecResult, E);
7882 }
7883 }
7884
7885 return false;
7886 }
7887
VisitCastExpr(const CastExpr * E)7888 bool VisitCastExpr(const CastExpr *E) {
7889 switch (E->getCastKind()) {
7890 default:
7891 break;
7892
7893 case CK_AtomicToNonAtomic: {
7894 APValue AtomicVal;
7895 // This does not need to be done in place even for class/array types:
7896 // atomic-to-non-atomic conversion implies copying the object
7897 // representation.
7898 if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7899 return false;
7900 return DerivedSuccess(AtomicVal, E);
7901 }
7902
7903 case CK_NoOp:
7904 case CK_UserDefinedConversion:
7905 return StmtVisitorTy::Visit(E->getSubExpr());
7906
7907 case CK_LValueToRValue: {
7908 LValue LVal;
7909 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7910 return false;
7911 APValue RVal;
7912 // Note, we use the subexpression's type in order to retain cv-qualifiers.
7913 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7914 LVal, RVal))
7915 return false;
7916 return DerivedSuccess(RVal, E);
7917 }
7918 case CK_LValueToRValueBitCast: {
7919 APValue DestValue, SourceValue;
7920 if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7921 return false;
7922 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7923 return false;
7924 return DerivedSuccess(DestValue, E);
7925 }
7926
7927 case CK_AddressSpaceConversion: {
7928 APValue Value;
7929 if (!Evaluate(Value, Info, E->getSubExpr()))
7930 return false;
7931 return DerivedSuccess(Value, E);
7932 }
7933 }
7934
7935 return Error(E);
7936 }
7937
VisitUnaryPostInc(const UnaryOperator * UO)7938 bool VisitUnaryPostInc(const UnaryOperator *UO) {
7939 return VisitUnaryPostIncDec(UO);
7940 }
VisitUnaryPostDec(const UnaryOperator * UO)7941 bool VisitUnaryPostDec(const UnaryOperator *UO) {
7942 return VisitUnaryPostIncDec(UO);
7943 }
VisitUnaryPostIncDec(const UnaryOperator * UO)7944 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7945 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7946 return Error(UO);
7947
7948 LValue LVal;
7949 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7950 return false;
7951 APValue RVal;
7952 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7953 UO->isIncrementOp(), &RVal))
7954 return false;
7955 return DerivedSuccess(RVal, UO);
7956 }
7957
VisitStmtExpr(const StmtExpr * E)7958 bool VisitStmtExpr(const StmtExpr *E) {
7959 // We will have checked the full-expressions inside the statement expression
7960 // when they were completed, and don't need to check them again now.
7961 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior,
7962 false);
7963
7964 const CompoundStmt *CS = E->getSubStmt();
7965 if (CS->body_empty())
7966 return true;
7967
7968 BlockScopeRAII Scope(Info);
7969 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7970 BE = CS->body_end();
7971 /**/; ++BI) {
7972 if (BI + 1 == BE) {
7973 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7974 if (!FinalExpr) {
7975 Info.FFDiag((*BI)->getBeginLoc(),
7976 diag::note_constexpr_stmt_expr_unsupported);
7977 return false;
7978 }
7979 return this->Visit(FinalExpr) && Scope.destroy();
7980 }
7981
7982 APValue ReturnValue;
7983 StmtResult Result = { ReturnValue, nullptr };
7984 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7985 if (ESR != ESR_Succeeded) {
7986 // FIXME: If the statement-expression terminated due to 'return',
7987 // 'break', or 'continue', it would be nice to propagate that to
7988 // the outer statement evaluation rather than bailing out.
7989 if (ESR != ESR_Failed)
7990 Info.FFDiag((*BI)->getBeginLoc(),
7991 diag::note_constexpr_stmt_expr_unsupported);
7992 return false;
7993 }
7994 }
7995
7996 llvm_unreachable("Return from function from the loop above.");
7997 }
7998
7999 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)8000 void VisitIgnoredValue(const Expr *E) {
8001 EvaluateIgnoredValue(Info, E);
8002 }
8003
8004 /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)8005 void VisitIgnoredBaseExpression(const Expr *E) {
8006 // While MSVC doesn't evaluate the base expression, it does diagnose the
8007 // presence of side-effecting behavior.
8008 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
8009 return;
8010 VisitIgnoredValue(E);
8011 }
8012 };
8013
8014 } // namespace
8015
8016 //===----------------------------------------------------------------------===//
8017 // Common base class for lvalue and temporary evaluation.
8018 //===----------------------------------------------------------------------===//
8019 namespace {
8020 template<class Derived>
8021 class LValueExprEvaluatorBase
8022 : public ExprEvaluatorBase<Derived> {
8023 protected:
8024 LValue &Result;
8025 bool InvalidBaseOK;
8026 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
8027 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
8028
Success(APValue::LValueBase B)8029 bool Success(APValue::LValueBase B) {
8030 Result.set(B);
8031 return true;
8032 }
8033
evaluatePointer(const Expr * E,LValue & Result)8034 bool evaluatePointer(const Expr *E, LValue &Result) {
8035 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
8036 }
8037
8038 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)8039 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
8040 : ExprEvaluatorBaseTy(Info), Result(Result),
8041 InvalidBaseOK(InvalidBaseOK) {}
8042
Success(const APValue & V,const Expr * E)8043 bool Success(const APValue &V, const Expr *E) {
8044 Result.setFrom(this->Info.Ctx, V);
8045 return true;
8046 }
8047
VisitMemberExpr(const MemberExpr * E)8048 bool VisitMemberExpr(const MemberExpr *E) {
8049 // Handle non-static data members.
8050 QualType BaseTy;
8051 bool EvalOK;
8052 if (E->isArrow()) {
8053 EvalOK = evaluatePointer(E->getBase(), Result);
8054 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
8055 } else if (E->getBase()->isPRValue()) {
8056 assert(E->getBase()->getType()->isRecordType());
8057 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
8058 BaseTy = E->getBase()->getType();
8059 } else {
8060 EvalOK = this->Visit(E->getBase());
8061 BaseTy = E->getBase()->getType();
8062 }
8063 if (!EvalOK) {
8064 if (!InvalidBaseOK)
8065 return false;
8066 Result.setInvalid(E);
8067 return true;
8068 }
8069
8070 const ValueDecl *MD = E->getMemberDecl();
8071 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
8072 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
8073 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
8074 (void)BaseTy;
8075 if (!HandleLValueMember(this->Info, E, Result, FD))
8076 return false;
8077 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
8078 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
8079 return false;
8080 } else
8081 return this->Error(E);
8082
8083 if (MD->getType()->isReferenceType()) {
8084 APValue RefValue;
8085 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
8086 RefValue))
8087 return false;
8088 return Success(RefValue, E);
8089 }
8090 return true;
8091 }
8092
VisitBinaryOperator(const BinaryOperator * E)8093 bool VisitBinaryOperator(const BinaryOperator *E) {
8094 switch (E->getOpcode()) {
8095 default:
8096 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8097
8098 case BO_PtrMemD:
8099 case BO_PtrMemI:
8100 return HandleMemberPointerAccess(this->Info, E, Result);
8101 }
8102 }
8103
VisitCastExpr(const CastExpr * E)8104 bool VisitCastExpr(const CastExpr *E) {
8105 switch (E->getCastKind()) {
8106 default:
8107 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8108
8109 case CK_DerivedToBase:
8110 case CK_UncheckedDerivedToBase:
8111 if (!this->Visit(E->getSubExpr()))
8112 return false;
8113
8114 // Now figure out the necessary offset to add to the base LV to get from
8115 // the derived class to the base class.
8116 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
8117 Result);
8118 }
8119 }
8120 };
8121 }
8122
8123 //===----------------------------------------------------------------------===//
8124 // LValue Evaluation
8125 //
8126 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
8127 // function designators (in C), decl references to void objects (in C), and
8128 // temporaries (if building with -Wno-address-of-temporary).
8129 //
8130 // LValue evaluation produces values comprising a base expression of one of the
8131 // following types:
8132 // - Declarations
8133 // * VarDecl
8134 // * FunctionDecl
8135 // - Literals
8136 // * CompoundLiteralExpr in C (and in global scope in C++)
8137 // * StringLiteral
8138 // * PredefinedExpr
8139 // * ObjCStringLiteralExpr
8140 // * ObjCEncodeExpr
8141 // * AddrLabelExpr
8142 // * BlockExpr
8143 // * CallExpr for a MakeStringConstant builtin
8144 // - typeid(T) expressions, as TypeInfoLValues
8145 // - Locals and temporaries
8146 // * MaterializeTemporaryExpr
8147 // * Any Expr, with a CallIndex indicating the function in which the temporary
8148 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
8149 // from the AST (FIXME).
8150 // * A MaterializeTemporaryExpr that has static storage duration, with no
8151 // CallIndex, for a lifetime-extended temporary.
8152 // * The ConstantExpr that is currently being evaluated during evaluation of an
8153 // immediate invocation.
8154 // plus an offset in bytes.
8155 //===----------------------------------------------------------------------===//
8156 namespace {
8157 class LValueExprEvaluator
8158 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
8159 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)8160 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8161 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8162
8163 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8164 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8165
8166 bool VisitCallExpr(const CallExpr *E);
8167 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)8168 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8169 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8170 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8171 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)8172 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)8173 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8174 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8175 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8176 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8177 bool VisitUnaryDeref(const UnaryOperator *E);
8178 bool VisitUnaryReal(const UnaryOperator *E);
8179 bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)8180 bool VisitUnaryPreInc(const UnaryOperator *UO) {
8181 return VisitUnaryPreIncDec(UO);
8182 }
VisitUnaryPreDec(const UnaryOperator * UO)8183 bool VisitUnaryPreDec(const UnaryOperator *UO) {
8184 return VisitUnaryPreIncDec(UO);
8185 }
8186 bool VisitBinAssign(const BinaryOperator *BO);
8187 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8188
VisitCastExpr(const CastExpr * E)8189 bool VisitCastExpr(const CastExpr *E) {
8190 switch (E->getCastKind()) {
8191 default:
8192 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8193
8194 case CK_LValueBitCast:
8195 this->CCEDiag(E, diag::note_constexpr_invalid_cast)
8196 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8197 if (!Visit(E->getSubExpr()))
8198 return false;
8199 Result.Designator.setInvalid();
8200 return true;
8201
8202 case CK_BaseToDerived:
8203 if (!Visit(E->getSubExpr()))
8204 return false;
8205 return HandleBaseToDerivedCast(Info, E, Result);
8206
8207 case CK_Dynamic:
8208 if (!Visit(E->getSubExpr()))
8209 return false;
8210 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8211 }
8212 }
8213 };
8214 } // end anonymous namespace
8215
8216 /// Evaluate an expression as an lvalue. This can be legitimately called on
8217 /// expressions which are not glvalues, in three cases:
8218 /// * function designators in C, and
8219 /// * "extern void" objects
8220 /// * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8221 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8222 bool InvalidBaseOK) {
8223 assert(!E->isValueDependent());
8224 assert(E->isGLValue() || E->getType()->isFunctionType() ||
8225 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens()));
8226 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8227 }
8228
VisitDeclRefExpr(const DeclRefExpr * E)8229 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8230 const NamedDecl *D = E->getDecl();
8231 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl,
8232 UnnamedGlobalConstantDecl>(D))
8233 return Success(cast<ValueDecl>(D));
8234 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8235 return VisitVarDecl(E, VD);
8236 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8237 return Visit(BD->getBinding());
8238 return Error(E);
8239 }
8240
8241
VisitVarDecl(const Expr * E,const VarDecl * VD)8242 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8243
8244 // If we are within a lambda's call operator, check whether the 'VD' referred
8245 // to within 'E' actually represents a lambda-capture that maps to a
8246 // data-member/field within the closure object, and if so, evaluate to the
8247 // field or what the field refers to.
8248 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8249 isa<DeclRefExpr>(E) &&
8250 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8251 // We don't always have a complete capture-map when checking or inferring if
8252 // the function call operator meets the requirements of a constexpr function
8253 // - but we don't need to evaluate the captures to determine constexprness
8254 // (dcl.constexpr C++17).
8255 if (Info.checkingPotentialConstantExpression())
8256 return false;
8257
8258 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8259 // Start with 'Result' referring to the complete closure object...
8260 Result = *Info.CurrentCall->This;
8261 // ... then update it to refer to the field of the closure object
8262 // that represents the capture.
8263 if (!HandleLValueMember(Info, E, Result, FD))
8264 return false;
8265 // And if the field is of reference type, update 'Result' to refer to what
8266 // the field refers to.
8267 if (FD->getType()->isReferenceType()) {
8268 APValue RVal;
8269 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8270 RVal))
8271 return false;
8272 Result.setFrom(Info.Ctx, RVal);
8273 }
8274 return true;
8275 }
8276 }
8277
8278 CallStackFrame *Frame = nullptr;
8279 unsigned Version = 0;
8280 if (VD->hasLocalStorage()) {
8281 // Only if a local variable was declared in the function currently being
8282 // evaluated, do we expect to be able to find its value in the current
8283 // frame. (Otherwise it was likely declared in an enclosing context and
8284 // could either have a valid evaluatable value (for e.g. a constexpr
8285 // variable) or be ill-formed (and trigger an appropriate evaluation
8286 // diagnostic)).
8287 CallStackFrame *CurrFrame = Info.CurrentCall;
8288 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8289 // Function parameters are stored in some caller's frame. (Usually the
8290 // immediate caller, but for an inherited constructor they may be more
8291 // distant.)
8292 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8293 if (CurrFrame->Arguments) {
8294 VD = CurrFrame->Arguments.getOrigParam(PVD);
8295 Frame =
8296 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8297 Version = CurrFrame->Arguments.Version;
8298 }
8299 } else {
8300 Frame = CurrFrame;
8301 Version = CurrFrame->getCurrentTemporaryVersion(VD);
8302 }
8303 }
8304 }
8305
8306 if (!VD->getType()->isReferenceType()) {
8307 if (Frame) {
8308 Result.set({VD, Frame->Index, Version});
8309 return true;
8310 }
8311 return Success(VD);
8312 }
8313
8314 if (!Info.getLangOpts().CPlusPlus11) {
8315 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8316 << VD << VD->getType();
8317 Info.Note(VD->getLocation(), diag::note_declared_at);
8318 }
8319
8320 APValue *V;
8321 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8322 return false;
8323 if (!V->hasValue()) {
8324 // FIXME: Is it possible for V to be indeterminate here? If so, we should
8325 // adjust the diagnostic to say that.
8326 if (!Info.checkingPotentialConstantExpression())
8327 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8328 return false;
8329 }
8330 return Success(*V, E);
8331 }
8332
VisitCallExpr(const CallExpr * E)8333 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) {
8334 if (!IsConstantEvaluatedBuiltinCall(E))
8335 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8336
8337 switch (E->getBuiltinCallee()) {
8338 default:
8339 return false;
8340 case Builtin::BIas_const:
8341 case Builtin::BIforward:
8342 case Builtin::BImove:
8343 case Builtin::BImove_if_noexcept:
8344 if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr())
8345 return Visit(E->getArg(0));
8346 break;
8347 }
8348
8349 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8350 }
8351
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)8352 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8353 const MaterializeTemporaryExpr *E) {
8354 // Walk through the expression to find the materialized temporary itself.
8355 SmallVector<const Expr *, 2> CommaLHSs;
8356 SmallVector<SubobjectAdjustment, 2> Adjustments;
8357 const Expr *Inner =
8358 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8359
8360 // If we passed any comma operators, evaluate their LHSs.
8361 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8362 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8363 return false;
8364
8365 // A materialized temporary with static storage duration can appear within the
8366 // result of a constant expression evaluation, so we need to preserve its
8367 // value for use outside this evaluation.
8368 APValue *Value;
8369 if (E->getStorageDuration() == SD_Static) {
8370 // FIXME: What about SD_Thread?
8371 Value = E->getOrCreateValue(true);
8372 *Value = APValue();
8373 Result.set(E);
8374 } else {
8375 Value = &Info.CurrentCall->createTemporary(
8376 E, E->getType(),
8377 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8378 : ScopeKind::Block,
8379 Result);
8380 }
8381
8382 QualType Type = Inner->getType();
8383
8384 // Materialize the temporary itself.
8385 if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8386 *Value = APValue();
8387 return false;
8388 }
8389
8390 // Adjust our lvalue to refer to the desired subobject.
8391 for (unsigned I = Adjustments.size(); I != 0; /**/) {
8392 --I;
8393 switch (Adjustments[I].Kind) {
8394 case SubobjectAdjustment::DerivedToBaseAdjustment:
8395 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8396 Type, Result))
8397 return false;
8398 Type = Adjustments[I].DerivedToBase.BasePath->getType();
8399 break;
8400
8401 case SubobjectAdjustment::FieldAdjustment:
8402 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8403 return false;
8404 Type = Adjustments[I].Field->getType();
8405 break;
8406
8407 case SubobjectAdjustment::MemberPointerAdjustment:
8408 if (!HandleMemberPointerAccess(this->Info, Type, Result,
8409 Adjustments[I].Ptr.RHS))
8410 return false;
8411 Type = Adjustments[I].Ptr.MPT->getPointeeType();
8412 break;
8413 }
8414 }
8415
8416 return true;
8417 }
8418
8419 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)8420 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8421 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8422 "lvalue compound literal in c++?");
8423 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8424 // only see this when folding in C, so there's no standard to follow here.
8425 return Success(E);
8426 }
8427
VisitCXXTypeidExpr(const CXXTypeidExpr * E)8428 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8429 TypeInfoLValue TypeInfo;
8430
8431 if (!E->isPotentiallyEvaluated()) {
8432 if (E->isTypeOperand())
8433 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8434 else
8435 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8436 } else {
8437 if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8438 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8439 << E->getExprOperand()->getType()
8440 << E->getExprOperand()->getSourceRange();
8441 }
8442
8443 if (!Visit(E->getExprOperand()))
8444 return false;
8445
8446 std::optional<DynamicType> DynType =
8447 ComputeDynamicType(Info, E, Result, AK_TypeId);
8448 if (!DynType)
8449 return false;
8450
8451 TypeInfo =
8452 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8453 }
8454
8455 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8456 }
8457
VisitCXXUuidofExpr(const CXXUuidofExpr * E)8458 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8459 return Success(E->getGuidDecl());
8460 }
8461
VisitMemberExpr(const MemberExpr * E)8462 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8463 // Handle static data members.
8464 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8465 VisitIgnoredBaseExpression(E->getBase());
8466 return VisitVarDecl(E, VD);
8467 }
8468
8469 // Handle static member functions.
8470 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8471 if (MD->isStatic()) {
8472 VisitIgnoredBaseExpression(E->getBase());
8473 return Success(MD);
8474 }
8475 }
8476
8477 // Handle non-static data members.
8478 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8479 }
8480
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)8481 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8482 // FIXME: Deal with vectors as array subscript bases.
8483 if (E->getBase()->getType()->isVectorType() ||
8484 E->getBase()->getType()->isVLSTBuiltinType())
8485 return Error(E);
8486
8487 APSInt Index;
8488 bool Success = true;
8489
8490 // C++17's rules require us to evaluate the LHS first, regardless of which
8491 // side is the base.
8492 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8493 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8494 : !EvaluateInteger(SubExpr, Index, Info)) {
8495 if (!Info.noteFailure())
8496 return false;
8497 Success = false;
8498 }
8499 }
8500
8501 return Success &&
8502 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8503 }
8504
VisitUnaryDeref(const UnaryOperator * E)8505 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8506 return evaluatePointer(E->getSubExpr(), Result);
8507 }
8508
VisitUnaryReal(const UnaryOperator * E)8509 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8510 if (!Visit(E->getSubExpr()))
8511 return false;
8512 // __real is a no-op on scalar lvalues.
8513 if (E->getSubExpr()->getType()->isAnyComplexType())
8514 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8515 return true;
8516 }
8517
VisitUnaryImag(const UnaryOperator * E)8518 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8519 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8520 "lvalue __imag__ on scalar?");
8521 if (!Visit(E->getSubExpr()))
8522 return false;
8523 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8524 return true;
8525 }
8526
VisitUnaryPreIncDec(const UnaryOperator * UO)8527 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8528 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8529 return Error(UO);
8530
8531 if (!this->Visit(UO->getSubExpr()))
8532 return false;
8533
8534 return handleIncDec(
8535 this->Info, UO, Result, UO->getSubExpr()->getType(),
8536 UO->isIncrementOp(), nullptr);
8537 }
8538
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)8539 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8540 const CompoundAssignOperator *CAO) {
8541 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8542 return Error(CAO);
8543
8544 bool Success = true;
8545
8546 // C++17 onwards require that we evaluate the RHS first.
8547 APValue RHS;
8548 if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8549 if (!Info.noteFailure())
8550 return false;
8551 Success = false;
8552 }
8553
8554 // The overall lvalue result is the result of evaluating the LHS.
8555 if (!this->Visit(CAO->getLHS()) || !Success)
8556 return false;
8557
8558 return handleCompoundAssignment(
8559 this->Info, CAO,
8560 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8561 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8562 }
8563
VisitBinAssign(const BinaryOperator * E)8564 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8565 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8566 return Error(E);
8567
8568 bool Success = true;
8569
8570 // C++17 onwards require that we evaluate the RHS first.
8571 APValue NewVal;
8572 if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8573 if (!Info.noteFailure())
8574 return false;
8575 Success = false;
8576 }
8577
8578 if (!this->Visit(E->getLHS()) || !Success)
8579 return false;
8580
8581 if (Info.getLangOpts().CPlusPlus20 &&
8582 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8583 return false;
8584
8585 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8586 NewVal);
8587 }
8588
8589 //===----------------------------------------------------------------------===//
8590 // Pointer Evaluation
8591 //===----------------------------------------------------------------------===//
8592
8593 /// Attempts to compute the number of bytes available at the pointer
8594 /// returned by a function with the alloc_size attribute. Returns true if we
8595 /// were successful. Places an unsigned number into `Result`.
8596 ///
8597 /// This expects the given CallExpr to be a call to a function with an
8598 /// alloc_size attribute.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const CallExpr * Call,llvm::APInt & Result)8599 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8600 const CallExpr *Call,
8601 llvm::APInt &Result) {
8602 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8603
8604 assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8605 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8606 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8607 if (Call->getNumArgs() <= SizeArgNo)
8608 return false;
8609
8610 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8611 Expr::EvalResult ExprResult;
8612 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8613 return false;
8614 Into = ExprResult.Val.getInt();
8615 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8616 return false;
8617 Into = Into.zext(BitsInSizeT);
8618 return true;
8619 };
8620
8621 APSInt SizeOfElem;
8622 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8623 return false;
8624
8625 if (!AllocSize->getNumElemsParam().isValid()) {
8626 Result = std::move(SizeOfElem);
8627 return true;
8628 }
8629
8630 APSInt NumberOfElems;
8631 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8632 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8633 return false;
8634
8635 bool Overflow;
8636 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8637 if (Overflow)
8638 return false;
8639
8640 Result = std::move(BytesAvailable);
8641 return true;
8642 }
8643
8644 /// Convenience function. LVal's base must be a call to an alloc_size
8645 /// function.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const LValue & LVal,llvm::APInt & Result)8646 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8647 const LValue &LVal,
8648 llvm::APInt &Result) {
8649 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8650 "Can't get the size of a non alloc_size function");
8651 const auto *Base = LVal.getLValueBase().get<const Expr *>();
8652 const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8653 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8654 }
8655
8656 /// Attempts to evaluate the given LValueBase as the result of a call to
8657 /// a function with the alloc_size attribute. If it was possible to do so, this
8658 /// function will return true, make Result's Base point to said function call,
8659 /// and mark Result's Base as invalid.
evaluateLValueAsAllocSize(EvalInfo & Info,APValue::LValueBase Base,LValue & Result)8660 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8661 LValue &Result) {
8662 if (Base.isNull())
8663 return false;
8664
8665 // Because we do no form of static analysis, we only support const variables.
8666 //
8667 // Additionally, we can't support parameters, nor can we support static
8668 // variables (in the latter case, use-before-assign isn't UB; in the former,
8669 // we have no clue what they'll be assigned to).
8670 const auto *VD =
8671 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8672 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8673 return false;
8674
8675 const Expr *Init = VD->getAnyInitializer();
8676 if (!Init || Init->getType().isNull())
8677 return false;
8678
8679 const Expr *E = Init->IgnoreParens();
8680 if (!tryUnwrapAllocSizeCall(E))
8681 return false;
8682
8683 // Store E instead of E unwrapped so that the type of the LValue's base is
8684 // what the user wanted.
8685 Result.setInvalid(E);
8686
8687 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8688 Result.addUnsizedArray(Info, E, Pointee);
8689 return true;
8690 }
8691
8692 namespace {
8693 class PointerExprEvaluator
8694 : public ExprEvaluatorBase<PointerExprEvaluator> {
8695 LValue &Result;
8696 bool InvalidBaseOK;
8697
Success(const Expr * E)8698 bool Success(const Expr *E) {
8699 Result.set(E);
8700 return true;
8701 }
8702
evaluateLValue(const Expr * E,LValue & Result)8703 bool evaluateLValue(const Expr *E, LValue &Result) {
8704 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8705 }
8706
evaluatePointer(const Expr * E,LValue & Result)8707 bool evaluatePointer(const Expr *E, LValue &Result) {
8708 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8709 }
8710
8711 bool visitNonBuiltinCallExpr(const CallExpr *E);
8712 public:
8713
PointerExprEvaluator(EvalInfo & info,LValue & Result,bool InvalidBaseOK)8714 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8715 : ExprEvaluatorBaseTy(info), Result(Result),
8716 InvalidBaseOK(InvalidBaseOK) {}
8717
Success(const APValue & V,const Expr * E)8718 bool Success(const APValue &V, const Expr *E) {
8719 Result.setFrom(Info.Ctx, V);
8720 return true;
8721 }
ZeroInitialization(const Expr * E)8722 bool ZeroInitialization(const Expr *E) {
8723 Result.setNull(Info.Ctx, E->getType());
8724 return true;
8725 }
8726
8727 bool VisitBinaryOperator(const BinaryOperator *E);
8728 bool VisitCastExpr(const CastExpr* E);
8729 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)8730 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8731 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)8732 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8733 if (E->isExpressibleAsConstantInitializer())
8734 return Success(E);
8735 if (Info.noteFailure())
8736 EvaluateIgnoredValue(Info, E->getSubExpr());
8737 return Error(E);
8738 }
VisitAddrLabelExpr(const AddrLabelExpr * E)8739 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8740 { return Success(E); }
8741 bool VisitCallExpr(const CallExpr *E);
8742 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
VisitBlockExpr(const BlockExpr * E)8743 bool VisitBlockExpr(const BlockExpr *E) {
8744 if (!E->getBlockDecl()->hasCaptures())
8745 return Success(E);
8746 return Error(E);
8747 }
VisitCXXThisExpr(const CXXThisExpr * E)8748 bool VisitCXXThisExpr(const CXXThisExpr *E) {
8749 // Can't look at 'this' when checking a potential constant expression.
8750 if (Info.checkingPotentialConstantExpression())
8751 return false;
8752 if (!Info.CurrentCall->This) {
8753 if (Info.getLangOpts().CPlusPlus11)
8754 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8755 else
8756 Info.FFDiag(E);
8757 return false;
8758 }
8759 Result = *Info.CurrentCall->This;
8760 // If we are inside a lambda's call operator, the 'this' expression refers
8761 // to the enclosing '*this' object (either by value or reference) which is
8762 // either copied into the closure object's field that represents the '*this'
8763 // or refers to '*this'.
8764 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8765 // Ensure we actually have captured 'this'. (an error will have
8766 // been previously reported if not).
8767 if (!Info.CurrentCall->LambdaThisCaptureField)
8768 return false;
8769
8770 // Update 'Result' to refer to the data member/field of the closure object
8771 // that represents the '*this' capture.
8772 if (!HandleLValueMember(Info, E, Result,
8773 Info.CurrentCall->LambdaThisCaptureField))
8774 return false;
8775 // If we captured '*this' by reference, replace the field with its referent.
8776 if (Info.CurrentCall->LambdaThisCaptureField->getType()
8777 ->isPointerType()) {
8778 APValue RVal;
8779 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8780 RVal))
8781 return false;
8782
8783 Result.setFrom(Info.Ctx, RVal);
8784 }
8785 }
8786 return true;
8787 }
8788
8789 bool VisitCXXNewExpr(const CXXNewExpr *E);
8790
VisitSourceLocExpr(const SourceLocExpr * E)8791 bool VisitSourceLocExpr(const SourceLocExpr *E) {
8792 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?");
8793 APValue LValResult = E->EvaluateInContext(
8794 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8795 Result.setFrom(Info.Ctx, LValResult);
8796 return true;
8797 }
8798
VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr * E)8799 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) {
8800 std::string ResultStr = E->ComputeName(Info.Ctx);
8801
8802 QualType CharTy = Info.Ctx.CharTy.withConst();
8803 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()),
8804 ResultStr.size() + 1);
8805 QualType ArrayTy = Info.Ctx.getConstantArrayType(CharTy, Size, nullptr,
8806 ArrayType::Normal, 0);
8807
8808 StringLiteral *SL =
8809 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteral::Ordinary,
8810 /*Pascal*/ false, ArrayTy, E->getLocation());
8811
8812 evaluateLValue(SL, Result);
8813 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy));
8814 return true;
8815 }
8816
8817 // FIXME: Missing: @protocol, @selector
8818 };
8819 } // end anonymous namespace
8820
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8821 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8822 bool InvalidBaseOK) {
8823 assert(!E->isValueDependent());
8824 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
8825 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8826 }
8827
VisitBinaryOperator(const BinaryOperator * E)8828 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8829 if (E->getOpcode() != BO_Add &&
8830 E->getOpcode() != BO_Sub)
8831 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8832
8833 const Expr *PExp = E->getLHS();
8834 const Expr *IExp = E->getRHS();
8835 if (IExp->getType()->isPointerType())
8836 std::swap(PExp, IExp);
8837
8838 bool EvalPtrOK = evaluatePointer(PExp, Result);
8839 if (!EvalPtrOK && !Info.noteFailure())
8840 return false;
8841
8842 llvm::APSInt Offset;
8843 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8844 return false;
8845
8846 if (E->getOpcode() == BO_Sub)
8847 negateAsSigned(Offset);
8848
8849 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8850 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8851 }
8852
VisitUnaryAddrOf(const UnaryOperator * E)8853 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8854 return evaluateLValue(E->getSubExpr(), Result);
8855 }
8856
8857 // Is the provided decl 'std::source_location::current'?
IsDeclSourceLocationCurrent(const FunctionDecl * FD)8858 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) {
8859 if (!FD)
8860 return false;
8861 const IdentifierInfo *FnII = FD->getIdentifier();
8862 if (!FnII || !FnII->isStr("current"))
8863 return false;
8864
8865 const auto *RD = dyn_cast<RecordDecl>(FD->getParent());
8866 if (!RD)
8867 return false;
8868
8869 const IdentifierInfo *ClassII = RD->getIdentifier();
8870 return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location");
8871 }
8872
VisitCastExpr(const CastExpr * E)8873 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8874 const Expr *SubExpr = E->getSubExpr();
8875
8876 switch (E->getCastKind()) {
8877 default:
8878 break;
8879 case CK_BitCast:
8880 case CK_CPointerToObjCPointerCast:
8881 case CK_BlockPointerToObjCPointerCast:
8882 case CK_AnyPointerToBlockPointerCast:
8883 case CK_AddressSpaceConversion:
8884 if (!Visit(SubExpr))
8885 return false;
8886 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8887 // permitted in constant expressions in C++11. Bitcasts from cv void* are
8888 // also static_casts, but we disallow them as a resolution to DR1312.
8889 if (!E->getType()->isVoidPointerType()) {
8890 // In some circumstances, we permit casting from void* to cv1 T*, when the
8891 // actual pointee object is actually a cv2 T.
8892 bool VoidPtrCastMaybeOK =
8893 !Result.InvalidBase && !Result.Designator.Invalid &&
8894 !Result.IsNullPtr &&
8895 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8896 E->getType()->getPointeeType());
8897 // 1. We'll allow it in std::allocator::allocate, and anything which that
8898 // calls.
8899 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s
8900 // <source_location> header. Fixed in GCC 12 and later (2022-04-??).
8901 // We'll allow it in the body of std::source_location::current. GCC's
8902 // implementation had a parameter of type `void*`, and casts from
8903 // that back to `const __impl*` in its body.
8904 if (VoidPtrCastMaybeOK &&
8905 (Info.getStdAllocatorCaller("allocate") ||
8906 IsDeclSourceLocationCurrent(Info.CurrentCall->Callee))) {
8907 // Permitted.
8908 } else {
8909 Result.Designator.setInvalid();
8910 if (SubExpr->getType()->isVoidPointerType())
8911 CCEDiag(E, diag::note_constexpr_invalid_cast)
8912 << 3 << SubExpr->getType();
8913 else
8914 CCEDiag(E, diag::note_constexpr_invalid_cast)
8915 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8916 }
8917 }
8918 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8919 ZeroInitialization(E);
8920 return true;
8921
8922 case CK_DerivedToBase:
8923 case CK_UncheckedDerivedToBase:
8924 if (!evaluatePointer(E->getSubExpr(), Result))
8925 return false;
8926 if (!Result.Base && Result.Offset.isZero())
8927 return true;
8928
8929 // Now figure out the necessary offset to add to the base LV to get from
8930 // the derived class to the base class.
8931 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8932 castAs<PointerType>()->getPointeeType(),
8933 Result);
8934
8935 case CK_BaseToDerived:
8936 if (!Visit(E->getSubExpr()))
8937 return false;
8938 if (!Result.Base && Result.Offset.isZero())
8939 return true;
8940 return HandleBaseToDerivedCast(Info, E, Result);
8941
8942 case CK_Dynamic:
8943 if (!Visit(E->getSubExpr()))
8944 return false;
8945 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8946
8947 case CK_NullToPointer:
8948 VisitIgnoredValue(E->getSubExpr());
8949 return ZeroInitialization(E);
8950
8951 case CK_IntegralToPointer: {
8952 CCEDiag(E, diag::note_constexpr_invalid_cast)
8953 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
8954
8955 APValue Value;
8956 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8957 break;
8958
8959 if (Value.isInt()) {
8960 unsigned Size = Info.Ctx.getTypeSize(E->getType());
8961 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8962 Result.Base = (Expr*)nullptr;
8963 Result.InvalidBase = false;
8964 Result.Offset = CharUnits::fromQuantity(N);
8965 Result.Designator.setInvalid();
8966 Result.IsNullPtr = false;
8967 return true;
8968 } else {
8969 // Cast is of an lvalue, no need to change value.
8970 Result.setFrom(Info.Ctx, Value);
8971 return true;
8972 }
8973 }
8974
8975 case CK_ArrayToPointerDecay: {
8976 if (SubExpr->isGLValue()) {
8977 if (!evaluateLValue(SubExpr, Result))
8978 return false;
8979 } else {
8980 APValue &Value = Info.CurrentCall->createTemporary(
8981 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8982 if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8983 return false;
8984 }
8985 // The result is a pointer to the first element of the array.
