1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Analysis/DebugInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Target/TargetFrameInfo.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetSelectionDAGInfo.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetIntrinsicInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/ManagedStatic.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/System/Mutex.h"
48 #include "llvm/ADT/SetVector.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringExtras.h"
53 #include <algorithm>
54 #include <cmath>
55 using namespace llvm;
56 
57 /// makeVTList - Return an instance of the SDVTList struct initialized with the
58 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)59 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60   SDVTList Res = {VTs, NumVTs};
61   return Res;
62 }
63 
EVTToAPFloatSemantics(EVT VT)64 static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65   switch (VT.getSimpleVT().SimpleTy) {
66   default: llvm_unreachable("Unknown FP format");
67   case MVT::f32:     return &APFloat::IEEEsingle;
68   case MVT::f64:     return &APFloat::IEEEdouble;
69   case MVT::f80:     return &APFloat::x87DoubleExtended;
70   case MVT::f128:    return &APFloat::IEEEquad;
71   case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72   }
73 }
74 
~DAGUpdateListener()75 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76 
77 //===----------------------------------------------------------------------===//
78 //                              ConstantFPSDNode Class
79 //===----------------------------------------------------------------------===//
80 
81 /// isExactlyValue - We don't rely on operator== working on double values, as
82 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83 /// As such, this method can be used to do an exact bit-for-bit comparison of
84 /// two floating point values.
isExactlyValue(const APFloat & V) const85 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86   return getValueAPF().bitwiseIsEqual(V);
87 }
88 
isValueValidForType(EVT VT,const APFloat & Val)89 bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                            const APFloat& Val) {
91   assert(VT.isFloatingPoint() && "Can only convert between FP types");
92 
93   // PPC long double cannot be converted to any other type.
94   if (VT == MVT::ppcf128 ||
95       &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96     return false;
97 
98   // convert modifies in place, so make a copy.
99   APFloat Val2 = APFloat(Val);
100   bool losesInfo;
101   (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                       &losesInfo);
103   return !losesInfo;
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ISD Namespace
108 //===----------------------------------------------------------------------===//
109 
110 /// isBuildVectorAllOnes - Return true if the specified node is a
111 /// BUILD_VECTOR where all of the elements are ~0 or undef.
isBuildVectorAllOnes(const SDNode * N)112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113   // Look through a bit convert.
114   if (N->getOpcode() == ISD::BIT_CONVERT)
115     N = N->getOperand(0).getNode();
116 
117   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 
119   unsigned i = 0, e = N->getNumOperands();
120 
121   // Skip over all of the undef values.
122   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123     ++i;
124 
125   // Do not accept an all-undef vector.
126   if (i == e) return false;
127 
128   // Do not accept build_vectors that aren't all constants or which have non-~0
129   // elements.
130   SDValue NotZero = N->getOperand(i);
131   if (isa<ConstantSDNode>(NotZero)) {
132     if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133       return false;
134   } else if (isa<ConstantFPSDNode>(NotZero)) {
135     if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                 bitcastToAPInt().isAllOnesValue())
137       return false;
138   } else
139     return false;
140 
141   // Okay, we have at least one ~0 value, check to see if the rest match or are
142   // undefs.
143   for (++i; i != e; ++i)
144     if (N->getOperand(i) != NotZero &&
145         N->getOperand(i).getOpcode() != ISD::UNDEF)
146       return false;
147   return true;
148 }
149 
150 
151 /// isBuildVectorAllZeros - Return true if the specified node is a
152 /// BUILD_VECTOR where all of the elements are 0 or undef.
isBuildVectorAllZeros(const SDNode * N)153 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154   // Look through a bit convert.
155   if (N->getOpcode() == ISD::BIT_CONVERT)
156     N = N->getOperand(0).getNode();
157 
158   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159 
160   unsigned i = 0, e = N->getNumOperands();
161 
162   // Skip over all of the undef values.
163   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164     ++i;
165 
166   // Do not accept an all-undef vector.
167   if (i == e) return false;
168 
169   // Do not accept build_vectors that aren't all constants or which have non-0
170   // elements.
171   SDValue Zero = N->getOperand(i);
172   if (isa<ConstantSDNode>(Zero)) {
173     if (!cast<ConstantSDNode>(Zero)->isNullValue())
174       return false;
175   } else if (isa<ConstantFPSDNode>(Zero)) {
176     if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177       return false;
178   } else
179     return false;
180 
181   // Okay, we have at least one 0 value, check to see if the rest match or are
182   // undefs.
183   for (++i; i != e; ++i)
184     if (N->getOperand(i) != Zero &&
185         N->getOperand(i).getOpcode() != ISD::UNDEF)
186       return false;
187   return true;
188 }
189 
190 /// isScalarToVector - Return true if the specified node is a
191 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192 /// element is not an undef.
isScalarToVector(const SDNode * N)193 bool ISD::isScalarToVector(const SDNode *N) {
194   if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195     return true;
196 
197   if (N->getOpcode() != ISD::BUILD_VECTOR)
198     return false;
199   if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200     return false;
201   unsigned NumElems = N->getNumOperands();
202   for (unsigned i = 1; i < NumElems; ++i) {
203     SDValue V = N->getOperand(i);
204     if (V.getOpcode() != ISD::UNDEF)
205       return false;
206   }
207   return true;
208 }
209 
210 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211 /// when given the operation for (X op Y).
getSetCCSwappedOperands(ISD::CondCode Operation)212 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213   // To perform this operation, we just need to swap the L and G bits of the
214   // operation.
215   unsigned OldL = (Operation >> 2) & 1;
216   unsigned OldG = (Operation >> 1) & 1;
217   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                        (OldL << 1) |       // New G bit
219                        (OldG << 2));       // New L bit.
220 }
221 
222 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223 /// 'op' is a valid SetCC operation.
getSetCCInverse(ISD::CondCode Op,bool isInteger)224 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225   unsigned Operation = Op;
226   if (isInteger)
227     Operation ^= 7;   // Flip L, G, E bits, but not U.
228   else
229     Operation ^= 15;  // Flip all of the condition bits.
230 
231   if (Operation > ISD::SETTRUE2)
232     Operation &= ~8;  // Don't let N and U bits get set.
233 
234   return ISD::CondCode(Operation);
235 }
236 
237 
238 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
239 /// signed operation and 2 if the result is an unsigned comparison.  Return zero
240 /// if the operation does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)241 static int isSignedOp(ISD::CondCode Opcode) {
242   switch (Opcode) {
243   default: llvm_unreachable("Illegal integer setcc operation!");
244   case ISD::SETEQ:
245   case ISD::SETNE: return 0;
246   case ISD::SETLT:
247   case ISD::SETLE:
248   case ISD::SETGT:
249   case ISD::SETGE: return 1;
250   case ISD::SETULT:
251   case ISD::SETULE:
252   case ISD::SETUGT:
253   case ISD::SETUGE: return 2;
254   }
255 }
256 
257 /// getSetCCOrOperation - Return the result of a logical OR between different
258 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259 /// returns SETCC_INVALID if it is not possible to represent the resultant
260 /// comparison.
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool isInteger)261 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                        bool isInteger) {
263   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264     // Cannot fold a signed integer setcc with an unsigned integer setcc.
265     return ISD::SETCC_INVALID;
266 
267   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268 
269   // If the N and U bits get set then the resultant comparison DOES suddenly
270   // care about orderedness, and is true when ordered.
271   if (Op > ISD::SETTRUE2)
272     Op &= ~16;     // Clear the U bit if the N bit is set.
273 
274   // Canonicalize illegal integer setcc's.
275   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276     Op = ISD::SETNE;
277 
278   return ISD::CondCode(Op);
279 }
280 
281 /// getSetCCAndOperation - Return the result of a logical AND between different
282 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283 /// function returns zero if it is not possible to represent the resultant
284 /// comparison.
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,bool isInteger)285 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                         bool isInteger) {
287   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288     // Cannot fold a signed setcc with an unsigned setcc.
289     return ISD::SETCC_INVALID;
290 
291   // Combine all of the condition bits.
292   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293 
294   // Canonicalize illegal integer setcc's.
295   if (isInteger) {
296     switch (Result) {
297     default: break;
298     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303     }
304   }
305 
306   return Result;
307 }
308 
309 //===----------------------------------------------------------------------===//
310 //                           SDNode Profile Support
311 //===----------------------------------------------------------------------===//
312 
313 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314 ///
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)315 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316   ID.AddInteger(OpC);
317 }
318 
319 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)321 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322   ID.AddPointer(VTList.VTs);
323 }
324 
325 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326 ///
AddNodeIDOperands(FoldingSetNodeID & ID,const SDValue * Ops,unsigned NumOps)327 static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                               const SDValue *Ops, unsigned NumOps) {
329   for (; NumOps; --NumOps, ++Ops) {
330     ID.AddPointer(Ops->getNode());
331     ID.AddInteger(Ops->getResNo());
332   }
333 }
334 
335 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336 ///
AddNodeIDOperands(FoldingSetNodeID & ID,const SDUse * Ops,unsigned NumOps)337 static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                               const SDUse *Ops, unsigned NumOps) {
339   for (; NumOps; --NumOps, ++Ops) {
340     ID.AddPointer(Ops->getNode());
341     ID.AddInteger(Ops->getResNo());
342   }
343 }
344 
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,const SDValue * OpList,unsigned N)345 static void AddNodeIDNode(FoldingSetNodeID &ID,
346                           unsigned short OpC, SDVTList VTList,
347                           const SDValue *OpList, unsigned N) {
348   AddNodeIDOpcode(ID, OpC);
349   AddNodeIDValueTypes(ID, VTList);
350   AddNodeIDOperands(ID, OpList, N);
351 }
352 
353 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354 /// the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)355 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356   switch (N->getOpcode()) {
357   case ISD::TargetExternalSymbol:
358   case ISD::ExternalSymbol:
359     llvm_unreachable("Should only be used on nodes with operands");
360   default: break;  // Normal nodes don't need extra info.
361   case ISD::TargetConstant:
362   case ISD::Constant:
363     ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364     break;
365   case ISD::TargetConstantFP:
366   case ISD::ConstantFP: {
367     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368     break;
369   }
370   case ISD::TargetGlobalAddress:
371   case ISD::GlobalAddress:
372   case ISD::TargetGlobalTLSAddress:
373   case ISD::GlobalTLSAddress: {
374     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375     ID.AddPointer(GA->getGlobal());
376     ID.AddInteger(GA->getOffset());
377     ID.AddInteger(GA->getTargetFlags());
378     break;
379   }
380   case ISD::BasicBlock:
381     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382     break;
383   case ISD::Register:
384     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385     break;
386 
387   case ISD::SRCVALUE:
388     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389     break;
390   case ISD::FrameIndex:
391   case ISD::TargetFrameIndex:
392     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393     break;
394   case ISD::JumpTable:
395   case ISD::TargetJumpTable:
396     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398     break;
399   case ISD::ConstantPool:
400   case ISD::TargetConstantPool: {
401     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402     ID.AddInteger(CP->getAlignment());
403     ID.AddInteger(CP->getOffset());
404     if (CP->isMachineConstantPoolEntry())
405       CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406     else
407       ID.AddPointer(CP->getConstVal());
408     ID.AddInteger(CP->getTargetFlags());
409     break;
410   }
411   case ISD::LOAD: {
412     const LoadSDNode *LD = cast<LoadSDNode>(N);
413     ID.AddInteger(LD->getMemoryVT().getRawBits());
414     ID.AddInteger(LD->getRawSubclassData());
415     break;
416   }
417   case ISD::STORE: {
418     const StoreSDNode *ST = cast<StoreSDNode>(N);
419     ID.AddInteger(ST->getMemoryVT().getRawBits());
420     ID.AddInteger(ST->getRawSubclassData());
421     break;
422   }
423   case ISD::ATOMIC_CMP_SWAP:
424   case ISD::ATOMIC_SWAP:
425   case ISD::ATOMIC_LOAD_ADD:
426   case ISD::ATOMIC_LOAD_SUB:
427   case ISD::ATOMIC_LOAD_AND:
428   case ISD::ATOMIC_LOAD_OR:
429   case ISD::ATOMIC_LOAD_XOR:
430   case ISD::ATOMIC_LOAD_NAND:
431   case ISD::ATOMIC_LOAD_MIN:
432   case ISD::ATOMIC_LOAD_MAX:
433   case ISD::ATOMIC_LOAD_UMIN:
434   case ISD::ATOMIC_LOAD_UMAX: {
435     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436     ID.AddInteger(AT->getMemoryVT().getRawBits());
437     ID.AddInteger(AT->getRawSubclassData());
438     break;
439   }
440   case ISD::VECTOR_SHUFFLE: {
441     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443          i != e; ++i)
444       ID.AddInteger(SVN->getMaskElt(i));
445     break;
446   }
447   case ISD::TargetBlockAddress:
448   case ISD::BlockAddress: {
449     ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450     ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451     break;
452   }
453   } // end switch (N->getOpcode())
454 }
455 
456 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)458 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459   AddNodeIDOpcode(ID, N->getOpcode());
460   // Add the return value info.
461   AddNodeIDValueTypes(ID, N->getVTList());
462   // Add the operand info.
463   AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464 
465   // Handle SDNode leafs with special info.
466   AddNodeIDCustom(ID, N);
467 }
468 
469 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470 /// the CSE map that carries volatility, temporalness, indexing mode, and
471 /// extension/truncation information.
472 ///
473 static inline unsigned
encodeMemSDNodeFlags(int ConvType,ISD::MemIndexedMode AM,bool isVolatile,bool isNonTemporal)474 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                      bool isNonTemporal) {
476   assert((ConvType & 3) == ConvType &&
477          "ConvType may not require more than 2 bits!");
478   assert((AM & 7) == AM &&
479          "AM may not require more than 3 bits!");
480   return ConvType |
481          (AM << 2) |
482          (isVolatile << 5) |
483          (isNonTemporal << 6);
484 }
485 
486 //===----------------------------------------------------------------------===//
487 //                              SelectionDAG Class
488 //===----------------------------------------------------------------------===//
489 
490 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)491 static bool doNotCSE(SDNode *N) {
492   if (N->getValueType(0) == MVT::Flag)
493     return true; // Never CSE anything that produces a flag.
494 
495   switch (N->getOpcode()) {
496   default: break;
497   case ISD::HANDLENODE:
498   case ISD::EH_LABEL:
499     return true;   // Never CSE these nodes.
500   }
501 
502   // Check that remaining values produced are not flags.
503   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504     if (N->getValueType(i) == MVT::Flag)
505       return true; // Never CSE anything that produces a flag.
506 
507   return false;
508 }
509 
510 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
511 /// SelectionDAG.
RemoveDeadNodes()512 void SelectionDAG::RemoveDeadNodes() {
513   // Create a dummy node (which is not added to allnodes), that adds a reference
514   // to the root node, preventing it from being deleted.
515   HandleSDNode Dummy(getRoot());
516 
517   SmallVector<SDNode*, 128> DeadNodes;
518 
519   // Add all obviously-dead nodes to the DeadNodes worklist.
520   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521     if (I->use_empty())
522       DeadNodes.push_back(I);
523 
524   RemoveDeadNodes(DeadNodes);
525 
526   // If the root changed (e.g. it was a dead load, update the root).
527   setRoot(Dummy.getValue());
528 }
529 
530 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
531 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes,DAGUpdateListener * UpdateListener)532 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                    DAGUpdateListener *UpdateListener) {
534 
535   // Process the worklist, deleting the nodes and adding their uses to the
536   // worklist.
537   while (!DeadNodes.empty()) {
538     SDNode *N = DeadNodes.pop_back_val();
539 
540     if (UpdateListener)
541       UpdateListener->NodeDeleted(N, 0);
542 
543     // Take the node out of the appropriate CSE map.
544     RemoveNodeFromCSEMaps(N);
545 
546     // Next, brutally remove the operand list.  This is safe to do, as there are
547     // no cycles in the graph.
548     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549       SDUse &Use = *I++;
550       SDNode *Operand = Use.getNode();
551       Use.set(SDValue());
552 
553       // Now that we removed this operand, see if there are no uses of it left.
554       if (Operand->use_empty())
555         DeadNodes.push_back(Operand);
556     }
557 
558     DeallocateNode(N);
559   }
560 }
561 
RemoveDeadNode(SDNode * N,DAGUpdateListener * UpdateListener)562 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563   SmallVector<SDNode*, 16> DeadNodes(1, N);
564   RemoveDeadNodes(DeadNodes, UpdateListener);
565 }
566 
DeleteNode(SDNode * N)567 void SelectionDAG::DeleteNode(SDNode *N) {
568   // First take this out of the appropriate CSE map.
569   RemoveNodeFromCSEMaps(N);
570 
571   // Finally, remove uses due to operands of this node, remove from the
572   // AllNodes list, and delete the node.
573   DeleteNodeNotInCSEMaps(N);
574 }
575 
DeleteNodeNotInCSEMaps(SDNode * N)576 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577   assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578   assert(N->use_empty() && "Cannot delete a node that is not dead!");
579 
580   // Drop all of the operands and decrement used node's use counts.
581   N->DropOperands();
582 
583   DeallocateNode(N);
584 }
585 
DeallocateNode(SDNode * N)586 void SelectionDAG::DeallocateNode(SDNode *N) {
587   if (N->OperandsNeedDelete)
588     delete[] N->OperandList;
589 
590   // Set the opcode to DELETED_NODE to help catch bugs when node
591   // memory is reallocated.
592   N->NodeType = ISD::DELETED_NODE;
593 
594   NodeAllocator.Deallocate(AllNodes.remove(N));
595 
596   // Remove the ordering of this node.
597   Ordering->remove(N);
598 
599   // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600   SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601   for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602     DbgVals[i]->setIsInvalidated();
603 }
604 
605 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606 /// correspond to it.  This is useful when we're about to delete or repurpose
607 /// the node.  We don't want future request for structurally identical nodes
608 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)609 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610   bool Erased = false;
611   switch (N->getOpcode()) {
612   case ISD::EntryToken:
613     llvm_unreachable("EntryToken should not be in CSEMaps!");
614     return false;
615   case ISD::HANDLENODE: return false;  // noop.
616   case ISD::CONDCODE:
617     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618            "Cond code doesn't exist!");
619     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621     break;
622   case ISD::ExternalSymbol:
623     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624     break;
625   case ISD::TargetExternalSymbol: {
626     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627     Erased = TargetExternalSymbols.erase(
628                std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                     ESN->getTargetFlags()));
630     break;
631   }
632   case ISD::VALUETYPE: {
633     EVT VT = cast<VTSDNode>(N)->getVT();
634     if (VT.isExtended()) {
635       Erased = ExtendedValueTypeNodes.erase(VT);
636     } else {
637       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639     }
640     break;
641   }
642   default:
643     // Remove it from the CSE Map.
644     Erased = CSEMap.RemoveNode(N);
645     break;
646   }
647 #ifndef NDEBUG
648   // Verify that the node was actually in one of the CSE maps, unless it has a
649   // flag result (which cannot be CSE'd) or is one of the special cases that are
650   // not subject to CSE.
651   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652       !N->isMachineOpcode() && !doNotCSE(N)) {
653     N->dump(this);
654     dbgs() << "\n";
655     llvm_unreachable("Node is not in map!");
656   }
657 #endif
658   return Erased;
659 }
660 
661 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662 /// maps and modified in place. Add it back to the CSE maps, unless an identical
663 /// node already exists, in which case transfer all its users to the existing
664 /// node. This transfer can potentially trigger recursive merging.
665 ///
666 void
AddModifiedNodeToCSEMaps(SDNode * N,DAGUpdateListener * UpdateListener)667 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                        DAGUpdateListener *UpdateListener) {
669   // For node types that aren't CSE'd, just act as if no identical node
670   // already exists.
671   if (!doNotCSE(N)) {
672     SDNode *Existing = CSEMap.GetOrInsertNode(N);
673     if (Existing != N) {
674       // If there was already an existing matching node, use ReplaceAllUsesWith
675       // to replace the dead one with the existing one.  This can cause
676       // recursive merging of other unrelated nodes down the line.
677       ReplaceAllUsesWith(N, Existing, UpdateListener);
678 
679       // N is now dead.  Inform the listener if it exists and delete it.
680       if (UpdateListener)
681         UpdateListener->NodeDeleted(N, Existing);
682       DeleteNodeNotInCSEMaps(N);
683       return;
684     }
685   }
686 
687   // If the node doesn't already exist, we updated it.  Inform a listener if
688   // it exists.
689   if (UpdateListener)
690     UpdateListener->NodeUpdated(N);
691 }
692 
693 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694 /// were replaced with those specified.  If this node is never memoized,
695 /// return null, otherwise return a pointer to the slot it would take.  If a
696 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)697 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                            void *&InsertPos) {
699   if (doNotCSE(N))
700     return 0;
701 
702   SDValue Ops[] = { Op };
703   FoldingSetNodeID ID;
704   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705   AddNodeIDCustom(ID, N);
706   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707   return Node;
708 }
709 
710 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711 /// were replaced with those specified.  If this node is never memoized,
712 /// return null, otherwise return a pointer to the slot it would take.  If a
713 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)714 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                            SDValue Op1, SDValue Op2,
716                                            void *&InsertPos) {
717   if (doNotCSE(N))
718     return 0;
719 
720   SDValue Ops[] = { Op1, Op2 };
721   FoldingSetNodeID ID;
722   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723   AddNodeIDCustom(ID, N);
724   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725   return Node;
726 }
727 
728 
729 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730 /// were replaced with those specified.  If this node is never memoized,
731 /// return null, otherwise return a pointer to the slot it would take.  If a
732 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,const SDValue * Ops,unsigned NumOps,void * & InsertPos)733 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                            const SDValue *Ops,unsigned NumOps,
735                                            void *&InsertPos) {
736   if (doNotCSE(N))
737     return 0;
738 
739   FoldingSetNodeID ID;
740   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741   AddNodeIDCustom(ID, N);
742   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743   return Node;
744 }
745 
746 /// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
VerifyNodeCommon(SDNode * N)747 static void VerifyNodeCommon(SDNode *N) {
748   switch (N->getOpcode()) {
749   default:
750     break;
751   case ISD::BUILD_PAIR: {
752     EVT VT = N->getValueType(0);
753     assert(N->getNumValues() == 1 && "Too many results!");
754     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755            "Wrong return type!");
756     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758            "Mismatched operand types!");
759     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760            "Wrong operand type!");
761     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762            "Wrong return type size");
763     break;
764   }
765   case ISD::BUILD_VECTOR: {
766     assert(N->getNumValues() == 1 && "Too many results!");
767     assert(N->getValueType(0).isVector() && "Wrong return type!");
768     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769            "Wrong number of operands!");
770     EVT EltVT = N->getValueType(0).getVectorElementType();
771     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772       assert((I->getValueType() == EltVT ||
773              (EltVT.isInteger() && I->getValueType().isInteger() &&
774               EltVT.bitsLE(I->getValueType()))) &&
775             "Wrong operand type!");
776     break;
777   }
778   }
779 }
780 
781 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
VerifySDNode(SDNode * N)782 static void VerifySDNode(SDNode *N) {
783   // The SDNode allocators cannot be used to allocate nodes with fields that are
784   // not present in an SDNode!
785   assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
786   assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
787   assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
788   assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
789   assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
790   assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
791   assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
792   assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
793   assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
794   assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
795   assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
796   assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
797   assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
798   assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
799   assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
800   assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
801   assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
802   assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
803   assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
804 
805   VerifyNodeCommon(N);
806 }
807 
808 /// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
809 /// invalid.
VerifyMachineNode(SDNode * N)810 static void VerifyMachineNode(SDNode *N) {
811   // The MachineNode allocators cannot be used to allocate nodes with fields
812   // that are not present in a MachineNode!
813   // Currently there are no such nodes.
814 
815   VerifyNodeCommon(N);
816 }
817 
818 /// getEVTAlignment - Compute the default alignment value for the
819 /// given type.
820 ///
getEVTAlignment(EVT VT) const821 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
822   const Type *Ty = VT == MVT::iPTR ?
823                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
824                    VT.getTypeForEVT(*getContext());
825 
826   return TLI.getTargetData()->getABITypeAlignment(Ty);
827 }
828 
829 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm)830 SelectionDAG::SelectionDAG(const TargetMachine &tm)
831   : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
832     EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
833     Root(getEntryNode()), Ordering(0) {
834   AllNodes.push_back(&EntryNode);
835   Ordering = new SDNodeOrdering();
836   DbgInfo = new SDDbgInfo();
837 }
838 
init(MachineFunction & mf)839 void SelectionDAG::init(MachineFunction &mf) {
840   MF = &mf;
841   Context = &mf.getFunction()->getContext();
842 }
843 
~SelectionDAG()844 SelectionDAG::~SelectionDAG() {
845   allnodes_clear();
846   delete Ordering;
847   delete DbgInfo;
848 }
849 
allnodes_clear()850 void SelectionDAG::allnodes_clear() {
851   assert(&*AllNodes.begin() == &EntryNode);
852   AllNodes.remove(AllNodes.begin());
853   while (!AllNodes.empty())
854     DeallocateNode(AllNodes.begin());
855 }
856 
clear()857 void SelectionDAG::clear() {
858   allnodes_clear();
859   OperandAllocator.Reset();
860   CSEMap.clear();
861 
862   ExtendedValueTypeNodes.clear();
863   ExternalSymbols.clear();
864   TargetExternalSymbols.clear();
865   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
866             static_cast<CondCodeSDNode*>(0));
867   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
868             static_cast<SDNode*>(0));
869 
870   EntryNode.UseList = 0;
871   AllNodes.push_back(&EntryNode);
872   Root = getEntryNode();
873   Ordering->clear();
874   DbgInfo->clear();
875 }
876 
getSExtOrTrunc(SDValue Op,DebugLoc DL,EVT VT)877 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
878   return VT.bitsGT(Op.getValueType()) ?
879     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
880     getNode(ISD::TRUNCATE, DL, VT, Op);
881 }
882 
getZExtOrTrunc(SDValue Op,DebugLoc DL,EVT VT)883 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
884   return VT.bitsGT(Op.getValueType()) ?
