1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Template.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44 
45 /// Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50                                               SourceLocation NameLoc,
51                                               IdentifierInfo &Name) {
52   NestedNameSpecifier *NNS = SS.getScopeRep();
53 
54   // Convert the nested-name-specifier into a type.
55   QualType Type;
56   switch (NNS->getKind()) {
57   case NestedNameSpecifier::TypeSpec:
58   case NestedNameSpecifier::TypeSpecWithTemplate:
59     Type = QualType(NNS->getAsType(), 0);
60     break;
61 
62   case NestedNameSpecifier::Identifier:
63     // Strip off the last layer of the nested-name-specifier and build a
64     // typename type for it.
65     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67                                         NNS->getAsIdentifier());
68     break;
69 
70   case NestedNameSpecifier::Global:
71   case NestedNameSpecifier::Super:
72   case NestedNameSpecifier::Namespace:
73   case NestedNameSpecifier::NamespaceAlias:
74     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75   }
76 
77   // This reference to the type is located entirely at the location of the
78   // final identifier in the qualified-id.
79   return CreateParsedType(Type,
80                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82 
getConstructorName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,bool EnteringContext)83 ParsedType Sema::getConstructorName(IdentifierInfo &II,
84                                     SourceLocation NameLoc,
85                                     Scope *S, CXXScopeSpec &SS,
86                                     bool EnteringContext) {
87   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88   assert(CurClass && &II == CurClass->getIdentifier() &&
89          "not a constructor name");
90 
91   // When naming a constructor as a member of a dependent context (eg, in a
92   // friend declaration or an inherited constructor declaration), form an
93   // unresolved "typename" type.
94   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96     return ParsedType::make(T);
97   }
98 
99   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100     return ParsedType();
101 
102   // Find the injected-class-name declaration. Note that we make no attempt to
103   // diagnose cases where the injected-class-name is shadowed: the only
104   // declaration that can validly shadow the injected-class-name is a
105   // non-static data member, and if the class contains both a non-static data
106   // member and a constructor then it is ill-formed (we check that in
107   // CheckCompletedCXXClass).
108   CXXRecordDecl *InjectedClassName = nullptr;
109   for (NamedDecl *ND : CurClass->lookup(&II)) {
110     auto *RD = dyn_cast<CXXRecordDecl>(ND);
111     if (RD && RD->isInjectedClassName()) {
112       InjectedClassName = RD;
113       break;
114     }
115   }
116   if (!InjectedClassName) {
117     if (!CurClass->isInvalidDecl()) {
118       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119       // properly. Work around it here for now.
120       Diag(SS.getLastQualifierNameLoc(),
121            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122     }
123     return ParsedType();
124   }
125 
126   QualType T = Context.getTypeDeclType(InjectedClassName);
127   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129 
130   return ParsedType::make(T);
131 }
132 
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134                                    IdentifierInfo &II,
135                                    SourceLocation NameLoc,
136                                    Scope *S, CXXScopeSpec &SS,
137                                    ParsedType ObjectTypePtr,
138                                    bool EnteringContext) {
139   // Determine where to perform name lookup.
140 
141   // FIXME: This area of the standard is very messy, and the current
142   // wording is rather unclear about which scopes we search for the
143   // destructor name; see core issues 399 and 555. Issue 399 in
144   // particular shows where the current description of destructor name
145   // lookup is completely out of line with existing practice, e.g.,
146   // this appears to be ill-formed:
147   //
148   //   namespace N {
149   //     template <typename T> struct S {
150   //       ~S();
151   //     };
152   //   }
153   //
154   //   void f(N::S<int>* s) {
155   //     s->N::S<int>::~S();
156   //   }
157   //
158   // See also PR6358 and PR6359.
159   //
160   // For now, we accept all the cases in which the name given could plausibly
161   // be interpreted as a correct destructor name, issuing off-by-default
162   // extension diagnostics on the cases that don't strictly conform to the
163   // C++20 rules. This basically means we always consider looking in the
164   // nested-name-specifier prefix, the complete nested-name-specifier, and
165   // the scope, and accept if we find the expected type in any of the three
166   // places.
167 
168   if (SS.isInvalid())
169     return nullptr;
170 
171   // Whether we've failed with a diagnostic already.
172   bool Failed = false;
173 
174   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176 
177   // If we have an object type, it's because we are in a
178   // pseudo-destructor-expression or a member access expression, and
179   // we know what type we're looking for.
180   QualType SearchType =
181       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182 
183   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186       if (!Type)
187         return false;
188 
189       if (SearchType.isNull() || SearchType->isDependentType())
190         return true;
191 
192       QualType T = Context.getTypeDeclType(Type);
193       return Context.hasSameUnqualifiedType(T, SearchType);
194     };
195 
196     unsigned NumAcceptableResults = 0;
197     for (NamedDecl *D : Found) {
198       if (IsAcceptableResult(D))
199         ++NumAcceptableResults;
200 
201       // Don't list a class twice in the lookup failure diagnostic if it's
202       // found by both its injected-class-name and by the name in the enclosing
203       // scope.
204       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205         if (RD->isInjectedClassName())
206           D = cast<NamedDecl>(RD->getParent());
207 
208       if (FoundDeclSet.insert(D).second)
209         FoundDecls.push_back(D);
210     }
211 
212     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213     // results, and all non-matching results if we have a search type. It's not
214     // clear what the right behavior is if destructor lookup hits an ambiguity,
215     // but other compilers do generally accept at least some kinds of
216     // ambiguity.
217     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219       LookupResult::Filter F = Found.makeFilter();
220       while (F.hasNext()) {
221         NamedDecl *D = F.next();
222         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223           Diag(D->getLocation(), diag::note_destructor_type_here)
224               << Context.getTypeDeclType(TD);
225         else
226           Diag(D->getLocation(), diag::note_destructor_nontype_here);
227 
228         if (!IsAcceptableResult(D))
229           F.erase();
230       }
231       F.done();
232     }
233 
234     if (Found.isAmbiguous())
235       Failed = true;
236 
237     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238       if (IsAcceptableResult(Type)) {
239         QualType T = Context.getTypeDeclType(Type);
240         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241         return CreateParsedType(T,
242                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
243       }
244     }
245 
246     return nullptr;
247   };
248 
249   bool IsDependent = false;
250 
251   auto LookupInObjectType = [&]() -> ParsedType {
252     if (Failed || SearchType.isNull())
253       return nullptr;
254 
255     IsDependent |= SearchType->isDependentType();
256 
257     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258     DeclContext *LookupCtx = computeDeclContext(SearchType);
259     if (!LookupCtx)
260       return nullptr;
261     LookupQualifiedName(Found, LookupCtx);
262     return CheckLookupResult(Found);
263   };
264 
265   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266     if (Failed)
267       return nullptr;
268 
269     IsDependent |= isDependentScopeSpecifier(LookupSS);
270     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271     if (!LookupCtx)
272       return nullptr;
273 
274     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276       Failed = true;
277       return nullptr;
278     }
279     LookupQualifiedName(Found, LookupCtx);
280     return CheckLookupResult(Found);
281   };
282 
283   auto LookupInScope = [&]() -> ParsedType {
284     if (Failed || !S)
285       return nullptr;
286 
287     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288     LookupName(Found, S);
289     return CheckLookupResult(Found);
290   };
291 
292   // C++2a [basic.lookup.qual]p6:
293   //   In a qualified-id of the form
294   //
295   //     nested-name-specifier[opt] type-name :: ~ type-name
296   //
297   //   the second type-name is looked up in the same scope as the first.
298   //
299   // We interpret this as meaning that if you do a dual-scope lookup for the
300   // first name, you also do a dual-scope lookup for the second name, per
301   // C++ [basic.lookup.classref]p4:
302   //
303   //   If the id-expression in a class member access is a qualified-id of the
304   //   form
305   //
306   //     class-name-or-namespace-name :: ...
307   //
308   //   the class-name-or-namespace-name following the . or -> is first looked
309   //   up in the class of the object expression and the name, if found, is used.
310   //   Otherwise, it is looked up in the context of the entire
311   //   postfix-expression.
312   //
313   // This looks in the same scopes as for an unqualified destructor name:
314   //
315   // C++ [basic.lookup.classref]p3:
316   //   If the unqualified-id is ~ type-name, the type-name is looked up
317   //   in the context of the entire postfix-expression. If the type T
318   //   of the object expression is of a class type C, the type-name is
319   //   also looked up in the scope of class C. At least one of the
320   //   lookups shall find a name that refers to cv T.
321   //
322   // FIXME: The intent is unclear here. Should type-name::~type-name look in
323   // the scope anyway if it finds a non-matching name declared in the class?
324   // If both lookups succeed and find a dependent result, which result should
325   // we retain? (Same question for p->~type-name().)
326 
327   if (NestedNameSpecifier *Prefix =
328       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329     // This is
330     //
331     //   nested-name-specifier type-name :: ~ type-name
332     //
333     // Look for the second type-name in the nested-name-specifier.
334     CXXScopeSpec PrefixSS;
335     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337       return T;
338   } else {
339     // This is one of
340     //
341     //   type-name :: ~ type-name
342     //   ~ type-name
343     //
344     // Look in the scope and (if any) the object type.
345     if (ParsedType T = LookupInScope())
346       return T;
347     if (ParsedType T = LookupInObjectType())
348       return T;
349   }
350 
351   if (Failed)
352     return nullptr;
353 
354   if (IsDependent) {
355     // We didn't find our type, but that's OK: it's dependent anyway.
356 
357     // FIXME: What if we have no nested-name-specifier?
358     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359                                    SS.getWithLocInContext(Context),
360                                    II, NameLoc);
361     return ParsedType::make(T);
362   }
363 
364   // The remaining cases are all non-standard extensions imitating the behavior
365   // of various other compilers.
366   unsigned NumNonExtensionDecls = FoundDecls.size();
367 
368   if (SS.isSet()) {
369     // For compatibility with older broken C++ rules and existing code,
370     //
371     //   nested-name-specifier :: ~ type-name
372     //
373     // also looks for type-name within the nested-name-specifier.
374     if (ParsedType T = LookupInNestedNameSpec(SS)) {
375       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376           << SS.getRange()
377           << FixItHint::CreateInsertion(SS.getEndLoc(),
378                                         ("::" + II.getName()).str());
379       return T;
380     }
381 
382     // For compatibility with other compilers and older versions of Clang,
383     //
384     //   nested-name-specifier type-name :: ~ type-name
385     //
386     // also looks for type-name in the scope. Unfortunately, we can't
387     // reasonably apply this fallback for dependent nested-name-specifiers.
388     if (SS.getScopeRep()->getPrefix()) {
389       if (ParsedType T = LookupInScope()) {
390         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391             << FixItHint::CreateRemoval(SS.getRange());
392         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393             << GetTypeFromParser(T);
394         return T;
395       }
396     }
397   }
398 
399   // We didn't find anything matching; tell the user what we did find (if
400   // anything).
401 
402   // Don't tell the user about declarations we shouldn't have found.
403   FoundDecls.resize(NumNonExtensionDecls);
404 
405   // List types before non-types.
406   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407                    [](NamedDecl *A, NamedDecl *B) {
408                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
409                             isa<TypeDecl>(B->getUnderlyingDecl());
410                    });
411 
412   // Suggest a fixit to properly name the destroyed type.
413   auto MakeFixItHint = [&]{
414     const CXXRecordDecl *Destroyed = nullptr;
415     // FIXME: If we have a scope specifier, suggest its last component?
416     if (!SearchType.isNull())
417       Destroyed = SearchType->getAsCXXRecordDecl();
418     else if (S)
419       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420     if (Destroyed)
421       return FixItHint::CreateReplacement(SourceRange(NameLoc),
422                                           Destroyed->getNameAsString());
423     return FixItHint();
424   };
425 
426   if (FoundDecls.empty()) {
427     // FIXME: Attempt typo-correction?
428     Diag(NameLoc, diag::err_undeclared_destructor_name)
429       << &II << MakeFixItHint();
430   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432       assert(!SearchType.isNull() &&
433              "should only reject a type result if we have a search type");
434       QualType T = Context.getTypeDeclType(TD);
435       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436           << T << SearchType << MakeFixItHint();
437     } else {
438       Diag(NameLoc, diag::err_destructor_expr_nontype)
439           << &II << MakeFixItHint();
440     }
441   } else {
442     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443                                       : diag::err_destructor_expr_mismatch)
444         << &II << SearchType << MakeFixItHint();
445   }
446 
447   for (NamedDecl *FoundD : FoundDecls) {
448     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450           << Context.getTypeDeclType(TD);
451     else
452       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453           << FoundD;
454   }
455 
456   return nullptr;
457 }
458 
getDestructorTypeForDecltype(const DeclSpec & DS,ParsedType ObjectType)459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460                                               ParsedType ObjectType) {
461   if (DS.getTypeSpecType() == DeclSpec::TST_error)
462     return nullptr;
463 
464   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466     return nullptr;
467   }
468 
469   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
470          "unexpected type in getDestructorType");
471   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
472 
473   // If we know the type of the object, check that the correct destructor
474   // type was named now; we can give better diagnostics this way.
475   QualType SearchType = GetTypeFromParser(ObjectType);
476   if (!SearchType.isNull() && !SearchType->isDependentType() &&
477       !Context.hasSameUnqualifiedType(T, SearchType)) {
478     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479       << T << SearchType;
480     return nullptr;
481   }
482 
483   return ParsedType::make(T);
484 }
485 
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name)486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487                                   const UnqualifiedId &Name) {
488   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
489 
490   if (!SS.isValid())
491     return false;
492 
493   switch (SS.getScopeRep()->getKind()) {
494   case NestedNameSpecifier::Identifier:
495   case NestedNameSpecifier::TypeSpec:
496   case NestedNameSpecifier::TypeSpecWithTemplate:
497     // Per C++11 [over.literal]p2, literal operators can only be declared at
498     // namespace scope. Therefore, this unqualified-id cannot name anything.
499     // Reject it early, because we have no AST representation for this in the
500     // case where the scope is dependent.
501     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
502         << SS.getScopeRep();
503     return true;
504 
505   case NestedNameSpecifier::Global:
506   case NestedNameSpecifier::Super:
507   case NestedNameSpecifier::Namespace:
508   case NestedNameSpecifier::NamespaceAlias:
509     return false;
510   }
511 
512   llvm_unreachable("unknown nested name specifier kind");
513 }
514 
515 /// Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)516 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
517                                 SourceLocation TypeidLoc,
518                                 TypeSourceInfo *Operand,
519                                 SourceLocation RParenLoc) {
520   // C++ [expr.typeid]p4:
521   //   The top-level cv-qualifiers of the lvalue expression or the type-id
522   //   that is the operand of typeid are always ignored.
523   //   If the type of the type-id is a class type or a reference to a class
524   //   type, the class shall be completely-defined.
525   Qualifiers Quals;
526   QualType T
527     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
528                                       Quals);
529   if (T->getAs<RecordType>() &&
530       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
531     return ExprError();
532 
533   if (T->isVariablyModifiedType())
534     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
535 
536   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
537     return ExprError();
538 
539   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
540                                      SourceRange(TypeidLoc, RParenLoc));
541 }
542 
543 /// Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)544 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
545                                 SourceLocation TypeidLoc,
546                                 Expr *E,
547                                 SourceLocation RParenLoc) {
548   bool WasEvaluated = false;
549   if (E && !E->isTypeDependent()) {
550     if (E->getType()->isPlaceholderType()) {
551       ExprResult result = CheckPlaceholderExpr(E);
552       if (result.isInvalid()) return ExprError();
553       E = result.get();
554     }
555 
556     QualType T = E->getType();
557     if (const RecordType *RecordT = T->getAs<RecordType>()) {
558       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
559       // C++ [expr.typeid]p3:
560       //   [...] If the type of the expression is a class type, the class
561       //   shall be completely-defined.
562       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
563         return ExprError();
564 
565       // C++ [expr.typeid]p3:
566       //   When typeid is applied to an expression other than an glvalue of a
567       //   polymorphic class type [...] [the] expression is an unevaluated
568       //   operand. [...]
569       if (RecordD->isPolymorphic() && E->isGLValue()) {
570         // The subexpression is potentially evaluated; switch the context
571         // and recheck the subexpression.