8986 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8987 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8988 Result.addArray(Info, E, CAT);
8989 else
8990 Result.addUnsizedArray(Info, E, AT->getElementType());
8991 return true;
8992 }
8993
8994 case CK_FunctionToPointerDecay:
8995 return evaluateLValue(SubExpr, Result);
8996
8997 case CK_LValueToRValue: {
8998 LValue LVal;
8999 if (!evaluateLValue(E->getSubExpr(), LVal))
9000 return false;
9001
9002 APValue RVal;
9003 // Note, we use the subexpression's type in order to retain cv-qualifiers.
9004 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
9005 LVal, RVal))
9006 return InvalidBaseOK &&
9007 evaluateLValueAsAllocSize(Info, LVal.Base, Result);
9008 return Success(RVal, E);
9009 }
9010 }
9011
9012 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9013 }
9014
GetAlignOfType(EvalInfo & Info,QualType T,UnaryExprOrTypeTrait ExprKind)9015 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
9016 UnaryExprOrTypeTrait ExprKind) {
9017 // C++ [expr.alignof]p3:
9018 // When alignof is applied to a reference type, the result is the
9019 // alignment of the referenced type.
9020 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
9021 T = Ref->getPointeeType();
9022
9023 if (T.getQualifiers().hasUnaligned())
9024 return CharUnits::One();
9025
9026 const bool AlignOfReturnsPreferred =
9027 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
9028
9029 // __alignof is defined to return the preferred alignment.
9030 // Before 8, clang returned the preferred alignment for alignof and _Alignof
9031 // as well.
9032 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
9033 return Info.Ctx.toCharUnitsFromBits(
9034 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
9035 // alignof and _Alignof are defined to return the ABI alignment.
9036 else if (ExprKind == UETT_AlignOf)
9037 return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
9038 else
9039 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
9040 }
9041
GetAlignOfExpr(EvalInfo & Info,const Expr * E,UnaryExprOrTypeTrait ExprKind)9042 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
9043 UnaryExprOrTypeTrait ExprKind) {
9044 E = E->IgnoreParens();
9045
9046 // The kinds of expressions that we have special-case logic here for
9047 // should be kept up to date with the special checks for those
9048 // expressions in Sema.
9049
9050 // alignof decl is always accepted, even if it doesn't make sense: we default
9051 // to 1 in those cases.
9052 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9053 return Info.Ctx.getDeclAlign(DRE->getDecl(),
9054 /*RefAsPointee*/true);
9055
9056 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
9057 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
9058 /*RefAsPointee*/true);
9059
9060 return GetAlignOfType(Info, E->getType(), ExprKind);
9061 }
9062
getBaseAlignment(EvalInfo & Info,const LValue & Value)9063 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
9064 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
9065 return Info.Ctx.getDeclAlign(VD);
9066 if (const auto *E = Value.Base.dyn_cast<const Expr *>())
9067 return GetAlignOfExpr(Info, E, UETT_AlignOf);
9068 return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
9069 }
9070
9071 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
9072 /// __builtin_is_aligned and __builtin_assume_aligned.
getAlignmentArgument(const Expr * E,QualType ForType,EvalInfo & Info,APSInt & Alignment)9073 static bool getAlignmentArgument(const Expr *E, QualType ForType,
9074 EvalInfo &Info, APSInt &Alignment) {
9075 if (!EvaluateInteger(E, Alignment, Info))
9076 return false;
9077 if (Alignment < 0 || !Alignment.isPowerOf2()) {
9078 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
9079 return false;
9080 }
9081 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
9082 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
9083 if (APSInt::compareValues(Alignment, MaxValue) > 0) {
9084 Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
9085 << MaxValue << ForType << Alignment;
9086 return false;
9087 }
9088 // Ensure both alignment and source value have the same bit width so that we
9089 // don't assert when computing the resulting value.
9090 APSInt ExtAlignment =
9091 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
9092 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
9093 "Alignment should not be changed by ext/trunc");
9094 Alignment = ExtAlignment;
9095 assert(Alignment.getBitWidth() == SrcWidth);
9096 return true;
9097 }
9098
9099 // To be clear: this happily visits unsupported builtins. Better name welcomed.
visitNonBuiltinCallExpr(const CallExpr * E)9100 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
9101 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
9102 return true;
9103
9104 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
9105 return false;
9106
9107 Result.setInvalid(E);
9108 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
9109 Result.addUnsizedArray(Info, E, PointeeTy);
9110 return true;
9111 }
9112
VisitCallExpr(const CallExpr * E)9113 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
9114 if (!IsConstantEvaluatedBuiltinCall(E))
9115 return visitNonBuiltinCallExpr(E);
9116 return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
9117 }
9118
9119 // Determine if T is a character type for which we guarantee that
9120 // sizeof(T) == 1.
isOneByteCharacterType(QualType T)9121 static bool isOneByteCharacterType(QualType T) {
9122 return T->isCharType() || T->isChar8Type();
9123 }
9124
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)9125 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
9126 unsigned BuiltinOp) {
9127 if (IsNoOpCall(E))
9128 return Success(E);
9129
9130 switch (BuiltinOp) {
9131 case Builtin::BIaddressof:
9132 case Builtin::BI__addressof:
9133 case Builtin::BI__builtin_addressof:
9134 return evaluateLValue(E->getArg(0), Result);
9135 case Builtin::BI__builtin_assume_aligned: {
9136 // We need to be very careful here because: if the pointer does not have the
9137 // asserted alignment, then the behavior is undefined, and undefined
9138 // behavior is non-constant.
9139 if (!evaluatePointer(E->getArg(0), Result))
9140 return false;
9141
9142 LValue OffsetResult(Result);
9143 APSInt Alignment;
9144 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9145 Alignment))
9146 return false;
9147 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
9148
9149 if (E->getNumArgs() > 2) {
9150 APSInt Offset;
9151 if (!EvaluateInteger(E->getArg(2), Offset, Info))
9152 return false;
9153
9154 int64_t AdditionalOffset = -Offset.getZExtValue();
9155 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
9156 }
9157
9158 // If there is a base object, then it must have the correct alignment.
9159 if (OffsetResult.Base) {
9160 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
9161
9162 if (BaseAlignment < Align) {
9163 Result.Designator.setInvalid();
9164 // FIXME: Add support to Diagnostic for long / long long.
9165 CCEDiag(E->getArg(0),
9166 diag::note_constexpr_baa_insufficient_alignment) << 0
9167 << (unsigned)BaseAlignment.getQuantity()
9168 << (unsigned)Align.getQuantity();
9169 return false;
9170 }
9171 }
9172
9173 // The offset must also have the correct alignment.
9174 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
9175 Result.Designator.setInvalid();
9176
9177 (OffsetResult.Base
9178 ? CCEDiag(E->getArg(0),
9179 diag::note_constexpr_baa_insufficient_alignment) << 1
9180 : CCEDiag(E->getArg(0),
9181 diag::note_constexpr_baa_value_insufficient_alignment))
9182 << (int)OffsetResult.Offset.getQuantity()
9183 << (unsigned)Align.getQuantity();
9184 return false;
9185 }
9186
9187 return true;
9188 }
9189 case Builtin::BI__builtin_align_up:
9190 case Builtin::BI__builtin_align_down: {
9191 if (!evaluatePointer(E->getArg(0), Result))
9192 return false;
9193 APSInt Alignment;
9194 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
9195 Alignment))
9196 return false;
9197 CharUnits BaseAlignment = getBaseAlignment(Info, Result);
9198 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
9199 // For align_up/align_down, we can return the same value if the alignment
9200 // is known to be greater or equal to the requested value.
9201 if (PtrAlign.getQuantity() >= Alignment)
9202 return true;
9203
9204 // The alignment could be greater than the minimum at run-time, so we cannot
9205 // infer much about the resulting pointer value. One case is possible:
9206 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
9207 // can infer the correct index if the requested alignment is smaller than
9208 // the base alignment so we can perform the computation on the offset.
9209 if (BaseAlignment.getQuantity() >= Alignment) {
9210 assert(Alignment.getBitWidth() <= 64 &&
9211 "Cannot handle > 64-bit address-space");
9212 uint64_t Alignment64 = Alignment.getZExtValue();
9213 CharUnits NewOffset = CharUnits::fromQuantity(
9214 BuiltinOp == Builtin::BI__builtin_align_down
9215 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
9216 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
9217 Result.adjustOffset(NewOffset - Result.Offset);
9218 // TODO: diagnose out-of-bounds values/only allow for arrays?
9219 return true;
9220 }
9221 // Otherwise, we cannot constant-evaluate the result.
9222 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
9223 << Alignment;
9224 return false;
9225 }
9226 case Builtin::BI__builtin_operator_new:
9227 return HandleOperatorNewCall(Info, E, Result);
9228 case Builtin::BI__builtin_launder:
9229 return evaluatePointer(E->getArg(0), Result);
9230 case Builtin::BIstrchr:
9231 case Builtin::BIwcschr:
9232 case Builtin::BImemchr:
9233 case Builtin::BIwmemchr:
9234 if (Info.getLangOpts().CPlusPlus11)
9235 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9236 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9237 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9238 else
9239 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9240 [[fallthrough]];
9241 case Builtin::BI__builtin_strchr:
9242 case Builtin::BI__builtin_wcschr:
9243 case Builtin::BI__builtin_memchr:
9244 case Builtin::BI__builtin_char_memchr:
9245 case Builtin::BI__builtin_wmemchr: {
9246 if (!Visit(E->getArg(0)))
9247 return false;
9248 APSInt Desired;
9249 if (!EvaluateInteger(E->getArg(1), Desired, Info))
9250 return false;
9251 uint64_t MaxLength = uint64_t(-1);
9252 if (BuiltinOp != Builtin::BIstrchr &&
9253 BuiltinOp != Builtin::BIwcschr &&
9254 BuiltinOp != Builtin::BI__builtin_strchr &&
9255 BuiltinOp != Builtin::BI__builtin_wcschr) {
9256 APSInt N;
9257 if (!EvaluateInteger(E->getArg(2), N, Info))
9258 return false;
9259 MaxLength = N.getExtValue();
9260 }
9261 // We cannot find the value if there are no candidates to match against.
9262 if (MaxLength == 0u)
9263 return ZeroInitialization(E);
9264 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9265 Result.Designator.Invalid)
9266 return false;
9267 QualType CharTy = Result.Designator.getType(Info.Ctx);
9268 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9269 BuiltinOp == Builtin::BI__builtin_memchr;
9270 assert(IsRawByte ||
9271 Info.Ctx.hasSameUnqualifiedType(
9272 CharTy, E->getArg(0)->getType()->getPointeeType()));
9273 // Pointers to const void may point to objects of incomplete type.
9274 if (IsRawByte && CharTy->isIncompleteType()) {
9275 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9276 return false;
9277 }
9278 // Give up on byte-oriented matching against multibyte elements.
9279 // FIXME: We can compare the bytes in the correct order.
9280 if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9281 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9282 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
9283 << CharTy;
9284 return false;
9285 }
9286 // Figure out what value we're actually looking for (after converting to
9287 // the corresponding unsigned type if necessary).
9288 uint64_t DesiredVal;
9289 bool StopAtNull = false;
9290 switch (BuiltinOp) {
9291 case Builtin::BIstrchr:
9292 case Builtin::BI__builtin_strchr:
9293 // strchr compares directly to the passed integer, and therefore
9294 // always fails if given an int that is not a char.
9295 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9296 E->getArg(1)->getType(),
9297 Desired),
9298 Desired))
9299 return ZeroInitialization(E);
9300 StopAtNull = true;
9301 [[fallthrough]];
9302 case Builtin::BImemchr:
9303 case Builtin::BI__builtin_memchr:
9304 case Builtin::BI__builtin_char_memchr:
9305 // memchr compares by converting both sides to unsigned char. That's also
9306 // correct for strchr if we get this far (to cope with plain char being
9307 // unsigned in the strchr case).
9308 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9309 break;
9310
9311 case Builtin::BIwcschr:
9312 case Builtin::BI__builtin_wcschr:
9313 StopAtNull = true;
9314 [[fallthrough]];
9315 case Builtin::BIwmemchr:
9316 case Builtin::BI__builtin_wmemchr:
9317 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9318 DesiredVal = Desired.getZExtValue();
9319 break;
9320 }
9321
9322 for (; MaxLength; --MaxLength) {
9323 APValue Char;
9324 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9325 !Char.isInt())
9326 return false;
9327 if (Char.getInt().getZExtValue() == DesiredVal)
9328 return true;
9329 if (StopAtNull && !Char.getInt())
9330 break;
9331 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9332 return false;
9333 }
9334 // Not found: return nullptr.
9335 return ZeroInitialization(E);
9336 }
9337
9338 case Builtin::BImemcpy:
9339 case Builtin::BImemmove:
9340 case Builtin::BIwmemcpy:
9341 case Builtin::BIwmemmove:
9342 if (Info.getLangOpts().CPlusPlus11)
9343 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9344 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
9345 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
9346 else
9347 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9348 [[fallthrough]];
9349 case Builtin::BI__builtin_memcpy:
9350 case Builtin::BI__builtin_memmove:
9351 case Builtin::BI__builtin_wmemcpy:
9352 case Builtin::BI__builtin_wmemmove: {
9353 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9354 BuiltinOp == Builtin::BIwmemmove ||
9355 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9356 BuiltinOp == Builtin::BI__builtin_wmemmove;
9357 bool Move = BuiltinOp == Builtin::BImemmove ||
9358 BuiltinOp == Builtin::BIwmemmove ||
9359 BuiltinOp == Builtin::BI__builtin_memmove ||
9360 BuiltinOp == Builtin::BI__builtin_wmemmove;
9361
9362 // The result of mem* is the first argument.
9363 if (!Visit(E->getArg(0)))
9364 return false;
9365 LValue Dest = Result;
9366
9367 LValue Src;
9368 if (!EvaluatePointer(E->getArg(1), Src, Info))
9369 return false;
9370
9371 APSInt N;
9372 if (!EvaluateInteger(E->getArg(2), N, Info))
9373 return false;
9374 assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9375
9376 // If the size is zero, we treat this as always being a valid no-op.
9377 // (Even if one of the src and dest pointers is null.)
9378 if (!N)
9379 return true;
9380
9381 // Otherwise, if either of the operands is null, we can't proceed. Don't
9382 // try to determine the type of the copied objects, because there aren't
9383 // any.
9384 if (!Src.Base || !Dest.Base) {
9385 APValue Val;
9386 (!Src.Base ? Src : Dest).moveInto(Val);
9387 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9388 << Move << WChar << !!Src.Base
9389 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9390 return false;
9391 }
9392 if (Src.Designator.Invalid || Dest.Designator.Invalid)
9393 return false;
9394
9395 // We require that Src and Dest are both pointers to arrays of
9396 // trivially-copyable type. (For the wide version, the designator will be
9397 // invalid if the designated object is not a wchar_t.)
9398 QualType T = Dest.Designator.getType(Info.Ctx);
9399 QualType SrcT = Src.Designator.getType(Info.Ctx);
9400 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9401 // FIXME: Consider using our bit_cast implementation to support this.
9402 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9403 return false;
9404 }
9405 if (T->isIncompleteType()) {
9406 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9407 return false;
9408 }
9409 if (!T.isTriviallyCopyableType(Info.Ctx)) {
9410 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9411 return false;
9412 }
9413
9414 // Figure out how many T's we're copying.
9415 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9416 if (!WChar) {
9417 uint64_t Remainder;
9418 llvm::APInt OrigN = N;
9419 llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9420 if (Remainder) {
9421 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9422 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false)
9423 << (unsigned)TSize;
9424 return false;
9425 }
9426 }
9427
9428 // Check that the copying will remain within the arrays, just so that we
9429 // can give a more meaningful diagnostic. This implicitly also checks that
9430 // N fits into 64 bits.
9431 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9432 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9433 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9434 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9435 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9436 << toString(N, 10, /*Signed*/false);
9437 return false;
9438 }
9439 uint64_t NElems = N.getZExtValue();
9440 uint64_t NBytes = NElems * TSize;
9441
9442 // Check for overlap.
9443 int Direction = 1;
9444 if (HasSameBase(Src, Dest)) {
9445 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9446 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9447 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9448 // Dest is inside the source region.
9449 if (!Move) {
9450 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9451 return false;
9452 }
9453 // For memmove and friends, copy backwards.
9454 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9455 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9456 return false;
9457 Direction = -1;
9458 } else if (!Move && SrcOffset >= DestOffset &&
9459 SrcOffset - DestOffset < NBytes) {
9460 // Src is inside the destination region for memcpy: invalid.
9461 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9462 return false;
9463 }
9464 }
9465
9466 while (true) {
9467 APValue Val;
9468 // FIXME: Set WantObjectRepresentation to true if we're copying a
9469 // char-like type?
9470 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9471 !handleAssignment(Info, E, Dest, T, Val))
9472 return false;
9473 // Do not iterate past the last element; if we're copying backwards, that
9474 // might take us off the start of the array.
9475 if (--NElems == 0)
9476 return true;
9477 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9478 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9479 return false;
9480 }
9481 }
9482
9483 default:
9484 return false;
9485 }
9486 }
9487
9488 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9489 APValue &Result, const InitListExpr *ILE,
9490 QualType AllocType);
9491 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9492 APValue &Result,
9493 const CXXConstructExpr *CCE,
9494 QualType AllocType);
9495
VisitCXXNewExpr(const CXXNewExpr * E)9496 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9497 if (!Info.getLangOpts().CPlusPlus20)
9498 Info.CCEDiag(E, diag::note_constexpr_new);
9499
9500 // We cannot speculatively evaluate a delete expression.
9501 if (Info.SpeculativeEvaluationDepth)
9502 return false;
9503
9504 FunctionDecl *OperatorNew = E->getOperatorNew();
9505
9506 bool IsNothrow = false;
9507 bool IsPlacement = false;
9508 if (OperatorNew->isReservedGlobalPlacementOperator() &&
9509 Info.CurrentCall->isStdFunction() && !E->isArray()) {
9510 // FIXME Support array placement new.
9511 assert(E->getNumPlacementArgs() == 1);
9512 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9513 return false;
9514 if (Result.Designator.Invalid)
9515 return false;
9516 IsPlacement = true;
9517 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9518 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9519 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9520 return false;
9521 } else if (E->getNumPlacementArgs()) {
9522 // The only new-placement list we support is of the form (std::nothrow).
9523 //
9524 // FIXME: There is no restriction on this, but it's not clear that any
9525 // other form makes any sense. We get here for cases such as:
9526 //
9527 // new (std::align_val_t{N}) X(int)
9528 //
9529 // (which should presumably be valid only if N is a multiple of
9530 // alignof(int), and in any case can't be deallocated unless N is
9531 // alignof(X) and X has new-extended alignment).
9532 if (E->getNumPlacementArgs() != 1 ||
9533 !E->getPlacementArg(0)->getType()->isNothrowT())
9534 return Error(E, diag::note_constexpr_new_placement);
9535
9536 LValue Nothrow;
9537 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9538 return false;
9539 IsNothrow = true;
9540 }
9541
9542 const Expr *Init = E->getInitializer();
9543 const InitListExpr *ResizedArrayILE = nullptr;
9544 const CXXConstructExpr *ResizedArrayCCE = nullptr;
9545 bool ValueInit = false;
9546
9547 QualType AllocType = E->getAllocatedType();
9548 if (std::optional<const Expr *> ArraySize = E->getArraySize()) {
9549 const Expr *Stripped = *ArraySize;
9550 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9551 Stripped = ICE->getSubExpr())
9552 if (ICE->getCastKind() != CK_NoOp &&
9553 ICE->getCastKind() != CK_IntegralCast)
9554 break;
9555
9556 llvm::APSInt ArrayBound;
9557 if (!EvaluateInteger(Stripped, ArrayBound, Info))
9558 return false;
9559
9560 // C++ [expr.new]p9:
9561 // The expression is erroneous if:
9562 // -- [...] its value before converting to size_t [or] applying the
9563 // second standard conversion sequence is less than zero
9564 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9565 if (IsNothrow)
9566 return ZeroInitialization(E);
9567
9568 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9569 << ArrayBound << (*ArraySize)->getSourceRange();
9570 return false;
9571 }
9572
9573 // -- its value is such that the size of the allocated object would
9574 // exceed the implementation-defined limit
9575 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9576 ArrayBound) >
9577 ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9578 if (IsNothrow)
9579 return ZeroInitialization(E);
9580
9581 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9582 << ArrayBound << (*ArraySize)->getSourceRange();
9583 return false;
9584 }
9585
9586 // -- the new-initializer is a braced-init-list and the number of
9587 // array elements for which initializers are provided [...]
9588 // exceeds the number of elements to initialize
9589 if (!Init) {
9590 // No initialization is performed.
9591 } else if (isa<CXXScalarValueInitExpr>(Init) ||
9592 isa<ImplicitValueInitExpr>(Init)) {
9593 ValueInit = true;
9594 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9595 ResizedArrayCCE = CCE;
9596 } else {
9597 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9598 assert(CAT && "unexpected type for array initializer");
9599
9600 unsigned Bits =
9601 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9602 llvm::APInt InitBound = CAT->getSize().zext(Bits);
9603 llvm::APInt AllocBound = ArrayBound.zext(Bits);
9604 if (InitBound.ugt(AllocBound)) {
9605 if (IsNothrow)
9606 return ZeroInitialization(E);
9607
9608 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9609 << toString(AllocBound, 10, /*Signed=*/false)
9610 << toString(InitBound, 10, /*Signed=*/false)
9611 << (*ArraySize)->getSourceRange();
9612 return false;
9613 }
9614
9615 // If the sizes differ, we must have an initializer list, and we need
9616 // special handling for this case when we initialize.
9617 if (InitBound != AllocBound)
9618 ResizedArrayILE = cast<InitListExpr>(Init);
9619 }
9620
9621 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9622 ArrayType::Normal, 0);
9623 } else {
9624 assert(!AllocType->isArrayType() &&
9625 "array allocation with non-array new");
9626 }
9627
9628 APValue *Val;
9629 if (IsPlacement) {
9630 AccessKinds AK = AK_Construct;
9631 struct FindObjectHandler {
9632 EvalInfo &Info;
9633 const Expr *E;
9634 QualType AllocType;
9635 const AccessKinds AccessKind;
9636 APValue *Value;
9637
9638 typedef bool result_type;
9639 bool failed() { return false; }
9640 bool found(APValue &Subobj, QualType SubobjType) {
9641 // FIXME: Reject the cases where [basic.life]p8 would not permit the
9642 // old name of the object to be used to name the new object.
9643 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9644 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9645 SubobjType << AllocType;
9646 return false;
9647 }
9648 Value = &Subobj;
9649 return true;
9650 }
9651 bool found(APSInt &Value, QualType SubobjType) {
9652 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9653 return false;
9654 }
9655 bool found(APFloat &Value, QualType SubobjType) {
9656 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9657 return false;
9658 }
9659 } Handler = {Info, E, AllocType, AK, nullptr};
9660
9661 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9662 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9663 return false;
9664
9665 Val = Handler.Value;
9666
9667 // [basic.life]p1:
9668 // The lifetime of an object o of type T ends when [...] the storage
9669 // which the object occupies is [...] reused by an object that is not
9670 // nested within o (6.6.2).
9671 *Val = APValue();
9672 } else {
9673 // Perform the allocation and obtain a pointer to the resulting object.
9674 Val = Info.createHeapAlloc(E, AllocType, Result);
9675 if (!Val)
9676 return false;
9677 }
9678
9679 if (ValueInit) {
9680 ImplicitValueInitExpr VIE(AllocType);
9681 if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9682 return false;
9683 } else if (ResizedArrayILE) {
9684 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9685 AllocType))
9686 return false;
9687 } else if (ResizedArrayCCE) {
9688 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9689 AllocType))
9690 return false;
9691 } else if (Init) {
9692 if (!EvaluateInPlace(*Val, Info, Result, Init))
9693 return false;
9694 } else if (!getDefaultInitValue(AllocType, *Val)) {
9695 return false;
9696 }
9697
9698 // Array new returns a pointer to the first element, not a pointer to the
9699 // array.
9700 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9701 Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9702
9703 return true;
9704 }
9705 //===----------------------------------------------------------------------===//
9706 // Member Pointer Evaluation
9707 //===----------------------------------------------------------------------===//
9708
9709 namespace {
9710 class MemberPointerExprEvaluator
9711 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9712 MemberPtr &Result;
9713
Success(const ValueDecl * D)9714 bool Success(const ValueDecl *D) {
9715 Result = MemberPtr(D);
9716 return true;
9717 }
9718 public:
9719
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)9720 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9721 : ExprEvaluatorBaseTy(Info), Result(Result) {}
9722
Success(const APValue & V,const Expr * E)9723 bool Success(const APValue &V, const Expr *E) {
9724 Result.setFrom(V);
9725 return true;
9726 }
ZeroInitialization(const Expr * E)9727 bool ZeroInitialization(const Expr *E) {
9728 return Success((const ValueDecl*)nullptr);
9729 }
9730
9731 bool VisitCastExpr(const CastExpr *E);
9732 bool VisitUnaryAddrOf(const UnaryOperator *E);
9733 };
9734 } // end anonymous namespace
9735
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)9736 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9737 EvalInfo &Info) {
9738 assert(!E->isValueDependent());
9739 assert(E->isPRValue() && E->getType()->isMemberPointerType());
9740 return MemberPointerExprEvaluator(Info, Result).Visit(E);
9741 }
9742
VisitCastExpr(const CastExpr * E)9743 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9744 switch (E->getCastKind()) {
9745 default:
9746 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9747
9748 case CK_NullToMemberPointer:
9749 VisitIgnoredValue(E->getSubExpr());
9750 return ZeroInitialization(E);
9751
9752 case CK_BaseToDerivedMemberPointer: {
9753 if (!Visit(E->getSubExpr()))
9754 return false;
9755 if (E->path_empty())
9756 return true;
9757 // Base-to-derived member pointer casts store the path in derived-to-base
9758 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9759 // the wrong end of the derived->base arc, so stagger the path by one class.
9760 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9761 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9762 PathI != PathE; ++PathI) {
9763 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9764 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9765 if (!Result.castToDerived(Derived))
9766 return Error(E);
9767 }
9768 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9769 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9770 return Error(E);
9771 return true;
9772 }
9773
9774 case CK_DerivedToBaseMemberPointer:
9775 if (!Visit(E->getSubExpr()))
9776 return false;
9777 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9778 PathE = E->path_end(); PathI != PathE; ++PathI) {
9779 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9780 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9781 if (!Result.castToBase(Base))
9782 return Error(E);
9783 }
9784 return true;
9785 }
9786 }
9787
VisitUnaryAddrOf(const UnaryOperator * E)9788 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9789 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9790 // member can be formed.
9791 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9792 }
9793
9794 //===----------------------------------------------------------------------===//
9795 // Record Evaluation
9796 //===----------------------------------------------------------------------===//
9797
9798 namespace {
9799 class RecordExprEvaluator
9800 : public ExprEvaluatorBase<RecordExprEvaluator> {
9801 const LValue &This;
9802 APValue &Result;
9803 public:
9804
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)9805 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9806 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9807
Success(const APValue & V,const Expr * E)9808 bool Success(const APValue &V, const Expr *E) {
9809 Result = V;
9810 return true;
9811 }
ZeroInitialization(const Expr * E)9812 bool ZeroInitialization(const Expr *E) {
9813 return ZeroInitialization(E, E->getType());
9814 }
9815 bool ZeroInitialization(const Expr *E, QualType T);
9816
VisitCallExpr(const CallExpr * E)9817 bool VisitCallExpr(const CallExpr *E) {
9818 return handleCallExpr(E, Result, &This);
9819 }
9820 bool VisitCastExpr(const CastExpr *E);
9821 bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)9822 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9823 return VisitCXXConstructExpr(E, E->getType());
9824 }
9825 bool VisitLambdaExpr(const LambdaExpr *E);
9826 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9827 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9828 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9829 bool VisitBinCmp(const BinaryOperator *E);
9830 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
9831 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
9832 ArrayRef<Expr *> Args);
9833 };
9834 }
9835
9836 /// Perform zero-initialization on an object of non-union class type.
9837 /// C++11 [dcl.init]p5:
9838 /// To zero-initialize an object or reference of type T means:
9839 /// [...]
9840 /// -- if T is a (possibly cv-qualified) non-union class type,
9841 /// each non-static data member and each base-class subobject is
9842 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)9843 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9844 const RecordDecl *RD,
9845 const LValue &This, APValue &Result) {
9846 assert(!RD->isUnion() && "Expected non-union class type");
9847 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9848 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9849 std::distance(RD->field_begin(), RD->field_end()));
9850
9851 if (RD->isInvalidDecl()) return false;
9852 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9853
9854 if (CD) {
9855 unsigned Index = 0;
9856 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9857 End = CD->bases_end(); I != End; ++I, ++Index) {
9858 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9859 LValue Subobject = This;
9860 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9861 return false;
9862 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9863 Result.getStructBase(Index)))
9864 return false;
9865 }
9866 }
9867
9868 for (const auto *I : RD->fields()) {
9869 // -- if T is a reference type, no initialization is performed.
9870 if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9871 continue;
9872
9873 LValue Subobject = This;
9874 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9875 return false;
9876
9877 ImplicitValueInitExpr VIE(I->getType());
9878 if (!EvaluateInPlace(
9879 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9880 return false;
9881 }
9882
9883 return true;
9884 }
9885
ZeroInitialization(const Expr * E,QualType T)9886 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9887 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9888 if (RD->isInvalidDecl()) return false;
9889 if (RD->isUnion()) {
9890 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9891 // object's first non-static named data member is zero-initialized
9892 RecordDecl::field_iterator I = RD->field_begin();
9893 while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9894 ++I;
9895 if (I == RD->field_end()) {
9896 Result = APValue((const FieldDecl*)nullptr);
9897 return true;
9898 }
9899
9900 LValue Subobject = This;
9901 if (!HandleLValueMember(Info, E, Subobject, *I))
9902 return false;
9903 Result = APValue(*I);
9904 ImplicitValueInitExpr VIE(I->getType());
9905 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9906 }
9907
9908 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9909 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9910 return false;
9911 }
9912
9913 return HandleClassZeroInitialization(Info, E, RD, This, Result);
9914 }
9915
VisitCastExpr(const CastExpr * E)9916 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9917 switch (E->getCastKind()) {
9918 default:
9919 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9920
9921 case CK_ConstructorConversion:
9922 return Visit(E->getSubExpr());
9923
9924 case CK_DerivedToBase:
9925 case CK_UncheckedDerivedToBase: {
9926 APValue DerivedObject;
9927 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9928 return false;
9929 if (!DerivedObject.isStruct())
9930 return Error(E->getSubExpr());
9931
9932 // Derived-to-base rvalue conversion: just slice off the derived part.
9933 APValue *Value = &DerivedObject;
9934 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9935 for (CastExpr::path_const_iterator PathI = E->path_begin(),
9936 PathE = E->path_end(); PathI != PathE; ++PathI) {
9937 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9938 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9939 Value = &Value->getStructBase(getBaseIndex(RD, Base));
9940 RD = Base;
9941 }
9942 Result = *Value;
9943 return true;
9944 }
9945 }
9946 }
9947
VisitInitListExpr(const InitListExpr * E)9948 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9949 if (E->isTransparent())
9950 return Visit(E->getInit(0));
9951 return VisitCXXParenListOrInitListExpr(E, E->inits());
9952 }
9953
VisitCXXParenListOrInitListExpr(const Expr * ExprToVisit,ArrayRef<Expr * > Args)9954 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr(
9955 const Expr *ExprToVisit, ArrayRef<Expr *> Args) {
9956 const RecordDecl *RD =
9957 ExprToVisit->getType()->castAs<RecordType>()->getDecl();
9958 if (RD->isInvalidDecl()) return false;
9959 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9960 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9961
9962 EvalInfo::EvaluatingConstructorRAII EvalObj(
9963 Info,
9964 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9965 CXXRD && CXXRD->getNumBases());
9966
9967 if (RD->isUnion()) {
9968 const FieldDecl *Field;
9969 if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) {
9970 Field = ILE->getInitializedFieldInUnion();
9971 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) {
9972 Field = PLIE->getInitializedFieldInUnion();
9973 } else {
9974 llvm_unreachable(
9975 "Expression is neither an init list nor a C++ paren list");
9976 }
9977
9978 Result = APValue(Field);
9979 if (!Field)
9980 return true;
9981
9982 // If the initializer list for a union does not contain any elements, the
9983 // first element of the union is value-initialized.
9984 // FIXME: The element should be initialized from an initializer list.
9985 // Is this difference ever observable for initializer lists which
9986 // we don't build?
9987 ImplicitValueInitExpr VIE(Field->getType());
9988 const Expr *InitExpr = Args.empty() ? &VIE : Args[0];
9989
9990 LValue Subobject = This;
9991 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9992 return false;
9993
9994 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9995 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9996 isa<CXXDefaultInitExpr>(InitExpr));
9997
9998 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) {
9999 if (Field->isBitField())
10000 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(),
10001 Field);
10002 return true;
10003 }
10004
10005 return false;
10006 }
10007
10008 if (!Result.hasValue())
10009 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
10010 std::distance(RD->field_begin(), RD->field_end()));
10011 unsigned ElementNo = 0;
10012 bool Success = true;
10013
10014 // Initialize base classes.
10015 if (CXXRD && CXXRD->getNumBases()) {
10016 for (const auto &Base : CXXRD->bases()) {
10017 assert(ElementNo < Args.size() && "missing init for base class");
10018 const Expr *Init = Args[ElementNo];
10019
10020 LValue Subobject = This;
10021 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
10022 return false;
10023
10024 APValue &FieldVal = Result.getStructBase(ElementNo);
10025 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
10026 if (!Info.noteFailure())
10027 return false;
10028 Success = false;
10029 }
10030 ++ElementNo;
10031 }
10032
10033 EvalObj.finishedConstructingBases();
10034 }
10035
10036 // Initialize members.
10037 for (const auto *Field : RD->fields()) {
10038 // Anonymous bit-fields are not considered members of the class for
10039 // purposes of aggregate initialization.
10040 if (Field->isUnnamedBitfield())
10041 continue;
10042
10043 LValue Subobject = This;
10044
10045 bool HaveInit = ElementNo < Args.size();
10046
10047 // FIXME: Diagnostics here should point to the end of the initializer
10048 // list, not the start.
10049 if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit,
10050 Subobject, Field, &Layout))
10051 return false;
10052
10053 // Perform an implicit value-initialization for members beyond the end of
10054 // the initializer list.
10055 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
10056 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE;
10057
10058 if (Field->getType()->isIncompleteArrayType()) {
10059 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) {
10060 if (!CAT->getSize().isZero()) {
10061 // Bail out for now. This might sort of "work", but the rest of the
10062 // code isn't really prepared to handle it.
