1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ lambda expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef<const clang::sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture)63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   // Ignore all inner captured regions.
70   unsigned CurScopeIndex = FunctionScopes.size() - 1;
71   while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
72                                   FunctionScopes[CurScopeIndex]))
73     --CurScopeIndex;
74   assert(
75       isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
76       "The function on the top of sema's function-info stack must be a lambda");
77 
78   // If VarToCapture is null, we are attempting to capture 'this'.
79   const bool IsCapturingThis = !VarToCapture;
80   const bool IsCapturingVariable = !IsCapturingThis;
81 
82   // Start with the current lambda at the top of the stack (highest index).
83   DeclContext *EnclosingDC =
84       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
85 
86   do {
87     const clang::sema::LambdaScopeInfo *LSI =
88         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
89     // IF we have climbed down to an intervening enclosing lambda that contains
90     // the variable declaration - it obviously can/must not capture the
91     // variable.
92     // Since its enclosing DC is dependent, all the lambdas between it and the
93     // innermost nested lambda are dependent (otherwise we wouldn't have
94     // arrived here) - so we don't yet have a lambda that can capture the
95     // variable.
96     if (IsCapturingVariable &&
97         VarToCapture->getDeclContext()->Equals(EnclosingDC))
98       return NoLambdaIsCaptureReady;
99 
100     // For an enclosing lambda to be capture ready for an entity, all
101     // intervening lambda's have to be able to capture that entity. If even
102     // one of the intervening lambda's is not capable of capturing the entity
103     // then no enclosing lambda can ever capture that entity.
104     // For e.g.
105     // const int x = 10;
106     // [=](auto a) {    #1
107     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
108     //    [=](auto c) { #3
109     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
110     //    }; }; };
111     // If they do not have a default implicit capture, check to see
112     // if the entity has already been explicitly captured.
113     // If even a single dependent enclosing lambda lacks the capability
114     // to ever capture this variable, there is no further enclosing
115     // non-dependent lambda that can capture this variable.
116     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
117       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
118         return NoLambdaIsCaptureReady;
119       if (IsCapturingThis && !LSI->isCXXThisCaptured())
120         return NoLambdaIsCaptureReady;
121     }
122     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
123 
124     assert(CurScopeIndex);
125     --CurScopeIndex;
126   } while (!EnclosingDC->isTranslationUnit() &&
127            EnclosingDC->isDependentContext() &&
128            isLambdaCallOperator(EnclosingDC));
129 
130   assert(CurScopeIndex < (FunctionScopes.size() - 1));
131   // If the enclosingDC is not dependent, then the immediately nested lambda
132   // (one index above) is capture-ready.
133   if (!EnclosingDC->isDependentContext())
134     return CurScopeIndex + 1;
135   return NoLambdaIsCaptureReady;
136 }
137 
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
143 ///
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 ///     - climb down the stack (i.e. starting from the innermost and examining
150 ///       each outer lambda step by step) checking if each enclosing
151 ///       lambda can either implicitly or explicitly capture the variable.
152 ///       Record the first such lambda that is enclosed in a non-dependent
153 ///       context. If no such lambda currently exists return failure.
154 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 ///  capture the variable by checking all its enclosing lambdas:
156 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
157 ///       identified above in 'a' can also capture the variable (this is done
158 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
159 ///       'this' by passing in the index of the Lambda identified in step 'a')
160 ///
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
163 /// is at the top of the stack.
164 ///
165 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
166 ///
167 ///
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable.  If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
172 
getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef<const sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture,Sema & S)173 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
175     VarDecl *VarToCapture, Sema &S) {
176 
177   const Optional<unsigned> NoLambdaIsCaptureCapable;
178 
179   const Optional<unsigned> OptionalStackIndex =
180       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
181                                                         VarToCapture);
182   if (!OptionalStackIndex)
183     return NoLambdaIsCaptureCapable;
184 
185   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
186   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
187           S.getCurGenericLambda()) &&
188          "The capture ready lambda for a potential capture can only be the "
189          "current lambda if it is a generic lambda");
190 
191   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
192       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
193 
194   // If VarToCapture is null, we are attempting to capture 'this'
195   const bool IsCapturingThis = !VarToCapture;
196   const bool IsCapturingVariable = !IsCapturingThis;
197 
198   if (IsCapturingVariable) {
199     // Check if the capture-ready lambda can truly capture the variable, by
200     // checking whether all enclosing lambdas of the capture-ready lambda allow
201     // the capture - i.e. make sure it is capture-capable.
202     QualType CaptureType, DeclRefType;
203     const bool CanCaptureVariable =
204         !S.tryCaptureVariable(VarToCapture,
205                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
206                               clang::Sema::TryCapture_Implicit,
207                               /*EllipsisLoc*/ SourceLocation(),
208                               /*BuildAndDiagnose*/ false, CaptureType,
209                               DeclRefType, &IndexOfCaptureReadyLambda);
210     if (!CanCaptureVariable)
211       return NoLambdaIsCaptureCapable;
212   } else {
213     // Check if the capture-ready lambda can truly capture 'this' by checking
214     // whether all enclosing lambdas of the capture-ready lambda can capture
215     // 'this'.
216     const bool CanCaptureThis =
217         !S.CheckCXXThisCapture(
218              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
219              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220              &IndexOfCaptureReadyLambda);
221     if (!CanCaptureThis)
222       return NoLambdaIsCaptureCapable;
223   }
224   return IndexOfCaptureReadyLambda;
225 }
226 
227 static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo * LSI,Sema & SemaRef)228 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
229   if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
230     LSI->GLTemplateParameterList = TemplateParameterList::Create(
231         SemaRef.Context,
232         /*Template kw loc*/ SourceLocation(),
233         /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
234         LSI->TemplateParams,
235         /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
236         LSI->RequiresClause.get());
237   }
238   return LSI->GLTemplateParameterList;
239 }
240 
createLambdaClosureType(SourceRange IntroducerRange,TypeSourceInfo * Info,bool KnownDependent,LambdaCaptureDefault CaptureDefault)241 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
242                                              TypeSourceInfo *Info,
243                                              bool KnownDependent,
244                                              LambdaCaptureDefault CaptureDefault) {
245   DeclContext *DC = CurContext;
246   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
247     DC = DC->getParent();
248   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
249                                                                *this);
250   // Start constructing the lambda class.
251   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
252                                                      IntroducerRange.getBegin(),
253                                                      KnownDependent,
254                                                      IsGenericLambda,
255                                                      CaptureDefault);
256   DC->addDecl(Class);
257 
258   return Class;
259 }
260 
261 /// Determine whether the given context is or is enclosed in an inline
262 /// function.
isInInlineFunction(const DeclContext * DC)263 static bool isInInlineFunction(const DeclContext *DC) {
264   while (!DC->isFileContext()) {
265     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
266       if (FD->isInlined())
267         return true;
268 
269     DC = DC->getLexicalParent();
270   }
271 
272   return false;
273 }
274 
275 std::tuple<MangleNumberingContext *, Decl *>
getCurrentMangleNumberContext(const DeclContext * DC)276 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
277   // Compute the context for allocating mangling numbers in the current
278   // expression, if the ABI requires them.
279   Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
280 
281   enum ContextKind {
282     Normal,
283     DefaultArgument,
284     DataMember,
285     StaticDataMember,
286     InlineVariable,
287     VariableTemplate
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302       else if (Var->getMostRecentDecl()->isInline())
303         Kind = InlineVariable;
304       else if (Var->getDescribedVarTemplate())
305         Kind = VariableTemplate;
306       else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
307         if (!VTS->isExplicitSpecialization())
308           Kind = VariableTemplate;
309       }
310     } else if (isa<FieldDecl>(ManglingContextDecl)) {
311       Kind = DataMember;
312     }
313   }
314 
315   // Itanium ABI [5.1.7]:
316   //   In the following contexts [...] the one-definition rule requires closure
317   //   types in different translation units to "correspond":
318   bool IsInNonspecializedTemplate =
319       inTemplateInstantiation() || CurContext->isDependentContext();
320   switch (Kind) {
321   case Normal: {
322     //  -- the bodies of non-exported nonspecialized template functions
323     //  -- the bodies of inline functions
324     if ((IsInNonspecializedTemplate &&
325          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
326         isInInlineFunction(CurContext)) {
327       while (auto *CD = dyn_cast<CapturedDecl>(DC))
328         DC = CD->getParent();
329       return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
330     }
331 
332     return std::make_tuple(nullptr, nullptr);
333   }
334 
335   case StaticDataMember:
336     //  -- the initializers of nonspecialized static members of template classes
337     if (!IsInNonspecializedTemplate)
338       return std::make_tuple(nullptr, ManglingContextDecl);
339     // Fall through to get the current context.