885     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
886     getNode(ISD::TRUNCATE, DL, VT, Op);
887 }
888 
getZeroExtendInReg(SDValue Op,DebugLoc DL,EVT VT)889 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
890   assert(!VT.isVector() &&
891          "getZeroExtendInReg should use the vector element type instead of "
892          "the vector type!");
893   if (Op.getValueType() == VT) return Op;
894   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
895   APInt Imm = APInt::getLowBitsSet(BitWidth,
896                                    VT.getSizeInBits());
897   return getNode(ISD::AND, DL, Op.getValueType(), Op,
898                  getConstant(Imm, Op.getValueType()));
899 }
900 
901 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
902 ///
getNOT(DebugLoc DL,SDValue Val,EVT VT)903 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
904   EVT EltVT = VT.getScalarType();
905   SDValue NegOne =
906     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
907   return getNode(ISD::XOR, DL, VT, Val, NegOne);
908 }
909 
getConstant(uint64_t Val,EVT VT,bool isT)910 SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
911   EVT EltVT = VT.getScalarType();
912   assert((EltVT.getSizeInBits() >= 64 ||
913          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
914          "getConstant with a uint64_t value that doesn't fit in the type!");
915   return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
916 }
917 
getConstant(const APInt & Val,EVT VT,bool isT)918 SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
919   return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
920 }
921 
getConstant(const ConstantInt & Val,EVT VT,bool isT)922 SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
923   assert(VT.isInteger() && "Cannot create FP integer constant!");
924 
925   EVT EltVT = VT.getScalarType();
926   assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
927          "APInt size does not match type size!");
928 
929   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
930   FoldingSetNodeID ID;
931   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
932   ID.AddPointer(&Val);
933   void *IP = 0;
934   SDNode *N = NULL;
935   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
936     if (!VT.isVector())
937       return SDValue(N, 0);
938 
939   if (!N) {
940     N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
941     CSEMap.InsertNode(N, IP);
942     AllNodes.push_back(N);
943   }
944 
945   SDValue Result(N, 0);
946   if (VT.isVector()) {
947     SmallVector<SDValue, 8> Ops;
948     Ops.assign(VT.getVectorNumElements(), Result);
949     Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
950   }
951   return Result;
952 }
953 
getIntPtrConstant(uint64_t Val,bool isTarget)954 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
955   return getConstant(Val, TLI.getPointerTy(), isTarget);
956 }
957 
958 
getConstantFP(const APFloat & V,EVT VT,bool isTarget)959 SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
960   return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
961 }
962 
getConstantFP(const ConstantFP & V,EVT VT,bool isTarget)963 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
964   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
965 
966   EVT EltVT = VT.getScalarType();
967 
968   // Do the map lookup using the actual bit pattern for the floating point
969   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
970   // we don't have issues with SNANs.
971   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
972   FoldingSetNodeID ID;
973   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
974   ID.AddPointer(&V);
975   void *IP = 0;
976   SDNode *N = NULL;
977   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
978     if (!VT.isVector())
979       return SDValue(N, 0);
980 
981   if (!N) {
982     N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
983     CSEMap.InsertNode(N, IP);
984     AllNodes.push_back(N);
985   }
986 
987   SDValue Result(N, 0);
988   if (VT.isVector()) {
989     SmallVector<SDValue, 8> Ops;
990     Ops.assign(VT.getVectorNumElements(), Result);
991     // FIXME DebugLoc info might be appropriate here
992     Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
993   }
994   return Result;
995 }
996 
getConstantFP(double Val,EVT VT,bool isTarget)997 SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
998   EVT EltVT = VT.getScalarType();
999   if (EltVT==MVT::f32)
1000     return getConstantFP(APFloat((float)Val), VT, isTarget);
1001   else if (EltVT==MVT::f64)
1002     return getConstantFP(APFloat(Val), VT, isTarget);
1003   else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1004     bool ignored;
1005     APFloat apf = APFloat(Val);
1006     apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1007                 &ignored);
1008     return getConstantFP(apf, VT, isTarget);
1009   } else {
1010     assert(0 && "Unsupported type in getConstantFP");
1011     return SDValue();
1012   }
1013 }
1014 
getGlobalAddress(const GlobalValue * GV,DebugLoc DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned char TargetFlags)1015 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1016                                        EVT VT, int64_t Offset,
1017                                        bool isTargetGA,
1018                                        unsigned char TargetFlags) {
1019   assert((TargetFlags == 0 || isTargetGA) &&
1020          "Cannot set target flags on target-independent globals");
1021 
1022   // Truncate (with sign-extension) the offset value to the pointer size.
1023   EVT PTy = TLI.getPointerTy();
1024   unsigned BitWidth = PTy.getSizeInBits();
1025   if (BitWidth < 64)
1026     Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1027 
1028   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1029   if (!GVar) {
1030     // If GV is an alias then use the aliasee for determining thread-localness.
1031     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1032       GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1033   }
1034 
1035   unsigned Opc;
1036   if (GVar && GVar->isThreadLocal())
1037     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1038   else
1039     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1040 
1041   FoldingSetNodeID ID;
1042   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043   ID.AddPointer(GV);
1044   ID.AddInteger(Offset);
1045   ID.AddInteger(TargetFlags);
1046   void *IP = 0;
1047   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048     return SDValue(E, 0);
1049 
1050   SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1051                                                       Offset, TargetFlags);
1052   CSEMap.InsertNode(N, IP);
1053   AllNodes.push_back(N);
1054   return SDValue(N, 0);
1055 }
1056 
getFrameIndex(int FI,EVT VT,bool isTarget)1057 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1058   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1059   FoldingSetNodeID ID;
1060   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1061   ID.AddInteger(FI);
1062   void *IP = 0;
1063   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064     return SDValue(E, 0);
1065 
1066   SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1067   CSEMap.InsertNode(N, IP);
1068   AllNodes.push_back(N);
1069   return SDValue(N, 0);
1070 }
1071 
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned char TargetFlags)1072 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1073                                    unsigned char TargetFlags) {
1074   assert((TargetFlags == 0 || isTarget) &&
1075          "Cannot set target flags on target-independent jump tables");
1076   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1077   FoldingSetNodeID ID;
1078   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1079   ID.AddInteger(JTI);
1080   ID.AddInteger(TargetFlags);
1081   void *IP = 0;
1082   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083     return SDValue(E, 0);
1084 
1085   SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1086                                                   TargetFlags);
1087   CSEMap.InsertNode(N, IP);
1088   AllNodes.push_back(N);
1089   return SDValue(N, 0);
1090 }
1091 
getConstantPool(const Constant * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1092 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1093                                       unsigned Alignment, int Offset,
1094                                       bool isTarget,
1095                                       unsigned char TargetFlags) {
1096   assert((TargetFlags == 0 || isTarget) &&
1097          "Cannot set target flags on target-independent globals");
1098   if (Alignment == 0)
1099     Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1100   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1101   FoldingSetNodeID ID;
1102   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1103   ID.AddInteger(Alignment);
1104   ID.AddInteger(Offset);
1105   ID.AddPointer(C);
1106   ID.AddInteger(TargetFlags);
1107   void *IP = 0;
1108   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1109     return SDValue(E, 0);
1110 
1111   SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1112                                                      Alignment, TargetFlags);
1113   CSEMap.InsertNode(N, IP);
1114   AllNodes.push_back(N);
1115   return SDValue(N, 0);
1116 }
1117 
1118 
getConstantPool(MachineConstantPoolValue * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned char TargetFlags)1119 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1120                                       unsigned Alignment, int Offset,
1121                                       bool isTarget,
1122                                       unsigned char TargetFlags) {
1123   assert((TargetFlags == 0 || isTarget) &&
1124          "Cannot set target flags on target-independent globals");
1125   if (Alignment == 0)
1126     Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1127   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1128   FoldingSetNodeID ID;
1129   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1130   ID.AddInteger(Alignment);
1131   ID.AddInteger(Offset);
1132   C->AddSelectionDAGCSEId(ID);
1133   ID.AddInteger(TargetFlags);
1134   void *IP = 0;
1135   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1136     return SDValue(E, 0);
1137 
1138   SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1139                                                      Alignment, TargetFlags);
1140   CSEMap.InsertNode(N, IP);
1141   AllNodes.push_back(N);
1142   return SDValue(N, 0);
1143 }
1144 
getBasicBlock(MachineBasicBlock * MBB)1145 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1146   FoldingSetNodeID ID;
1147   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1148   ID.AddPointer(MBB);
1149   void *IP = 0;
1150   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1151     return SDValue(E, 0);
1152 
1153   SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1154   CSEMap.InsertNode(N, IP);
1155   AllNodes.push_back(N);
1156   return SDValue(N, 0);
1157 }
1158 
getValueType(EVT VT)1159 SDValue SelectionDAG::getValueType(EVT VT) {
1160   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1161       ValueTypeNodes.size())
1162     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1163 
1164   SDNode *&N = VT.isExtended() ?
1165     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1166 
1167   if (N) return SDValue(N, 0);
1168   N = new (NodeAllocator) VTSDNode(VT);
1169   AllNodes.push_back(N);
1170   return SDValue(N, 0);
1171 }
1172 
getExternalSymbol(const char * Sym,EVT VT)1173 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1174   SDNode *&N = ExternalSymbols[Sym];
1175   if (N) return SDValue(N, 0);
1176   N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1177   AllNodes.push_back(N);
1178   return SDValue(N, 0);
1179 }
1180 
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned char TargetFlags)1181 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1182                                               unsigned char TargetFlags) {
1183   SDNode *&N =
1184     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1185                                                                TargetFlags)];
1186   if (N) return SDValue(N, 0);
1187   N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1188   AllNodes.push_back(N);
1189   return SDValue(N, 0);
1190 }
1191 
getCondCode(ISD::CondCode Cond)1192 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1193   if ((unsigned)Cond >= CondCodeNodes.size())
1194     CondCodeNodes.resize(Cond+1);
1195 
1196   if (CondCodeNodes[Cond] == 0) {
1197     CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1198     CondCodeNodes[Cond] = N;
1199     AllNodes.push_back(N);
1200   }
1201 
1202   return SDValue(CondCodeNodes[Cond], 0);
1203 }
1204 
1205 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1206 // the shuffle mask M that point at N1 to point at N2, and indices that point
1207 // N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,SmallVectorImpl<int> & M)1208 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1209   std::swap(N1, N2);
1210   int NElts = M.size();
1211   for (int i = 0; i != NElts; ++i) {
1212     if (M[i] >= NElts)
1213       M[i] -= NElts;
1214     else if (M[i] >= 0)
1215       M[i] += NElts;
1216   }
1217 }
1218 
getVectorShuffle(EVT VT,DebugLoc dl,SDValue N1,SDValue N2,const int * Mask)1219 SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1220                                        SDValue N2, const int *Mask) {
1221   assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1222   assert(VT.isVector() && N1.getValueType().isVector() &&
1223          "Vector Shuffle VTs must be a vectors");
1224   assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1225          && "Vector Shuffle VTs must have same element type");
1226 
1227   // Canonicalize shuffle undef, undef -> undef
1228   if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1229     return getUNDEF(VT);
1230 
1231   // Validate that all indices in Mask are within the range of the elements
1232   // input to the shuffle.
1233   unsigned NElts = VT.getVectorNumElements();
1234   SmallVector<int, 8> MaskVec;
1235   for (unsigned i = 0; i != NElts; ++i) {
1236     assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1237     MaskVec.push_back(Mask[i]);
1238   }
1239 
1240   // Canonicalize shuffle v, v -> v, undef
1241   if (N1 == N2) {
1242     N2 = getUNDEF(VT);
1243     for (unsigned i = 0; i != NElts; ++i)
1244       if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1245   }
1246 
1247   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1248   if (N1.getOpcode() == ISD::UNDEF)
1249     commuteShuffle(N1, N2, MaskVec);
1250 
1251   // Canonicalize all index into lhs, -> shuffle lhs, undef
1252   // Canonicalize all index into rhs, -> shuffle rhs, undef
1253   bool AllLHS = true, AllRHS = true;
1254   bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1255   for (unsigned i = 0; i != NElts; ++i) {
1256     if (MaskVec[i] >= (int)NElts) {
1257       if (N2Undef)
1258         MaskVec[i] = -1;
1259       else
1260         AllLHS = false;
1261     } else if (MaskVec[i] >= 0) {
1262       AllRHS = false;
1263     }
1264   }
1265   if (AllLHS && AllRHS)
1266     return getUNDEF(VT);
1267   if (AllLHS && !N2Undef)
1268     N2 = getUNDEF(VT);
1269   if (AllRHS) {
1270     N1 = getUNDEF(VT);
1271     commuteShuffle(N1, N2, MaskVec);
1272   }
1273 
1274   // If Identity shuffle, or all shuffle in to undef, return that node.
1275   bool AllUndef = true;
1276   bool Identity = true;
1277   for (unsigned i = 0; i != NElts; ++i) {
1278     if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1279     if (MaskVec[i] >= 0) AllUndef = false;
1280   }
1281   if (Identity && NElts == N1.getValueType().getVectorNumElements())
1282     return N1;
1283   if (AllUndef)
1284     return getUNDEF(VT);
1285 
1286   FoldingSetNodeID ID;
1287   SDValue Ops[2] = { N1, N2 };
1288   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1289   for (unsigned i = 0; i != NElts; ++i)
1290     ID.AddInteger(MaskVec[i]);
1291 
1292   void* IP = 0;
1293   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1294     return SDValue(E, 0);
1295 
1296   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1297   // SDNode doesn't have access to it.  This memory will be "leaked" when
1298   // the node is deallocated, but recovered when the NodeAllocator is released.
1299   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1300   memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1301 
1302   ShuffleVectorSDNode *N =
1303     new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1304   CSEMap.InsertNode(N, IP);
1305   AllNodes.push_back(N);
1306   return SDValue(N, 0);
1307 }
1308 
getConvertRndSat(EVT VT,DebugLoc dl,SDValue Val,SDValue DTy,SDValue STy,SDValue Rnd,SDValue Sat,ISD::CvtCode Code)1309 SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1310                                        SDValue Val, SDValue DTy,
1311                                        SDValue STy, SDValue Rnd, SDValue Sat,
1312                                        ISD::CvtCode Code) {
1313   // If the src and dest types are the same and the conversion is between
1314   // integer types of the same sign or two floats, no conversion is necessary.
1315   if (DTy == STy &&
1316       (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1317     return Val;
1318 
1319   FoldingSetNodeID ID;
1320   SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1321   AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1322   void* IP = 0;
1323   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1324     return SDValue(E, 0);
1325 
1326   CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1327                                                            Code);
1328   CSEMap.InsertNode(N, IP);
1329   AllNodes.push_back(N);
1330   return SDValue(N, 0);
1331 }
1332 
getRegister(unsigned RegNo,EVT VT)1333 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1334   FoldingSetNodeID ID;
1335   AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1336   ID.AddInteger(RegNo);
1337   void *IP = 0;
1338   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1339     return SDValue(E, 0);
1340 
1341   SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1342   CSEMap.InsertNode(N, IP);
1343   AllNodes.push_back(N);
1344   return SDValue(N, 0);
1345 }
1346 
getEHLabel(DebugLoc dl,SDValue Root,MCSymbol * Label)1347 SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1348   FoldingSetNodeID ID;
1349   SDValue Ops[] = { Root };
1350   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1351   ID.AddPointer(Label);
1352   void *IP = 0;
1353   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1354     return SDValue(E, 0);
1355 
1356   SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1357   CSEMap.InsertNode(N, IP);
1358   AllNodes.push_back(N);
1359   return SDValue(N, 0);
1360 }
1361 
1362 
getBlockAddress(const BlockAddress * BA,EVT VT,bool isTarget,unsigned char TargetFlags)1363 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1364                                       bool isTarget,
1365                                       unsigned char TargetFlags) {
1366   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1367 
1368   FoldingSetNodeID ID;
1369   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1370   ID.AddPointer(BA);
1371   ID.AddInteger(TargetFlags);
1372   void *IP = 0;
1373   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1374     return SDValue(E, 0);
1375 
1376   SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1377   CSEMap.InsertNode(N, IP);
1378   AllNodes.push_back(N);
1379   return SDValue(N, 0);
1380 }
1381 
getSrcValue(const Value * V)1382 SDValue SelectionDAG::getSrcValue(const Value *V) {
1383   assert((!V || V->getType()->isPointerTy()) &&
1384          "SrcValue is not a pointer?");
1385 
1386   FoldingSetNodeID ID;
1387   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1388   ID.AddPointer(V);
1389 
1390   void *IP = 0;
1391   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1392     return SDValue(E, 0);
1393 
1394   SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1395   CSEMap.InsertNode(N, IP);
1396   AllNodes.push_back(N);
1397   return SDValue(N, 0);
1398 }
1399 
1400 /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
getMDNode(const MDNode * MD)1401 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1402   FoldingSetNodeID ID;
1403   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1404   ID.AddPointer(MD);
1405 
1406   void *IP = 0;
1407   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1408     return SDValue(E, 0);
1409 
1410   SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1411   CSEMap.InsertNode(N, IP);
1412   AllNodes.push_back(N);
1413   return SDValue(N, 0);
1414 }
1415 
1416 
1417 /// getShiftAmountOperand - Return the specified value casted to
1418 /// the target's desired shift amount type.
getShiftAmountOperand(SDValue Op)1419 SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1420   EVT OpTy = Op.getValueType();
1421   MVT ShTy = TLI.getShiftAmountTy();
1422   if (OpTy == ShTy || OpTy.isVector()) return Op;
1423 
1424   ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1425   return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1426 }
1427 
1428 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1429 /// specified value type.
CreateStackTemporary(EVT VT,unsigned minAlign)1430 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1431   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1432   unsigned ByteSize = VT.getStoreSize();
1433   const Type *Ty = VT.getTypeForEVT(*getContext());
1434   unsigned StackAlign =
1435   std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1436 
1437   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1438   return getFrameIndex(FrameIdx, TLI.getPointerTy());
1439 }
1440 
1441 /// CreateStackTemporary - Create a stack temporary suitable for holding
1442 /// either of the specified value types.
CreateStackTemporary(EVT VT1,EVT VT2)1443 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1444   unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1445                             VT2.getStoreSizeInBits())/8;
1446   const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1447   const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1448   const TargetData *TD = TLI.getTargetData();
1449   unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1450                             TD->getPrefTypeAlignment(Ty2));
1451 
1452   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1453   int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1454   return getFrameIndex(FrameIdx, TLI.getPointerTy());
1455 }
1456 
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,DebugLoc dl)1457 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1458                                 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1459   // These setcc operations always fold.
1460   switch (Cond) {
1461   default: break;
1462   case ISD::SETFALSE:
1463   case ISD::SETFALSE2: return getConstant(0, VT);
1464   case ISD::SETTRUE:
1465   case ISD::SETTRUE2:  return getConstant(1, VT);
1466 
1467   case ISD::SETOEQ:
1468   case ISD::SETOGT:
1469   case ISD::SETOGE:
1470   case ISD::SETOLT:
1471   case ISD::SETOLE:
1472   case ISD::SETONE:
1473   case ISD::SETO:
1474   case ISD::SETUO:
1475   case ISD::SETUEQ:
1476   case ISD::SETUNE:
1477     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1478     break;
1479   }
1480 
1481   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1482     const APInt &C2 = N2C->getAPIntValue();
1483     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1484       const APInt &C1 = N1C->getAPIntValue();
1485 
1486       switch (Cond) {
1487       default: llvm_unreachable("Unknown integer setcc!");
1488       case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1489       case ISD::SETNE:  return getConstant(C1 != C2, VT);
1490       case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1491       case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1492       case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1493       case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1494       case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1495       case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1496       case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1497       case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1498       }
1499     }
1500   }
1501   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1502     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1503       // No compile time operations on this type yet.
1504       if (N1C->getValueType(0) == MVT::ppcf128)
1505         return SDValue();
1506 
1507       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1508       switch (Cond) {
1509       default: break;
1510       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1511                           return getUNDEF(VT);
1512                         // fall through
1513       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1514       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1515                           return getUNDEF(VT);
1516                         // fall through
1517       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1518                                            R==APFloat::cmpLessThan, VT);
1519       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1520                           return getUNDEF(VT);
1521                         // fall through
1522       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1523       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1524                           return getUNDEF(VT);
1525                         // fall through
1526       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1527       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1528                           return getUNDEF(VT);
1529                         // fall through
1530       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1531                                            R==APFloat::cmpEqual, VT);
1532       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1533                           return getUNDEF(VT);
1534                         // fall through
1535       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1536                                            R==APFloat::cmpEqual, VT);
1537       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1538       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1539       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1540                                            R==APFloat::cmpEqual, VT);
1541       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1542       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1543                                            R==APFloat::cmpLessThan, VT);
1544       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1545                                            R==APFloat::cmpUnordered, VT);
1546       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1547       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1548       }
1549     } else {
1550       // Ensure that the constant occurs on the RHS.
1551       return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1552     }
1553   }
1554 
1555   // Could not fold it.
1556   return SDValue();
1557 }
1558 
1559 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1560 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const1561 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1562   // This predicate is not safe for vector operations.
1563   if (Op.getValueType().isVector())
1564     return false;
1565 
1566   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1567   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1568 }
1569 
1570 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1571 /// this predicate to simplify operations downstream.  Mask is known to be zero
1572 /// for bits that V cannot have.
MaskedValueIsZero(SDValue Op,const APInt & Mask,unsigned Depth) const1573 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1574                                      unsigned Depth) const {
1575   APInt KnownZero, KnownOne;
1576   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1577   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578   return (KnownZero & Mask) == Mask;
1579 }
1580 
1581 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1582 /// known to be either zero or one and return them in the KnownZero/KnownOne
1583 /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1584 /// processing.
ComputeMaskedBits(SDValue Op,const APInt & Mask,APInt & KnownZero,APInt & KnownOne,unsigned Depth) const1585 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1586                                      APInt &KnownZero, APInt &KnownOne,
1587                                      unsigned Depth) const {
1588   unsigned BitWidth = Mask.getBitWidth();
1589   assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1590          "Mask size mismatches value type size!");
1591 
1592   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1593   if (Depth == 6 || Mask == 0)
1594     return;  // Limit search depth.
1595 
1596   APInt KnownZero2, KnownOne2;
1597 
1598   switch (Op.getOpcode()) {
1599   case ISD::Constant:
1600     // We know all of the bits for a constant!
1601     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1602     KnownZero = ~KnownOne & Mask;
1603     return;
1604   case ISD::AND:
1605     // If either the LHS or the RHS are Zero, the result is zero.
1606     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1607     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1608                       KnownZero2, KnownOne2, Depth+1);
1609     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1610     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1611 
1612     // Output known-1 bits are only known if set in both the LHS & RHS.
1613     KnownOne &= KnownOne2;
1614     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1615     KnownZero |= KnownZero2;
1616     return;
1617   case ISD::OR:
1618     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1619     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1620                       KnownZero2, KnownOne2, Depth+1);
1621     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1622     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1623 
1624     // Output known-0 bits are only known if clear in both the LHS & RHS.
1625     KnownZero &= KnownZero2;
1626     // Output known-1 are known to be set if set in either the LHS | RHS.
1627     KnownOne |= KnownOne2;
1628     return;
1629   case ISD::XOR: {
1630     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1631     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1632     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1633     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1634 
1635     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1636     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1637     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1638     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1639     KnownZero = KnownZeroOut;
1640     return;
1641   }
1642   case ISD::MUL: {
1643     APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1644     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1645     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1646     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1647     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1648 
1649     // If low bits are zero in either operand, output low known-0 bits.
1650     // Also compute a conserative estimate for high known-0 bits.
1651     // More trickiness is possible, but this is sufficient for the
1652     // interesting case of alignment computation.
1653     KnownOne.clear();
1654     unsigned TrailZ = KnownZero.countTrailingOnes() +
1655                       KnownZero2.countTrailingOnes();
1656     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1657                                KnownZero2.countLeadingOnes(),
1658                                BitWidth) - BitWidth;
1659 
1660     TrailZ = std::min(TrailZ, BitWidth);
1661     LeadZ = std::min(LeadZ, BitWidth);
1662     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1663                 APInt::getHighBitsSet(BitWidth, LeadZ);
1664     KnownZero &= Mask;
1665     return;
1666   }
1667   case ISD::UDIV: {
1668     // For the purposes of computing leading zeros we can conservatively
1669     // treat a udiv as a logical right shift by the power of 2 known to
1670     // be less than the denominator.
1671     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1672     ComputeMaskedBits(Op.getOperand(0),
1673                       AllOnes, KnownZero2, KnownOne2, Depth+1);
1674     unsigned LeadZ = KnownZero2.countLeadingOnes();
1675 
1676     KnownOne2.clear();
1677     KnownZero2.clear();
1678     ComputeMaskedBits(Op.getOperand(1),
1679                       AllOnes, KnownZero2, KnownOne2, Depth+1);
1680     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1681     if (RHSUnknownLeadingOnes != BitWidth)
1682       LeadZ = std::min(BitWidth,
1683                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1684 
1685     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1686     return;
1687   }
1688   case ISD::SELECT:
1689     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1690     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1691     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1692     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1693 
1694     // Only known if known in both the LHS and RHS.
1695     KnownOne &= KnownOne2;
1696     KnownZero &= KnownZero2;
1697     return;
1698   case ISD::SELECT_CC:
1699     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1700     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1701     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1703 
1704     // Only known if known in both the LHS and RHS.
1705     KnownOne &= KnownOne2;
1706     KnownZero &= KnownZero2;
1707     return;
1708   case ISD::SADDO:
1709   case ISD::UADDO:
1710   case ISD::SSUBO:
1711   case ISD::USUBO:
1712   case ISD::SMULO:
1713   case ISD::UMULO:
1714     if (Op.getResNo() != 1)
1715       return;
1716     // The boolean result conforms to getBooleanContents.  Fall through.
1717   case ISD::SETCC:
1718     // If we know the result of a setcc has the top bits zero, use this info.
1719     if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1720         BitWidth > 1)
1721       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1722     return;
1723   case ISD::SHL:
1724     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1725     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1726       unsigned ShAmt = SA->getZExtValue();
1727 
1728       // If the shift count is an invalid immediate, don't do anything.
1729       if (ShAmt >= BitWidth)
1730         return;
1731 
1732       ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1733                         KnownZero, KnownOne, Depth+1);
1734       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1735       KnownZero <<= ShAmt;
1736       KnownOne  <<= ShAmt;
1737       // low bits known zero.
1738       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1739     }
1740     return;
1741   case ISD::SRL:
1742     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1743     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1744       unsigned ShAmt = SA->getZExtValue();
1745 
1746       // If the shift count is an invalid immediate, don't do anything.
1747       if (ShAmt >= BitWidth)
1748         return;
1749 
1750       ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1751                         KnownZero, KnownOne, Depth+1);
1752       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1753       KnownZero = KnownZero.lshr(ShAmt);
1754       KnownOne  = KnownOne.lshr(ShAmt);
1755 
1756       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1757       KnownZero |= HighBits;  // High bits known zero.
1758     }
1759     return;
1760   case ISD::SRA:
1761     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1762       unsigned ShAmt = SA->getZExtValue();
1763 
1764       // If the shift count is an invalid immediate, don't do anything.
1765       if (ShAmt >= BitWidth)
1766         return;
1767 
1768       APInt InDemandedMask = (Mask << ShAmt);
1769       // If any of the demanded bits are produced by the sign extension, we also
1770       // demand the input sign bit.
1771       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1772       if (HighBits.getBoolValue())
1773         InDemandedMask |= APInt::getSignBit(BitWidth);
1774 
1775       ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1776                         Depth+1);
1777       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1778       KnownZero = KnownZero.lshr(ShAmt);
1779       KnownOne  = KnownOne.lshr(ShAmt);
1780 
1781       // Handle the sign bits.
1782       APInt SignBit = APInt::getSignBit(BitWidth);
1783       SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1784 
1785       if (KnownZero.intersects(SignBit)) {
1786         KnownZero |= HighBits;  // New bits are known zero.
1787       } else if (KnownOne.intersects(SignBit)) {
1788         KnownOne  |= HighBits;  // New bits are known one.
1789       }
1790     }
1791     return;
1792   case ISD::SIGN_EXTEND_INREG: {
1793     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1794     unsigned EBits = EVT.getScalarType().getSizeInBits();
1795 
1796     // Sign extension.  Compute the demanded bits in the result that are not
1797     // present in the input.
1798     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1799 
1800     APInt InSignBit = APInt::getSignBit(EBits);
1801     APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1802 
1803     // If the sign extended bits are demanded, we know that the sign
1804     // bit is demanded.