572         ExprResult Result = TransformToPotentiallyEvaluated(E);
573         if (Result.isInvalid()) return ExprError();
574         E = Result.get();
575 
576         // We require a vtable to query the type at run time.
577         MarkVTableUsed(TypeidLoc, RecordD);
578         WasEvaluated = true;
579       }
580     }
581 
582     ExprResult Result = CheckUnevaluatedOperand(E);
583     if (Result.isInvalid())
584       return ExprError();
585     E = Result.get();
586 
587     // C++ [expr.typeid]p4:
588     //   [...] If the type of the type-id is a reference to a possibly
589     //   cv-qualified type, the result of the typeid expression refers to a
590     //   std::type_info object representing the cv-unqualified referenced
591     //   type.
592     Qualifiers Quals;
593     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
594     if (!Context.hasSameType(T, UnqualT)) {
595       T = UnqualT;
596       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
597     }
598   }
599 
600   if (E->getType()->isVariablyModifiedType())
601     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
602                      << E->getType());
603   else if (!inTemplateInstantiation() &&
604            E->HasSideEffects(Context, WasEvaluated)) {
605     // The expression operand for typeid is in an unevaluated expression
606     // context, so side effects could result in unintended consequences.
607     Diag(E->getExprLoc(), WasEvaluated
608                               ? diag::warn_side_effects_typeid
609                               : diag::warn_side_effects_unevaluated_context);
610   }
611 
612   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
613                                      SourceRange(TypeidLoc, RParenLoc));
614 }
615 
616 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
617 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)618 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
619                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
620   // typeid is not supported in OpenCL.
621   if (getLangOpts().OpenCLCPlusPlus) {
622     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
623                      << "typeid");
624   }
625 
626   // Find the std::type_info type.
627   if (!getStdNamespace())
628     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
629 
630   if (!CXXTypeInfoDecl) {
631     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
632     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
633     LookupQualifiedName(R, getStdNamespace());
634     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
635     // Microsoft's typeinfo doesn't have type_info in std but in the global
636     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
637     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
638       LookupQualifiedName(R, Context.getTranslationUnitDecl());
639       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
640     }
641     if (!CXXTypeInfoDecl)
642       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
643   }
644 
645   if (!getLangOpts().RTTI) {
646     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
647   }
648 
649   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
650 
651   if (isType) {
652     // The operand is a type; handle it as such.
653     TypeSourceInfo *TInfo = nullptr;
654     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
655                                    &TInfo);
656     if (T.isNull())
657       return ExprError();
658 
659     if (!TInfo)
660       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
661 
662     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
663   }
664 
665   // The operand is an expression.
666   ExprResult Result =
667       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
668 
669   if (!getLangOpts().RTTIData && !Result.isInvalid())
670     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
671       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
672         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
673             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
674                 DiagnosticOptions::MSVC);
675   return Result;
676 }
677 
678 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
679 /// a single GUID.
680 static void
getUuidAttrOfType(Sema & SemaRef,QualType QT,llvm::SmallSetVector<const UuidAttr *,1> & UuidAttrs)681 getUuidAttrOfType(Sema &SemaRef, QualType QT,
682                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
683   // Optionally remove one level of pointer, reference or array indirection.
684   const Type *Ty = QT.getTypePtr();
685   if (QT->isPointerType() || QT->isReferenceType())
686     Ty = QT->getPointeeType().getTypePtr();
687   else if (QT->isArrayType())
688     Ty = Ty->getBaseElementTypeUnsafe();
689 
690   const auto *TD = Ty->getAsTagDecl();
691   if (!TD)
692     return;
693 
694   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
695     UuidAttrs.insert(Uuid);
696     return;
697   }
698 
699   // __uuidof can grab UUIDs from template arguments.
700   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
701     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
702     for (const TemplateArgument &TA : TAL.asArray()) {
703       const UuidAttr *UuidForTA = nullptr;
704       if (TA.getKind() == TemplateArgument::Type)
705         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
706       else if (TA.getKind() == TemplateArgument::Declaration)
707         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
708 
709       if (UuidForTA)
710         UuidAttrs.insert(UuidForTA);
711     }
712   }
713 }
714 
715 /// Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType Type,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)716 ExprResult Sema::BuildCXXUuidof(QualType Type,
717                                 SourceLocation TypeidLoc,
718                                 TypeSourceInfo *Operand,
719                                 SourceLocation RParenLoc) {
720   MSGuidDecl *Guid = nullptr;
721   if (!Operand->getType()->isDependentType()) {
722     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
723     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
724     if (UuidAttrs.empty())
725       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
726     if (UuidAttrs.size() > 1)
727       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
728     Guid = UuidAttrs.back()->getGuidDecl();
729   }
730 
731   return new (Context)
732       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
733 }
734 
735 /// Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType Type,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)736 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
737                                 Expr *E, SourceLocation RParenLoc) {
738   MSGuidDecl *Guid = nullptr;
739   if (!E->getType()->isDependentType()) {
740     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
741       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
742       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
743     } else {
744       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
745       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
746       if (UuidAttrs.empty())
747         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
748       if (UuidAttrs.size() > 1)
749         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
750       Guid = UuidAttrs.back()->getGuidDecl();
751     }
752   }
753 
754   return new (Context)
755       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
756 }
757 
758 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
759 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)760 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
761                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
762   QualType GuidType = Context.getMSGuidType();
763   GuidType.addConst();
764 
765   if (isType) {
766     // The operand is a type; handle it as such.
767     TypeSourceInfo *TInfo = nullptr;
768     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
769                                    &TInfo);
770     if (T.isNull())
771       return ExprError();
772 
773     if (!TInfo)
774       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
775 
776     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
777   }
778 
779   // The operand is an expression.
780   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
781 }
782 
783 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
784 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)785 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
786   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
787          "Unknown C++ Boolean value!");
788   return new (Context)
789       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
790 }
791 
792 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
793 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)794 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
795   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
796 }
797 
798 /// ActOnCXXThrow - Parse throw expressions.
799 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)800 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
801   bool IsThrownVarInScope = false;
802   if (Ex) {
803     // C++0x [class.copymove]p31:
804     //   When certain criteria are met, an implementation is allowed to omit the
805     //   copy/move construction of a class object [...]
806     //
807     //     - in a throw-expression, when the operand is the name of a
808     //       non-volatile automatic object (other than a function or catch-
809     //       clause parameter) whose scope does not extend beyond the end of the
810     //       innermost enclosing try-block (if there is one), the copy/move
811     //       operation from the operand to the exception object (15.1) can be
812     //       omitted by constructing the automatic object directly into the
813     //       exception object
814     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
815       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
816         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
817           for( ; S; S = S->getParent()) {
818             if (S->isDeclScope(Var)) {
819               IsThrownVarInScope = true;
820               break;
821             }
822 
823             if (S->getFlags() &
824                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
825                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
826                  Scope::TryScope))
827               break;
828           }
829         }
830       }
831   }
832 
833   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
834 }
835 
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)836 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
837                                bool IsThrownVarInScope) {
838   // Don't report an error if 'throw' is used in system headers.
839   if (!getLangOpts().CXXExceptions &&
840       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
841     // Delay error emission for the OpenMP device code.
842     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
843   }
844 
845   // Exceptions aren't allowed in CUDA device code.
846   if (getLangOpts().CUDA)
847     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
848         << "throw" << CurrentCUDATarget();
849 
850   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
851     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
852 
853   if (Ex && !Ex->isTypeDependent()) {
854     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
855     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
856       return ExprError();
857 
858     // Initialize the exception result.  This implicitly weeds out
859     // abstract types or types with inaccessible copy constructors.
860 
861     // C++0x [class.copymove]p31:
862     //   When certain criteria are met, an implementation is allowed to omit the
863     //   copy/move construction of a class object [...]
864     //
865     //     - in a throw-expression, when the operand is the name of a
866     //       non-volatile automatic object (other than a function or
867     //       catch-clause
868     //       parameter) whose scope does not extend beyond the end of the
869     //       innermost enclosing try-block (if there is one), the copy/move
870     //       operation from the operand to the exception object (15.1) can be
871     //       omitted by constructing the automatic object directly into the
872     //       exception object
873     const VarDecl *NRVOVariable = nullptr;
874     if (IsThrownVarInScope)
875       NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
876 
877     InitializedEntity Entity = InitializedEntity::InitializeException(
878         OpLoc, ExceptionObjectTy,
879         /*NRVO=*/NRVOVariable != nullptr);
880     ExprResult Res = PerformMoveOrCopyInitialization(
881         Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
882     if (Res.isInvalid())
883       return ExprError();
884     Ex = Res.get();
885   }
886 
887   // PPC MMA non-pointer types are not allowed as throw expr types.
888   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
889     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
890 
891   return new (Context)
892       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
893 }
894 
895 static void
collectPublicBases(CXXRecordDecl * RD,llvm::DenseMap<CXXRecordDecl *,unsigned> & SubobjectsSeen,llvm::SmallPtrSetImpl<CXXRecordDecl * > & VBases,llvm::SetVector<CXXRecordDecl * > & PublicSubobjectsSeen,bool ParentIsPublic)896 collectPublicBases(CXXRecordDecl *RD,
897                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
898                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
899                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
900                    bool ParentIsPublic) {
901   for (const CXXBaseSpecifier &BS : RD->bases()) {
902     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
903     bool NewSubobject;
904     // Virtual bases constitute the same subobject.  Non-virtual bases are
905     // always distinct subobjects.
906     if (BS.isVirtual())
907       NewSubobject = VBases.insert(BaseDecl).second;
908     else
909       NewSubobject = true;
910 
911     if (NewSubobject)
912       ++SubobjectsSeen[BaseDecl];
913 
914     // Only add subobjects which have public access throughout the entire chain.
915     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
916     if (PublicPath)
917       PublicSubobjectsSeen.insert(BaseDecl);
918 
919     // Recurse on to each base subobject.
920     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
921                        PublicPath);
922   }
923 }
924 
getUnambiguousPublicSubobjects(CXXRecordDecl * RD,llvm::SmallVectorImpl<CXXRecordDecl * > & Objects)925 static void getUnambiguousPublicSubobjects(
926     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
927   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
928   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
929   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
930   SubobjectsSeen[RD] = 1;
931   PublicSubobjectsSeen.insert(RD);
932   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
933                      /*ParentIsPublic=*/true);
934 
935   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
936     // Skip ambiguous objects.
937     if (SubobjectsSeen[PublicSubobject] > 1)
938       continue;
939 
940     Objects.push_back(PublicSubobject);
941   }
942 }
943 
944 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,QualType ExceptionObjectTy,Expr * E)945 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
946                                 QualType ExceptionObjectTy, Expr *E) {
947   //   If the type of the exception would be an incomplete type or a pointer
948   //   to an incomplete type other than (cv) void the program is ill-formed.
949   QualType Ty = ExceptionObjectTy;
950   bool isPointer = false;
951   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
952     Ty = Ptr->getPointeeType();
953     isPointer = true;
954   }
955   if (!isPointer || !Ty->isVoidType()) {
956     if (RequireCompleteType(ThrowLoc, Ty,
957                             isPointer ? diag::err_throw_incomplete_ptr
958                                       : diag::err_throw_incomplete,
959                             E->getSourceRange()))
960       return true;
961 
962     if (!isPointer && Ty->isSizelessType()) {
963       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
964       return true;
965     }
966 
967     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
968                                diag::err_throw_abstract_type, E))
969       return true;
970   }
971 
972   // If the exception has class type, we need additional handling.
973   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
974   if (!RD)
975     return false;
976 
977   // If we are throwing a polymorphic class type or pointer thereof,
978   // exception handling will make use of the vtable.
979   MarkVTableUsed(ThrowLoc, RD);
980 
981   // If a pointer is thrown, the referenced object will not be destroyed.
982   if (isPointer)
983     return false;
984 
985   // If the class has a destructor, we must be able to call it.
986   if (!RD->hasIrrelevantDestructor()) {
987     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
988       MarkFunctionReferenced(E->getExprLoc(), Destructor);
989       CheckDestructorAccess(E->getExprLoc(), Destructor,
990                             PDiag(diag::err_access_dtor_exception) << Ty);
991       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
992         return true;
993     }
994   }
995 
996   // The MSVC ABI creates a list of all types which can catch the exception
997   // object.  This list also references the appropriate copy constructor to call
998   // if the object is caught by value and has a non-trivial copy constructor.
999   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1000     // We are only interested in the public, unambiguous bases contained within
1001     // the exception object.  Bases which are ambiguous or otherwise
1002     // inaccessible are not catchable types.
1003     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1004     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1005 
1006     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1007       // Attempt to lookup the copy constructor.  Various pieces of machinery
1008       // will spring into action, like template instantiation, which means this
1009       // cannot be a simple walk of the class's decls.  Instead, we must perform
1010       // lookup and overload resolution.
1011       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1012       if (!CD || CD->isDeleted())
1013         continue;
1014 
1015       // Mark the constructor referenced as it is used by this throw expression.
1016       MarkFunctionReferenced(E->getExprLoc(), CD);
1017 
1018       // Skip this copy constructor if it is trivial, we don't need to record it
1019       // in the catchable type data.
1020       if (CD->isTrivial())
1021         continue;
1022 
1023       // The copy constructor is non-trivial, create a mapping from this class
1024       // type to this constructor.
1025       // N.B.  The selection of copy constructor is not sensitive to this
1026       // particular throw-site.  Lookup will be performed at the catch-site to
1027       // ensure that the copy constructor is, in fact, accessible (via
1028       // friendship or any other means).
1029       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1030 
1031       // We don't keep the instantiated default argument expressions around so
1032       // we must rebuild them here.
1033       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1034         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1035           return true;
1036       }
1037     }
1038   }
1039 
1040   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1041   // the runtime with no ability for the compiler to request additional
1042   // alignment. Warn if the exception type requires alignment beyond the minimum
1043   // guaranteed by the target C++ runtime.
1044   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1045     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1046     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1047     if (ExnObjAlign < TypeAlign) {
1048       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1049       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1050           << Ty << (unsigned)TypeAlign.getQuantity()
1051           << (unsigned)ExnObjAlign.getQuantity();
1052     }
1053   }
1054 
1055   return false;
1056 }
1057 
adjustCVQualifiersForCXXThisWithinLambda(ArrayRef<FunctionScopeInfo * > FunctionScopes,QualType ThisTy,DeclContext * CurSemaContext,ASTContext & ASTCtx)1058 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1059     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1060     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1061 
1062   QualType ClassType = ThisTy->getPointeeType();
1063   LambdaScopeInfo *CurLSI = nullptr;
1064   DeclContext *CurDC = CurSemaContext;
1065 
1066   // Iterate through the stack of lambdas starting from the innermost lambda to
1067   // the outermost lambda, checking if '*this' is ever captured by copy - since
1068   // that could change the cv-qualifiers of the '*this' object.
1069   // The object referred to by '*this' starts out with the cv-qualifiers of its
1070   // member function.  We then start with the innermost lambda and iterate
1071   // outward checking to see if any lambda performs a by-copy capture of '*this'
1072   // - and if so, any nested lambda must respect the 'constness' of that
1073   // capturing lamdbda's call operator.
1074   //
1075 
1076   // Since the FunctionScopeInfo stack is representative of the lexical
1077   // nesting of the lambda expressions during initial parsing (and is the best
1078   // place for querying information about captures about lambdas that are
1079   // partially processed) and perhaps during instantiation of function templates
1080   // that contain lambda expressions that need to be transformed BUT not
1081   // necessarily during instantiation of a nested generic lambda's function call
1082   // operator (which might even be instantiated at the end of the TU) - at which
1083   // time the DeclContext tree is mature enough to query capture information
1084   // reliably - we use a two pronged approach to walk through all the lexically
1085   // enclosing lambda expressions:
1086   //
1087   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1088   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1089   //  enclosed by the call-operator of the LSI below it on the stack (while
1090   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1091   //  the stack represents the innermost lambda.
1092   //
1093   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1094   //  represents a lambda's call operator.  If it does, we must be instantiating
1095   //  a generic lambda's call operator (represented by the Current LSI, and
1096   //  should be the only scenario where an inconsistency between the LSI and the
1097   //  DeclContext should occur), so climb out the DeclContexts if they
1098   //  represent lambdas, while querying the corresponding closure types
1099   //  regarding capture information.