10063 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array);
10064 return false;
10065 }
10066 }
10067 }
10068
10069 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
10070 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
10071 isa<CXXDefaultInitExpr>(Init));
10072
10073 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10074 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
10075 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
10076 FieldVal, Field))) {
10077 if (!Info.noteFailure())
10078 return false;
10079 Success = false;
10080 }
10081 }
10082
10083 EvalObj.finishedConstructingFields();
10084
10085 return Success;
10086 }
10087
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)10088 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10089 QualType T) {
10090 // Note that E's type is not necessarily the type of our class here; we might
10091 // be initializing an array element instead.
10092 const CXXConstructorDecl *FD = E->getConstructor();
10093 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
10094
10095 bool ZeroInit = E->requiresZeroInitialization();
10096 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
10097 // If we've already performed zero-initialization, we're already done.
10098 if (Result.hasValue())
10099 return true;
10100
10101 if (ZeroInit)
10102 return ZeroInitialization(E, T);
10103
10104 return getDefaultInitValue(T, Result);
10105 }
10106
10107 const FunctionDecl *Definition = nullptr;
10108 auto Body = FD->getBody(Definition);
10109
10110 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10111 return false;
10112
10113 // Avoid materializing a temporary for an elidable copy/move constructor.
10114 if (E->isElidable() && !ZeroInit) {
10115 // FIXME: This only handles the simplest case, where the source object
10116 // is passed directly as the first argument to the constructor.
10117 // This should also handle stepping though implicit casts and
10118 // and conversion sequences which involve two steps, with a
10119 // conversion operator followed by a converting constructor.
10120 const Expr *SrcObj = E->getArg(0);
10121 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent()));
10122 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
10123 if (const MaterializeTemporaryExpr *ME =
10124 dyn_cast<MaterializeTemporaryExpr>(SrcObj))
10125 return Visit(ME->getSubExpr());
10126 }
10127
10128 if (ZeroInit && !ZeroInitialization(E, T))
10129 return false;
10130
10131 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs());
10132 return HandleConstructorCall(E, This, Args,
10133 cast<CXXConstructorDecl>(Definition), Info,
10134 Result);
10135 }
10136
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)10137 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
10138 const CXXInheritedCtorInitExpr *E) {
10139 if (!Info.CurrentCall) {
10140 assert(Info.checkingPotentialConstantExpression());
10141 return false;
10142 }
10143
10144 const CXXConstructorDecl *FD = E->getConstructor();
10145 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
10146 return false;
10147
10148 const FunctionDecl *Definition = nullptr;
10149 auto Body = FD->getBody(Definition);
10150
10151 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
10152 return false;
10153
10154 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
10155 cast<CXXConstructorDecl>(Definition), Info,
10156 Result);
10157 }
10158
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)10159 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
10160 const CXXStdInitializerListExpr *E) {
10161 const ConstantArrayType *ArrayType =
10162 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
10163
10164 LValue Array;
10165 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
10166 return false;
10167
10168 // Get a pointer to the first element of the array.
10169 Array.addArray(Info, E, ArrayType);
10170
10171 auto InvalidType = [&] {
10172 Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
10173 << E->getType();
10174 return false;
10175 };
10176
10177 // FIXME: Perform the checks on the field types in SemaInit.
10178 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
10179 RecordDecl::field_iterator Field = Record->field_begin();
10180 if (Field == Record->field_end())
10181 return InvalidType();
10182
10183 // Start pointer.
10184 if (!Field->getType()->isPointerType() ||
10185 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10186 ArrayType->getElementType()))
10187 return InvalidType();
10188
10189 // FIXME: What if the initializer_list type has base classes, etc?
10190 Result = APValue(APValue::UninitStruct(), 0, 2);
10191 Array.moveInto(Result.getStructField(0));
10192
10193 if (++Field == Record->field_end())
10194 return InvalidType();
10195
10196 if (Field->getType()->isPointerType() &&
10197 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
10198 ArrayType->getElementType())) {
10199 // End pointer.
10200 if (!HandleLValueArrayAdjustment(Info, E, Array,
10201 ArrayType->getElementType(),
10202 ArrayType->getSize().getZExtValue()))
10203 return false;
10204 Array.moveInto(Result.getStructField(1));
10205 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
10206 // Length.
10207 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
10208 else
10209 return InvalidType();
10210
10211 if (++Field != Record->field_end())
10212 return InvalidType();
10213
10214 return true;
10215 }
10216
VisitLambdaExpr(const LambdaExpr * E)10217 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
10218 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
10219 if (ClosureClass->isInvalidDecl())
10220 return false;
10221
10222 const size_t NumFields =
10223 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
10224
10225 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
10226 E->capture_init_end()) &&
10227 "The number of lambda capture initializers should equal the number of "
10228 "fields within the closure type");
10229
10230 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
10231 // Iterate through all the lambda's closure object's fields and initialize
10232 // them.
10233 auto *CaptureInitIt = E->capture_init_begin();
10234 bool Success = true;
10235 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass);
10236 for (const auto *Field : ClosureClass->fields()) {
10237 assert(CaptureInitIt != E->capture_init_end());
10238 // Get the initializer for this field
10239 Expr *const CurFieldInit = *CaptureInitIt++;
10240
10241 // If there is no initializer, either this is a VLA or an error has
10242 // occurred.
10243 if (!CurFieldInit)
10244 return Error(E);
10245
10246 LValue Subobject = This;
10247
10248 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout))
10249 return false;
10250
10251 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
10252 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) {
10253 if (!Info.keepEvaluatingAfterFailure())
10254 return false;
10255 Success = false;
10256 }
10257 }
10258 return Success;
10259 }
10260
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10261 static bool EvaluateRecord(const Expr *E, const LValue &This,
10262 APValue &Result, EvalInfo &Info) {
10263 assert(!E->isValueDependent());
10264 assert(E->isPRValue() && E->getType()->isRecordType() &&
10265 "can't evaluate expression as a record rvalue");
10266 return RecordExprEvaluator(Info, This, Result).Visit(E);
10267 }
10268
10269 //===----------------------------------------------------------------------===//
10270 // Temporary Evaluation
10271 //
10272 // Temporaries are represented in the AST as rvalues, but generally behave like
10273 // lvalues. The full-object of which the temporary is a subobject is implicitly
10274 // materialized so that a reference can bind to it.
10275 //===----------------------------------------------------------------------===//
10276 namespace {
10277 class TemporaryExprEvaluator
10278 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
10279 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)10280 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10281 LValueExprEvaluatorBaseTy(Info, Result, false) {}
10282
10283 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)10284 bool VisitConstructExpr(const Expr *E) {
10285 APValue &Value = Info.CurrentCall->createTemporary(
10286 E, E->getType(), ScopeKind::FullExpression, Result);
10287 return EvaluateInPlace(Value, Info, Result, E);
10288 }
10289
VisitCastExpr(const CastExpr * E)10290 bool VisitCastExpr(const CastExpr *E) {
10291 switch (E->getCastKind()) {
10292 default:
10293 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10294
10295 case CK_ConstructorConversion:
10296 return VisitConstructExpr(E->getSubExpr());
10297 }
10298 }
VisitInitListExpr(const InitListExpr * E)10299 bool VisitInitListExpr(const InitListExpr *E) {
10300 return VisitConstructExpr(E);
10301 }
VisitCXXConstructExpr(const CXXConstructExpr * E)10302 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10303 return VisitConstructExpr(E);
10304 }
VisitCallExpr(const CallExpr * E)10305 bool VisitCallExpr(const CallExpr *E) {
10306 return VisitConstructExpr(E);
10307 }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)10308 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10309 return VisitConstructExpr(E);
10310 }
VisitLambdaExpr(const LambdaExpr * E)10311 bool VisitLambdaExpr(const LambdaExpr *E) {
10312 return VisitConstructExpr(E);
10313 }
10314 };
10315 } // end anonymous namespace
10316
10317 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)10318 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10319 assert(!E->isValueDependent());
10320 assert(E->isPRValue() && E->getType()->isRecordType());
10321 return TemporaryExprEvaluator(Info, Result).Visit(E);
10322 }
10323
10324 //===----------------------------------------------------------------------===//
10325 // Vector Evaluation
10326 //===----------------------------------------------------------------------===//
10327
10328 namespace {
10329 class VectorExprEvaluator
10330 : public ExprEvaluatorBase<VectorExprEvaluator> {
10331 APValue &Result;
10332 public:
10333
VectorExprEvaluator(EvalInfo & info,APValue & Result)10334 VectorExprEvaluator(EvalInfo &info, APValue &Result)
10335 : ExprEvaluatorBaseTy(info), Result(Result) {}
10336
Success(ArrayRef<APValue> V,const Expr * E)10337 bool Success(ArrayRef<APValue> V, const Expr *E) {
10338 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10339 // FIXME: remove this APValue copy.
10340 Result = APValue(V.data(), V.size());
10341 return true;
10342 }
Success(const APValue & V,const Expr * E)10343 bool Success(const APValue &V, const Expr *E) {
10344 assert(V.isVector());
10345 Result = V;
10346 return true;
10347 }
10348 bool ZeroInitialization(const Expr *E);
10349
VisitUnaryReal(const UnaryOperator * E)10350 bool VisitUnaryReal(const UnaryOperator *E)
10351 { return Visit(E->getSubExpr()); }
10352 bool VisitCastExpr(const CastExpr* E);
10353 bool VisitInitListExpr(const InitListExpr *E);
10354 bool VisitUnaryImag(const UnaryOperator *E);
10355 bool VisitBinaryOperator(const BinaryOperator *E);
10356 bool VisitUnaryOperator(const UnaryOperator *E);
10357 // FIXME: Missing: conditional operator (for GNU
10358 // conditional select), shufflevector, ExtVectorElementExpr
10359 };
10360 } // end anonymous namespace
10361
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)10362 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10363 assert(E->isPRValue() && E->getType()->isVectorType() &&
10364 "not a vector prvalue");
10365 return VectorExprEvaluator(Info, Result).Visit(E);
10366 }
10367
VisitCastExpr(const CastExpr * E)10368 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10369 const VectorType *VTy = E->getType()->castAs<VectorType>();
10370 unsigned NElts = VTy->getNumElements();
10371
10372 const Expr *SE = E->getSubExpr();
10373 QualType SETy = SE->getType();
10374
10375 switch (E->getCastKind()) {
10376 case CK_VectorSplat: {
10377 APValue Val = APValue();
10378 if (SETy->isIntegerType()) {
10379 APSInt IntResult;
10380 if (!EvaluateInteger(SE, IntResult, Info))
10381 return false;
10382 Val = APValue(std::move(IntResult));
10383 } else if (SETy->isRealFloatingType()) {
10384 APFloat FloatResult(0.0);
10385 if (!EvaluateFloat(SE, FloatResult, Info))
10386 return false;
10387 Val = APValue(std::move(FloatResult));
10388 } else {
10389 return Error(E);
10390 }
10391
10392 // Splat and create vector APValue.
10393 SmallVector<APValue, 4> Elts(NElts, Val);
10394 return Success(Elts, E);
10395 }
10396 case CK_BitCast: {
10397 // Evaluate the operand into an APInt we can extract from.
10398 llvm::APInt SValInt;
10399 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10400 return false;
10401 // Extract the elements
10402 QualType EltTy = VTy->getElementType();
10403 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10404 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10405 SmallVector<APValue, 4> Elts;
10406 if (EltTy->isRealFloatingType()) {
10407 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10408 unsigned FloatEltSize = EltSize;
10409 if (&Sem == &APFloat::x87DoubleExtended())
10410 FloatEltSize = 80;
10411 for (unsigned i = 0; i < NElts; i++) {
10412 llvm::APInt Elt;
10413 if (BigEndian)
10414 Elt = SValInt.rotl(i * EltSize + FloatEltSize).trunc(FloatEltSize);
10415 else
10416 Elt = SValInt.rotr(i * EltSize).trunc(FloatEltSize);
10417 Elts.push_back(APValue(APFloat(Sem, Elt)));
10418 }
10419 } else if (EltTy->isIntegerType()) {
10420 for (unsigned i = 0; i < NElts; i++) {
10421 llvm::APInt Elt;
10422 if (BigEndian)
10423 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10424 else
10425 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10426 Elts.push_back(APValue(APSInt(Elt, !EltTy->isSignedIntegerType())));
10427 }
10428 } else {
10429 return Error(E);
10430 }
10431 return Success(Elts, E);
10432 }
10433 default:
10434 return ExprEvaluatorBaseTy::VisitCastExpr(E);
10435 }
10436 }
10437
10438 bool
VisitInitListExpr(const InitListExpr * E)10439 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10440 const VectorType *VT = E->getType()->castAs<VectorType>();
10441 unsigned NumInits = E->getNumInits();
10442 unsigned NumElements = VT->getNumElements();
10443
10444 QualType EltTy = VT->getElementType();
10445 SmallVector<APValue, 4> Elements;
10446
10447 // The number of initializers can be less than the number of
10448 // vector elements. For OpenCL, this can be due to nested vector
10449 // initialization. For GCC compatibility, missing trailing elements
10450 // should be initialized with zeroes.
10451 unsigned CountInits = 0, CountElts = 0;
10452 while (CountElts < NumElements) {
10453 // Handle nested vector initialization.
10454 if (CountInits < NumInits
10455 && E->getInit(CountInits)->getType()->isVectorType()) {
10456 APValue v;
10457 if (!EvaluateVector(E->getInit(CountInits), v, Info))
10458 return Error(E);
10459 unsigned vlen = v.getVectorLength();
10460 for (unsigned j = 0; j < vlen; j++)
10461 Elements.push_back(v.getVectorElt(j));
10462 CountElts += vlen;
10463 } else if (EltTy->isIntegerType()) {
10464 llvm::APSInt sInt(32);
10465 if (CountInits < NumInits) {
10466 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10467 return false;
10468 } else // trailing integer zero.
10469 sInt = Info.Ctx.MakeIntValue(0, EltTy);
10470 Elements.push_back(APValue(sInt));
10471 CountElts++;
10472 } else {
10473 llvm::APFloat f(0.0);
10474 if (CountInits < NumInits) {
10475 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10476 return false;
10477 } else // trailing float zero.
10478 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10479 Elements.push_back(APValue(f));
10480 CountElts++;
10481 }
10482 CountInits++;
10483 }
10484 return Success(Elements, E);
10485 }
10486
10487 bool
ZeroInitialization(const Expr * E)10488 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10489 const auto *VT = E->getType()->castAs<VectorType>();
10490 QualType EltTy = VT->getElementType();
10491 APValue ZeroElement;
10492 if (EltTy->isIntegerType())
10493 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10494 else
10495 ZeroElement =
10496 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10497
10498 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10499 return Success(Elements, E);
10500 }
10501
VisitUnaryImag(const UnaryOperator * E)10502 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10503 VisitIgnoredValue(E->getSubExpr());
10504 return ZeroInitialization(E);
10505 }
10506
VisitBinaryOperator(const BinaryOperator * E)10507 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10508 BinaryOperatorKind Op = E->getOpcode();
10509 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10510 "Operation not supported on vector types");
10511
10512 if (Op == BO_Comma)
10513 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10514
10515 Expr *LHS = E->getLHS();
10516 Expr *RHS = E->getRHS();
10517
10518 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10519 "Must both be vector types");
10520 // Checking JUST the types are the same would be fine, except shifts don't
10521 // need to have their types be the same (since you always shift by an int).
10522 assert(LHS->getType()->castAs<VectorType>()->getNumElements() ==
10523 E->getType()->castAs<VectorType>()->getNumElements() &&
10524 RHS->getType()->castAs<VectorType>()->getNumElements() ==
10525 E->getType()->castAs<VectorType>()->getNumElements() &&
10526 "All operands must be the same size.");
10527
10528 APValue LHSValue;
10529 APValue RHSValue;
10530 bool LHSOK = Evaluate(LHSValue, Info, LHS);
10531 if (!LHSOK && !Info.noteFailure())
10532 return false;
10533 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10534 return false;
10535
10536 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10537 return false;
10538
10539 return Success(LHSValue, E);
10540 }
10541
handleVectorUnaryOperator(ASTContext & Ctx,QualType ResultTy,UnaryOperatorKind Op,APValue Elt)10542 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx,
10543 QualType ResultTy,
10544 UnaryOperatorKind Op,
10545 APValue Elt) {
10546 switch (Op) {
10547 case UO_Plus:
10548 // Nothing to do here.
10549 return Elt;
10550 case UO_Minus:
10551 if (Elt.getKind() == APValue::Int) {
10552 Elt.getInt().negate();
10553 } else {
10554 assert(Elt.getKind() == APValue::Float &&
10555 "Vector can only be int or float type");
10556 Elt.getFloat().changeSign();
10557 }
10558 return Elt;
10559 case UO_Not:
10560 // This is only valid for integral types anyway, so we don't have to handle
10561 // float here.
10562 assert(Elt.getKind() == APValue::Int &&
10563 "Vector operator ~ can only be int");
10564 Elt.getInt().flipAllBits();
10565 return Elt;
10566 case UO_LNot: {
10567 if (Elt.getKind() == APValue::Int) {
10568 Elt.getInt() = !Elt.getInt();
10569 // operator ! on vectors returns -1 for 'truth', so negate it.
10570 Elt.getInt().negate();
10571 return Elt;
10572 }
10573 assert(Elt.getKind() == APValue::Float &&
10574 "Vector can only be int or float type");
10575 // Float types result in an int of the same size, but -1 for true, or 0 for
10576 // false.
10577 APSInt EltResult{Ctx.getIntWidth(ResultTy),
10578 ResultTy->isUnsignedIntegerType()};
10579 if (Elt.getFloat().isZero())
10580 EltResult.setAllBits();
10581 else
10582 EltResult.clearAllBits();
10583
10584 return APValue{EltResult};
10585 }
10586 default:
10587 // FIXME: Implement the rest of the unary operators.
10588 return std::nullopt;
10589 }
10590 }
10591
VisitUnaryOperator(const UnaryOperator * E)10592 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10593 Expr *SubExpr = E->getSubExpr();
10594 const auto *VD = SubExpr->getType()->castAs<VectorType>();
10595 // This result element type differs in the case of negating a floating point
10596 // vector, since the result type is the a vector of the equivilant sized
10597 // integer.
10598 const QualType ResultEltTy = VD->getElementType();
10599 UnaryOperatorKind Op = E->getOpcode();
10600
10601 APValue SubExprValue;
10602 if (!Evaluate(SubExprValue, Info, SubExpr))
10603 return false;
10604
10605 // FIXME: This vector evaluator someday needs to be changed to be LValue
10606 // aware/keep LValue information around, rather than dealing with just vector
10607 // types directly. Until then, we cannot handle cases where the operand to
10608 // these unary operators is an LValue. The only case I've been able to see
10609 // cause this is operator++ assigning to a member expression (only valid in
10610 // altivec compilations) in C mode, so this shouldn't limit us too much.
10611 if (SubExprValue.isLValue())
10612 return false;
10613
10614 assert(SubExprValue.getVectorLength() == VD->getNumElements() &&
10615 "Vector length doesn't match type?");
10616
10617 SmallVector<APValue, 4> ResultElements;
10618 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) {
10619 std::optional<APValue> Elt = handleVectorUnaryOperator(
10620 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum));
10621 if (!Elt)
10622 return false;
10623 ResultElements.push_back(*Elt);
10624 }
10625 return Success(APValue(ResultElements.data(), ResultElements.size()), E);
10626 }
10627
10628 //===----------------------------------------------------------------------===//
10629 // Array Evaluation
10630 //===----------------------------------------------------------------------===//
10631
10632 namespace {
10633 class ArrayExprEvaluator
10634 : public ExprEvaluatorBase<ArrayExprEvaluator> {
10635 const LValue &This;
10636 APValue &Result;
10637 public:
10638
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)10639 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10640 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10641
Success(const APValue & V,const Expr * E)10642 bool Success(const APValue &V, const Expr *E) {
10643 assert(V.isArray() && "expected array");
10644 Result = V;
10645 return true;
10646 }
10647
ZeroInitialization(const Expr * E)10648 bool ZeroInitialization(const Expr *E) {
10649 const ConstantArrayType *CAT =
10650 Info.Ctx.getAsConstantArrayType(E->getType());
10651 if (!CAT) {
10652 if (E->getType()->isIncompleteArrayType()) {
10653 // We can be asked to zero-initialize a flexible array member; this
10654 // is represented as an ImplicitValueInitExpr of incomplete array
10655 // type. In this case, the array has zero elements.
10656 Result = APValue(APValue::UninitArray(), 0, 0);
10657 return true;
10658 }
10659 // FIXME: We could handle VLAs here.
10660 return Error(E);
10661 }
10662
10663 Result = APValue(APValue::UninitArray(), 0,
10664 CAT->getSize().getZExtValue());
10665 if (!Result.hasArrayFiller())
10666 return true;
10667
10668 // Zero-initialize all elements.
10669 LValue Subobject = This;
10670 Subobject.addArray(Info, E, CAT);
10671 ImplicitValueInitExpr VIE(CAT->getElementType());
10672 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10673 }
10674
VisitCallExpr(const CallExpr * E)10675 bool VisitCallExpr(const CallExpr *E) {
10676 return handleCallExpr(E, Result, &This);
10677 }
10678 bool VisitInitListExpr(const InitListExpr *E,
10679 QualType AllocType = QualType());
10680 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10681 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10682 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10683 const LValue &Subobject,
10684 APValue *Value, QualType Type);
VisitStringLiteral(const StringLiteral * E,QualType AllocType=QualType ())10685 bool VisitStringLiteral(const StringLiteral *E,
10686 QualType AllocType = QualType()) {
10687 expandStringLiteral(Info, E, Result, AllocType);
10688 return true;
10689 }
10690 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E);
10691 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit,
10692 ArrayRef<Expr *> Args,
10693 const Expr *ArrayFiller,
10694 QualType AllocType = QualType());
10695 };
10696 } // end anonymous namespace
10697
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10698 static bool EvaluateArray(const Expr *E, const LValue &This,
10699 APValue &Result, EvalInfo &Info) {
10700 assert(!E->isValueDependent());
10701 assert(E->isPRValue() && E->getType()->isArrayType() &&
10702 "not an array prvalue");
10703 return ArrayExprEvaluator(Info, This, Result).Visit(E);
10704 }
10705
EvaluateArrayNewInitList(EvalInfo & Info,LValue & This,APValue & Result,const InitListExpr * ILE,QualType AllocType)10706 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10707 APValue &Result, const InitListExpr *ILE,
10708 QualType AllocType) {
10709 assert(!ILE->isValueDependent());
10710 assert(ILE->isPRValue() && ILE->getType()->isArrayType() &&
10711 "not an array prvalue");
10712 return ArrayExprEvaluator(Info, This, Result)
10713 .VisitInitListExpr(ILE, AllocType);
10714 }
10715
EvaluateArrayNewConstructExpr(EvalInfo & Info,LValue & This,APValue & Result,const CXXConstructExpr * CCE,QualType AllocType)10716 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10717 APValue &Result,
10718 const CXXConstructExpr *CCE,
10719 QualType AllocType) {
10720 assert(!CCE->isValueDependent());
10721 assert(CCE->isPRValue() && CCE->getType()->isArrayType() &&
10722 "not an array prvalue");
10723 return ArrayExprEvaluator(Info, This, Result)
10724 .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10725 }
10726
10727 // Return true iff the given array filler may depend on the element index.
MaybeElementDependentArrayFiller(const Expr * FillerExpr)10728 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10729 // For now, just allow non-class value-initialization and initialization
10730 // lists comprised of them.
10731 if (isa<ImplicitValueInitExpr>(FillerExpr))
10732 return false;
10733 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10734 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10735 if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10736 return true;
10737 }
10738
10739 if (ILE->hasArrayFiller() &&
10740 MaybeElementDependentArrayFiller(ILE->getArrayFiller()))
10741 return true;
10742
10743 return false;
10744 }
10745 return true;
10746 }
10747
VisitInitListExpr(const InitListExpr * E,QualType AllocType)10748 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10749 QualType AllocType) {
10750 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10751 AllocType.isNull() ? E->getType() : AllocType);
10752 if (!CAT)
10753 return Error(E);
10754
10755 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10756 // an appropriately-typed string literal enclosed in braces.
10757 if (E->isStringLiteralInit()) {
10758 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts());
10759 // FIXME: Support ObjCEncodeExpr here once we support it in
10760 // ArrayExprEvaluator generally.
10761 if (!SL)
10762 return Error(E);
10763 return VisitStringLiteral(SL, AllocType);
10764 }
10765 // Any other transparent list init will need proper handling of the
10766 // AllocType; we can't just recurse to the inner initializer.
10767 assert(!E->isTransparent() &&
10768 "transparent array list initialization is not string literal init?");
10769
10770 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(),
10771 AllocType);
10772 }
10773
VisitCXXParenListOrInitListExpr(const Expr * ExprToVisit,ArrayRef<Expr * > Args,const Expr * ArrayFiller,QualType AllocType)10774 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr(
10775 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller,
10776 QualType AllocType) {
10777 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10778 AllocType.isNull() ? ExprToVisit->getType() : AllocType);
10779
10780 bool Success = true;
10781
10782 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10783 "zero-initialized array shouldn't have any initialized elts");
10784 APValue Filler;
10785 if (Result.isArray() && Result.hasArrayFiller())
10786 Filler = Result.getArrayFiller();
10787
10788 unsigned NumEltsToInit = Args.size();
10789 unsigned NumElts = CAT->getSize().getZExtValue();
10790
10791 // If the initializer might depend on the array index, run it for each
10792 // array element.
10793 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(ArrayFiller))
10794 NumEltsToInit = NumElts;
10795
10796 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10797 << NumEltsToInit << ".\n");
10798
10799 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10800
10801 // If the array was previously zero-initialized, preserve the
10802 // zero-initialized values.
10803 if (Filler.hasValue()) {
10804 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10805 Result.getArrayInitializedElt(I) = Filler;
10806 if (Result.hasArrayFiller())
10807 Result.getArrayFiller() = Filler;
10808 }
10809
10810 LValue Subobject = This;
10811 Subobject.addArray(Info, ExprToVisit, CAT);
10812 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10813 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller;
10814 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10815 Info, Subobject, Init) ||
10816 !HandleLValueArrayAdjustment(Info, Init, Subobject,
10817 CAT->getElementType(), 1)) {
10818 if (!Info.noteFailure())
10819 return false;
10820 Success = false;
10821 }
10822 }
10823
10824 if (!Result.hasArrayFiller())
10825 return Success;
10826
10827 // If we get here, we have a trivial filler, which we can just evaluate
10828 // once and splat over the rest of the array elements.
10829 assert(ArrayFiller && "no array filler for incomplete init list");
10830 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10831 ArrayFiller) &&
10832 Success;
10833 }
10834
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E)10835 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10836 LValue CommonLV;
10837 if (E->getCommonExpr() &&
10838 !Evaluate(Info.CurrentCall->createTemporary(
10839 E->getCommonExpr(),
10840 getStorageType(Info.Ctx, E->getCommonExpr()),
10841 ScopeKind::FullExpression, CommonLV),
10842 Info, E->getCommonExpr()->getSourceExpr()))
10843 return false;
10844
10845 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10846
10847 uint64_t Elements = CAT->getSize().getZExtValue();
10848 Result = APValue(APValue::UninitArray(), Elements, Elements);
10849
10850 LValue Subobject = This;
10851 Subobject.addArray(Info, E, CAT);
10852
10853 bool Success = true;
10854 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10855 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10856 Info, Subobject, E->getSubExpr()) ||
10857 !HandleLValueArrayAdjustment(Info, E, Subobject,
10858 CAT->getElementType(), 1)) {
10859 if (!Info.noteFailure())
10860 return false;
10861 Success = false;
10862 }
10863 }
10864
10865 return Success;
10866 }
10867
VisitCXXConstructExpr(const CXXConstructExpr * E)10868 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10869 return VisitCXXConstructExpr(E, This, &Result, E->getType());
10870 }
10871
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)10872 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10873 const LValue &Subobject,
10874 APValue *Value,
10875 QualType Type) {
10876 bool HadZeroInit = Value->hasValue();
10877
10878 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10879 unsigned FinalSize = CAT->getSize().getZExtValue();
10880
10881 // Preserve the array filler if we had prior zero-initialization.
10882 APValue Filler =
10883 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10884 : APValue();
10885
10886 *Value = APValue(APValue::UninitArray(), 0, FinalSize);
10887 if (FinalSize == 0)
10888 return true;
10889
10890 bool HasTrivialConstructor = CheckTrivialDefaultConstructor(
10891 Info, E->getExprLoc(), E->getConstructor(),
10892 E->requiresZeroInitialization());
10893 LValue ArrayElt = Subobject;
10894 ArrayElt.addArray(Info, E, CAT);
10895 // We do the whole initialization in two passes, first for just one element,
10896 // then for the whole array. It's possible we may find out we can't do const
10897 // init in the first pass, in which case we avoid allocating a potentially
10898 // large array. We don't do more passes because expanding array requires
10899 // copying the data, which is wasteful.
10900 for (const unsigned N : {1u, FinalSize}) {
10901 unsigned OldElts = Value->getArrayInitializedElts();
10902 if (OldElts == N)
10903 break;
10904
10905 // Expand the array to appropriate size.
10906 APValue NewValue(APValue::UninitArray(), N, FinalSize);
10907 for (unsigned I = 0; I < OldElts; ++I)
10908 NewValue.getArrayInitializedElt(I).swap(
10909 Value->getArrayInitializedElt(I));
10910 Value->swap(NewValue);
10911
10912 if (HadZeroInit)
10913 for (unsigned I = OldElts; I < N; ++I)
10914 Value->getArrayInitializedElt(I) = Filler;
10915
10916 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) {
10917 // If we have a trivial constructor, only evaluate it once and copy
10918 // the result into all the array elements.
10919 APValue &FirstResult = Value->getArrayInitializedElt(0);
10920 for (unsigned I = OldElts; I < FinalSize; ++I)
10921 Value->getArrayInitializedElt(I) = FirstResult;
10922 } else {
10923 for (unsigned I = OldElts; I < N; ++I) {
10924 if (!VisitCXXConstructExpr(E, ArrayElt,
10925 &Value->getArrayInitializedElt(I),
10926 CAT->getElementType()) ||
10927 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10928 CAT->getElementType(), 1))
10929 return false;
10930 // When checking for const initilization any diagnostic is considered
10931 // an error.
10932 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() &&
10933 !Info.keepEvaluatingAfterFailure())
10934 return false;
10935 }
10936 }
10937 }
10938
10939 return true;
10940 }
10941
10942 if (!Type->isRecordType())
10943 return Error(E);
10944
10945 return RecordExprEvaluator(Info, Subobject, *Value)
10946 .VisitCXXConstructExpr(E, Type);
10947 }
10948
VisitCXXParenListInitExpr(const CXXParenListInitExpr * E)10949 bool ArrayExprEvaluator::VisitCXXParenListInitExpr(
10950 const CXXParenListInitExpr *E) {
10951 assert(dyn_cast<ConstantArrayType>(E->getType()) &&
10952 "Expression result is not a constant array type");
10953
10954 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
10955 E->getArrayFiller());
10956 }
10957
10958 //===----------------------------------------------------------------------===//
10959 // Integer Evaluation
10960 //
10961 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10962 // types and back in constant folding. Integer values are thus represented
10963 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10964 //===----------------------------------------------------------------------===//
10965
10966 namespace {
10967 class IntExprEvaluator
10968 : public ExprEvaluatorBase<IntExprEvaluator> {
10969 APValue &Result;
10970 public:
IntExprEvaluator(EvalInfo & info,APValue & result)10971 IntExprEvaluator(EvalInfo &info, APValue &result)
10972 : ExprEvaluatorBaseTy(info), Result(result) {}
10973
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)10974 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10975 assert(E->getType()->isIntegralOrEnumerationType() &&
10976 "Invalid evaluation result.");
10977 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10978 "Invalid evaluation result.");
10979 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10980 "Invalid evaluation result.");
10981 Result = APValue(SI);
10982 return true;
10983 }
Success(const llvm::APSInt & SI,const Expr * E)10984 bool Success(const llvm::APSInt &SI, const Expr *E) {
10985 return Success(SI, E, Result);
10986 }
10987
Success(const llvm::APInt & I,const Expr * E,APValue & Result)10988 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10989 assert(E->getType()->isIntegralOrEnumerationType() &&
10990 "Invalid evaluation result.");
10991 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10992 "Invalid evaluation result.");
10993 Result = APValue(APSInt(I));
10994 Result.getInt().setIsUnsigned(
10995 E->getType()->isUnsignedIntegerOrEnumerationType());
10996 return true;
10997 }
Success(const llvm::APInt & I,const Expr * E)10998 bool Success(const llvm::APInt &I, const Expr *E) {
10999 return Success(I, E, Result);
11000 }
11001
Success(uint64_t Value,const Expr * E,APValue & Result)11002 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11003 assert(E->getType()->isIntegralOrEnumerationType() &&
11004 "Invalid evaluation result.");
11005 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
11006 return true;
11007 }
Success(uint64_t Value,const Expr * E)11008 bool Success(uint64_t Value, const Expr *E) {
11009 return Success(Value, E, Result);
11010 }
11011
Success(CharUnits Size,const Expr * E)11012 bool Success(CharUnits Size, const Expr *E) {
11013 return Success(Size.getQuantity(), E);
11014 }
11015
Success(const APValue & V,const Expr * E)11016 bool Success(const APValue &V, const Expr *E) {
11017 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
11018 Result = V;
11019 return true;
11020 }
11021 return Success(V.getInt(), E);
11022 }
11023
ZeroInitialization(const Expr * E)11024 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
11025
11026 //===--------------------------------------------------------------------===//
11027 // Visitor Methods
11028 //===--------------------------------------------------------------------===//
11029
VisitIntegerLiteral(const IntegerLiteral * E)11030 bool VisitIntegerLiteral(const IntegerLiteral *E) {
11031 return Success(E->getValue(), E);
11032 }
VisitCharacterLiteral(const CharacterLiteral * E)11033 bool VisitCharacterLiteral(const CharacterLiteral *E) {
11034 return Success(E->getValue(), E);
11035 }
11036
11037 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)11038 bool VisitDeclRefExpr(const DeclRefExpr *E) {
11039 if (CheckReferencedDecl(E, E->getDecl()))
11040 return true;
11041
11042 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
11043 }
VisitMemberExpr(const MemberExpr * E)11044 bool VisitMemberExpr(const MemberExpr *E) {
11045 if (CheckReferencedDecl(E, E->getMemberDecl())) {
11046 VisitIgnoredBaseExpression(E->getBase());
11047 return true;
11048 }
11049
11050 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
11051 }
11052
11053 bool VisitCallExpr(const CallExpr *E);
11054 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
11055 bool VisitBinaryOperator(const BinaryOperator *E);
11056 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
11057 bool VisitUnaryOperator(const UnaryOperator *E);
11058
11059 bool VisitCastExpr(const CastExpr* E);
11060 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
11061
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)11062 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
11063 return Success(E->getValue(), E);
11064 }
11065
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)11066 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
11067 return Success(E->getValue(), E);
11068 }
11069
VisitArrayInitIndexExpr(const ArrayInitIndexExpr * E)11070 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
11071 if (Info.ArrayInitIndex == uint64_t(-1)) {
11072 // We were asked to evaluate this subexpression independent of the
11073 // enclosing ArrayInitLoopExpr. We can't do that.