1805     InSignBit.zext(BitWidth);
1806     if (NewBits.getBoolValue())
1807       InputDemandedBits |= InSignBit;
1808 
1809     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1810                       KnownZero, KnownOne, Depth+1);
1811     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1812 
1813     // If the sign bit of the input is known set or clear, then we know the
1814     // top bits of the result.
1815     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1816       KnownZero |= NewBits;
1817       KnownOne  &= ~NewBits;
1818     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1819       KnownOne  |= NewBits;
1820       KnownZero &= ~NewBits;
1821     } else {                              // Input sign bit unknown
1822       KnownZero &= ~NewBits;
1823       KnownOne  &= ~NewBits;
1824     }
1825     return;
1826   }
1827   case ISD::CTTZ:
1828   case ISD::CTLZ:
1829   case ISD::CTPOP: {
1830     unsigned LowBits = Log2_32(BitWidth)+1;
1831     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1832     KnownOne.clear();
1833     return;
1834   }
1835   case ISD::LOAD: {
1836     if (ISD::isZEXTLoad(Op.getNode())) {
1837       LoadSDNode *LD = cast<LoadSDNode>(Op);
1838       EVT VT = LD->getMemoryVT();
1839       unsigned MemBits = VT.getScalarType().getSizeInBits();
1840       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1841     }
1842     return;
1843   }
1844   case ISD::ZERO_EXTEND: {
1845     EVT InVT = Op.getOperand(0).getValueType();
1846     unsigned InBits = InVT.getScalarType().getSizeInBits();
1847     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1848     APInt InMask    = Mask;
1849     InMask.trunc(InBits);
1850     KnownZero.trunc(InBits);
1851     KnownOne.trunc(InBits);
1852     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1853     KnownZero.zext(BitWidth);
1854     KnownOne.zext(BitWidth);
1855     KnownZero |= NewBits;
1856     return;
1857   }
1858   case ISD::SIGN_EXTEND: {
1859     EVT InVT = Op.getOperand(0).getValueType();
1860     unsigned InBits = InVT.getScalarType().getSizeInBits();
1861     APInt InSignBit = APInt::getSignBit(InBits);
1862     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1863     APInt InMask = Mask;
1864     InMask.trunc(InBits);
1865 
1866     // If any of the sign extended bits are demanded, we know that the sign
1867     // bit is demanded. Temporarily set this bit in the mask for our callee.
1868     if (NewBits.getBoolValue())
1869       InMask |= InSignBit;
1870 
1871     KnownZero.trunc(InBits);
1872     KnownOne.trunc(InBits);
1873     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1874 
1875     // Note if the sign bit is known to be zero or one.
1876     bool SignBitKnownZero = KnownZero.isNegative();
1877     bool SignBitKnownOne  = KnownOne.isNegative();
1878     assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879            "Sign bit can't be known to be both zero and one!");
1880 
1881     // If the sign bit wasn't actually demanded by our caller, we don't
1882     // want it set in the KnownZero and KnownOne result values. Reset the
1883     // mask and reapply it to the result values.
1884     InMask = Mask;
1885     InMask.trunc(InBits);
1886     KnownZero &= InMask;
1887     KnownOne  &= InMask;
1888 
1889     KnownZero.zext(BitWidth);
1890     KnownOne.zext(BitWidth);
1891 
1892     // If the sign bit is known zero or one, the top bits match.
1893     if (SignBitKnownZero)
1894       KnownZero |= NewBits;
1895     else if (SignBitKnownOne)
1896       KnownOne  |= NewBits;
1897     return;
1898   }
1899   case ISD::ANY_EXTEND: {
1900     EVT InVT = Op.getOperand(0).getValueType();
1901     unsigned InBits = InVT.getScalarType().getSizeInBits();
1902     APInt InMask = Mask;
1903     InMask.trunc(InBits);
1904     KnownZero.trunc(InBits);
1905     KnownOne.trunc(InBits);
1906     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1907     KnownZero.zext(BitWidth);
1908     KnownOne.zext(BitWidth);
1909     return;
1910   }
1911   case ISD::TRUNCATE: {
1912     EVT InVT = Op.getOperand(0).getValueType();
1913     unsigned InBits = InVT.getScalarType().getSizeInBits();
1914     APInt InMask = Mask;
1915     InMask.zext(InBits);
1916     KnownZero.zext(InBits);
1917     KnownOne.zext(InBits);
1918     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1919     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1920     KnownZero.trunc(BitWidth);
1921     KnownOne.trunc(BitWidth);
1922     break;
1923   }
1924   case ISD::AssertZext: {
1925     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1926     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1927     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1928                       KnownOne, Depth+1);
1929     KnownZero |= (~InMask) & Mask;
1930     return;
1931   }
1932   case ISD::FGETSIGN:
1933     // All bits are zero except the low bit.
1934     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1935     return;
1936 
1937   case ISD::SUB: {
1938     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1939       // We know that the top bits of C-X are clear if X contains less bits
1940       // than C (i.e. no wrap-around can happen).  For example, 20-X is
1941       // positive if we can prove that X is >= 0 and < 16.
1942       if (CLHS->getAPIntValue().isNonNegative()) {
1943         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1944         // NLZ can't be BitWidth with no sign bit
1945         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1946         ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1947                           Depth+1);
1948 
1949         // If all of the MaskV bits are known to be zero, then we know the
1950         // output top bits are zero, because we now know that the output is
1951         // from [0-C].
1952         if ((KnownZero2 & MaskV) == MaskV) {
1953           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1954           // Top bits known zero.
1955           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1956         }
1957       }
1958     }
1959   }
1960   // fall through
1961   case ISD::ADD: {
1962     // Output known-0 bits are known if clear or set in both the low clear bits
1963     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1964     // low 3 bits clear.
1965     APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1966                                        BitWidth - Mask.countLeadingZeros());
1967     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1968     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1969     unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1970 
1971     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1972     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1973     KnownZeroOut = std::min(KnownZeroOut,
1974                             KnownZero2.countTrailingOnes());
1975 
1976     KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1977     return;
1978   }
1979   case ISD::SREM:
1980     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1981       const APInt &RA = Rem->getAPIntValue().abs();
1982       if (RA.isPowerOf2()) {
1983         APInt LowBits = RA - 1;
1984         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1985         ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1986 
1987         // The low bits of the first operand are unchanged by the srem.
1988         KnownZero = KnownZero2 & LowBits;
1989         KnownOne = KnownOne2 & LowBits;
1990 
1991         // If the first operand is non-negative or has all low bits zero, then
1992         // the upper bits are all zero.
1993         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1994           KnownZero |= ~LowBits;
1995 
1996         // If the first operand is negative and not all low bits are zero, then
1997         // the upper bits are all one.
1998         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1999           KnownOne |= ~LowBits;
2000 
2001         KnownZero &= Mask;
2002         KnownOne &= Mask;
2003 
2004         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2005       }
2006     }
2007     return;
2008   case ISD::UREM: {
2009     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2010       const APInt &RA = Rem->getAPIntValue();
2011       if (RA.isPowerOf2()) {
2012         APInt LowBits = (RA - 1);
2013         APInt Mask2 = LowBits & Mask;
2014         KnownZero |= ~LowBits & Mask;
2015         ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2016         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2017         break;
2018       }
2019     }
2020 
2021     // Since the result is less than or equal to either operand, any leading
2022     // zero bits in either operand must also exist in the result.
2023     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2024     ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2025                       Depth+1);
2026     ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2027                       Depth+1);
2028 
2029     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2030                                 KnownZero2.countLeadingOnes());
2031     KnownOne.clear();
2032     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2033     return;
2034   }
2035   default:
2036     // Allow the target to implement this method for its nodes.
2037     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2038   case ISD::INTRINSIC_WO_CHAIN:
2039   case ISD::INTRINSIC_W_CHAIN:
2040   case ISD::INTRINSIC_VOID:
2041       TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2042                                          Depth);
2043     }
2044     return;
2045   }
2046 }
2047 
2048 /// ComputeNumSignBits - Return the number of times the sign bit of the
2049 /// register is replicated into the other bits.  We know that at least 1 bit
2050 /// is always equal to the sign bit (itself), but other cases can give us
2051 /// information.  For example, immediately after an "SRA X, 2", we know that
2052 /// the top 3 bits are all equal to each other, so we return 3.
ComputeNumSignBits(SDValue Op,unsigned Depth) const2053 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2054   EVT VT = Op.getValueType();
2055   assert(VT.isInteger() && "Invalid VT!");
2056   unsigned VTBits = VT.getScalarType().getSizeInBits();
2057   unsigned Tmp, Tmp2;
2058   unsigned FirstAnswer = 1;
2059 
2060   if (Depth == 6)
2061     return 1;  // Limit search depth.
2062 
2063   switch (Op.getOpcode()) {
2064   default: break;
2065   case ISD::AssertSext:
2066     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2067     return VTBits-Tmp+1;
2068   case ISD::AssertZext:
2069     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2070     return VTBits-Tmp;
2071 
2072   case ISD::Constant: {
2073     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2074     // If negative, return # leading ones.
2075     if (Val.isNegative())
2076       return Val.countLeadingOnes();
2077 
2078     // Return # leading zeros.
2079     return Val.countLeadingZeros();
2080   }
2081 
2082   case ISD::SIGN_EXTEND:
2083     Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2084     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2085 
2086   case ISD::SIGN_EXTEND_INREG:
2087     // Max of the input and what this extends.
2088     Tmp =
2089       cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2090     Tmp = VTBits-Tmp+1;
2091 
2092     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2093     return std::max(Tmp, Tmp2);
2094 
2095   case ISD::SRA:
2096     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2097     // SRA X, C   -> adds C sign bits.
2098     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2099       Tmp += C->getZExtValue();
2100       if (Tmp > VTBits) Tmp = VTBits;
2101     }
2102     return Tmp;
2103   case ISD::SHL:
2104     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2105       // shl destroys sign bits.
2106       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107       if (C->getZExtValue() >= VTBits ||      // Bad shift.
2108           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2109       return Tmp - C->getZExtValue();
2110     }
2111     break;
2112   case ISD::AND:
2113   case ISD::OR:
2114   case ISD::XOR:    // NOT is handled here.
2115     // Logical binary ops preserve the number of sign bits at the worst.
2116     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2117     if (Tmp != 1) {
2118       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2119       FirstAnswer = std::min(Tmp, Tmp2);
2120       // We computed what we know about the sign bits as our first
2121       // answer. Now proceed to the generic code that uses
2122       // ComputeMaskedBits, and pick whichever answer is better.
2123     }
2124     break;
2125 
2126   case ISD::SELECT:
2127     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2128     if (Tmp == 1) return 1;  // Early out.
2129     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2130     return std::min(Tmp, Tmp2);
2131 
2132   case ISD::SADDO:
2133   case ISD::UADDO:
2134   case ISD::SSUBO:
2135   case ISD::USUBO:
2136   case ISD::SMULO:
2137   case ISD::UMULO:
2138     if (Op.getResNo() != 1)
2139       break;
2140     // The boolean result conforms to getBooleanContents.  Fall through.
2141   case ISD::SETCC:
2142     // If setcc returns 0/-1, all bits are sign bits.
2143     if (TLI.getBooleanContents() ==
2144         TargetLowering::ZeroOrNegativeOneBooleanContent)
2145       return VTBits;
2146     break;
2147   case ISD::ROTL:
2148   case ISD::ROTR:
2149     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2150       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2151 
2152       // Handle rotate right by N like a rotate left by 32-N.
2153       if (Op.getOpcode() == ISD::ROTR)
2154         RotAmt = (VTBits-RotAmt) & (VTBits-1);
2155 
2156       // If we aren't rotating out all of the known-in sign bits, return the
2157       // number that are left.  This handles rotl(sext(x), 1) for example.
2158       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2159       if (Tmp > RotAmt+1) return Tmp-RotAmt;
2160     }
2161     break;
2162   case ISD::ADD:
2163     // Add can have at most one carry bit.  Thus we know that the output
2164     // is, at worst, one more bit than the inputs.
2165     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2166     if (Tmp == 1) return 1;  // Early out.
2167 
2168     // Special case decrementing a value (ADD X, -1):
2169     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2170       if (CRHS->isAllOnesValue()) {
2171         APInt KnownZero, KnownOne;
2172         APInt Mask = APInt::getAllOnesValue(VTBits);
2173         ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2174 
2175         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2176         // sign bits set.
2177         if ((KnownZero | APInt(VTBits, 1)) == Mask)
2178           return VTBits;
2179 
2180         // If we are subtracting one from a positive number, there is no carry
2181         // out of the result.
2182         if (KnownZero.isNegative())
2183           return Tmp;
2184       }
2185 
2186     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2187     if (Tmp2 == 1) return 1;
2188       return std::min(Tmp, Tmp2)-1;
2189     break;
2190 
2191   case ISD::SUB:
2192     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2193     if (Tmp2 == 1) return 1;
2194 
2195     // Handle NEG.
2196     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2197       if (CLHS->isNullValue()) {
2198         APInt KnownZero, KnownOne;
2199         APInt Mask = APInt::getAllOnesValue(VTBits);
2200         ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2201         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2202         // sign bits set.
2203         if ((KnownZero | APInt(VTBits, 1)) == Mask)
2204           return VTBits;
2205 
2206         // If the input is known to be positive (the sign bit is known clear),
2207         // the output of the NEG has the same number of sign bits as the input.
2208         if (KnownZero.isNegative())
2209           return Tmp2;
2210 
2211         // Otherwise, we treat this like a SUB.
2212       }
2213 
2214     // Sub can have at most one carry bit.  Thus we know that the output
2215     // is, at worst, one more bit than the inputs.
2216     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2217     if (Tmp == 1) return 1;  // Early out.
2218       return std::min(Tmp, Tmp2)-1;
2219     break;
2220   case ISD::TRUNCATE:
2221     // FIXME: it's tricky to do anything useful for this, but it is an important
2222     // case for targets like X86.
2223     break;
2224   }
2225 
2226   // Handle LOADX separately here. EXTLOAD case will fallthrough.
2227   if (Op.getOpcode() == ISD::LOAD) {
2228     LoadSDNode *LD = cast<LoadSDNode>(Op);
2229     unsigned ExtType = LD->getExtensionType();
2230     switch (ExtType) {
2231     default: break;
2232     case ISD::SEXTLOAD:    // '17' bits known
2233       Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2234       return VTBits-Tmp+1;
2235     case ISD::ZEXTLOAD:    // '16' bits known
2236       Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2237       return VTBits-Tmp;
2238     }
2239   }
2240 
2241   // Allow the target to implement this method for its nodes.
2242   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2243       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2244       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2245       Op.getOpcode() == ISD::INTRINSIC_VOID) {
2246     unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2247     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2248   }
2249 
2250   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2251   // use this information.
2252   APInt KnownZero, KnownOne;
2253   APInt Mask = APInt::getAllOnesValue(VTBits);
2254   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2255 
2256   if (KnownZero.isNegative()) {        // sign bit is 0
2257     Mask = KnownZero;
2258   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2259     Mask = KnownOne;
2260   } else {
2261     // Nothing known.
2262     return FirstAnswer;
2263   }
2264 
2265   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2266   // the number of identical bits in the top of the input value.
2267   Mask = ~Mask;
2268   Mask <<= Mask.getBitWidth()-VTBits;
2269   // Return # leading zeros.  We use 'min' here in case Val was zero before
2270   // shifting.  We don't want to return '64' as for an i32 "0".
2271   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2272 }
2273 
isKnownNeverNaN(SDValue Op) const2274 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2275   // If we're told that NaNs won't happen, assume they won't.
2276   if (NoNaNsFPMath)
2277     return true;
2278 
2279   // If the value is a constant, we can obviously see if it is a NaN or not.
2280   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2281     return !C->getValueAPF().isNaN();
2282 
2283   // TODO: Recognize more cases here.
2284 
2285   return false;
2286 }
2287 
isKnownNeverZero(SDValue Op) const2288 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2289   // If the value is a constant, we can obviously see if it is a zero or not.
2290   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2291     return !C->isZero();
2292 
2293   // TODO: Recognize more cases here.
2294 
2295   return false;
2296 }
2297 
isEqualTo(SDValue A,SDValue B) const2298 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2299   // Check the obvious case.
2300   if (A == B) return true;
2301 
2302   // For for negative and positive zero.
2303   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2304     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2305       if (CA->isZero() && CB->isZero()) return true;
2306 
2307   // Otherwise they may not be equal.
2308   return false;
2309 }
2310 
isVerifiedDebugInfoDesc(SDValue Op) const2311 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2312   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2313   if (!GA) return false;
2314   if (GA->getOffset() != 0) return false;
2315   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2316   if (!GV) return false;
2317   return MF->getMMI().hasDebugInfo();
2318 }
2319 
2320 
2321 /// getNode - Gets or creates the specified node.
2322 ///
getNode(unsigned Opcode,DebugLoc DL,EVT VT)2323 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2324   FoldingSetNodeID ID;
2325   AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2326   void *IP = 0;
2327   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2328     return SDValue(E, 0);
2329 
2330   SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2331   CSEMap.InsertNode(N, IP);
2332 
2333   AllNodes.push_back(N);
2334 #ifndef NDEBUG
2335   VerifySDNode(N);
2336 #endif
2337   return SDValue(N, 0);
2338 }
2339 
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue Operand)2340 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2341                               EVT VT, SDValue Operand) {
2342   // Constant fold unary operations with an integer constant operand.
2343   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2344     const APInt &Val = C->getAPIntValue();
2345     switch (Opcode) {
2346     default: break;
2347     case ISD::SIGN_EXTEND:
2348       return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2349     case ISD::ANY_EXTEND:
2350     case ISD::ZERO_EXTEND:
2351     case ISD::TRUNCATE:
2352       return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2353     case ISD::UINT_TO_FP:
2354     case ISD::SINT_TO_FP: {
2355       const uint64_t zero[] = {0, 0};
2356       // No compile time operations on ppcf128.
2357       if (VT == MVT::ppcf128) break;
2358       APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2359       (void)apf.convertFromAPInt(Val,
2360                                  Opcode==ISD::SINT_TO_FP,
2361                                  APFloat::rmNearestTiesToEven);
2362       return getConstantFP(apf, VT);
2363     }
2364     case ISD::BIT_CONVERT:
2365       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2366         return getConstantFP(Val.bitsToFloat(), VT);
2367       else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2368         return getConstantFP(Val.bitsToDouble(), VT);
2369       break;
2370     case ISD::BSWAP:
2371       return getConstant(Val.byteSwap(), VT);
2372     case ISD::CTPOP:
2373       return getConstant(Val.countPopulation(), VT);
2374     case ISD::CTLZ:
2375       return getConstant(Val.countLeadingZeros(), VT);
2376     case ISD::CTTZ:
2377       return getConstant(Val.countTrailingZeros(), VT);
2378     }
2379   }
2380 
2381   // Constant fold unary operations with a floating point constant operand.
2382   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2383     APFloat V = C->getValueAPF();    // make copy
2384     if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2385       switch (Opcode) {
2386       case ISD::FNEG:
2387         V.changeSign();
2388         return getConstantFP(V, VT);
2389       case ISD::FABS:
2390         V.clearSign();
2391         return getConstantFP(V, VT);
2392       case ISD::FP_ROUND:
2393       case ISD::FP_EXTEND: {
2394         bool ignored;
2395         // This can return overflow, underflow, or inexact; we don't care.
2396         // FIXME need to be more flexible about rounding mode.
2397         (void)V.convert(*EVTToAPFloatSemantics(VT),
2398                         APFloat::rmNearestTiesToEven, &ignored);
2399         return getConstantFP(V, VT);
2400       }
2401       case ISD::FP_TO_SINT:
2402       case ISD::FP_TO_UINT: {
2403         integerPart x[2];
2404         bool ignored;
2405         assert(integerPartWidth >= 64);
2406         // FIXME need to be more flexible about rounding mode.
2407         APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2408                               Opcode==ISD::FP_TO_SINT,
2409                               APFloat::rmTowardZero, &ignored);
2410         if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2411           break;
2412         APInt api(VT.getSizeInBits(), 2, x);
2413         return getConstant(api, VT);
2414       }
2415       case ISD::BIT_CONVERT:
2416         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2417           return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2418         else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2419           return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2420         break;
2421       }
2422     }
2423   }
2424 
2425   unsigned OpOpcode = Operand.getNode()->getOpcode();
2426   switch (Opcode) {
2427   case ISD::TokenFactor:
2428   case ISD::MERGE_VALUES:
2429   case ISD::CONCAT_VECTORS:
2430     return Operand;         // Factor, merge or concat of one node?  No need.
2431   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2432   case ISD::FP_EXTEND:
2433     assert(VT.isFloatingPoint() &&
2434            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2435     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2436     assert((!VT.isVector() ||
2437             VT.getVectorNumElements() ==
2438             Operand.getValueType().getVectorNumElements()) &&
2439            "Vector element count mismatch!");
2440     if (Operand.getOpcode() == ISD::UNDEF)
2441       return getUNDEF(VT);
2442     break;
2443   case ISD::SIGN_EXTEND:
2444     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2445            "Invalid SIGN_EXTEND!");
2446     if (Operand.getValueType() == VT) return Operand;   // noop extension
2447     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2448            "Invalid sext node, dst < src!");
2449     assert((!VT.isVector() ||
2450             VT.getVectorNumElements() ==
2451             Operand.getValueType().getVectorNumElements()) &&
2452            "Vector element count mismatch!");
2453     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2454       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2455     break;
2456   case ISD::ZERO_EXTEND:
2457     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2458            "Invalid ZERO_EXTEND!");
2459     if (Operand.getValueType() == VT) return Operand;   // noop extension
2460     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2461            "Invalid zext node, dst < src!");
2462     assert((!VT.isVector() ||
2463             VT.getVectorNumElements() ==
2464             Operand.getValueType().getVectorNumElements()) &&
2465            "Vector element count mismatch!");
2466     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2467       return getNode(ISD::ZERO_EXTEND, DL, VT,
2468                      Operand.getNode()->getOperand(0));
2469     break;
2470   case ISD::ANY_EXTEND:
2471     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2472            "Invalid ANY_EXTEND!");
2473     if (Operand.getValueType() == VT) return Operand;   // noop extension
2474     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2475            "Invalid anyext node, dst < src!");
2476     assert((!VT.isVector() ||
2477             VT.getVectorNumElements() ==
2478             Operand.getValueType().getVectorNumElements()) &&
2479            "Vector element count mismatch!");
2480 
2481     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2482         OpOpcode == ISD::ANY_EXTEND)
2483       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2484       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2485 
2486     // (ext (trunx x)) -> x
2487     if (OpOpcode == ISD::TRUNCATE) {
2488       SDValue OpOp = Operand.getNode()->getOperand(0);
2489       if (OpOp.getValueType() == VT)
2490         return OpOp;
2491     }
2492     break;
2493   case ISD::TRUNCATE:
2494     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2495            "Invalid TRUNCATE!");
2496     if (Operand.getValueType() == VT) return Operand;   // noop truncate
2497     assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2498            "Invalid truncate node, src < dst!");
2499     assert((!VT.isVector() ||
2500             VT.getVectorNumElements() ==
2501             Operand.getValueType().getVectorNumElements()) &&
2502            "Vector element count mismatch!");
2503     if (OpOpcode == ISD::TRUNCATE)
2504       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2505     else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2506              OpOpcode == ISD::ANY_EXTEND) {
2507       // If the source is smaller than the dest, we still need an extend.
2508       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2509             .bitsLT(VT.getScalarType()))
2510         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2511       else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2512         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2513       else
2514         return Operand.getNode()->getOperand(0);
2515     }
2516     break;
2517   case ISD::BIT_CONVERT:
2518     // Basic sanity checking.
2519     assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2520            && "Cannot BIT_CONVERT between types of different sizes!");
2521     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2522     if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2523       return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2524     if (OpOpcode == ISD::UNDEF)
2525       return getUNDEF(VT);
2526     break;
2527   case ISD::SCALAR_TO_VECTOR:
2528     assert(VT.isVector() && !Operand.getValueType().isVector() &&
2529            (VT.getVectorElementType() == Operand.getValueType() ||
2530             (VT.getVectorElementType().isInteger() &&
2531              Operand.getValueType().isInteger() &&
2532              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2533            "Illegal SCALAR_TO_VECTOR node!");
2534     if (OpOpcode == ISD::UNDEF)
2535       return getUNDEF(VT);
2536     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2537     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2538         isa<ConstantSDNode>(Operand.getOperand(1)) &&
2539         Operand.getConstantOperandVal(1) == 0 &&
2540         Operand.getOperand(0).getValueType() == VT)
2541       return Operand.getOperand(0);
2542     break;
2543   case ISD::FNEG:
2544     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2545     if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2546       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2547                      Operand.getNode()->getOperand(0));
2548     if (OpOpcode == ISD::FNEG)  // --X -> X
2549       return Operand.getNode()->getOperand(0);
2550     break;
2551   case ISD::FABS:
2552     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2553       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2554     break;
2555   }
2556 
2557   SDNode *N;
2558   SDVTList VTs = getVTList(VT);
2559   if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2560     FoldingSetNodeID ID;
2561     SDValue Ops[1] = { Operand };
2562     AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2563     void *IP = 0;
2564     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2565       return SDValue(E, 0);
2566 
2567     N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2568     CSEMap.InsertNode(N, IP);
2569   } else {
2570     N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2571   }
2572 
2573   AllNodes.push_back(N);
2574 #ifndef NDEBUG
2575   VerifySDNode(N);
2576 #endif
2577   return SDValue(N, 0);
2578 }
2579 
FoldConstantArithmetic(unsigned Opcode,EVT VT,ConstantSDNode * Cst1,ConstantSDNode * Cst2)2580 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2581                                              EVT VT,
2582                                              ConstantSDNode *Cst1,
2583                                              ConstantSDNode *Cst2) {
2584   const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2585 
2586   switch (Opcode) {
2587   case ISD::ADD:  return getConstant(C1 + C2, VT);
2588   case ISD::SUB:  return getConstant(C1 - C2, VT);
2589   case ISD::MUL:  return getConstant(C1 * C2, VT);
2590   case ISD::UDIV:
2591     if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2592     break;
2593   case ISD::UREM:
2594     if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2595     break;
2596   case ISD::SDIV:
2597     if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2598     break;
2599   case ISD::SREM:
2600     if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2601     break;
2602   case ISD::AND:  return getConstant(C1 & C2, VT);
2603   case ISD::OR:   return getConstant(C1 | C2, VT);
2604   case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2605   case ISD::SHL:  return getConstant(C1 << C2, VT);
2606   case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2607   case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2608   case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2609   case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2610   default: break;
2611   }
2612 
2613   return SDValue();
2614 }
2615 
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2)2616 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2617                               SDValue N1, SDValue N2) {
2618   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2619   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2620   switch (Opcode) {
2621   default: break;
2622   case ISD::TokenFactor:
2623     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2624            N2.getValueType() == MVT::Other && "Invalid token factor!");
2625     // Fold trivial token factors.
2626     if (N1.getOpcode() == ISD::EntryToken) return N2;
2627     if (N2.getOpcode() == ISD::EntryToken) return N1;
2628     if (N1 == N2) return N1;
2629     break;
2630   case ISD::CONCAT_VECTORS:
2631     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2632     // one big BUILD_VECTOR.