1100 
1101   // 1) Climb down the function scope info stack.
1102   for (int I = FunctionScopes.size();
1103        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1104        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1105                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1106        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1107     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1108 
1109     if (!CurLSI->isCXXThisCaptured())
1110         continue;
1111 
1112     auto C = CurLSI->getCXXThisCapture();
1113 
1114     if (C.isCopyCapture()) {
1115       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1116       if (CurLSI->CallOperator->isConst())
1117         ClassType.addConst();
1118       return ASTCtx.getPointerType(ClassType);
1119     }
1120   }
1121 
1122   // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1123   // happen during instantiation of its nested generic lambda call operator)
1124   if (isLambdaCallOperator(CurDC)) {
1125     assert(CurLSI && "While computing 'this' capture-type for a generic "
1126                      "lambda, we must have a corresponding LambdaScopeInfo");
1127     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1128            "While computing 'this' capture-type for a generic lambda, when we "
1129            "run out of enclosing LSI's, yet the enclosing DC is a "
1130            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1131            "lambda call oeprator");
1132     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1133 
1134     auto IsThisCaptured =
1135         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1136       IsConst = false;
1137       IsByCopy = false;
1138       for (auto &&C : Closure->captures()) {
1139         if (C.capturesThis()) {
1140           if (C.getCaptureKind() == LCK_StarThis)
1141             IsByCopy = true;
1142           if (Closure->getLambdaCallOperator()->isConst())
1143             IsConst = true;
1144           return true;
1145         }
1146       }
1147       return false;
1148     };
1149 
1150     bool IsByCopyCapture = false;
1151     bool IsConstCapture = false;
1152     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1153     while (Closure &&
1154            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1155       if (IsByCopyCapture) {
1156         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1157         if (IsConstCapture)
1158           ClassType.addConst();
1159         return ASTCtx.getPointerType(ClassType);
1160       }
1161       Closure = isLambdaCallOperator(Closure->getParent())
1162                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1163                     : nullptr;
1164     }
1165   }
1166   return ASTCtx.getPointerType(ClassType);
1167 }
1168 
getCurrentThisType()1169 QualType Sema::getCurrentThisType() {
1170   DeclContext *DC = getFunctionLevelDeclContext();
1171   QualType ThisTy = CXXThisTypeOverride;
1172 
1173   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1174     if (method && method->isInstance())
1175       ThisTy = method->getThisType();
1176   }
1177 
1178   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1179       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1180 
1181     // This is a lambda call operator that is being instantiated as a default
1182     // initializer. DC must point to the enclosing class type, so we can recover
1183     // the 'this' type from it.
1184     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1185     // There are no cv-qualifiers for 'this' within default initializers,
1186     // per [expr.prim.general]p4.
1187     ThisTy = Context.getPointerType(ClassTy);
1188   }
1189 
1190   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1191   // might need to be adjusted if the lambda or any of its enclosing lambda's
1192   // captures '*this' by copy.
1193   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1194     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1195                                                     CurContext, Context);
1196   return ThisTy;
1197 }
1198 
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,Qualifiers CXXThisTypeQuals,bool Enabled)1199 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1200                                          Decl *ContextDecl,
1201                                          Qualifiers CXXThisTypeQuals,
1202                                          bool Enabled)
1203   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1204 {
1205   if (!Enabled || !ContextDecl)
1206     return;
1207 
1208   CXXRecordDecl *Record = nullptr;
1209   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1210     Record = Template->getTemplatedDecl();
1211   else
1212     Record = cast<CXXRecordDecl>(ContextDecl);
1213 
1214   QualType T = S.Context.getRecordType(Record);
1215   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1216 
1217   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1218 
1219   this->Enabled = true;
1220 }
1221 
1222 
~CXXThisScopeRAII()1223 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1224   if (Enabled) {
1225     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1226   }
1227 }
1228 
buildLambdaThisCaptureFixit(Sema & Sema,LambdaScopeInfo * LSI)1229 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1230   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1231   assert(!LSI->isCXXThisCaptured());
1232   //  [=, this] {};   // until C++20: Error: this when = is the default
1233   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1234       !Sema.getLangOpts().CPlusPlus20)
1235     return;
1236   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1237       << FixItHint::CreateInsertion(
1238              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1239 }
1240 
CheckCXXThisCapture(SourceLocation Loc,const bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt,const bool ByCopy)1241 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1242     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1243     const bool ByCopy) {
1244   // We don't need to capture this in an unevaluated context.
1245   if (isUnevaluatedContext() && !Explicit)
1246     return true;
1247 
1248   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1249 
1250   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1251                                          ? *FunctionScopeIndexToStopAt
1252                                          : FunctionScopes.size() - 1;
1253 
1254   // Check that we can capture the *enclosing object* (referred to by '*this')
1255   // by the capturing-entity/closure (lambda/block/etc) at
1256   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1257 
1258   // Note: The *enclosing object* can only be captured by-value by a
1259   // closure that is a lambda, using the explicit notation:
1260   //    [*this] { ... }.
1261   // Every other capture of the *enclosing object* results in its by-reference
1262   // capture.
1263 
1264   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1265   // stack), we can capture the *enclosing object* only if:
1266   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1267   // -  or, 'L' has an implicit capture.
1268   // AND
1269   //   -- there is no enclosing closure
1270   //   -- or, there is some enclosing closure 'E' that has already captured the
1271   //      *enclosing object*, and every intervening closure (if any) between 'E'
1272   //      and 'L' can implicitly capture the *enclosing object*.
1273   //   -- or, every enclosing closure can implicitly capture the
1274   //      *enclosing object*
1275 
1276 
1277   unsigned NumCapturingClosures = 0;
1278   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1279     if (CapturingScopeInfo *CSI =
1280             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1281       if (CSI->CXXThisCaptureIndex != 0) {
1282         // 'this' is already being captured; there isn't anything more to do.
1283         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1284         break;
1285       }
1286       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1287       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1288         // This context can't implicitly capture 'this'; fail out.
1289         if (BuildAndDiagnose) {
1290           Diag(Loc, diag::err_this_capture)
1291               << (Explicit && idx == MaxFunctionScopesIndex);
1292           if (!Explicit)
1293             buildLambdaThisCaptureFixit(*this, LSI);
1294         }
1295         return true;
1296       }
1297       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1298           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1299           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1300           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1301           (Explicit && idx == MaxFunctionScopesIndex)) {
1302         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1303         // iteration through can be an explicit capture, all enclosing closures,
1304         // if any, must perform implicit captures.
1305 
1306         // This closure can capture 'this'; continue looking upwards.
1307         NumCapturingClosures++;
1308         continue;
1309       }
1310       // This context can't implicitly capture 'this'; fail out.
1311       if (BuildAndDiagnose)
1312         Diag(Loc, diag::err_this_capture)
1313             << (Explicit && idx == MaxFunctionScopesIndex);
1314 
1315       if (!Explicit)
1316         buildLambdaThisCaptureFixit(*this, LSI);
1317       return true;
1318     }
1319     break;
1320   }
1321   if (!BuildAndDiagnose) return false;
1322 
1323   // If we got here, then the closure at MaxFunctionScopesIndex on the
1324   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1325   // (including implicit by-reference captures in any enclosing closures).
1326 
1327   // In the loop below, respect the ByCopy flag only for the closure requesting
1328   // the capture (i.e. first iteration through the loop below).  Ignore it for
1329   // all enclosing closure's up to NumCapturingClosures (since they must be
1330   // implicitly capturing the *enclosing  object* by reference (see loop
1331   // above)).
1332   assert((!ByCopy ||
1333           dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1334          "Only a lambda can capture the enclosing object (referred to by "
1335          "*this) by copy");
1336   QualType ThisTy = getCurrentThisType();
1337   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1338        --idx, --NumCapturingClosures) {
1339     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1340 
1341     // The type of the corresponding data member (not a 'this' pointer if 'by
1342     // copy').
1343     QualType CaptureType = ThisTy;
1344     if (ByCopy) {
1345       // If we are capturing the object referred to by '*this' by copy, ignore
1346       // any cv qualifiers inherited from the type of the member function for
1347       // the type of the closure-type's corresponding data member and any use
1348       // of 'this'.
1349       CaptureType = ThisTy->getPointeeType();
1350       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1351     }
1352 
1353     bool isNested = NumCapturingClosures > 1;
1354     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1355   }
1356   return false;
1357 }
1358 
ActOnCXXThis(SourceLocation Loc)1359 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1360   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1361   /// is a non-lvalue expression whose value is the address of the object for
1362   /// which the function is called.
1363 
1364   QualType ThisTy = getCurrentThisType();
1365   if (ThisTy.isNull())
1366     return Diag(Loc, diag::err_invalid_this_use);
1367   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1368 }
1369 
BuildCXXThisExpr(SourceLocation Loc,QualType Type,bool IsImplicit)1370 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1371                              bool IsImplicit) {
1372   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1373   MarkThisReferenced(This);
1374   return This;
1375 }
1376 
MarkThisReferenced(CXXThisExpr * This)1377 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1378   CheckCXXThisCapture(This->getExprLoc());
1379 }
1380 
isThisOutsideMemberFunctionBody(QualType BaseType)1381 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1382   // If we're outside the body of a member function, then we'll have a specified
1383   // type for 'this'.
1384   if (CXXThisTypeOverride.isNull())
1385     return false;
1386 
1387   // Determine whether we're looking into a class that's currently being
1388   // defined.
1389   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1390   return Class && Class->isBeingDefined();
1391 }
1392 
1393 /// Parse construction of a specified type.
1394 /// Can be interpreted either as function-style casting ("int(x)")
1395 /// or class type construction ("ClassType(x,y,z)")
1396 /// or creation of a value-initialized type ("int()").
1397 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenOrBraceLoc,MultiExprArg exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1398 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1399                                 SourceLocation LParenOrBraceLoc,
1400                                 MultiExprArg exprs,
1401                                 SourceLocation RParenOrBraceLoc,
1402                                 bool ListInitialization) {
1403   if (!TypeRep)
1404     return ExprError();
1405 
1406   TypeSourceInfo *TInfo;
1407   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1408   if (!TInfo)
1409     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1410 
1411   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1412                                           RParenOrBraceLoc, ListInitialization);
1413   // Avoid creating a non-type-dependent expression that contains typos.
1414   // Non-type-dependent expressions are liable to be discarded without
1415   // checking for embedded typos.
1416   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1417       !Result.get()->isTypeDependent())
1418     Result = CorrectDelayedTyposInExpr(Result.get());
1419   else if (Result.isInvalid())
1420     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1421                                 RParenOrBraceLoc, exprs, Ty);
1422   return Result;
1423 }
1424 
1425 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Exprs,SourceLocation RParenOrBraceLoc,bool ListInitialization)1426 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1427                                 SourceLocation LParenOrBraceLoc,
1428                                 MultiExprArg Exprs,
1429                                 SourceLocation RParenOrBraceLoc,
1430                                 bool ListInitialization) {
1431   QualType Ty = TInfo->getType();
1432   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1433 
1434   assert((!ListInitialization ||
1435           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1436          "List initialization must have initializer list as expression.");
1437   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1438 
1439   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1440   InitializationKind Kind =
1441       Exprs.size()
1442           ? ListInitialization
1443                 ? InitializationKind::CreateDirectList(
1444                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1445                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1446                                                    RParenOrBraceLoc)
1447           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1448                                             RParenOrBraceLoc);
1449 
1450   // C++1z [expr.type.conv]p1:
1451   //   If the type is a placeholder for a deduced class type, [...perform class
1452   //   template argument deduction...]
1453   DeducedType *Deduced = Ty->getContainedDeducedType();
1454   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1455     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1456                                                      Kind, Exprs);
1457     if (Ty.isNull())
1458       return ExprError();
1459     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1460   }
1461 
1462   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1463     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1464     // directly. We work around this by dropping the locations of the braces.
1465     SourceRange Locs = ListInitialization
1466                            ? SourceRange()
1467                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1468     return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1469                                               TInfo, Locs.getBegin(), Exprs,
1470                                               Locs.getEnd());
1471   }
1472 
1473   // C++ [expr.type.conv]p1:
1474   // If the expression list is a parenthesized single expression, the type
1475   // conversion expression is equivalent (in definedness, and if defined in
1476   // meaning) to the corresponding cast expression.
1477   if (Exprs.size() == 1 && !ListInitialization &&
1478       !isa<InitListExpr>(Exprs[0])) {
1479     Expr *Arg = Exprs[0];
1480     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1481                                       RParenOrBraceLoc);
1482   }
1483 
1484   //   For an expression of the form T(), T shall not be an array type.
1485   QualType ElemTy = Ty;
1486   if (Ty->isArrayType()) {
1487     if (!ListInitialization)
1488       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1489                          << FullRange);
1490     ElemTy = Context.getBaseElementType(Ty);
1491   }
1492 
1493   // There doesn't seem to be an explicit rule against this but sanity demands
1494   // we only construct objects with object types.
1495   if (Ty->isFunctionType())
1496     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1497                        << Ty << FullRange);
1498 
1499   // C++17 [expr.type.conv]p2:
1500   //   If the type is cv void and the initializer is (), the expression is a
1501   //   prvalue of the specified type that performs no initialization.
1502   if (!Ty->isVoidType() &&
1503       RequireCompleteType(TyBeginLoc, ElemTy,
1504                           diag::err_invalid_incomplete_type_use, FullRange))
1505     return ExprError();
1506 
1507   //   Otherwise, the expression is a prvalue of the specified type whose
1508   //   result object is direct-initialized (11.6) with the initializer.
1509   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1510   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1511 
1512   if (Result.isInvalid())
1513     return Result;
1514 
1515   Expr *Inner = Result.get();
1516   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1517     Inner = BTE->getSubExpr();
1518   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1519       !isa<CXXScalarValueInitExpr>(Inner)) {
1520     // If we created a CXXTemporaryObjectExpr, that node also represents the
1521     // functional cast. Otherwise, create an explicit cast to represent
1522     // the syntactic form of a functional-style cast that was used here.
1523     //
1524     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1525     // would give a more consistent AST representation than using a
1526     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1527     // is sometimes handled by initialization and sometimes not.
1528     QualType ResultType = Result.get()->getType();
1529     SourceRange Locs = ListInitialization
1530                            ? SourceRange()
1531                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1532     Result = CXXFunctionalCastExpr::Create(
1533         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1534         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1535         Locs.getBegin(), Locs.getEnd());
1536   }
1537 
1538   return Result;
1539 }
1540 
isUsualDeallocationFunction(const CXXMethodDecl * Method)1541 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1542   // [CUDA] Ignore this function, if we can't call it.
1543   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1544   if (getLangOpts().CUDA) {
1545     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1546     // If it's not callable at all, it's not the right function.
1547     if (CallPreference < CFP_WrongSide)
1548       return false;
1549     if (CallPreference == CFP_WrongSide) {
1550       // Maybe. We have to check if there are better alternatives.
1551       DeclContext::lookup_result R =
1552           Method->getDeclContext()->lookup(Method->getDeclName());
1553       for (const auto *D : R) {
1554         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1555           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1556             return false;
1557         }
1558       }
1559       // We've found no better variants.
1560     }
1561   }
1562 
1563   SmallVector<const FunctionDecl*, 4> PreventedBy;
1564   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1565 
1566   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1567     return Result;
1568 
1569   // In case of CUDA, return true if none of the 1-argument deallocator
1570   // functions are actually callable.