11074 Info.FFDiag(E);
11075 return false;
11076 }
11077 return Success(Info.ArrayInitIndex, E);
11078 }
11079
11080 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)11081 bool VisitGNUNullExpr(const GNUNullExpr *E) {
11082 return ZeroInitialization(E);
11083 }
11084
VisitTypeTraitExpr(const TypeTraitExpr * E)11085 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
11086 return Success(E->getValue(), E);
11087 }
11088
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)11089 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
11090 return Success(E->getValue(), E);
11091 }
11092
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)11093 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
11094 return Success(E->getValue(), E);
11095 }
11096
11097 bool VisitUnaryReal(const UnaryOperator *E);
11098 bool VisitUnaryImag(const UnaryOperator *E);
11099
11100 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
11101 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
11102 bool VisitSourceLocExpr(const SourceLocExpr *E);
11103 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
11104 bool VisitRequiresExpr(const RequiresExpr *E);
11105 // FIXME: Missing: array subscript of vector, member of vector
11106 };
11107
11108 class FixedPointExprEvaluator
11109 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
11110 APValue &Result;
11111
11112 public:
FixedPointExprEvaluator(EvalInfo & info,APValue & result)11113 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
11114 : ExprEvaluatorBaseTy(info), Result(result) {}
11115
Success(const llvm::APInt & I,const Expr * E)11116 bool Success(const llvm::APInt &I, const Expr *E) {
11117 return Success(
11118 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11119 }
11120
Success(uint64_t Value,const Expr * E)11121 bool Success(uint64_t Value, const Expr *E) {
11122 return Success(
11123 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
11124 }
11125
Success(const APValue & V,const Expr * E)11126 bool Success(const APValue &V, const Expr *E) {
11127 return Success(V.getFixedPoint(), E);
11128 }
11129
Success(const APFixedPoint & V,const Expr * E)11130 bool Success(const APFixedPoint &V, const Expr *E) {
11131 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
11132 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
11133 "Invalid evaluation result.");
11134 Result = APValue(V);
11135 return true;
11136 }
11137
11138 //===--------------------------------------------------------------------===//
11139 // Visitor Methods
11140 //===--------------------------------------------------------------------===//
11141
VisitFixedPointLiteral(const FixedPointLiteral * E)11142 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
11143 return Success(E->getValue(), E);
11144 }
11145
11146 bool VisitCastExpr(const CastExpr *E);
11147 bool VisitUnaryOperator(const UnaryOperator *E);
11148 bool VisitBinaryOperator(const BinaryOperator *E);
11149 };
11150 } // end anonymous namespace
11151
11152 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
11153 /// produce either the integer value or a pointer.
11154 ///
11155 /// GCC has a heinous extension which folds casts between pointer types and
11156 /// pointer-sized integral types. We support this by allowing the evaluation of
11157 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
11158 /// Some simple arithmetic on such values is supported (they are treated much
11159 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)11160 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
11161 EvalInfo &Info) {
11162 assert(!E->isValueDependent());
11163 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType());
11164 return IntExprEvaluator(Info, Result).Visit(E);
11165 }
11166
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)11167 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
11168 assert(!E->isValueDependent());
11169 APValue Val;
11170 if (!EvaluateIntegerOrLValue(E, Val, Info))
11171 return false;
11172 if (!Val.isInt()) {
11173 // FIXME: It would be better to produce the diagnostic for casting
11174 // a pointer to an integer.
11175 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11176 return false;
11177 }
11178 Result = Val.getInt();
11179 return true;
11180 }
11181
VisitSourceLocExpr(const SourceLocExpr * E)11182 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
11183 APValue Evaluated = E->EvaluateInContext(
11184 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
11185 return Success(Evaluated, E);
11186 }
11187
EvaluateFixedPoint(const Expr * E,APFixedPoint & Result,EvalInfo & Info)11188 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
11189 EvalInfo &Info) {
11190 assert(!E->isValueDependent());
11191 if (E->getType()->isFixedPointType()) {
11192 APValue Val;
11193 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
11194 return false;
11195 if (!Val.isFixedPoint())
11196 return false;
11197
11198 Result = Val.getFixedPoint();
11199 return true;
11200 }
11201 return false;
11202 }
11203
EvaluateFixedPointOrInteger(const Expr * E,APFixedPoint & Result,EvalInfo & Info)11204 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
11205 EvalInfo &Info) {
11206 assert(!E->isValueDependent());
11207 if (E->getType()->isIntegerType()) {
11208 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
11209 APSInt Val;
11210 if (!EvaluateInteger(E, Val, Info))
11211 return false;
11212 Result = APFixedPoint(Val, FXSema);
11213 return true;
11214 } else if (E->getType()->isFixedPointType()) {
11215 return EvaluateFixedPoint(E, Result, Info);
11216 }
11217 return false;
11218 }
11219
11220 /// Check whether the given declaration can be directly converted to an integral
11221 /// rvalue. If not, no diagnostic is produced; there are other things we can
11222 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)11223 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
11224 // Enums are integer constant exprs.
11225 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
11226 // Check for signedness/width mismatches between E type and ECD value.
11227 bool SameSign = (ECD->getInitVal().isSigned()
11228 == E->getType()->isSignedIntegerOrEnumerationType());
11229 bool SameWidth = (ECD->getInitVal().getBitWidth()
11230 == Info.Ctx.getIntWidth(E->getType()));
11231 if (SameSign && SameWidth)
11232 return Success(ECD->getInitVal(), E);
11233 else {
11234 // Get rid of mismatch (otherwise Success assertions will fail)
11235 // by computing a new value matching the type of E.
11236 llvm::APSInt Val = ECD->getInitVal();
11237 if (!SameSign)
11238 Val.setIsSigned(!ECD->getInitVal().isSigned());
11239 if (!SameWidth)
11240 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
11241 return Success(Val, E);
11242 }
11243 }
11244 return false;
11245 }
11246
11247 /// Values returned by __builtin_classify_type, chosen to match the values
11248 /// produced by GCC's builtin.
11249 enum class GCCTypeClass {
11250 None = -1,
11251 Void = 0,
11252 Integer = 1,
11253 // GCC reserves 2 for character types, but instead classifies them as
11254 // integers.
11255 Enum = 3,
11256 Bool = 4,
11257 Pointer = 5,
11258 // GCC reserves 6 for references, but appears to never use it (because
11259 // expressions never have reference type, presumably).
11260 PointerToDataMember = 7,
11261 RealFloat = 8,
11262 Complex = 9,
11263 // GCC reserves 10 for functions, but does not use it since GCC version 6 due
11264 // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
11265 // GCC claims to reserve 11 for pointers to member functions, but *actually*
11266 // uses 12 for that purpose, same as for a class or struct. Maybe it
11267 // internally implements a pointer to member as a struct? Who knows.
11268 PointerToMemberFunction = 12, // Not a bug, see above.
11269 ClassOrStruct = 12,
11270 Union = 13,
11271 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
11272 // decay to pointer. (Prior to version 6 it was only used in C++ mode).
11273 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
11274 // literals.
11275 };
11276
11277 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11278 /// as GCC.
11279 static GCCTypeClass
EvaluateBuiltinClassifyType(QualType T,const LangOptions & LangOpts)11280 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
11281 assert(!T->isDependentType() && "unexpected dependent type");
11282
11283 QualType CanTy = T.getCanonicalType();
11284 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
11285
11286 switch (CanTy->getTypeClass()) {
11287 #define TYPE(ID, BASE)
11288 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
11289 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
11290 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
11291 #include "clang/AST/TypeNodes.inc"
11292 case Type::Auto:
11293 case Type::DeducedTemplateSpecialization:
11294 llvm_unreachable("unexpected non-canonical or dependent type");
11295
11296 case Type::Builtin:
11297 switch (BT->getKind()) {
11298 #define BUILTIN_TYPE(ID, SINGLETON_ID)
11299 #define SIGNED_TYPE(ID, SINGLETON_ID) \
11300 case BuiltinType::ID: return GCCTypeClass::Integer;
11301 #define FLOATING_TYPE(ID, SINGLETON_ID) \
11302 case BuiltinType::ID: return GCCTypeClass::RealFloat;
11303 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
11304 case BuiltinType::ID: break;
11305 #include "clang/AST/BuiltinTypes.def"
11306 case BuiltinType::Void:
11307 return GCCTypeClass::Void;
11308
11309 case BuiltinType::Bool:
11310 return GCCTypeClass::Bool;
11311
11312 case BuiltinType::Char_U:
11313 case BuiltinType::UChar:
11314 case BuiltinType::WChar_U:
11315 case BuiltinType::Char8:
11316 case BuiltinType::Char16:
11317 case BuiltinType::Char32:
11318 case BuiltinType::UShort:
11319 case BuiltinType::UInt:
11320 case BuiltinType::ULong:
11321 case BuiltinType::ULongLong:
11322 case BuiltinType::UInt128:
11323 return GCCTypeClass::Integer;
11324
11325 case BuiltinType::UShortAccum:
11326 case BuiltinType::UAccum:
11327 case BuiltinType::ULongAccum:
11328 case BuiltinType::UShortFract:
11329 case BuiltinType::UFract:
11330 case BuiltinType::ULongFract:
11331 case BuiltinType::SatUShortAccum:
11332 case BuiltinType::SatUAccum:
11333 case BuiltinType::SatULongAccum:
11334 case BuiltinType::SatUShortFract:
11335 case BuiltinType::SatUFract:
11336 case BuiltinType::SatULongFract:
11337 return GCCTypeClass::None;
11338
11339 case BuiltinType::NullPtr:
11340
11341 case BuiltinType::ObjCId:
11342 case BuiltinType::ObjCClass:
11343 case BuiltinType::ObjCSel:
11344 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
11345 case BuiltinType::Id:
11346 #include "clang/Basic/OpenCLImageTypes.def"
11347 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
11348 case BuiltinType::Id:
11349 #include "clang/Basic/OpenCLExtensionTypes.def"
11350 case BuiltinType::OCLSampler:
11351 case BuiltinType::OCLEvent:
11352 case BuiltinType::OCLClkEvent:
11353 case BuiltinType::OCLQueue:
11354 case BuiltinType::OCLReserveID:
11355 #define SVE_TYPE(Name, Id, SingletonId) \
11356 case BuiltinType::Id:
11357 #include "clang/Basic/AArch64SVEACLETypes.def"
11358 #define PPC_VECTOR_TYPE(Name, Id, Size) \
11359 case BuiltinType::Id:
11360 #include "clang/Basic/PPCTypes.def"
11361 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
11362 #include "clang/Basic/RISCVVTypes.def"
11363 return GCCTypeClass::None;
11364
11365 case BuiltinType::Dependent:
11366 llvm_unreachable("unexpected dependent type");
11367 };
11368 llvm_unreachable("unexpected placeholder type");
11369
11370 case Type::Enum:
11371 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
11372
11373 case Type::Pointer:
11374 case Type::ConstantArray:
11375 case Type::VariableArray:
11376 case Type::IncompleteArray:
11377 case Type::FunctionNoProto:
11378 case Type::FunctionProto:
11379 return GCCTypeClass::Pointer;
11380
11381 case Type::MemberPointer:
11382 return CanTy->isMemberDataPointerType()
11383 ? GCCTypeClass::PointerToDataMember
11384 : GCCTypeClass::PointerToMemberFunction;
11385
11386 case Type::Complex:
11387 return GCCTypeClass::Complex;
11388
11389 case Type::Record:
11390 return CanTy->isUnionType() ? GCCTypeClass::Union
11391 : GCCTypeClass::ClassOrStruct;
11392
11393 case Type::Atomic:
11394 // GCC classifies _Atomic T the same as T.
11395 return EvaluateBuiltinClassifyType(
11396 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
11397
11398 case Type::BlockPointer:
11399 case Type::Vector:
11400 case Type::ExtVector:
11401 case Type::ConstantMatrix:
11402 case Type::ObjCObject:
11403 case Type::ObjCInterface:
11404 case Type::ObjCObjectPointer:
11405 case Type::Pipe:
11406 case Type::BitInt:
11407 // GCC classifies vectors as None. We follow its lead and classify all
11408 // other types that don't fit into the regular classification the same way.
11409 return GCCTypeClass::None;
11410
11411 case Type::LValueReference:
11412 case Type::RValueReference:
11413 llvm_unreachable("invalid type for expression");
11414 }
11415
11416 llvm_unreachable("unexpected type class");
11417 }
11418
11419 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
11420 /// as GCC.
11421 static GCCTypeClass
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)11422 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
11423 // If no argument was supplied, default to None. This isn't
11424 // ideal, however it is what gcc does.
11425 if (E->getNumArgs() == 0)
11426 return GCCTypeClass::None;
11427
11428 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
11429 // being an ICE, but still folds it to a constant using the type of the first
11430 // argument.
11431 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
11432 }
11433
11434 /// EvaluateBuiltinConstantPForLValue - Determine the result of
11435 /// __builtin_constant_p when applied to the given pointer.
11436 ///
11437 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
11438 /// or it points to the first character of a string literal.
EvaluateBuiltinConstantPForLValue(const APValue & LV)11439 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
11440 APValue::LValueBase Base = LV.getLValueBase();
11441 if (Base.isNull()) {
11442 // A null base is acceptable.
11443 return true;
11444 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
11445 if (!isa<StringLiteral>(E))
11446 return false;
11447 return LV.getLValueOffset().isZero();
11448 } else if (Base.is<TypeInfoLValue>()) {
11449 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11450 // evaluate to true.
11451 return true;
11452 } else {
11453 // Any other base is not constant enough for GCC.
11454 return false;
11455 }
11456 }
11457
11458 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11459 /// GCC as we can manage.
EvaluateBuiltinConstantP(EvalInfo & Info,const Expr * Arg)11460 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11461 // This evaluation is not permitted to have side-effects, so evaluate it in
11462 // a speculative evaluation context.
11463 SpeculativeEvaluationRAII SpeculativeEval(Info);
11464
11465 // Constant-folding is always enabled for the operand of __builtin_constant_p
11466 // (even when the enclosing evaluation context otherwise requires a strict
11467 // language-specific constant expression).
11468 FoldConstant Fold(Info, true);
11469
11470 QualType ArgType = Arg->getType();
11471
11472 // __builtin_constant_p always has one operand. The rules which gcc follows
11473 // are not precisely documented, but are as follows:
11474 //
11475 // - If the operand is of integral, floating, complex or enumeration type,
11476 // and can be folded to a known value of that type, it returns 1.
11477 // - If the operand can be folded to a pointer to the first character
11478 // of a string literal (or such a pointer cast to an integral type)
11479 // or to a null pointer or an integer cast to a pointer, it returns 1.
11480 //
11481 // Otherwise, it returns 0.
11482 //
11483 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11484 // its support for this did not work prior to GCC 9 and is not yet well
11485 // understood.
11486 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11487 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11488 ArgType->isNullPtrType()) {
11489 APValue V;
11490 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11491 Fold.keepDiagnostics();
11492 return false;
11493 }
11494
11495 // For a pointer (possibly cast to integer), there are special rules.
11496 if (V.getKind() == APValue::LValue)
11497 return EvaluateBuiltinConstantPForLValue(V);
11498
11499 // Otherwise, any constant value is good enough.
11500 return V.hasValue();
11501 }
11502
11503 // Anything else isn't considered to be sufficiently constant.
11504 return false;
11505 }
11506
11507 /// Retrieves the "underlying object type" of the given expression,
11508 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)11509 static QualType getObjectType(APValue::LValueBase B) {
11510 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11511 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11512 return VD->getType();
11513 } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11514 if (isa<CompoundLiteralExpr>(E))
11515 return E->getType();
11516 } else if (B.is<TypeInfoLValue>()) {
11517 return B.getTypeInfoType();
11518 } else if (B.is<DynamicAllocLValue>()) {
11519 return B.getDynamicAllocType();
11520 }
11521
11522 return QualType();
11523 }
11524
11525 /// A more selective version of E->IgnoreParenCasts for
11526 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11527 /// to change the type of E.
11528 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11529 ///
11530 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)11531 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11532 assert(E->isPRValue() && E->getType()->hasPointerRepresentation());
11533
11534 auto *NoParens = E->IgnoreParens();
11535 auto *Cast = dyn_cast<CastExpr>(NoParens);
11536 if (Cast == nullptr)
11537 return NoParens;
11538
11539 // We only conservatively allow a few kinds of casts, because this code is
11540 // inherently a simple solution that seeks to support the common case.
11541 auto CastKind = Cast->getCastKind();
11542 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11543 CastKind != CK_AddressSpaceConversion)
11544 return NoParens;
11545
11546 auto *SubExpr = Cast->getSubExpr();
11547 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue())
11548 return NoParens;
11549 return ignorePointerCastsAndParens(SubExpr);
11550 }
11551
11552 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11553 /// record layout. e.g.
11554 /// struct { struct { int a, b; } fst, snd; } obj;
11555 /// obj.fst // no
11556 /// obj.snd // yes
11557 /// obj.fst.a // no
11558 /// obj.fst.b // no
11559 /// obj.snd.a // no
11560 /// obj.snd.b // yes
11561 ///
11562 /// Please note: this function is specialized for how __builtin_object_size
11563 /// views "objects".
11564 ///
11565 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11566 /// correct result, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)11567 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11568 assert(!LVal.Designator.Invalid);
11569
11570 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11571 const RecordDecl *Parent = FD->getParent();
11572 Invalid = Parent->isInvalidDecl();
11573 if (Invalid || Parent->isUnion())
11574 return true;
11575 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11576 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11577 };
11578
11579 auto &Base = LVal.getLValueBase();
11580 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11581 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11582 bool Invalid;
11583 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11584 return Invalid;
11585 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11586 for (auto *FD : IFD->chain()) {
11587 bool Invalid;
11588 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11589 return Invalid;
11590 }
11591 }
11592 }
11593
11594 unsigned I = 0;
11595 QualType BaseType = getType(Base);
11596 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11597 // If we don't know the array bound, conservatively assume we're looking at
11598 // the final array element.
11599 ++I;
11600 if (BaseType->isIncompleteArrayType())
11601 BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11602 else
11603 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11604 }
11605
11606 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11607 const auto &Entry = LVal.Designator.Entries[I];
11608 if (BaseType->isArrayType()) {
11609 // Because __builtin_object_size treats arrays as objects, we can ignore
11610 // the index iff this is the last array in the Designator.
11611 if (I + 1 == E)
11612 return true;
11613 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11614 uint64_t Index = Entry.getAsArrayIndex();
11615 if (Index + 1 != CAT->getSize())
11616 return false;
11617 BaseType = CAT->getElementType();
11618 } else if (BaseType->isAnyComplexType()) {
11619 const auto *CT = BaseType->castAs<ComplexType>();
11620 uint64_t Index = Entry.getAsArrayIndex();
11621 if (Index != 1)
11622 return false;
11623 BaseType = CT->getElementType();
11624 } else if (auto *FD = getAsField(Entry)) {
11625 bool Invalid;
11626 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11627 return Invalid;
11628 BaseType = FD->getType();
11629 } else {
11630 assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11631 return false;
11632 }
11633 }
11634 return true;
11635 }
11636
11637 /// Tests to see if the LValue has a user-specified designator (that isn't
11638 /// necessarily valid). Note that this always returns 'true' if the LValue has
11639 /// an unsized array as its first designator entry, because there's currently no
11640 /// way to tell if the user typed *foo or foo[0].
refersToCompleteObject(const LValue & LVal)11641 static bool refersToCompleteObject(const LValue &LVal) {
11642 if (LVal.Designator.Invalid)
11643 return false;
11644
11645 if (!LVal.Designator.Entries.empty())
11646 return LVal.Designator.isMostDerivedAnUnsizedArray();
11647
11648 if (!LVal.InvalidBase)
11649 return true;
11650
11651 // If `E` is a MemberExpr, then the first part of the designator is hiding in
11652 // the LValueBase.
11653 const auto *E = LVal.Base.dyn_cast<const Expr *>();
11654 return !E || !isa<MemberExpr>(E);
11655 }
11656
11657 /// Attempts to detect a user writing into a piece of memory that's impossible
11658 /// to figure out the size of by just using types.
isUserWritingOffTheEnd(const ASTContext & Ctx,const LValue & LVal)11659 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11660 const SubobjectDesignator &Designator = LVal.Designator;
11661 // Notes:
11662 // - Users can only write off of the end when we have an invalid base. Invalid
11663 // bases imply we don't know where the memory came from.
11664 // - We used to be a bit more aggressive here; we'd only be conservative if
11665 // the array at the end was flexible, or if it had 0 or 1 elements. This
11666 // broke some common standard library extensions (PR30346), but was
11667 // otherwise seemingly fine. It may be useful to reintroduce this behavior
11668 // with some sort of list. OTOH, it seems that GCC is always
11669 // conservative with the last element in structs (if it's an array), so our
11670 // current behavior is more compatible than an explicit list approach would
11671 // be.
11672 auto isFlexibleArrayMember = [&] {
11673 using FAMKind = LangOptions::StrictFlexArraysLevelKind;
11674 FAMKind StrictFlexArraysLevel =
11675 Ctx.getLangOpts().getStrictFlexArraysLevel();
11676
11677 if (Designator.isMostDerivedAnUnsizedArray())
11678 return true;
11679
11680 if (StrictFlexArraysLevel == FAMKind::Default)
11681 return true;
11682
11683 if (Designator.getMostDerivedArraySize() == 0 &&
11684 StrictFlexArraysLevel != FAMKind::IncompleteOnly)
11685 return true;
11686
11687 if (Designator.getMostDerivedArraySize() == 1 &&
11688 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete)
11689 return true;
11690
11691 return false;
11692 };
11693
11694 return LVal.InvalidBase &&
11695 Designator.Entries.size() == Designator.MostDerivedPathLength &&
11696 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() &&
11697 isDesignatorAtObjectEnd(Ctx, LVal);
11698 }
11699
11700 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11701 /// Fails if the conversion would cause loss of precision.
convertUnsignedAPIntToCharUnits(const llvm::APInt & Int,CharUnits & Result)11702 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11703 CharUnits &Result) {
11704 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11705 if (Int.ugt(CharUnitsMax))
11706 return false;
11707 Result = CharUnits::fromQuantity(Int.getZExtValue());
11708 return true;
11709 }
11710
11711 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11712 /// determine how many bytes exist from the beginning of the object to either
11713 /// the end of the current subobject, or the end of the object itself, depending
11714 /// on what the LValue looks like + the value of Type.
11715 ///
11716 /// If this returns false, the value of Result is undefined.
determineEndOffset(EvalInfo & Info,SourceLocation ExprLoc,unsigned Type,const LValue & LVal,CharUnits & EndOffset)11717 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11718 unsigned Type, const LValue &LVal,
11719 CharUnits &EndOffset) {
11720 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11721
11722 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11723 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11724 return false;
11725 return HandleSizeof(Info, ExprLoc, Ty, Result);
11726 };
11727
11728 // We want to evaluate the size of the entire object. This is a valid fallback
11729 // for when Type=1 and the designator is invalid, because we're asked for an
11730 // upper-bound.
11731 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11732 // Type=3 wants a lower bound, so we can't fall back to this.
11733 if (Type == 3 && !DetermineForCompleteObject)
11734 return false;
11735
11736 llvm::APInt APEndOffset;
11737 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11738 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11739 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11740
11741 if (LVal.InvalidBase)
11742 return false;
11743
11744 QualType BaseTy = getObjectType(LVal.getLValueBase());
11745 return CheckedHandleSizeof(BaseTy, EndOffset);
11746 }
11747
11748 // We want to evaluate the size of a subobject.
11749 const SubobjectDesignator &Designator = LVal.Designator;
11750
11751 // The following is a moderately common idiom in C:
11752 //
11753 // struct Foo { int a; char c[1]; };
11754 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11755 // strcpy(&F->c[0], Bar);
11756 //
11757 // In order to not break too much legacy code, we need to support it.
11758 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11759 // If we can resolve this to an alloc_size call, we can hand that back,
11760 // because we know for certain how many bytes there are to write to.
11761 llvm::APInt APEndOffset;
11762 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11763 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11764 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11765
11766 // If we cannot determine the size of the initial allocation, then we can't
11767 // given an accurate upper-bound. However, we are still able to give
11768 // conservative lower-bounds for Type=3.
11769 if (Type == 1)
11770 return false;
11771 }
11772
11773 CharUnits BytesPerElem;
11774 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11775 return false;
11776
11777 // According to the GCC documentation, we want the size of the subobject
11778 // denoted by the pointer. But that's not quite right -- what we actually
11779 // want is the size of the immediately-enclosing array, if there is one.
11780 int64_t ElemsRemaining;
11781 if (Designator.MostDerivedIsArrayElement &&
11782 Designator.Entries.size() == Designator.MostDerivedPathLength) {
11783 uint64_t ArraySize = Designator.getMostDerivedArraySize();
11784 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11785 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11786 } else {
11787 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11788 }
11789
11790 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11791 return true;
11792 }
11793
11794 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11795 /// returns true and stores the result in @p Size.
11796 ///
11797 /// If @p WasError is non-null, this will report whether the failure to evaluate
11798 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size)11799 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11800 EvalInfo &Info, uint64_t &Size) {
11801 // Determine the denoted object.
11802 LValue LVal;
11803 {
11804 // The operand of __builtin_object_size is never evaluated for side-effects.
11805 // If there are any, but we can determine the pointed-to object anyway, then
11806 // ignore the side-effects.
11807 SpeculativeEvaluationRAII SpeculativeEval(Info);
11808 IgnoreSideEffectsRAII Fold(Info);
11809
11810 if (E->isGLValue()) {
11811 // It's possible for us to be given GLValues if we're called via
11812 // Expr::tryEvaluateObjectSize.
11813 APValue RVal;
11814 if (!EvaluateAsRValue(Info, E, RVal))
11815 return false;
11816 LVal.setFrom(Info.Ctx, RVal);
11817 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11818 /*InvalidBaseOK=*/true))
11819 return false;
11820 }
11821
11822 // If we point to before the start of the object, there are no accessible
11823 // bytes.
11824 if (LVal.getLValueOffset().isNegative()) {
11825 Size = 0;
11826 return true;
11827 }
11828
11829 CharUnits EndOffset;
11830 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11831 return false;
11832
11833 // If we've fallen outside of the end offset, just pretend there's nothing to
11834 // write to/read from.
11835 if (EndOffset <= LVal.getLValueOffset())
11836 Size = 0;
11837 else
11838 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11839 return true;
11840 }
11841
VisitCallExpr(const CallExpr * E)11842 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11843 if (!IsConstantEvaluatedBuiltinCall(E))
11844 return ExprEvaluatorBaseTy::VisitCallExpr(E);
11845 return VisitBuiltinCallExpr(E, E->getBuiltinCallee());
11846 }
11847
getBuiltinAlignArguments(const CallExpr * E,EvalInfo & Info,APValue & Val,APSInt & Alignment)11848 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11849 APValue &Val, APSInt &Alignment) {
11850 QualType SrcTy = E->getArg(0)->getType();
11851 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11852 return false;
11853 // Even though we are evaluating integer expressions we could get a pointer
11854 // argument for the __builtin_is_aligned() case.
11855 if (SrcTy->isPointerType()) {
11856 LValue Ptr;
11857 if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11858 return false;
11859 Ptr.moveInto(Val);
11860 } else if (!SrcTy->isIntegralOrEnumerationType()) {
11861 Info.FFDiag(E->getArg(0));
11862 return false;
11863 } else {
11864 APSInt SrcInt;
11865 if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11866 return false;
11867 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11868 "Bit widths must be the same");
11869 Val = APValue(SrcInt);
11870 }
11871 assert(Val.hasValue());
11872 return true;
11873 }
11874
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)11875 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11876 unsigned BuiltinOp) {
11877 switch (BuiltinOp) {
11878 default:
11879 return false;
11880
11881 case Builtin::BI__builtin_dynamic_object_size:
11882 case Builtin::BI__builtin_object_size: {
11883 // The type was checked when we built the expression.
11884 unsigned Type =
11885 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11886 assert(Type <= 3 && "unexpected type");
11887
11888 uint64_t Size;
11889 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11890 return Success(Size, E);
11891
11892 if (E->getArg(0)->HasSideEffects(Info.Ctx))
11893 return Success((Type & 2) ? 0 : -1, E);
11894
11895 // Expression had no side effects, but we couldn't statically determine the
11896 // size of the referenced object.
11897 switch (Info.EvalMode) {
11898 case EvalInfo::EM_ConstantExpression:
11899 case EvalInfo::EM_ConstantFold:
11900 case EvalInfo::EM_IgnoreSideEffects:
11901 // Leave it to IR generation.
11902 return Error(E);
11903 case EvalInfo::EM_ConstantExpressionUnevaluated:
11904 // Reduce it to a constant now.
11905 return Success((Type & 2) ? 0 : -1, E);
11906 }
11907
11908 llvm_unreachable("unexpected EvalMode");
11909 }
11910
11911 case Builtin::BI__builtin_os_log_format_buffer_size: {
11912 analyze_os_log::OSLogBufferLayout Layout;
11913 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11914 return Success(Layout.size().getQuantity(), E);
11915 }
11916
11917 case Builtin::BI__builtin_is_aligned: {
11918 APValue Src;
11919 APSInt Alignment;
11920 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11921 return false;
11922 if (Src.isLValue()) {
11923 // If we evaluated a pointer, check the minimum known alignment.
11924 LValue Ptr;
11925 Ptr.setFrom(Info.Ctx, Src);
11926 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11927 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11928 // We can return true if the known alignment at the computed offset is
11929 // greater than the requested alignment.
11930 assert(PtrAlign.isPowerOfTwo());
11931 assert(Alignment.isPowerOf2());
11932 if (PtrAlign.getQuantity() >= Alignment)
11933 return Success(1, E);
11934 // If the alignment is not known to be sufficient, some cases could still
11935 // be aligned at run time. However, if the requested alignment is less or
11936 // equal to the base alignment and the offset is not aligned, we know that
11937 // the run-time value can never be aligned.
11938 if (BaseAlignment.getQuantity() >= Alignment &&
11939 PtrAlign.getQuantity() < Alignment)
11940 return Success(0, E);
11941 // Otherwise we can't infer whether the value is sufficiently aligned.
11942 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11943 // in cases where we can't fully evaluate the pointer.
11944 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11945 << Alignment;
11946 return false;
11947 }
11948 assert(Src.isInt());
11949 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11950 }
11951 case Builtin::BI__builtin_align_up: {
11952 APValue Src;
11953 APSInt Alignment;
11954 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11955 return false;
11956 if (!Src.isInt())
11957 return Error(E);
11958 APSInt AlignedVal =
11959 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11960 Src.getInt().isUnsigned());
11961 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11962 return Success(AlignedVal, E);
11963 }
11964 case Builtin::BI__builtin_align_down: {
11965 APValue Src;
11966 APSInt Alignment;
11967 if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11968 return false;
11969 if (!Src.isInt())
11970 return Error(E);
11971 APSInt AlignedVal =
11972 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11973 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11974 return Success(AlignedVal, E);
11975 }
11976
11977 case Builtin::BI__builtin_bitreverse8:
11978 case Builtin::BI__builtin_bitreverse16:
11979 case Builtin::BI__builtin_bitreverse32:
11980 case Builtin::BI__builtin_bitreverse64: {
11981 APSInt Val;
11982 if (!EvaluateInteger(E->getArg(0), Val, Info))
11983 return false;
11984
11985 return Success(Val.reverseBits(), E);
11986 }
11987
11988 case Builtin::BI__builtin_bswap16:
11989 case Builtin::BI__builtin_bswap32:
11990 case Builtin::BI__builtin_bswap64: {
11991 APSInt Val;
11992 if (!EvaluateInteger(E->getArg(0), Val, Info))
11993 return false;
11994
11995 return Success(Val.byteSwap(), E);
11996 }
11997
11998 case Builtin::BI__builtin_classify_type:
11999 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
12000
12001 case Builtin::BI__builtin_clrsb:
12002 case Builtin::BI__builtin_clrsbl:
12003 case Builtin::BI__builtin_clrsbll: {
12004 APSInt Val;
12005 if (!EvaluateInteger(E->getArg(0), Val, Info))
12006 return false;
12007
12008 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
12009 }
12010
12011 case Builtin::BI__builtin_clz:
12012 case Builtin::BI__builtin_clzl:
12013 case Builtin::BI__builtin_clzll:
12014 case Builtin::BI__builtin_clzs: {
12015 APSInt Val;
12016 if (!EvaluateInteger(E->getArg(0), Val, Info))
12017 return false;
12018 if (!Val)
12019 return Error(E);
12020
12021 return Success(Val.countLeadingZeros(), E);
12022 }
12023
12024 case Builtin::BI__builtin_constant_p: {
12025 const Expr *Arg = E->getArg(0);
12026 if (EvaluateBuiltinConstantP(Info, Arg))
12027 return Success(true, E);
12028 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
12029 // Outside a constant context, eagerly evaluate to false in the presence
12030 // of side-effects in order to avoid -Wunsequenced false-positives in
12031 // a branch on __builtin_constant_p(expr).
12032 return Success(false, E);
12033 }
12034 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12035 return false;
12036 }
12037
12038 case Builtin::BI__builtin_is_constant_evaluated: {
12039 const auto *Callee = Info.CurrentCall->getCallee();
12040 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
12041 (Info.CallStackDepth == 1 ||
12042 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
12043 Callee->getIdentifier() &&
12044 Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
12045 // FIXME: Find a better way to avoid duplicated diagnostics.