2633     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2634         N2.getOpcode() == ISD::BUILD_VECTOR) {
2635       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2636                                     N1.getNode()->op_end());
2637       Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2638       return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2639     }
2640     break;
2641   case ISD::AND:
2642     assert(VT.isInteger() && "This operator does not apply to FP types!");
2643     assert(N1.getValueType() == N2.getValueType() &&
2644            N1.getValueType() == VT && "Binary operator types must match!");
2645     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2646     // worth handling here.
2647     if (N2C && N2C->isNullValue())
2648       return N2;
2649     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2650       return N1;
2651     break;
2652   case ISD::OR:
2653   case ISD::XOR:
2654   case ISD::ADD:
2655   case ISD::SUB:
2656     assert(VT.isInteger() && "This operator does not apply to FP types!");
2657     assert(N1.getValueType() == N2.getValueType() &&
2658            N1.getValueType() == VT && "Binary operator types must match!");
2659     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2660     // it's worth handling here.
2661     if (N2C && N2C->isNullValue())
2662       return N1;
2663     break;
2664   case ISD::UDIV:
2665   case ISD::UREM:
2666   case ISD::MULHU:
2667   case ISD::MULHS:
2668   case ISD::MUL:
2669   case ISD::SDIV:
2670   case ISD::SREM:
2671     assert(VT.isInteger() && "This operator does not apply to FP types!");
2672     assert(N1.getValueType() == N2.getValueType() &&
2673            N1.getValueType() == VT && "Binary operator types must match!");
2674     break;
2675   case ISD::FADD:
2676   case ISD::FSUB:
2677   case ISD::FMUL:
2678   case ISD::FDIV:
2679   case ISD::FREM:
2680     if (UnsafeFPMath) {
2681       if (Opcode == ISD::FADD) {
2682         // 0+x --> x
2683         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2684           if (CFP->getValueAPF().isZero())
2685             return N2;
2686         // x+0 --> x
2687         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2688           if (CFP->getValueAPF().isZero())
2689             return N1;
2690       } else if (Opcode == ISD::FSUB) {
2691         // x-0 --> x
2692         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2693           if (CFP->getValueAPF().isZero())
2694             return N1;
2695       }
2696     }
2697     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2698     assert(N1.getValueType() == N2.getValueType() &&
2699            N1.getValueType() == VT && "Binary operator types must match!");
2700     break;
2701   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2702     assert(N1.getValueType() == VT &&
2703            N1.getValueType().isFloatingPoint() &&
2704            N2.getValueType().isFloatingPoint() &&
2705            "Invalid FCOPYSIGN!");
2706     break;
2707   case ISD::SHL:
2708   case ISD::SRA:
2709   case ISD::SRL:
2710   case ISD::ROTL:
2711   case ISD::ROTR:
2712     assert(VT == N1.getValueType() &&
2713            "Shift operators return type must be the same as their first arg");
2714     assert(VT.isInteger() && N2.getValueType().isInteger() &&
2715            "Shifts only work on integers");
2716 
2717     // Always fold shifts of i1 values so the code generator doesn't need to
2718     // handle them.  Since we know the size of the shift has to be less than the
2719     // size of the value, the shift/rotate count is guaranteed to be zero.
2720     if (VT == MVT::i1)
2721       return N1;
2722     if (N2C && N2C->isNullValue())
2723       return N1;
2724     break;
2725   case ISD::FP_ROUND_INREG: {
2726     EVT EVT = cast<VTSDNode>(N2)->getVT();
2727     assert(VT == N1.getValueType() && "Not an inreg round!");
2728     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2729            "Cannot FP_ROUND_INREG integer types");
2730     assert(EVT.isVector() == VT.isVector() &&
2731            "FP_ROUND_INREG type should be vector iff the operand "
2732            "type is vector!");
2733     assert((!EVT.isVector() ||
2734             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2735            "Vector element counts must match in FP_ROUND_INREG");
2736     assert(EVT.bitsLE(VT) && "Not rounding down!");
2737     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2738     break;
2739   }
2740   case ISD::FP_ROUND:
2741     assert(VT.isFloatingPoint() &&
2742            N1.getValueType().isFloatingPoint() &&
2743            VT.bitsLE(N1.getValueType()) &&
2744            isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2745     if (N1.getValueType() == VT) return N1;  // noop conversion.
2746     break;
2747   case ISD::AssertSext:
2748   case ISD::AssertZext: {
2749     EVT EVT = cast<VTSDNode>(N2)->getVT();
2750     assert(VT == N1.getValueType() && "Not an inreg extend!");
2751     assert(VT.isInteger() && EVT.isInteger() &&
2752            "Cannot *_EXTEND_INREG FP types");
2753     assert(!EVT.isVector() &&
2754            "AssertSExt/AssertZExt type should be the vector element type "
2755            "rather than the vector type!");
2756     assert(EVT.bitsLE(VT) && "Not extending!");
2757     if (VT == EVT) return N1; // noop assertion.
2758     break;
2759   }
2760   case ISD::SIGN_EXTEND_INREG: {
2761     EVT EVT = cast<VTSDNode>(N2)->getVT();
2762     assert(VT == N1.getValueType() && "Not an inreg extend!");
2763     assert(VT.isInteger() && EVT.isInteger() &&
2764            "Cannot *_EXTEND_INREG FP types");
2765     assert(EVT.isVector() == VT.isVector() &&
2766            "SIGN_EXTEND_INREG type should be vector iff the operand "
2767            "type is vector!");
2768     assert((!EVT.isVector() ||
2769             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2770            "Vector element counts must match in SIGN_EXTEND_INREG");
2771     assert(EVT.bitsLE(VT) && "Not extending!");
2772     if (EVT == VT) return N1;  // Not actually extending
2773 
2774     if (N1C) {
2775       APInt Val = N1C->getAPIntValue();
2776       unsigned FromBits = EVT.getScalarType().getSizeInBits();
2777       Val <<= Val.getBitWidth()-FromBits;
2778       Val = Val.ashr(Val.getBitWidth()-FromBits);
2779       return getConstant(Val, VT);
2780     }
2781     break;
2782   }
2783   case ISD::EXTRACT_VECTOR_ELT:
2784     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2785     if (N1.getOpcode() == ISD::UNDEF)
2786       return getUNDEF(VT);
2787 
2788     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2789     // expanding copies of large vectors from registers.
2790     if (N2C &&
2791         N1.getOpcode() == ISD::CONCAT_VECTORS &&
2792         N1.getNumOperands() > 0) {
2793       unsigned Factor =
2794         N1.getOperand(0).getValueType().getVectorNumElements();
2795       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2796                      N1.getOperand(N2C->getZExtValue() / Factor),
2797                      getConstant(N2C->getZExtValue() % Factor,
2798                                  N2.getValueType()));
2799     }
2800 
2801     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2802     // expanding large vector constants.
2803     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2804       SDValue Elt = N1.getOperand(N2C->getZExtValue());
2805       EVT VEltTy = N1.getValueType().getVectorElementType();
2806       if (Elt.getValueType() != VEltTy) {
2807         // If the vector element type is not legal, the BUILD_VECTOR operands
2808         // are promoted and implicitly truncated.  Make that explicit here.
2809         Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2810       }
2811       if (VT != VEltTy) {
2812         // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2813         // result is implicitly extended.
2814         Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2815       }
2816       return Elt;
2817     }
2818 
2819     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2820     // operations are lowered to scalars.
2821     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2822       // If the indices are the same, return the inserted element else
2823       // if the indices are known different, extract the element from
2824       // the original vector.
2825       SDValue N1Op2 = N1.getOperand(2);
2826       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2827 
2828       if (N1Op2C && N2C) {
2829         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2830           if (VT == N1.getOperand(1).getValueType())
2831             return N1.getOperand(1);
2832           else
2833             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2834         }
2835 
2836         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2837       }
2838     }
2839     break;
2840   case ISD::EXTRACT_ELEMENT:
2841     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2842     assert(!N1.getValueType().isVector() && !VT.isVector() &&
2843            (N1.getValueType().isInteger() == VT.isInteger()) &&
2844            "Wrong types for EXTRACT_ELEMENT!");
2845 
2846     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2847     // 64-bit integers into 32-bit parts.  Instead of building the extract of
2848     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2849     if (N1.getOpcode() == ISD::BUILD_PAIR)
2850       return N1.getOperand(N2C->getZExtValue());
2851 
2852     // EXTRACT_ELEMENT of a constant int is also very common.
2853     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2854       unsigned ElementSize = VT.getSizeInBits();
2855       unsigned Shift = ElementSize * N2C->getZExtValue();
2856       APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2857       return getConstant(ShiftedVal.trunc(ElementSize), VT);
2858     }
2859     break;
2860   case ISD::EXTRACT_SUBVECTOR:
2861     if (N1.getValueType() == VT) // Trivial extraction.
2862       return N1;
2863     break;
2864   }
2865 
2866   if (N1C) {
2867     if (N2C) {
2868       SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2869       if (SV.getNode()) return SV;
2870     } else {      // Cannonicalize constant to RHS if commutative
2871       if (isCommutativeBinOp(Opcode)) {
2872         std::swap(N1C, N2C);
2873         std::swap(N1, N2);
2874       }
2875     }
2876   }
2877 
2878   // Constant fold FP operations.
2879   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2880   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2881   if (N1CFP) {
2882     if (!N2CFP && isCommutativeBinOp(Opcode)) {
2883       // Cannonicalize constant to RHS if commutative
2884       std::swap(N1CFP, N2CFP);
2885       std::swap(N1, N2);
2886     } else if (N2CFP && VT != MVT::ppcf128) {
2887       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2888       APFloat::opStatus s;
2889       switch (Opcode) {
2890       case ISD::FADD:
2891         s = V1.add(V2, APFloat::rmNearestTiesToEven);
2892         if (s != APFloat::opInvalidOp)
2893           return getConstantFP(V1, VT);
2894         break;
2895       case ISD::FSUB:
2896         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2897         if (s!=APFloat::opInvalidOp)
2898           return getConstantFP(V1, VT);
2899         break;
2900       case ISD::FMUL:
2901         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2902         if (s!=APFloat::opInvalidOp)
2903           return getConstantFP(V1, VT);
2904         break;
2905       case ISD::FDIV:
2906         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2907         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2908           return getConstantFP(V1, VT);
2909         break;
2910       case ISD::FREM :
2911         s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2912         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2913           return getConstantFP(V1, VT);
2914         break;
2915       case ISD::FCOPYSIGN:
2916         V1.copySign(V2);
2917         return getConstantFP(V1, VT);
2918       default: break;
2919       }
2920     }
2921   }
2922 
2923   // Canonicalize an UNDEF to the RHS, even over a constant.
2924   if (N1.getOpcode() == ISD::UNDEF) {
2925     if (isCommutativeBinOp(Opcode)) {
2926       std::swap(N1, N2);
2927     } else {
2928       switch (Opcode) {
2929       case ISD::FP_ROUND_INREG:
2930       case ISD::SIGN_EXTEND_INREG:
2931       case ISD::SUB:
2932       case ISD::FSUB:
2933       case ISD::FDIV:
2934       case ISD::FREM:
2935       case ISD::SRA:
2936         return N1;     // fold op(undef, arg2) -> undef
2937       case ISD::UDIV:
2938       case ISD::SDIV:
2939       case ISD::UREM:
2940       case ISD::SREM:
2941       case ISD::SRL:
2942       case ISD::SHL:
2943         if (!VT.isVector())
2944           return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2945         // For vectors, we can't easily build an all zero vector, just return
2946         // the LHS.
2947         return N2;
2948       }
2949     }
2950   }
2951 
2952   // Fold a bunch of operators when the RHS is undef.
2953   if (N2.getOpcode() == ISD::UNDEF) {
2954     switch (Opcode) {
2955     case ISD::XOR:
2956       if (N1.getOpcode() == ISD::UNDEF)
2957         // Handle undef ^ undef -> 0 special case. This is a common
2958         // idiom (misuse).
2959         return getConstant(0, VT);
2960       // fallthrough
2961     case ISD::ADD:
2962     case ISD::ADDC:
2963     case ISD::ADDE:
2964     case ISD::SUB:
2965     case ISD::UDIV:
2966     case ISD::SDIV:
2967     case ISD::UREM:
2968     case ISD::SREM:
2969       return N2;       // fold op(arg1, undef) -> undef
2970     case ISD::FADD:
2971     case ISD::FSUB:
2972     case ISD::FMUL:
2973     case ISD::FDIV:
2974     case ISD::FREM:
2975       if (UnsafeFPMath)
2976         return N2;
2977       break;
2978     case ISD::MUL:
2979     case ISD::AND:
2980     case ISD::SRL:
2981     case ISD::SHL:
2982       if (!VT.isVector())
2983         return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2984       // For vectors, we can't easily build an all zero vector, just return
2985       // the LHS.
2986       return N1;
2987     case ISD::OR:
2988       if (!VT.isVector())
2989         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2990       // For vectors, we can't easily build an all one vector, just return
2991       // the LHS.
2992       return N1;
2993     case ISD::SRA:
2994       return N1;
2995     }
2996   }
2997 
2998   // Memoize this node if possible.
2999   SDNode *N;
3000   SDVTList VTs = getVTList(VT);
3001   if (VT != MVT::Flag) {
3002     SDValue Ops[] = { N1, N2 };
3003     FoldingSetNodeID ID;
3004     AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3005     void *IP = 0;
3006     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3007       return SDValue(E, 0);
3008 
3009     N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3010     CSEMap.InsertNode(N, IP);
3011   } else {
3012     N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3013   }
3014 
3015   AllNodes.push_back(N);
3016 #ifndef NDEBUG
3017   VerifySDNode(N);
3018 #endif
3019   return SDValue(N, 0);
3020 }
3021 
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2,SDValue N3)3022 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3023                               SDValue N1, SDValue N2, SDValue N3) {
3024   // Perform various simplifications.
3025   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3026   switch (Opcode) {
3027   case ISD::CONCAT_VECTORS:
3028     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3029     // one big BUILD_VECTOR.
3030     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3031         N2.getOpcode() == ISD::BUILD_VECTOR &&
3032         N3.getOpcode() == ISD::BUILD_VECTOR) {
3033       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3034                                     N1.getNode()->op_end());
3035       Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3036       Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3037       return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3038     }
3039     break;
3040   case ISD::SETCC: {
3041     // Use FoldSetCC to simplify SETCC's.
3042     SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3043     if (Simp.getNode()) return Simp;
3044     break;
3045   }
3046   case ISD::SELECT:
3047     if (N1C) {
3048      if (N1C->getZExtValue())
3049         return N2;             // select true, X, Y -> X
3050       else
3051         return N3;             // select false, X, Y -> Y
3052     }
3053 
3054     if (N2 == N3) return N2;   // select C, X, X -> X
3055     break;
3056   case ISD::VECTOR_SHUFFLE:
3057     llvm_unreachable("should use getVectorShuffle constructor!");
3058     break;
3059   case ISD::BIT_CONVERT:
3060     // Fold bit_convert nodes from a type to themselves.
3061     if (N1.getValueType() == VT)
3062       return N1;
3063     break;
3064   }
3065 
3066   // Memoize node if it doesn't produce a flag.
3067   SDNode *N;
3068   SDVTList VTs = getVTList(VT);
3069   if (VT != MVT::Flag) {
3070     SDValue Ops[] = { N1, N2, N3 };
3071     FoldingSetNodeID ID;
3072     AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3073     void *IP = 0;
3074     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3075       return SDValue(E, 0);
3076 
3077     N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3078     CSEMap.InsertNode(N, IP);
3079   } else {
3080     N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3081   }
3082 
3083   AllNodes.push_back(N);
3084 #ifndef NDEBUG
3085   VerifySDNode(N);
3086 #endif
3087   return SDValue(N, 0);
3088 }
3089 
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)3090 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3091                               SDValue N1, SDValue N2, SDValue N3,
3092                               SDValue N4) {
3093   SDValue Ops[] = { N1, N2, N3, N4 };
3094   return getNode(Opcode, DL, VT, Ops, 4);
3095 }
3096 
getNode(unsigned Opcode,DebugLoc DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)3097 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3098                               SDValue N1, SDValue N2, SDValue N3,
3099                               SDValue N4, SDValue N5) {
3100   SDValue Ops[] = { N1, N2, N3, N4, N5 };
3101   return getNode(Opcode, DL, VT, Ops, 5);
3102 }
3103 
3104 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3105 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)3106 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3107   SmallVector<SDValue, 8> ArgChains;
3108 
3109   // Include the original chain at the beginning of the list. When this is
3110   // used by target LowerCall hooks, this helps legalize find the
3111   // CALLSEQ_BEGIN node.
3112   ArgChains.push_back(Chain);
3113 
3114   // Add a chain value for each stack argument.
3115   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3116        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3117     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3118       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3119         if (FI->getIndex() < 0)
3120           ArgChains.push_back(SDValue(L, 1));
3121 
3122   // Build a tokenfactor for all the chains.
3123   return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3124                  &ArgChains[0], ArgChains.size());
3125 }
3126 
3127 /// getMemsetValue - Vectorized representation of the memset value
3128 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,DebugLoc dl)3129 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3130                               DebugLoc dl) {
3131   assert(Value.getOpcode() != ISD::UNDEF);
3132 
3133   unsigned NumBits = VT.getScalarType().getSizeInBits();
3134   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3135     APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3136     unsigned Shift = 8;
3137     for (unsigned i = NumBits; i > 8; i >>= 1) {
3138       Val = (Val << Shift) | Val;
3139       Shift <<= 1;
3140     }
3141     if (VT.isInteger())
3142       return DAG.getConstant(Val, VT);
3143     return DAG.getConstantFP(APFloat(Val), VT);
3144   }
3145 
3146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3147   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3148   unsigned Shift = 8;
3149   for (unsigned i = NumBits; i > 8; i >>= 1) {
3150     Value = DAG.getNode(ISD::OR, dl, VT,
3151                         DAG.getNode(ISD::SHL, dl, VT, Value,
3152                                     DAG.getConstant(Shift,
3153                                                     TLI.getShiftAmountTy())),
3154                         Value);
3155     Shift <<= 1;
3156   }
3157 
3158   return Value;
3159 }
3160 
3161 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3162 /// used when a memcpy is turned into a memset when the source is a constant
3163 /// string ptr.
getMemsetStringVal(EVT VT,DebugLoc dl,SelectionDAG & DAG,const TargetLowering & TLI,std::string & Str,unsigned Offset)3164 static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3165                                   const TargetLowering &TLI,
3166                                   std::string &Str, unsigned Offset) {
3167   // Handle vector with all elements zero.
3168   if (Str.empty()) {
3169     if (VT.isInteger())
3170       return DAG.getConstant(0, VT);
3171     else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3172              VT.getSimpleVT().SimpleTy == MVT::f64)
3173       return DAG.getConstantFP(0.0, VT);
3174     else if (VT.isVector()) {
3175       unsigned NumElts = VT.getVectorNumElements();
3176       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3177       return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3178                          DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3179                                                              EltVT, NumElts)));
3180     } else
3181       llvm_unreachable("Expected type!");
3182   }
3183 
3184   assert(!VT.isVector() && "Can't handle vector type here!");
3185   unsigned NumBits = VT.getSizeInBits();
3186   unsigned MSB = NumBits / 8;
3187   uint64_t Val = 0;
3188   if (TLI.isLittleEndian())
3189     Offset = Offset + MSB - 1;
3190   for (unsigned i = 0; i != MSB; ++i) {
3191     Val = (Val << 8) | (unsigned char)Str[Offset];
3192     Offset += TLI.isLittleEndian() ? -1 : 1;
3193   }
3194   return DAG.getConstant(Val, VT);
3195 }
3196 
3197 /// getMemBasePlusOffset - Returns base and offset node for the
3198 ///
getMemBasePlusOffset(SDValue Base,unsigned Offset,SelectionDAG & DAG)3199 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3200                                       SelectionDAG &DAG) {
3201   EVT VT = Base.getValueType();
3202   return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3203                      VT, Base, DAG.getConstant(Offset, VT));
3204 }
3205 
3206 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3207 ///
isMemSrcFromString(SDValue Src,std::string & Str)3208 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3209   unsigned SrcDelta = 0;
3210   GlobalAddressSDNode *G = NULL;
3211   if (Src.getOpcode() == ISD::GlobalAddress)
3212     G = cast<GlobalAddressSDNode>(Src);
3213   else if (Src.getOpcode() == ISD::ADD &&
3214            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3215            Src.getOperand(1).getOpcode() == ISD::Constant) {
3216     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3217     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3218   }
3219   if (!G)
3220     return false;
3221 
3222   const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3223   if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3224     return true;
3225 
3226   return false;
3227 }
3228 
3229 /// FindOptimalMemOpLowering - Determines the optimial series memory ops
3230 /// to replace the memset / memcpy. Return true if the number of memory ops
3231 /// is below the threshold. It returns the types of the sequence of
3232 /// memory ops to perform memset / memcpy by reference.
FindOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool NonScalarIntSafe,bool MemcpyStrSrc,SelectionDAG & DAG,const TargetLowering & TLI)3233 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3234                                      unsigned Limit, uint64_t Size,
3235                                      unsigned DstAlign, unsigned SrcAlign,
3236                                      bool NonScalarIntSafe,
3237                                      bool MemcpyStrSrc,
3238                                      SelectionDAG &DAG,
3239                                      const TargetLowering &TLI) {
3240   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3241          "Expecting memcpy / memset source to meet alignment requirement!");
3242   // If 'SrcAlign' is zero, that means the memory operation does not need load
3243   // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3244   // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3245   // specified alignment of the memory operation. If it is zero, that means
3246   // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3247   // indicates whether the memcpy source is constant so it does not need to be
3248   // loaded.
3249   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3250                                    NonScalarIntSafe, MemcpyStrSrc,
3251                                    DAG.getMachineFunction());
3252 
3253   if (VT == MVT::Other) {
3254     if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3255         TLI.allowsUnalignedMemoryAccesses(VT)) {
3256       VT = TLI.getPointerTy();
3257     } else {
3258       switch (DstAlign & 7) {
3259       case 0:  VT = MVT::i64; break;
3260       case 4:  VT = MVT::i32; break;
3261       case 2:  VT = MVT::i16; break;
3262       default: VT = MVT::i8;  break;
3263       }
3264     }
3265 
3266     MVT LVT = MVT::i64;
3267     while (!TLI.isTypeLegal(LVT))
3268       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3269     assert(LVT.isInteger());
3270 
3271     if (VT.bitsGT(LVT))
3272       VT = LVT;
3273   }
3274 
3275   // If we're optimizing for size, and there is a limit, bump the maximum number
3276   // of operations inserted down to 4.  This is a wild guess that approximates
3277   // the size of a call to memcpy or memset (3 arguments + call).
3278   if (Limit != ~0U) {
3279     const Function *F = DAG.getMachineFunction().getFunction();
3280     if (F->hasFnAttr(Attribute::OptimizeForSize))
3281       Limit = 4;
3282   }
3283 
3284   unsigned NumMemOps = 0;
3285   while (Size != 0) {
3286     unsigned VTSize = VT.getSizeInBits() / 8;
3287     while (VTSize > Size) {
3288       // For now, only use non-vector load / store's for the left-over pieces.
3289       if (VT.isVector() || VT.isFloatingPoint()) {
3290         VT = MVT::i64;
3291         while (!TLI.isTypeLegal(VT))
3292           VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3293         VTSize = VT.getSizeInBits() / 8;
3294       } else {
3295         // This can result in a type that is not legal on the target, e.g.
3296         // 1 or 2 bytes on PPC.
3297         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3298         VTSize >>= 1;
3299       }
3300     }
3301 
3302     if (++NumMemOps > Limit)
3303       return false;
3304     MemOps.push_back(VT);
3305     Size -= VTSize;
3306   }
3307 
3308   return true;
3309 }
3310 
getMemcpyLoadsAndStores(SelectionDAG & DAG,DebugLoc dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,const Value * DstSV,uint64_t DstSVOff,const Value * SrcSV,uint64_t SrcSVOff)3311 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3312                                        SDValue Chain, SDValue Dst,
3313                                        SDValue Src, uint64_t Size,
3314                                        unsigned Align, bool isVol,
3315                                        bool AlwaysInline,
3316                                        const Value *DstSV, uint64_t DstSVOff,
3317                                        const Value *SrcSV, uint64_t SrcSVOff) {
3318   // Turn a memcpy of undef to nop.
3319   if (Src.getOpcode() == ISD::UNDEF)
3320     return Chain;
3321 
3322   // Expand memcpy to a series of load and store ops if the size operand falls
3323   // below a certain threshold.
3324   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3325   std::vector<EVT> MemOps;
3326   bool DstAlignCanChange = false;
3327   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3328   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3329   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3330     DstAlignCanChange = true;
3331   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3332   if (Align > SrcAlign)
3333     SrcAlign = Align;
3334   std::string Str;
3335   bool CopyFromStr = isMemSrcFromString(Src, Str);
3336   bool isZeroStr = CopyFromStr && Str.empty();
3337   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3338 
3339   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3340                                 (DstAlignCanChange ? 0 : Align),
3341                                 (isZeroStr ? 0 : SrcAlign),
3342                                 true, CopyFromStr, DAG, TLI))
3343     return SDValue();
3344 
3345   if (DstAlignCanChange) {
3346     const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3347     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3348     if (NewAlign > Align) {
3349       // Give the stack frame object a larger alignment if needed.
3350       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3351         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3352       Align = NewAlign;
3353     }
3354   }
3355 
3356   SmallVector<SDValue, 8> OutChains;
3357   unsigned NumMemOps = MemOps.size();
3358   uint64_t SrcOff = 0, DstOff = 0;
3359   for (unsigned i = 0; i != NumMemOps; ++i) {
3360     EVT VT = MemOps[i];
3361     unsigned VTSize = VT.getSizeInBits() / 8;
3362     SDValue Value, Store;
3363 
3364     if (CopyFromStr &&
3365         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3366       // It's unlikely a store of a vector immediate can be done in a single
3367       // instruction. It would require a load from a constantpool first.
3368       // We only handle zero vectors here.
3369       // FIXME: Handle other cases where store of vector immediate is done in
3370       // a single instruction.
3371       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3372       Store = DAG.getStore(Chain, dl, Value,
3373                            getMemBasePlusOffset(Dst, DstOff, DAG),
3374                            DstSV, DstSVOff + DstOff, isVol, false, Align);
3375     } else {
3376       // The type might not be legal for the target.  This should only happen
3377       // if the type is smaller than a legal type, as on PPC, so the right
3378       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3379       // to Load/Store if NVT==VT.
3380       // FIXME does the case above also need this?
3381       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3382       assert(NVT.bitsGE(VT));
3383       Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3384                              getMemBasePlusOffset(Src, SrcOff, DAG),
3385                              SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3386                              MinAlign(SrcAlign, SrcOff));
3387       Store = DAG.getTruncStore(Chain, dl, Value,
3388                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3389                                 DstSV, DstSVOff + DstOff, VT, isVol, false,
3390                                 Align);
3391     }
3392     OutChains.push_back(Store);
3393     SrcOff += VTSize;
3394     DstOff += VTSize;
3395   }
3396 
3397   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3398                      &OutChains[0], OutChains.size());
3399 }
3400 
getMemmoveLoadsAndStores(SelectionDAG & DAG,DebugLoc dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,const Value * DstSV,uint64_t DstSVOff,const Value * SrcSV,uint64_t SrcSVOff)3401 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3402                                         SDValue Chain, SDValue Dst,
3403                                         SDValue Src, uint64_t Size,
3404                                         unsigned Align,  bool isVol,
3405                                         bool AlwaysInline,
3406                                         const Value *DstSV, uint64_t DstSVOff,
3407                                         const Value *SrcSV, uint64_t SrcSVOff) {
3408   // Turn a memmove of undef to nop.