1571   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1572     assert(FD->getNumParams() == 1 &&
1573            "Only single-operand functions should be in PreventedBy");
1574     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1575   });
1576 }
1577 
1578 /// Determine whether the given function is a non-placement
1579 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1580 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1581   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1582     return S.isUsualDeallocationFunction(Method);
1583 
1584   if (FD->getOverloadedOperator() != OO_Delete &&
1585       FD->getOverloadedOperator() != OO_Array_Delete)
1586     return false;
1587 
1588   unsigned UsualParams = 1;
1589 
1590   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1591       S.Context.hasSameUnqualifiedType(
1592           FD->getParamDecl(UsualParams)->getType(),
1593           S.Context.getSizeType()))
1594     ++UsualParams;
1595 
1596   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1597       S.Context.hasSameUnqualifiedType(
1598           FD->getParamDecl(UsualParams)->getType(),
1599           S.Context.getTypeDeclType(S.getStdAlignValT())))
1600     ++UsualParams;
1601 
1602   return UsualParams == FD->getNumParams();
1603 }
1604 
1605 namespace {
1606   struct UsualDeallocFnInfo {
UsualDeallocFnInfo__anonf8aa59880a11::UsualDeallocFnInfo1607     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
UsualDeallocFnInfo__anonf8aa59880a11::UsualDeallocFnInfo1608     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1609         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1610           Destroying(false), HasSizeT(false), HasAlignValT(false),
1611           CUDAPref(Sema::CFP_Native) {
1612       // A function template declaration is never a usual deallocation function.
1613       if (!FD)
1614         return;
1615       unsigned NumBaseParams = 1;
1616       if (FD->isDestroyingOperatorDelete()) {
1617         Destroying = true;
1618         ++NumBaseParams;
1619       }
1620 
1621       if (NumBaseParams < FD->getNumParams() &&
1622           S.Context.hasSameUnqualifiedType(
1623               FD->getParamDecl(NumBaseParams)->getType(),
1624               S.Context.getSizeType())) {
1625         ++NumBaseParams;
1626         HasSizeT = true;
1627       }
1628 
1629       if (NumBaseParams < FD->getNumParams() &&
1630           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1631         ++NumBaseParams;
1632         HasAlignValT = true;
1633       }
1634 
1635       // In CUDA, determine how much we'd like / dislike to call this.
1636       if (S.getLangOpts().CUDA)
1637         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1638           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1639     }
1640 
operator bool__anonf8aa59880a11::UsualDeallocFnInfo1641     explicit operator bool() const { return FD; }
1642 
isBetterThan__anonf8aa59880a11::UsualDeallocFnInfo1643     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1644                       bool WantAlign) const {
1645       // C++ P0722:
1646       //   A destroying operator delete is preferred over a non-destroying
1647       //   operator delete.
1648       if (Destroying != Other.Destroying)
1649         return Destroying;
1650 
1651       // C++17 [expr.delete]p10:
1652       //   If the type has new-extended alignment, a function with a parameter
1653       //   of type std::align_val_t is preferred; otherwise a function without
1654       //   such a parameter is preferred
1655       if (HasAlignValT != Other.HasAlignValT)
1656         return HasAlignValT == WantAlign;
1657 
1658       if (HasSizeT != Other.HasSizeT)
1659         return HasSizeT == WantSize;
1660 
1661       // Use CUDA call preference as a tiebreaker.
1662       return CUDAPref > Other.CUDAPref;
1663     }
1664 
1665     DeclAccessPair Found;
1666     FunctionDecl *FD;
1667     bool Destroying, HasSizeT, HasAlignValT;
1668     Sema::CUDAFunctionPreference CUDAPref;
1669   };
1670 }
1671 
1672 /// Determine whether a type has new-extended alignment. This may be called when
1673 /// the type is incomplete (for a delete-expression with an incomplete pointee
1674 /// type), in which case it will conservatively return false if the alignment is
1675 /// not known.
hasNewExtendedAlignment(Sema & S,QualType AllocType)1676 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1677   return S.getLangOpts().AlignedAllocation &&
1678          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1679              S.getASTContext().getTargetInfo().getNewAlign();
1680 }
1681 
1682 /// Select the correct "usual" deallocation function to use from a selection of
1683 /// deallocation functions (either global or class-scope).
resolveDeallocationOverload(Sema & S,LookupResult & R,bool WantSize,bool WantAlign,llvm::SmallVectorImpl<UsualDeallocFnInfo> * BestFns=nullptr)1684 static UsualDeallocFnInfo resolveDeallocationOverload(
1685     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1686     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1687   UsualDeallocFnInfo Best;
1688 
1689   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1690     UsualDeallocFnInfo Info(S, I.getPair());
1691     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1692         Info.CUDAPref == Sema::CFP_Never)
1693       continue;
1694 
1695     if (!Best) {
1696       Best = Info;
1697       if (BestFns)
1698         BestFns->push_back(Info);
1699       continue;
1700     }
1701 
1702     if (Best.isBetterThan(Info, WantSize, WantAlign))
1703       continue;
1704 
1705     //   If more than one preferred function is found, all non-preferred
1706     //   functions are eliminated from further consideration.
1707     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1708       BestFns->clear();
1709 
1710     Best = Info;
1711     if (BestFns)
1712       BestFns->push_back(Info);
1713   }
1714 
1715   return Best;
1716 }
1717 
1718 /// Determine whether a given type is a class for which 'delete[]' would call
1719 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1720 /// we need to store the array size (even if the type is
1721 /// trivially-destructible).
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)1722 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1723                                          QualType allocType) {
1724   const RecordType *record =
1725     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1726   if (!record) return false;
1727 
1728   // Try to find an operator delete[] in class scope.
1729 
1730   DeclarationName deleteName =
1731     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1732   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1733   S.LookupQualifiedName(ops, record->getDecl());
1734 
1735   // We're just doing this for information.
1736   ops.suppressDiagnostics();
1737 
1738   // Very likely: there's no operator delete[].
1739   if (ops.empty()) return false;
1740 
1741   // If it's ambiguous, it should be illegal to call operator delete[]
1742   // on this thing, so it doesn't matter if we allocate extra space or not.
1743   if (ops.isAmbiguous()) return false;
1744 
1745   // C++17 [expr.delete]p10:
1746   //   If the deallocation functions have class scope, the one without a
1747   //   parameter of type std::size_t is selected.
1748   auto Best = resolveDeallocationOverload(
1749       S, ops, /*WantSize*/false,
1750       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1751   return Best && Best.HasSizeT;
1752 }
1753 
1754 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1755 ///
1756 /// E.g.:
1757 /// @code new (memory) int[size][4] @endcode
1758 /// or
1759 /// @code ::new Foo(23, "hello") @endcode
1760 ///
1761 /// \param StartLoc The first location of the expression.
1762 /// \param UseGlobal True if 'new' was prefixed with '::'.
1763 /// \param PlacementLParen Opening paren of the placement arguments.
1764 /// \param PlacementArgs Placement new arguments.
1765 /// \param PlacementRParen Closing paren of the placement arguments.
1766 /// \param TypeIdParens If the type is in parens, the source range.
1767 /// \param D The type to be allocated, as well as array dimensions.
1768 /// \param Initializer The initializing expression or initializer-list, or null
1769 ///   if there is none.
1770 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1771 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1772                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1773                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1774                   Declarator &D, Expr *Initializer) {
1775   Optional<Expr *> ArraySize;
1776   // If the specified type is an array, unwrap it and save the expression.
1777   if (D.getNumTypeObjects() > 0 &&
1778       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1779     DeclaratorChunk &Chunk = D.getTypeObject(0);
1780     if (D.getDeclSpec().hasAutoTypeSpec())
1781       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1782         << D.getSourceRange());
1783     if (Chunk.Arr.hasStatic)
1784       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1785         << D.getSourceRange());
1786     if (!Chunk.Arr.NumElts && !Initializer)
1787       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1788         << D.getSourceRange());
1789 
1790     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1791     D.DropFirstTypeObject();
1792   }
1793 
1794   // Every dimension shall be of constant size.
1795   if (ArraySize) {
1796     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1797       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1798         break;
1799 
1800       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1801       if (Expr *NumElts = (Expr *)Array.NumElts) {
1802         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1803           // FIXME: GCC permits constant folding here. We should either do so consistently
1804           // or not do so at all, rather than changing behavior in C++14 onwards.
1805           if (getLangOpts().CPlusPlus14) {
1806             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1807             //   shall be a converted constant expression (5.19) of type std::size_t
1808             //   and shall evaluate to a strictly positive value.
1809             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1810             Array.NumElts
1811              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1812                                                 CCEK_ArrayBound)
1813                  .get();
1814           } else {
1815             Array.NumElts =
1816                 VerifyIntegerConstantExpression(
1817                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1818                     .get();
1819           }
1820           if (!Array.NumElts)
1821             return ExprError();
1822         }
1823       }
1824     }
1825   }
1826 
1827   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1828   QualType AllocType = TInfo->getType();
1829   if (D.isInvalidType())
1830     return ExprError();
1831 
1832   SourceRange DirectInitRange;
1833   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1834     DirectInitRange = List->getSourceRange();
1835 
1836   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1837                      PlacementLParen, PlacementArgs, PlacementRParen,
1838                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1839                      Initializer);
1840 }
1841 
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1842 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1843                                        Expr *Init) {
1844   if (!Init)
1845     return true;
1846   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1847     return PLE->getNumExprs() == 0;
1848   if (isa<ImplicitValueInitExpr>(Init))
1849     return true;
1850   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1851     return !CCE->isListInitialization() &&
1852            CCE->getConstructor()->isDefaultConstructor();
1853   else if (Style == CXXNewExpr::ListInit) {
1854     assert(isa<InitListExpr>(Init) &&
1855            "Shouldn't create list CXXConstructExprs for arrays.");
1856     return true;
1857   }
1858   return false;
1859 }
1860 
1861 bool
isUnavailableAlignedAllocationFunction(const FunctionDecl & FD) const1862 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1863   if (!getLangOpts().AlignedAllocationUnavailable)
1864     return false;
1865   if (FD.isDefined())
1866     return false;
1867   Optional<unsigned> AlignmentParam;
1868   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1869       AlignmentParam.hasValue())
1870     return true;
1871   return false;
1872 }
1873 
1874 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1875 // implemented in the standard library is selected.
diagnoseUnavailableAlignedAllocation(const FunctionDecl & FD,SourceLocation Loc)1876 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1877                                                 SourceLocation Loc) {
1878   if (isUnavailableAlignedAllocationFunction(FD)) {
1879     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1880     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1881         getASTContext().getTargetInfo().getPlatformName());
1882     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1883 
1884     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1885     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1886     Diag(Loc, diag::err_aligned_allocation_unavailable)
1887         << IsDelete << FD.getType().getAsString() << OSName
1888         << OSVersion.getAsString() << OSVersion.empty();
1889     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1890   }
1891 }
1892 
1893 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Optional<Expr * > ArraySize,SourceRange DirectInitRange,Expr * Initializer)1894 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1895                   SourceLocation PlacementLParen,
1896                   MultiExprArg PlacementArgs,
1897                   SourceLocation PlacementRParen,
1898                   SourceRange TypeIdParens,
1899                   QualType AllocType,
1900                   TypeSourceInfo *AllocTypeInfo,
1901                   Optional<Expr *> ArraySize,
1902                   SourceRange DirectInitRange,
1903                   Expr *Initializer) {
1904   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1905   SourceLocation StartLoc = Range.getBegin();
1906 
1907   CXXNewExpr::InitializationStyle initStyle;
1908   if (DirectInitRange.isValid()) {
1909     assert(Initializer && "Have parens but no initializer.");
1910     initStyle = CXXNewExpr::CallInit;
1911   } else if (Initializer && isa<InitListExpr>(Initializer))
1912     initStyle = CXXNewExpr::ListInit;
1913   else {
1914     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1915             isa<CXXConstructExpr>(Initializer)) &&
1916            "Initializer expression that cannot have been implicitly created.");
1917     initStyle = CXXNewExpr::NoInit;
1918   }
1919 
1920   Expr **Inits = &Initializer;
1921   unsigned NumInits = Initializer ? 1 : 0;
1922   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1923     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1924     Inits = List->getExprs();
1925     NumInits = List->getNumExprs();
1926   }
1927 
1928   // C++11 [expr.new]p15:
1929   //   A new-expression that creates an object of type T initializes that
1930   //   object as follows:
1931   InitializationKind Kind
1932       //     - If the new-initializer is omitted, the object is default-
1933       //       initialized (8.5); if no initialization is performed,
1934       //       the object has indeterminate value
1935       = initStyle == CXXNewExpr::NoInit
1936             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1937             //     - Otherwise, the new-initializer is interpreted according to
1938             //     the
1939             //       initialization rules of 8.5 for direct-initialization.
1940             : initStyle == CXXNewExpr::ListInit
1941                   ? InitializationKind::CreateDirectList(
1942                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1943                         Initializer->getEndLoc())
1944                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1945                                                      DirectInitRange.getBegin(),
1946                                                      DirectInitRange.getEnd());
1947 
1948   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1949   auto *Deduced = AllocType->getContainedDeducedType();
1950   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1951     if (ArraySize)
1952       return ExprError(
1953           Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1954                diag::err_deduced_class_template_compound_type)
1955           << /*array*/ 2
1956           << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1957 
1958     InitializedEntity Entity
1959       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1960     AllocType = DeduceTemplateSpecializationFromInitializer(
1961         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1962     if (AllocType.isNull())
1963       return ExprError();
1964   } else if (Deduced) {
1965     bool Braced = (initStyle == CXXNewExpr::ListInit);
1966     if (NumInits == 1) {
1967       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1968         Inits = p->getInits();
1969         NumInits = p->getNumInits();
1970         Braced = true;
1971       }
1972     }
1973 
1974     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1975       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1976                        << AllocType << TypeRange);
1977     if (NumInits > 1) {
1978       Expr *FirstBad = Inits[1];
1979       return ExprError(Diag(FirstBad->getBeginLoc(),
1980                             diag::err_auto_new_ctor_multiple_expressions)
1981                        << AllocType << TypeRange);
1982     }
1983     if (Braced && !getLangOpts().CPlusPlus17)
1984       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1985           << AllocType << TypeRange;
1986     Expr *Deduce = Inits[0];
1987     QualType DeducedType;
1988     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1989       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1990                        << AllocType << Deduce->getType()
1991                        << TypeRange << Deduce->getSourceRange());
1992     if (DeducedType.isNull())
1993       return ExprError();
1994     AllocType = DeducedType;
1995   }
1996 
1997   // Per C++0x [expr.new]p5, the type being constructed may be a
1998   // typedef of an array type.
1999   if (!ArraySize) {
2000     if (const ConstantArrayType *Array
2001                               = Context.getAsConstantArrayType(AllocType)) {
2002       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2003                                          Context.getSizeType(),
2004                                          TypeRange.getEnd());
2005       AllocType = Array->getElementType();
2006     }
2007   }
2008 
2009   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2010     return ExprError();
2011 
2012   // In ARC, infer 'retaining' for the allocated
2013   if (getLangOpts().ObjCAutoRefCount &&
2014       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2015       AllocType->isObjCLifetimeType()) {
2016     AllocType = Context.getLifetimeQualifiedType(AllocType,
2017                                     AllocType->getObjCARCImplicitLifetime());
2018   }
2019 
2020   QualType ResultType = Context.getPointerType(AllocType);
2021 
2022   if (ArraySize && *ArraySize &&
2023       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2024     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2025     if (result.isInvalid()) return ExprError();
2026     ArraySize = result.get();
2027   }
2028   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2029   //   integral or enumeration type with a non-negative value."
2030   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2031   //   enumeration type, or a class type for which a single non-explicit
2032   //   conversion function to integral or unscoped enumeration type exists.
2033   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2034   //   std::size_t.
2035   llvm::Optional<uint64_t> KnownArraySize;
2036   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2037     ExprResult ConvertedSize;
2038     if (getLangOpts().CPlusPlus14) {
2039       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2040 
2041       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2042                                                 AA_Converting);
2043 
2044       if (!ConvertedSize.isInvalid() &&
2045           (*ArraySize)->getType()->getAs<RecordType>())
2046         // Diagnose the compatibility of this conversion.