340     LLVM_FALLTHROUGH;
341 
342   case DataMember:
343     //  -- the in-class initializers of class members
344   case DefaultArgument:
345     //  -- default arguments appearing in class definitions
346   case InlineVariable:
347     //  -- the initializers of inline variables
348   case VariableTemplate:
349     //  -- the initializers of templated variables
350     return std::make_tuple(
351         &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
352                                           ManglingContextDecl),
353         ManglingContextDecl);
354   }
355 
356   llvm_unreachable("unexpected context");
357 }
358 
startLambdaDefinition(CXXRecordDecl * Class,SourceRange IntroducerRange,TypeSourceInfo * MethodTypeInfo,SourceLocation EndLoc,ArrayRef<ParmVarDecl * > Params,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)359 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
360                                            SourceRange IntroducerRange,
361                                            TypeSourceInfo *MethodTypeInfo,
362                                            SourceLocation EndLoc,
363                                            ArrayRef<ParmVarDecl *> Params,
364                                            ConstexprSpecKind ConstexprKind,
365                                            Expr *TrailingRequiresClause) {
366   QualType MethodType = MethodTypeInfo->getType();
367   TemplateParameterList *TemplateParams =
368       getGenericLambdaTemplateParameterList(getCurLambda(), *this);
369   // If a lambda appears in a dependent context or is a generic lambda (has
370   // template parameters) and has an 'auto' return type, deduce it to a
371   // dependent type.
372   if (Class->isDependentContext() || TemplateParams) {
373     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
374     QualType Result = FPT->getReturnType();
375     if (Result->isUndeducedType()) {
376       Result = SubstAutoType(Result, Context.DependentTy);
377       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
378                                            FPT->getExtProtoInfo());
379     }
380   }
381 
382   // C++11 [expr.prim.lambda]p5:
383   //   The closure type for a lambda-expression has a public inline function
384   //   call operator (13.5.4) whose parameters and return type are described by
385   //   the lambda-expression's parameter-declaration-clause and
386   //   trailing-return-type respectively.
387   DeclarationName MethodName
388     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
389   DeclarationNameLoc MethodNameLoc =
390       DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange);
391   CXXMethodDecl *Method = CXXMethodDecl::Create(
392       Context, Class, EndLoc,
393       DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
394                           MethodNameLoc),
395       MethodType, MethodTypeInfo, SC_None,
396       /*isInline=*/true, ConstexprKind, EndLoc, TrailingRequiresClause);
397   Method->setAccess(AS_public);
398   if (!TemplateParams)
399     Class->addDecl(Method);
400 
401   // Temporarily set the lexical declaration context to the current
402   // context, so that the Scope stack matches the lexical nesting.
403   Method->setLexicalDeclContext(CurContext);
404   // Create a function template if we have a template parameter list
405   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
406             FunctionTemplateDecl::Create(Context, Class,
407                                          Method->getLocation(), MethodName,
408                                          TemplateParams,
409                                          Method) : nullptr;
410   if (TemplateMethod) {
411     TemplateMethod->setAccess(AS_public);
412     Method->setDescribedFunctionTemplate(TemplateMethod);
413     Class->addDecl(TemplateMethod);
414     TemplateMethod->setLexicalDeclContext(CurContext);
415   }
416 
417   // Add parameters.
418   if (!Params.empty()) {
419     Method->setParams(Params);
420     CheckParmsForFunctionDef(Params,
421                              /*CheckParameterNames=*/false);
422 
423     for (auto P : Method->parameters())
424       P->setOwningFunction(Method);
425   }
426 
427   return Method;
428 }
429 
handleLambdaNumbering(CXXRecordDecl * Class,CXXMethodDecl * Method,Optional<std::tuple<bool,unsigned,unsigned,Decl * >> Mangling)430 void Sema::handleLambdaNumbering(
431     CXXRecordDecl *Class, CXXMethodDecl *Method,
432     Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling) {
433   if (Mangling) {
434     bool HasKnownInternalLinkage;
435     unsigned ManglingNumber, DeviceManglingNumber;
436     Decl *ManglingContextDecl;
437     std::tie(HasKnownInternalLinkage, ManglingNumber, DeviceManglingNumber,
438              ManglingContextDecl) = Mangling.getValue();
439     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
440                              HasKnownInternalLinkage);
441     Class->setDeviceLambdaManglingNumber(DeviceManglingNumber);
442     return;
443   }
444 
445   auto getMangleNumberingContext =
446       [this](CXXRecordDecl *Class,
447              Decl *ManglingContextDecl) -> MangleNumberingContext * {
448     // Get mangle numbering context if there's any extra decl context.
449     if (ManglingContextDecl)
450       return &Context.getManglingNumberContext(
451           ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
452     // Otherwise, from that lambda's decl context.
453     auto DC = Class->getDeclContext();
454     while (auto *CD = dyn_cast<CapturedDecl>(DC))
455       DC = CD->getParent();
456     return &Context.getManglingNumberContext(DC);
457   };
458 
459   MangleNumberingContext *MCtx;
460   Decl *ManglingContextDecl;
461   std::tie(MCtx, ManglingContextDecl) =
462       getCurrentMangleNumberContext(Class->getDeclContext());
463   bool HasKnownInternalLinkage = false;
464   if (!MCtx && getLangOpts().CUDA) {
465     // Force lambda numbering in CUDA/HIP as we need to name lambdas following
466     // ODR. Both device- and host-compilation need to have a consistent naming
467     // on kernel functions. As lambdas are potential part of these `__global__`
468     // function names, they needs numbering following ODR.
469     MCtx = getMangleNumberingContext(Class, ManglingContextDecl);
470     assert(MCtx && "Retrieving mangle numbering context failed!");
471     HasKnownInternalLinkage = true;
472   }
473   if (MCtx) {
474     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
475     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl,
476                              HasKnownInternalLinkage);
477     Class->setDeviceLambdaManglingNumber(MCtx->getDeviceManglingNumber(Method));
478   }
479 }
480 
buildLambdaScope(LambdaScopeInfo * LSI,CXXMethodDecl * CallOperator,SourceRange IntroducerRange,LambdaCaptureDefault CaptureDefault,SourceLocation CaptureDefaultLoc,bool ExplicitParams,bool ExplicitResultType,bool Mutable)481 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
482                                         CXXMethodDecl *CallOperator,
483                                         SourceRange IntroducerRange,
484                                         LambdaCaptureDefault CaptureDefault,
485                                         SourceLocation CaptureDefaultLoc,
486                                         bool ExplicitParams,
487                                         bool ExplicitResultType,
488                                         bool Mutable) {
489   LSI->CallOperator = CallOperator;
490   CXXRecordDecl *LambdaClass = CallOperator->getParent();
491   LSI->Lambda = LambdaClass;
492   if (CaptureDefault == LCD_ByCopy)
493     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
494   else if (CaptureDefault == LCD_ByRef)
495     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
496   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
497   LSI->IntroducerRange = IntroducerRange;
498   LSI->ExplicitParams = ExplicitParams;
499   LSI->Mutable = Mutable;
500 
501   if (ExplicitResultType) {
502     LSI->ReturnType = CallOperator->getReturnType();
503 
504     if (!LSI->ReturnType->isDependentType() &&
505         !LSI->ReturnType->isVoidType()) {
506       if (RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
507                               diag::err_lambda_incomplete_result)) {
508         // Do nothing.
509       }
510     }
511   } else {
512     LSI->HasImplicitReturnType = true;
513   }
514 }
515 
finishLambdaExplicitCaptures(LambdaScopeInfo * LSI)516 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
517   LSI->finishedExplicitCaptures();
518 }
519 
ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,ArrayRef<NamedDecl * > TParams,SourceLocation RAngleLoc,ExprResult RequiresClause)520 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
521                                                     ArrayRef<NamedDecl *> TParams,
522                                                     SourceLocation RAngleLoc,
523                                                     ExprResult RequiresClause) {
524   LambdaScopeInfo *LSI = getCurLambda();
525   assert(LSI && "Expected a lambda scope");
526   assert(LSI->NumExplicitTemplateParams == 0 &&
527          "Already acted on explicit template parameters");
528   assert(LSI->TemplateParams.empty() &&
529          "Explicit template parameters should come "
530          "before invented (auto) ones");
531   assert(!TParams.empty() &&
532          "No template parameters to act on");
533   LSI->TemplateParams.append(TParams.begin(), TParams.end());
534   LSI->NumExplicitTemplateParams = TParams.size();
535   LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
536   LSI->RequiresClause = RequiresClause;
537 }
538 
addLambdaParameters(ArrayRef<LambdaIntroducer::LambdaCapture> Captures,CXXMethodDecl * CallOperator,Scope * CurScope)539 void Sema::addLambdaParameters(
540     ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
541     CXXMethodDecl *CallOperator, Scope *CurScope) {
542   // Introduce our parameters into the function scope
543   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
544        p < NumParams; ++p) {
545     ParmVarDecl *Param = CallOperator->getParamDecl(p);
546 
547     // If this has an identifier, add it to the scope stack.
548     if (CurScope && Param->getIdentifier()) {
549       bool Error = false;
550       // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
551       // retroactively apply it.
552       for (const auto &Capture : Captures) {
553         if (Capture.Id == Param->getIdentifier()) {
554           Error = true;
555           Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
556           Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
557               << Capture.Id << true;
558         }
559       }
560       if (!Error)
561         CheckShadow(CurScope, Param);
562 
563       PushOnScopeChains(Param, CurScope);
564     }
565   }
566 }
567 
568 /// If this expression is an enumerator-like expression of some type
569 /// T, return the type T; otherwise, return null.