3409   if (Src.getOpcode() == ISD::UNDEF)
3410     return Chain;
3411 
3412   // Expand memmove to a series of load and store ops if the size operand falls
3413   // below a certain threshold.
3414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415   std::vector<EVT> MemOps;
3416   bool DstAlignCanChange = false;
3417   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3418   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3419   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3420     DstAlignCanChange = true;
3421   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3422   if (Align > SrcAlign)
3423     SrcAlign = Align;
3424   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3425 
3426   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3427                                 (DstAlignCanChange ? 0 : Align),
3428                                 SrcAlign, true, false, DAG, TLI))
3429     return SDValue();
3430 
3431   if (DstAlignCanChange) {
3432     const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3433     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3434     if (NewAlign > Align) {
3435       // Give the stack frame object a larger alignment if needed.
3436       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3437         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3438       Align = NewAlign;
3439     }
3440   }
3441 
3442   uint64_t SrcOff = 0, DstOff = 0;
3443   SmallVector<SDValue, 8> LoadValues;
3444   SmallVector<SDValue, 8> LoadChains;
3445   SmallVector<SDValue, 8> OutChains;
3446   unsigned NumMemOps = MemOps.size();
3447   for (unsigned i = 0; i < NumMemOps; i++) {
3448     EVT VT = MemOps[i];
3449     unsigned VTSize = VT.getSizeInBits() / 8;
3450     SDValue Value, Store;
3451 
3452     Value = DAG.getLoad(VT, dl, Chain,
3453                         getMemBasePlusOffset(Src, SrcOff, DAG),
3454                         SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3455     LoadValues.push_back(Value);
3456     LoadChains.push_back(Value.getValue(1));
3457     SrcOff += VTSize;
3458   }
3459   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3460                       &LoadChains[0], LoadChains.size());
3461   OutChains.clear();
3462   for (unsigned i = 0; i < NumMemOps; i++) {
3463     EVT VT = MemOps[i];
3464     unsigned VTSize = VT.getSizeInBits() / 8;
3465     SDValue Value, Store;
3466 
3467     Store = DAG.getStore(Chain, dl, LoadValues[i],
3468                          getMemBasePlusOffset(Dst, DstOff, DAG),
3469                          DstSV, DstSVOff + DstOff, isVol, false, Align);
3470     OutChains.push_back(Store);
3471     DstOff += VTSize;
3472   }
3473 
3474   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3475                      &OutChains[0], OutChains.size());
3476 }
3477 
getMemsetStores(SelectionDAG & DAG,DebugLoc dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,const Value * DstSV,uint64_t DstSVOff)3478 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3479                                SDValue Chain, SDValue Dst,
3480                                SDValue Src, uint64_t Size,
3481                                unsigned Align, bool isVol,
3482                                const Value *DstSV, uint64_t DstSVOff) {
3483   // Turn a memset of undef to nop.
3484   if (Src.getOpcode() == ISD::UNDEF)
3485     return Chain;
3486 
3487   // Expand memset to a series of load/store ops if the size operand
3488   // falls below a certain threshold.
3489   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3490   std::vector<EVT> MemOps;
3491   bool DstAlignCanChange = false;
3492   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3493   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3494   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3495     DstAlignCanChange = true;
3496   bool NonScalarIntSafe =
3497     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3498   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3499                                 Size, (DstAlignCanChange ? 0 : Align), 0,
3500                                 NonScalarIntSafe, false, DAG, TLI))
3501     return SDValue();
3502 
3503   if (DstAlignCanChange) {
3504     const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3505     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3506     if (NewAlign > Align) {
3507       // Give the stack frame object a larger alignment if needed.
3508       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3509         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3510       Align = NewAlign;
3511     }
3512   }
3513 
3514   SmallVector<SDValue, 8> OutChains;
3515   uint64_t DstOff = 0;
3516   unsigned NumMemOps = MemOps.size();
3517   for (unsigned i = 0; i < NumMemOps; i++) {
3518     EVT VT = MemOps[i];
3519     unsigned VTSize = VT.getSizeInBits() / 8;
3520     SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3521     SDValue Store = DAG.getStore(Chain, dl, Value,
3522                                  getMemBasePlusOffset(Dst, DstOff, DAG),
3523                                  DstSV, DstSVOff + DstOff, isVol, false, 0);
3524     OutChains.push_back(Store);
3525     DstOff += VTSize;
3526   }
3527 
3528   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3529                      &OutChains[0], OutChains.size());
3530 }
3531 
getMemcpy(SDValue Chain,DebugLoc dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool AlwaysInline,const Value * DstSV,uint64_t DstSVOff,const Value * SrcSV,uint64_t SrcSVOff)3532 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3533                                 SDValue Src, SDValue Size,
3534                                 unsigned Align, bool isVol, bool AlwaysInline,
3535                                 const Value *DstSV, uint64_t DstSVOff,
3536                                 const Value *SrcSV, uint64_t SrcSVOff) {
3537 
3538   // Check to see if we should lower the memcpy to loads and stores first.
3539   // For cases within the target-specified limits, this is the best choice.
3540   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3541   if (ConstantSize) {
3542     // Memcpy with size zero? Just return the original chain.
3543     if (ConstantSize->isNullValue())
3544       return Chain;
3545 
3546     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3547                                              ConstantSize->getZExtValue(),Align,
3548                                 isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3549     if (Result.getNode())
3550       return Result;
3551   }
3552 
3553   // Then check to see if we should lower the memcpy with target-specific
3554   // code. If the target chooses to do this, this is the next best.
3555   SDValue Result =
3556     TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3557                                 isVol, AlwaysInline,
3558                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3559   if (Result.getNode())
3560     return Result;
3561 
3562   // If we really need inline code and the target declined to provide it,
3563   // use a (potentially long) sequence of loads and stores.
3564   if (AlwaysInline) {
3565     assert(ConstantSize && "AlwaysInline requires a constant size!");
3566     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3567                                    ConstantSize->getZExtValue(), Align, isVol,
3568                                    true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3569   }
3570 
3571   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3572   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3573   // respect volatile, so they may do things like read or write memory
3574   // beyond the given memory regions. But fixing this isn't easy, and most
3575   // people don't care.
3576 
3577   // Emit a library call.
3578   TargetLowering::ArgListTy Args;
3579   TargetLowering::ArgListEntry Entry;
3580   Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3581   Entry.Node = Dst; Args.push_back(Entry);
3582   Entry.Node = Src; Args.push_back(Entry);
3583   Entry.Node = Size; Args.push_back(Entry);
3584   // FIXME: pass in DebugLoc
3585   std::pair<SDValue,SDValue> CallResult =
3586     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3587                     false, false, false, false, 0,
3588                     TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3589                     /*isReturnValueUsed=*/false,
3590                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3591                                       TLI.getPointerTy()),
3592                     Args, *this, dl);
3593   return CallResult.second;
3594 }
3595 
getMemmove(SDValue Chain,DebugLoc dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,const Value * DstSV,uint64_t DstSVOff,const Value * SrcSV,uint64_t SrcSVOff)3596 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3597                                  SDValue Src, SDValue Size,
3598                                  unsigned Align, bool isVol,
3599                                  const Value *DstSV, uint64_t DstSVOff,
3600                                  const Value *SrcSV, uint64_t SrcSVOff) {
3601 
3602   // Check to see if we should lower the memmove to loads and stores first.
3603   // For cases within the target-specified limits, this is the best choice.
3604   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3605   if (ConstantSize) {
3606     // Memmove with size zero? Just return the original chain.
3607     if (ConstantSize->isNullValue())
3608       return Chain;
3609 
3610     SDValue Result =
3611       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3612                                ConstantSize->getZExtValue(), Align, isVol,
3613                                false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3614     if (Result.getNode())
3615       return Result;
3616   }
3617 
3618   // Then check to see if we should lower the memmove with target-specific
3619   // code. If the target chooses to do this, this is the next best.
3620   SDValue Result =
3621     TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3622                                  DstSV, DstSVOff, SrcSV, SrcSVOff);
3623   if (Result.getNode())
3624     return Result;
3625 
3626   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3627   // not be safe.  See memcpy above for more details.
3628 
3629   // Emit a library call.
3630   TargetLowering::ArgListTy Args;
3631   TargetLowering::ArgListEntry Entry;
3632   Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3633   Entry.Node = Dst; Args.push_back(Entry);
3634   Entry.Node = Src; Args.push_back(Entry);
3635   Entry.Node = Size; Args.push_back(Entry);
3636   // FIXME:  pass in DebugLoc
3637   std::pair<SDValue,SDValue> CallResult =
3638     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3639                     false, false, false, false, 0,
3640                     TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3641                     /*isReturnValueUsed=*/false,
3642                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3643                                       TLI.getPointerTy()),
3644                     Args, *this, dl);
3645   return CallResult.second;
3646 }
3647 
getMemset(SDValue Chain,DebugLoc dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,const Value * DstSV,uint64_t DstSVOff)3648 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3649                                 SDValue Src, SDValue Size,
3650                                 unsigned Align, bool isVol,
3651                                 const Value *DstSV, uint64_t DstSVOff) {
3652 
3653   // Check to see if we should lower the memset to stores first.
3654   // For cases within the target-specified limits, this is the best choice.
3655   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3656   if (ConstantSize) {
3657     // Memset with size zero? Just return the original chain.
3658     if (ConstantSize->isNullValue())
3659       return Chain;
3660 
3661     SDValue Result =
3662       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3663                       Align, isVol, DstSV, DstSVOff);
3664 
3665     if (Result.getNode())
3666       return Result;
3667   }
3668 
3669   // Then check to see if we should lower the memset with target-specific
3670   // code. If the target chooses to do this, this is the next best.
3671   SDValue Result =
3672     TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3673                                 DstSV, DstSVOff);
3674   if (Result.getNode())
3675     return Result;
3676 
3677   // Emit a library call.
3678   const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3679   TargetLowering::ArgListTy Args;
3680   TargetLowering::ArgListEntry Entry;
3681   Entry.Node = Dst; Entry.Ty = IntPtrTy;
3682   Args.push_back(Entry);
3683   // Extend or truncate the argument to be an i32 value for the call.
3684   if (Src.getValueType().bitsGT(MVT::i32))
3685     Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3686   else
3687     Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3688   Entry.Node = Src;
3689   Entry.Ty = Type::getInt32Ty(*getContext());
3690   Entry.isSExt = true;
3691   Args.push_back(Entry);
3692   Entry.Node = Size;
3693   Entry.Ty = IntPtrTy;
3694   Entry.isSExt = false;
3695   Args.push_back(Entry);
3696   // FIXME: pass in DebugLoc
3697   std::pair<SDValue,SDValue> CallResult =
3698     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3699                     false, false, false, false, 0,
3700                     TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3701                     /*isReturnValueUsed=*/false,
3702                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3703                                       TLI.getPointerTy()),
3704                     Args, *this, dl);
3705   return CallResult.second;
3706 }
3707 
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,const Value * PtrVal,unsigned Alignment)3708 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3709                                 SDValue Chain,
3710                                 SDValue Ptr, SDValue Cmp,
3711                                 SDValue Swp, const Value* PtrVal,
3712                                 unsigned Alignment) {
3713   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3714     Alignment = getEVTAlignment(MemVT);
3715 
3716   // Check if the memory reference references a frame index
3717   if (!PtrVal)
3718     if (const FrameIndexSDNode *FI =
3719           dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3720       PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3721 
3722   MachineFunction &MF = getMachineFunction();
3723   unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3724 
3725   // For now, atomics are considered to be volatile always.
3726   Flags |= MachineMemOperand::MOVolatile;
3727 
3728   MachineMemOperand *MMO =
3729     MF.getMachineMemOperand(PtrVal, Flags, 0,
3730                             MemVT.getStoreSize(), Alignment);
3731 
3732   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3733 }
3734 
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO)3735 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3736                                 SDValue Chain,
3737                                 SDValue Ptr, SDValue Cmp,
3738                                 SDValue Swp, MachineMemOperand *MMO) {
3739   assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3740   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3741 
3742   EVT VT = Cmp.getValueType();
3743 
3744   SDVTList VTs = getVTList(VT, MVT::Other);
3745   FoldingSetNodeID ID;
3746   ID.AddInteger(MemVT.getRawBits());
3747   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3748   AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3749   void* IP = 0;
3750   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3751     cast<AtomicSDNode>(E)->refineAlignment(MMO);
3752     return SDValue(E, 0);
3753   }
3754   SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3755                                                Ptr, Cmp, Swp, MMO);
3756   CSEMap.InsertNode(N, IP);
3757   AllNodes.push_back(N);
3758   return SDValue(N, 0);
3759 }
3760 
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,const Value * PtrVal,unsigned Alignment)3761 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3762                                 SDValue Chain,
3763                                 SDValue Ptr, SDValue Val,
3764                                 const Value* PtrVal,
3765                                 unsigned Alignment) {
3766   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3767     Alignment = getEVTAlignment(MemVT);
3768 
3769   // Check if the memory reference references a frame index
3770   if (!PtrVal)
3771     if (const FrameIndexSDNode *FI =
3772           dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3773       PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3774 
3775   MachineFunction &MF = getMachineFunction();
3776   unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3777 
3778   // For now, atomics are considered to be volatile always.
3779   Flags |= MachineMemOperand::MOVolatile;
3780 
3781   MachineMemOperand *MMO =
3782     MF.getMachineMemOperand(PtrVal, Flags, 0,
3783                             MemVT.getStoreSize(), Alignment);
3784 
3785   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3786 }
3787 
getAtomic(unsigned Opcode,DebugLoc dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO)3788 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3789                                 SDValue Chain,
3790                                 SDValue Ptr, SDValue Val,
3791                                 MachineMemOperand *MMO) {
3792   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3793           Opcode == ISD::ATOMIC_LOAD_SUB ||
3794           Opcode == ISD::ATOMIC_LOAD_AND ||
3795           Opcode == ISD::ATOMIC_LOAD_OR ||
3796           Opcode == ISD::ATOMIC_LOAD_XOR ||
3797           Opcode == ISD::ATOMIC_LOAD_NAND ||
3798           Opcode == ISD::ATOMIC_LOAD_MIN ||
3799           Opcode == ISD::ATOMIC_LOAD_MAX ||
3800           Opcode == ISD::ATOMIC_LOAD_UMIN ||
3801           Opcode == ISD::ATOMIC_LOAD_UMAX ||
3802           Opcode == ISD::ATOMIC_SWAP) &&
3803          "Invalid Atomic Op");
3804 
3805   EVT VT = Val.getValueType();
3806 
3807   SDVTList VTs = getVTList(VT, MVT::Other);
3808   FoldingSetNodeID ID;
3809   ID.AddInteger(MemVT.getRawBits());
3810   SDValue Ops[] = {Chain, Ptr, Val};
3811   AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3812   void* IP = 0;
3813   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3814     cast<AtomicSDNode>(E)->refineAlignment(MMO);
3815     return SDValue(E, 0);
3816   }
3817   SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3818                                                Ptr, Val, MMO);
3819   CSEMap.InsertNode(N, IP);
3820   AllNodes.push_back(N);
3821   return SDValue(N, 0);
3822 }
3823 
3824 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3825 /// Allowed to return something different (and simpler) if Simplify is true.
getMergeValues(const SDValue * Ops,unsigned NumOps,DebugLoc dl)3826 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3827                                      DebugLoc dl) {
3828   if (NumOps == 1)
3829     return Ops[0];
3830 
3831   SmallVector<EVT, 4> VTs;
3832   VTs.reserve(NumOps);
3833   for (unsigned i = 0; i < NumOps; ++i)
3834     VTs.push_back(Ops[i].getValueType());
3835   return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3836                  Ops, NumOps);
3837 }
3838 
3839 SDValue
getMemIntrinsicNode(unsigned Opcode,DebugLoc dl,const EVT * VTs,unsigned NumVTs,const SDValue * Ops,unsigned NumOps,EVT MemVT,const Value * srcValue,int SVOff,unsigned Align,bool Vol,bool ReadMem,bool WriteMem)3840 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3841                                   const EVT *VTs, unsigned NumVTs,
3842                                   const SDValue *Ops, unsigned NumOps,
3843                                   EVT MemVT, const Value *srcValue, int SVOff,
3844                                   unsigned Align, bool Vol,
3845                                   bool ReadMem, bool WriteMem) {
3846   return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3847                              MemVT, srcValue, SVOff, Align, Vol,
3848                              ReadMem, WriteMem);
3849 }
3850 
3851 SDValue
getMemIntrinsicNode(unsigned Opcode,DebugLoc dl,SDVTList VTList,const SDValue * Ops,unsigned NumOps,EVT MemVT,const Value * srcValue,int SVOff,unsigned Align,bool Vol,bool ReadMem,bool WriteMem)3852 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3853                                   const SDValue *Ops, unsigned NumOps,
3854                                   EVT MemVT, const Value *srcValue, int SVOff,
3855                                   unsigned Align, bool Vol,
3856                                   bool ReadMem, bool WriteMem) {
3857   if (Align == 0)  // Ensure that codegen never sees alignment 0
3858     Align = getEVTAlignment(MemVT);
3859 
3860   MachineFunction &MF = getMachineFunction();
3861   unsigned Flags = 0;
3862   if (WriteMem)
3863     Flags |= MachineMemOperand::MOStore;
3864   if (ReadMem)
3865     Flags |= MachineMemOperand::MOLoad;
3866   if (Vol)
3867     Flags |= MachineMemOperand::MOVolatile;
3868   MachineMemOperand *MMO =
3869     MF.getMachineMemOperand(srcValue, Flags, SVOff,
3870                             MemVT.getStoreSize(), Align);
3871 
3872   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3873 }
3874 
3875 SDValue
getMemIntrinsicNode(unsigned Opcode,DebugLoc dl,SDVTList VTList,const SDValue * Ops,unsigned NumOps,EVT MemVT,MachineMemOperand * MMO)3876 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3877                                   const SDValue *Ops, unsigned NumOps,
3878                                   EVT MemVT, MachineMemOperand *MMO) {
3879   assert((Opcode == ISD::INTRINSIC_VOID ||
3880           Opcode == ISD::INTRINSIC_W_CHAIN ||
3881           (Opcode <= INT_MAX &&
3882            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3883          "Opcode is not a memory-accessing opcode!");
3884 
3885   // Memoize the node unless it returns a flag.
3886   MemIntrinsicSDNode *N;
3887   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3888     FoldingSetNodeID ID;
3889     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3890     void *IP = 0;
3891     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3892       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3893       return SDValue(E, 0);
3894     }
3895 
3896     N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3897                                                MemVT, MMO);
3898     CSEMap.InsertNode(N, IP);
3899   } else {
3900     N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3901                                                MemVT, MMO);
3902   }
3903   AllNodes.push_back(N);
3904   return SDValue(N, 0);
3905 }
3906 
3907 SDValue
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,SDValue Offset,const Value * SV,int SVOffset,EVT MemVT,bool isVolatile,bool isNonTemporal,unsigned Alignment)3908 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3909                       EVT VT, DebugLoc dl, SDValue Chain,
3910                       SDValue Ptr, SDValue Offset,
3911                       const Value *SV, int SVOffset, EVT MemVT,
3912                       bool isVolatile, bool isNonTemporal,
3913                       unsigned Alignment) {
3914   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3915     Alignment = getEVTAlignment(VT);
3916 
3917   // Check if the memory reference references a frame index
3918   if (!SV)
3919     if (const FrameIndexSDNode *FI =
3920           dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3921       SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3922 
3923   MachineFunction &MF = getMachineFunction();
3924   unsigned Flags = MachineMemOperand::MOLoad;
3925   if (isVolatile)
3926     Flags |= MachineMemOperand::MOVolatile;
3927   if (isNonTemporal)
3928     Flags |= MachineMemOperand::MONonTemporal;
3929   MachineMemOperand *MMO =
3930     MF.getMachineMemOperand(SV, Flags, SVOffset,
3931                             MemVT.getStoreSize(), Alignment);
3932   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
3933 }
3934 
3935 SDValue
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)3936 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3937                       EVT VT, DebugLoc dl, SDValue Chain,
3938                       SDValue Ptr, SDValue Offset, EVT MemVT,
3939                       MachineMemOperand *MMO) {
3940   if (VT == MemVT) {
3941     ExtType = ISD::NON_EXTLOAD;
3942   } else if (ExtType == ISD::NON_EXTLOAD) {
3943     assert(VT == MemVT && "Non-extending load from different memory type!");
3944   } else {
3945     // Extending load.
3946     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3947            "Should only be an extending load, not truncating!");
3948     assert(VT.isInteger() == MemVT.isInteger() &&
3949            "Cannot convert from FP to Int or Int -> FP!");
3950     assert(VT.isVector() == MemVT.isVector() &&
3951            "Cannot use trunc store to convert to or from a vector!");
3952     assert((!VT.isVector() ||
3953             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3954            "Cannot use trunc store to change the number of vector elements!");
3955   }
3956 
3957   bool Indexed = AM != ISD::UNINDEXED;
3958   assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3959          "Unindexed load with an offset!");
3960 
3961   SDVTList VTs = Indexed ?
3962     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3963   SDValue Ops[] = { Chain, Ptr, Offset };
3964   FoldingSetNodeID ID;
3965   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3966   ID.AddInteger(MemVT.getRawBits());
3967   ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3968                                      MMO->isNonTemporal()));
3969   void *IP = 0;
3970   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3971     cast<LoadSDNode>(E)->refineAlignment(MMO);
3972     return SDValue(E, 0);
3973   }
3974   SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3975                                              MemVT, MMO);
3976   CSEMap.InsertNode(N, IP);
3977   AllNodes.push_back(N);
3978   return SDValue(N, 0);
3979 }
3980 
getLoad(EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,const Value * SV,int SVOffset,bool isVolatile,bool isNonTemporal,unsigned Alignment)3981 SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3982                               SDValue Chain, SDValue Ptr,
3983                               const Value *SV, int SVOffset,
3984                               bool isVolatile, bool isNonTemporal,
3985                               unsigned Alignment) {
3986   SDValue Undef = getUNDEF(Ptr.getValueType());
3987   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
3988                  SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3989 }
3990 
getExtLoad(ISD::LoadExtType ExtType,EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,const Value * SV,int SVOffset,EVT MemVT,bool isVolatile,bool isNonTemporal,unsigned Alignment)3991 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
3992                                  SDValue Chain, SDValue Ptr,
3993                                  const Value *SV,
3994                                  int SVOffset, EVT MemVT,
3995                                  bool isVolatile, bool isNonTemporal,
3996                                  unsigned Alignment) {
3997   SDValue Undef = getUNDEF(Ptr.getValueType());
3998   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
3999                  SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
4000 }
4001 
4002 SDValue
getIndexedLoad(SDValue OrigLoad,DebugLoc dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)4003 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4004                              SDValue Offset, ISD::MemIndexedMode AM) {
4005   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4006   assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4007          "Load is already a indexed load!");
4008   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4009                  LD->getChain(), Base, Offset, LD->getSrcValue(),
4010                  LD->getSrcValueOffset(), LD->getMemoryVT(),
4011                  LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4012 }
4013 
getStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,const Value * SV,int SVOffset,bool isVolatile,bool isNonTemporal,unsigned Alignment)4014 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4015                                SDValue Ptr, const Value *SV, int SVOffset,
4016                                bool isVolatile, bool isNonTemporal,
4017                                unsigned Alignment) {
4018   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4019     Alignment = getEVTAlignment(Val.getValueType());
4020 
4021   // Check if the memory reference references a frame index
4022   if (!SV)
4023     if (const FrameIndexSDNode *FI =
4024           dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4025       SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4026 
4027   MachineFunction &MF = getMachineFunction();
4028   unsigned Flags = MachineMemOperand::MOStore;
4029   if (isVolatile)
4030     Flags |= MachineMemOperand::MOVolatile;
4031   if (isNonTemporal)
4032     Flags |= MachineMemOperand::MONonTemporal;
4033   MachineMemOperand *MMO =
4034     MF.getMachineMemOperand(SV, Flags, SVOffset,
4035                             Val.getValueType().getStoreSize(), Alignment);
4036 
4037   return getStore(Chain, dl, Val, Ptr, MMO);
4038 }
4039 
getStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)4040 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4041                                SDValue Ptr, MachineMemOperand *MMO) {
4042   EVT VT = Val.getValueType();
4043   SDVTList VTs = getVTList(MVT::Other);
4044   SDValue Undef = getUNDEF(Ptr.getValueType());
4045   SDValue Ops[] = { Chain, Val, Ptr, Undef };
4046   FoldingSetNodeID ID;
4047   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4048   ID.AddInteger(VT.getRawBits());
4049   ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4050                                      MMO->isNonTemporal()));
4051   void *IP = 0;
4052   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4053     cast<StoreSDNode>(E)->refineAlignment(MMO);
4054     return SDValue(E, 0);
4055   }
4056   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4057                                               false, VT, MMO);
4058   CSEMap.InsertNode(N, IP);
4059   AllNodes.push_back(N);
4060   return SDValue(N, 0);
4061 }
4062 
getTruncStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,const Value * SV,int SVOffset,EVT SVT,bool isVolatile,bool isNonTemporal,unsigned Alignment)4063 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4064                                     SDValue Ptr, const Value *SV,
4065                                     int SVOffset, EVT SVT,
4066                                     bool isVolatile, bool isNonTemporal,
4067                                     unsigned Alignment) {
4068   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4069     Alignment = getEVTAlignment(SVT);
4070 
4071   // Check if the memory reference references a frame index
4072   if (!SV)
4073     if (const FrameIndexSDNode *FI =
4074           dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4075       SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4076 
4077   MachineFunction &MF = getMachineFunction();
4078   unsigned Flags = MachineMemOperand::MOStore;
4079   if (isVolatile)
4080     Flags |= MachineMemOperand::MOVolatile;
4081   if (isNonTemporal)
4082     Flags |= MachineMemOperand::MONonTemporal;
4083   MachineMemOperand *MMO =
4084     MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4085 
4086   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4087 }
4088 
getTruncStore(SDValue Chain,DebugLoc dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)4089 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4090                                     SDValue Ptr, EVT SVT,
4091                                     MachineMemOperand *MMO) {
4092   EVT VT = Val.getValueType();
4093 
4094   if (VT == SVT)
4095     return getStore(Chain, dl, Val, Ptr, MMO);
4096 
4097   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4098          "Should only be a truncating store, not extending!");
4099   assert(VT.isInteger() == SVT.isInteger() &&
4100          "Can't do FP-INT conversion!");
4101   assert(VT.isVector() == SVT.isVector() &&
4102          "Cannot use trunc store to convert to or from a vector!");
4103   assert((!VT.isVector() ||
4104           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4105          "Cannot use trunc store to change the number of vector elements!");
4106 
4107   SDVTList VTs = getVTList(MVT::Other);
4108   SDValue Undef = getUNDEF(Ptr.getValueType());
4109   SDValue Ops[] = { Chain, Val, Ptr, Undef };
4110   FoldingSetNodeID ID;
4111   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4112   ID.AddInteger(SVT.getRawBits());
4113   ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4114                                      MMO->isNonTemporal()));
4115   void *IP = 0;
4116   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4117     cast<StoreSDNode>(E)->refineAlignment(MMO);
4118     return SDValue(E, 0);
4119   }
4120   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4121                                               true, SVT, MMO);
4122   CSEMap.InsertNode(N, IP);
4123   AllNodes.push_back(N);
4124   return SDValue(N, 0);
4125 }
4126 
4127 SDValue
getIndexedStore(SDValue OrigStore,DebugLoc dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)4128 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4129                               SDValue Offset, ISD::MemIndexedMode AM) {
4130   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4131   assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4132          "Store is already a indexed store!");
4133   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4134   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4135   FoldingSetNodeID ID;
4136   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4137   ID.AddInteger(ST->getMemoryVT().getRawBits());
4138   ID.AddInteger(ST->getRawSubclassData());
4139   void *IP = 0;
4140   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4141     return SDValue(E, 0);
4142 
4143   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4144                                               ST->isTruncatingStore(),
4145                                               ST->getMemoryVT(),
4146                                               ST->getMemOperand());
4147   CSEMap.InsertNode(N, IP);
4148   AllNodes.push_back(N);
4149   return SDValue(N, 0);
4150 }
4151 
getVAArg(EVT VT,DebugLoc dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)4152 SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4153                                SDValue Chain, SDValue Ptr,
4154                                SDValue SV,
4155                                unsigned Align) {
4156   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4157   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4158 }
4159 
getNode(unsigned Opcode,DebugLoc DL,EVT VT,const SDUse * Ops,unsigned NumOps)4160 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4161                               const SDUse *Ops, unsigned NumOps) {
4162   switch (NumOps) {
4163   case 0: return getNode(Opcode, DL, VT);
4164   case 1: return getNode(Opcode, DL, VT, Ops[0]);
4165   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4166   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4167   default: break;
4168   }
4169 
4170   // Copy from an SDUse array into an SDValue array for use with
4171   // the regular getNode logic.