12046 if (Info.EvalStatus.Diag)
12047 Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
12048 : Info.CurrentCall->CallLoc,
12049 diag::warn_is_constant_evaluated_always_true_constexpr)
12050 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
12051 : "std::is_constant_evaluated");
12052 }
12053
12054 return Success(Info.InConstantContext, E);
12055 }
12056
12057 case Builtin::BI__builtin_ctz:
12058 case Builtin::BI__builtin_ctzl:
12059 case Builtin::BI__builtin_ctzll:
12060 case Builtin::BI__builtin_ctzs: {
12061 APSInt Val;
12062 if (!EvaluateInteger(E->getArg(0), Val, Info))
12063 return false;
12064 if (!Val)
12065 return Error(E);
12066
12067 return Success(Val.countTrailingZeros(), E);
12068 }
12069
12070 case Builtin::BI__builtin_eh_return_data_regno: {
12071 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
12072 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
12073 return Success(Operand, E);
12074 }
12075
12076 case Builtin::BI__builtin_expect:
12077 case Builtin::BI__builtin_expect_with_probability:
12078 return Visit(E->getArg(0));
12079
12080 case Builtin::BI__builtin_ffs:
12081 case Builtin::BI__builtin_ffsl:
12082 case Builtin::BI__builtin_ffsll: {
12083 APSInt Val;
12084 if (!EvaluateInteger(E->getArg(0), Val, Info))
12085 return false;
12086
12087 unsigned N = Val.countTrailingZeros();
12088 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
12089 }
12090
12091 case Builtin::BI__builtin_fpclassify: {
12092 APFloat Val(0.0);
12093 if (!EvaluateFloat(E->getArg(5), Val, Info))
12094 return false;
12095 unsigned Arg;
12096 switch (Val.getCategory()) {
12097 case APFloat::fcNaN: Arg = 0; break;
12098 case APFloat::fcInfinity: Arg = 1; break;
12099 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
12100 case APFloat::fcZero: Arg = 4; break;
12101 }
12102 return Visit(E->getArg(Arg));
12103 }
12104
12105 case Builtin::BI__builtin_isinf_sign: {
12106 APFloat Val(0.0);
12107 return EvaluateFloat(E->getArg(0), Val, Info) &&
12108 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
12109 }
12110
12111 case Builtin::BI__builtin_isinf: {
12112 APFloat Val(0.0);
12113 return EvaluateFloat(E->getArg(0), Val, Info) &&
12114 Success(Val.isInfinity() ? 1 : 0, E);
12115 }
12116
12117 case Builtin::BI__builtin_isfinite: {
12118 APFloat Val(0.0);
12119 return EvaluateFloat(E->getArg(0), Val, Info) &&
12120 Success(Val.isFinite() ? 1 : 0, E);
12121 }
12122
12123 case Builtin::BI__builtin_isnan: {
12124 APFloat Val(0.0);
12125 return EvaluateFloat(E->getArg(0), Val, Info) &&
12126 Success(Val.isNaN() ? 1 : 0, E);
12127 }
12128
12129 case Builtin::BI__builtin_isnormal: {
12130 APFloat Val(0.0);
12131 return EvaluateFloat(E->getArg(0), Val, Info) &&
12132 Success(Val.isNormal() ? 1 : 0, E);
12133 }
12134
12135 case Builtin::BI__builtin_parity:
12136 case Builtin::BI__builtin_parityl:
12137 case Builtin::BI__builtin_parityll: {
12138 APSInt Val;
12139 if (!EvaluateInteger(E->getArg(0), Val, Info))
12140 return false;
12141
12142 return Success(Val.countPopulation() % 2, E);
12143 }
12144
12145 case Builtin::BI__builtin_popcount:
12146 case Builtin::BI__builtin_popcountl:
12147 case Builtin::BI__builtin_popcountll: {
12148 APSInt Val;
12149 if (!EvaluateInteger(E->getArg(0), Val, Info))
12150 return false;
12151
12152 return Success(Val.countPopulation(), E);
12153 }
12154
12155 case Builtin::BI__builtin_rotateleft8:
12156 case Builtin::BI__builtin_rotateleft16:
12157 case Builtin::BI__builtin_rotateleft32:
12158 case Builtin::BI__builtin_rotateleft64:
12159 case Builtin::BI_rotl8: // Microsoft variants of rotate right
12160 case Builtin::BI_rotl16:
12161 case Builtin::BI_rotl:
12162 case Builtin::BI_lrotl:
12163 case Builtin::BI_rotl64: {
12164 APSInt Val, Amt;
12165 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12166 !EvaluateInteger(E->getArg(1), Amt, Info))
12167 return false;
12168
12169 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
12170 }
12171
12172 case Builtin::BI__builtin_rotateright8:
12173 case Builtin::BI__builtin_rotateright16:
12174 case Builtin::BI__builtin_rotateright32:
12175 case Builtin::BI__builtin_rotateright64:
12176 case Builtin::BI_rotr8: // Microsoft variants of rotate right
12177 case Builtin::BI_rotr16:
12178 case Builtin::BI_rotr:
12179 case Builtin::BI_lrotr:
12180 case Builtin::BI_rotr64: {
12181 APSInt Val, Amt;
12182 if (!EvaluateInteger(E->getArg(0), Val, Info) ||
12183 !EvaluateInteger(E->getArg(1), Amt, Info))
12184 return false;
12185
12186 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
12187 }
12188
12189 case Builtin::BIstrlen:
12190 case Builtin::BIwcslen:
12191 // A call to strlen is not a constant expression.
12192 if (Info.getLangOpts().CPlusPlus11)
12193 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12194 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12195 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12196 else
12197 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12198 [[fallthrough]];
12199 case Builtin::BI__builtin_strlen:
12200 case Builtin::BI__builtin_wcslen: {
12201 // As an extension, we support __builtin_strlen() as a constant expression,
12202 // and support folding strlen() to a constant.
12203 uint64_t StrLen;
12204 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info))
12205 return Success(StrLen, E);
12206 return false;
12207 }
12208
12209 case Builtin::BIstrcmp:
12210 case Builtin::BIwcscmp:
12211 case Builtin::BIstrncmp:
12212 case Builtin::BIwcsncmp:
12213 case Builtin::BImemcmp:
12214 case Builtin::BIbcmp:
12215 case Builtin::BIwmemcmp:
12216 // A call to strlen is not a constant expression.
12217 if (Info.getLangOpts().CPlusPlus11)
12218 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
12219 << /*isConstexpr*/ 0 << /*isConstructor*/ 0
12220 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str();
12221 else
12222 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
12223 [[fallthrough]];
12224 case Builtin::BI__builtin_strcmp:
12225 case Builtin::BI__builtin_wcscmp:
12226 case Builtin::BI__builtin_strncmp:
12227 case Builtin::BI__builtin_wcsncmp:
12228 case Builtin::BI__builtin_memcmp:
12229 case Builtin::BI__builtin_bcmp:
12230 case Builtin::BI__builtin_wmemcmp: {
12231 LValue String1, String2;
12232 if (!EvaluatePointer(E->getArg(0), String1, Info) ||
12233 !EvaluatePointer(E->getArg(1), String2, Info))
12234 return false;
12235
12236 uint64_t MaxLength = uint64_t(-1);
12237 if (BuiltinOp != Builtin::BIstrcmp &&
12238 BuiltinOp != Builtin::BIwcscmp &&
12239 BuiltinOp != Builtin::BI__builtin_strcmp &&
12240 BuiltinOp != Builtin::BI__builtin_wcscmp) {
12241 APSInt N;
12242 if (!EvaluateInteger(E->getArg(2), N, Info))
12243 return false;
12244 MaxLength = N.getExtValue();
12245 }
12246
12247 // Empty substrings compare equal by definition.
12248 if (MaxLength == 0u)
12249 return Success(0, E);
12250
12251 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12252 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
12253 String1.Designator.Invalid || String2.Designator.Invalid)
12254 return false;
12255
12256 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
12257 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
12258
12259 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
12260 BuiltinOp == Builtin::BIbcmp ||
12261 BuiltinOp == Builtin::BI__builtin_memcmp ||
12262 BuiltinOp == Builtin::BI__builtin_bcmp;
12263
12264 assert(IsRawByte ||
12265 (Info.Ctx.hasSameUnqualifiedType(
12266 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
12267 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
12268
12269 // For memcmp, allow comparing any arrays of '[[un]signed] char' or
12270 // 'char8_t', but no other types.
12271 if (IsRawByte &&
12272 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
12273 // FIXME: Consider using our bit_cast implementation to support this.
12274 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
12275 << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str()
12276 << CharTy1 << CharTy2;
12277 return false;
12278 }
12279
12280 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
12281 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
12282 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
12283 Char1.isInt() && Char2.isInt();
12284 };
12285 const auto &AdvanceElems = [&] {
12286 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
12287 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
12288 };
12289
12290 bool StopAtNull =
12291 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
12292 BuiltinOp != Builtin::BIwmemcmp &&
12293 BuiltinOp != Builtin::BI__builtin_memcmp &&
12294 BuiltinOp != Builtin::BI__builtin_bcmp &&
12295 BuiltinOp != Builtin::BI__builtin_wmemcmp);
12296 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
12297 BuiltinOp == Builtin::BIwcsncmp ||
12298 BuiltinOp == Builtin::BIwmemcmp ||
12299 BuiltinOp == Builtin::BI__builtin_wcscmp ||
12300 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
12301 BuiltinOp == Builtin::BI__builtin_wmemcmp;
12302
12303 for (; MaxLength; --MaxLength) {
12304 APValue Char1, Char2;
12305 if (!ReadCurElems(Char1, Char2))
12306 return false;
12307 if (Char1.getInt().ne(Char2.getInt())) {
12308 if (IsWide) // wmemcmp compares with wchar_t signedness.
12309 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
12310 // memcmp always compares unsigned chars.
12311 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
12312 }
12313 if (StopAtNull && !Char1.getInt())
12314 return Success(0, E);
12315 assert(!(StopAtNull && !Char2.getInt()));
12316 if (!AdvanceElems())
12317 return false;
12318 }
12319 // We hit the strncmp / memcmp limit.
12320 return Success(0, E);
12321 }
12322
12323 case Builtin::BI__atomic_always_lock_free:
12324 case Builtin::BI__atomic_is_lock_free:
12325 case Builtin::BI__c11_atomic_is_lock_free: {
12326 APSInt SizeVal;
12327 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
12328 return false;
12329
12330 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
12331 // of two less than or equal to the maximum inline atomic width, we know it
12332 // is lock-free. If the size isn't a power of two, or greater than the
12333 // maximum alignment where we promote atomics, we know it is not lock-free
12334 // (at least not in the sense of atomic_is_lock_free). Otherwise,
12335 // the answer can only be determined at runtime; for example, 16-byte
12336 // atomics have lock-free implementations on some, but not all,
12337 // x86-64 processors.
12338
12339 // Check power-of-two.
12340 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
12341 if (Size.isPowerOfTwo()) {
12342 // Check against inlining width.
12343 unsigned InlineWidthBits =
12344 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
12345 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
12346 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
12347 Size == CharUnits::One() ||
12348 E->getArg(1)->isNullPointerConstant(Info.Ctx,
12349 Expr::NPC_NeverValueDependent))
12350 // OK, we will inline appropriately-aligned operations of this size,
12351 // and _Atomic(T) is appropriately-aligned.
12352 return Success(1, E);
12353
12354 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
12355 castAs<PointerType>()->getPointeeType();
12356 if (!PointeeType->isIncompleteType() &&
12357 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
12358 // OK, we will inline operations on this object.
12359 return Success(1, E);
12360 }
12361 }
12362 }
12363
12364 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
12365 Success(0, E) : Error(E);
12366 }
12367 case Builtin::BI__builtin_add_overflow:
12368 case Builtin::BI__builtin_sub_overflow:
12369 case Builtin::BI__builtin_mul_overflow:
12370 case Builtin::BI__builtin_sadd_overflow:
12371 case Builtin::BI__builtin_uadd_overflow:
12372 case Builtin::BI__builtin_uaddl_overflow:
12373 case Builtin::BI__builtin_uaddll_overflow:
12374 case Builtin::BI__builtin_usub_overflow:
12375 case Builtin::BI__builtin_usubl_overflow:
12376 case Builtin::BI__builtin_usubll_overflow:
12377 case Builtin::BI__builtin_umul_overflow:
12378 case Builtin::BI__builtin_umull_overflow:
12379 case Builtin::BI__builtin_umulll_overflow:
12380 case Builtin::BI__builtin_saddl_overflow:
12381 case Builtin::BI__builtin_saddll_overflow:
12382 case Builtin::BI__builtin_ssub_overflow:
12383 case Builtin::BI__builtin_ssubl_overflow:
12384 case Builtin::BI__builtin_ssubll_overflow:
12385 case Builtin::BI__builtin_smul_overflow:
12386 case Builtin::BI__builtin_smull_overflow:
12387 case Builtin::BI__builtin_smulll_overflow: {
12388 LValue ResultLValue;
12389 APSInt LHS, RHS;
12390
12391 QualType ResultType = E->getArg(2)->getType()->getPointeeType();
12392 if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
12393 !EvaluateInteger(E->getArg(1), RHS, Info) ||
12394 !EvaluatePointer(E->getArg(2), ResultLValue, Info))
12395 return false;
12396
12397 APSInt Result;
12398 bool DidOverflow = false;
12399
12400 // If the types don't have to match, enlarge all 3 to the largest of them.
12401 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12402 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12403 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12404 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
12405 ResultType->isSignedIntegerOrEnumerationType();
12406 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
12407 ResultType->isSignedIntegerOrEnumerationType();
12408 uint64_t LHSSize = LHS.getBitWidth();
12409 uint64_t RHSSize = RHS.getBitWidth();
12410 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
12411 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
12412
12413 // Add an additional bit if the signedness isn't uniformly agreed to. We
12414 // could do this ONLY if there is a signed and an unsigned that both have
12415 // MaxBits, but the code to check that is pretty nasty. The issue will be
12416 // caught in the shrink-to-result later anyway.
12417 if (IsSigned && !AllSigned)
12418 ++MaxBits;
12419
12420 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
12421 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
12422 Result = APSInt(MaxBits, !IsSigned);
12423 }
12424
12425 // Find largest int.
12426 switch (BuiltinOp) {
12427 default:
12428 llvm_unreachable("Invalid value for BuiltinOp");
12429 case Builtin::BI__builtin_add_overflow:
12430 case Builtin::BI__builtin_sadd_overflow:
12431 case Builtin::BI__builtin_saddl_overflow:
12432 case Builtin::BI__builtin_saddll_overflow:
12433 case Builtin::BI__builtin_uadd_overflow:
12434 case Builtin::BI__builtin_uaddl_overflow:
12435 case Builtin::BI__builtin_uaddll_overflow:
12436 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12437 : LHS.uadd_ov(RHS, DidOverflow);
12438 break;
12439 case Builtin::BI__builtin_sub_overflow:
12440 case Builtin::BI__builtin_ssub_overflow:
12441 case Builtin::BI__builtin_ssubl_overflow:
12442 case Builtin::BI__builtin_ssubll_overflow:
12443 case Builtin::BI__builtin_usub_overflow:
12444 case Builtin::BI__builtin_usubl_overflow:
12445 case Builtin::BI__builtin_usubll_overflow:
12446 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12447 : LHS.usub_ov(RHS, DidOverflow);
12448 break;
12449 case Builtin::BI__builtin_mul_overflow:
12450 case Builtin::BI__builtin_smul_overflow:
12451 case Builtin::BI__builtin_smull_overflow:
12452 case Builtin::BI__builtin_smulll_overflow:
12453 case Builtin::BI__builtin_umul_overflow:
12454 case Builtin::BI__builtin_umull_overflow:
12455 case Builtin::BI__builtin_umulll_overflow:
12456 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12457 : LHS.umul_ov(RHS, DidOverflow);
12458 break;
12459 }
12460
12461 // In the case where multiple sizes are allowed, truncate and see if
12462 // the values are the same.
12463 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12464 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12465 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12466 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12467 // since it will give us the behavior of a TruncOrSelf in the case where
12468 // its parameter <= its size. We previously set Result to be at least the
12469 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12470 // will work exactly like TruncOrSelf.
12471 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12472 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12473
12474 if (!APSInt::isSameValue(Temp, Result))
12475 DidOverflow = true;
12476 Result = Temp;
12477 }
12478
12479 APValue APV{Result};
12480 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12481 return false;
12482 return Success(DidOverflow, E);
12483 }
12484 }
12485 }
12486
12487 /// Determine whether this is a pointer past the end of the complete
12488 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)12489 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12490 const LValue &LV) {
12491 // A null pointer can be viewed as being "past the end" but we don't
12492 // choose to look at it that way here.
12493 if (!LV.getLValueBase())
12494 return false;
12495
12496 // If the designator is valid and refers to a subobject, we're not pointing
12497 // past the end.
12498 if (!LV.getLValueDesignator().Invalid &&
12499 !LV.getLValueDesignator().isOnePastTheEnd())
12500 return false;
12501
12502 // A pointer to an incomplete type might be past-the-end if the type's size is
12503 // zero. We cannot tell because the type is incomplete.
12504 QualType Ty = getType(LV.getLValueBase());
12505 if (Ty->isIncompleteType())
12506 return true;
12507
12508 // We're a past-the-end pointer if we point to the byte after the object,
12509 // no matter what our type or path is.
12510 auto Size = Ctx.getTypeSizeInChars(Ty);
12511 return LV.getLValueOffset() == Size;
12512 }
12513
12514 namespace {
12515
12516 /// Data recursive integer evaluator of certain binary operators.
12517 ///
12518 /// We use a data recursive algorithm for binary operators so that we are able
12519 /// to handle extreme cases of chained binary operators without causing stack
12520 /// overflow.
12521 class DataRecursiveIntBinOpEvaluator {
12522 struct EvalResult {
12523 APValue Val;
12524 bool Failed;
12525
EvalResult__anond52d8a672a11::DataRecursiveIntBinOpEvaluator::EvalResult12526 EvalResult() : Failed(false) { }
12527
swap__anond52d8a672a11::DataRecursiveIntBinOpEvaluator::EvalResult12528 void swap(EvalResult &RHS) {
12529 Val.swap(RHS.Val);
12530 Failed = RHS.Failed;
12531 RHS.Failed = false;
12532 }
12533 };
12534
12535 struct Job {
12536 const Expr *E;
12537 EvalResult LHSResult; // meaningful only for binary operator expression.
12538 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12539
12540 Job() = default;
12541 Job(Job &&) = default;
12542
startSpeculativeEval__anond52d8a672a11::DataRecursiveIntBinOpEvaluator::Job12543 void startSpeculativeEval(EvalInfo &Info) {
12544 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12545 }
12546
12547 private:
12548 SpeculativeEvaluationRAII SpecEvalRAII;
12549 };
12550
12551 SmallVector<Job, 16> Queue;
12552
12553 IntExprEvaluator &IntEval;
12554 EvalInfo &Info;
12555 APValue &FinalResult;
12556
12557 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)12558 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12559 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12560
12561 /// True if \param E is a binary operator that we are going to handle
12562 /// data recursively.
12563 /// We handle binary operators that are comma, logical, or that have operands
12564 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)12565 static bool shouldEnqueue(const BinaryOperator *E) {
12566 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12567 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() &&
12568 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12569 E->getRHS()->getType()->isIntegralOrEnumerationType());
12570 }
12571
Traverse(const BinaryOperator * E)12572 bool Traverse(const BinaryOperator *E) {
12573 enqueue(E);
12574 EvalResult PrevResult;
12575 while (!Queue.empty())
12576 process(PrevResult);
12577
12578 if (PrevResult.Failed) return false;
12579
12580 FinalResult.swap(PrevResult.Val);
12581 return true;
12582 }
12583
12584 private:
Success(uint64_t Value,const Expr * E,APValue & Result)12585 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12586 return IntEval.Success(Value, E, Result);
12587 }
Success(const APSInt & Value,const Expr * E,APValue & Result)12588 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12589 return IntEval.Success(Value, E, Result);
12590 }
Error(const Expr * E)12591 bool Error(const Expr *E) {
12592 return IntEval.Error(E);
12593 }
Error(const Expr * E,diag::kind D)12594 bool Error(const Expr *E, diag::kind D) {
12595 return IntEval.Error(E, D);
12596 }
12597
CCEDiag(const Expr * E,diag::kind D)12598 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12599 return Info.CCEDiag(E, D);
12600 }
12601
12602 // Returns true if visiting the RHS is necessary, false otherwise.
12603 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12604 bool &SuppressRHSDiags);
12605
12606 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12607 const BinaryOperator *E, APValue &Result);
12608
EvaluateExpr(const Expr * E,EvalResult & Result)12609 void EvaluateExpr(const Expr *E, EvalResult &Result) {
12610 Result.Failed = !Evaluate(Result.Val, Info, E);
12611 if (Result.Failed)
12612 Result.Val = APValue();
12613 }
12614
12615 void process(EvalResult &Result);
12616
enqueue(const Expr * E)12617 void enqueue(const Expr *E) {
12618 E = E->IgnoreParens();
12619 Queue.resize(Queue.size()+1);
12620 Queue.back().E = E;
12621 Queue.back().Kind = Job::AnyExprKind;
12622 }
12623 };
12624
12625 }
12626
12627 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)12628 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12629 bool &SuppressRHSDiags) {
12630 if (E->getOpcode() == BO_Comma) {
12631 // Ignore LHS but note if we could not evaluate it.
12632 if (LHSResult.Failed)
12633 return Info.noteSideEffect();
12634 return true;
12635 }
12636
12637 if (E->isLogicalOp()) {
12638 bool LHSAsBool;
12639 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12640 // We were able to evaluate the LHS, see if we can get away with not
12641 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12642 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12643 Success(LHSAsBool, E, LHSResult.Val);
12644 return false; // Ignore RHS
12645 }
12646 } else {
12647 LHSResult.Failed = true;
12648
12649 // Since we weren't able to evaluate the left hand side, it
12650 // might have had side effects.
12651 if (!Info.noteSideEffect())
12652 return false;
12653
12654 // We can't evaluate the LHS; however, sometimes the result
12655 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12656 // Don't ignore RHS and suppress diagnostics from this arm.
12657 SuppressRHSDiags = true;
12658 }
12659
12660 return true;
12661 }
12662
12663 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12664 E->getRHS()->getType()->isIntegralOrEnumerationType());
12665
12666 if (LHSResult.Failed && !Info.noteFailure())
12667 return false; // Ignore RHS;
12668
12669 return true;
12670 }
12671
addOrSubLValueAsInteger(APValue & LVal,const APSInt & Index,bool IsSub)12672 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12673 bool IsSub) {
12674 // Compute the new offset in the appropriate width, wrapping at 64 bits.
12675 // FIXME: When compiling for a 32-bit target, we should use 32-bit
12676 // offsets.
12677 assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12678 CharUnits &Offset = LVal.getLValueOffset();
12679 uint64_t Offset64 = Offset.getQuantity();
12680 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12681 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12682 : Offset64 + Index64);
12683 }
12684
12685 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)12686 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12687 const BinaryOperator *E, APValue &Result) {
12688 if (E->getOpcode() == BO_Comma) {
12689 if (RHSResult.Failed)
12690 return false;
12691 Result = RHSResult.Val;
12692 return true;
12693 }
12694
12695 if (E->isLogicalOp()) {
12696 bool lhsResult, rhsResult;
12697 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12698 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12699
12700 if (LHSIsOK) {
12701 if (RHSIsOK) {
12702 if (E->getOpcode() == BO_LOr)
12703 return Success(lhsResult || rhsResult, E, Result);
12704 else
12705 return Success(lhsResult && rhsResult, E, Result);
12706 }
12707 } else {
12708 if (RHSIsOK) {
12709 // We can't evaluate the LHS; however, sometimes the result
12710 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12711 if (rhsResult == (E->getOpcode() == BO_LOr))
12712 return Success(rhsResult, E, Result);
12713 }
12714 }
12715
12716 return false;
12717 }
12718
12719 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12720 E->getRHS()->getType()->isIntegralOrEnumerationType());
12721
12722 if (LHSResult.Failed || RHSResult.Failed)
12723 return false;
12724
12725 const APValue &LHSVal = LHSResult.Val;
12726 const APValue &RHSVal = RHSResult.Val;
12727
12728 // Handle cases like (unsigned long)&a + 4.
12729 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12730 Result = LHSVal;
12731 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12732 return true;
12733 }
12734
12735 // Handle cases like 4 + (unsigned long)&a
12736 if (E->getOpcode() == BO_Add &&
12737 RHSVal.isLValue() && LHSVal.isInt()) {
12738 Result = RHSVal;
12739 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12740 return true;
12741 }
12742
12743 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12744 // Handle (intptr_t)&&A - (intptr_t)&&B.
12745 if (!LHSVal.getLValueOffset().isZero() ||
12746 !RHSVal.getLValueOffset().isZero())
12747 return false;
12748 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12749 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12750 if (!LHSExpr || !RHSExpr)
12751 return false;
12752 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12753 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12754 if (!LHSAddrExpr || !RHSAddrExpr)
12755 return false;
12756 // Make sure both labels come from the same function.
12757 if (LHSAddrExpr->getLabel()->getDeclContext() !=
12758 RHSAddrExpr->getLabel()->getDeclContext())
12759 return false;
12760 Result = APValue(LHSAddrExpr, RHSAddrExpr);
12761 return true;
12762 }
12763
12764 // All the remaining cases expect both operands to be an integer
12765 if (!LHSVal.isInt() || !RHSVal.isInt())
12766 return Error(E);
12767
12768 // Set up the width and signedness manually, in case it can't be deduced
12769 // from the operation we're performing.
12770 // FIXME: Don't do this in the cases where we can deduce it.
12771 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12772 E->getType()->isUnsignedIntegerOrEnumerationType());
12773 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12774 RHSVal.getInt(), Value))
12775 return false;
12776 return Success(Value, E, Result);
12777 }
12778
process(EvalResult & Result)12779 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12780 Job &job = Queue.back();
12781
12782 switch (job.Kind) {
12783 case Job::AnyExprKind: {
12784 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12785 if (shouldEnqueue(Bop)) {
12786 job.Kind = Job::BinOpKind;
12787 enqueue(Bop->getLHS());
12788 return;
12789 }
12790 }
12791
12792 EvaluateExpr(job.E, Result);
12793 Queue.pop_back();
12794 return;
12795 }
12796
12797 case Job::BinOpKind: {
12798 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12799 bool SuppressRHSDiags = false;
12800 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12801 Queue.pop_back();
12802 return;
12803 }
12804 if (SuppressRHSDiags)
12805 job.startSpeculativeEval(Info);
12806 job.LHSResult.swap(Result);
12807 job.Kind = Job::BinOpVisitedLHSKind;
12808 enqueue(Bop->getRHS());
12809 return;
12810 }
12811
12812 case Job::BinOpVisitedLHSKind: {
12813 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12814 EvalResult RHS;
12815 RHS.swap(Result);
12816 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12817 Queue.pop_back();
12818 return;
12819 }
12820 }
12821
12822 llvm_unreachable("Invalid Job::Kind!");
12823 }
12824
12825 namespace {
12826 enum class CmpResult {
12827 Unequal,
12828 Less,
12829 Equal,
12830 Greater,
12831 Unordered,
12832 };
12833 }
12834
12835 template <class SuccessCB, class AfterCB>
12836 static bool
EvaluateComparisonBinaryOperator(EvalInfo & Info,const BinaryOperator * E,SuccessCB && Success,AfterCB && DoAfter)12837 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12838 SuccessCB &&Success, AfterCB &&DoAfter) {
12839 assert(!E->isValueDependent());
12840 assert(E->isComparisonOp() && "expected comparison operator");
12841 assert((E->getOpcode() == BO_Cmp ||
12842 E->getType()->isIntegralOrEnumerationType()) &&
12843 "unsupported binary expression evaluation");
12844 auto Error = [&](const Expr *E) {
12845 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12846 return false;
12847 };
12848
12849 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12850 bool IsEquality = E->isEqualityOp();
12851
12852 QualType LHSTy = E->getLHS()->getType();
12853 QualType RHSTy = E->getRHS()->getType();
12854
12855 if (LHSTy->isIntegralOrEnumerationType() &&
12856 RHSTy->isIntegralOrEnumerationType()) {
12857 APSInt LHS, RHS;
12858 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12859 if (!LHSOK && !Info.noteFailure())
12860 return false;
12861 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12862 return false;
12863 if (LHS < RHS)
12864 return Success(CmpResult::Less, E);
12865 if (LHS > RHS)
12866 return Success(CmpResult::Greater, E);
12867 return Success(CmpResult::Equal, E);
12868 }
12869
12870 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12871 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12872 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12873
12874 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12875 if (!LHSOK && !Info.noteFailure())
12876 return false;
12877 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12878 return false;
12879 if (LHSFX < RHSFX)
12880 return Success(CmpResult::Less, E);
12881 if (LHSFX > RHSFX)
12882 return Success(CmpResult::Greater, E);
12883 return Success(CmpResult::Equal, E);
12884 }
12885
12886 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12887 ComplexValue LHS, RHS;
12888 bool LHSOK;
12889 if (E->isAssignmentOp()) {
12890 LValue LV;
12891 EvaluateLValue(E->getLHS(), LV, Info);
12892 LHSOK = false;
12893 } else if (LHSTy->isRealFloatingType()) {
12894 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12895 if (LHSOK) {
12896 LHS.makeComplexFloat();
12897 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12898 }
12899 } else {
12900 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12901 }
12902 if (!LHSOK && !Info.noteFailure())
12903 return false;
12904
12905 if (E->getRHS()->getType()->isRealFloatingType()) {
12906 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12907 return false;
12908 RHS.makeComplexFloat();
12909 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12910 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12911 return false;
12912
12913 if (LHS.isComplexFloat()) {
12914 APFloat::cmpResult CR_r =
12915 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12916 APFloat::cmpResult CR_i =
12917 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12918 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12919 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12920 } else {
12921 assert(IsEquality && "invalid complex comparison");
12922 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12923 LHS.getComplexIntImag() == RHS.getComplexIntImag();
12924 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12925 }
12926 }
12927
12928 if (LHSTy->isRealFloatingType() &&
12929 RHSTy->isRealFloatingType()) {
12930 APFloat RHS(0.0), LHS(0.0);
12931
12932 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12933 if (!LHSOK && !Info.noteFailure())
12934 return false;
12935
12936 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12937 return false;
12938
12939 assert(E->isComparisonOp() && "Invalid binary operator!");
12940 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12941 if (!Info.InConstantContext &&
12942 APFloatCmpResult == APFloat::cmpUnordered &&
12943 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12944 // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12945 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12946 return false;
12947 }
12948 auto GetCmpRes = [&]() {
12949 switch (APFloatCmpResult) {
12950 case APFloat::cmpEqual:
12951 return CmpResult::Equal;
12952 case APFloat::cmpLessThan:
12953 return CmpResult::Less;
12954 case APFloat::cmpGreaterThan:
12955 return CmpResult::Greater;
12956 case APFloat::cmpUnordered:
12957 return CmpResult::Unordered;
12958 }
12959 llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12960 };
12961 return Success(GetCmpRes(), E);
12962 }
12963
12964 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12965 LValue LHSValue, RHSValue;
12966
12967 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12968 if (!LHSOK && !Info.noteFailure())
12969 return false;
12970
12971 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12972 return false;
12973
12974 // Reject differing bases from the normal codepath; we special-case
12975 // comparisons to null.
12976 if (!HasSameBase(LHSValue, RHSValue)) {
12977 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) {
12978 std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType());
12979 std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType());
12980 Info.FFDiag(E, DiagID)
12981 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS);
12982 return false;
12983 };
12984 // Inequalities and subtractions between unrelated pointers have
12985 // unspecified or undefined behavior.
12986 if (!IsEquality)
12987 return DiagComparison(
12988 diag::note_constexpr_pointer_comparison_unspecified);
12989 // A constant address may compare equal to the address of a symbol.
12990 // The one exception is that address of an object cannot compare equal
12991 // to a null pointer constant.
12992 // TODO: Should we restrict this to actual null pointers, and exclude the
12993 // case of zero cast to pointer type?
12994 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12995 (!RHSValue.Base && !RHSValue.Offset.isZero()))
12996 return DiagComparison(diag::note_constexpr_pointer_constant_comparison,
12997 !RHSValue.Base);
12998 // It's implementation-defined whether distinct literals will have
12999 // distinct addresses. In clang, the result of such a comparison is
13000 // unspecified, so it is not a constant expression. However, we do know
13001 // that the address of a literal will be non-null.
13002 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
13003 LHSValue.Base && RHSValue.Base)
13004 return DiagComparison(diag::note_constexpr_literal_comparison);
13005 // We can't tell whether weak symbols will end up pointing to the same
13006 // object.
13007 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
13008 return DiagComparison(diag::note_constexpr_pointer_weak_comparison,
13009 !IsWeakLValue(LHSValue));
13010 // We can't compare the address of the start of one object with the
13011 // past-the-end address of another object, per C++ DR1652.
13012 if (LHSValue.Base && LHSValue.Offset.isZero() &&
13013 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue))
13014 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13015 true);
13016 if (RHSValue.Base && RHSValue.Offset.isZero() &&
13017 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))
13018 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end,
13019 false);
13020 // We can't tell whether an object is at the same address as another
13021 // zero sized object.
13022 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
13023 (LHSValue.Base && isZeroSized(RHSValue)))
13024 return DiagComparison(
13025 diag::note_constexpr_pointer_comparison_zero_sized);
13026 return Success(CmpResult::Unequal, E);
13027 }
13028
13029 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13030 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13031
13032 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13033 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13034
13035 // C++11 [expr.rel]p3:
13036 // Pointers to void (after pointer conversions) can be compared, with a
13037 // result defined as follows: If both pointers represent the same
13038 // address or are both the null pointer value, the result is true if the
13039 // operator is <= or >= and false otherwise; otherwise the result is
13040 // unspecified.
13041 // We interpret this as applying to pointers to *cv* void.
13042 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
13043 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
13044
13045 // C++11 [expr.rel]p2:
13046 // - If two pointers point to non-static data members of the same object,
13047 // or to subobjects or array elements fo such members, recursively, the
13048 // pointer to the later declared member compares greater provided the
13049 // two members have the same access control and provided their class is
13050 // not a union.
13051 // [...]
13052 // - Otherwise pointer comparisons are unspecified.
13053 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
13054 bool WasArrayIndex;
13055 unsigned Mismatch = FindDesignatorMismatch(
13056 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
13057 // At the point where the designators diverge, the comparison has a
13058 // specified value if:
13059 // - we are comparing array indices
13060 // - we are comparing fields of a union, or fields with the same access
13061 // Otherwise, the result is unspecified and thus the comparison is not a
13062 // constant expression.
13063 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
13064 Mismatch < RHSDesignator.Entries.size()) {
13065 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
13066 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
13067 if (!LF && !RF)
13068 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
13069 else if (!LF)
13070 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13071 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
13072 << RF->getParent() << RF;
13073 else if (!RF)
13074 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
13075 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
13076 << LF->getParent() << LF;
13077 else if (!LF->getParent()->isUnion() &&
13078 LF->getAccess() != RF->getAccess())
13079 Info.CCEDiag(E,
13080 diag::note_constexpr_pointer_comparison_differing_access)
13081 << LF << LF->getAccess() << RF << RF->getAccess()
13082 << LF->getParent();
13083 }
13084 }
13085
13086 // The comparison here must be unsigned, and performed with the same
13087 // width as the pointer.
13088 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
13089 uint64_t CompareLHS = LHSOffset.getQuantity();
13090 uint64_t CompareRHS = RHSOffset.getQuantity();
13091 assert(PtrSize <= 64 && "Unexpected pointer width");
13092 uint64_t Mask = ~0ULL >> (64 - PtrSize);
13093 CompareLHS &= Mask;
13094 CompareRHS &= Mask;
13095
13096 // If there is a base and this is a relational operator, we can only
13097 // compare pointers within the object in question; otherwise, the result
13098 // depends on where the object is located in memory.