570 ///
571 /// Pointer comparisons on the result here should always work because
572 /// it's derived from either the parent of an EnumConstantDecl
573 /// (i.e. the definition) or the declaration returned by
574 /// EnumType::getDecl() (i.e. the definition).
findEnumForBlockReturn(Expr * E)575 static EnumDecl *findEnumForBlockReturn(Expr *E) {
576   // An expression is an enumerator-like expression of type T if,
577   // ignoring parens and parens-like expressions:
578   E = E->IgnoreParens();
579 
580   //  - it is an enumerator whose enum type is T or
581   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
582     if (EnumConstantDecl *D
583           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
584       return cast<EnumDecl>(D->getDeclContext());
585     }
586     return nullptr;
587   }
588 
589   //  - it is a comma expression whose RHS is an enumerator-like
590   //    expression of type T or
591   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
592     if (BO->getOpcode() == BO_Comma)
593       return findEnumForBlockReturn(BO->getRHS());
594     return nullptr;
595   }
596 
597   //  - it is a statement-expression whose value expression is an
598   //    enumerator-like expression of type T or
599   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
600     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
601       return findEnumForBlockReturn(last);
602     return nullptr;
603   }
604 
605   //   - it is a ternary conditional operator (not the GNU ?:
606   //     extension) whose second and third operands are
607   //     enumerator-like expressions of type T or
608   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
609     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
610       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
611         return ED;
612     return nullptr;
613   }
614 
615   // (implicitly:)
616   //   - it is an implicit integral conversion applied to an
617   //     enumerator-like expression of type T or
618   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
619     // We can sometimes see integral conversions in valid
620     // enumerator-like expressions.
621     if (ICE->getCastKind() == CK_IntegralCast)
622       return findEnumForBlockReturn(ICE->getSubExpr());
623 
624     // Otherwise, just rely on the type.
625   }
626 
627   //   - it is an expression of that formal enum type.
628   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
629     return ET->getDecl();
630   }
631 
632   // Otherwise, nope.
633   return nullptr;
634 }
635 
636 /// Attempt to find a type T for which the returned expression of the
637 /// given statement is an enumerator-like expression of that type.
findEnumForBlockReturn(ReturnStmt * ret)638 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
639   if (Expr *retValue = ret->getRetValue())
640     return findEnumForBlockReturn(retValue);
641   return nullptr;
642 }
643 
644 /// Attempt to find a common type T for which all of the returned
645 /// expressions in a block are enumerator-like expressions of that
646 /// type.
findCommonEnumForBlockReturns(ArrayRef<ReturnStmt * > returns)647 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
648   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
649 
650   // Try to find one for the first return.
651   EnumDecl *ED = findEnumForBlockReturn(*i);
652   if (!ED) return nullptr;
653 
654   // Check that the rest of the returns have the same enum.
655   for (++i; i != e; ++i) {
656     if (findEnumForBlockReturn(*i) != ED)
657       return nullptr;
658   }
659 
660   // Never infer an anonymous enum type.
661   if (!ED->hasNameForLinkage()) return nullptr;
662 
663   return ED;
664 }
665 
666 /// Adjust the given return statements so that they formally return
667 /// the given type.  It should require, at most, an IntegralCast.
adjustBlockReturnsToEnum(Sema & S,ArrayRef<ReturnStmt * > returns,QualType returnType)668 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
669                                      QualType returnType) {
670   for (ArrayRef<ReturnStmt*>::iterator
671          i = returns.begin(), e = returns.end(); i != e; ++i) {
672     ReturnStmt *ret = *i;
673     Expr *retValue = ret->getRetValue();
674     if (S.Context.hasSameType(retValue->getType(), returnType))
675       continue;
676 
677     // Right now we only support integral fixup casts.
678     assert(returnType->isIntegralOrUnscopedEnumerationType());
679     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
680 
681     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
682 
683     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
684     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
685                                  /*base path*/ nullptr, VK_RValue,
686                                  FPOptionsOverride());
687     if (cleanups) {
688       cleanups->setSubExpr(E);
689     } else {
690       ret->setRetValue(E);
691     }
692   }
693 }
694 
deduceClosureReturnType(CapturingScopeInfo & CSI)695 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
696   assert(CSI.HasImplicitReturnType);
697   // If it was ever a placeholder, it had to been deduced to DependentTy.
698   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
699   assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
700          "lambda expressions use auto deduction in C++14 onwards");
701 
702   // C++ core issue 975:
703   //   If a lambda-expression does not include a trailing-return-type,
704   //   it is as if the trailing-return-type denotes the following type:
705   //     - if there are no return statements in the compound-statement,
706   //       or all return statements return either an expression of type
707   //       void or no expression or braced-init-list, the type void;
708   //     - otherwise, if all return statements return an expression
709   //       and the types of the returned expressions after
710   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
711   //       array-to-pointer conversion (4.2 [conv.array]), and
712   //       function-to-pointer conversion (4.3 [conv.func]) are the
713   //       same, that common type;
714   //     - otherwise, the program is ill-formed.
715   //
716   // C++ core issue 1048 additionally removes top-level cv-qualifiers
717   // from the types of returned expressions to match the C++14 auto
718   // deduction rules.
719   //
720   // In addition, in blocks in non-C++ modes, if all of the return
721   // statements are enumerator-like expressions of some type T, where
722   // T has a name for linkage, then we infer the return type of the
723   // block to be that type.
724 
725   // First case: no return statements, implicit void return type.
726   ASTContext &Ctx = getASTContext();
727   if (CSI.Returns.empty()) {
728     // It's possible there were simply no /valid/ return statements.
729     // In this case, the first one we found may have at least given us a type.
730     if (CSI.ReturnType.isNull())
731       CSI.ReturnType = Ctx.VoidTy;
732     return;
733   }
734 
735   // Second case: at least one return statement has dependent type.
736   // Delay type checking until instantiation.
737   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
738   if (CSI.ReturnType->isDependentType())
739     return;
740 
741   // Try to apply the enum-fuzz rule.
742   if (!getLangOpts().CPlusPlus) {
743     assert(isa<BlockScopeInfo>(CSI));
744     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
745     if (ED) {
746       CSI.ReturnType = Context.getTypeDeclType(ED);
747       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
748       return;
749     }
750   }
751 
752   // Third case: only one return statement. Don't bother doing extra work!
753   if (CSI.Returns.size() == 1)
754     return;
755 
756   // General case: many return statements.
757   // Check that they all have compatible return types.
758 
759   // We require the return types to strictly match here.
760   // Note that we've already done the required promotions as part of
761   // processing the return statement.
762   for (const ReturnStmt *RS : CSI.Returns) {
763     const Expr *RetE = RS->getRetValue();
764 
765     QualType ReturnType =
766         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
767     if (Context.getCanonicalFunctionResultType(ReturnType) ==
768           Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
769       // Use the return type with the strictest possible nullability annotation.
770       auto RetTyNullability = ReturnType->getNullability(Ctx);
771       auto BlockNullability = CSI.ReturnType->getNullability(Ctx);
772       if (BlockNullability &&
773           (!RetTyNullability ||
774            hasWeakerNullability(*RetTyNullability, *BlockNullability)))
775         CSI.ReturnType = ReturnType;
776       continue;
777     }
778 
779     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
780     // TODO: It's possible that the *first* return is the divergent one.
781     Diag(RS->getBeginLoc(),
782          diag::err_typecheck_missing_return_type_incompatible)
783         << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
784     // Continue iterating so that we keep emitting diagnostics.
785   }
786 }
787 
buildLambdaInitCaptureInitialization(SourceLocation Loc,bool ByRef,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions,IdentifierInfo * Id,bool IsDirectInit,Expr * & Init)788 QualType Sema::buildLambdaInitCaptureInitialization(
789     SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
790     Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool IsDirectInit,
791     Expr *&Init) {
792   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
793   // deduce against.
794   QualType DeductType = Context.getAutoDeductType();
795   TypeLocBuilder TLB;
796   AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
797   TL.setNameLoc(Loc);
798   if (ByRef) {
799     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
800     assert(!DeductType.isNull() && "can't build reference to auto");
801     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
802   }
803   if (EllipsisLoc.isValid()) {
804     if (Init->containsUnexpandedParameterPack()) {
805       Diag(EllipsisLoc, getLangOpts().CPlusPlus20
806                             ? diag::warn_cxx17_compat_init_capture_pack
807                             : diag::ext_init_capture_pack);
808       DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
809                                                 /*ExpectPackInType=*/false);
810       TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
811     } else {
812       // Just ignore the ellipsis for now and form a non-pack variable. We'll
813       // diagnose this later when we try to capture it.
814     }
815   }
816   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
817 
818   // Deduce the type of the init capture.
819   QualType DeducedType = deduceVarTypeFromInitializer(
820       /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
821       SourceRange(Loc, Loc), IsDirectInit, Init);
822   if (DeducedType.isNull())
823     return QualType();
824 
825   // Are we a non-list direct initialization?
826   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
827 
828   // Perform initialization analysis and ensure any implicit conversions
829   // (such as lvalue-to-rvalue) are enforced.