4172   SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4173   return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4174 }
4175 
getNode(unsigned Opcode,DebugLoc DL,EVT VT,const SDValue * Ops,unsigned NumOps)4176 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4177                               const SDValue *Ops, unsigned NumOps) {
4178   switch (NumOps) {
4179   case 0: return getNode(Opcode, DL, VT);
4180   case 1: return getNode(Opcode, DL, VT, Ops[0]);
4181   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4182   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4183   default: break;
4184   }
4185 
4186   switch (Opcode) {
4187   default: break;
4188   case ISD::SELECT_CC: {
4189     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4190     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4191            "LHS and RHS of condition must have same type!");
4192     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4193            "True and False arms of SelectCC must have same type!");
4194     assert(Ops[2].getValueType() == VT &&
4195            "select_cc node must be of same type as true and false value!");
4196     break;
4197   }
4198   case ISD::BR_CC: {
4199     assert(NumOps == 5 && "BR_CC takes 5 operands!");
4200     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4201            "LHS/RHS of comparison should match types!");
4202     break;
4203   }
4204   }
4205 
4206   // Memoize nodes.
4207   SDNode *N;
4208   SDVTList VTs = getVTList(VT);
4209 
4210   if (VT != MVT::Flag) {
4211     FoldingSetNodeID ID;
4212     AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4213     void *IP = 0;
4214 
4215     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4216       return SDValue(E, 0);
4217 
4218     N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4219     CSEMap.InsertNode(N, IP);
4220   } else {
4221     N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4222   }
4223 
4224   AllNodes.push_back(N);
4225 #ifndef NDEBUG
4226   VerifySDNode(N);
4227 #endif
4228   return SDValue(N, 0);
4229 }
4230 
getNode(unsigned Opcode,DebugLoc DL,const std::vector<EVT> & ResultTys,const SDValue * Ops,unsigned NumOps)4231 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4232                               const std::vector<EVT> &ResultTys,
4233                               const SDValue *Ops, unsigned NumOps) {
4234   return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4235                  Ops, NumOps);
4236 }
4237 
getNode(unsigned Opcode,DebugLoc DL,const EVT * VTs,unsigned NumVTs,const SDValue * Ops,unsigned NumOps)4238 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4239                               const EVT *VTs, unsigned NumVTs,
4240                               const SDValue *Ops, unsigned NumOps) {
4241   if (NumVTs == 1)
4242     return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4243   return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4244 }
4245 
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,const SDValue * Ops,unsigned NumOps)4246 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4247                               const SDValue *Ops, unsigned NumOps) {
4248   if (VTList.NumVTs == 1)
4249     return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4250 
4251 #if 0
4252   switch (Opcode) {
4253   // FIXME: figure out how to safely handle things like
4254   // int foo(int x) { return 1 << (x & 255); }
4255   // int bar() { return foo(256); }
4256   case ISD::SRA_PARTS:
4257   case ISD::SRL_PARTS:
4258   case ISD::SHL_PARTS:
4259     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4260         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4261       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4262     else if (N3.getOpcode() == ISD::AND)
4263       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4264         // If the and is only masking out bits that cannot effect the shift,
4265         // eliminate the and.
4266         unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4267         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4268           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4269       }
4270     break;
4271   }
4272 #endif
4273 
4274   // Memoize the node unless it returns a flag.
4275   SDNode *N;
4276   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4277     FoldingSetNodeID ID;
4278     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4279     void *IP = 0;
4280     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4281       return SDValue(E, 0);
4282 
4283     if (NumOps == 1) {
4284       N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4285     } else if (NumOps == 2) {
4286       N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4287     } else if (NumOps == 3) {
4288       N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4289                                             Ops[2]);
4290     } else {
4291       N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4292     }
4293     CSEMap.InsertNode(N, IP);
4294   } else {
4295     if (NumOps == 1) {
4296       N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4297     } else if (NumOps == 2) {
4298       N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4299     } else if (NumOps == 3) {
4300       N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4301                                             Ops[2]);
4302     } else {
4303       N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4304     }
4305   }
4306   AllNodes.push_back(N);
4307 #ifndef NDEBUG
4308   VerifySDNode(N);
4309 #endif
4310   return SDValue(N, 0);
4311 }
4312 
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList)4313 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4314   return getNode(Opcode, DL, VTList, 0, 0);
4315 }
4316 
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1)4317 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4318                               SDValue N1) {
4319   SDValue Ops[] = { N1 };
4320   return getNode(Opcode, DL, VTList, Ops, 1);
4321 }
4322 
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2)4323 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4324                               SDValue N1, SDValue N2) {
4325   SDValue Ops[] = { N1, N2 };
4326   return getNode(Opcode, DL, VTList, Ops, 2);
4327 }
4328 
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)4329 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4330                               SDValue N1, SDValue N2, SDValue N3) {
4331   SDValue Ops[] = { N1, N2, N3 };
4332   return getNode(Opcode, DL, VTList, Ops, 3);
4333 }
4334 
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)4335 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4336                               SDValue N1, SDValue N2, SDValue N3,
4337                               SDValue N4) {
4338   SDValue Ops[] = { N1, N2, N3, N4 };
4339   return getNode(Opcode, DL, VTList, Ops, 4);
4340 }
4341 
getNode(unsigned Opcode,DebugLoc DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)4342 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4343                               SDValue N1, SDValue N2, SDValue N3,
4344                               SDValue N4, SDValue N5) {
4345   SDValue Ops[] = { N1, N2, N3, N4, N5 };
4346   return getNode(Opcode, DL, VTList, Ops, 5);
4347 }
4348 
getVTList(EVT VT)4349 SDVTList SelectionDAG::getVTList(EVT VT) {
4350   return makeVTList(SDNode::getValueTypeList(VT), 1);
4351 }
4352 
getVTList(EVT VT1,EVT VT2)4353 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4354   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4355        E = VTList.rend(); I != E; ++I)
4356     if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4357       return *I;
4358 
4359   EVT *Array = Allocator.Allocate<EVT>(2);
4360   Array[0] = VT1;
4361   Array[1] = VT2;
4362   SDVTList Result = makeVTList(Array, 2);
4363   VTList.push_back(Result);
4364   return Result;
4365 }
4366 
getVTList(EVT VT1,EVT VT2,EVT VT3)4367 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4368   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4369        E = VTList.rend(); I != E; ++I)
4370     if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4371                           I->VTs[2] == VT3)
4372       return *I;
4373 
4374   EVT *Array = Allocator.Allocate<EVT>(3);
4375   Array[0] = VT1;
4376   Array[1] = VT2;
4377   Array[2] = VT3;
4378   SDVTList Result = makeVTList(Array, 3);
4379   VTList.push_back(Result);
4380   return Result;
4381 }
4382 
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)4383 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4384   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4385        E = VTList.rend(); I != E; ++I)
4386     if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4387                           I->VTs[2] == VT3 && I->VTs[3] == VT4)
4388       return *I;
4389 
4390   EVT *Array = Allocator.Allocate<EVT>(4);
4391   Array[0] = VT1;
4392   Array[1] = VT2;
4393   Array[2] = VT3;
4394   Array[3] = VT4;
4395   SDVTList Result = makeVTList(Array, 4);
4396   VTList.push_back(Result);
4397   return Result;
4398 }
4399 
getVTList(const EVT * VTs,unsigned NumVTs)4400 SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4401   switch (NumVTs) {
4402     case 0: llvm_unreachable("Cannot have nodes without results!");
4403     case 1: return getVTList(VTs[0]);
4404     case 2: return getVTList(VTs[0], VTs[1]);
4405     case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4406     case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4407     default: break;
4408   }
4409 
4410   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4411        E = VTList.rend(); I != E; ++I) {
4412     if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4413       continue;
4414 
4415     bool NoMatch = false;
4416     for (unsigned i = 2; i != NumVTs; ++i)
4417       if (VTs[i] != I->VTs[i]) {
4418         NoMatch = true;
4419         break;
4420       }
4421     if (!NoMatch)
4422       return *I;
4423   }
4424 
4425   EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4426   std::copy(VTs, VTs+NumVTs, Array);
4427   SDVTList Result = makeVTList(Array, NumVTs);
4428   VTList.push_back(Result);
4429   return Result;
4430 }
4431 
4432 
4433 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4434 /// specified operands.  If the resultant node already exists in the DAG,
4435 /// this does not modify the specified node, instead it returns the node that
4436 /// already exists.  If the resultant node does not exist in the DAG, the
4437 /// input node is returned.  As a degenerate case, if you specify the same
4438 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)4439 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4440   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4441 
4442   // Check to see if there is no change.
4443   if (Op == N->getOperand(0)) return N;
4444 
4445   // See if the modified node already exists.
4446   void *InsertPos = 0;
4447   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4448     return Existing;
4449 
4450   // Nope it doesn't.  Remove the node from its current place in the maps.
4451   if (InsertPos)
4452     if (!RemoveNodeFromCSEMaps(N))
4453       InsertPos = 0;
4454 
4455   // Now we update the operands.
4456   N->OperandList[0].set(Op);
4457 
4458   // If this gets put into a CSE map, add it.
4459   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4460   return N;
4461 }
4462 
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)4463 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4464   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4465 
4466   // Check to see if there is no change.
4467   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4468     return N;   // No operands changed, just return the input node.
4469 
4470   // See if the modified node already exists.
4471   void *InsertPos = 0;
4472   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4473     return Existing;
4474 
4475   // Nope it doesn't.  Remove the node from its current place in the maps.
4476   if (InsertPos)
4477     if (!RemoveNodeFromCSEMaps(N))
4478       InsertPos = 0;
4479 
4480   // Now we update the operands.
4481   if (N->OperandList[0] != Op1)
4482     N->OperandList[0].set(Op1);
4483   if (N->OperandList[1] != Op2)
4484     N->OperandList[1].set(Op2);
4485 
4486   // If this gets put into a CSE map, add it.
4487   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4488   return N;
4489 }
4490 
4491 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)4492 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4493   SDValue Ops[] = { Op1, Op2, Op3 };
4494   return UpdateNodeOperands(N, Ops, 3);
4495 }
4496 
4497 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)4498 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4499                    SDValue Op3, SDValue Op4) {
4500   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4501   return UpdateNodeOperands(N, Ops, 4);
4502 }
4503 
4504 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)4505 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4506                    SDValue Op3, SDValue Op4, SDValue Op5) {
4507   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4508   return UpdateNodeOperands(N, Ops, 5);
4509 }
4510 
4511 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,const SDValue * Ops,unsigned NumOps)4512 UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4513   assert(N->getNumOperands() == NumOps &&
4514          "Update with wrong number of operands");
4515 
4516   // Check to see if there is no change.
4517   bool AnyChange = false;
4518   for (unsigned i = 0; i != NumOps; ++i) {
4519     if (Ops[i] != N->getOperand(i)) {
4520       AnyChange = true;
4521       break;
4522     }
4523   }
4524 
4525   // No operands changed, just return the input node.
4526   if (!AnyChange) return N;
4527 
4528   // See if the modified node already exists.
4529   void *InsertPos = 0;
4530   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4531     return Existing;
4532 
4533   // Nope it doesn't.  Remove the node from its current place in the maps.
4534   if (InsertPos)
4535     if (!RemoveNodeFromCSEMaps(N))
4536       InsertPos = 0;
4537 
4538   // Now we update the operands.
4539   for (unsigned i = 0; i != NumOps; ++i)
4540     if (N->OperandList[i] != Ops[i])
4541       N->OperandList[i].set(Ops[i]);
4542 
4543   // If this gets put into a CSE map, add it.
4544   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4545   return N;
4546 }
4547 
4548 /// DropOperands - Release the operands and set this node to have
4549 /// zero operands.
DropOperands()4550 void SDNode::DropOperands() {
4551   // Unlike the code in MorphNodeTo that does this, we don't need to
4552   // watch for dead nodes here.
4553   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4554     SDUse &Use = *I++;
4555     Use.set(SDValue());
4556   }
4557 }
4558 
4559 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4560 /// machine opcode.
4561 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)4562 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4563                                    EVT VT) {
4564   SDVTList VTs = getVTList(VT);
4565   return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4566 }
4567 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)4568 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569                                    EVT VT, SDValue Op1) {
4570   SDVTList VTs = getVTList(VT);
4571   SDValue Ops[] = { Op1 };
4572   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4573 }
4574 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)4575 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576                                    EVT VT, SDValue Op1,
4577                                    SDValue Op2) {
4578   SDVTList VTs = getVTList(VT);
4579   SDValue Ops[] = { Op1, Op2 };
4580   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4581 }
4582 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)4583 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4584                                    EVT VT, SDValue Op1,
4585                                    SDValue Op2, SDValue Op3) {
4586   SDVTList VTs = getVTList(VT);
4587   SDValue Ops[] = { Op1, Op2, Op3 };
4588   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4589 }
4590 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,const SDValue * Ops,unsigned NumOps)4591 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4592                                    EVT VT, const SDValue *Ops,
4593                                    unsigned NumOps) {
4594   SDVTList VTs = getVTList(VT);
4595   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4596 }
4597 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,const SDValue * Ops,unsigned NumOps)4598 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4599                                    EVT VT1, EVT VT2, const SDValue *Ops,
4600                                    unsigned NumOps) {
4601   SDVTList VTs = getVTList(VT1, VT2);
4602   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4603 }
4604 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)4605 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4606                                    EVT VT1, EVT VT2) {
4607   SDVTList VTs = getVTList(VT1, VT2);
4608   return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4609 }
4610 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,const SDValue * Ops,unsigned NumOps)4611 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4612                                    EVT VT1, EVT VT2, EVT VT3,
4613                                    const SDValue *Ops, unsigned NumOps) {
4614   SDVTList VTs = getVTList(VT1, VT2, VT3);
4615   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4616 }
4617 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,EVT VT4,const SDValue * Ops,unsigned NumOps)4618 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4619                                    EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4620                                    const SDValue *Ops, unsigned NumOps) {
4621   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4622   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4623 }
4624 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1)4625 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4626                                    EVT VT1, EVT VT2,
4627                                    SDValue Op1) {
4628   SDVTList VTs = getVTList(VT1, VT2);
4629   SDValue Ops[] = { Op1 };
4630   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4631 }
4632 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)4633 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4634                                    EVT VT1, EVT VT2,
4635                                    SDValue Op1, SDValue Op2) {
4636   SDVTList VTs = getVTList(VT1, VT2);
4637   SDValue Ops[] = { Op1, Op2 };
4638   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4639 }
4640 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)4641 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4642                                    EVT VT1, EVT VT2,
4643                                    SDValue Op1, SDValue Op2,
4644                                    SDValue Op3) {
4645   SDVTList VTs = getVTList(VT1, VT2);
4646   SDValue Ops[] = { Op1, Op2, Op3 };
4647   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4648 }
4649 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)4650 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4651                                    EVT VT1, EVT VT2, EVT VT3,
4652                                    SDValue Op1, SDValue Op2,
4653                                    SDValue Op3) {
4654   SDVTList VTs = getVTList(VT1, VT2, VT3);
4655   SDValue Ops[] = { Op1, Op2, Op3 };
4656   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4657 }
4658 
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,const SDValue * Ops,unsigned NumOps)4659 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4660                                    SDVTList VTs, const SDValue *Ops,
4661                                    unsigned NumOps) {
4662   N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4663   // Reset the NodeID to -1.
4664   N->setNodeId(-1);
4665   return N;
4666 }
4667 
4668 /// MorphNodeTo - This *mutates* the specified node to have the specified
4669 /// return type, opcode, and operands.
4670 ///
4671 /// Note that MorphNodeTo returns the resultant node.  If there is already a
4672 /// node of the specified opcode and operands, it returns that node instead of
4673 /// the current one.  Note that the DebugLoc need not be the same.
4674 ///
4675 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4676 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4677 /// node, and because it doesn't require CSE recalculation for any of
4678 /// the node's users.
4679 ///
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,const SDValue * Ops,unsigned NumOps)4680 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4681                                   SDVTList VTs, const SDValue *Ops,
4682                                   unsigned NumOps) {
4683   // If an identical node already exists, use it.
4684   void *IP = 0;
4685   if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4686     FoldingSetNodeID ID;
4687     AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4688     if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4689       return ON;
4690   }
4691 
4692   if (!RemoveNodeFromCSEMaps(N))
4693     IP = 0;
4694 
4695   // Start the morphing.
4696   N->NodeType = Opc;
4697   N->ValueList = VTs.VTs;
4698   N->NumValues = VTs.NumVTs;
4699 
4700   // Clear the operands list, updating used nodes to remove this from their
4701   // use list.  Keep track of any operands that become dead as a result.
4702   SmallPtrSet<SDNode*, 16> DeadNodeSet;
4703   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4704     SDUse &Use = *I++;
4705     SDNode *Used = Use.getNode();
4706     Use.set(SDValue());
4707     if (Used->use_empty())
4708       DeadNodeSet.insert(Used);
4709   }
4710 
4711   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4712     // Initialize the memory references information.
4713     MN->setMemRefs(0, 0);
4714     // If NumOps is larger than the # of operands we can have in a
4715     // MachineSDNode, reallocate the operand list.
4716     if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4717       if (MN->OperandsNeedDelete)
4718         delete[] MN->OperandList;
4719       if (NumOps > array_lengthof(MN->LocalOperands))
4720         // We're creating a final node that will live unmorphed for the
4721         // remainder of the current SelectionDAG iteration, so we can allocate
4722         // the operands directly out of a pool with no recycling metadata.
4723         MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4724                          Ops, NumOps);
4725       else
4726         MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4727       MN->OperandsNeedDelete = false;
4728     } else
4729       MN->InitOperands(MN->OperandList, Ops, NumOps);
4730   } else {
4731     // If NumOps is larger than the # of operands we currently have, reallocate
4732     // the operand list.
4733     if (NumOps > N->NumOperands) {
4734       if (N->OperandsNeedDelete)
4735         delete[] N->OperandList;
4736       N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4737       N->OperandsNeedDelete = true;
4738     } else
4739       N->InitOperands(N->OperandList, Ops, NumOps);
4740   }
4741 
4742   // Delete any nodes that are still dead after adding the uses for the
4743   // new operands.
4744   if (!DeadNodeSet.empty()) {
4745     SmallVector<SDNode *, 16> DeadNodes;
4746     for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4747          E = DeadNodeSet.end(); I != E; ++I)
4748       if ((*I)->use_empty())
4749         DeadNodes.push_back(*I);
4750     RemoveDeadNodes(DeadNodes);
4751   }
4752 
4753   if (IP)
4754     CSEMap.InsertNode(N, IP);   // Memoize the new node.
4755   return N;
4756 }
4757 
4758 
4759 /// getMachineNode - These are used for target selectors to create a new node
4760 /// with specified return type(s), MachineInstr opcode, and operands.
4761 ///
4762 /// Note that getMachineNode returns the resultant node.  If there is already a
4763 /// node of the specified opcode and operands, it returns that node instead of
4764 /// the current one.
4765 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT)4766 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4767   SDVTList VTs = getVTList(VT);
4768   return getMachineNode(Opcode, dl, VTs, 0, 0);
4769 }
4770 
4771 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,SDValue Op1)4772 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4773   SDVTList VTs = getVTList(VT);
4774   SDValue Ops[] = { Op1 };
4775   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4776 }
4777 
4778 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,SDValue Op1,SDValue Op2)4779 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4780                              SDValue Op1, SDValue Op2) {
4781   SDVTList VTs = getVTList(VT);
4782   SDValue Ops[] = { Op1, Op2 };
4783   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4784 }
4785 
4786 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)4787 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4788                              SDValue Op1, SDValue Op2, SDValue Op3) {
4789   SDVTList VTs = getVTList(VT);
4790   SDValue Ops[] = { Op1, Op2, Op3 };
4791   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4792 }
4793 
4794 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT,const SDValue * Ops,unsigned NumOps)4795 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4796                              const SDValue *Ops, unsigned NumOps) {
4797   SDVTList VTs = getVTList(VT);
4798   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4799 }
4800 
4801 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2)4802 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4803   SDVTList VTs = getVTList(VT1, VT2);
4804   return getMachineNode(Opcode, dl, VTs, 0, 0);
4805 }
4806 
4807 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,SDValue Op1)4808 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4809                              EVT VT1, EVT VT2, SDValue Op1) {
4810   SDVTList VTs = getVTList(VT1, VT2);
4811   SDValue Ops[] = { Op1 };
4812   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4813 }
4814 
4815 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)4816 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4817                              EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4818   SDVTList VTs = getVTList(VT1, VT2);
4819   SDValue Ops[] = { Op1, Op2 };
4820   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4821 }
4822 
4823 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)4824 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4825                              EVT VT1, EVT VT2, SDValue Op1,
4826                              SDValue Op2, SDValue Op3) {
4827   SDVTList VTs = getVTList(VT1, VT2);
4828   SDValue Ops[] = { Op1, Op2, Op3 };
4829   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4830 }
4831 
4832 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,const SDValue * Ops,unsigned NumOps)4833 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4834                              EVT VT1, EVT VT2,
4835                              const SDValue *Ops, unsigned NumOps) {
4836   SDVTList VTs = getVTList(VT1, VT2);
4837   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4838 }
4839 
4840 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)4841 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4842                              EVT VT1, EVT VT2, EVT VT3,
4843                              SDValue Op1, SDValue Op2) {
4844   SDVTList VTs = getVTList(VT1, VT2, VT3);
4845   SDValue Ops[] = { Op1, Op2 };
4846   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4847 }
4848 
4849 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)4850 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4851                              EVT VT1, EVT VT2, EVT VT3,
4852                              SDValue Op1, SDValue Op2, SDValue Op3) {
4853   SDVTList VTs = getVTList(VT1, VT2, VT3);
4854   SDValue Ops[] = { Op1, Op2, Op3 };
4855   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4856 }
4857 
4858 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,const SDValue * Ops,unsigned NumOps)4859 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4860                              EVT VT1, EVT VT2, EVT VT3,
4861                              const SDValue *Ops, unsigned NumOps) {
4862   SDVTList VTs = getVTList(VT1, VT2, VT3);
4863   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4864 }
4865 
4866 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,EVT VT1,EVT VT2,EVT VT3,EVT VT4,const SDValue * Ops,unsigned NumOps)4867 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4868                              EVT VT2, EVT VT3, EVT VT4,
4869                              const SDValue *Ops, unsigned NumOps) {
4870   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4871   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4872 }
4873 
4874 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc dl,const std::vector<EVT> & ResultTys,const SDValue * Ops,unsigned NumOps)4875 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4876                              const std::vector<EVT> &ResultTys,
4877                              const SDValue *Ops, unsigned NumOps) {
4878   SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4879   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4880 }
4881 
4882 MachineSDNode *
getMachineNode(unsigned Opcode,DebugLoc DL,SDVTList VTs,const SDValue * Ops,unsigned NumOps)4883 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4884                              const SDValue *Ops, unsigned NumOps) {
4885   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4886   MachineSDNode *N;
4887   void *IP;
4888 
4889   if (DoCSE) {
4890     FoldingSetNodeID ID;
4891     AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4892     IP = 0;
4893     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4894       return cast<MachineSDNode>(E);
4895   }
4896 
4897   // Allocate a new MachineSDNode.
4898   N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4899 
4900   // Initialize the operands list.
4901   if (NumOps > array_lengthof(N->LocalOperands))
4902     // We're creating a final node that will live unmorphed for the
4903     // remainder of the current SelectionDAG iteration, so we can allocate
4904     // the operands directly out of a pool with no recycling metadata.
4905     N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4906                     Ops, NumOps);
4907   else
4908     N->InitOperands(N->LocalOperands, Ops, NumOps);
4909   N->OperandsNeedDelete = false;
4910 
4911   if (DoCSE)
4912     CSEMap.InsertNode(N, IP);
4913 
4914   AllNodes.push_back(N);
4915 #ifndef NDEBUG
4916   VerifyMachineNode(N);
4917 #endif
4918   return N;
4919 }
4920 
4921 /// getTargetExtractSubreg - A convenience function for creating
4922 /// TargetOpcode::EXTRACT_SUBREG nodes.
4923 SDValue
getTargetExtractSubreg(int SRIdx,DebugLoc DL,EVT VT,SDValue Operand)4924 SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4925                                      SDValue Operand) {
4926   SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4927   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4928                                   VT, Operand, SRIdxVal);
4929   return SDValue(Subreg, 0);
4930 }
4931 
4932 /// getTargetInsertSubreg - A convenience function for creating
4933 /// TargetOpcode::INSERT_SUBREG nodes.
4934 SDValue
getTargetInsertSubreg(int SRIdx,DebugLoc DL,EVT VT,SDValue Operand,SDValue Subreg)4935 SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4936                                     SDValue Operand, SDValue Subreg) {
4937   SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4938   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4939                                   VT, Operand, Subreg, SRIdxVal);
4940   return SDValue(Result, 0);
4941 }
4942 
4943 /// getNodeIfExists - Get the specified node if it's already available, or
4944 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,const SDValue * Ops,unsigned NumOps)4945 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4946                                       const SDValue *Ops, unsigned NumOps) {
4947   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4948     FoldingSetNodeID ID;
4949     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4950     void *IP = 0;
4951     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4952       return E;
4953   }
4954   return NULL;
4955 }
4956 
4957 /// getDbgValue - Creates a SDDbgValue node.