13099 if (!LHSValue.Base.isNull() && IsRelational) {
13100 QualType BaseTy = getType(LHSValue.Base);
13101 if (BaseTy->isIncompleteType())
13102 return Error(E);
13103 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
13104 uint64_t OffsetLimit = Size.getQuantity();
13105 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
13106 return Error(E);
13107 }
13108
13109 if (CompareLHS < CompareRHS)
13110 return Success(CmpResult::Less, E);
13111 if (CompareLHS > CompareRHS)
13112 return Success(CmpResult::Greater, E);
13113 return Success(CmpResult::Equal, E);
13114 }
13115
13116 if (LHSTy->isMemberPointerType()) {
13117 assert(IsEquality && "unexpected member pointer operation");
13118 assert(RHSTy->isMemberPointerType() && "invalid comparison");
13119
13120 MemberPtr LHSValue, RHSValue;
13121
13122 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
13123 if (!LHSOK && !Info.noteFailure())
13124 return false;
13125
13126 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13127 return false;
13128
13129 // If either operand is a pointer to a weak function, the comparison is not
13130 // constant.
13131 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) {
13132 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13133 << LHSValue.getDecl();
13134 return true;
13135 }
13136 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) {
13137 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison)
13138 << RHSValue.getDecl();
13139 return true;
13140 }
13141
13142 // C++11 [expr.eq]p2:
13143 // If both operands are null, they compare equal. Otherwise if only one is
13144 // null, they compare unequal.
13145 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
13146 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
13147 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13148 }
13149
13150 // Otherwise if either is a pointer to a virtual member function, the
13151 // result is unspecified.
13152 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
13153 if (MD->isVirtual())
13154 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13155 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
13156 if (MD->isVirtual())
13157 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
13158
13159 // Otherwise they compare equal if and only if they would refer to the
13160 // same member of the same most derived object or the same subobject if
13161 // they were dereferenced with a hypothetical object of the associated
13162 // class type.
13163 bool Equal = LHSValue == RHSValue;
13164 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
13165 }
13166
13167 if (LHSTy->isNullPtrType()) {
13168 assert(E->isComparisonOp() && "unexpected nullptr operation");
13169 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
13170 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
13171 // are compared, the result is true of the operator is <=, >= or ==, and
13172 // false otherwise.
13173 return Success(CmpResult::Equal, E);
13174 }
13175
13176 return DoAfter();
13177 }
13178
VisitBinCmp(const BinaryOperator * E)13179 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
13180 if (!CheckLiteralType(Info, E))
13181 return false;
13182
13183 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13184 ComparisonCategoryResult CCR;
13185 switch (CR) {
13186 case CmpResult::Unequal:
13187 llvm_unreachable("should never produce Unequal for three-way comparison");
13188 case CmpResult::Less:
13189 CCR = ComparisonCategoryResult::Less;
13190 break;
13191 case CmpResult::Equal:
13192 CCR = ComparisonCategoryResult::Equal;
13193 break;
13194 case CmpResult::Greater:
13195 CCR = ComparisonCategoryResult::Greater;
13196 break;
13197 case CmpResult::Unordered:
13198 CCR = ComparisonCategoryResult::Unordered;
13199 break;
13200 }
13201 // Evaluation succeeded. Lookup the information for the comparison category
13202 // type and fetch the VarDecl for the result.
13203 const ComparisonCategoryInfo &CmpInfo =
13204 Info.Ctx.CompCategories.getInfoForType(E->getType());
13205 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
13206 // Check and evaluate the result as a constant expression.
13207 LValue LV;
13208 LV.set(VD);
13209 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13210 return false;
13211 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
13212 ConstantExprKind::Normal);
13213 };
13214 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13215 return ExprEvaluatorBaseTy::VisitBinCmp(E);
13216 });
13217 }
13218
VisitCXXParenListInitExpr(const CXXParenListInitExpr * E)13219 bool RecordExprEvaluator::VisitCXXParenListInitExpr(
13220 const CXXParenListInitExpr *E) {
13221 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs());
13222 }
13223
VisitBinaryOperator(const BinaryOperator * E)13224 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13225 // We don't support assignment in C. C++ assignments don't get here because
13226 // assignment is an lvalue in C++.
13227 if (E->isAssignmentOp()) {
13228 Error(E);
13229 if (!Info.noteFailure())
13230 return false;
13231 }
13232
13233 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
13234 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
13235
13236 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
13237 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
13238 "DataRecursiveIntBinOpEvaluator should have handled integral types");
13239
13240 if (E->isComparisonOp()) {
13241 // Evaluate builtin binary comparisons by evaluating them as three-way
13242 // comparisons and then translating the result.
13243 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
13244 assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
13245 "should only produce Unequal for equality comparisons");
13246 bool IsEqual = CR == CmpResult::Equal,
13247 IsLess = CR == CmpResult::Less,
13248 IsGreater = CR == CmpResult::Greater;
13249 auto Op = E->getOpcode();
13250 switch (Op) {
13251 default:
13252 llvm_unreachable("unsupported binary operator");
13253 case BO_EQ:
13254 case BO_NE:
13255 return Success(IsEqual == (Op == BO_EQ), E);
13256 case BO_LT:
13257 return Success(IsLess, E);
13258 case BO_GT:
13259 return Success(IsGreater, E);
13260 case BO_LE:
13261 return Success(IsEqual || IsLess, E);
13262 case BO_GE:
13263 return Success(IsEqual || IsGreater, E);
13264 }
13265 };
13266 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
13267 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13268 });
13269 }
13270
13271 QualType LHSTy = E->getLHS()->getType();
13272 QualType RHSTy = E->getRHS()->getType();
13273
13274 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
13275 E->getOpcode() == BO_Sub) {
13276 LValue LHSValue, RHSValue;
13277
13278 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
13279 if (!LHSOK && !Info.noteFailure())
13280 return false;
13281
13282 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
13283 return false;
13284
13285 // Reject differing bases from the normal codepath; we special-case
13286 // comparisons to null.
13287 if (!HasSameBase(LHSValue, RHSValue)) {
13288 // Handle &&A - &&B.
13289 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
13290 return Error(E);
13291 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
13292 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
13293 if (!LHSExpr || !RHSExpr)
13294 return Error(E);
13295 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
13296 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
13297 if (!LHSAddrExpr || !RHSAddrExpr)
13298 return Error(E);
13299 // Make sure both labels come from the same function.
13300 if (LHSAddrExpr->getLabel()->getDeclContext() !=
13301 RHSAddrExpr->getLabel()->getDeclContext())
13302 return Error(E);
13303 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
13304 }
13305 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
13306 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
13307
13308 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
13309 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
13310
13311 // C++11 [expr.add]p6:
13312 // Unless both pointers point to elements of the same array object, or
13313 // one past the last element of the array object, the behavior is
13314 // undefined.
13315 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
13316 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
13317 RHSDesignator))
13318 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
13319
13320 QualType Type = E->getLHS()->getType();
13321 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
13322
13323 CharUnits ElementSize;
13324 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
13325 return false;
13326
13327 // As an extension, a type may have zero size (empty struct or union in
13328 // C, array of zero length). Pointer subtraction in such cases has
13329 // undefined behavior, so is not constant.
13330 if (ElementSize.isZero()) {
13331 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
13332 << ElementType;
13333 return false;
13334 }
13335
13336 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
13337 // and produce incorrect results when it overflows. Such behavior
13338 // appears to be non-conforming, but is common, so perhaps we should
13339 // assume the standard intended for such cases to be undefined behavior
13340 // and check for them.
13341
13342 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
13343 // overflow in the final conversion to ptrdiff_t.
13344 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
13345 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
13346 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
13347 false);
13348 APSInt TrueResult = (LHS - RHS) / ElemSize;
13349 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
13350
13351 if (Result.extend(65) != TrueResult &&
13352 !HandleOverflow(Info, E, TrueResult, E->getType()))
13353 return false;
13354 return Success(Result, E);
13355 }
13356
13357 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13358 }
13359
13360 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
13361 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)13362 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
13363 const UnaryExprOrTypeTraitExpr *E) {
13364 switch(E->getKind()) {
13365 case UETT_PreferredAlignOf:
13366 case UETT_AlignOf: {
13367 if (E->isArgumentType())
13368 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
13369 E);
13370 else
13371 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
13372 E);
13373 }
13374
13375 case UETT_VecStep: {
13376 QualType Ty = E->getTypeOfArgument();
13377
13378 if (Ty->isVectorType()) {
13379 unsigned n = Ty->castAs<VectorType>()->getNumElements();
13380
13381 // The vec_step built-in functions that take a 3-component
13382 // vector return 4. (OpenCL 1.1 spec 6.11.12)
13383 if (n == 3)
13384 n = 4;
13385
13386 return Success(n, E);
13387 } else
13388 return Success(1, E);
13389 }
13390
13391 case UETT_SizeOf: {
13392 QualType SrcTy = E->getTypeOfArgument();
13393 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
13394 // the result is the size of the referenced type."
13395 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
13396 SrcTy = Ref->getPointeeType();
13397
13398 CharUnits Sizeof;
13399 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
13400 return false;
13401 return Success(Sizeof, E);
13402 }
13403 case UETT_OpenMPRequiredSimdAlign:
13404 assert(E->isArgumentType());
13405 return Success(
13406 Info.Ctx.toCharUnitsFromBits(
13407 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
13408 .getQuantity(),
13409 E);
13410 }
13411
13412 llvm_unreachable("unknown expr/type trait");
13413 }
13414
VisitOffsetOfExpr(const OffsetOfExpr * OOE)13415 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
13416 CharUnits Result;
13417 unsigned n = OOE->getNumComponents();
13418 if (n == 0)
13419 return Error(OOE);
13420 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
13421 for (unsigned i = 0; i != n; ++i) {
13422 OffsetOfNode ON = OOE->getComponent(i);
13423 switch (ON.getKind()) {
13424 case OffsetOfNode::Array: {
13425 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
13426 APSInt IdxResult;
13427 if (!EvaluateInteger(Idx, IdxResult, Info))
13428 return false;
13429 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
13430 if (!AT)
13431 return Error(OOE);
13432 CurrentType = AT->getElementType();
13433 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
13434 Result += IdxResult.getSExtValue() * ElementSize;
13435 break;
13436 }
13437
13438 case OffsetOfNode::Field: {
13439 FieldDecl *MemberDecl = ON.getField();
13440 const RecordType *RT = CurrentType->getAs<RecordType>();
13441 if (!RT)
13442 return Error(OOE);
13443 RecordDecl *RD = RT->getDecl();
13444 if (RD->isInvalidDecl()) return false;
13445 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13446 unsigned i = MemberDecl->getFieldIndex();
13447 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13448 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13449 CurrentType = MemberDecl->getType().getNonReferenceType();
13450 break;
13451 }
13452
13453 case OffsetOfNode::Identifier:
13454 llvm_unreachable("dependent __builtin_offsetof");
13455
13456 case OffsetOfNode::Base: {
13457 CXXBaseSpecifier *BaseSpec = ON.getBase();
13458 if (BaseSpec->isVirtual())
13459 return Error(OOE);
13460
13461 // Find the layout of the class whose base we are looking into.
13462 const RecordType *RT = CurrentType->getAs<RecordType>();
13463 if (!RT)
13464 return Error(OOE);
13465 RecordDecl *RD = RT->getDecl();
13466 if (RD->isInvalidDecl()) return false;
13467 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13468
13469 // Find the base class itself.
13470 CurrentType = BaseSpec->getType();
13471 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13472 if (!BaseRT)
13473 return Error(OOE);
13474
13475 // Add the offset to the base.
13476 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13477 break;
13478 }
13479 }
13480 }
13481 return Success(Result, OOE);
13482 }
13483
VisitUnaryOperator(const UnaryOperator * E)13484 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13485 switch (E->getOpcode()) {
13486 default:
13487 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13488 // See C99 6.6p3.
13489 return Error(E);
13490 case UO_Extension:
13491 // FIXME: Should extension allow i-c-e extension expressions in its scope?
13492 // If so, we could clear the diagnostic ID.
13493 return Visit(E->getSubExpr());
13494 case UO_Plus:
13495 // The result is just the value.
13496 return Visit(E->getSubExpr());
13497 case UO_Minus: {
13498 if (!Visit(E->getSubExpr()))
13499 return false;
13500 if (!Result.isInt()) return Error(E);
13501 const APSInt &Value = Result.getInt();
13502 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13503 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13504 E->getType()))
13505 return false;
13506 return Success(-Value, E);
13507 }
13508 case UO_Not: {
13509 if (!Visit(E->getSubExpr()))
13510 return false;
13511 if (!Result.isInt()) return Error(E);
13512 return Success(~Result.getInt(), E);
13513 }
13514 case UO_LNot: {
13515 bool bres;
13516 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13517 return false;
13518 return Success(!bres, E);
13519 }
13520 }
13521 }
13522
13523 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13524 /// result type is integer.
VisitCastExpr(const CastExpr * E)13525 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13526 const Expr *SubExpr = E->getSubExpr();
13527 QualType DestType = E->getType();
13528 QualType SrcType = SubExpr->getType();
13529
13530 switch (E->getCastKind()) {
13531 case CK_BaseToDerived:
13532 case CK_DerivedToBase:
13533 case CK_UncheckedDerivedToBase:
13534 case CK_Dynamic:
13535 case CK_ToUnion:
13536 case CK_ArrayToPointerDecay:
13537 case CK_FunctionToPointerDecay:
13538 case CK_NullToPointer:
13539 case CK_NullToMemberPointer:
13540 case CK_BaseToDerivedMemberPointer:
13541 case CK_DerivedToBaseMemberPointer:
13542 case CK_ReinterpretMemberPointer:
13543 case CK_ConstructorConversion:
13544 case CK_IntegralToPointer:
13545 case CK_ToVoid:
13546 case CK_VectorSplat:
13547 case CK_IntegralToFloating:
13548 case CK_FloatingCast:
13549 case CK_CPointerToObjCPointerCast:
13550 case CK_BlockPointerToObjCPointerCast:
13551 case CK_AnyPointerToBlockPointerCast:
13552 case CK_ObjCObjectLValueCast:
13553 case CK_FloatingRealToComplex:
13554 case CK_FloatingComplexToReal:
13555 case CK_FloatingComplexCast:
13556 case CK_FloatingComplexToIntegralComplex:
13557 case CK_IntegralRealToComplex:
13558 case CK_IntegralComplexCast:
13559 case CK_IntegralComplexToFloatingComplex:
13560 case CK_BuiltinFnToFnPtr:
13561 case CK_ZeroToOCLOpaqueType:
13562 case CK_NonAtomicToAtomic:
13563 case CK_AddressSpaceConversion:
13564 case CK_IntToOCLSampler:
13565 case CK_FloatingToFixedPoint:
13566 case CK_FixedPointToFloating:
13567 case CK_FixedPointCast:
13568 case CK_IntegralToFixedPoint:
13569 case CK_MatrixCast:
13570 llvm_unreachable("invalid cast kind for integral value");
13571
13572 case CK_BitCast:
13573 case CK_Dependent:
13574 case CK_LValueBitCast:
13575 case CK_ARCProduceObject:
13576 case CK_ARCConsumeObject:
13577 case CK_ARCReclaimReturnedObject:
13578 case CK_ARCExtendBlockObject:
13579 case CK_CopyAndAutoreleaseBlockObject:
13580 return Error(E);
13581
13582 case CK_UserDefinedConversion:
13583 case CK_LValueToRValue:
13584 case CK_AtomicToNonAtomic:
13585 case CK_NoOp:
13586 case CK_LValueToRValueBitCast:
13587 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13588
13589 case CK_MemberPointerToBoolean:
13590 case CK_PointerToBoolean:
13591 case CK_IntegralToBoolean:
13592 case CK_FloatingToBoolean:
13593 case CK_BooleanToSignedIntegral:
13594 case CK_FloatingComplexToBoolean:
13595 case CK_IntegralComplexToBoolean: {
13596 bool BoolResult;
13597 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13598 return false;
13599 uint64_t IntResult = BoolResult;
13600 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13601 IntResult = (uint64_t)-1;
13602 return Success(IntResult, E);
13603 }
13604
13605 case CK_FixedPointToIntegral: {
13606 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13607 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13608 return false;
13609 bool Overflowed;
13610 llvm::APSInt Result = Src.convertToInt(
13611 Info.Ctx.getIntWidth(DestType),
13612 DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13613 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13614 return false;
13615 return Success(Result, E);
13616 }
13617
13618 case CK_FixedPointToBoolean: {
13619 // Unsigned padding does not affect this.
13620 APValue Val;
13621 if (!Evaluate(Val, Info, SubExpr))
13622 return false;
13623 return Success(Val.getFixedPoint().getBoolValue(), E);
13624 }
13625
13626 case CK_IntegralCast: {
13627 if (!Visit(SubExpr))
13628 return false;
13629
13630 if (!Result.isInt()) {
13631 // Allow casts of address-of-label differences if they are no-ops
13632 // or narrowing. (The narrowing case isn't actually guaranteed to
13633 // be constant-evaluatable except in some narrow cases which are hard
13634 // to detect here. We let it through on the assumption the user knows
13635 // what they are doing.)
13636 if (Result.isAddrLabelDiff())
13637 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13638 // Only allow casts of lvalues if they are lossless.
13639 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13640 }
13641
13642 if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext &&
13643 Info.EvalMode == EvalInfo::EM_ConstantExpression &&
13644 DestType->isEnumeralType()) {
13645
13646 bool ConstexprVar = true;
13647
13648 // We know if we are here that we are in a context that we might require
13649 // a constant expression or a context that requires a constant
13650 // value. But if we are initializing a value we don't know if it is a
13651 // constexpr variable or not. We can check the EvaluatingDecl to determine
13652 // if it constexpr or not. If not then we don't want to emit a diagnostic.
13653 if (const auto *VD = dyn_cast_or_null<VarDecl>(
13654 Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()))
13655 ConstexprVar = VD->isConstexpr();
13656
13657 const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType());
13658 const EnumDecl *ED = ET->getDecl();
13659 // Check that the value is within the range of the enumeration values.
13660 //
13661 // This corressponds to [expr.static.cast]p10 which says:
13662 // A value of integral or enumeration type can be explicitly converted
13663 // to a complete enumeration type ... If the enumeration type does not
13664 // have a fixed underlying type, the value is unchanged if the original
13665 // value is within the range of the enumeration values ([dcl.enum]), and
13666 // otherwise, the behavior is undefined.
13667 //
13668 // This was resolved as part of DR2338 which has CD5 status.
13669 if (!ED->isFixed()) {
13670 llvm::APInt Min;
13671 llvm::APInt Max;
13672
13673 ED->getValueRange(Max, Min);
13674 --Max;
13675
13676 if (ED->getNumNegativeBits() && ConstexprVar &&
13677 (Max.slt(Result.getInt().getSExtValue()) ||
13678 Min.sgt(Result.getInt().getSExtValue())))
13679 Info.Ctx.getDiagnostics().Report(
13680 E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range)
13681 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue()
13682 << Max.getSExtValue();
13683 else if (!ED->getNumNegativeBits() && ConstexprVar &&
13684 Max.ult(Result.getInt().getZExtValue()))
13685 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13686 diag::warn_constexpr_unscoped_enum_out_of_range)
13687 << llvm::toString(Result.getInt(),10) << Min.getZExtValue() << Max.getZExtValue();
13688 }
13689 }
13690
13691 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13692 Result.getInt()), E);
13693 }
13694
13695 case CK_PointerToIntegral: {
13696 CCEDiag(E, diag::note_constexpr_invalid_cast)
13697 << 2 << Info.Ctx.getLangOpts().CPlusPlus;
13698
13699 LValue LV;
13700 if (!EvaluatePointer(SubExpr, LV, Info))
13701 return false;
13702
13703 if (LV.getLValueBase()) {
13704 // Only allow based lvalue casts if they are lossless.
13705 // FIXME: Allow a larger integer size than the pointer size, and allow
13706 // narrowing back down to pointer width in subsequent integral casts.
13707 // FIXME: Check integer type's active bits, not its type size.
13708 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13709 return Error(E);
13710
13711 LV.Designator.setInvalid();
13712 LV.moveInto(Result);
13713 return true;
13714 }
13715
13716 APSInt AsInt;
13717 APValue V;
13718 LV.moveInto(V);
13719 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13720 llvm_unreachable("Can't cast this!");
13721
13722 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13723 }
13724
13725 case CK_IntegralComplexToReal: {
13726 ComplexValue C;
13727 if (!EvaluateComplex(SubExpr, C, Info))
13728 return false;
13729 return Success(C.getComplexIntReal(), E);
13730 }
13731
13732 case CK_FloatingToIntegral: {
13733 APFloat F(0.0);
13734 if (!EvaluateFloat(SubExpr, F, Info))
13735 return false;
13736
13737 APSInt Value;
13738 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13739 return false;
13740 return Success(Value, E);
13741 }
13742 }
13743
13744 llvm_unreachable("unknown cast resulting in integral value");
13745 }
13746
VisitUnaryReal(const UnaryOperator * E)13747 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13748 if (E->getSubExpr()->getType()->isAnyComplexType()) {
13749 ComplexValue LV;
13750 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13751 return false;
13752 if (!LV.isComplexInt())
13753 return Error(E);
13754 return Success(LV.getComplexIntReal(), E);
13755 }
13756
13757 return Visit(E->getSubExpr());
13758 }
13759
VisitUnaryImag(const UnaryOperator * E)13760 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13761 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13762 ComplexValue LV;
13763 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13764 return false;
13765 if (!LV.isComplexInt())
13766 return Error(E);
13767 return Success(LV.getComplexIntImag(), E);
13768 }
13769
13770 VisitIgnoredValue(E->getSubExpr());
13771 return Success(0, E);
13772 }
13773
VisitSizeOfPackExpr(const SizeOfPackExpr * E)13774 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13775 return Success(E->getPackLength(), E);
13776 }
13777
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)13778 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13779 return Success(E->getValue(), E);
13780 }
13781
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)13782 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13783 const ConceptSpecializationExpr *E) {
13784 return Success(E->isSatisfied(), E);
13785 }
13786
VisitRequiresExpr(const RequiresExpr * E)13787 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13788 return Success(E->isSatisfied(), E);
13789 }
13790
VisitUnaryOperator(const UnaryOperator * E)13791 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13792 switch (E->getOpcode()) {
13793 default:
13794 // Invalid unary operators
13795 return Error(E);
13796 case UO_Plus:
13797 // The result is just the value.
13798 return Visit(E->getSubExpr());
13799 case UO_Minus: {
13800 if (!Visit(E->getSubExpr())) return false;
13801 if (!Result.isFixedPoint())
13802 return Error(E);
13803 bool Overflowed;
13804 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13805 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13806 return false;
13807 return Success(Negated, E);
13808 }
13809 case UO_LNot: {
13810 bool bres;
13811 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13812 return false;
13813 return Success(!bres, E);
13814 }
13815 }
13816 }
13817
VisitCastExpr(const CastExpr * E)13818 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13819 const Expr *SubExpr = E->getSubExpr();
13820 QualType DestType = E->getType();
13821 assert(DestType->isFixedPointType() &&
13822 "Expected destination type to be a fixed point type");
13823 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13824
13825 switch (E->getCastKind()) {
13826 case CK_FixedPointCast: {
13827 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13828 if (!EvaluateFixedPoint(SubExpr, Src, Info))
13829 return false;
13830 bool Overflowed;
13831 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13832 if (Overflowed) {
13833 if (Info.checkingForUndefinedBehavior())
13834 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13835 diag::warn_fixedpoint_constant_overflow)
13836 << Result.toString() << E->getType();
13837 if (!HandleOverflow(Info, E, Result, E->getType()))
13838 return false;
13839 }
13840 return Success(Result, E);
13841 }
13842 case CK_IntegralToFixedPoint: {
13843 APSInt Src;
13844 if (!EvaluateInteger(SubExpr, Src, Info))
13845 return false;
13846
13847 bool Overflowed;
13848 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13849 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13850
13851 if (Overflowed) {
13852 if (Info.checkingForUndefinedBehavior())
13853 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13854 diag::warn_fixedpoint_constant_overflow)
13855 << IntResult.toString() << E->getType();
13856 if (!HandleOverflow(Info, E, IntResult, E->getType()))
13857 return false;
13858 }
13859
13860 return Success(IntResult, E);
13861 }
13862 case CK_FloatingToFixedPoint: {
13863 APFloat Src(0.0);
13864 if (!EvaluateFloat(SubExpr, Src, Info))
13865 return false;
13866
13867 bool Overflowed;
13868 APFixedPoint Result = APFixedPoint::getFromFloatValue(
13869 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13870
13871 if (Overflowed) {
13872 if (Info.checkingForUndefinedBehavior())
13873 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13874 diag::warn_fixedpoint_constant_overflow)
13875 << Result.toString() << E->getType();
13876 if (!HandleOverflow(Info, E, Result, E->getType()))
13877 return false;
13878 }
13879
13880 return Success(Result, E);
13881 }
13882 case CK_NoOp:
13883 case CK_LValueToRValue:
13884 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13885 default:
13886 return Error(E);
13887 }
13888 }
13889
VisitBinaryOperator(const BinaryOperator * E)13890 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13891 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13892 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13893
13894 const Expr *LHS = E->getLHS();
13895 const Expr *RHS = E->getRHS();
13896 FixedPointSemantics ResultFXSema =
13897 Info.Ctx.getFixedPointSemantics(E->getType());
13898
13899 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13900 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13901 return false;
13902 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13903 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13904 return false;
13905
13906 bool OpOverflow = false, ConversionOverflow = false;
13907 APFixedPoint Result(LHSFX.getSemantics());
13908 switch (E->getOpcode()) {
13909 case BO_Add: {
13910 Result = LHSFX.add(RHSFX, &OpOverflow)
13911 .convert(ResultFXSema, &ConversionOverflow);
13912 break;
13913 }
13914 case BO_Sub: {
13915 Result = LHSFX.sub(RHSFX, &OpOverflow)
13916 .convert(ResultFXSema, &ConversionOverflow);
13917 break;
13918 }
13919 case BO_Mul: {
13920 Result = LHSFX.mul(RHSFX, &OpOverflow)
13921 .convert(ResultFXSema, &ConversionOverflow);
13922 break;
13923 }
13924 case BO_Div: {
13925 if (RHSFX.getValue() == 0) {
13926 Info.FFDiag(E, diag::note_expr_divide_by_zero);
13927 return false;
13928 }
13929 Result = LHSFX.div(RHSFX, &OpOverflow)
13930 .convert(ResultFXSema, &ConversionOverflow);
13931 break;
13932 }
13933 case BO_Shl:
13934 case BO_Shr: {
13935 FixedPointSemantics LHSSema = LHSFX.getSemantics();
13936 llvm::APSInt RHSVal = RHSFX.getValue();
13937
13938 unsigned ShiftBW =
13939 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13940 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13941 // Embedded-C 4.1.6.2.2:
13942 // The right operand must be nonnegative and less than the total number
13943 // of (nonpadding) bits of the fixed-point operand ...
13944 if (RHSVal.isNegative())
13945 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13946 else if (Amt != RHSVal)
13947 Info.CCEDiag(E, diag::note_constexpr_large_shift)
13948 << RHSVal << E->getType() << ShiftBW;
13949
13950 if (E->getOpcode() == BO_Shl)
13951 Result = LHSFX.shl(Amt, &OpOverflow);
13952 else
13953 Result = LHSFX.shr(Amt, &OpOverflow);
13954 break;
13955 }
13956 default:
13957 return false;
13958 }
13959 if (OpOverflow || ConversionOverflow) {
13960 if (Info.checkingForUndefinedBehavior())
13961 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13962 diag::warn_fixedpoint_constant_overflow)
13963 << Result.toString() << E->getType();
13964 if (!HandleOverflow(Info, E, Result, E->getType()))
13965 return false;
13966 }
13967 return Success(Result, E);
13968 }
13969
13970 //===----------------------------------------------------------------------===//
13971 // Float Evaluation
13972 //===----------------------------------------------------------------------===//
13973
13974 namespace {
13975 class FloatExprEvaluator
13976 : public ExprEvaluatorBase<FloatExprEvaluator> {
13977 APFloat &Result;
13978 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)13979 FloatExprEvaluator(EvalInfo &info, APFloat &result)
13980 : ExprEvaluatorBaseTy(info), Result(result) {}
13981
Success(const APValue & V,const Expr * e)13982 bool Success(const APValue &V, const Expr *e) {
13983 Result = V.getFloat();
13984 return true;
13985 }
13986
ZeroInitialization(const Expr * E)13987 bool ZeroInitialization(const Expr *E) {
13988 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13989 return true;
13990 }
13991
13992 bool VisitCallExpr(const CallExpr *E);
13993
13994 bool VisitUnaryOperator(const UnaryOperator *E);
13995 bool VisitBinaryOperator(const BinaryOperator *E);
13996 bool VisitFloatingLiteral(const FloatingLiteral *E);
13997 bool VisitCastExpr(const CastExpr *E);
13998
13999 bool VisitUnaryReal(const UnaryOperator *E);
14000 bool VisitUnaryImag(const UnaryOperator *E);
14001
14002 // FIXME: Missing: array subscript of vector, member of vector
14003 };
14004 } // end anonymous namespace
14005
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)14006 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
14007 assert(!E->isValueDependent());
14008 assert(E->isPRValue() && E->getType()->isRealFloatingType());
14009 return FloatExprEvaluator(Info, Result).Visit(E);
14010 }
14011
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)14012 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
14013 QualType ResultTy,
14014 const Expr *Arg,
14015 bool SNaN,
14016 llvm::APFloat &Result) {
14017 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
14018 if (!S) return false;
14019
14020 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
14021
14022 llvm::APInt fill;
14023
14024 // Treat empty strings as if they were zero.
14025 if (S->getString().empty())
14026 fill = llvm::APInt(32, 0);
14027 else if (S->getString().getAsInteger(0, fill))
14028 return false;
14029
14030 if (Context.getTargetInfo().isNan2008()) {
14031 if (SNaN)
14032 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14033 else
14034 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14035 } else {
14036 // Prior to IEEE 754-2008, architectures were allowed to choose whether
14037 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
14038 // a different encoding to what became a standard in 2008, and for pre-
14039 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
14040 // sNaN. This is now known as "legacy NaN" encoding.
14041 if (SNaN)
14042 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
14043 else
14044 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
14045 }
14046
14047 return true;
14048 }
14049
VisitCallExpr(const CallExpr * E)14050 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
14051 if (!IsConstantEvaluatedBuiltinCall(E))
14052 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14053
14054 switch (E->getBuiltinCallee()) {
14055 default:
14056 return false;
14057
14058 case Builtin::BI__builtin_huge_val:
14059 case Builtin::BI__builtin_huge_valf:
14060 case Builtin::BI__builtin_huge_vall:
14061 case Builtin::BI__builtin_huge_valf16:
14062 case Builtin::BI__builtin_huge_valf128:
14063 case Builtin::BI__builtin_inf:
14064 case Builtin::BI__builtin_inff:
14065 case Builtin::BI__builtin_infl:
14066 case Builtin::BI__builtin_inff16:
14067 case Builtin::BI__builtin_inff128: {
14068 const llvm::fltSemantics &Sem =
14069 Info.Ctx.getFloatTypeSemantics(E->getType());
14070 Result = llvm::APFloat::getInf(Sem);
14071 return true;
14072 }
14073
14074 case Builtin::BI__builtin_nans:
14075 case Builtin::BI__builtin_nansf:
14076 case Builtin::BI__builtin_nansl:
14077 case Builtin::BI__builtin_nansf16:
14078 case Builtin::BI__builtin_nansf128:
14079 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14080 true, Result))
14081 return Error(E);
14082 return true;
14083
14084 case Builtin::BI__builtin_nan:
14085 case Builtin::BI__builtin_nanf:
14086 case Builtin::BI__builtin_nanl:
14087 case Builtin::BI__builtin_nanf16:
14088 case Builtin::BI__builtin_nanf128:
14089 // If this is __builtin_nan() turn this into a nan, otherwise we
14090 // can't constant fold it.
14091 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
14092 false, Result))
14093 return Error(E);
14094 return true;
14095
14096 case Builtin::BI__builtin_fabs:
14097 case Builtin::BI__builtin_fabsf:
14098 case Builtin::BI__builtin_fabsl:
14099 case Builtin::BI__builtin_fabsf128:
14100 // The C standard says "fabs raises no floating-point exceptions,
14101 // even if x is a signaling NaN. The returned value is independent of
14102 // the current rounding direction mode." Therefore constant folding can
14103 // proceed without regard to the floating point settings.
14104 // Reference, WG14 N2478 F.10.4.3
14105 if (!EvaluateFloat(E->getArg(0), Result, Info))
14106 return false;
14107
14108 if (Result.isNegative())
14109 Result.changeSign();
14110 return true;
14111
14112 case Builtin::BI__arithmetic_fence:
14113 return EvaluateFloat(E->getArg(0), Result, Info);
14114
14115 // FIXME: Builtin::BI__builtin_powi
14116 // FIXME: Builtin::BI__builtin_powif
14117 // FIXME: Builtin::BI__builtin_powil
14118
14119 case Builtin::BI__builtin_copysign:
14120 case Builtin::BI__builtin_copysignf:
14121 case Builtin::BI__builtin_copysignl:
14122 case Builtin::BI__builtin_copysignf128: {
14123 APFloat RHS(0.);
14124 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14125 !EvaluateFloat(E->getArg(1), RHS, Info))
14126 return false;
14127 Result.copySign(RHS);
14128 return true;
14129 }
14130
14131 case Builtin::BI__builtin_fmax:
14132 case Builtin::BI__builtin_fmaxf:
14133 case Builtin::BI__builtin_fmaxl:
14134 case Builtin::BI__builtin_fmaxf16:
14135 case Builtin::BI__builtin_fmaxf128: {
14136 // TODO: Handle sNaN.
14137 APFloat RHS(0.);
14138 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14139 !EvaluateFloat(E->getArg(1), RHS, Info))
14140 return false;
14141 // When comparing zeroes, return +0.0 if one of the zeroes is positive.
14142 if (Result.isZero() && RHS.isZero() && Result.isNegative())
14143 Result = RHS;
14144 else if (Result.isNaN() || RHS > Result)
14145 Result = RHS;
14146 return true;
14147 }
14148
14149 case Builtin::BI__builtin_fmin:
14150 case Builtin::BI__builtin_fminf:
14151 case Builtin::BI__builtin_fminl:
14152 case Builtin::BI__builtin_fminf16:
14153 case Builtin::BI__builtin_fminf128: {
14154 // TODO: Handle sNaN.
14155 APFloat RHS(0.);
14156 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
14157 !EvaluateFloat(E->getArg(1), RHS, Info))
14158 return false;
14159 // When comparing zeroes, return -0.0 if one of the zeroes is negative.
14160 if (Result.isZero() && RHS.isZero() && RHS.isNegative())
14161 Result = RHS;
14162 else if (Result.isNaN() || RHS < Result)
14163 Result = RHS;
14164 return true;
14165 }
14166 }
14167 }
14168
VisitUnaryReal(const UnaryOperator * E)14169 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
14170 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14171 ComplexValue CV;
14172 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14173 return false;
14174 Result = CV.FloatReal;
14175 return true;
14176 }
14177
14178 return Visit(E->getSubExpr());
14179 }
14180
VisitUnaryImag(const UnaryOperator * E)14181 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
14182 if (E->getSubExpr()->getType()->isAnyComplexType()) {
14183 ComplexValue CV;
14184 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
14185 return false;
14186 Result = CV.FloatImag;
14187 return true;
14188 }
14189
14190 VisitIgnoredValue(E->getSubExpr());
14191 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
14192 Result = llvm::APFloat::getZero(Sem);
14193 return true;
14194 }
14195
VisitUnaryOperator(const UnaryOperator * E)14196 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14197 switch (E->getOpcode()) {
14198 default: return Error(E);
14199 case UO_Plus:
14200 return EvaluateFloat(E->getSubExpr(), Result, Info);
14201 case UO_Minus:
14202 // In C standard, WG14 N2478 F.3 p4
14203 // "the unary - raises no floating point exceptions,
14204 // even if the operand is signalling."