2047         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2048           << (*ArraySize)->getType() << 0 << "'size_t'";
2049     } else {
2050       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2051       protected:
2052         Expr *ArraySize;
2053 
2054       public:
2055         SizeConvertDiagnoser(Expr *ArraySize)
2056             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2057               ArraySize(ArraySize) {}
2058 
2059         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2060                                              QualType T) override {
2061           return S.Diag(Loc, diag::err_array_size_not_integral)
2062                    << S.getLangOpts().CPlusPlus11 << T;
2063         }
2064 
2065         SemaDiagnosticBuilder diagnoseIncomplete(
2066             Sema &S, SourceLocation Loc, QualType T) override {
2067           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2068                    << T << ArraySize->getSourceRange();
2069         }
2070 
2071         SemaDiagnosticBuilder diagnoseExplicitConv(
2072             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2073           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2074         }
2075 
2076         SemaDiagnosticBuilder noteExplicitConv(
2077             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2078           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2079                    << ConvTy->isEnumeralType() << ConvTy;
2080         }
2081 
2082         SemaDiagnosticBuilder diagnoseAmbiguous(
2083             Sema &S, SourceLocation Loc, QualType T) override {
2084           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2085         }
2086 
2087         SemaDiagnosticBuilder noteAmbiguous(
2088             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2089           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2090                    << ConvTy->isEnumeralType() << ConvTy;
2091         }
2092 
2093         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2094                                                  QualType T,
2095                                                  QualType ConvTy) override {
2096           return S.Diag(Loc,
2097                         S.getLangOpts().CPlusPlus11
2098                           ? diag::warn_cxx98_compat_array_size_conversion
2099                           : diag::ext_array_size_conversion)
2100                    << T << ConvTy->isEnumeralType() << ConvTy;
2101         }
2102       } SizeDiagnoser(*ArraySize);
2103 
2104       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2105                                                           SizeDiagnoser);
2106     }
2107     if (ConvertedSize.isInvalid())
2108       return ExprError();
2109 
2110     ArraySize = ConvertedSize.get();
2111     QualType SizeType = (*ArraySize)->getType();
2112 
2113     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2114       return ExprError();
2115 
2116     // C++98 [expr.new]p7:
2117     //   The expression in a direct-new-declarator shall have integral type
2118     //   with a non-negative value.
2119     //
2120     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2121     // per CWG1464. Otherwise, if it's not a constant, we must have an
2122     // unparenthesized array type.
2123     if (!(*ArraySize)->isValueDependent()) {
2124       // We've already performed any required implicit conversion to integer or
2125       // unscoped enumeration type.
2126       // FIXME: Per CWG1464, we are required to check the value prior to
2127       // converting to size_t. This will never find a negative array size in
2128       // C++14 onwards, because Value is always unsigned here!
2129       if (Optional<llvm::APSInt> Value =
2130               (*ArraySize)->getIntegerConstantExpr(Context)) {
2131         if (Value->isSigned() && Value->isNegative()) {
2132           return ExprError(Diag((*ArraySize)->getBeginLoc(),
2133                                 diag::err_typecheck_negative_array_size)
2134                            << (*ArraySize)->getSourceRange());
2135         }
2136 
2137         if (!AllocType->isDependentType()) {
2138           unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(
2139               Context, AllocType, *Value);
2140           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2141             return ExprError(
2142                 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2143                 << Value->toString(10) << (*ArraySize)->getSourceRange());
2144         }
2145 
2146         KnownArraySize = Value->getZExtValue();
2147       } else if (TypeIdParens.isValid()) {
2148         // Can't have dynamic array size when the type-id is in parentheses.
2149         Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2150             << (*ArraySize)->getSourceRange()
2151             << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2152             << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2153 
2154         TypeIdParens = SourceRange();
2155       }
2156     }
2157 
2158     // Note that we do *not* convert the argument in any way.  It can
2159     // be signed, larger than size_t, whatever.
2160   }
2161 
2162   FunctionDecl *OperatorNew = nullptr;
2163   FunctionDecl *OperatorDelete = nullptr;
2164   unsigned Alignment =
2165       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2166   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2167   bool PassAlignment = getLangOpts().AlignedAllocation &&
2168                        Alignment > NewAlignment;
2169 
2170   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2171   if (!AllocType->isDependentType() &&
2172       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2173       FindAllocationFunctions(
2174           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2175           AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2176           OperatorNew, OperatorDelete))
2177     return ExprError();
2178 
2179   // If this is an array allocation, compute whether the usual array
2180   // deallocation function for the type has a size_t parameter.
2181   bool UsualArrayDeleteWantsSize = false;
2182   if (ArraySize && !AllocType->isDependentType())
2183     UsualArrayDeleteWantsSize =
2184         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2185 
2186   SmallVector<Expr *, 8> AllPlaceArgs;
2187   if (OperatorNew) {
2188     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2189     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2190                                                     : VariadicDoesNotApply;
2191 
2192     // We've already converted the placement args, just fill in any default
2193     // arguments. Skip the first parameter because we don't have a corresponding
2194     // argument. Skip the second parameter too if we're passing in the
2195     // alignment; we've already filled it in.
2196     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2197     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2198                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2199                                CallType))
2200       return ExprError();
2201 
2202     if (!AllPlaceArgs.empty())
2203       PlacementArgs = AllPlaceArgs;
2204 
2205     // We would like to perform some checking on the given `operator new` call,
2206     // but the PlacementArgs does not contain the implicit arguments,
2207     // namely allocation size and maybe allocation alignment,
2208     // so we need to conjure them.
2209 
2210     QualType SizeTy = Context.getSizeType();
2211     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2212 
2213     llvm::APInt SingleEltSize(
2214         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2215 
2216     // How many bytes do we want to allocate here?
2217     llvm::Optional<llvm::APInt> AllocationSize;
2218     if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2219       // For non-array operator new, we only want to allocate one element.
2220       AllocationSize = SingleEltSize;
2221     } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2222       // For array operator new, only deal with static array size case.
2223       bool Overflow;
2224       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2225                            .umul_ov(SingleEltSize, Overflow);
2226       (void)Overflow;
2227       assert(
2228           !Overflow &&
2229           "Expected that all the overflows would have been handled already.");
2230     }
2231 
2232     IntegerLiteral AllocationSizeLiteral(
2233         Context,
2234         AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)),
2235         SizeTy, SourceLocation());
2236     // Otherwise, if we failed to constant-fold the allocation size, we'll
2237     // just give up and pass-in something opaque, that isn't a null pointer.
2238     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_RValue,
2239                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2240 
2241     // Let's synthesize the alignment argument in case we will need it.
2242     // Since we *really* want to allocate these on stack, this is slightly ugly
2243     // because there might not be a `std::align_val_t` type.
2244     EnumDecl *StdAlignValT = getStdAlignValT();
2245     QualType AlignValT =
2246         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2247     IntegerLiteral AlignmentLiteral(
2248         Context,
2249         llvm::APInt(Context.getTypeSize(SizeTy),
2250                     Alignment / Context.getCharWidth()),
2251         SizeTy, SourceLocation());
2252     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2253                                       CK_IntegralCast, &AlignmentLiteral,
2254                                       VK_RValue, FPOptionsOverride());
2255 
2256     // Adjust placement args by prepending conjured size and alignment exprs.
2257     llvm::SmallVector<Expr *, 8> CallArgs;
2258     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2259     CallArgs.emplace_back(AllocationSize.hasValue()
2260                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2261                               : &OpaqueAllocationSize);
2262     if (PassAlignment)
2263       CallArgs.emplace_back(&DesiredAlignment);
2264     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2265 
2266     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2267 
2268     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2269               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2270 
2271     // Warn if the type is over-aligned and is being allocated by (unaligned)
2272     // global operator new.
2273     if (PlacementArgs.empty() && !PassAlignment &&
2274         (OperatorNew->isImplicit() ||
2275          (OperatorNew->getBeginLoc().isValid() &&
2276           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2277       if (Alignment > NewAlignment)
2278         Diag(StartLoc, diag::warn_overaligned_type)
2279             << AllocType
2280             << unsigned(Alignment / Context.getCharWidth())
2281             << unsigned(NewAlignment / Context.getCharWidth());
2282     }
2283   }
2284 
2285   // Array 'new' can't have any initializers except empty parentheses.
2286   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2287   // dialect distinction.
2288   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2289     SourceRange InitRange(Inits[0]->getBeginLoc(),
2290                           Inits[NumInits - 1]->getEndLoc());
2291     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2292     return ExprError();
2293   }
2294 
2295   // If we can perform the initialization, and we've not already done so,
2296   // do it now.
2297   if (!AllocType->isDependentType() &&
2298       !Expr::hasAnyTypeDependentArguments(
2299           llvm::makeArrayRef(Inits, NumInits))) {
2300     // The type we initialize is the complete type, including the array bound.
2301     QualType InitType;
2302     if (KnownArraySize)
2303       InitType = Context.getConstantArrayType(
2304           AllocType,
2305           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2306                       *KnownArraySize),
2307           *ArraySize, ArrayType::Normal, 0);
2308     else if (ArraySize)
2309       InitType =
2310           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2311     else
2312       InitType = AllocType;
2313 
2314     InitializedEntity Entity
2315       = InitializedEntity::InitializeNew(StartLoc, InitType);
2316     InitializationSequence InitSeq(*this, Entity, Kind,
2317                                    MultiExprArg(Inits, NumInits));
2318     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2319                                           MultiExprArg(Inits, NumInits));
2320     if (FullInit.isInvalid())
2321       return ExprError();
2322 
2323     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2324     // we don't want the initialized object to be destructed.
2325     // FIXME: We should not create these in the first place.
2326     if (CXXBindTemporaryExpr *Binder =
2327             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2328       FullInit = Binder->getSubExpr();
2329 
2330     Initializer = FullInit.get();
2331 
2332     // FIXME: If we have a KnownArraySize, check that the array bound of the
2333     // initializer is no greater than that constant value.
2334 
2335     if (ArraySize && !*ArraySize) {
2336       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2337       if (CAT) {
2338         // FIXME: Track that the array size was inferred rather than explicitly
2339         // specified.
2340         ArraySize = IntegerLiteral::Create(
2341             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2342       } else {
2343         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2344             << Initializer->getSourceRange();
2345       }
2346     }
2347   }
2348 
2349   // Mark the new and delete operators as referenced.
2350   if (OperatorNew) {
2351     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2352       return ExprError();
2353     MarkFunctionReferenced(StartLoc, OperatorNew);
2354   }
2355   if (OperatorDelete) {
2356     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2357       return ExprError();
2358     MarkFunctionReferenced(StartLoc, OperatorDelete);
2359   }
2360 
2361   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2362                             PassAlignment, UsualArrayDeleteWantsSize,
2363                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2364                             Initializer, ResultType, AllocTypeInfo, Range,
2365                             DirectInitRange);
2366 }
2367 
2368 /// Checks that a type is suitable as the allocated type
2369 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)2370 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2371                               SourceRange R) {
2372   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2373   //   abstract class type or array thereof.
2374   if (AllocType->isFunctionType())
2375     return Diag(Loc, diag::err_bad_new_type)
2376       << AllocType << 0 << R;
2377   else if (AllocType->isReferenceType())
2378     return Diag(Loc, diag::err_bad_new_type)
2379       << AllocType << 1 << R;
2380   else if (!AllocType->isDependentType() &&
2381            RequireCompleteSizedType(
2382                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2383     return true;
2384   else if (RequireNonAbstractType(Loc, AllocType,
2385                                   diag::err_allocation_of_abstract_type))
2386     return true;
2387   else if (AllocType->isVariablyModifiedType())
2388     return Diag(Loc, diag::err_variably_modified_new_type)
2389              << AllocType;
2390   else if (AllocType.getAddressSpace() != LangAS::Default &&
2391            !getLangOpts().OpenCLCPlusPlus)
2392     return Diag(Loc, diag::err_address_space_qualified_new)
2393       << AllocType.getUnqualifiedType()
2394       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2395   else if (getLangOpts().ObjCAutoRefCount) {
2396     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2397       QualType BaseAllocType = Context.getBaseElementType(AT);
2398       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2399           BaseAllocType->isObjCLifetimeType())
2400         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2401           << BaseAllocType;
2402     }
2403   }
2404 
2405   return false;
2406 }
2407 
resolveAllocationOverload(Sema & S,LookupResult & R,SourceRange Range,SmallVectorImpl<Expr * > & Args,bool & PassAlignment,FunctionDecl * & Operator,OverloadCandidateSet * AlignedCandidates,Expr * AlignArg,bool Diagnose)2408 static bool resolveAllocationOverload(
2409     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2410     bool &PassAlignment, FunctionDecl *&Operator,
2411     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2412   OverloadCandidateSet Candidates(R.getNameLoc(),
2413                                   OverloadCandidateSet::CSK_Normal);
2414   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2415        Alloc != AllocEnd; ++Alloc) {
2416     // Even member operator new/delete are implicitly treated as
2417     // static, so don't use AddMemberCandidate.
2418     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2419 
2420     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2421       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2422                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2423                                      Candidates,
2424                                      /*SuppressUserConversions=*/false);
2425       continue;
2426     }
2427 
2428     FunctionDecl *Fn = cast<FunctionDecl>(D);
2429     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2430                            /*SuppressUserConversions=*/false);
2431   }
2432 
2433   // Do the resolution.
2434   OverloadCandidateSet::iterator Best;
2435   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2436   case OR_Success: {
2437     // Got one!
2438     FunctionDecl *FnDecl = Best->Function;
2439     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2440                                 Best->FoundDecl) == Sema::AR_inaccessible)
2441       return true;
2442 
2443     Operator = FnDecl;
2444     return false;
2445   }
2446 
2447   case OR_No_Viable_Function:
2448     // C++17 [expr.new]p13:
2449     //   If no matching function is found and the allocated object type has
2450     //   new-extended alignment, the alignment argument is removed from the
2451     //   argument list, and overload resolution is performed again.
2452     if (PassAlignment) {
2453       PassAlignment = false;
2454       AlignArg = Args[1];
2455       Args.erase(Args.begin() + 1);
2456       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2457                                        Operator, &Candidates, AlignArg,
2458                                        Diagnose);
2459     }
2460 
2461     // MSVC will fall back on trying to find a matching global operator new
2462     // if operator new[] cannot be found.  Also, MSVC will leak by not
2463     // generating a call to operator delete or operator delete[], but we
2464     // will not replicate that bug.
2465     // FIXME: Find out how this interacts with the std::align_val_t fallback
2466     // once MSVC implements it.
2467     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2468         S.Context.getLangOpts().MSVCCompat) {
2469       R.clear();
2470       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2471       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2472       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2473       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2474                                        Operator, /*Candidates=*/nullptr,
2475                                        /*AlignArg=*/nullptr, Diagnose);
2476     }
2477 
2478     if (Diagnose) {
2479       // If this is an allocation of the form 'new (p) X' for some object
2480       // pointer p (or an expression that will decay to such a pointer),
2481       // diagnose the missing inclusion of <new>.
2482       if (!R.isClassLookup() && Args.size() == 2 &&
2483           (Args[1]->getType()->isObjectPointerType() ||
2484            Args[1]->getType()->isArrayType())) {
2485         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2486             << R.getLookupName() << Range;
2487         // Listing the candidates is unlikely to be useful; skip it.
2488         return true;
2489       }
2490 
2491       // Finish checking all candidates before we note any. This checking can
2492       // produce additional diagnostics so can't be interleaved with our
2493       // emission of notes.
2494       //
2495       // For an aligned allocation, separately check the aligned and unaligned
2496       // candidates with their respective argument lists.