830   InitializedEntity Entity =
831       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
832   InitializationKind Kind =
833       IsDirectInit
834           ? (CXXDirectInit ? InitializationKind::CreateDirect(
835                                  Loc, Init->getBeginLoc(), Init->getEndLoc())
836                            : InitializationKind::CreateDirectList(Loc))
837           : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
838 
839   MultiExprArg Args = Init;
840   if (CXXDirectInit)
841     Args =
842         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
843   QualType DclT;
844   InitializationSequence InitSeq(*this, Entity, Kind, Args);
845   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
846 
847   if (Result.isInvalid())
848     return QualType();
849 
850   Init = Result.getAs<Expr>();
851   return DeducedType;
852 }
853 
createLambdaInitCaptureVarDecl(SourceLocation Loc,QualType InitCaptureType,SourceLocation EllipsisLoc,IdentifierInfo * Id,unsigned InitStyle,Expr * Init)854 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
855                                               QualType InitCaptureType,
856                                               SourceLocation EllipsisLoc,
857                                               IdentifierInfo *Id,
858                                               unsigned InitStyle, Expr *Init) {
859   // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
860   // rather than reconstructing it here.
861   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
862   if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
863     PETL.setEllipsisLoc(EllipsisLoc);
864 
865   // Create a dummy variable representing the init-capture. This is not actually
866   // used as a variable, and only exists as a way to name and refer to the
867   // init-capture.
868   // FIXME: Pass in separate source locations for '&' and identifier.
869   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
870                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
871   NewVD->setInitCapture(true);
872   NewVD->setReferenced(true);
873   // FIXME: Pass in a VarDecl::InitializationStyle.
874   NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
875   NewVD->markUsed(Context);
876   NewVD->setInit(Init);
877   if (NewVD->isParameterPack())
878     getCurLambda()->LocalPacks.push_back(NewVD);
879   return NewVD;
880 }
881 
addInitCapture(LambdaScopeInfo * LSI,VarDecl * Var)882 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var) {
883   assert(Var->isInitCapture() && "init capture flag should be set");
884   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
885                   /*isNested*/false, Var->getLocation(), SourceLocation(),
886                   Var->getType(), /*Invalid*/false);
887 }
888 
ActOnStartOfLambdaDefinition(LambdaIntroducer & Intro,Declarator & ParamInfo,Scope * CurScope)889 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
890                                         Declarator &ParamInfo,
891                                         Scope *CurScope) {
892   LambdaScopeInfo *const LSI = getCurLambda();
893   assert(LSI && "LambdaScopeInfo should be on stack!");
894 
895   // Determine if we're within a context where we know that the lambda will
896   // be dependent, because there are template parameters in scope.
897   bool KnownDependent;
898   if (LSI->NumExplicitTemplateParams > 0) {
899     auto *TemplateParamScope = CurScope->getTemplateParamParent();
900     assert(TemplateParamScope &&
901            "Lambda with explicit template param list should establish a "
902            "template param scope");
903     assert(TemplateParamScope->getParent());
904     KnownDependent = TemplateParamScope->getParent()
905                                        ->getTemplateParamParent() != nullptr;
906   } else {
907     KnownDependent = CurScope->getTemplateParamParent() != nullptr;
908   }
909 
910   // Determine the signature of the call operator.
911   TypeSourceInfo *MethodTyInfo;
912   bool ExplicitParams = true;
913   bool ExplicitResultType = true;
914   bool ContainsUnexpandedParameterPack = false;
915   SourceLocation EndLoc;
916   SmallVector<ParmVarDecl *, 8> Params;
917   if (ParamInfo.getNumTypeObjects() == 0) {
918     // C++11 [expr.prim.lambda]p4:
919     //   If a lambda-expression does not include a lambda-declarator, it is as
920     //   if the lambda-declarator were ().
921     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
922         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
923     EPI.HasTrailingReturn = true;
924     EPI.TypeQuals.addConst();
925     LangAS AS = getDefaultCXXMethodAddrSpace();
926     if (AS != LangAS::Default)
927       EPI.TypeQuals.addAddressSpace(AS);
928 
929     // C++1y [expr.prim.lambda]:
930     //   The lambda return type is 'auto', which is replaced by the
931     //   trailing-return type if provided and/or deduced from 'return'
932     //   statements
933     // We don't do this before C++1y, because we don't support deduced return
934     // types there.
935     QualType DefaultTypeForNoTrailingReturn =
936         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
937                                   : Context.DependentTy;
938     QualType MethodTy =
939         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
940     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
941     ExplicitParams = false;
942     ExplicitResultType = false;
943     EndLoc = Intro.Range.getEnd();
944   } else {
945     assert(ParamInfo.isFunctionDeclarator() &&
946            "lambda-declarator is a function");
947     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
948 
949     // C++11 [expr.prim.lambda]p5:
950     //   This function call operator is declared const (9.3.1) if and only if
951     //   the lambda-expression's parameter-declaration-clause is not followed
952     //   by mutable. It is neither virtual nor declared volatile. [...]
953     if (!FTI.hasMutableQualifier()) {
954       FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const,
955                                                     SourceLocation());
956     }
957 
958     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
959     assert(MethodTyInfo && "no type from lambda-declarator");
960     EndLoc = ParamInfo.getSourceRange().getEnd();
961 
962     ExplicitResultType = FTI.hasTrailingReturnType();
963 
964     if (FTIHasNonVoidParameters(FTI)) {
965       Params.reserve(FTI.NumParams);
966       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
967         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
968     }
969 
970     // Check for unexpanded parameter packs in the method type.
971     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
972       DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
973                                       UPPC_DeclarationType);
974   }
975 
976   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
977                                                  KnownDependent, Intro.Default);
978   CXXMethodDecl *Method =
979       startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
980                             ParamInfo.getDeclSpec().getConstexprSpecifier(),
981                             ParamInfo.getTrailingRequiresClause());
982   if (ExplicitParams)
983     CheckCXXDefaultArguments(Method);
984 
985   // This represents the function body for the lambda function, check if we
986   // have to apply optnone due to a pragma.
987   AddRangeBasedOptnone(Method);
988 
989   // code_seg attribute on lambda apply to the method.
990   if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
991     Method->addAttr(A);
992 
993   // Attributes on the lambda apply to the method.
994   ProcessDeclAttributes(CurScope, Method, ParamInfo);
995 
996   // CUDA lambdas get implicit host and device attributes.
997   if (getLangOpts().CUDA)
998     CUDASetLambdaAttrs(Method);
999 
1000   // OpenMP lambdas might get assumumption attributes.
1001   if (LangOpts.OpenMP)
1002     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1003 
1004   // Number the lambda for linkage purposes if necessary.
1005   handleLambdaNumbering(Class, Method);
1006 
1007   // Introduce the function call operator as the current declaration context.
1008   PushDeclContext(CurScope, Method);
1009 
1010   // Build the lambda scope.
1011   buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
1012                    ExplicitParams, ExplicitResultType, !Method->isConst());
1013 
1014   // C++11 [expr.prim.lambda]p9:
1015   //   A lambda-expression whose smallest enclosing scope is a block scope is a
1016   //   local lambda expression; any other lambda expression shall not have a
1017   //   capture-default or simple-capture in its lambda-introducer.
1018   //
1019   // For simple-captures, this is covered by the check below that any named
1020   // entity is a variable that can be captured.
1021   //
1022   // For DR1632, we also allow a capture-default in any context where we can
1023   // odr-use 'this' (in particular, in a default initializer for a non-static
1024   // data member).
1025   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
1026       (getCurrentThisType().isNull() ||
1027        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1028                            /*BuildAndDiagnose*/false)))
1029     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1030 
1031   // Distinct capture names, for diagnostics.
1032   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
1033 
1034   // Handle explicit captures.
1035   SourceLocation PrevCaptureLoc
1036     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
1037   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1038        PrevCaptureLoc = C->Loc, ++C) {
1039     if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1040       if (C->Kind == LCK_StarThis)
1041         Diag(C->Loc, !getLangOpts().CPlusPlus17
1042                              ? diag::ext_star_this_lambda_capture_cxx17
1043                              : diag::warn_cxx14_compat_star_this_lambda_capture);
1044 
1045       // C++11 [expr.prim.lambda]p8:
1046       //   An identifier or this shall not appear more than once in a
1047       //   lambda-capture.
1048       if (LSI->isCXXThisCaptured()) {
1049         Diag(C->Loc, diag::err_capture_more_than_once)
1050             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1051             << FixItHint::CreateRemoval(
1052                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1053         continue;
1054       }
1055 
1056       // C++2a [expr.prim.lambda]p8:
1057       //  If a lambda-capture includes a capture-default that is =,
1058       //  each simple-capture of that lambda-capture shall be of the form
1059       //  "&identifier", "this", or "* this". [ Note: The form [&,this] is
1060       //  redundant but accepted for compatibility with ISO C++14. --end note ]
1061       if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1062         Diag(C->Loc, !getLangOpts().CPlusPlus20
1063                          ? diag::ext_equals_this_lambda_capture_cxx20
1064                          : diag::warn_cxx17_compat_equals_this_lambda_capture);
1065 
1066       // C++11 [expr.prim.lambda]p12:
1067       //   If this is captured by a local lambda expression, its nearest
1068       //   enclosing function shall be a non-static member function.