4958 ///
4959 SDDbgValue *
getDbgValue(MDNode * MDPtr,SDNode * N,unsigned R,uint64_t Off,DebugLoc DL,unsigned O)4960 SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4961                           DebugLoc DL, unsigned O) {
4962   return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4963 }
4964 
4965 SDDbgValue *
getDbgValue(MDNode * MDPtr,const Value * C,uint64_t Off,DebugLoc DL,unsigned O)4966 SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4967                           DebugLoc DL, unsigned O) {
4968   return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4969 }
4970 
4971 SDDbgValue *
getDbgValue(MDNode * MDPtr,unsigned FI,uint64_t Off,DebugLoc DL,unsigned O)4972 SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4973                           DebugLoc DL, unsigned O) {
4974   return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4975 }
4976 
4977 namespace {
4978 
4979 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4980 /// pointed to by a use iterator is deleted, increment the use iterator
4981 /// so that it doesn't dangle.
4982 ///
4983 /// This class also manages a "downlink" DAGUpdateListener, to forward
4984 /// messages to ReplaceAllUsesWith's callers.
4985 ///
4986 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4987   SelectionDAG::DAGUpdateListener *DownLink;
4988   SDNode::use_iterator &UI;
4989   SDNode::use_iterator &UE;
4990 
NodeDeleted(SDNode * N,SDNode * E)4991   virtual void NodeDeleted(SDNode *N, SDNode *E) {
4992     // Increment the iterator as needed.
4993     while (UI != UE && N == *UI)
4994       ++UI;
4995 
4996     // Then forward the message.
4997     if (DownLink) DownLink->NodeDeleted(N, E);
4998   }
4999 
NodeUpdated(SDNode * N)5000   virtual void NodeUpdated(SDNode *N) {
5001     // Just forward the message.
5002     if (DownLink) DownLink->NodeUpdated(N);
5003   }
5004 
5005 public:
RAUWUpdateListener(SelectionDAG::DAGUpdateListener * dl,SDNode::use_iterator & ui,SDNode::use_iterator & ue)5006   RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5007                      SDNode::use_iterator &ui,
5008                      SDNode::use_iterator &ue)
5009     : DownLink(dl), UI(ui), UE(ue) {}
5010 };
5011 
5012 }
5013 
5014 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5015 /// This can cause recursive merging of nodes in the DAG.
5016 ///
5017 /// This version assumes From has a single result value.
5018 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To,DAGUpdateListener * UpdateListener)5019 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5020                                       DAGUpdateListener *UpdateListener) {
5021   SDNode *From = FromN.getNode();
5022   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5023          "Cannot replace with this method!");
5024   assert(From != To.getNode() && "Cannot replace uses of with self");
5025 
5026   // Iterate over all the existing uses of From. New uses will be added
5027   // to the beginning of the use list, which we avoid visiting.
5028   // This specifically avoids visiting uses of From that arise while the
5029   // replacement is happening, because any such uses would be the result
5030   // of CSE: If an existing node looks like From after one of its operands
5031   // is replaced by To, we don't want to replace of all its users with To
5032   // too. See PR3018 for more info.
5033   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5034   RAUWUpdateListener Listener(UpdateListener, UI, UE);
5035   while (UI != UE) {
5036     SDNode *User = *UI;
5037 
5038     // This node is about to morph, remove its old self from the CSE maps.
5039     RemoveNodeFromCSEMaps(User);
5040 
5041     // A user can appear in a use list multiple times, and when this
5042     // happens the uses are usually next to each other in the list.
5043     // To help reduce the number of CSE recomputations, process all
5044     // the uses of this user that we can find this way.
5045     do {
5046       SDUse &Use = UI.getUse();
5047       ++UI;
5048       Use.set(To);
5049     } while (UI != UE && *UI == User);
5050 
5051     // Now that we have modified User, add it back to the CSE maps.  If it
5052     // already exists there, recursively merge the results together.
5053     AddModifiedNodeToCSEMaps(User, &Listener);
5054   }
5055 }
5056 
5057 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5058 /// This can cause recursive merging of nodes in the DAG.
5059 ///
5060 /// This version assumes that for each value of From, there is a
5061 /// corresponding value in To in the same position with the same type.
5062 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To,DAGUpdateListener * UpdateListener)5063 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5064                                       DAGUpdateListener *UpdateListener) {
5065 #ifndef NDEBUG
5066   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5067     assert((!From->hasAnyUseOfValue(i) ||
5068             From->getValueType(i) == To->getValueType(i)) &&
5069            "Cannot use this version of ReplaceAllUsesWith!");
5070 #endif
5071 
5072   // Handle the trivial case.
5073   if (From == To)
5074     return;
5075 
5076   // Iterate over just the existing users of From. See the comments in
5077   // the ReplaceAllUsesWith above.
5078   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5079   RAUWUpdateListener Listener(UpdateListener, UI, UE);
5080   while (UI != UE) {
5081     SDNode *User = *UI;
5082 
5083     // This node is about to morph, remove its old self from the CSE maps.
5084     RemoveNodeFromCSEMaps(User);
5085 
5086     // A user can appear in a use list multiple times, and when this
5087     // happens the uses are usually next to each other in the list.
5088     // To help reduce the number of CSE recomputations, process all
5089     // the uses of this user that we can find this way.
5090     do {
5091       SDUse &Use = UI.getUse();
5092       ++UI;
5093       Use.setNode(To);
5094     } while (UI != UE && *UI == User);
5095 
5096     // Now that we have modified User, add it back to the CSE maps.  If it
5097     // already exists there, recursively merge the results together.
5098     AddModifiedNodeToCSEMaps(User, &Listener);
5099   }
5100 }
5101 
5102 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5103 /// This can cause recursive merging of nodes in the DAG.
5104 ///
5105 /// This version can replace From with any result values.  To must match the
5106 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To,DAGUpdateListener * UpdateListener)5107 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5108                                       const SDValue *To,
5109                                       DAGUpdateListener *UpdateListener) {
5110   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5111     return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5112 
5113   // Iterate over just the existing users of From. See the comments in
5114   // the ReplaceAllUsesWith above.
5115   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5116   RAUWUpdateListener Listener(UpdateListener, UI, UE);
5117   while (UI != UE) {
5118     SDNode *User = *UI;
5119 
5120     // This node is about to morph, remove its old self from the CSE maps.
5121     RemoveNodeFromCSEMaps(User);
5122 
5123     // A user can appear in a use list multiple times, and when this
5124     // happens the uses are usually next to each other in the list.
5125     // To help reduce the number of CSE recomputations, process all
5126     // the uses of this user that we can find this way.
5127     do {
5128       SDUse &Use = UI.getUse();
5129       const SDValue &ToOp = To[Use.getResNo()];
5130       ++UI;
5131       Use.set(ToOp);
5132     } while (UI != UE && *UI == User);
5133 
5134     // Now that we have modified User, add it back to the CSE maps.  If it
5135     // already exists there, recursively merge the results together.
5136     AddModifiedNodeToCSEMaps(User, &Listener);
5137   }
5138 }
5139 
5140 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5141 /// uses of other values produced by From.getNode() alone.  The Deleted
5142 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To,DAGUpdateListener * UpdateListener)5143 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5144                                              DAGUpdateListener *UpdateListener){
5145   // Handle the really simple, really trivial case efficiently.
5146   if (From == To) return;
5147 
5148   // Handle the simple, trivial, case efficiently.
5149   if (From.getNode()->getNumValues() == 1) {
5150     ReplaceAllUsesWith(From, To, UpdateListener);
5151     return;
5152   }
5153 
5154   // Iterate over just the existing users of From. See the comments in
5155   // the ReplaceAllUsesWith above.
5156   SDNode::use_iterator UI = From.getNode()->use_begin(),
5157                        UE = From.getNode()->use_end();
5158   RAUWUpdateListener Listener(UpdateListener, UI, UE);
5159   while (UI != UE) {
5160     SDNode *User = *UI;
5161     bool UserRemovedFromCSEMaps = false;
5162 
5163     // A user can appear in a use list multiple times, and when this
5164     // happens the uses are usually next to each other in the list.
5165     // To help reduce the number of CSE recomputations, process all
5166     // the uses of this user that we can find this way.
5167     do {
5168       SDUse &Use = UI.getUse();
5169 
5170       // Skip uses of different values from the same node.
5171       if (Use.getResNo() != From.getResNo()) {
5172         ++UI;
5173         continue;
5174       }
5175 
5176       // If this node hasn't been modified yet, it's still in the CSE maps,
5177       // so remove its old self from the CSE maps.
5178       if (!UserRemovedFromCSEMaps) {
5179         RemoveNodeFromCSEMaps(User);
5180         UserRemovedFromCSEMaps = true;
5181       }
5182 
5183       ++UI;
5184       Use.set(To);
5185     } while (UI != UE && *UI == User);
5186 
5187     // We are iterating over all uses of the From node, so if a use
5188     // doesn't use the specific value, no changes are made.
5189     if (!UserRemovedFromCSEMaps)
5190       continue;
5191 
5192     // Now that we have modified User, add it back to the CSE maps.  If it
5193     // already exists there, recursively merge the results together.
5194     AddModifiedNodeToCSEMaps(User, &Listener);
5195   }
5196 }
5197 
5198 namespace {
5199   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5200   /// to record information about a use.
5201   struct UseMemo {
5202     SDNode *User;
5203     unsigned Index;
5204     SDUse *Use;
5205   };
5206 
5207   /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)5208   bool operator<(const UseMemo &L, const UseMemo &R) {
5209     return (intptr_t)L.User < (intptr_t)R.User;
5210   }
5211 }
5212 
5213 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5214 /// uses of other values produced by From.getNode() alone.  The same value
5215 /// may appear in both the From and To list.  The Deleted vector is
5216 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num,DAGUpdateListener * UpdateListener)5217 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5218                                               const SDValue *To,
5219                                               unsigned Num,
5220                                               DAGUpdateListener *UpdateListener){
5221   // Handle the simple, trivial case efficiently.
5222   if (Num == 1)
5223     return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5224 
5225   // Read up all the uses and make records of them. This helps
5226   // processing new uses that are introduced during the
5227   // replacement process.
5228   SmallVector<UseMemo, 4> Uses;
5229   for (unsigned i = 0; i != Num; ++i) {
5230     unsigned FromResNo = From[i].getResNo();
5231     SDNode *FromNode = From[i].getNode();
5232     for (SDNode::use_iterator UI = FromNode->use_begin(),
5233          E = FromNode->use_end(); UI != E; ++UI) {
5234       SDUse &Use = UI.getUse();
5235       if (Use.getResNo() == FromResNo) {
5236         UseMemo Memo = { *UI, i, &Use };
5237         Uses.push_back(Memo);
5238       }
5239     }
5240   }
5241 
5242   // Sort the uses, so that all the uses from a given User are together.
5243   std::sort(Uses.begin(), Uses.end());
5244 
5245   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5246        UseIndex != UseIndexEnd; ) {
5247     // We know that this user uses some value of From.  If it is the right
5248     // value, update it.
5249     SDNode *User = Uses[UseIndex].User;
5250 
5251     // This node is about to morph, remove its old self from the CSE maps.
5252     RemoveNodeFromCSEMaps(User);
5253 
5254     // The Uses array is sorted, so all the uses for a given User
5255     // are next to each other in the list.
5256     // To help reduce the number of CSE recomputations, process all
5257     // the uses of this user that we can find this way.
5258     do {
5259       unsigned i = Uses[UseIndex].Index;
5260       SDUse &Use = *Uses[UseIndex].Use;
5261       ++UseIndex;
5262 
5263       Use.set(To[i]);
5264     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5265 
5266     // Now that we have modified User, add it back to the CSE maps.  If it
5267     // already exists there, recursively merge the results together.
5268     AddModifiedNodeToCSEMaps(User, UpdateListener);
5269   }
5270 }
5271 
5272 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5273 /// based on their topological order. It returns the maximum id and a vector
5274 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()5275 unsigned SelectionDAG::AssignTopologicalOrder() {
5276 
5277   unsigned DAGSize = 0;
5278 
5279   // SortedPos tracks the progress of the algorithm. Nodes before it are
5280   // sorted, nodes after it are unsorted. When the algorithm completes
5281   // it is at the end of the list.
5282   allnodes_iterator SortedPos = allnodes_begin();
5283 
5284   // Visit all the nodes. Move nodes with no operands to the front of
5285   // the list immediately. Annotate nodes that do have operands with their
5286   // operand count. Before we do this, the Node Id fields of the nodes
5287   // may contain arbitrary values. After, the Node Id fields for nodes
5288   // before SortedPos will contain the topological sort index, and the
5289   // Node Id fields for nodes At SortedPos and after will contain the
5290   // count of outstanding operands.
5291   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5292     SDNode *N = I++;
5293     checkForCycles(N);
5294     unsigned Degree = N->getNumOperands();
5295     if (Degree == 0) {
5296       // A node with no uses, add it to the result array immediately.
5297       N->setNodeId(DAGSize++);
5298       allnodes_iterator Q = N;
5299       if (Q != SortedPos)
5300         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5301       assert(SortedPos != AllNodes.end() && "Overran node list");
5302       ++SortedPos;
5303     } else {
5304       // Temporarily use the Node Id as scratch space for the degree count.
5305       N->setNodeId(Degree);
5306     }
5307   }
5308 
5309   // Visit all the nodes. As we iterate, moves nodes into sorted order,
5310   // such that by the time the end is reached all nodes will be sorted.
5311   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5312     SDNode *N = I;
5313     checkForCycles(N);
5314     // N is in sorted position, so all its uses have one less operand
5315     // that needs to be sorted.
5316     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5317          UI != UE; ++UI) {
5318       SDNode *P = *UI;
5319       unsigned Degree = P->getNodeId();
5320       assert(Degree != 0 && "Invalid node degree");
5321       --Degree;
5322       if (Degree == 0) {
5323         // All of P's operands are sorted, so P may sorted now.
5324         P->setNodeId(DAGSize++);
5325         if (P != SortedPos)
5326           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5327         assert(SortedPos != AllNodes.end() && "Overran node list");
5328         ++SortedPos;
5329       } else {
5330         // Update P's outstanding operand count.
5331         P->setNodeId(Degree);
5332       }
5333     }
5334     if (I == SortedPos) {
5335 #ifndef NDEBUG
5336       SDNode *S = ++I;
5337       dbgs() << "Overran sorted position:\n";
5338       S->dumprFull();
5339 #endif
5340       llvm_unreachable(0);
5341     }
5342   }
5343 
5344   assert(SortedPos == AllNodes.end() &&
5345          "Topological sort incomplete!");
5346   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5347          "First node in topological sort is not the entry token!");
5348   assert(AllNodes.front().getNodeId() == 0 &&
5349          "First node in topological sort has non-zero id!");
5350   assert(AllNodes.front().getNumOperands() == 0 &&
5351          "First node in topological sort has operands!");
5352   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5353          "Last node in topologic sort has unexpected id!");
5354   assert(AllNodes.back().use_empty() &&
5355          "Last node in topologic sort has users!");
5356   assert(DAGSize == allnodes_size() && "Node count mismatch!");
5357   return DAGSize;
5358 }
5359 
5360 /// AssignOrdering - Assign an order to the SDNode.
AssignOrdering(const SDNode * SD,unsigned Order)5361 void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5362   assert(SD && "Trying to assign an order to a null node!");
5363   Ordering->add(SD, Order);
5364 }
5365 
5366 /// GetOrdering - Get the order for the SDNode.
GetOrdering(const SDNode * SD) const5367 unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5368   assert(SD && "Trying to get the order of a null node!");
5369   return Ordering->getOrder(SD);
5370 }
5371 
5372 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5373 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,SDNode * SD,bool isParameter)5374 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5375   DbgInfo->add(DB, SD, isParameter);
5376   if (SD)
5377     SD->setHasDebugValue(true);
5378 }
5379 
5380 //===----------------------------------------------------------------------===//
5381 //                              SDNode Class
5382 //===----------------------------------------------------------------------===//
5383 
~HandleSDNode()5384 HandleSDNode::~HandleSDNode() {
5385   DropOperands();
5386 }
5387 
GlobalAddressSDNode(unsigned Opc,DebugLoc DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned char TF)5388 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5389                                          const GlobalValue *GA,
5390                                          EVT VT, int64_t o, unsigned char TF)
5391   : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5392   TheGlobal = GA;
5393 }
5394 
MemSDNode(unsigned Opc,DebugLoc dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)5395 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5396                      MachineMemOperand *mmo)
5397  : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5398   SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5399                                       MMO->isNonTemporal());
5400   assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5401   assert(isNonTemporal() == MMO->isNonTemporal() &&
5402          "Non-temporal encoding error!");
5403   assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5404 }
5405 
MemSDNode(unsigned Opc,DebugLoc dl,SDVTList VTs,const SDValue * Ops,unsigned NumOps,EVT memvt,MachineMemOperand * mmo)5406 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5407                      const SDValue *Ops, unsigned NumOps, EVT memvt,
5408                      MachineMemOperand *mmo)
5409    : SDNode(Opc, dl, VTs, Ops, NumOps),
5410      MemoryVT(memvt), MMO(mmo) {
5411   SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5412                                       MMO->isNonTemporal());
5413   assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5414   assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5415 }
5416 
5417 /// Profile - Gather unique data for the node.
5418 ///
Profile(FoldingSetNodeID & ID) const5419 void SDNode::Profile(FoldingSetNodeID &ID) const {
5420   AddNodeIDNode(ID, this);
5421 }
5422 
5423 namespace {
5424   struct EVTArray {
5425     std::vector<EVT> VTs;
5426 
EVTArray__anon1e3b24f30311::EVTArray5427     EVTArray() {
5428       VTs.reserve(MVT::LAST_VALUETYPE);
5429       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5430         VTs.push_back(MVT((MVT::SimpleValueType)i));
5431     }
5432   };
5433 }
5434 
5435 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5436 static ManagedStatic<EVTArray> SimpleVTArray;
5437 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5438 
5439 /// getValueTypeList - Return a pointer to the specified value type.
5440 ///
getValueTypeList(EVT VT)5441 const EVT *SDNode::getValueTypeList(EVT VT) {
5442   if (VT.isExtended()) {
5443     sys::SmartScopedLock<true> Lock(*VTMutex);
5444     return &(*EVTs->insert(VT).first);
5445   } else {
5446     assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5447            "Value type out of range!");
5448     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5449   }
5450 }
5451 
5452 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5453 /// indicated value.  This method ignores uses of other values defined by this
5454 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const5455 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5456   assert(Value < getNumValues() && "Bad value!");
5457 
5458   // TODO: Only iterate over uses of a given value of the node
5459   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5460     if (UI.getUse().getResNo() == Value) {
5461       if (NUses == 0)
5462         return false;
5463       --NUses;
5464     }
5465   }
5466 
5467   // Found exactly the right number of uses?
5468   return NUses == 0;
5469 }
5470 
5471 
5472 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5473 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const5474 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5475   assert(Value < getNumValues() && "Bad value!");
5476 
5477   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5478     if (UI.getUse().getResNo() == Value)
5479       return true;
5480 
5481   return false;
5482 }
5483 
5484 
5485 /// isOnlyUserOf - Return true if this node is the only use of N.
5486 ///
isOnlyUserOf(SDNode * N) const5487 bool SDNode::isOnlyUserOf(SDNode *N) const {
5488   bool Seen = false;
5489   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5490     SDNode *User = *I;
5491     if (User == this)
5492       Seen = true;
5493     else
5494       return false;
5495   }
5496 
5497   return Seen;
5498 }
5499 
5500 /// isOperand - Return true if this node is an operand of N.
5501 ///
isOperandOf(SDNode * N) const5502 bool SDValue::isOperandOf(SDNode *N) const {
5503   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5504     if (*this == N->getOperand(i))
5505       return true;
5506   return false;
5507 }
5508 
isOperandOf(SDNode * N) const5509 bool SDNode::isOperandOf(SDNode *N) const {
5510   for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5511     if (this == N->OperandList[i].getNode())
5512       return true;
5513   return false;
5514 }
5515 
5516 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5517 /// be a chain) reaches the specified operand without crossing any
5518 /// side-effecting instructions.  In practice, this looks through token
5519 /// factors and non-volatile loads.  In order to remain efficient, this only
5520 /// looks a couple of nodes in, it does not do an exhaustive search.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const5521 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5522                                                unsigned Depth) const {
5523   if (*this == Dest) return true;
5524 
5525   // Don't search too deeply, we just want to be able to see through
5526   // TokenFactor's etc.
5527   if (Depth == 0) return false;
5528 
5529   // If this is a token factor, all inputs to the TF happen in parallel.  If any
5530   // of the operands of the TF reach dest, then we can do the xform.
5531   if (getOpcode() == ISD::TokenFactor) {
5532     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5533       if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5534         return true;
5535     return false;
5536   }
5537 
5538   // Loads don't have side effects, look through them.
5539   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5540     if (!Ld->isVolatile())
5541       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5542   }
5543   return false;
5544 }
5545 
5546 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5547 /// is either an operand of N or it can be reached by traversing up the operands.
5548 /// NOTE: this is an expensive method. Use it carefully.
isPredecessorOf(SDNode * N) const5549 bool SDNode::isPredecessorOf(SDNode *N) const {
5550   SmallPtrSet<SDNode *, 32> Visited;
5551   SmallVector<SDNode *, 16> Worklist;
5552   Worklist.push_back(N);
5553 
5554   do {
5555     N = Worklist.pop_back_val();
5556     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5557       SDNode *Op = N->getOperand(i).getNode();
5558       if (Op == this)
5559         return true;
5560       if (Visited.insert(Op))
5561         Worklist.push_back(Op);
5562     }
5563   } while (!Worklist.empty());
5564 
5565   return false;
5566 }
5567 
getConstantOperandVal(unsigned Num) const5568 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5569   assert(Num < NumOperands && "Invalid child # of SDNode!");
5570   return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5571 }
5572 
getOperationName(const SelectionDAG * G) const5573 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5574   switch (getOpcode()) {
5575   default:
5576     if (getOpcode() < ISD::BUILTIN_OP_END)
5577       return "<<Unknown DAG Node>>";
5578     if (isMachineOpcode()) {
5579       if (G)
5580         if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5581           if (getMachineOpcode() < TII->getNumOpcodes())
5582             return TII->get(getMachineOpcode()).getName();
5583       return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5584     }
5585     if (G) {
5586       const TargetLowering &TLI = G->getTargetLoweringInfo();
5587       const char *Name = TLI.getTargetNodeName(getOpcode());
5588       if (Name) return Name;
5589       return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5590     }
5591     return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5592 
5593 #ifndef NDEBUG
5594   case ISD::DELETED_NODE:
5595     return "<<Deleted Node!>>";
5596 #endif
5597   case ISD::PREFETCH:      return "Prefetch";
5598   case ISD::MEMBARRIER:    return "MemBarrier";
5599   case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5600   case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5601   case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5602   case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5603   case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5604   case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5605   case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5606   case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5607   case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5608   case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5609   case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5610   case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5611   case ISD::PCMARKER:      return "PCMarker";
5612   case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5613   case ISD::SRCVALUE:      return "SrcValue";
5614   case ISD::MDNODE_SDNODE: return "MDNode";
5615   case ISD::EntryToken:    return "EntryToken";
5616   case ISD::TokenFactor:   return "TokenFactor";
5617   case ISD::AssertSext:    return "AssertSext";
5618   case ISD::AssertZext:    return "AssertZext";
5619 
5620   case ISD::BasicBlock:    return "BasicBlock";
5621   case ISD::VALUETYPE:     return "ValueType";
5622   case ISD::Register:      return "Register";
5623 
5624   case ISD::Constant:      return "Constant";
5625   case ISD::ConstantFP:    return "ConstantFP";
5626   case ISD::GlobalAddress: return "GlobalAddress";
5627   case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5628   case ISD::FrameIndex:    return "FrameIndex";
5629   case ISD::JumpTable:     return "JumpTable";
5630   case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5631   case ISD::RETURNADDR: return "RETURNADDR";
5632   case ISD::FRAMEADDR: return "FRAMEADDR";
5633   case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5634   case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5635   case ISD::LSDAADDR: return "LSDAADDR";
5636   case ISD::EHSELECTION: return "EHSELECTION";
5637   case ISD::EH_RETURN: return "EH_RETURN";
5638   case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5639   case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5640   case ISD::ConstantPool:  return "ConstantPool";
5641   case ISD::ExternalSymbol: return "ExternalSymbol";
5642   case ISD::BlockAddress:  return "BlockAddress";
5643   case ISD::INTRINSIC_WO_CHAIN:
5644   case ISD::INTRINSIC_VOID:
5645   case ISD::INTRINSIC_W_CHAIN: {
5646     unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5647     unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5648     if (IID < Intrinsic::num_intrinsics)
5649       return Intrinsic::getName((Intrinsic::ID)IID);
5650     else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5651       return TII->getName(IID);
5652     llvm_unreachable("Invalid intrinsic ID");
5653   }
5654 
5655   case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5656   case ISD::TargetConstant: return "TargetConstant";
5657   case ISD::TargetConstantFP:return "TargetConstantFP";
5658   case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5659   case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5660   case ISD::TargetFrameIndex: return "TargetFrameIndex";
5661   case ISD::TargetJumpTable:  return "TargetJumpTable";
5662   case ISD::TargetConstantPool:  return "TargetConstantPool";
5663   case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5664   case ISD::TargetBlockAddress: return "TargetBlockAddress";
5665 
5666   case ISD::CopyToReg:     return "CopyToReg";
5667   case ISD::CopyFromReg:   return "CopyFromReg";
5668   case ISD::UNDEF:         return "undef";
5669   case ISD::MERGE_VALUES:  return "merge_values";
5670   case ISD::INLINEASM:     return "inlineasm";
5671   case ISD::EH_LABEL:      return "eh_label";
5672   case ISD::HANDLENODE:    return "handlenode";
5673 
5674   // Unary operators
5675   case ISD::FABS:   return "fabs";
5676   case ISD::FNEG:   return "fneg";
5677   case ISD::FSQRT:  return "fsqrt";
5678   case ISD::FSIN:   return "fsin";
5679   case ISD::FCOS:   return "fcos";
5680   case ISD::FTRUNC: return "ftrunc";
5681   case ISD::FFLOOR: return "ffloor";
5682   case ISD::FCEIL:  return "fceil";
5683   case ISD::FRINT:  return "frint";
5684   case ISD::FNEARBYINT: return "fnearbyint";
5685   case ISD::FEXP:   return "fexp";
5686   case ISD::FEXP2:  return "fexp2";
5687   case ISD::FLOG:   return "flog";
5688   case ISD::FLOG2:  return "flog2";
5689   case ISD::FLOG10: return "flog10";
5690 
5691   // Binary operators
5692   case ISD::ADD:    return "add";
5693   case ISD::SUB:    return "sub";
5694   case ISD::MUL:    return "mul";
5695   case ISD::MULHU:  return "mulhu";
5696   case ISD::MULHS:  return "mulhs";
5697   case ISD::SDIV:   return "sdiv";
5698   case ISD::UDIV:   return "udiv";
5699   case ISD::SREM:   return "srem";
5700   case ISD::UREM:   return "urem";
5701   case ISD::SMUL_LOHI:  return "smul_lohi";
5702   case ISD::UMUL_LOHI:  return "umul_lohi";
5703   case ISD::SDIVREM:    return "sdivrem";
5704   case ISD::UDIVREM:    return "udivrem";
5705   case ISD::AND:    return "and";
5706   case ISD::OR:     return "or";
5707   case ISD::XOR:    return "xor";
5708   case ISD::SHL:    return "shl";
5709   case ISD::SRA:    return "sra";
5710   case ISD::SRL:    return "srl";
5711   case ISD::ROTL:   return "rotl";
5712   case ISD::ROTR:   return "rotr";
5713   case ISD::FADD:   return "fadd";
5714   case ISD::FSUB:   return "fsub";
5715   case ISD::FMUL:   return "fmul";
5716   case ISD::FDIV:   return "fdiv";
5717   case ISD::FREM:   return "frem";
5718   case ISD::FCOPYSIGN: return "fcopysign";
5719   case ISD::FGETSIGN:  return "fgetsign";
5720   case ISD::FPOW:   return "fpow";
5721 
5722   case ISD::FPOWI:  return "fpowi";
5723   case ISD::SETCC:       return "setcc";
5724   case ISD::VSETCC:      return "vsetcc";
5725   case ISD::SELECT:      return "select";
5726   case ISD::SELECT_CC:   return "select_cc";
5727   case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5728   case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5729   case ISD::CONCAT_VECTORS:      return "concat_vectors";
5730   case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5731   case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5732   case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5733   case ISD::CARRY_FALSE:         return "carry_false";
5734   case ISD::ADDC:        return "addc";
5735   case ISD::ADDE:        return "adde";
5736   case ISD::SADDO:       return "saddo";
5737   case ISD::UADDO:       return "uaddo";
5738   case ISD::SSUBO:       return "ssubo";
5739   case ISD::USUBO:       return "usubo";
5740   case ISD::SMULO:       return "smulo";
5741   case ISD::UMULO:       return "umulo";
5742   case ISD::SUBC:        return "subc";
5743   case ISD::SUBE:        return "sube";
5744   case ISD::SHL_PARTS:   return "shl_parts";
5745   case ISD::SRA_PARTS:   return "sra_parts";
5746   case ISD::SRL_PARTS:   return "srl_parts";
5747 
5748   // Conversion operators.