2497       SmallVector<OverloadCandidate*, 32> Cands;
2498       SmallVector<OverloadCandidate*, 32> AlignedCands;
2499       llvm::SmallVector<Expr*, 4> AlignedArgs;
2500       if (AlignedCandidates) {
2501         auto IsAligned = [](OverloadCandidate &C) {
2502           return C.Function->getNumParams() > 1 &&
2503                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2504         };
2505         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2506 
2507         AlignedArgs.reserve(Args.size() + 1);
2508         AlignedArgs.push_back(Args[0]);
2509         AlignedArgs.push_back(AlignArg);
2510         AlignedArgs.append(Args.begin() + 1, Args.end());
2511         AlignedCands = AlignedCandidates->CompleteCandidates(
2512             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2513 
2514         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2515                                               R.getNameLoc(), IsUnaligned);
2516       } else {
2517         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2518                                               R.getNameLoc());
2519       }
2520 
2521       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2522           << R.getLookupName() << Range;
2523       if (AlignedCandidates)
2524         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2525                                           R.getNameLoc());
2526       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2527     }
2528     return true;
2529 
2530   case OR_Ambiguous:
2531     if (Diagnose) {
2532       Candidates.NoteCandidates(
2533           PartialDiagnosticAt(R.getNameLoc(),
2534                               S.PDiag(diag::err_ovl_ambiguous_call)
2535                                   << R.getLookupName() << Range),
2536           S, OCD_AmbiguousCandidates, Args);
2537     }
2538     return true;
2539 
2540   case OR_Deleted: {
2541     if (Diagnose) {
2542       Candidates.NoteCandidates(
2543           PartialDiagnosticAt(R.getNameLoc(),
2544                               S.PDiag(diag::err_ovl_deleted_call)
2545                                   << R.getLookupName() << Range),
2546           S, OCD_AllCandidates, Args);
2547     }
2548     return true;
2549   }
2550   }
2551   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2552 }
2553 
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,AllocationFunctionScope NewScope,AllocationFunctionScope DeleteScope,QualType AllocType,bool IsArray,bool & PassAlignment,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete,bool Diagnose)2554 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2555                                    AllocationFunctionScope NewScope,
2556                                    AllocationFunctionScope DeleteScope,
2557                                    QualType AllocType, bool IsArray,
2558                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2559                                    FunctionDecl *&OperatorNew,
2560                                    FunctionDecl *&OperatorDelete,
2561                                    bool Diagnose) {
2562   // --- Choosing an allocation function ---
2563   // C++ 5.3.4p8 - 14 & 18
2564   // 1) If looking in AFS_Global scope for allocation functions, only look in
2565   //    the global scope. Else, if AFS_Class, only look in the scope of the
2566   //    allocated class. If AFS_Both, look in both.
2567   // 2) If an array size is given, look for operator new[], else look for
2568   //   operator new.
2569   // 3) The first argument is always size_t. Append the arguments from the
2570   //   placement form.
2571 
2572   SmallVector<Expr*, 8> AllocArgs;
2573   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2574 
2575   // We don't care about the actual value of these arguments.
2576   // FIXME: Should the Sema create the expression and embed it in the syntax
2577   // tree? Or should the consumer just recalculate the value?
2578   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2579   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2580                       Context.getTargetInfo().getPointerWidth(0)),
2581                       Context.getSizeType(),
2582                       SourceLocation());
2583   AllocArgs.push_back(&Size);
2584 
2585   QualType AlignValT = Context.VoidTy;
2586   if (PassAlignment) {
2587     DeclareGlobalNewDelete();
2588     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2589   }
2590   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2591   if (PassAlignment)
2592     AllocArgs.push_back(&Align);
2593 
2594   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2595 
2596   // C++ [expr.new]p8:
2597   //   If the allocated type is a non-array type, the allocation
2598   //   function's name is operator new and the deallocation function's
2599   //   name is operator delete. If the allocated type is an array
2600   //   type, the allocation function's name is operator new[] and the
2601   //   deallocation function's name is operator delete[].
2602   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2603       IsArray ? OO_Array_New : OO_New);
2604 
2605   QualType AllocElemType = Context.getBaseElementType(AllocType);
2606 
2607   // Find the allocation function.
2608   {
2609     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2610 
2611     // C++1z [expr.new]p9:
2612     //   If the new-expression begins with a unary :: operator, the allocation
2613     //   function's name is looked up in the global scope. Otherwise, if the
2614     //   allocated type is a class type T or array thereof, the allocation
2615     //   function's name is looked up in the scope of T.
2616     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2617       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2618 
2619     // We can see ambiguity here if the allocation function is found in
2620     // multiple base classes.
2621     if (R.isAmbiguous())
2622       return true;
2623 
2624     //   If this lookup fails to find the name, or if the allocated type is not
2625     //   a class type, the allocation function's name is looked up in the
2626     //   global scope.
2627     if (R.empty()) {
2628       if (NewScope == AFS_Class)
2629         return true;
2630 
2631       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2632     }
2633 
2634     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2635       if (PlaceArgs.empty()) {
2636         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2637       } else {
2638         Diag(StartLoc, diag::err_openclcxx_placement_new);
2639       }
2640       return true;
2641     }
2642 
2643     assert(!R.empty() && "implicitly declared allocation functions not found");
2644     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2645 
2646     // We do our own custom access checks below.
2647     R.suppressDiagnostics();
2648 
2649     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2650                                   OperatorNew, /*Candidates=*/nullptr,
2651                                   /*AlignArg=*/nullptr, Diagnose))
2652       return true;
2653   }
2654 
2655   // We don't need an operator delete if we're running under -fno-exceptions.
2656   if (!getLangOpts().Exceptions) {
2657     OperatorDelete = nullptr;
2658     return false;
2659   }
2660 
2661   // Note, the name of OperatorNew might have been changed from array to
2662   // non-array by resolveAllocationOverload.
2663   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2664       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2665           ? OO_Array_Delete
2666           : OO_Delete);
2667 
2668   // C++ [expr.new]p19:
2669   //
2670   //   If the new-expression begins with a unary :: operator, the
2671   //   deallocation function's name is looked up in the global
2672   //   scope. Otherwise, if the allocated type is a class type T or an
2673   //   array thereof, the deallocation function's name is looked up in
2674   //   the scope of T. If this lookup fails to find the name, or if
2675   //   the allocated type is not a class type or array thereof, the
2676   //   deallocation function's name is looked up in the global scope.
2677   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2678   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2679     auto *RD =
2680         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2681     LookupQualifiedName(FoundDelete, RD);
2682   }
2683   if (FoundDelete.isAmbiguous())
2684     return true; // FIXME: clean up expressions?
2685 
2686   // Filter out any destroying operator deletes. We can't possibly call such a
2687   // function in this context, because we're handling the case where the object
2688   // was not successfully constructed.
2689   // FIXME: This is not covered by the language rules yet.
2690   {
2691     LookupResult::Filter Filter = FoundDelete.makeFilter();
2692     while (Filter.hasNext()) {
2693       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2694       if (FD && FD->isDestroyingOperatorDelete())
2695         Filter.erase();
2696     }
2697     Filter.done();
2698   }
2699 
2700   bool FoundGlobalDelete = FoundDelete.empty();
2701   if (FoundDelete.empty()) {
2702     FoundDelete.clear(LookupOrdinaryName);
2703 
2704     if (DeleteScope == AFS_Class)
2705       return true;
2706 
2707     DeclareGlobalNewDelete();
2708     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2709   }
2710 
2711   FoundDelete.suppressDiagnostics();
2712 
2713   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2714 
2715   // Whether we're looking for a placement operator delete is dictated
2716   // by whether we selected a placement operator new, not by whether
2717   // we had explicit placement arguments.  This matters for things like
2718   //   struct A { void *operator new(size_t, int = 0); ... };
2719   //   A *a = new A()
2720   //
2721   // We don't have any definition for what a "placement allocation function"
2722   // is, but we assume it's any allocation function whose
2723   // parameter-declaration-clause is anything other than (size_t).
2724   //
2725   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2726   // This affects whether an exception from the constructor of an overaligned
2727   // type uses the sized or non-sized form of aligned operator delete.
2728   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2729                         OperatorNew->isVariadic();
2730 
2731   if (isPlacementNew) {
2732     // C++ [expr.new]p20:
2733     //   A declaration of a placement deallocation function matches the
2734     //   declaration of a placement allocation function if it has the
2735     //   same number of parameters and, after parameter transformations
2736     //   (8.3.5), all parameter types except the first are
2737     //   identical. [...]
2738     //
2739     // To perform this comparison, we compute the function type that
2740     // the deallocation function should have, and use that type both
2741     // for template argument deduction and for comparison purposes.
2742     QualType ExpectedFunctionType;
2743     {
2744       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2745 
2746       SmallVector<QualType, 4> ArgTypes;
2747       ArgTypes.push_back(Context.VoidPtrTy);
2748       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2749         ArgTypes.push_back(Proto->getParamType(I));
2750 
2751       FunctionProtoType::ExtProtoInfo EPI;
2752       // FIXME: This is not part of the standard's rule.
2753       EPI.Variadic = Proto->isVariadic();
2754 
2755       ExpectedFunctionType
2756         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2757     }
2758 
2759     for (LookupResult::iterator D = FoundDelete.begin(),
2760                              DEnd = FoundDelete.end();
2761          D != DEnd; ++D) {
2762       FunctionDecl *Fn = nullptr;
2763       if (FunctionTemplateDecl *FnTmpl =
2764               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2765         // Perform template argument deduction to try to match the
2766         // expected function type.
2767         TemplateDeductionInfo Info(StartLoc);
2768         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2769                                     Info))
2770           continue;
2771       } else
2772         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2773 
2774       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2775                                                   ExpectedFunctionType,
2776                                                   /*AdjustExcpetionSpec*/true),
2777                               ExpectedFunctionType))
2778         Matches.push_back(std::make_pair(D.getPair(), Fn));
2779     }
2780 
2781     if (getLangOpts().CUDA)
2782       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2783   } else {
2784     // C++1y [expr.new]p22:
2785     //   For a non-placement allocation function, the normal deallocation
2786     //   function lookup is used
2787     //
2788     // Per [expr.delete]p10, this lookup prefers a member operator delete
2789     // without a size_t argument, but prefers a non-member operator delete
2790     // with a size_t where possible (which it always is in this case).
2791     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2792     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2793         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2794         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2795         &BestDeallocFns);
2796     if (Selected)
2797       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2798     else {
2799       // If we failed to select an operator, all remaining functions are viable
2800       // but ambiguous.
2801       for (auto Fn : BestDeallocFns)
2802         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2803     }
2804   }
2805 
2806   // C++ [expr.new]p20:
2807   //   [...] If the lookup finds a single matching deallocation
2808   //   function, that function will be called; otherwise, no
2809   //   deallocation function will be called.
2810   if (Matches.size() == 1) {
2811     OperatorDelete = Matches[0].second;
2812 
2813     // C++1z [expr.new]p23:
2814     //   If the lookup finds a usual deallocation function (3.7.4.2)
2815     //   with a parameter of type std::size_t and that function, considered
2816     //   as a placement deallocation function, would have been
2817     //   selected as a match for the allocation function, the program
2818     //   is ill-formed.
2819     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2820         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2821       UsualDeallocFnInfo Info(*this,
2822                               DeclAccessPair::make(OperatorDelete, AS_public));
2823       // Core issue, per mail to core reflector, 2016-10-09:
2824       //   If this is a member operator delete, and there is a corresponding
2825       //   non-sized member operator delete, this isn't /really/ a sized
2826       //   deallocation function, it just happens to have a size_t parameter.
2827       bool IsSizedDelete = Info.HasSizeT;
2828       if (IsSizedDelete && !FoundGlobalDelete) {
2829         auto NonSizedDelete =
2830             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2831                                         /*WantAlign*/Info.HasAlignValT);
2832         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2833             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2834           IsSizedDelete = false;
2835       }
2836 
2837       if (IsSizedDelete) {
2838         SourceRange R = PlaceArgs.empty()
2839                             ? SourceRange()
2840                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2841                                           PlaceArgs.back()->getEndLoc());
2842         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2843         if (!OperatorDelete->isImplicit())
2844           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2845               << DeleteName;
2846       }
2847     }
2848 
2849     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2850                           Matches[0].first);
2851   } else if (!Matches.empty()) {
2852     // We found multiple suitable operators. Per [expr.new]p20, that means we
2853     // call no 'operator delete' function, but we should at least warn the user.
2854     // FIXME: Suppress this warning if the construction cannot throw.
2855     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2856       << DeleteName << AllocElemType;
2857 
2858     for (auto &Match : Matches)
2859       Diag(Match.second->getLocation(),
2860            diag::note_member_declared_here) << DeleteName;
2861   }
2862 
2863   return false;
2864 }
2865 
2866 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2867 /// delete. These are:
2868 /// @code
2869 ///   // C++03:
2870 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2871 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2872 ///   void operator delete(void *) throw();
2873 ///   void operator delete[](void *) throw();
2874 ///   // C++11:
2875 ///   void* operator new(std::size_t);
2876 ///   void* operator new[](std::size_t);
2877 ///   void operator delete(void *) noexcept;
2878 ///   void operator delete[](void *) noexcept;
2879 ///   // C++1y:
2880 ///   void* operator new(std::size_t);
2881 ///   void* operator new[](std::size_t);
2882 ///   void operator delete(void *) noexcept;
2883 ///   void operator delete[](void *) noexcept;
2884 ///   void operator delete(void *, std::size_t) noexcept;
2885 ///   void operator delete[](void *, std::size_t) noexcept;
2886 /// @endcode
2887 /// Note that the placement and nothrow forms of new are *not* implicitly
2888 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()2889 void Sema::DeclareGlobalNewDelete() {
2890   if (GlobalNewDeleteDeclared)
2891     return;
2892 
2893   // The implicitly declared new and delete operators
2894   // are not supported in OpenCL.
2895   if (getLangOpts().OpenCLCPlusPlus)
2896     return;
2897 
2898   // C++ [basic.std.dynamic]p2:
2899   //   [...] The following allocation and deallocation functions (18.4) are
2900   //   implicitly declared in global scope in each translation unit of a
2901   //   program
2902   //
2903   //     C++03:
2904   //     void* operator new(std::size_t) throw(std::bad_alloc);
2905   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2906   //     void  operator delete(void*) throw();
2907   //     void  operator delete[](void*) throw();
2908   //     C++11:
2909   //     void* operator new(std::size_t);
2910   //     void* operator new[](std::size_t);
2911   //     void  operator delete(void*) noexcept;
2912   //     void  operator delete[](void*) noexcept;
2913   //     C++1y:
2914   //     void* operator new(std::size_t);
2915   //     void* operator new[](std::size_t);
2916   //     void  operator delete(void*) noexcept;
2917   //     void  operator delete[](void*) noexcept;
2918   //     void  operator delete(void*, std::size_t) noexcept;
2919   //     void  operator delete[](void*, std::size_t) noexcept;
2920   //
2921   //   These implicit declarations introduce only the function names operator
2922   //   new, operator new[], operator delete, operator delete[].
2923   //
2924   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2925   // "std" or "bad_alloc" as necessary to form the exception specification.
2926   // However, we do not make these implicit declarations visible to name
2927   // lookup.
2928   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2929     // The "std::bad_alloc" class has not yet been declared, so build it
2930     // implicitly.
2931     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2932                                         getOrCreateStdNamespace(),
2933                                         SourceLocation(), SourceLocation(),
2934                                       &PP.getIdentifierTable().get("bad_alloc"),
2935                                         nullptr);
2936     getStdBadAlloc()->setImplicit(true);
2937   }
2938   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2939     // The "std::align_val_t" enum class has not yet been declared, so build it
2940     // implicitly.
2941     auto *AlignValT = EnumDecl::Create(
2942         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2943         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2944     AlignValT->setIntegerType(Context.getSizeType());
2945     AlignValT->setPromotionType(Context.getSizeType());
2946     AlignValT->setImplicit(true);
2947     StdAlignValT = AlignValT;
2948   }
2949 
2950   GlobalNewDeleteDeclared = true;
2951 
2952   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2953   QualType SizeT = Context.getSizeType();
2954 
2955   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2956                                               QualType Return, QualType Param) {
2957     llvm::SmallVector<QualType, 3> Params;
2958     Params.push_back(Param);
2959 
2960     // Create up to four variants of the function (sized/aligned).
2961     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2962                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2963     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2964 
2965     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2966     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2967     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2968       if (Sized)
2969         Params.push_back(SizeT);
2970 
2971       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2972         if (Aligned)
2973           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2974 
2975         DeclareGlobalAllocationFunction(
2976             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2977 
2978         if (Aligned)
2979           Params.pop_back();
2980       }
2981     }
2982   };
2983 
2984   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2985   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2986   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2987   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2988 }
2989 
2990 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2991 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,ArrayRef<QualType> Params)2992 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2993                                            QualType Return,
2994                                            ArrayRef<QualType> Params) {
2995   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2996 
2997   // Check if this function is already declared.
2998   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2999   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3000        Alloc != AllocEnd; ++Alloc) {
3001     // Only look at non-template functions, as it is the predefined,
3002     // non-templated allocation function we are trying to declare here.
3003     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3004       if (Func->getNumParams() == Params.size()) {
3005         llvm::SmallVector<QualType, 3> FuncParams;
3006         for (auto *P : Func->parameters())
3007           FuncParams.push_back(
3008               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3009         if (llvm::makeArrayRef(FuncParams) == Params) {
3010           // Make the function visible to name lookup, even if we found it in
3011           // an unimported module. It either is an implicitly-declared global
3012           // allocation function, or is suppressing that function.