1069       QualType ThisCaptureType = getCurrentThisType();
1070       if (ThisCaptureType.isNull()) {
1071         Diag(C->Loc, diag::err_this_capture) << true;
1072         continue;
1073       }
1074 
1075       CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1076                           /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1077                           C->Kind == LCK_StarThis);
1078       if (!LSI->Captures.empty())
1079         LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1080       continue;
1081     }
1082 
1083     assert(C->Id && "missing identifier for capture");
1084 
1085     if (C->Init.isInvalid())
1086       continue;
1087 
1088     VarDecl *Var = nullptr;
1089     if (C->Init.isUsable()) {
1090       Diag(C->Loc, getLangOpts().CPlusPlus14
1091                        ? diag::warn_cxx11_compat_init_capture
1092                        : diag::ext_init_capture);
1093 
1094       // If the initializer expression is usable, but the InitCaptureType
1095       // is not, then an error has occurred - so ignore the capture for now.
1096       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1097       // FIXME: we should create the init capture variable and mark it invalid
1098       // in this case.
1099       if (C->InitCaptureType.get().isNull())
1100         continue;
1101 
1102       if (C->Init.get()->containsUnexpandedParameterPack() &&
1103           !C->InitCaptureType.get()->getAs<PackExpansionType>())
1104         DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1105 
1106       unsigned InitStyle;
1107       switch (C->InitKind) {
1108       case LambdaCaptureInitKind::NoInit:
1109         llvm_unreachable("not an init-capture?");
1110       case LambdaCaptureInitKind::CopyInit:
1111         InitStyle = VarDecl::CInit;
1112         break;
1113       case LambdaCaptureInitKind::DirectInit:
1114         InitStyle = VarDecl::CallInit;
1115         break;
1116       case LambdaCaptureInitKind::ListInit:
1117         InitStyle = VarDecl::ListInit;
1118         break;
1119       }
1120       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1121                                            C->EllipsisLoc, C->Id, InitStyle,
1122                                            C->Init.get());
1123       // C++1y [expr.prim.lambda]p11:
1124       //   An init-capture behaves as if it declares and explicitly
1125       //   captures a variable [...] whose declarative region is the
1126       //   lambda-expression's compound-statement
1127       if (Var)
1128         PushOnScopeChains(Var, CurScope, false);
1129     } else {
1130       assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1131              "init capture has valid but null init?");
1132 
1133       // C++11 [expr.prim.lambda]p8:
1134       //   If a lambda-capture includes a capture-default that is &, the
1135       //   identifiers in the lambda-capture shall not be preceded by &.
1136       //   If a lambda-capture includes a capture-default that is =, [...]
1137       //   each identifier it contains shall be preceded by &.
1138       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1139         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1140             << FixItHint::CreateRemoval(
1141                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1142         continue;
1143       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1144         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1145             << FixItHint::CreateRemoval(
1146                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1147         continue;
1148       }
1149 
1150       // C++11 [expr.prim.lambda]p10:
1151       //   The identifiers in a capture-list are looked up using the usual
1152       //   rules for unqualified name lookup (3.4.1)
1153       DeclarationNameInfo Name(C->Id, C->Loc);
1154       LookupResult R(*this, Name, LookupOrdinaryName);
1155       LookupName(R, CurScope);
1156       if (R.isAmbiguous())
1157         continue;
1158       if (R.empty()) {
1159         // FIXME: Disable corrections that would add qualification?
1160         CXXScopeSpec ScopeSpec;
1161         DeclFilterCCC<VarDecl> Validator{};
1162         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1163           continue;
1164       }
1165 
1166       Var = R.getAsSingle<VarDecl>();
1167       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1168         continue;
1169     }
1170 
1171     // C++11 [expr.prim.lambda]p8:
1172     //   An identifier or this shall not appear more than once in a
1173     //   lambda-capture.
1174     if (!CaptureNames.insert(C->Id).second) {
1175       if (Var && LSI->isCaptured(Var)) {
1176         Diag(C->Loc, diag::err_capture_more_than_once)
1177             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1178             << FixItHint::CreateRemoval(
1179                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1180       } else
1181         // Previous capture captured something different (one or both was
1182         // an init-cpature): no fixit.
1183         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1184       continue;
1185     }
1186 
1187     // C++11 [expr.prim.lambda]p10:
1188     //   [...] each such lookup shall find a variable with automatic storage
1189     //   duration declared in the reaching scope of the local lambda expression.
1190     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1191     if (!Var) {
1192       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1193       continue;
1194     }
1195 
1196     // Ignore invalid decls; they'll just confuse the code later.
1197     if (Var->isInvalidDecl())
1198       continue;
1199 
1200     if (!Var->hasLocalStorage()) {
1201       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1202       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1203       continue;
1204     }
1205 
1206     // C++11 [expr.prim.lambda]p23:
1207     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1208     SourceLocation EllipsisLoc;
1209     if (C->EllipsisLoc.isValid()) {
1210       if (Var->isParameterPack()) {
1211         EllipsisLoc = C->EllipsisLoc;
1212       } else {
1213         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1214             << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1215                                    : SourceRange(C->Loc));
1216 
1217         // Just ignore the ellipsis.
1218       }
1219     } else if (Var->isParameterPack()) {
1220       ContainsUnexpandedParameterPack = true;
1221     }
1222 
1223     if (C->Init.isUsable()) {
1224       addInitCapture(LSI, Var);
1225     } else {
1226       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1227                                                    TryCapture_ExplicitByVal;
1228       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1229     }
1230     if (!LSI->Captures.empty())
1231       LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1232   }
1233   finishLambdaExplicitCaptures(LSI);
1234 
1235   LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1236 
1237   // Add lambda parameters into scope.
1238   addLambdaParameters(Intro.Captures, Method, CurScope);
1239 
1240   // Enter a new evaluation context to insulate the lambda from any
1241   // cleanups from the enclosing full-expression.
1242   PushExpressionEvaluationContext(
1243       LSI->CallOperator->isConsteval()
1244           ? ExpressionEvaluationContext::ConstantEvaluated
1245           : ExpressionEvaluationContext::PotentiallyEvaluated);
1246 }
1247 
ActOnLambdaError(SourceLocation StartLoc,Scope * CurScope,bool IsInstantiation)1248 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1249                             bool IsInstantiation) {
1250   LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1251 
1252   // Leave the expression-evaluation context.
1253   DiscardCleanupsInEvaluationContext();
1254   PopExpressionEvaluationContext();
1255 
1256   // Leave the context of the lambda.
1257   if (!IsInstantiation)
1258     PopDeclContext();
1259 
1260   // Finalize the lambda.
1261   CXXRecordDecl *Class = LSI->Lambda;
1262   Class->setInvalidDecl();
1263   SmallVector<Decl*, 4> Fields(Class->fields());
1264   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1265               SourceLocation(), ParsedAttributesView());
1266   CheckCompletedCXXClass(nullptr, Class);
1267 
1268   PopFunctionScopeInfo();
1269 }
1270 
1271 template <typename Func>
repeatForLambdaConversionFunctionCallingConvs(Sema & S,const FunctionProtoType & CallOpProto,Func F)1272 static void repeatForLambdaConversionFunctionCallingConvs(
1273     Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1274   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1275       CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1276   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1277       CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1278   CallingConv CallOpCC = CallOpProto.getCallConv();
1279 
1280   /// Implement emitting a version of the operator for many of the calling
1281   /// conventions for MSVC, as described here:
1282   /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1283   /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1284   /// vectorcall are generated by MSVC when it is supported by the target.
1285   /// Additionally, we are ensuring that the default-free/default-member and
1286   /// call-operator calling convention are generated as well.
1287   /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1288   /// 'member default', despite MSVC not doing so. We do this in order to ensure
1289   /// that someone who intentionally places 'thiscall' on the lambda call
1290   /// operator will still get that overload, since we don't have the a way of
1291   /// detecting the attribute by the time we get here.
1292   if (S.getLangOpts().MSVCCompat) {
1293     CallingConv Convs[] = {
1294         CC_C,        CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1295         DefaultFree, DefaultMember, CallOpCC};
1296     llvm::sort(Convs);
1297     llvm::iterator_range<CallingConv *> Range(
1298         std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1299     const TargetInfo &TI = S.getASTContext().getTargetInfo();
1300 
1301     for (CallingConv C : Range) {
1302       if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1303         F(C);
1304     }
1305     return;
1306   }
1307 
1308   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1309     F(DefaultFree);
1310     F(DefaultMember);
1311   } else {
1312     F(CallOpCC);
1313   }
1314 }
1315 
1316 // Returns the 'standard' calling convention to be used for the lambda
1317 // conversion function, that is, the 'free' function calling convention unless
1318 // it is overridden by a non-default calling convention attribute.
1319 static CallingConv
getLambdaConversionFunctionCallConv(Sema & S,const FunctionProtoType * CallOpProto)1320 getLambdaConversionFunctionCallConv(Sema &S,
1321                                     const FunctionProtoType *CallOpProto) {
1322   CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1323       CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1324   CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1325       CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1326   CallingConv CallOpCC = CallOpProto->getCallConv();
1327 
1328   // If the call-operator hasn't been changed, return both the 'free' and
1329   // 'member' function calling convention.