5749   case ISD::SIGN_EXTEND: return "sign_extend";
5750   case ISD::ZERO_EXTEND: return "zero_extend";
5751   case ISD::ANY_EXTEND:  return "any_extend";
5752   case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5753   case ISD::TRUNCATE:    return "truncate";
5754   case ISD::FP_ROUND:    return "fp_round";
5755   case ISD::FLT_ROUNDS_: return "flt_rounds";
5756   case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5757   case ISD::FP_EXTEND:   return "fp_extend";
5758 
5759   case ISD::SINT_TO_FP:  return "sint_to_fp";
5760   case ISD::UINT_TO_FP:  return "uint_to_fp";
5761   case ISD::FP_TO_SINT:  return "fp_to_sint";
5762   case ISD::FP_TO_UINT:  return "fp_to_uint";
5763   case ISD::BIT_CONVERT: return "bit_convert";
5764   case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5765   case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5766 
5767   case ISD::CONVERT_RNDSAT: {
5768     switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5769     default: llvm_unreachable("Unknown cvt code!");
5770     case ISD::CVT_FF:  return "cvt_ff";
5771     case ISD::CVT_FS:  return "cvt_fs";
5772     case ISD::CVT_FU:  return "cvt_fu";
5773     case ISD::CVT_SF:  return "cvt_sf";
5774     case ISD::CVT_UF:  return "cvt_uf";
5775     case ISD::CVT_SS:  return "cvt_ss";
5776     case ISD::CVT_SU:  return "cvt_su";
5777     case ISD::CVT_US:  return "cvt_us";
5778     case ISD::CVT_UU:  return "cvt_uu";
5779     }
5780   }
5781 
5782     // Control flow instructions
5783   case ISD::BR:      return "br";
5784   case ISD::BRIND:   return "brind";
5785   case ISD::BR_JT:   return "br_jt";
5786   case ISD::BRCOND:  return "brcond";
5787   case ISD::BR_CC:   return "br_cc";
5788   case ISD::CALLSEQ_START:  return "callseq_start";
5789   case ISD::CALLSEQ_END:    return "callseq_end";
5790 
5791     // Other operators
5792   case ISD::LOAD:               return "load";
5793   case ISD::STORE:              return "store";
5794   case ISD::VAARG:              return "vaarg";
5795   case ISD::VACOPY:             return "vacopy";
5796   case ISD::VAEND:              return "vaend";
5797   case ISD::VASTART:            return "vastart";
5798   case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5799   case ISD::EXTRACT_ELEMENT:    return "extract_element";
5800   case ISD::BUILD_PAIR:         return "build_pair";
5801   case ISD::STACKSAVE:          return "stacksave";
5802   case ISD::STACKRESTORE:       return "stackrestore";
5803   case ISD::TRAP:               return "trap";
5804 
5805   // Bit manipulation
5806   case ISD::BSWAP:   return "bswap";
5807   case ISD::CTPOP:   return "ctpop";
5808   case ISD::CTTZ:    return "cttz";
5809   case ISD::CTLZ:    return "ctlz";
5810 
5811   // Trampolines
5812   case ISD::TRAMPOLINE: return "trampoline";
5813 
5814   case ISD::CONDCODE:
5815     switch (cast<CondCodeSDNode>(this)->get()) {
5816     default: llvm_unreachable("Unknown setcc condition!");
5817     case ISD::SETOEQ:  return "setoeq";
5818     case ISD::SETOGT:  return "setogt";
5819     case ISD::SETOGE:  return "setoge";
5820     case ISD::SETOLT:  return "setolt";
5821     case ISD::SETOLE:  return "setole";
5822     case ISD::SETONE:  return "setone";
5823 
5824     case ISD::SETO:    return "seto";
5825     case ISD::SETUO:   return "setuo";
5826     case ISD::SETUEQ:  return "setue";
5827     case ISD::SETUGT:  return "setugt";
5828     case ISD::SETUGE:  return "setuge";
5829     case ISD::SETULT:  return "setult";
5830     case ISD::SETULE:  return "setule";
5831     case ISD::SETUNE:  return "setune";
5832 
5833     case ISD::SETEQ:   return "seteq";
5834     case ISD::SETGT:   return "setgt";
5835     case ISD::SETGE:   return "setge";
5836     case ISD::SETLT:   return "setlt";
5837     case ISD::SETLE:   return "setle";
5838     case ISD::SETNE:   return "setne";
5839     }
5840   }
5841 }
5842 
getIndexedModeName(ISD::MemIndexedMode AM)5843 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5844   switch (AM) {
5845   default:
5846     return "";
5847   case ISD::PRE_INC:
5848     return "<pre-inc>";
5849   case ISD::PRE_DEC:
5850     return "<pre-dec>";
5851   case ISD::POST_INC:
5852     return "<post-inc>";
5853   case ISD::POST_DEC:
5854     return "<post-dec>";
5855   }
5856 }
5857 
getArgFlagsString()5858 std::string ISD::ArgFlagsTy::getArgFlagsString() {
5859   std::string S = "< ";
5860 
5861   if (isZExt())
5862     S += "zext ";
5863   if (isSExt())
5864     S += "sext ";
5865   if (isInReg())
5866     S += "inreg ";
5867   if (isSRet())
5868     S += "sret ";
5869   if (isByVal())
5870     S += "byval ";
5871   if (isNest())
5872     S += "nest ";
5873   if (getByValAlign())
5874     S += "byval-align:" + utostr(getByValAlign()) + " ";
5875   if (getOrigAlign())
5876     S += "orig-align:" + utostr(getOrigAlign()) + " ";
5877   if (getByValSize())
5878     S += "byval-size:" + utostr(getByValSize()) + " ";
5879   return S + ">";
5880 }
5881 
dump() const5882 void SDNode::dump() const { dump(0); }
dump(const SelectionDAG * G) const5883 void SDNode::dump(const SelectionDAG *G) const {
5884   print(dbgs(), G);
5885   dbgs() << '\n';
5886 }
5887 
print_types(raw_ostream & OS,const SelectionDAG * G) const5888 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5889   OS << (void*)this << ": ";
5890 
5891   for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5892     if (i) OS << ",";
5893     if (getValueType(i) == MVT::Other)
5894       OS << "ch";
5895     else
5896       OS << getValueType(i).getEVTString();
5897   }
5898   OS << " = " << getOperationName(G);
5899 }
5900 
print_details(raw_ostream & OS,const SelectionDAG * G) const5901 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5902   if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5903     if (!MN->memoperands_empty()) {
5904       OS << "<";
5905       OS << "Mem:";
5906       for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5907            e = MN->memoperands_end(); i != e; ++i) {
5908         OS << **i;
5909         if (llvm::next(i) != e)
5910           OS << " ";
5911       }
5912       OS << ">";
5913     }
5914   } else if (const ShuffleVectorSDNode *SVN =
5915                dyn_cast<ShuffleVectorSDNode>(this)) {
5916     OS << "<";
5917     for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5918       int Idx = SVN->getMaskElt(i);
5919       if (i) OS << ",";
5920       if (Idx < 0)
5921         OS << "u";
5922       else
5923         OS << Idx;
5924     }
5925     OS << ">";
5926   } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5927     OS << '<' << CSDN->getAPIntValue() << '>';
5928   } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5929     if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5930       OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5931     else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5932       OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5933     else {
5934       OS << "<APFloat(";
5935       CSDN->getValueAPF().bitcastToAPInt().dump();
5936       OS << ")>";
5937     }
5938   } else if (const GlobalAddressSDNode *GADN =
5939              dyn_cast<GlobalAddressSDNode>(this)) {
5940     int64_t offset = GADN->getOffset();
5941     OS << '<';
5942     WriteAsOperand(OS, GADN->getGlobal());
5943     OS << '>';
5944     if (offset > 0)
5945       OS << " + " << offset;
5946     else
5947       OS << " " << offset;
5948     if (unsigned int TF = GADN->getTargetFlags())
5949       OS << " [TF=" << TF << ']';
5950   } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5951     OS << "<" << FIDN->getIndex() << ">";
5952   } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5953     OS << "<" << JTDN->getIndex() << ">";
5954     if (unsigned int TF = JTDN->getTargetFlags())
5955       OS << " [TF=" << TF << ']';
5956   } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5957     int offset = CP->getOffset();
5958     if (CP->isMachineConstantPoolEntry())
5959       OS << "<" << *CP->getMachineCPVal() << ">";
5960     else
5961       OS << "<" << *CP->getConstVal() << ">";
5962     if (offset > 0)
5963       OS << " + " << offset;
5964     else
5965       OS << " " << offset;
5966     if (unsigned int TF = CP->getTargetFlags())
5967       OS << " [TF=" << TF << ']';
5968   } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5969     OS << "<";
5970     const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5971     if (LBB)
5972       OS << LBB->getName() << " ";
5973     OS << (const void*)BBDN->getBasicBlock() << ">";
5974   } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5975     if (G && R->getReg() &&
5976         TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5977       OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5978     } else {
5979       OS << " %reg" << R->getReg();
5980     }
5981   } else if (const ExternalSymbolSDNode *ES =
5982              dyn_cast<ExternalSymbolSDNode>(this)) {
5983     OS << "'" << ES->getSymbol() << "'";
5984     if (unsigned int TF = ES->getTargetFlags())
5985       OS << " [TF=" << TF << ']';
5986   } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5987     if (M->getValue())
5988       OS << "<" << M->getValue() << ">";
5989     else
5990       OS << "<null>";
5991   } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5992     if (MD->getMD())
5993       OS << "<" << MD->getMD() << ">";
5994     else
5995       OS << "<null>";
5996   } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5997     OS << ":" << N->getVT().getEVTString();
5998   }
5999   else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6000     OS << "<" << *LD->getMemOperand();
6001 
6002     bool doExt = true;
6003     switch (LD->getExtensionType()) {
6004     default: doExt = false; break;
6005     case ISD::EXTLOAD: OS << ", anyext"; break;
6006     case ISD::SEXTLOAD: OS << ", sext"; break;
6007     case ISD::ZEXTLOAD: OS << ", zext"; break;
6008     }
6009     if (doExt)
6010       OS << " from " << LD->getMemoryVT().getEVTString();
6011 
6012     const char *AM = getIndexedModeName(LD->getAddressingMode());
6013     if (*AM)
6014       OS << ", " << AM;
6015 
6016     OS << ">";
6017   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6018     OS << "<" << *ST->getMemOperand();
6019 
6020     if (ST->isTruncatingStore())
6021       OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6022 
6023     const char *AM = getIndexedModeName(ST->getAddressingMode());
6024     if (*AM)
6025       OS << ", " << AM;
6026 
6027     OS << ">";
6028   } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6029     OS << "<" << *M->getMemOperand() << ">";
6030   } else if (const BlockAddressSDNode *BA =
6031                dyn_cast<BlockAddressSDNode>(this)) {
6032     OS << "<";
6033     WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6034     OS << ", ";
6035     WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6036     OS << ">";
6037     if (unsigned int TF = BA->getTargetFlags())
6038       OS << " [TF=" << TF << ']';
6039   }
6040 
6041   if (G)
6042     if (unsigned Order = G->GetOrdering(this))
6043       OS << " [ORD=" << Order << ']';
6044 
6045   if (getNodeId() != -1)
6046     OS << " [ID=" << getNodeId() << ']';
6047 
6048   DebugLoc dl = getDebugLoc();
6049   if (G && !dl.isUnknown()) {
6050     DIScope
6051       Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6052     OS << " dbg:";
6053     // Omit the directory, since it's usually long and uninteresting.
6054     if (Scope.Verify())
6055       OS << Scope.getFilename();
6056     else
6057       OS << "<unknown>";
6058     OS << ':' << dl.getLine();
6059     if (dl.getCol() != 0)
6060       OS << ':' << dl.getCol();
6061   }
6062 }
6063 
print(raw_ostream & OS,const SelectionDAG * G) const6064 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6065   print_types(OS, G);
6066   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6067     if (i) OS << ", "; else OS << " ";
6068     OS << (void*)getOperand(i).getNode();
6069     if (unsigned RN = getOperand(i).getResNo())
6070       OS << ":" << RN;
6071   }
6072   print_details(OS, G);
6073 }
6074 
printrWithDepthHelper(raw_ostream & OS,const SDNode * N,const SelectionDAG * G,unsigned depth,unsigned indent)6075 static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6076                                   const SelectionDAG *G, unsigned depth,
6077                                   unsigned indent)
6078 {
6079   if (depth == 0)
6080     return;
6081 
6082   OS.indent(indent);
6083 
6084   N->print(OS, G);
6085 
6086   if (depth < 1)
6087     return;
6088 
6089   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6090     OS << '\n';
6091     printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6092   }
6093 }
6094 
printrWithDepth(raw_ostream & OS,const SelectionDAG * G,unsigned depth) const6095 void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6096                             unsigned depth) const {
6097   printrWithDepthHelper(OS, this, G, depth, 0);
6098 }
6099 
printrFull(raw_ostream & OS,const SelectionDAG * G) const6100 void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6101   // Don't print impossibly deep things.
6102   printrWithDepth(OS, G, 100);
6103 }
6104 
dumprWithDepth(const SelectionDAG * G,unsigned depth) const6105 void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6106   printrWithDepth(dbgs(), G, depth);
6107 }
6108 
dumprFull(const SelectionDAG * G) const6109 void SDNode::dumprFull(const SelectionDAG *G) const {
6110   // Don't print impossibly deep things.
6111   dumprWithDepth(G, 100);
6112 }
6113 
DumpNodes(const SDNode * N,unsigned indent,const SelectionDAG * G)6114 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6115   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6116     if (N->getOperand(i).getNode()->hasOneUse())
6117       DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6118     else
6119       dbgs() << "\n" << std::string(indent+2, ' ')
6120            << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6121 
6122 
6123   dbgs() << "\n";
6124   dbgs().indent(indent);
6125   N->dump(G);
6126 }
6127 
UnrollVectorOp(SDNode * N,unsigned ResNE)6128 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6129   assert(N->getNumValues() == 1 &&
6130          "Can't unroll a vector with multiple results!");
6131 
6132   EVT VT = N->getValueType(0);
6133   unsigned NE = VT.getVectorNumElements();
6134   EVT EltVT = VT.getVectorElementType();
6135   DebugLoc dl = N->getDebugLoc();
6136 
6137   SmallVector<SDValue, 8> Scalars;
6138   SmallVector<SDValue, 4> Operands(N->getNumOperands());
6139 
6140   // If ResNE is 0, fully unroll the vector op.
6141   if (ResNE == 0)
6142     ResNE = NE;
6143   else if (NE > ResNE)
6144     NE = ResNE;
6145 
6146   unsigned i;
6147   for (i= 0; i != NE; ++i) {
6148     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6149       SDValue Operand = N->getOperand(j);
6150       EVT OperandVT = Operand.getValueType();
6151       if (OperandVT.isVector()) {
6152         // A vector operand; extract a single element.
6153         EVT OperandEltVT = OperandVT.getVectorElementType();
6154         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6155                               OperandEltVT,
6156                               Operand,
6157                               getConstant(i, MVT::i32));
6158       } else {
6159         // A scalar operand; just use it as is.
6160         Operands[j] = Operand;
6161       }
6162     }
6163 
6164     switch (N->getOpcode()) {
6165     default:
6166       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6167                                 &Operands[0], Operands.size()));
6168       break;
6169     case ISD::SHL:
6170     case ISD::SRA:
6171     case ISD::SRL:
6172     case ISD::ROTL:
6173     case ISD::ROTR:
6174       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6175                                 getShiftAmountOperand(Operands[1])));
6176       break;
6177     case ISD::SIGN_EXTEND_INREG:
6178     case ISD::FP_ROUND_INREG: {
6179       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6180       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6181                                 Operands[0],
6182                                 getValueType(ExtVT)));
6183     }
6184     }
6185   }
6186 
6187   for (; i < ResNE; ++i)
6188     Scalars.push_back(getUNDEF(EltVT));
6189 
6190   return getNode(ISD::BUILD_VECTOR, dl,
6191                  EVT::getVectorVT(*getContext(), EltVT, ResNE),
6192                  &Scalars[0], Scalars.size());
6193 }
6194 
6195 
6196 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6197 /// location that is 'Dist' units away from the location that the 'Base' load
6198 /// is loading from.
isConsecutiveLoad(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const6199 bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6200                                      unsigned Bytes, int Dist) const {
6201   if (LD->getChain() != Base->getChain())
6202     return false;
6203   EVT VT = LD->getValueType(0);
6204   if (VT.getSizeInBits() / 8 != Bytes)
6205     return false;
6206 
6207   SDValue Loc = LD->getOperand(1);
6208   SDValue BaseLoc = Base->getOperand(1);
6209   if (Loc.getOpcode() == ISD::FrameIndex) {
6210     if (BaseLoc.getOpcode() != ISD::FrameIndex)
6211       return false;
6212     const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6213     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6214     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6215     int FS  = MFI->getObjectSize(FI);
6216     int BFS = MFI->getObjectSize(BFI);
6217     if (FS != BFS || FS != (int)Bytes) return false;
6218     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6219   }
6220   if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6221     ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6222     if (V && (V->getSExtValue() == Dist*Bytes))
6223       return true;
6224   }
6225 
6226   const GlobalValue *GV1 = NULL;
6227   const GlobalValue *GV2 = NULL;
6228   int64_t Offset1 = 0;
6229   int64_t Offset2 = 0;
6230   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6231   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6232   if (isGA1 && isGA2 && GV1 == GV2)
6233     return Offset1 == (Offset2 + Dist*Bytes);
6234   return false;
6235 }
6236 
6237 
6238 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6239 /// it cannot be inferred.
InferPtrAlignment(SDValue Ptr) const6240 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6241   // If this is a GlobalAddress + cst, return the alignment.
6242   const GlobalValue *GV;
6243   int64_t GVOffset = 0;
6244   if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6245     // If GV has specified alignment, then use it. Otherwise, use the preferred
6246     // alignment.
6247     unsigned Align = GV->getAlignment();
6248     if (!Align) {
6249       if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6250         if (GVar->hasInitializer()) {
6251           const TargetData *TD = TLI.getTargetData();
6252           Align = TD->getPreferredAlignment(GVar);
6253         }
6254       }
6255     }
6256     return MinAlign(Align, GVOffset);
6257   }
6258 
6259   // If this is a direct reference to a stack slot, use information about the
6260   // stack slot's alignment.
6261   int FrameIdx = 1 << 31;
6262   int64_t FrameOffset = 0;
6263   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6264     FrameIdx = FI->getIndex();
6265   } else if (Ptr.getOpcode() == ISD::ADD &&
6266              isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6267              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6268     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6269     FrameOffset = Ptr.getConstantOperandVal(1);
6270   }
6271 
6272   if (FrameIdx != (1 << 31)) {
6273     // FIXME: Handle FI+CST.
6274     const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6275     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6276                                     FrameOffset);
6277     return FIInfoAlign;
6278   }
6279 
6280   return 0;
6281 }
6282 
dump() const6283 void SelectionDAG::dump() const {
6284   dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6285 
6286   for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6287        I != E; ++I) {
6288     const SDNode *N = I;
6289     if (!N->hasOneUse() && N != getRoot().getNode())
6290       DumpNodes(N, 2, this);
6291   }
6292 
6293   if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6294 
6295   dbgs() << "\n\n";
6296 }
6297 
printr(raw_ostream & OS,const SelectionDAG * G) const6298 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6299   print_types(OS, G);
6300   print_details(OS, G);
6301 }
6302 
6303 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
DumpNodesr(raw_ostream & OS,const SDNode * N,unsigned indent,const SelectionDAG * G,VisitedSDNodeSet & once)6304 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6305                        const SelectionDAG *G, VisitedSDNodeSet &once) {
6306   if (!once.insert(N))          // If we've been here before, return now.
6307     return;
6308 
6309   // Dump the current SDNode, but don't end the line yet.
6310   OS << std::string(indent, ' ');
6311   N->printr(OS, G);
6312 
6313   // Having printed this SDNode, walk the children:
6314   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6315     const SDNode *child = N->getOperand(i).getNode();
6316 
6317     if (i) OS << ",";
6318     OS << " ";
6319 
6320     if (child->getNumOperands() == 0) {
6321       // This child has no grandchildren; print it inline right here.
6322       child->printr(OS, G);
6323       once.insert(child);
6324     } else {         // Just the address. FIXME: also print the child's opcode.
6325       OS << (void*)child;
6326       if (unsigned RN = N->getOperand(i).getResNo())
6327         OS << ":" << RN;
6328     }
6329   }
6330 
6331   OS << "\n";
6332 
6333   // Dump children that have grandchildren on their own line(s).
6334   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6335     const SDNode *child = N->getOperand(i).getNode();
6336     DumpNodesr(OS, child, indent+2, G, once);
6337   }
6338 }
6339 
dumpr() const6340 void SDNode::dumpr() const {
6341   VisitedSDNodeSet once;
6342   DumpNodesr(dbgs(), this, 0, 0, once);
6343 }
6344 
dumpr(const SelectionDAG * G) const6345 void SDNode::dumpr(const SelectionDAG *G) const {
6346   VisitedSDNodeSet once;
6347   DumpNodesr(dbgs(), this, 0, G, once);
6348 }
6349 
6350 
6351 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const6352 unsigned GlobalAddressSDNode::getAddressSpace() const {
6353   return getGlobal()->getType()->getAddressSpace();
6354 }
6355 
6356 
getType() const6357 const Type *ConstantPoolSDNode::getType() const {
6358   if (isMachineConstantPoolEntry())
6359     return Val.MachineCPVal->getType();
6360   return Val.ConstVal->getType();
6361 }
6362 
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool isBigEndian)6363 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6364                                         APInt &SplatUndef,
6365                                         unsigned &SplatBitSize,
6366                                         bool &HasAnyUndefs,
6367                                         unsigned MinSplatBits,
6368                                         bool isBigEndian) {
6369   EVT VT = getValueType(0);
6370   assert(VT.isVector() && "Expected a vector type");
6371   unsigned sz = VT.getSizeInBits();
6372   if (MinSplatBits > sz)
6373     return false;
6374 
6375   SplatValue = APInt(sz, 0);
6376   SplatUndef = APInt(sz, 0);
6377 
6378   // Get the bits.  Bits with undefined values (when the corresponding element
6379   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6380   // in SplatValue.  If any of the values are not constant, give up and return
6381   // false.
6382   unsigned int nOps = getNumOperands();
6383   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6384   unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6385 
6386   for (unsigned j = 0; j < nOps; ++j) {
6387     unsigned i = isBigEndian ? nOps-1-j : j;
6388     SDValue OpVal = getOperand(i);
6389     unsigned BitPos = j * EltBitSize;
6390 
6391     if (OpVal.getOpcode() == ISD::UNDEF)
6392       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6393     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6394       SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6395                     zextOrTrunc(sz) << BitPos;
6396     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6397       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6398      else
6399       return false;
6400   }
6401 
6402   // The build_vector is all constants or undefs.  Find the smallest element
6403   // size that splats the vector.
6404 
6405   HasAnyUndefs = (SplatUndef != 0);
6406   while (sz > 8) {
6407 
6408     unsigned HalfSize = sz / 2;
6409     APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6410     APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6411     APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6412     APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6413 
6414     // If the two halves do not match (ignoring undef bits), stop here.
6415     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6416         MinSplatBits > HalfSize)
6417       break;
6418 
6419     SplatValue = HighValue | LowValue;
6420     SplatUndef = HighUndef & LowUndef;
6421 
6422     sz = HalfSize;
6423   }
6424 
6425   SplatBitSize = sz;
6426   return true;
6427 }
6428 
isSplatMask(const int * Mask,EVT VT)6429 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6430   // Find the first non-undef value in the shuffle mask.
6431   unsigned i, e;
6432   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6433     /* search */;
6434 
6435   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6436 
6437   // Make sure all remaining elements are either undef or the same as the first
6438   // non-undef value.
6439   for (int Idx = Mask[i]; i != e; ++i)
6440     if (Mask[i] >= 0 && Mask[i] != Idx)
6441       return false;
6442   return true;
6443 }
6444 
6445 #ifdef XDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSet<const SDNode *,32> & Visited,SmallPtrSet<const SDNode *,32> & Checked)6446 static void checkForCyclesHelper(const SDNode *N,
6447                                  SmallPtrSet<const SDNode*, 32> &Visited,
6448                                  SmallPtrSet<const SDNode*, 32> &Checked) {
6449   // If this node has already been checked, don't check it again.
6450   if (Checked.count(N))
6451     return;
6452 
6453   // If a node has already been visited on this depth-first walk, reject it as
6454   // a cycle.
6455   if (!Visited.insert(N)) {
6456     dbgs() << "Offending node:\n";
6457     N->dumprFull();
6458     errs() << "Detected cycle in SelectionDAG\n";
6459     abort();
6460   }
6461 
6462   for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6463     checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6464 
6465   Checked.insert(N);
6466   Visited.erase(N);
6467 }
6468 #endif
6469 
checkForCycles(const llvm::SDNode * N)6470 void llvm::checkForCycles(const llvm::SDNode *N) {
6471 #ifdef XDEBUG
6472   assert(N && "Checking nonexistant SDNode");
6473   SmallPtrSet<const SDNode*, 32> visited;
6474   SmallPtrSet<const SDNode*, 32> checked;
6475   checkForCyclesHelper(N, visited, checked);
6476 #endif
6477 }
6478 
checkForCycles(const llvm::SelectionDAG * DAG)6479 void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6480   checkForCycles(DAG->getRoot().getNode());
6481 }
6482