14205 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
14206 return false;
14207 Result.changeSign();
14208 return true;
14209 }
14210 }
14211
VisitBinaryOperator(const BinaryOperator * E)14212 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14213 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14214 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14215
14216 APFloat RHS(0.0);
14217 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
14218 if (!LHSOK && !Info.noteFailure())
14219 return false;
14220 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
14221 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
14222 }
14223
VisitFloatingLiteral(const FloatingLiteral * E)14224 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
14225 Result = E->getValue();
14226 return true;
14227 }
14228
VisitCastExpr(const CastExpr * E)14229 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
14230 const Expr* SubExpr = E->getSubExpr();
14231
14232 switch (E->getCastKind()) {
14233 default:
14234 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14235
14236 case CK_IntegralToFloating: {
14237 APSInt IntResult;
14238 const FPOptions FPO = E->getFPFeaturesInEffect(
14239 Info.Ctx.getLangOpts());
14240 return EvaluateInteger(SubExpr, IntResult, Info) &&
14241 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
14242 IntResult, E->getType(), Result);
14243 }
14244
14245 case CK_FixedPointToFloating: {
14246 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
14247 if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
14248 return false;
14249 Result =
14250 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
14251 return true;
14252 }
14253
14254 case CK_FloatingCast: {
14255 if (!Visit(SubExpr))
14256 return false;
14257 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
14258 Result);
14259 }
14260
14261 case CK_FloatingComplexToReal: {
14262 ComplexValue V;
14263 if (!EvaluateComplex(SubExpr, V, Info))
14264 return false;
14265 Result = V.getComplexFloatReal();
14266 return true;
14267 }
14268 }
14269 }
14270
14271 //===----------------------------------------------------------------------===//
14272 // Complex Evaluation (for float and integer)
14273 //===----------------------------------------------------------------------===//
14274
14275 namespace {
14276 class ComplexExprEvaluator
14277 : public ExprEvaluatorBase<ComplexExprEvaluator> {
14278 ComplexValue &Result;
14279
14280 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)14281 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
14282 : ExprEvaluatorBaseTy(info), Result(Result) {}
14283
Success(const APValue & V,const Expr * e)14284 bool Success(const APValue &V, const Expr *e) {
14285 Result.setFrom(V);
14286 return true;
14287 }
14288
14289 bool ZeroInitialization(const Expr *E);
14290
14291 //===--------------------------------------------------------------------===//
14292 // Visitor Methods
14293 //===--------------------------------------------------------------------===//
14294
14295 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
14296 bool VisitCastExpr(const CastExpr *E);
14297 bool VisitBinaryOperator(const BinaryOperator *E);
14298 bool VisitUnaryOperator(const UnaryOperator *E);
14299 bool VisitInitListExpr(const InitListExpr *E);
14300 bool VisitCallExpr(const CallExpr *E);
14301 };
14302 } // end anonymous namespace
14303
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)14304 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
14305 EvalInfo &Info) {
14306 assert(!E->isValueDependent());
14307 assert(E->isPRValue() && E->getType()->isAnyComplexType());
14308 return ComplexExprEvaluator(Info, Result).Visit(E);
14309 }
14310
ZeroInitialization(const Expr * E)14311 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
14312 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
14313 if (ElemTy->isRealFloatingType()) {
14314 Result.makeComplexFloat();
14315 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
14316 Result.FloatReal = Zero;
14317 Result.FloatImag = Zero;
14318 } else {
14319 Result.makeComplexInt();
14320 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
14321 Result.IntReal = Zero;
14322 Result.IntImag = Zero;
14323 }
14324 return true;
14325 }
14326
VisitImaginaryLiteral(const ImaginaryLiteral * E)14327 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
14328 const Expr* SubExpr = E->getSubExpr();
14329
14330 if (SubExpr->getType()->isRealFloatingType()) {
14331 Result.makeComplexFloat();
14332 APFloat &Imag = Result.FloatImag;
14333 if (!EvaluateFloat(SubExpr, Imag, Info))
14334 return false;
14335
14336 Result.FloatReal = APFloat(Imag.getSemantics());
14337 return true;
14338 } else {
14339 assert(SubExpr->getType()->isIntegerType() &&
14340 "Unexpected imaginary literal.");
14341
14342 Result.makeComplexInt();
14343 APSInt &Imag = Result.IntImag;
14344 if (!EvaluateInteger(SubExpr, Imag, Info))
14345 return false;
14346
14347 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
14348 return true;
14349 }
14350 }
14351
VisitCastExpr(const CastExpr * E)14352 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
14353
14354 switch (E->getCastKind()) {
14355 case CK_BitCast:
14356 case CK_BaseToDerived:
14357 case CK_DerivedToBase:
14358 case CK_UncheckedDerivedToBase:
14359 case CK_Dynamic:
14360 case CK_ToUnion:
14361 case CK_ArrayToPointerDecay:
14362 case CK_FunctionToPointerDecay:
14363 case CK_NullToPointer:
14364 case CK_NullToMemberPointer:
14365 case CK_BaseToDerivedMemberPointer:
14366 case CK_DerivedToBaseMemberPointer:
14367 case CK_MemberPointerToBoolean:
14368 case CK_ReinterpretMemberPointer:
14369 case CK_ConstructorConversion:
14370 case CK_IntegralToPointer:
14371 case CK_PointerToIntegral:
14372 case CK_PointerToBoolean:
14373 case CK_ToVoid:
14374 case CK_VectorSplat:
14375 case CK_IntegralCast:
14376 case CK_BooleanToSignedIntegral:
14377 case CK_IntegralToBoolean:
14378 case CK_IntegralToFloating:
14379 case CK_FloatingToIntegral:
14380 case CK_FloatingToBoolean:
14381 case CK_FloatingCast:
14382 case CK_CPointerToObjCPointerCast:
14383 case CK_BlockPointerToObjCPointerCast:
14384 case CK_AnyPointerToBlockPointerCast:
14385 case CK_ObjCObjectLValueCast:
14386 case CK_FloatingComplexToReal:
14387 case CK_FloatingComplexToBoolean:
14388 case CK_IntegralComplexToReal:
14389 case CK_IntegralComplexToBoolean:
14390 case CK_ARCProduceObject:
14391 case CK_ARCConsumeObject:
14392 case CK_ARCReclaimReturnedObject:
14393 case CK_ARCExtendBlockObject:
14394 case CK_CopyAndAutoreleaseBlockObject:
14395 case CK_BuiltinFnToFnPtr:
14396 case CK_ZeroToOCLOpaqueType:
14397 case CK_NonAtomicToAtomic:
14398 case CK_AddressSpaceConversion:
14399 case CK_IntToOCLSampler:
14400 case CK_FloatingToFixedPoint:
14401 case CK_FixedPointToFloating:
14402 case CK_FixedPointCast:
14403 case CK_FixedPointToBoolean:
14404 case CK_FixedPointToIntegral:
14405 case CK_IntegralToFixedPoint:
14406 case CK_MatrixCast:
14407 llvm_unreachable("invalid cast kind for complex value");
14408
14409 case CK_LValueToRValue:
14410 case CK_AtomicToNonAtomic:
14411 case CK_NoOp:
14412 case CK_LValueToRValueBitCast:
14413 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14414
14415 case CK_Dependent:
14416 case CK_LValueBitCast:
14417 case CK_UserDefinedConversion:
14418 return Error(E);
14419
14420 case CK_FloatingRealToComplex: {
14421 APFloat &Real = Result.FloatReal;
14422 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
14423 return false;
14424
14425 Result.makeComplexFloat();
14426 Result.FloatImag = APFloat(Real.getSemantics());
14427 return true;
14428 }
14429
14430 case CK_FloatingComplexCast: {
14431 if (!Visit(E->getSubExpr()))
14432 return false;
14433
14434 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14435 QualType From
14436 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14437
14438 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
14439 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
14440 }
14441
14442 case CK_FloatingComplexToIntegralComplex: {
14443 if (!Visit(E->getSubExpr()))
14444 return false;
14445
14446 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14447 QualType From
14448 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14449 Result.makeComplexInt();
14450 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
14451 To, Result.IntReal) &&
14452 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
14453 To, Result.IntImag);
14454 }
14455
14456 case CK_IntegralRealToComplex: {
14457 APSInt &Real = Result.IntReal;
14458 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
14459 return false;
14460
14461 Result.makeComplexInt();
14462 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
14463 return true;
14464 }
14465
14466 case CK_IntegralComplexCast: {
14467 if (!Visit(E->getSubExpr()))
14468 return false;
14469
14470 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14471 QualType From
14472 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14473
14474 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
14475 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
14476 return true;
14477 }
14478
14479 case CK_IntegralComplexToFloatingComplex: {
14480 if (!Visit(E->getSubExpr()))
14481 return false;
14482
14483 const FPOptions FPO = E->getFPFeaturesInEffect(
14484 Info.Ctx.getLangOpts());
14485 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
14486 QualType From
14487 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
14488 Result.makeComplexFloat();
14489 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
14490 To, Result.FloatReal) &&
14491 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
14492 To, Result.FloatImag);
14493 }
14494 }
14495
14496 llvm_unreachable("unknown cast resulting in complex value");
14497 }
14498
VisitBinaryOperator(const BinaryOperator * E)14499 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
14500 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
14501 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
14502
14503 // Track whether the LHS or RHS is real at the type system level. When this is
14504 // the case we can simplify our evaluation strategy.
14505 bool LHSReal = false, RHSReal = false;
14506
14507 bool LHSOK;
14508 if (E->getLHS()->getType()->isRealFloatingType()) {
14509 LHSReal = true;
14510 APFloat &Real = Result.FloatReal;
14511 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
14512 if (LHSOK) {
14513 Result.makeComplexFloat();
14514 Result.FloatImag = APFloat(Real.getSemantics());
14515 }
14516 } else {
14517 LHSOK = Visit(E->getLHS());
14518 }
14519 if (!LHSOK && !Info.noteFailure())
14520 return false;
14521
14522 ComplexValue RHS;
14523 if (E->getRHS()->getType()->isRealFloatingType()) {
14524 RHSReal = true;
14525 APFloat &Real = RHS.FloatReal;
14526 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
14527 return false;
14528 RHS.makeComplexFloat();
14529 RHS.FloatImag = APFloat(Real.getSemantics());
14530 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
14531 return false;
14532
14533 assert(!(LHSReal && RHSReal) &&
14534 "Cannot have both operands of a complex operation be real.");
14535 switch (E->getOpcode()) {
14536 default: return Error(E);
14537 case BO_Add:
14538 if (Result.isComplexFloat()) {
14539 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
14540 APFloat::rmNearestTiesToEven);
14541 if (LHSReal)
14542 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14543 else if (!RHSReal)
14544 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
14545 APFloat::rmNearestTiesToEven);
14546 } else {
14547 Result.getComplexIntReal() += RHS.getComplexIntReal();
14548 Result.getComplexIntImag() += RHS.getComplexIntImag();
14549 }
14550 break;
14551 case BO_Sub:
14552 if (Result.isComplexFloat()) {
14553 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14554 APFloat::rmNearestTiesToEven);
14555 if (LHSReal) {
14556 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14557 Result.getComplexFloatImag().changeSign();
14558 } else if (!RHSReal) {
14559 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14560 APFloat::rmNearestTiesToEven);
14561 }
14562 } else {
14563 Result.getComplexIntReal() -= RHS.getComplexIntReal();
14564 Result.getComplexIntImag() -= RHS.getComplexIntImag();
14565 }
14566 break;
14567 case BO_Mul:
14568 if (Result.isComplexFloat()) {
14569 // This is an implementation of complex multiplication according to the
14570 // constraints laid out in C11 Annex G. The implementation uses the
14571 // following naming scheme:
14572 // (a + ib) * (c + id)
14573 ComplexValue LHS = Result;
14574 APFloat &A = LHS.getComplexFloatReal();
14575 APFloat &B = LHS.getComplexFloatImag();
14576 APFloat &C = RHS.getComplexFloatReal();
14577 APFloat &D = RHS.getComplexFloatImag();
14578 APFloat &ResR = Result.getComplexFloatReal();
14579 APFloat &ResI = Result.getComplexFloatImag();
14580 if (LHSReal) {
14581 assert(!RHSReal && "Cannot have two real operands for a complex op!");
14582 ResR = A * C;
14583 ResI = A * D;
14584 } else if (RHSReal) {
14585 ResR = C * A;
14586 ResI = C * B;
14587 } else {
14588 // In the fully general case, we need to handle NaNs and infinities
14589 // robustly.
14590 APFloat AC = A * C;
14591 APFloat BD = B * D;
14592 APFloat AD = A * D;
14593 APFloat BC = B * C;
14594 ResR = AC - BD;
14595 ResI = AD + BC;
14596 if (ResR.isNaN() && ResI.isNaN()) {
14597 bool Recalc = false;
14598 if (A.isInfinity() || B.isInfinity()) {
14599 A = APFloat::copySign(
14600 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14601 B = APFloat::copySign(
14602 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14603 if (C.isNaN())
14604 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14605 if (D.isNaN())
14606 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14607 Recalc = true;
14608 }
14609 if (C.isInfinity() || D.isInfinity()) {
14610 C = APFloat::copySign(
14611 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14612 D = APFloat::copySign(
14613 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14614 if (A.isNaN())
14615 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14616 if (B.isNaN())
14617 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14618 Recalc = true;
14619 }
14620 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14621 AD.isInfinity() || BC.isInfinity())) {
14622 if (A.isNaN())
14623 A = APFloat::copySign(APFloat(A.getSemantics()), A);
14624 if (B.isNaN())
14625 B = APFloat::copySign(APFloat(B.getSemantics()), B);
14626 if (C.isNaN())
14627 C = APFloat::copySign(APFloat(C.getSemantics()), C);
14628 if (D.isNaN())
14629 D = APFloat::copySign(APFloat(D.getSemantics()), D);
14630 Recalc = true;
14631 }
14632 if (Recalc) {
14633 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14634 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14635 }
14636 }
14637 }
14638 } else {
14639 ComplexValue LHS = Result;
14640 Result.getComplexIntReal() =
14641 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14642 LHS.getComplexIntImag() * RHS.getComplexIntImag());
14643 Result.getComplexIntImag() =
14644 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14645 LHS.getComplexIntImag() * RHS.getComplexIntReal());
14646 }
14647 break;
14648 case BO_Div:
14649 if (Result.isComplexFloat()) {
14650 // This is an implementation of complex division according to the
14651 // constraints laid out in C11 Annex G. The implementation uses the
14652 // following naming scheme:
14653 // (a + ib) / (c + id)
14654 ComplexValue LHS = Result;
14655 APFloat &A = LHS.getComplexFloatReal();
14656 APFloat &B = LHS.getComplexFloatImag();
14657 APFloat &C = RHS.getComplexFloatReal();
14658 APFloat &D = RHS.getComplexFloatImag();
14659 APFloat &ResR = Result.getComplexFloatReal();
14660 APFloat &ResI = Result.getComplexFloatImag();
14661 if (RHSReal) {
14662 ResR = A / C;
14663 ResI = B / C;
14664 } else {
14665 if (LHSReal) {
14666 // No real optimizations we can do here, stub out with zero.
14667 B = APFloat::getZero(A.getSemantics());
14668 }
14669 int DenomLogB = 0;
14670 APFloat MaxCD = maxnum(abs(C), abs(D));
14671 if (MaxCD.isFinite()) {
14672 DenomLogB = ilogb(MaxCD);
14673 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14674 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14675 }
14676 APFloat Denom = C * C + D * D;
14677 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14678 APFloat::rmNearestTiesToEven);
14679 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14680 APFloat::rmNearestTiesToEven);
14681 if (ResR.isNaN() && ResI.isNaN()) {
14682 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14683 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14684 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14685 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14686 D.isFinite()) {
14687 A = APFloat::copySign(
14688 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14689 B = APFloat::copySign(
14690 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14691 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14692 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14693 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14694 C = APFloat::copySign(
14695 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14696 D = APFloat::copySign(
14697 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14698 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14699 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14700 }
14701 }
14702 }
14703 } else {
14704 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14705 return Error(E, diag::note_expr_divide_by_zero);
14706
14707 ComplexValue LHS = Result;
14708 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14709 RHS.getComplexIntImag() * RHS.getComplexIntImag();
14710 Result.getComplexIntReal() =
14711 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14712 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14713 Result.getComplexIntImag() =
14714 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14715 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14716 }
14717 break;
14718 }
14719
14720 return true;
14721 }
14722
VisitUnaryOperator(const UnaryOperator * E)14723 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14724 // Get the operand value into 'Result'.
14725 if (!Visit(E->getSubExpr()))
14726 return false;
14727
14728 switch (E->getOpcode()) {
14729 default:
14730 return Error(E);
14731 case UO_Extension:
14732 return true;
14733 case UO_Plus:
14734 // The result is always just the subexpr.
14735 return true;
14736 case UO_Minus:
14737 if (Result.isComplexFloat()) {
14738 Result.getComplexFloatReal().changeSign();
14739 Result.getComplexFloatImag().changeSign();
14740 }
14741 else {
14742 Result.getComplexIntReal() = -Result.getComplexIntReal();
14743 Result.getComplexIntImag() = -Result.getComplexIntImag();
14744 }
14745 return true;
14746 case UO_Not:
14747 if (Result.isComplexFloat())
14748 Result.getComplexFloatImag().changeSign();
14749 else
14750 Result.getComplexIntImag() = -Result.getComplexIntImag();
14751 return true;
14752 }
14753 }
14754
VisitInitListExpr(const InitListExpr * E)14755 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14756 if (E->getNumInits() == 2) {
14757 if (E->getType()->isComplexType()) {
14758 Result.makeComplexFloat();
14759 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14760 return false;
14761 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14762 return false;
14763 } else {
14764 Result.makeComplexInt();
14765 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14766 return false;
14767 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14768 return false;
14769 }
14770 return true;
14771 }
14772 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14773 }
14774
VisitCallExpr(const CallExpr * E)14775 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14776 if (!IsConstantEvaluatedBuiltinCall(E))
14777 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14778
14779 switch (E->getBuiltinCallee()) {
14780 case Builtin::BI__builtin_complex:
14781 Result.makeComplexFloat();
14782 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14783 return false;
14784 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14785 return false;
14786 return true;
14787
14788 default:
14789 return false;
14790 }
14791 }
14792
14793 //===----------------------------------------------------------------------===//
14794 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14795 // implicit conversion.
14796 //===----------------------------------------------------------------------===//
14797
14798 namespace {
14799 class AtomicExprEvaluator :
14800 public ExprEvaluatorBase<AtomicExprEvaluator> {
14801 const LValue *This;
14802 APValue &Result;
14803 public:
AtomicExprEvaluator(EvalInfo & Info,const LValue * This,APValue & Result)14804 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14805 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14806
Success(const APValue & V,const Expr * E)14807 bool Success(const APValue &V, const Expr *E) {
14808 Result = V;
14809 return true;
14810 }
14811
ZeroInitialization(const Expr * E)14812 bool ZeroInitialization(const Expr *E) {
14813 ImplicitValueInitExpr VIE(
14814 E->getType()->castAs<AtomicType>()->getValueType());
14815 // For atomic-qualified class (and array) types in C++, initialize the
14816 // _Atomic-wrapped subobject directly, in-place.
14817 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14818 : Evaluate(Result, Info, &VIE);
14819 }
14820
VisitCastExpr(const CastExpr * E)14821 bool VisitCastExpr(const CastExpr *E) {
14822 switch (E->getCastKind()) {
14823 default:
14824 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14825 case CK_NonAtomicToAtomic:
14826 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14827 : Evaluate(Result, Info, E->getSubExpr());
14828 }
14829 }
14830 };
14831 } // end anonymous namespace
14832
EvaluateAtomic(const Expr * E,const LValue * This,APValue & Result,EvalInfo & Info)14833 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14834 EvalInfo &Info) {
14835 assert(!E->isValueDependent());
14836 assert(E->isPRValue() && E->getType()->isAtomicType());
14837 return AtomicExprEvaluator(Info, This, Result).Visit(E);
14838 }
14839
14840 //===----------------------------------------------------------------------===//
14841 // Void expression evaluation, primarily for a cast to void on the LHS of a
14842 // comma operator
14843 //===----------------------------------------------------------------------===//
14844
14845 namespace {
14846 class VoidExprEvaluator
14847 : public ExprEvaluatorBase<VoidExprEvaluator> {
14848 public:
VoidExprEvaluator(EvalInfo & Info)14849 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14850
Success(const APValue & V,const Expr * e)14851 bool Success(const APValue &V, const Expr *e) { return true; }
14852
ZeroInitialization(const Expr * E)14853 bool ZeroInitialization(const Expr *E) { return true; }
14854
VisitCastExpr(const CastExpr * E)14855 bool VisitCastExpr(const CastExpr *E) {
14856 switch (E->getCastKind()) {
14857 default:
14858 return ExprEvaluatorBaseTy::VisitCastExpr(E);
14859 case CK_ToVoid:
14860 VisitIgnoredValue(E->getSubExpr());
14861 return true;
14862 }
14863 }
14864
VisitCallExpr(const CallExpr * E)14865 bool VisitCallExpr(const CallExpr *E) {
14866 if (!IsConstantEvaluatedBuiltinCall(E))
14867 return ExprEvaluatorBaseTy::VisitCallExpr(E);
14868
14869 switch (E->getBuiltinCallee()) {
14870 case Builtin::BI__assume:
14871 case Builtin::BI__builtin_assume:
14872 // The argument is not evaluated!
14873 return true;
14874
14875 case Builtin::BI__builtin_operator_delete:
14876 return HandleOperatorDeleteCall(Info, E);
14877
14878 default:
14879 return false;
14880 }
14881 }
14882
14883 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14884 };
14885 } // end anonymous namespace
14886
VisitCXXDeleteExpr(const CXXDeleteExpr * E)14887 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14888 // We cannot speculatively evaluate a delete expression.
14889 if (Info.SpeculativeEvaluationDepth)
14890 return false;
14891
14892 FunctionDecl *OperatorDelete = E->getOperatorDelete();
14893 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14894 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14895 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14896 return false;
14897 }
14898
14899 const Expr *Arg = E->getArgument();
14900
14901 LValue Pointer;
14902 if (!EvaluatePointer(Arg, Pointer, Info))
14903 return false;
14904 if (Pointer.Designator.Invalid)
14905 return false;
14906
14907 // Deleting a null pointer has no effect.
14908 if (Pointer.isNullPointer()) {
14909 // This is the only case where we need to produce an extension warning:
14910 // the only other way we can succeed is if we find a dynamic allocation,
14911 // and we will have warned when we allocated it in that case.
14912 if (!Info.getLangOpts().CPlusPlus20)
14913 Info.CCEDiag(E, diag::note_constexpr_new);
14914 return true;
14915 }
14916
14917 std::optional<DynAlloc *> Alloc = CheckDeleteKind(
14918 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14919 if (!Alloc)
14920 return false;
14921 QualType AllocType = Pointer.Base.getDynamicAllocType();
14922
14923 // For the non-array case, the designator must be empty if the static type
14924 // does not have a virtual destructor.
14925 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14926 !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14927 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14928 << Arg->getType()->getPointeeType() << AllocType;
14929 return false;
14930 }
14931
14932 // For a class type with a virtual destructor, the selected operator delete
14933 // is the one looked up when building the destructor.
14934 if (!E->isArrayForm() && !E->isGlobalDelete()) {
14935 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14936 if (VirtualDelete &&
14937 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14938 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14939 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14940 return false;
14941 }
14942 }
14943
14944 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14945 (*Alloc)->Value, AllocType))
14946 return false;
14947
14948 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14949 // The element was already erased. This means the destructor call also
14950 // deleted the object.
14951 // FIXME: This probably results in undefined behavior before we get this
14952 // far, and should be diagnosed elsewhere first.
14953 Info.FFDiag(E, diag::note_constexpr_double_delete);
14954 return false;
14955 }
14956
14957 return true;
14958 }
14959
EvaluateVoid(const Expr * E,EvalInfo & Info)14960 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14961 assert(!E->isValueDependent());
14962 assert(E->isPRValue() && E->getType()->isVoidType());
14963 return VoidExprEvaluator(Info).Visit(E);
14964 }
14965
14966 //===----------------------------------------------------------------------===//
14967 // Top level Expr::EvaluateAsRValue method.
14968 //===----------------------------------------------------------------------===//
14969
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)14970 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14971 assert(!E->isValueDependent());
14972 // In C, function designators are not lvalues, but we evaluate them as if they
14973 // are.
14974 QualType T = E->getType();
14975 if (E->isGLValue() || T->isFunctionType()) {
14976 LValue LV;
14977 if (!EvaluateLValue(E, LV, Info))
14978 return false;
14979 LV.moveInto(Result);
14980 } else if (T->isVectorType()) {
14981 if (!EvaluateVector(E, Result, Info))
14982 return false;
14983 } else if (T->isIntegralOrEnumerationType()) {
14984 if (!IntExprEvaluator(Info, Result).Visit(E))
14985 return false;
14986 } else if (T->hasPointerRepresentation()) {
14987 LValue LV;
14988 if (!EvaluatePointer(E, LV, Info))
14989 return false;
14990 LV.moveInto(Result);
14991 } else if (T->isRealFloatingType()) {
14992 llvm::APFloat F(0.0);
14993 if (!EvaluateFloat(E, F, Info))
14994 return false;
14995 Result = APValue(F);
14996 } else if (T->isAnyComplexType()) {
14997 ComplexValue C;
14998 if (!EvaluateComplex(E, C, Info))
14999 return false;
15000 C.moveInto(Result);
15001 } else if (T->isFixedPointType()) {
15002 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
15003 } else if (T->isMemberPointerType()) {
15004 MemberPtr P;
15005 if (!EvaluateMemberPointer(E, P, Info))
15006 return false;
15007 P.moveInto(Result);
15008 return true;
15009 } else if (T->isArrayType()) {
15010 LValue LV;
15011 APValue &Value =
15012 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15013 if (!EvaluateArray(E, LV, Value, Info))
15014 return false;
15015 Result = Value;
15016 } else if (T->isRecordType()) {
15017 LValue LV;
15018 APValue &Value =
15019 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
15020 if (!EvaluateRecord(E, LV, Value, Info))
15021 return false;
15022 Result = Value;
15023 } else if (T->isVoidType()) {
15024 if (!Info.getLangOpts().CPlusPlus11)
15025 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
15026 << E->getType();
15027 if (!EvaluateVoid(E, Info))
15028 return false;
15029 } else if (T->isAtomicType()) {
15030 QualType Unqual = T.getAtomicUnqualifiedType();
15031 if (Unqual->isArrayType() || Unqual->isRecordType()) {
15032 LValue LV;
15033 APValue &Value = Info.CurrentCall->createTemporary(
15034 E, Unqual, ScopeKind::FullExpression, LV);
15035 if (!EvaluateAtomic(E, &LV, Value, Info))
15036 return false;
15037 } else {
15038 if (!EvaluateAtomic(E, nullptr, Result, Info))
15039 return false;
15040 }
15041 } else if (Info.getLangOpts().CPlusPlus11) {
15042 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
15043 return false;
15044 } else {
15045 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
15046 return false;
15047 }
15048
15049 return true;
15050 }
15051
15052 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
15053 /// cases, the in-place evaluation is essential, since later initializers for
15054 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)15055 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
15056 const Expr *E, bool AllowNonLiteralTypes) {
15057 assert(!E->isValueDependent());
15058
15059 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
15060 return false;
15061
15062 if (E->isPRValue()) {
15063 // Evaluate arrays and record types in-place, so that later initializers can
15064 // refer to earlier-initialized members of the object.
15065 QualType T = E->getType();
15066 if (T->isArrayType())
15067 return EvaluateArray(E, This, Result, Info);
15068 else if (T->isRecordType())
15069 return EvaluateRecord(E, This, Result, Info);
15070 else if (T->isAtomicType()) {
15071 QualType Unqual = T.getAtomicUnqualifiedType();
15072 if (Unqual->isArrayType() || Unqual->isRecordType())
15073 return EvaluateAtomic(E, &This, Result, Info);
15074 }
15075 }
15076
15077 // For any other type, in-place evaluation is unimportant.
15078 return Evaluate(Result, Info, E);
15079 }
15080
15081 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
15082 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)15083 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
15084 assert(!E->isValueDependent());
15085
15086 if (E->getType().isNull())
15087 return false;
15088
15089 if (!CheckLiteralType(Info, E))
15090 return false;
15091
15092 if (Info.EnableNewConstInterp) {
15093 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
15094 return false;
15095 } else {
15096 if (!::Evaluate(Result, Info, E))
15097 return false;
15098 }
15099
15100 // Implicit lvalue-to-rvalue cast.
15101 if (E->isGLValue()) {
15102 LValue LV;
15103 LV.setFrom(Info.Ctx, Result);
15104 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
15105 return false;
15106 }
15107
15108 // Check this core constant expression is a constant expression.
15109 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
15110 ConstantExprKind::Normal) &&
15111 CheckMemoryLeaks(Info);
15112 }
15113
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)15114 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
15115 const ASTContext &Ctx, bool &IsConst) {
15116 // Fast-path evaluations of integer literals, since we sometimes see files
15117 // containing vast quantities of these.
15118 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
15119 Result.Val = APValue(APSInt(L->getValue(),
15120 L->getType()->isUnsignedIntegerType()));
15121 IsConst = true;
15122 return true;
15123 }
15124
15125 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) {
15126 Result.Val = APValue(APSInt(APInt(1, L->getValue())));
15127 IsConst = true;
15128 return true;
15129 }
15130
15131 // This case should be rare, but we need to check it before we check on
15132 // the type below.
15133 if (Exp->getType().isNull()) {
15134 IsConst = false;
15135 return true;
15136 }
15137
15138 // FIXME: Evaluating values of large array and record types can cause
15139 // performance problems. Only do so in C++11 for now.
15140 if (Exp->isPRValue() &&
15141 (Exp->getType()->isArrayType() || Exp->getType()->isRecordType()) &&
15142 !Ctx.getLangOpts().CPlusPlus11) {
15143 IsConst = false;
15144 return true;
15145 }
15146 return false;
15147 }
15148
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)15149 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
15150 Expr::SideEffectsKind SEK) {
15151 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
15152 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
15153 }
15154
EvaluateAsRValue(const Expr * E,Expr::EvalResult & Result,const ASTContext & Ctx,EvalInfo & Info)15155 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
15156 const ASTContext &Ctx, EvalInfo &Info) {
15157 assert(!E->isValueDependent());
15158 bool IsConst;
15159 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
15160 return IsConst;
15161
15162 return EvaluateAsRValue(Info, E, Result.Val);
15163 }
15164
EvaluateAsInt(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)15165 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
15166 const ASTContext &Ctx,
15167 Expr::SideEffectsKind AllowSideEffects,
15168 EvalInfo &Info) {
15169 assert(!E->isValueDependent());
15170 if (!E->getType()->isIntegralOrEnumerationType())
15171 return false;
15172
15173 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
15174 !ExprResult.Val.isInt() ||
15175 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15176 return false;
15177
15178 return true;
15179 }
15180
EvaluateAsFixedPoint(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)15181 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
15182 const ASTContext &Ctx,
15183 Expr::SideEffectsKind AllowSideEffects,
15184 EvalInfo &Info) {
15185 assert(!E->isValueDependent());
15186 if (!E->getType()->isFixedPointType())
15187 return false;
15188
15189 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
15190 return false;
15191
15192 if (!ExprResult.Val.isFixedPoint() ||
15193 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15194 return false;
15195
15196 return true;
15197 }
15198
15199 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
15200 /// any crazy technique (that has nothing to do with language standards) that
15201 /// we want to. If this function returns true, it returns the folded constant
15202 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
15203 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const15204 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
15205 bool InConstantContext) const {
15206 assert(!isValueDependent() &&
15207 "Expression evaluator can't be called on a dependent expression.");
15208 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue");
15209 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15210 Info.InConstantContext = InConstantContext;
15211 return ::EvaluateAsRValue(this, Result, Ctx, Info);
15212 }
15213
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx,bool InConstantContext) const15214 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
15215 bool InConstantContext) const {
15216 assert(!isValueDependent() &&
15217 "Expression evaluator can't be called on a dependent expression.");
15218 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition");
15219 EvalResult Scratch;
15220 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
15221 HandleConversionToBool(Scratch.Val, Result);
15222 }
15223
EvaluateAsInt(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const15224 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
15225 SideEffectsKind AllowSideEffects,
15226 bool InConstantContext) const {
15227 assert(!isValueDependent() &&
15228 "Expression evaluator can't be called on a dependent expression.");
15229 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt");
15230 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15231 Info.InConstantContext = InConstantContext;
15232 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
15233 }
15234
EvaluateAsFixedPoint(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const15235 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
15236 SideEffectsKind AllowSideEffects,
15237 bool InConstantContext) const {
15238 assert(!isValueDependent() &&
15239 "Expression evaluator can't be called on a dependent expression.");
15240 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint");
15241 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
15242 Info.InConstantContext = InConstantContext;
15243 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
15244 }
15245
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const15246 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
15247 SideEffectsKind AllowSideEffects,
15248 bool InConstantContext) const {
15249 assert(!isValueDependent() &&
15250 "Expression evaluator can't be called on a dependent expression.");
15251
15252 if (!getType()->isRealFloatingType())
15253 return false;
15254
15255 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat");
15256 EvalResult ExprResult;
15257 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
15258 !ExprResult.Val.isFloat() ||
15259 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
15260 return false;
15261
15262 Result = ExprResult.Val.getFloat();
15263 return true;
15264 }
15265
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const15266 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
15267 bool InConstantContext) const {
15268 assert(!isValueDependent() &&
15269 "Expression evaluator can't be called on a dependent expression.");
15270
15271 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue");
15272 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
15273 Info.InConstantContext = InConstantContext;
15274 LValue LV;
15275 CheckedTemporaries CheckedTemps;
15276 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
15277 Result.HasSideEffects ||
15278 !CheckLValueConstantExpression(Info, getExprLoc(),
15279 Ctx.getLValueReferenceType(getType()), LV,
15280 ConstantExprKind::Normal, CheckedTemps))
15281 return false;
15282
15283 LV.moveInto(Result.Val);
15284 return true;
15285 }
15286
EvaluateDestruction(const ASTContext & Ctx,APValue::LValueBase Base,APValue DestroyedValue,QualType Type,SourceLocation Loc,Expr::EvalStatus & EStatus,bool IsConstantDestruction)15287 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
15288 APValue DestroyedValue, QualType Type,
15289 SourceLocation Loc, Expr::EvalStatus &EStatus,
15290 bool IsConstantDestruction) {
15291 EvalInfo Info(Ctx, EStatus,
15292 IsConstantDestruction ? EvalInfo::EM_ConstantExpression
15293 : EvalInfo::EM_ConstantFold);
15294 Info.setEvaluatingDecl(Base, DestroyedValue,
15295 EvalInfo::EvaluatingDeclKind::Dtor);
15296 Info.InConstantContext = IsConstantDestruction;
15297
15298 LValue LVal;
15299 LVal.set(Base);
15300
15301 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
15302 EStatus.HasSideEffects)
15303 return false;
15304
15305 if (!Info.discardCleanups())
15306 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15307
15308 return true;
15309 }
15310
EvaluateAsConstantExpr(EvalResult & Result,const ASTContext & Ctx,ConstantExprKind Kind) const15311 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
15312 ConstantExprKind Kind) const {
15313 assert(!isValueDependent() &&
15314 "Expression evaluator can't be called on a dependent expression.");
15315 bool IsConst;
15316 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue())
15317 return true;
15318
15319 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr");
15320 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
15321 EvalInfo Info(Ctx, Result, EM);
15322 Info.InConstantContext = true;
15323
15324 // The type of the object we're initializing is 'const T' for a class NTTP.