1330   if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1331     return DefaultFree;
1332   return CallOpCC;
1333 }
1334 
getLambdaConversionFunctionResultType(const FunctionProtoType * CallOpProto,CallingConv CC)1335 QualType Sema::getLambdaConversionFunctionResultType(
1336     const FunctionProtoType *CallOpProto, CallingConv CC) {
1337   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1338       CallOpProto->getExtProtoInfo();
1339   FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1340   InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1341   InvokerExtInfo.TypeQuals = Qualifiers();
1342   assert(InvokerExtInfo.RefQualifier == RQ_None &&
1343          "Lambda's call operator should not have a reference qualifier");
1344   return Context.getFunctionType(CallOpProto->getReturnType(),
1345                                  CallOpProto->getParamTypes(), InvokerExtInfo);
1346 }
1347 
1348 /// Add a lambda's conversion to function pointer, as described in
1349 /// C++11 [expr.prim.lambda]p6.
addFunctionPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator,QualType InvokerFunctionTy)1350 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1351                                          CXXRecordDecl *Class,
1352                                          CXXMethodDecl *CallOperator,
1353                                          QualType InvokerFunctionTy) {
1354   // This conversion is explicitly disabled if the lambda's function has
1355   // pass_object_size attributes on any of its parameters.
1356   auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1357     return P->hasAttr<PassObjectSizeAttr>();
1358   };
1359   if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1360     return;
1361 
1362   // Add the conversion to function pointer.
1363   QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1364 
1365   // Create the type of the conversion function.
1366   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1367       S.Context.getDefaultCallingConvention(
1368       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1369   // The conversion function is always const and noexcept.
1370   ConvExtInfo.TypeQuals = Qualifiers();
1371   ConvExtInfo.TypeQuals.addConst();
1372   ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1373   QualType ConvTy =
1374       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1375 
1376   SourceLocation Loc = IntroducerRange.getBegin();
1377   DeclarationName ConversionName
1378     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1379         S.Context.getCanonicalType(PtrToFunctionTy));
1380   // Construct a TypeSourceInfo for the conversion function, and wire
1381   // all the parameters appropriately for the FunctionProtoTypeLoc
1382   // so that everything works during transformation/instantiation of
1383   // generic lambdas.
1384   // The main reason for wiring up the parameters of the conversion
1385   // function with that of the call operator is so that constructs
1386   // like the following work:
1387   // auto L = [](auto b) {                <-- 1
1388   //   return [](auto a) -> decltype(a) { <-- 2
1389   //      return a;
1390   //   };
1391   // };
1392   // int (*fp)(int) = L(5);
1393   // Because the trailing return type can contain DeclRefExprs that refer
1394   // to the original call operator's variables, we hijack the call
1395   // operators ParmVarDecls below.
1396   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1397       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1398   DeclarationNameLoc ConvNameLoc =
1399       DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1400 
1401   // The conversion function is a conversion to a pointer-to-function.
1402   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1403   FunctionProtoTypeLoc ConvTL =
1404       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1405   // Get the result of the conversion function which is a pointer-to-function.
1406   PointerTypeLoc PtrToFunctionTL =
1407       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1408   // Do the same for the TypeSourceInfo that is used to name the conversion
1409   // operator.
1410   PointerTypeLoc ConvNamePtrToFunctionTL =
1411       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1412 
1413   // Get the underlying function types that the conversion function will
1414   // be converting to (should match the type of the call operator).
1415   FunctionProtoTypeLoc CallOpConvTL =
1416       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1417   FunctionProtoTypeLoc CallOpConvNameTL =
1418     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1419 
1420   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1421   // These parameter's are essentially used to transform the name and
1422   // the type of the conversion operator.  By using the same parameters
1423   // as the call operator's we don't have to fix any back references that
1424   // the trailing return type of the call operator's uses (such as
1425   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1426   // - we can simply use the return type of the call operator, and
1427   // everything should work.
1428   SmallVector<ParmVarDecl *, 4> InvokerParams;
1429   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1430     ParmVarDecl *From = CallOperator->getParamDecl(I);
1431 
1432     InvokerParams.push_back(ParmVarDecl::Create(
1433         S.Context,
1434         // Temporarily add to the TU. This is set to the invoker below.
1435         S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1436         From->getLocation(), From->getIdentifier(), From->getType(),
1437         From->getTypeSourceInfo(), From->getStorageClass(),
1438         /*DefArg=*/nullptr));
1439     CallOpConvTL.setParam(I, From);
1440     CallOpConvNameTL.setParam(I, From);
1441   }
1442 
1443   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1444       S.Context, Class, Loc,
1445       DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1446       /*isInline=*/true, ExplicitSpecifier(),
1447       S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1448                                   : ConstexprSpecKind::Unspecified,
1449       CallOperator->getBody()->getEndLoc());
1450   Conversion->setAccess(AS_public);
1451   Conversion->setImplicit(true);
1452 
1453   if (Class->isGenericLambda()) {
1454     // Create a template version of the conversion operator, using the template
1455     // parameter list of the function call operator.
1456     FunctionTemplateDecl *TemplateCallOperator =
1457             CallOperator->getDescribedFunctionTemplate();
1458     FunctionTemplateDecl *ConversionTemplate =
1459                   FunctionTemplateDecl::Create(S.Context, Class,
1460                                       Loc, ConversionName,
1461                                       TemplateCallOperator->getTemplateParameters(),
1462                                       Conversion);
1463     ConversionTemplate->setAccess(AS_public);
1464     ConversionTemplate->setImplicit(true);
1465     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1466     Class->addDecl(ConversionTemplate);
1467   } else
1468     Class->addDecl(Conversion);
1469   // Add a non-static member function that will be the result of
1470   // the conversion with a certain unique ID.
1471   DeclarationName InvokerName = &S.Context.Idents.get(
1472                                                  getLambdaStaticInvokerName());
1473   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1474   // we should get a prebuilt TrivialTypeSourceInfo from Context
1475   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1476   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1477   // loop below and then use its Params to set Invoke->setParams(...) below.
1478   // This would avoid the 'const' qualifier of the calloperator from
1479   // contaminating the type of the invoker, which is currently adjusted
1480   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1481   // trailing return type of the invoker would require a visitor to rebuild
1482   // the trailing return type and adjusting all back DeclRefExpr's to refer
1483   // to the new static invoker parameters - not the call operator's.
1484   CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1485       S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1486       InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1487       /*isInline=*/true, ConstexprSpecKind::Unspecified,
1488       CallOperator->getBody()->getEndLoc());
1489   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1490     InvokerParams[I]->setOwningFunction(Invoke);
1491   Invoke->setParams(InvokerParams);
1492   Invoke->setAccess(AS_private);
1493   Invoke->setImplicit(true);
1494   if (Class->isGenericLambda()) {
1495     FunctionTemplateDecl *TemplateCallOperator =
1496             CallOperator->getDescribedFunctionTemplate();
1497     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1498                           S.Context, Class, Loc, InvokerName,
1499                           TemplateCallOperator->getTemplateParameters(),
1500                           Invoke);
1501     StaticInvokerTemplate->setAccess(AS_private);
1502     StaticInvokerTemplate->setImplicit(true);
1503     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1504     Class->addDecl(StaticInvokerTemplate);
1505   } else
1506     Class->addDecl(Invoke);
1507 }
1508 
1509 /// Add a lambda's conversion to function pointers, as described in
1510 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1511 /// single pointer conversion. In the event that the default calling convention
1512 /// for free and member functions is different, it will emit both conventions.
addFunctionPointerConversions(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1513 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1514                                           CXXRecordDecl *Class,
1515                                           CXXMethodDecl *CallOperator) {
1516   const FunctionProtoType *CallOpProto =
1517       CallOperator->getType()->castAs<FunctionProtoType>();
1518 
1519   repeatForLambdaConversionFunctionCallingConvs(
1520       S, *CallOpProto, [&](CallingConv CC) {
1521         QualType InvokerFunctionTy =
1522             S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1523         addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1524                                      InvokerFunctionTy);
1525       });
1526 }
1527 
1528 /// Add a lambda's conversion to block pointer.
addBlockPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1529 static void addBlockPointerConversion(Sema &S,
1530                                       SourceRange IntroducerRange,
1531                                       CXXRecordDecl *Class,
1532                                       CXXMethodDecl *CallOperator) {
1533   const FunctionProtoType *CallOpProto =
1534       CallOperator->getType()->castAs<FunctionProtoType>();
1535   QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1536       CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1537   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1538 
1539   FunctionProtoType::ExtProtoInfo ConversionEPI(
1540       S.Context.getDefaultCallingConvention(
1541           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1542   ConversionEPI.TypeQuals = Qualifiers();
1543   ConversionEPI.TypeQuals.addConst();
1544   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1545 
1546   SourceLocation Loc = IntroducerRange.getBegin();
1547   DeclarationName Name
1548     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1549         S.Context.getCanonicalType(BlockPtrTy));
1550   DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc(
1551       S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1552   CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1553       S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1554       S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1555       /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1556       CallOperator->getBody()->getEndLoc());
1557   Conversion->setAccess(AS_public);
1558   Conversion->setImplicit(true);
1559   Class->addDecl(Conversion);
1560 }
1561 
BuildCaptureInit(const Capture & Cap,SourceLocation ImplicitCaptureLoc,bool IsOpenMPMapping)1562 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1563                                   SourceLocation ImplicitCaptureLoc,
1564                                   bool IsOpenMPMapping) {
1565   // VLA captures don't have a stored initialization expression.