3013           Func->setVisibleDespiteOwningModule();
3014           return;
3015         }
3016       }
3017     }
3018   }
3019 
3020   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3021       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3022 
3023   QualType BadAllocType;
3024   bool HasBadAllocExceptionSpec
3025     = (Name.getCXXOverloadedOperator() == OO_New ||
3026        Name.getCXXOverloadedOperator() == OO_Array_New);
3027   if (HasBadAllocExceptionSpec) {
3028     if (!getLangOpts().CPlusPlus11) {
3029       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3030       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3031       EPI.ExceptionSpec.Type = EST_Dynamic;
3032       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3033     }
3034   } else {
3035     EPI.ExceptionSpec =
3036         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3037   }
3038 
3039   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3040     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3041     FunctionDecl *Alloc = FunctionDecl::Create(
3042         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
3043         FnType, /*TInfo=*/nullptr, SC_None, false, true);
3044     Alloc->setImplicit();
3045     // Global allocation functions should always be visible.
3046     Alloc->setVisibleDespiteOwningModule();
3047 
3048     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3049         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3050                      ? VisibilityAttr::Hidden
3051                      : VisibilityAttr::Default));
3052 
3053     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3054     for (QualType T : Params) {
3055       ParamDecls.push_back(ParmVarDecl::Create(
3056           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3057           /*TInfo=*/nullptr, SC_None, nullptr));
3058       ParamDecls.back()->setImplicit();
3059     }
3060     Alloc->setParams(ParamDecls);
3061     if (ExtraAttr)
3062       Alloc->addAttr(ExtraAttr);
3063     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3064     Context.getTranslationUnitDecl()->addDecl(Alloc);
3065     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3066   };
3067 
3068   if (!LangOpts.CUDA)
3069     CreateAllocationFunctionDecl(nullptr);
3070   else {
3071     // Host and device get their own declaration so each can be
3072     // defined or re-declared independently.
3073     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3074     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3075   }
3076 }
3077 
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,bool Overaligned,DeclarationName Name)3078 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3079                                                   bool CanProvideSize,
3080                                                   bool Overaligned,
3081                                                   DeclarationName Name) {
3082   DeclareGlobalNewDelete();
3083 
3084   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3085   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3086 
3087   // FIXME: It's possible for this to result in ambiguity, through a
3088   // user-declared variadic operator delete or the enable_if attribute. We
3089   // should probably not consider those cases to be usual deallocation
3090   // functions. But for now we just make an arbitrary choice in that case.
3091   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3092                                             Overaligned);
3093   assert(Result.FD && "operator delete missing from global scope?");
3094   return Result.FD;
3095 }
3096 
FindDeallocationFunctionForDestructor(SourceLocation Loc,CXXRecordDecl * RD)3097 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3098                                                           CXXRecordDecl *RD) {
3099   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3100 
3101   FunctionDecl *OperatorDelete = nullptr;
3102   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3103     return nullptr;
3104   if (OperatorDelete)
3105     return OperatorDelete;
3106 
3107   // If there's no class-specific operator delete, look up the global
3108   // non-array delete.
3109   return FindUsualDeallocationFunction(
3110       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3111       Name);
3112 }
3113 
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)3114 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3115                                     DeclarationName Name,
3116                                     FunctionDecl *&Operator, bool Diagnose) {
3117   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3118   // Try to find operator delete/operator delete[] in class scope.
3119   LookupQualifiedName(Found, RD);
3120 
3121   if (Found.isAmbiguous())
3122     return true;
3123 
3124   Found.suppressDiagnostics();
3125 
3126   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3127 
3128   // C++17 [expr.delete]p10:
3129   //   If the deallocation functions have class scope, the one without a
3130   //   parameter of type std::size_t is selected.
3131   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3132   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3133                               /*WantAlign*/ Overaligned, &Matches);
3134 
3135   // If we could find an overload, use it.
3136   if (Matches.size() == 1) {
3137     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3138 
3139     // FIXME: DiagnoseUseOfDecl?
3140     if (Operator->isDeleted()) {
3141       if (Diagnose) {
3142         Diag(StartLoc, diag::err_deleted_function_use);
3143         NoteDeletedFunction(Operator);
3144       }
3145       return true;
3146     }
3147 
3148     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3149                               Matches[0].Found, Diagnose) == AR_inaccessible)
3150       return true;
3151 
3152     return false;
3153   }
3154 
3155   // We found multiple suitable operators; complain about the ambiguity.
3156   // FIXME: The standard doesn't say to do this; it appears that the intent
3157   // is that this should never happen.
3158   if (!Matches.empty()) {
3159     if (Diagnose) {
3160       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3161         << Name << RD;
3162       for (auto &Match : Matches)
3163         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3164     }
3165     return true;
3166   }
3167 
3168   // We did find operator delete/operator delete[] declarations, but
3169   // none of them were suitable.
3170   if (!Found.empty()) {
3171     if (Diagnose) {
3172       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3173         << Name << RD;
3174 
3175       for (NamedDecl *D : Found)
3176         Diag(D->getUnderlyingDecl()->getLocation(),
3177              diag::note_member_declared_here) << Name;
3178     }
3179     return true;
3180   }
3181 
3182   Operator = nullptr;
3183   return false;
3184 }
3185 
3186 namespace {
3187 /// Checks whether delete-expression, and new-expression used for
3188 ///  initializing deletee have the same array form.
3189 class MismatchingNewDeleteDetector {
3190 public:
3191   enum MismatchResult {
3192     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3193     NoMismatch,
3194     /// Indicates that variable is initialized with mismatching form of \a new.
3195     VarInitMismatches,
3196     /// Indicates that member is initialized with mismatching form of \a new.
3197     MemberInitMismatches,
3198     /// Indicates that 1 or more constructors' definitions could not been
3199     /// analyzed, and they will be checked again at the end of translation unit.
3200     AnalyzeLater
3201   };
3202 
3203   /// \param EndOfTU True, if this is the final analysis at the end of
3204   /// translation unit. False, if this is the initial analysis at the point
3205   /// delete-expression was encountered.
MismatchingNewDeleteDetector(bool EndOfTU)3206   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3207       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3208         HasUndefinedConstructors(false) {}
3209 
3210   /// Checks whether pointee of a delete-expression is initialized with
3211   /// matching form of new-expression.
3212   ///
3213   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3214   /// point where delete-expression is encountered, then a warning will be
3215   /// issued immediately. If return value is \c AnalyzeLater at the point where
3216   /// delete-expression is seen, then member will be analyzed at the end of
3217   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3218   /// couldn't be analyzed. If at least one constructor initializes the member
3219   /// with matching type of new, the return value is \c NoMismatch.
3220   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3221   /// Analyzes a class member.
3222   /// \param Field Class member to analyze.
3223   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3224   /// for deleting the \p Field.
3225   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3226   FieldDecl *Field;
3227   /// List of mismatching new-expressions used for initialization of the pointee
3228   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3229   /// Indicates whether delete-expression was in array form.
3230   bool IsArrayForm;
3231 
3232 private:
3233   const bool EndOfTU;
3234   /// Indicates that there is at least one constructor without body.
3235   bool HasUndefinedConstructors;
3236   /// Returns \c CXXNewExpr from given initialization expression.
3237   /// \param E Expression used for initializing pointee in delete-expression.
3238   /// E can be a single-element \c InitListExpr consisting of new-expression.
3239   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3240   /// Returns whether member is initialized with mismatching form of
3241   /// \c new either by the member initializer or in-class initialization.
3242   ///
3243   /// If bodies of all constructors are not visible at the end of translation
3244   /// unit or at least one constructor initializes member with the matching
3245   /// form of \c new, mismatch cannot be proven, and this function will return
3246   /// \c NoMismatch.
3247   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3248   /// Returns whether variable is initialized with mismatching form of
3249   /// \c new.
3250   ///
3251   /// If variable is initialized with matching form of \c new or variable is not
3252   /// initialized with a \c new expression, this function will return true.
3253   /// If variable is initialized with mismatching form of \c new, returns false.
3254   /// \param D Variable to analyze.
3255   bool hasMatchingVarInit(const DeclRefExpr *D);
3256   /// Checks whether the constructor initializes pointee with mismatching
3257   /// form of \c new.
3258   ///
3259   /// Returns true, if member is initialized with matching form of \c new in
3260   /// member initializer list. Returns false, if member is initialized with the
3261   /// matching form of \c new in this constructor's initializer or given
3262   /// constructor isn't defined at the point where delete-expression is seen, or
3263   /// member isn't initialized by the constructor.
3264   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3265   /// Checks whether member is initialized with matching form of
3266   /// \c new in member initializer list.
3267   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3268   /// Checks whether member is initialized with mismatching form of \c new by
3269   /// in-class initializer.
3270   MismatchResult analyzeInClassInitializer();
3271 };
3272 }
3273 
3274 MismatchingNewDeleteDetector::MismatchResult
analyzeDeleteExpr(const CXXDeleteExpr * DE)3275 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3276   NewExprs.clear();
3277   assert(DE && "Expected delete-expression");
3278   IsArrayForm = DE->isArrayForm();
3279   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3280   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3281     return analyzeMemberExpr(ME);
3282   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3283     if (!hasMatchingVarInit(D))
3284       return VarInitMismatches;
3285   }
3286   return NoMismatch;
3287 }
3288 
3289 const CXXNewExpr *
getNewExprFromInitListOrExpr(const Expr * E)3290 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3291   assert(E != nullptr && "Expected a valid initializer expression");
3292   E = E->IgnoreParenImpCasts();
3293   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3294     if (ILE->getNumInits() == 1)
3295       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3296   }
3297 
3298   return dyn_cast_or_null<const CXXNewExpr>(E);
3299 }
3300 
hasMatchingNewInCtorInit(const CXXCtorInitializer * CI)3301 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3302     const CXXCtorInitializer *CI) {
3303   const CXXNewExpr *NE = nullptr;
3304   if (Field == CI->getMember() &&
3305       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3306     if (NE->isArray() == IsArrayForm)
3307       return true;
3308     else
3309       NewExprs.push_back(NE);
3310   }
3311   return false;
3312 }
3313 
hasMatchingNewInCtor(const CXXConstructorDecl * CD)3314 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3315     const CXXConstructorDecl *CD) {
3316   if (CD->isImplicit())
3317     return false;
3318   const FunctionDecl *Definition = CD;
3319   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3320     HasUndefinedConstructors = true;
3321     return EndOfTU;
3322   }
3323   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3324     if (hasMatchingNewInCtorInit(CI))
3325       return true;
3326   }
3327   return false;
3328 }
3329 
3330 MismatchingNewDeleteDetector::MismatchResult
analyzeInClassInitializer()3331 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3332   assert(Field != nullptr && "This should be called only for members");
3333   const Expr *InitExpr = Field->getInClassInitializer();
3334   if (!InitExpr)
3335     return EndOfTU ? NoMismatch : AnalyzeLater;
3336   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3337     if (NE->isArray() != IsArrayForm) {
3338       NewExprs.push_back(NE);
3339       return MemberInitMismatches;
3340     }
3341   }
3342   return NoMismatch;
3343 }
3344 
3345 MismatchingNewDeleteDetector::MismatchResult
analyzeField(FieldDecl * Field,bool DeleteWasArrayForm)3346 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3347                                            bool DeleteWasArrayForm) {
3348   assert(Field != nullptr && "Analysis requires a valid class member.");
3349   this->Field = Field;
3350   IsArrayForm = DeleteWasArrayForm;
3351   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3352   for (const auto *CD : RD->ctors()) {
3353     if (hasMatchingNewInCtor(CD))
3354       return NoMismatch;
3355   }
3356   if (HasUndefinedConstructors)
3357     return EndOfTU ? NoMismatch : AnalyzeLater;
3358   if (!NewExprs.empty())
3359     return MemberInitMismatches;
3360   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3361                                         : NoMismatch;
3362 }
3363 
3364 MismatchingNewDeleteDetector::MismatchResult
analyzeMemberExpr(const MemberExpr * ME)3365 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3366   assert(ME != nullptr && "Expected a member expression");
3367   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3368     return analyzeField(F, IsArrayForm);
3369   return NoMismatch;
3370 }
3371 
hasMatchingVarInit(const DeclRefExpr * D)3372 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3373   const CXXNewExpr *NE = nullptr;
3374   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3375     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3376         NE->isArray() != IsArrayForm) {
3377       NewExprs.push_back(NE);
3378     }
3379   }
3380   return NewExprs.empty();
3381 }
3382 
3383 static void
DiagnoseMismatchedNewDelete(Sema & SemaRef,SourceLocation DeleteLoc,const MismatchingNewDeleteDetector & Detector)3384 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3385                             const MismatchingNewDeleteDetector &Detector) {
3386   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3387   FixItHint H;
3388   if (!Detector.IsArrayForm)
3389     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3390   else {
3391     SourceLocation RSquare = Lexer::findLocationAfterToken(
3392         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3393         SemaRef.getLangOpts(), true);
3394     if (RSquare.isValid())
3395       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3396   }
3397   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3398       << Detector.IsArrayForm << H;
3399 
3400   for (const auto *NE : Detector.NewExprs)
3401     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3402         << Detector.IsArrayForm;
3403 }
3404 
AnalyzeDeleteExprMismatch(const CXXDeleteExpr * DE)3405 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3406   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3407     return;
3408   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3409   switch (Detector.analyzeDeleteExpr(DE)) {
3410   case MismatchingNewDeleteDetector::VarInitMismatches:
3411   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3412     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3413     break;
3414   }
3415   case MismatchingNewDeleteDetector::AnalyzeLater: {
3416     DeleteExprs[Detector.Field].push_back(
3417         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3418     break;
3419   }
3420   case MismatchingNewDeleteDetector::NoMismatch:
3421     break;
3422   }
3423 }
3424 
AnalyzeDeleteExprMismatch(FieldDecl * Field,SourceLocation DeleteLoc,bool DeleteWasArrayForm)3425 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3426                                      bool DeleteWasArrayForm) {
3427   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3428   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3429   case MismatchingNewDeleteDetector::VarInitMismatches:
3430     llvm_unreachable("This analysis should have been done for class members.");
3431   case MismatchingNewDeleteDetector::AnalyzeLater:
3432     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3433                      "translation unit.");
3434   case MismatchingNewDeleteDetector::MemberInitMismatches:
3435     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3436     break;
3437   case MismatchingNewDeleteDetector::NoMismatch:
3438     break;
3439   }
3440 }
3441 
3442 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3443 /// @code ::delete ptr; @endcode
3444 /// or
3445 /// @code delete [] ptr; @endcode
3446 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)3447 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3448                      bool ArrayForm, Expr *ExE) {
3449   // C++ [expr.delete]p1:
3450   //   The operand shall have a pointer type, or a class type having a single
3451   //   non-explicit conversion function to a pointer type. The result has type
3452   //   void.
3453   //
3454   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3455 
3456   ExprResult Ex = ExE;
3457   FunctionDecl *OperatorDelete = nullptr;
3458   bool ArrayFormAsWritten = ArrayForm;
3459   bool UsualArrayDeleteWantsSize = false;
3460 
3461   if (!Ex.get()->isTypeDependent()) {
3462     // Perform lvalue-to-rvalue cast, if needed.
3463     Ex = DefaultLvalueConversion(Ex.get());
3464     if (Ex.isInvalid())
3465       return ExprError();
3466 
3467     QualType Type = Ex.get()->getType();
3468 
3469     class DeleteConverter : public ContextualImplicitConverter {
3470     public:
3471       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3472 
3473       bool match(QualType ConvType) override {
3474         // FIXME: If we have an operator T* and an operator void*, we must pick
3475         // the operator T*.