15325 QualType T = getType();
15326 if (Kind == ConstantExprKind::ClassTemplateArgument)
15327 T.addConst();
15328
15329 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
15330 // represent the result of the evaluation. CheckConstantExpression ensures
15331 // this doesn't escape.
15332 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
15333 APValue::LValueBase Base(&BaseMTE);
15334
15335 Info.setEvaluatingDecl(Base, Result.Val);
15336 LValue LVal;
15337 LVal.set(Base);
15338
15339 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
15340 return false;
15341
15342 if (!Info.discardCleanups())
15343 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15344
15345 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
15346 Result.Val, Kind))
15347 return false;
15348 if (!CheckMemoryLeaks(Info))
15349 return false;
15350
15351 // If this is a class template argument, it's required to have constant
15352 // destruction too.
15353 if (Kind == ConstantExprKind::ClassTemplateArgument &&
15354 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result,
15355 true) ||
15356 Result.HasSideEffects)) {
15357 // FIXME: Prefix a note to indicate that the problem is lack of constant
15358 // destruction.
15359 return false;
15360 }
15361
15362 return true;
15363 }
15364
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const15365 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
15366 const VarDecl *VD,
15367 SmallVectorImpl<PartialDiagnosticAt> &Notes,
15368 bool IsConstantInitialization) const {
15369 assert(!isValueDependent() &&
15370 "Expression evaluator can't be called on a dependent expression.");
15371
15372 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] {
15373 std::string Name;
15374 llvm::raw_string_ostream OS(Name);
15375 VD->printQualifiedName(OS);
15376 return Name;
15377 });
15378
15379 // FIXME: Evaluating initializers for large array and record types can cause
15380 // performance problems. Only do so in C++11 for now.
15381 if (isPRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
15382 !Ctx.getLangOpts().CPlusPlus11)
15383 return false;
15384
15385 Expr::EvalStatus EStatus;
15386 EStatus.Diag = &Notes;
15387
15388 EvalInfo Info(Ctx, EStatus,
15389 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
15390 ? EvalInfo::EM_ConstantExpression
15391 : EvalInfo::EM_ConstantFold);
15392 Info.setEvaluatingDecl(VD, Value);
15393 Info.InConstantContext = IsConstantInitialization;
15394
15395 SourceLocation DeclLoc = VD->getLocation();
15396 QualType DeclTy = VD->getType();
15397
15398 if (Info.EnableNewConstInterp) {
15399 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
15400 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
15401 return false;
15402 } else {
15403 LValue LVal;
15404 LVal.set(VD);
15405
15406 if (!EvaluateInPlace(Value, Info, LVal, this,
15407 /*AllowNonLiteralTypes=*/true) ||
15408 EStatus.HasSideEffects)
15409 return false;
15410
15411 // At this point, any lifetime-extended temporaries are completely
15412 // initialized.
15413 Info.performLifetimeExtension();
15414
15415 if (!Info.discardCleanups())
15416 llvm_unreachable("Unhandled cleanup; missing full expression marker?");
15417 }
15418 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
15419 ConstantExprKind::Normal) &&
15420 CheckMemoryLeaks(Info);
15421 }
15422
evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> & Notes) const15423 bool VarDecl::evaluateDestruction(
15424 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
15425 Expr::EvalStatus EStatus;
15426 EStatus.Diag = &Notes;
15427
15428 // Only treat the destruction as constant destruction if we formally have
15429 // constant initialization (or are usable in a constant expression).
15430 bool IsConstantDestruction = hasConstantInitialization();
15431
15432 // Make a copy of the value for the destructor to mutate, if we know it.
15433 // Otherwise, treat the value as default-initialized; if the destructor works
15434 // anyway, then the destruction is constant (and must be essentially empty).
15435 APValue DestroyedValue;
15436 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
15437 DestroyedValue = *getEvaluatedValue();
15438 else if (!getDefaultInitValue(getType(), DestroyedValue))
15439 return false;
15440
15441 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
15442 getType(), getLocation(), EStatus,
15443 IsConstantDestruction) ||
15444 EStatus.HasSideEffects)
15445 return false;
15446
15447 ensureEvaluatedStmt()->HasConstantDestruction = true;
15448 return true;
15449 }
15450
15451 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
15452 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const15453 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
15454 assert(!isValueDependent() &&
15455 "Expression evaluator can't be called on a dependent expression.");
15456
15457 EvalResult Result;
15458 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
15459 !hasUnacceptableSideEffect(Result, SEK);
15460 }
15461
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const15462 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
15463 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15464 assert(!isValueDependent() &&
15465 "Expression evaluator can't be called on a dependent expression.");
15466
15467 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt");
15468 EvalResult EVResult;
15469 EVResult.Diag = Diag;
15470 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15471 Info.InConstantContext = true;
15472
15473 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
15474 (void)Result;
15475 assert(Result && "Could not evaluate expression");
15476 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15477
15478 return EVResult.Val.getInt();
15479 }
15480
EvaluateKnownConstIntCheckOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const15481 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
15482 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
15483 assert(!isValueDependent() &&
15484 "Expression evaluator can't be called on a dependent expression.");
15485
15486 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow");
15487 EvalResult EVResult;
15488 EVResult.Diag = Diag;
15489 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15490 Info.InConstantContext = true;
15491 Info.CheckingForUndefinedBehavior = true;
15492
15493 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
15494 (void)Result;
15495 assert(Result && "Could not evaluate expression");
15496 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
15497
15498 return EVResult.Val.getInt();
15499 }
15500
EvaluateForOverflow(const ASTContext & Ctx) const15501 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
15502 assert(!isValueDependent() &&
15503 "Expression evaluator can't be called on a dependent expression.");
15504
15505 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow");
15506 bool IsConst;
15507 EvalResult EVResult;
15508 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
15509 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
15510 Info.CheckingForUndefinedBehavior = true;
15511 (void)::EvaluateAsRValue(Info, this, EVResult.Val);
15512 }
15513 }
15514
isGlobalLValue() const15515 bool Expr::EvalResult::isGlobalLValue() const {
15516 assert(Val.isLValue());
15517 return IsGlobalLValue(Val.getLValueBase());
15518 }
15519
15520 /// isIntegerConstantExpr - this recursive routine will test if an expression is
15521 /// an integer constant expression.
15522
15523 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
15524 /// comma, etc
15525
15526 // CheckICE - This function does the fundamental ICE checking: the returned
15527 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
15528 // and a (possibly null) SourceLocation indicating the location of the problem.
15529 //
15530 // Note that to reduce code duplication, this helper does no evaluation
15531 // itself; the caller checks whether the expression is evaluatable, and
15532 // in the rare cases where CheckICE actually cares about the evaluated
15533 // value, it calls into Evaluate.
15534
15535 namespace {
15536
15537 enum ICEKind {
15538 /// This expression is an ICE.
15539 IK_ICE,
15540 /// This expression is not an ICE, but if it isn't evaluated, it's
15541 /// a legal subexpression for an ICE. This return value is used to handle
15542 /// the comma operator in C99 mode, and non-constant subexpressions.
15543 IK_ICEIfUnevaluated,
15544 /// This expression is not an ICE, and is not a legal subexpression for one.
15545 IK_NotICE
15546 };
15547
15548 struct ICEDiag {
15549 ICEKind Kind;
15550 SourceLocation Loc;
15551
ICEDiag__anond52d8a673911::ICEDiag15552 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
15553 };
15554
15555 }
15556
NoDiag()15557 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
15558
Worst(ICEDiag A,ICEDiag B)15559 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
15560
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)15561 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
15562 Expr::EvalResult EVResult;
15563 Expr::EvalStatus Status;
15564 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15565
15566 Info.InConstantContext = true;
15567 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
15568 !EVResult.Val.isInt())
15569 return ICEDiag(IK_NotICE, E->getBeginLoc());
15570
15571 return NoDiag();
15572 }
15573
CheckICE(const Expr * E,const ASTContext & Ctx)15574 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
15575 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
15576 if (!E->getType()->isIntegralOrEnumerationType())
15577 return ICEDiag(IK_NotICE, E->getBeginLoc());
15578
15579 switch (E->getStmtClass()) {
15580 #define ABSTRACT_STMT(Node)
15581 #define STMT(Node, Base) case Expr::Node##Class:
15582 #define EXPR(Node, Base)
15583 #include "clang/AST/StmtNodes.inc"
15584 case Expr::PredefinedExprClass:
15585 case Expr::FloatingLiteralClass:
15586 case Expr::ImaginaryLiteralClass:
15587 case Expr::StringLiteralClass:
15588 case Expr::ArraySubscriptExprClass:
15589 case Expr::MatrixSubscriptExprClass:
15590 case Expr::OMPArraySectionExprClass:
15591 case Expr::OMPArrayShapingExprClass:
15592 case Expr::OMPIteratorExprClass:
15593 case Expr::MemberExprClass:
15594 case Expr::CompoundAssignOperatorClass:
15595 case Expr::CompoundLiteralExprClass:
15596 case Expr::ExtVectorElementExprClass:
15597 case Expr::DesignatedInitExprClass:
15598 case Expr::ArrayInitLoopExprClass:
15599 case Expr::ArrayInitIndexExprClass:
15600 case Expr::NoInitExprClass:
15601 case Expr::DesignatedInitUpdateExprClass:
15602 case Expr::ImplicitValueInitExprClass:
15603 case Expr::ParenListExprClass:
15604 case Expr::VAArgExprClass:
15605 case Expr::AddrLabelExprClass:
15606 case Expr::StmtExprClass:
15607 case Expr::CXXMemberCallExprClass:
15608 case Expr::CUDAKernelCallExprClass:
15609 case Expr::CXXAddrspaceCastExprClass:
15610 case Expr::CXXDynamicCastExprClass:
15611 case Expr::CXXTypeidExprClass:
15612 case Expr::CXXUuidofExprClass:
15613 case Expr::MSPropertyRefExprClass:
15614 case Expr::MSPropertySubscriptExprClass:
15615 case Expr::CXXNullPtrLiteralExprClass:
15616 case Expr::UserDefinedLiteralClass:
15617 case Expr::CXXThisExprClass:
15618 case Expr::CXXThrowExprClass:
15619 case Expr::CXXNewExprClass:
15620 case Expr::CXXDeleteExprClass:
15621 case Expr::CXXPseudoDestructorExprClass:
15622 case Expr::UnresolvedLookupExprClass:
15623 case Expr::TypoExprClass:
15624 case Expr::RecoveryExprClass:
15625 case Expr::DependentScopeDeclRefExprClass:
15626 case Expr::CXXConstructExprClass:
15627 case Expr::CXXInheritedCtorInitExprClass:
15628 case Expr::CXXStdInitializerListExprClass:
15629 case Expr::CXXBindTemporaryExprClass:
15630 case Expr::ExprWithCleanupsClass:
15631 case Expr::CXXTemporaryObjectExprClass:
15632 case Expr::CXXUnresolvedConstructExprClass:
15633 case Expr::CXXDependentScopeMemberExprClass:
15634 case Expr::UnresolvedMemberExprClass:
15635 case Expr::ObjCStringLiteralClass:
15636 case Expr::ObjCBoxedExprClass:
15637 case Expr::ObjCArrayLiteralClass:
15638 case Expr::ObjCDictionaryLiteralClass:
15639 case Expr::ObjCEncodeExprClass:
15640 case Expr::ObjCMessageExprClass:
15641 case Expr::ObjCSelectorExprClass:
15642 case Expr::ObjCProtocolExprClass:
15643 case Expr::ObjCIvarRefExprClass:
15644 case Expr::ObjCPropertyRefExprClass:
15645 case Expr::ObjCSubscriptRefExprClass:
15646 case Expr::ObjCIsaExprClass:
15647 case Expr::ObjCAvailabilityCheckExprClass:
15648 case Expr::ShuffleVectorExprClass:
15649 case Expr::ConvertVectorExprClass:
15650 case Expr::BlockExprClass:
15651 case Expr::NoStmtClass:
15652 case Expr::OpaqueValueExprClass:
15653 case Expr::PackExpansionExprClass:
15654 case Expr::SubstNonTypeTemplateParmPackExprClass:
15655 case Expr::FunctionParmPackExprClass:
15656 case Expr::AsTypeExprClass:
15657 case Expr::ObjCIndirectCopyRestoreExprClass:
15658 case Expr::MaterializeTemporaryExprClass:
15659 case Expr::PseudoObjectExprClass:
15660 case Expr::AtomicExprClass:
15661 case Expr::LambdaExprClass:
15662 case Expr::CXXFoldExprClass:
15663 case Expr::CoawaitExprClass:
15664 case Expr::DependentCoawaitExprClass:
15665 case Expr::CoyieldExprClass:
15666 case Expr::SYCLUniqueStableNameExprClass:
15667 case Expr::CXXParenListInitExprClass:
15668 return ICEDiag(IK_NotICE, E->getBeginLoc());
15669
15670 case Expr::InitListExprClass: {
15671 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15672 // form "T x = { a };" is equivalent to "T x = a;".
15673 // Unless we're initializing a reference, T is a scalar as it is known to be
15674 // of integral or enumeration type.
15675 if (E->isPRValue())
15676 if (cast<InitListExpr>(E)->getNumInits() == 1)
15677 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15678 return ICEDiag(IK_NotICE, E->getBeginLoc());
15679 }
15680
15681 case Expr::SizeOfPackExprClass:
15682 case Expr::GNUNullExprClass:
15683 case Expr::SourceLocExprClass:
15684 return NoDiag();
15685
15686 case Expr::SubstNonTypeTemplateParmExprClass:
15687 return
15688 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15689
15690 case Expr::ConstantExprClass:
15691 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15692
15693 case Expr::ParenExprClass:
15694 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15695 case Expr::GenericSelectionExprClass:
15696 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15697 case Expr::IntegerLiteralClass:
15698 case Expr::FixedPointLiteralClass:
15699 case Expr::CharacterLiteralClass:
15700 case Expr::ObjCBoolLiteralExprClass:
15701 case Expr::CXXBoolLiteralExprClass:
15702 case Expr::CXXScalarValueInitExprClass:
15703 case Expr::TypeTraitExprClass:
15704 case Expr::ConceptSpecializationExprClass:
15705 case Expr::RequiresExprClass:
15706 case Expr::ArrayTypeTraitExprClass:
15707 case Expr::ExpressionTraitExprClass:
15708 case Expr::CXXNoexceptExprClass:
15709 return NoDiag();
15710 case Expr::CallExprClass:
15711 case Expr::CXXOperatorCallExprClass: {
15712 // C99 6.6/3 allows function calls within unevaluated subexpressions of
15713 // constant expressions, but they can never be ICEs because an ICE cannot
15714 // contain an operand of (pointer to) function type.
15715 const CallExpr *CE = cast<CallExpr>(E);
15716 if (CE->getBuiltinCallee())
15717 return CheckEvalInICE(E, Ctx);
15718 return ICEDiag(IK_NotICE, E->getBeginLoc());
15719 }
15720 case Expr::CXXRewrittenBinaryOperatorClass:
15721 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15722 Ctx);
15723 case Expr::DeclRefExprClass: {
15724 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15725 if (isa<EnumConstantDecl>(D))
15726 return NoDiag();
15727
15728 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15729 // integer variables in constant expressions:
15730 //
15731 // C++ 7.1.5.1p2
15732 // A variable of non-volatile const-qualified integral or enumeration
15733 // type initialized by an ICE can be used in ICEs.
15734 //
15735 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15736 // that mode, use of reference variables should not be allowed.
15737 const VarDecl *VD = dyn_cast<VarDecl>(D);
15738 if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15739 !VD->getType()->isReferenceType())
15740 return NoDiag();
15741
15742 return ICEDiag(IK_NotICE, E->getBeginLoc());
15743 }
15744 case Expr::UnaryOperatorClass: {
15745 const UnaryOperator *Exp = cast<UnaryOperator>(E);
15746 switch (Exp->getOpcode()) {
15747 case UO_PostInc:
15748 case UO_PostDec:
15749 case UO_PreInc:
15750 case UO_PreDec:
15751 case UO_AddrOf:
15752 case UO_Deref:
15753 case UO_Coawait:
15754 // C99 6.6/3 allows increment and decrement within unevaluated
15755 // subexpressions of constant expressions, but they can never be ICEs
15756 // because an ICE cannot contain an lvalue operand.
15757 return ICEDiag(IK_NotICE, E->getBeginLoc());
15758 case UO_Extension:
15759 case UO_LNot:
15760 case UO_Plus:
15761 case UO_Minus:
15762 case UO_Not:
15763 case UO_Real:
15764 case UO_Imag:
15765 return CheckICE(Exp->getSubExpr(), Ctx);
15766 }
15767 llvm_unreachable("invalid unary operator class");
15768 }
15769 case Expr::OffsetOfExprClass: {
15770 // Note that per C99, offsetof must be an ICE. And AFAIK, using
15771 // EvaluateAsRValue matches the proposed gcc behavior for cases like
15772 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
15773 // compliance: we should warn earlier for offsetof expressions with
15774 // array subscripts that aren't ICEs, and if the array subscripts
15775 // are ICEs, the value of the offsetof must be an integer constant.
15776 return CheckEvalInICE(E, Ctx);
15777 }
15778 case Expr::UnaryExprOrTypeTraitExprClass: {
15779 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15780 if ((Exp->getKind() == UETT_SizeOf) &&
15781 Exp->getTypeOfArgument()->isVariableArrayType())
15782 return ICEDiag(IK_NotICE, E->getBeginLoc());
15783 return NoDiag();
15784 }
15785 case Expr::BinaryOperatorClass: {
15786 const BinaryOperator *Exp = cast<BinaryOperator>(E);
15787 switch (Exp->getOpcode()) {
15788 case BO_PtrMemD:
15789 case BO_PtrMemI:
15790 case BO_Assign:
15791 case BO_MulAssign:
15792 case BO_DivAssign:
15793 case BO_RemAssign:
15794 case BO_AddAssign:
15795 case BO_SubAssign:
15796 case BO_ShlAssign:
15797 case BO_ShrAssign:
15798 case BO_AndAssign:
15799 case BO_XorAssign:
15800 case BO_OrAssign:
15801 // C99 6.6/3 allows assignments within unevaluated subexpressions of
15802 // constant expressions, but they can never be ICEs because an ICE cannot
15803 // contain an lvalue operand.
15804 return ICEDiag(IK_NotICE, E->getBeginLoc());
15805
15806 case BO_Mul:
15807 case BO_Div:
15808 case BO_Rem:
15809 case BO_Add:
15810 case BO_Sub:
15811 case BO_Shl:
15812 case BO_Shr:
15813 case BO_LT:
15814 case BO_GT:
15815 case BO_LE:
15816 case BO_GE:
15817 case BO_EQ:
15818 case BO_NE:
15819 case BO_And:
15820 case BO_Xor:
15821 case BO_Or:
15822 case BO_Comma:
15823 case BO_Cmp: {
15824 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15825 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15826 if (Exp->getOpcode() == BO_Div ||
15827 Exp->getOpcode() == BO_Rem) {
15828 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15829 // we don't evaluate one.
15830 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15831 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15832 if (REval == 0)
15833 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15834 if (REval.isSigned() && REval.isAllOnes()) {
15835 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15836 if (LEval.isMinSignedValue())
15837 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15838 }
15839 }
15840 }
15841 if (Exp->getOpcode() == BO_Comma) {
15842 if (Ctx.getLangOpts().C99) {
15843 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15844 // if it isn't evaluated.
15845 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15846 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15847 } else {
15848 // In both C89 and C++, commas in ICEs are illegal.
15849 return ICEDiag(IK_NotICE, E->getBeginLoc());
15850 }
15851 }
15852 return Worst(LHSResult, RHSResult);
15853 }
15854 case BO_LAnd:
15855 case BO_LOr: {
15856 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15857 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15858 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15859 // Rare case where the RHS has a comma "side-effect"; we need
15860 // to actually check the condition to see whether the side
15861 // with the comma is evaluated.
15862 if ((Exp->getOpcode() == BO_LAnd) !=
15863 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15864 return RHSResult;
15865 return NoDiag();
15866 }
15867
15868 return Worst(LHSResult, RHSResult);
15869 }
15870 }
15871 llvm_unreachable("invalid binary operator kind");
15872 }
15873 case Expr::ImplicitCastExprClass:
15874 case Expr::CStyleCastExprClass:
15875 case Expr::CXXFunctionalCastExprClass:
15876 case Expr::CXXStaticCastExprClass:
15877 case Expr::CXXReinterpretCastExprClass:
15878 case Expr::CXXConstCastExprClass:
15879 case Expr::ObjCBridgedCastExprClass: {
15880 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15881 if (isa<ExplicitCastExpr>(E)) {
15882 if (const FloatingLiteral *FL
15883 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15884 unsigned DestWidth = Ctx.getIntWidth(E->getType());
15885 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15886 APSInt IgnoredVal(DestWidth, !DestSigned);
15887 bool Ignored;
15888 // If the value does not fit in the destination type, the behavior is
15889 // undefined, so we are not required to treat it as a constant
15890 // expression.
15891 if (FL->getValue().convertToInteger(IgnoredVal,
15892 llvm::APFloat::rmTowardZero,
15893 &Ignored) & APFloat::opInvalidOp)
15894 return ICEDiag(IK_NotICE, E->getBeginLoc());
15895 return NoDiag();
15896 }
15897 }
15898 switch (cast<CastExpr>(E)->getCastKind()) {
15899 case CK_LValueToRValue:
15900 case CK_AtomicToNonAtomic:
15901 case CK_NonAtomicToAtomic:
15902 case CK_NoOp:
15903 case CK_IntegralToBoolean:
15904 case CK_IntegralCast:
15905 return CheckICE(SubExpr, Ctx);
15906 default:
15907 return ICEDiag(IK_NotICE, E->getBeginLoc());
15908 }
15909 }
15910 case Expr::BinaryConditionalOperatorClass: {
15911 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15912 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15913 if (CommonResult.Kind == IK_NotICE) return CommonResult;
15914 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15915 if (FalseResult.Kind == IK_NotICE) return FalseResult;
15916 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15917 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15918 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15919 return FalseResult;
15920 }
15921 case Expr::ConditionalOperatorClass: {
15922 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15923 // If the condition (ignoring parens) is a __builtin_constant_p call,
15924 // then only the true side is actually considered in an integer constant
15925 // expression, and it is fully evaluated. This is an important GNU
15926 // extension. See GCC PR38377 for discussion.
15927 if (const CallExpr *CallCE
15928 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15929 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15930 return CheckEvalInICE(E, Ctx);
15931 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15932 if (CondResult.Kind == IK_NotICE)
15933 return CondResult;
15934
15935 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15936 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15937
15938 if (TrueResult.Kind == IK_NotICE)
15939 return TrueResult;
15940 if (FalseResult.Kind == IK_NotICE)
15941 return FalseResult;
15942 if (CondResult.Kind == IK_ICEIfUnevaluated)
15943 return CondResult;
15944 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15945 return NoDiag();
15946 // Rare case where the diagnostics depend on which side is evaluated
15947 // Note that if we get here, CondResult is 0, and at least one of
15948 // TrueResult and FalseResult is non-zero.
15949 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15950 return FalseResult;
15951 return TrueResult;
15952 }
15953 case Expr::CXXDefaultArgExprClass:
15954 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15955 case Expr::CXXDefaultInitExprClass:
15956 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15957 case Expr::ChooseExprClass: {
15958 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15959 }
15960 case Expr::BuiltinBitCastExprClass: {
15961 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15962 return ICEDiag(IK_NotICE, E->getBeginLoc());
15963 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15964 }
15965 }
15966
15967 llvm_unreachable("Invalid StmtClass!");
15968 }
15969
15970 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)15971 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15972 const Expr *E,
15973 llvm::APSInt *Value,
15974 SourceLocation *Loc) {
15975 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15976 if (Loc) *Loc = E->getExprLoc();
15977 return false;
15978 }
15979
15980 APValue Result;
15981 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15982 return false;
15983
15984 if (!Result.isInt()) {
15985 if (Loc) *Loc = E->getExprLoc();
15986 return false;
15987 }
15988
15989 if (Value) *Value = Result.getInt();
15990 return true;
15991 }
15992
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const15993 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15994 SourceLocation *Loc) const {
15995 assert(!isValueDependent() &&
15996 "Expression evaluator can't be called on a dependent expression.");
15997
15998 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr");
15999
16000 if (Ctx.getLangOpts().CPlusPlus11)
16001 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
16002
16003 ICEDiag D = CheckICE(this, Ctx);
16004 if (D.Kind != IK_ICE) {
16005 if (Loc) *Loc = D.Loc;
16006 return false;
16007 }
16008 return true;
16009 }
16010
16011 std::optional<llvm::APSInt>
getIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const16012 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc,
16013 bool isEvaluated) const {
16014 if (isValueDependent()) {
16015 // Expression evaluator can't succeed on a dependent expression.
16016 return std::nullopt;
16017 }
16018
16019 APSInt Value;
16020
16021 if (Ctx.getLangOpts().CPlusPlus11) {
16022 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
16023 return Value;
16024 return std::nullopt;
16025 }
16026
16027 if (!isIntegerConstantExpr(Ctx, Loc))
16028 return std::nullopt;
16029
16030 // The only possible side-effects here are due to UB discovered in the
16031 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
16032 // required to treat the expression as an ICE, so we produce the folded
16033 // value.
16034 EvalResult ExprResult;
16035 Expr::EvalStatus Status;
16036 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
16037 Info.InConstantContext = true;
16038
16039 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
16040 llvm_unreachable("ICE cannot be evaluated!");
16041
16042 return ExprResult.Val.getInt();
16043 }
16044
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const16045 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
16046 assert(!isValueDependent() &&
16047 "Expression evaluator can't be called on a dependent expression.");
16048
16049 return CheckICE(this, Ctx).Kind == IK_ICE;
16050 }
16051
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const16052 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
16053 SourceLocation *Loc) const {
16054 assert(!isValueDependent() &&
16055 "Expression evaluator can't be called on a dependent expression.");
16056
16057 // We support this checking in C++98 mode in order to diagnose compatibility
16058 // issues.
16059 assert(Ctx.getLangOpts().CPlusPlus);
16060
16061 // Build evaluation settings.
16062 Expr::EvalStatus Status;
16063 SmallVector<PartialDiagnosticAt, 8> Diags;
16064 Status.Diag = &Diags;
16065 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
16066
16067 APValue Scratch;
16068 bool IsConstExpr =
16069 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
16070 // FIXME: We don't produce a diagnostic for this, but the callers that
16071 // call us on arbitrary full-expressions should generally not care.
16072 Info.discardCleanups() && !Status.HasSideEffects;
16073
16074 if (!Diags.empty()) {
16075 IsConstExpr = false;
16076 if (Loc) *Loc = Diags[0].first;
16077 } else if (!IsConstExpr) {
16078 // FIXME: This shouldn't happen.
16079 if (Loc) *Loc = getExprLoc();
16080 }
16081
16082 return IsConstExpr;
16083 }
16084
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args,const Expr * This) const16085 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
16086 const FunctionDecl *Callee,
16087 ArrayRef<const Expr*> Args,
16088 const Expr *This) const {
16089 assert(!isValueDependent() &&
16090 "Expression evaluator can't be called on a dependent expression.");
16091
16092 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] {
16093 std::string Name;
16094 llvm::raw_string_ostream OS(Name);
16095 Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(),
16096 /*Qualified=*/true);
16097 return Name;
16098 });
16099
16100 Expr::EvalStatus Status;
16101 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
16102 Info.InConstantContext = true;
16103
16104 LValue ThisVal;
16105 const LValue *ThisPtr = nullptr;
16106 if (This) {
16107 #ifndef NDEBUG
16108 auto *MD = dyn_cast<CXXMethodDecl>(Callee);
16109 assert(MD && "Don't provide `this` for non-methods.");
16110 assert(!MD->isStatic() && "Don't provide `this` for static methods.");
16111 #endif
16112 if (!This->isValueDependent() &&
16113 EvaluateObjectArgument(Info, This, ThisVal) &&
16114 !Info.EvalStatus.HasSideEffects)
16115 ThisPtr = &ThisVal;
16116
16117 // Ignore any side-effects from a failed evaluation. This is safe because
16118 // they can't interfere with any other argument evaluation.
16119 Info.EvalStatus.HasSideEffects = false;
16120 }
16121
16122 CallRef Call = Info.CurrentCall->createCall(Callee);
16123 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
16124 I != E; ++I) {
16125 unsigned Idx = I - Args.begin();
16126 if (Idx >= Callee->getNumParams())
16127 break;
16128 const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
16129 if ((*I)->isValueDependent() ||
16130 !EvaluateCallArg(PVD, *I, Call, Info) ||
16131 Info.EvalStatus.HasSideEffects) {
16132 // If evaluation fails, throw away the argument entirely.
16133 if (APValue *Slot = Info.getParamSlot(Call, PVD))
16134 *Slot = APValue();
16135 }
16136
16137 // Ignore any side-effects from a failed evaluation. This is safe because
16138 // they can't interfere with any other argument evaluation.
16139 Info.EvalStatus.HasSideEffects = false;
16140 }
16141
16142 // Parameter cleanups happen in the caller and are not part of this
16143 // evaluation.
16144 Info.discardCleanups();
16145 Info.EvalStatus.HasSideEffects = false;
16146
16147 // Build fake call to Callee.
16148 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
16149 // FIXME: Missing ExprWithCleanups in enable_if conditions?
16150 FullExpressionRAII Scope(Info);
16151 return Evaluate(Value, Info, this) && Scope.destroy() &&
16152 !Info.EvalStatus.HasSideEffects;
16153 }
16154
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)16155 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
16156 SmallVectorImpl<
16157 PartialDiagnosticAt> &Diags) {
16158 // FIXME: It would be useful to check constexpr function templates, but at the
16159 // moment the constant expression evaluator cannot cope with the non-rigorous
16160 // ASTs which we build for dependent expressions.
16161 if (FD->isDependentContext())
16162 return true;
16163
16164 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] {
16165 std::string Name;
16166 llvm::raw_string_ostream OS(Name);
16167 FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(),
16168 /*Qualified=*/true);
16169 return Name;
16170 });
16171
16172 Expr::EvalStatus Status;
16173 Status.Diag = &Diags;
16174
16175 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
16176 Info.InConstantContext = true;
16177 Info.CheckingPotentialConstantExpression = true;
16178
16179 // The constexpr VM attempts to compile all methods to bytecode here.
16180 if (Info.EnableNewConstInterp) {
16181 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
16182 return Diags.empty();
16183 }
16184
16185 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
16186 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
16187
16188 // Fabricate an arbitrary expression on the stack and pretend that it
16189 // is a temporary being used as the 'this' pointer.
16190 LValue This;
16191 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
16192 This.set({&VIE, Info.CurrentCall->Index});
16193
16194 ArrayRef<const Expr*> Args;
16195
16196 APValue Scratch;
16197 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
16198 // Evaluate the call as a constant initializer, to allow the construction
16199 // of objects of non-literal types.
16200 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
16201 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
16202 } else {
16203 SourceLocation Loc = FD->getLocation();
16204 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
16205 Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
16206 }
16207
16208 return Diags.empty();
16209 }
16210
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)16211 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
16212 const FunctionDecl *FD,
16213 SmallVectorImpl<
16214 PartialDiagnosticAt> &Diags) {
16215 assert(!E->isValueDependent() &&
16216 "Expression evaluator can't be called on a dependent expression.");
16217
16218 Expr::EvalStatus Status;
16219 Status.Diag = &Diags;
16220
16221 EvalInfo Info(FD->getASTContext(), Status,
16222 EvalInfo::EM_ConstantExpressionUnevaluated);
16223 Info.InConstantContext = true;
16224 Info.CheckingPotentialConstantExpression = true;
16225
16226 // Fabricate a call stack frame to give the arguments a plausible cover story.
16227 CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
16228
16229 APValue ResultScratch;
16230 Evaluate(ResultScratch, Info, E);
16231 return Diags.empty();
16232 }
16233
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const16234 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
16235 unsigned Type) const {
16236 if (!getType()->isPointerType())
16237 return false;
16238
16239 Expr::EvalStatus Status;
16240 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16241 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
16242 }
16243
EvaluateBuiltinStrLen(const Expr * E,uint64_t & Result,EvalInfo & Info)16244 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result,
16245 EvalInfo &Info) {
16246 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue())
16247 return false;
16248
16249 LValue String;
16250
16251 if (!EvaluatePointer(E, String, Info))
16252 return false;
16253
16254 QualType CharTy = E->getType()->getPointeeType();
16255
16256 // Fast path: if it's a string literal, search the string value.
16257 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
16258 String.getLValueBase().dyn_cast<const Expr *>())) {
16259 StringRef Str = S->getBytes();
16260 int64_t Off = String.Offset.getQuantity();
16261 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
16262 S->getCharByteWidth() == 1 &&
16263 // FIXME: Add fast-path for wchar_t too.
16264 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
16265 Str = Str.substr(Off);
16266
16267 StringRef::size_type Pos = Str.find(0);
16268 if (Pos != StringRef::npos)
16269 Str = Str.substr(0, Pos);
16270
16271 Result = Str.size();
16272 return true;
16273 }
16274
16275 // Fall through to slow path.
16276 }
16277
16278 // Slow path: scan the bytes of the string looking for the terminating 0.
16279 for (uint64_t Strlen = 0; /**/; ++Strlen) {
16280 APValue Char;
16281 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
16282 !Char.isInt())
16283 return false;
16284 if (!Char.getInt()) {
16285 Result = Strlen;
16286 return true;
16287 }
16288 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
16289 return false;
16290 }
16291 }
16292
tryEvaluateStrLen(uint64_t & Result,ASTContext & Ctx) const16293 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const {
16294 Expr::EvalStatus Status;
16295 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
16296 return EvaluateBuiltinStrLen(this, Result, Info);
16297 }
16298