1566   if (Cap.isVLATypeCapture())
1567     return ExprResult();
1568 
1569   // An init-capture is initialized directly from its stored initializer.
1570   if (Cap.isInitCapture())
1571     return Cap.getVariable()->getInit();
1572 
1573   // For anything else, build an initialization expression. For an implicit
1574   // capture, the capture notionally happens at the capture-default, so use
1575   // that location here.
1576   SourceLocation Loc =
1577       ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1578 
1579   // C++11 [expr.prim.lambda]p21:
1580   //   When the lambda-expression is evaluated, the entities that
1581   //   are captured by copy are used to direct-initialize each
1582   //   corresponding non-static data member of the resulting closure
1583   //   object. (For array members, the array elements are
1584   //   direct-initialized in increasing subscript order.) These
1585   //   initializations are performed in the (unspecified) order in
1586   //   which the non-static data members are declared.
1587 
1588   // C++ [expr.prim.lambda]p12:
1589   //   An entity captured by a lambda-expression is odr-used (3.2) in
1590   //   the scope containing the lambda-expression.
1591   ExprResult Init;
1592   IdentifierInfo *Name = nullptr;
1593   if (Cap.isThisCapture()) {
1594     QualType ThisTy = getCurrentThisType();
1595     Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1596     if (Cap.isCopyCapture())
1597       Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1598     else
1599       Init = This;
1600   } else {
1601     assert(Cap.isVariableCapture() && "unknown kind of capture");
1602     VarDecl *Var = Cap.getVariable();
1603     Name = Var->getIdentifier();
1604     Init = BuildDeclarationNameExpr(
1605       CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1606   }
1607 
1608   // In OpenMP, the capture kind doesn't actually describe how to capture:
1609   // variables are "mapped" onto the device in a process that does not formally
1610   // make a copy, even for a "copy capture".
1611   if (IsOpenMPMapping)
1612     return Init;
1613 
1614   if (Init.isInvalid())
1615     return ExprError();
1616 
1617   Expr *InitExpr = Init.get();
1618   InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1619       Name, Cap.getCaptureType(), Loc);
1620   InitializationKind InitKind =
1621       InitializationKind::CreateDirect(Loc, Loc, Loc);
1622   InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1623   return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1624 }
1625 
ActOnLambdaExpr(SourceLocation StartLoc,Stmt * Body,Scope * CurScope)1626 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1627                                  Scope *CurScope) {
1628   LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1629   ActOnFinishFunctionBody(LSI.CallOperator, Body);
1630   return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1631 }
1632 
1633 static LambdaCaptureDefault
mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS)1634 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1635   switch (ICS) {
1636   case CapturingScopeInfo::ImpCap_None:
1637     return LCD_None;
1638   case CapturingScopeInfo::ImpCap_LambdaByval:
1639     return LCD_ByCopy;
1640   case CapturingScopeInfo::ImpCap_CapturedRegion:
1641   case CapturingScopeInfo::ImpCap_LambdaByref:
1642     return LCD_ByRef;
1643   case CapturingScopeInfo::ImpCap_Block:
1644     llvm_unreachable("block capture in lambda");
1645   }
1646   llvm_unreachable("Unknown implicit capture style");
1647 }
1648 
CaptureHasSideEffects(const Capture & From)1649 bool Sema::CaptureHasSideEffects(const Capture &From) {
1650   if (From.isInitCapture()) {
1651     Expr *Init = From.getVariable()->getInit();
1652     if (Init && Init->HasSideEffects(Context))
1653       return true;
1654   }
1655 
1656   if (!From.isCopyCapture())
1657     return false;
1658 
1659   const QualType T = From.isThisCapture()
1660                          ? getCurrentThisType()->getPointeeType()
1661                          : From.getCaptureType();
1662 
1663   if (T.isVolatileQualified())
1664     return true;
1665 
1666   const Type *BaseT = T->getBaseElementTypeUnsafe();
1667   if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1668     return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1669            !RD->hasTrivialDestructor();
1670 
1671   return false;
1672 }
1673 
DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,const Capture & From)1674 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1675                                        const Capture &From) {
1676   if (CaptureHasSideEffects(From))
1677     return false;
1678 
1679   if (From.isVLATypeCapture())
1680     return false;
1681 
1682   auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
1683   if (From.isThisCapture())
1684     diag << "'this'";
1685   else
1686     diag << From.getVariable();
1687   diag << From.isNonODRUsed();
1688   diag << FixItHint::CreateRemoval(CaptureRange);
1689   return true;
1690 }
1691 
1692 /// Create a field within the lambda class or captured statement record for the
1693 /// given capture.
BuildCaptureField(RecordDecl * RD,const sema::Capture & Capture)1694 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
1695                                    const sema::Capture &Capture) {
1696   SourceLocation Loc = Capture.getLocation();
1697   QualType FieldType = Capture.getCaptureType();
1698 
1699   TypeSourceInfo *TSI = nullptr;
1700   if (Capture.isVariableCapture()) {
1701     auto *Var = Capture.getVariable();
1702     if (Var->isInitCapture())
1703       TSI = Capture.getVariable()->getTypeSourceInfo();
1704   }
1705 
1706   // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1707   // appropriate, at least for an implicit capture.
1708   if (!TSI)
1709     TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
1710 
1711   // Build the non-static data member.
1712   FieldDecl *Field =
1713       FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
1714                         /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
1715                         /*Mutable=*/false, ICIS_NoInit);
1716   // If the variable being captured has an invalid type, mark the class as
1717   // invalid as well.
1718   if (!FieldType->isDependentType()) {
1719     if (RequireCompleteSizedType(Loc, FieldType,
1720                                  diag::err_field_incomplete_or_sizeless)) {
1721       RD->setInvalidDecl();
1722       Field->setInvalidDecl();
1723     } else {
1724       NamedDecl *Def;
1725       FieldType->isIncompleteType(&Def);
1726       if (Def && Def->isInvalidDecl()) {
1727         RD->setInvalidDecl();
1728         Field->setInvalidDecl();
1729       }
1730     }
1731   }
1732   Field->setImplicit(true);
1733   Field->setAccess(AS_private);
1734   RD->addDecl(Field);
1735 
1736   if (Capture.isVLATypeCapture())
1737     Field->setCapturedVLAType(Capture.getCapturedVLAType());
1738 
1739   return Field;
1740 }
1741 
BuildLambdaExpr(SourceLocation StartLoc,SourceLocation EndLoc,LambdaScopeInfo * LSI)1742 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
1743                                  LambdaScopeInfo *LSI) {
1744   // Collect information from the lambda scope.
1745   SmallVector<LambdaCapture, 4> Captures;
1746   SmallVector<Expr *, 4> CaptureInits;
1747   SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1748   LambdaCaptureDefault CaptureDefault =
1749       mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
1750   CXXRecordDecl *Class;
1751   CXXMethodDecl *CallOperator;
1752   SourceRange IntroducerRange;
1753   bool ExplicitParams;
1754   bool ExplicitResultType;
1755   CleanupInfo LambdaCleanup;
1756   bool ContainsUnexpandedParameterPack;
1757   bool IsGenericLambda;
1758   {
1759     CallOperator = LSI->CallOperator;
1760     Class = LSI->Lambda;
1761     IntroducerRange = LSI->IntroducerRange;
1762     ExplicitParams = LSI->ExplicitParams;
1763     ExplicitResultType = !LSI->HasImplicitReturnType;
1764     LambdaCleanup = LSI->Cleanup;
1765     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1766     IsGenericLambda = Class->isGenericLambda();
1767 
1768     CallOperator->setLexicalDeclContext(Class);
1769     Decl *TemplateOrNonTemplateCallOperatorDecl =
1770         CallOperator->getDescribedFunctionTemplate()
1771         ? CallOperator->getDescribedFunctionTemplate()
1772         : cast<Decl>(CallOperator);
1773 
1774     // FIXME: Is this really the best choice? Keeping the lexical decl context
1775     // set as CurContext seems more faithful to the source.
1776     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1777 
1778     PopExpressionEvaluationContext();
1779 
1780     // True if the current capture has a used capture or default before it.
1781     bool CurHasPreviousCapture = CaptureDefault != LCD_None;
1782     SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
1783         CaptureDefaultLoc : IntroducerRange.getBegin();
1784 
1785     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1786       const Capture &From = LSI->Captures[I];
1787 
1788       if (From.isInvalid())
1789         return ExprError();
1790 
1791       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1792       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1793       SourceLocation ImplicitCaptureLoc =
1794           IsImplicit ? CaptureDefaultLoc : SourceLocation();
1795 
1796       // Use source ranges of explicit captures for fixits where available.
1797       SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
1798 
1799       // Warn about unused explicit captures.
1800       bool IsCaptureUsed = true;
1801       if (!CurContext->isDependentContext() && !IsImplicit &&
1802           !From.isODRUsed()) {
1803         // Initialized captures that are non-ODR used may not be eliminated.
1804         // FIXME: Where did the IsGenericLambda here come from?
1805         bool NonODRUsedInitCapture =
1806             IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
1807         if (!NonODRUsedInitCapture) {
1808           bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
1809           SourceRange FixItRange;
1810           if (CaptureRange.isValid()) {
1811             if (!CurHasPreviousCapture && !IsLast) {
1812               // If there are no captures preceding this capture, remove the
1813               // following comma.
1814               FixItRange = SourceRange(CaptureRange.getBegin(),
1815                                        getLocForEndOfToken(CaptureRange.getEnd()));
1816             } else {
1817               // Otherwise, remove the comma since the last used capture.
1818               FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
1819                                        CaptureRange.getEnd());
1820             }
1821           }
1822 
1823           IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
1824         }
1825       }
1826 
1827       if (CaptureRange.isValid()) {
1828         CurHasPreviousCapture |= IsCaptureUsed;
1829         PrevCaptureLoc = CaptureRange.getEnd();
1830       }
1831 
1832       // Map the capture to our AST representation.
1833       LambdaCapture Capture = [&] {
1834         if (From.isThisCapture()) {
1835           // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1836           // because it results in a reference capture. Don't warn prior to
1837           // C++2a; there's nothing that can be done about it before then.
1838           if (getLangOpts().CPlusPlus20 && IsImplicit &&
1839               CaptureDefault == LCD_ByCopy) {
1840             Diag(From.getLocation(), diag::warn_deprecated_this_capture);
1841             Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
1842                 << FixItHint::CreateInsertion(
1843                        getLocForEndOfToken(CaptureDefaultLoc), ", this");
1844           }
1845           return LambdaCapture(From.getLocation(), IsImplicit,
1846                                From.isCopyCapture() ? LCK_StarThis : LCK_This);
1847         } else if (From.isVLATypeCapture()) {
1848           return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
1849         } else {
1850           assert(From.isVariableCapture() && "unknown kind of capture");
1851           VarDecl *Var = From.getVariable();
1852           LambdaCaptureKind Kind =
1853               From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
1854           return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
1855                                From.getEllipsisLoc());
1856         }
1857       }();
1858 
1859       // Form the initializer for the capture field.
1860       ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
1861 
1862       // FIXME: Skip this capture if the capture is not used, the initializer
1863       // has no side-effects, the type of the capture is trivial, and the
1864       // lambda is not externally visible.
1865 
1866       // Add a FieldDecl for the capture and form its initializer.
1867       BuildCaptureField(Class, From);
1868       Captures.push_back(Capture);
1869       CaptureInits.push_back(Init.get());
1870 
1871       if (LangOpts.CUDA)
1872         CUDACheckLambdaCapture(CallOperator, From);
1873     }
1874 
1875     Class->setCaptures(Context, Captures);
1876 
1877     // C++11 [expr.prim.lambda]p6:
1878     //   The closure type for a lambda-expression with no lambda-capture
1879     //   has a public non-virtual non-explicit const conversion function
1880     //   to pointer to function having the same parameter and return
1881     //   types as the closure type's function call operator.
1882     if (Captures.empty() && CaptureDefault == LCD_None)
1883       addFunctionPointerConversions(*this, IntroducerRange, Class,
1884                                     CallOperator);
1885 
1886     // Objective-C++:
1887     //   The closure type for a lambda-expression has a public non-virtual
1888     //   non-explicit const conversion function to a block pointer having the
1889     //   same parameter and return types as the closure type's function call
1890     //   operator.
1891     // FIXME: Fix generic lambda to block conversions.
1892     if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
1893       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1894 
1895     // Finalize the lambda class.
1896     SmallVector<Decl*, 4> Fields(Class->fields());
1897     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1898                 SourceLocation(), ParsedAttributesView());
1899     CheckCompletedCXXClass(nullptr, Class);
1900   }
1901 
1902   Cleanup.mergeFrom(LambdaCleanup);
1903 
1904   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1905                                           CaptureDefault, CaptureDefaultLoc,
1906                                           ExplicitParams, ExplicitResultType,
1907                                           CaptureInits, EndLoc,
1908                                           ContainsUnexpandedParameterPack);
1909   // If the lambda expression's call operator is not explicitly marked constexpr
1910   // and we are not in a dependent context, analyze the call operator to infer
1911   // its constexpr-ness, suppressing diagnostics while doing so.
1912   if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
1913       !CallOperator->isConstexpr() &&
1914       !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
1915       !Class->getDeclContext()->isDependentContext()) {
1916     CallOperator->setConstexprKind(
1917         CheckConstexprFunctionDefinition(CallOperator,
1918                                          CheckConstexprKind::CheckValid)
1919             ? ConstexprSpecKind::Constexpr
1920             : ConstexprSpecKind::Unspecified);
1921   }
1922 
1923   // Emit delayed shadowing warnings now that the full capture list is known.
1924   DiagnoseShadowingLambdaDecls(LSI);
1925 
1926   if (!CurContext->isDependentContext()) {
1927     switch (ExprEvalContexts.back().Context) {
1928     // C++11 [expr.prim.lambda]p2:
1929     //   A lambda-expression shall not appear in an unevaluated operand
1930     //   (Clause 5).
1931     case ExpressionEvaluationContext::Unevaluated:
1932     case ExpressionEvaluationContext::UnevaluatedList:
1933     case ExpressionEvaluationContext::UnevaluatedAbstract:
1934     // C++1y [expr.const]p2:
1935     //   A conditional-expression e is a core constant expression unless the
1936     //   evaluation of e, following the rules of the abstract machine, would
1937     //   evaluate [...] a lambda-expression.
1938     //
1939     // This is technically incorrect, there are some constant evaluated contexts
1940     // where this should be allowed.  We should probably fix this when DR1607 is
1941     // ratified, it lays out the exact set of conditions where we shouldn't
1942     // allow a lambda-expression.
1943     case ExpressionEvaluationContext::ConstantEvaluated:
1944       // We don't actually diagnose this case immediately, because we
1945       // could be within a context where we might find out later that
1946       // the expression is potentially evaluated (e.g., for typeid).
1947       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1948       break;
1949 
1950     case ExpressionEvaluationContext::DiscardedStatement:
1951     case ExpressionEvaluationContext::PotentiallyEvaluated:
1952     case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
1953       break;
1954     }
1955   }
1956 
1957   return MaybeBindToTemporary(Lambda);
1958 }
1959 
BuildBlockForLambdaConversion(SourceLocation CurrentLocation,SourceLocation ConvLocation,CXXConversionDecl * Conv,Expr * Src)1960 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1961                                                SourceLocation ConvLocation,
1962                                                CXXConversionDecl *Conv,
1963                                                Expr *Src) {
1964   // Make sure that the lambda call operator is marked used.
1965   CXXRecordDecl *Lambda = Conv->getParent();
1966   CXXMethodDecl *CallOperator
1967     = cast<CXXMethodDecl>(
1968         Lambda->lookup(
1969           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1970   CallOperator->setReferenced();
1971   CallOperator->markUsed(Context);
1972 
1973   ExprResult Init = PerformCopyInitialization(
1974       InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType(),
1975                                                  /*NRVO=*/false),
1976       CurrentLocation, Src);
1977   if (!Init.isInvalid())
1978     Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
1979 
1980   if (Init.isInvalid())
1981     return ExprError();
1982 
1983   // Create the new block to be returned.
1984   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1985 
1986   // Set the type information.
1987   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1988   Block->setIsVariadic(CallOperator->isVariadic());
1989   Block->setBlockMissingReturnType(false);
1990 
1991   // Add parameters.
1992   SmallVector<ParmVarDecl *, 4> BlockParams;
1993   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1994     ParmVarDecl *From = CallOperator->getParamDecl(I);
1995     BlockParams.push_back(ParmVarDecl::Create(
1996         Context, Block, From->getBeginLoc(), From->getLocation(),
1997         From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
1998         From->getStorageClass(),
1999         /*DefArg=*/nullptr));
2000   }
2001   Block->setParams(BlockParams);
2002 
2003   Block->setIsConversionFromLambda(true);
2004 
2005   // Add capture. The capture uses a fake variable, which doesn't correspond
2006   // to any actual memory location. However, the initializer copy-initializes
2007   // the lambda object.
2008   TypeSourceInfo *CapVarTSI =
2009       Context.getTrivialTypeSourceInfo(Src->getType());
2010   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2011                                     ConvLocation, nullptr,
2012                                     Src->getType(), CapVarTSI,
2013                                     SC_None);
2014   BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2015                              /*nested=*/false, /*copy=*/Init.get());
2016   Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2017 
2018   // Add a fake function body to the block. IR generation is responsible
2019   // for filling in the actual body, which cannot be expressed as an AST.
2020   Block->setBody(new (Context) CompoundStmt(ConvLocation));
2021 
2022   // Create the block literal expression.
2023   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
2024   ExprCleanupObjects.push_back(Block);
2025   Cleanup.setExprNeedsCleanups(true);
2026 
2027   return BuildBlock;
2028 }
2029