3476         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3477           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3478             return true;
3479         return false;
3480       }
3481 
3482       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3483                                             QualType T) override {
3484         return S.Diag(Loc, diag::err_delete_operand) << T;
3485       }
3486 
3487       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3488                                                QualType T) override {
3489         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3490       }
3491 
3492       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3493                                                  QualType T,
3494                                                  QualType ConvTy) override {
3495         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3496       }
3497 
3498       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3499                                              QualType ConvTy) override {
3500         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3501           << ConvTy;
3502       }
3503 
3504       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3505                                               QualType T) override {
3506         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3507       }
3508 
3509       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3510                                           QualType ConvTy) override {
3511         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3512           << ConvTy;
3513       }
3514 
3515       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3516                                                QualType T,
3517                                                QualType ConvTy) override {
3518         llvm_unreachable("conversion functions are permitted");
3519       }
3520     } Converter;
3521 
3522     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3523     if (Ex.isInvalid())
3524       return ExprError();
3525     Type = Ex.get()->getType();
3526     if (!Converter.match(Type))
3527       // FIXME: PerformContextualImplicitConversion should return ExprError
3528       //        itself in this case.
3529       return ExprError();
3530 
3531     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3532     QualType PointeeElem = Context.getBaseElementType(Pointee);
3533 
3534     if (Pointee.getAddressSpace() != LangAS::Default &&
3535         !getLangOpts().OpenCLCPlusPlus)
3536       return Diag(Ex.get()->getBeginLoc(),
3537                   diag::err_address_space_qualified_delete)
3538              << Pointee.getUnqualifiedType()
3539              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3540 
3541     CXXRecordDecl *PointeeRD = nullptr;
3542     if (Pointee->isVoidType() && !isSFINAEContext()) {
3543       // The C++ standard bans deleting a pointer to a non-object type, which
3544       // effectively bans deletion of "void*". However, most compilers support
3545       // this, so we treat it as a warning unless we're in a SFINAE context.
3546       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3547         << Type << Ex.get()->getSourceRange();
3548     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3549                Pointee->isSizelessType()) {
3550       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3551         << Type << Ex.get()->getSourceRange());
3552     } else if (!Pointee->isDependentType()) {
3553       // FIXME: This can result in errors if the definition was imported from a
3554       // module but is hidden.
3555       if (!RequireCompleteType(StartLoc, Pointee,
3556                                diag::warn_delete_incomplete, Ex.get())) {
3557         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3558           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3559       }
3560     }
3561 
3562     if (Pointee->isArrayType() && !ArrayForm) {
3563       Diag(StartLoc, diag::warn_delete_array_type)
3564           << Type << Ex.get()->getSourceRange()
3565           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3566       ArrayForm = true;
3567     }
3568 
3569     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3570                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3571 
3572     if (PointeeRD) {
3573       if (!UseGlobal &&
3574           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3575                                    OperatorDelete))
3576         return ExprError();
3577 
3578       // If we're allocating an array of records, check whether the
3579       // usual operator delete[] has a size_t parameter.
3580       if (ArrayForm) {
3581         // If the user specifically asked to use the global allocator,
3582         // we'll need to do the lookup into the class.
3583         if (UseGlobal)
3584           UsualArrayDeleteWantsSize =
3585             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3586 
3587         // Otherwise, the usual operator delete[] should be the
3588         // function we just found.
3589         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3590           UsualArrayDeleteWantsSize =
3591             UsualDeallocFnInfo(*this,
3592                                DeclAccessPair::make(OperatorDelete, AS_public))
3593               .HasSizeT;
3594       }
3595 
3596       if (!PointeeRD->hasIrrelevantDestructor())
3597         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3598           MarkFunctionReferenced(StartLoc,
3599                                     const_cast<CXXDestructorDecl*>(Dtor));
3600           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3601             return ExprError();
3602         }
3603 
3604       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3605                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3606                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3607                            SourceLocation());
3608     }
3609 
3610     if (!OperatorDelete) {
3611       if (getLangOpts().OpenCLCPlusPlus) {
3612         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3613         return ExprError();
3614       }
3615 
3616       bool IsComplete = isCompleteType(StartLoc, Pointee);
3617       bool CanProvideSize =
3618           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3619                          Pointee.isDestructedType());
3620       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3621 
3622       // Look for a global declaration.
3623       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3624                                                      Overaligned, DeleteName);
3625     }
3626 
3627     MarkFunctionReferenced(StartLoc, OperatorDelete);
3628 
3629     // Check access and ambiguity of destructor if we're going to call it.
3630     // Note that this is required even for a virtual delete.
3631     bool IsVirtualDelete = false;
3632     if (PointeeRD) {
3633       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3634         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3635                               PDiag(diag::err_access_dtor) << PointeeElem);
3636         IsVirtualDelete = Dtor->isVirtual();
3637       }
3638     }
3639 
3640     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3641 
3642     // Convert the operand to the type of the first parameter of operator
3643     // delete. This is only necessary if we selected a destroying operator
3644     // delete that we are going to call (non-virtually); converting to void*
3645     // is trivial and left to AST consumers to handle.
3646     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3647     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3648       Qualifiers Qs = Pointee.getQualifiers();
3649       if (Qs.hasCVRQualifiers()) {
3650         // Qualifiers are irrelevant to this conversion; we're only looking
3651         // for access and ambiguity.
3652         Qs.removeCVRQualifiers();
3653         QualType Unqual = Context.getPointerType(
3654             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3655         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3656       }
3657       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3658       if (Ex.isInvalid())
3659         return ExprError();
3660     }
3661   }
3662 
3663   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3664       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3665       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3666   AnalyzeDeleteExprMismatch(Result);
3667   return Result;
3668 }
3669 
resolveBuiltinNewDeleteOverload(Sema & S,CallExpr * TheCall,bool IsDelete,FunctionDecl * & Operator)3670 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3671                                             bool IsDelete,
3672                                             FunctionDecl *&Operator) {
3673 
3674   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3675       IsDelete ? OO_Delete : OO_New);
3676 
3677   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3678   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3679   assert(!R.empty() && "implicitly declared allocation functions not found");
3680   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3681 
3682   // We do our own custom access checks below.
3683   R.suppressDiagnostics();
3684 
3685   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3686   OverloadCandidateSet Candidates(R.getNameLoc(),
3687                                   OverloadCandidateSet::CSK_Normal);
3688   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3689        FnOvl != FnOvlEnd; ++FnOvl) {
3690     // Even member operator new/delete are implicitly treated as
3691     // static, so don't use AddMemberCandidate.
3692     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3693 
3694     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3695       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3696                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3697                                      Candidates,
3698                                      /*SuppressUserConversions=*/false);
3699       continue;
3700     }
3701 
3702     FunctionDecl *Fn = cast<FunctionDecl>(D);
3703     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3704                            /*SuppressUserConversions=*/false);
3705   }
3706 
3707   SourceRange Range = TheCall->getSourceRange();
3708 
3709   // Do the resolution.
3710   OverloadCandidateSet::iterator Best;
3711   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3712   case OR_Success: {
3713     // Got one!
3714     FunctionDecl *FnDecl = Best->Function;
3715     assert(R.getNamingClass() == nullptr &&
3716            "class members should not be considered");
3717 
3718     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3719       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3720           << (IsDelete ? 1 : 0) << Range;
3721       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3722           << R.getLookupName() << FnDecl->getSourceRange();
3723       return true;
3724     }
3725 
3726     Operator = FnDecl;
3727     return false;
3728   }
3729 
3730   case OR_No_Viable_Function:
3731     Candidates.NoteCandidates(
3732         PartialDiagnosticAt(R.getNameLoc(),
3733                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3734                                 << R.getLookupName() << Range),
3735         S, OCD_AllCandidates, Args);
3736     return true;
3737 
3738   case OR_Ambiguous:
3739     Candidates.NoteCandidates(
3740         PartialDiagnosticAt(R.getNameLoc(),
3741                             S.PDiag(diag::err_ovl_ambiguous_call)
3742                                 << R.getLookupName() << Range),
3743         S, OCD_AmbiguousCandidates, Args);
3744     return true;
3745 
3746   case OR_Deleted: {
3747     Candidates.NoteCandidates(
3748         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3749                                                 << R.getLookupName() << Range),
3750         S, OCD_AllCandidates, Args);
3751     return true;
3752   }
3753   }
3754   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3755 }
3756 
3757 ExprResult
SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,bool IsDelete)3758 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3759                                              bool IsDelete) {
3760   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3761   if (!getLangOpts().CPlusPlus) {
3762     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3763         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3764         << "C++";
3765     return ExprError();
3766   }
3767   // CodeGen assumes it can find the global new and delete to call,
3768   // so ensure that they are declared.
3769   DeclareGlobalNewDelete();
3770 
3771   FunctionDecl *OperatorNewOrDelete = nullptr;
3772   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3773                                       OperatorNewOrDelete))
3774     return ExprError();
3775   assert(OperatorNewOrDelete && "should be found");
3776 
3777   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3778   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3779 
3780   TheCall->setType(OperatorNewOrDelete->getReturnType());
3781   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3782     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3783     InitializedEntity Entity =
3784         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3785     ExprResult Arg = PerformCopyInitialization(
3786         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3787     if (Arg.isInvalid())
3788       return ExprError();
3789     TheCall->setArg(i, Arg.get());
3790   }
3791   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3792   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3793          "Callee expected to be implicit cast to a builtin function pointer");
3794   Callee->setType(OperatorNewOrDelete->getType());
3795 
3796   return TheCallResult;
3797 }
3798 
CheckVirtualDtorCall(CXXDestructorDecl * dtor,SourceLocation Loc,bool IsDelete,bool CallCanBeVirtual,bool WarnOnNonAbstractTypes,SourceLocation DtorLoc)3799 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3800                                 bool IsDelete, bool CallCanBeVirtual,
3801                                 bool WarnOnNonAbstractTypes,
3802                                 SourceLocation DtorLoc) {
3803   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3804     return;
3805 
3806   // C++ [expr.delete]p3:
3807   //   In the first alternative (delete object), if the static type of the
3808   //   object to be deleted is different from its dynamic type, the static
3809   //   type shall be a base class of the dynamic type of the object to be
3810   //   deleted and the static type shall have a virtual destructor or the
3811   //   behavior is undefined.
3812   //
3813   const CXXRecordDecl *PointeeRD = dtor->getParent();
3814   // Note: a final class cannot be derived from, no issue there
3815   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3816     return;
3817 
3818   // If the superclass is in a system header, there's nothing that can be done.
3819   // The `delete` (where we emit the warning) can be in a system header,
3820   // what matters for this warning is where the deleted type is defined.
3821   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3822     return;
3823 
3824   QualType ClassType = dtor->getThisType()->getPointeeType();
3825   if (PointeeRD->isAbstract()) {
3826     // If the class is abstract, we warn by default, because we're
3827     // sure the code has undefined behavior.
3828     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3829                                                            << ClassType;
3830   } else if (WarnOnNonAbstractTypes) {
3831     // Otherwise, if this is not an array delete, it's a bit suspect,
3832     // but not necessarily wrong.
3833     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3834                                                   << ClassType;
3835   }
3836   if (!IsDelete) {
3837     std::string TypeStr;
3838     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3839     Diag(DtorLoc, diag::note_delete_non_virtual)
3840         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3841   }
3842 }
3843 
ActOnConditionVariable(Decl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3844 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3845                                                    SourceLocation StmtLoc,
3846                                                    ConditionKind CK) {
3847   ExprResult E =
3848       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3849   if (E.isInvalid())
3850     return ConditionError();
3851   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3852                          CK == ConditionKind::ConstexprIf);
3853 }
3854 
3855 /// Check the use of the given variable as a C++ condition in an if,
3856 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,ConditionKind CK)3857 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3858                                         SourceLocation StmtLoc,
3859                                         ConditionKind CK) {
3860   if (ConditionVar->isInvalidDecl())
3861     return ExprError();
3862 
3863   QualType T = ConditionVar->getType();
3864 
3865   // C++ [stmt.select]p2:
3866   //   The declarator shall not specify a function or an array.
3867   if (T->isFunctionType())
3868     return ExprError(Diag(ConditionVar->getLocation(),
3869                           diag::err_invalid_use_of_function_type)
3870                        << ConditionVar->getSourceRange());
3871   else if (T->isArrayType())
3872     return ExprError(Diag(ConditionVar->getLocation(),
3873                           diag::err_invalid_use_of_array_type)
3874                      << ConditionVar->getSourceRange());
3875 
3876   ExprResult Condition = BuildDeclRefExpr(
3877       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3878       ConditionVar->getLocation());
3879 
3880   switch (CK) {
3881   case ConditionKind::Boolean:
3882     return CheckBooleanCondition(StmtLoc, Condition.get());
3883 
3884   case ConditionKind::ConstexprIf:
3885     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3886 
3887   case ConditionKind::Switch:
3888     return CheckSwitchCondition(StmtLoc, Condition.get());
3889   }
3890 
3891   llvm_unreachable("unexpected condition kind");
3892 }
3893 
3894 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr,bool IsConstexpr)3895 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3896   // C++ 6.4p4:
3897   // The value of a condition that is an initialized declaration in a statement
3898   // other than a switch statement is the value of the declared variable
3899   // implicitly converted to type bool. If that conversion is ill-formed, the
3900   // program is ill-formed.
3901   // The value of a condition that is an expression is the value of the
3902   // expression, implicitly converted to bool.
3903   //
3904   // FIXME: Return this value to the caller so they don't need to recompute it.
3905   llvm::APSInt Value(/*BitWidth*/1);
3906   return (IsConstexpr && !CondExpr->isValueDependent())
3907              ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3908                                                 CCEK_ConstexprIf)
3909              : PerformContextuallyConvertToBool(CondExpr);
3910 }
3911 
3912 /// Helper function to determine whether this is the (deprecated) C++
3913 /// conversion from a string literal to a pointer to non-const char or
3914 /// non-const wchar_t (for narrow and wide string literals,
3915 /// respectively).
3916 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)3917 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3918   // Look inside the implicit cast, if it exists.
3919   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3920     From = Cast->getSubExpr();
3921 
3922   // A string literal (2.13.4) that is not a wide string literal can
3923   // be converted to an rvalue of type "pointer to char"; a wide
3924   // string literal can be converted to an rvalue of type "pointer
3925   // to wchar_t" (C++ 4.2p2).
3926   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3927     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3928       if (const BuiltinType *ToPointeeType
3929           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3930         // This conversion is considered only when there is an
3931         // explicit appropriate pointer target type (C++ 4.2p2).
3932         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3933           switch (StrLit->getKind()) {
3934             case StringLiteral::UTF8:
3935             case StringLiteral::UTF16:
3936             case StringLiteral::UTF32:
3937               // We don't allow UTF literals to be implicitly converted
3938               break;
3939             case StringLiteral::Ascii:
3940               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3941                       ToPointeeType->getKind() == BuiltinType::Char_S);
3942             case StringLiteral::Wide:
3943               return Context.typesAreCompatible(Context.getWideCharType(),
3944                                                 QualType(ToPointeeType, 0));
3945           }
3946         }
3947       }
3948 
3949   return false;
3950 }
3951 
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)3952 static ExprResult BuildCXXCastArgument(Sema &S,
3953                                        SourceLocation CastLoc,
3954                                        QualType Ty,
3955                                        CastKind Kind,
3956                                        CXXMethodDecl *Method,
3957                                        DeclAccessPair FoundDecl,
3958                                        bool HadMultipleCandidates,
3959                                        Expr *From) {
3960   switch (Kind) {
3961   default: llvm_unreachable("Unhandled cast kind!");
3962   case CK_ConstructorConversion: {
3963     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3964     SmallVector<Expr*, 8> ConstructorArgs;
3965 
3966     if (S.RequireNonAbstractType(CastLoc, Ty,
3967                                  diag::err_allocation_of_abstract_type))
3968       return ExprError();
3969 
3970     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
3971                                   ConstructorArgs))
3972       return ExprError();
3973 
3974     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3975                              InitializedEntity::InitializeTemporary(Ty));
3976     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3977       return ExprError();
3978 
3979     ExprResult Result = S.BuildCXXConstructExpr(
3980         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3981         ConstructorArgs, HadMultipleCandidates,
3982         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3983         CXXConstructExpr::CK_Complete, SourceRange());
3984     if (Result.isInvalid())
3985       return ExprError();
3986 
3987     return S.MaybeBindToTemporary(Result.getAs<Expr>());
3988   }
3989 
3990   case CK_UserDefinedConversion: {
3991     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3992 
3993     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3994     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3995       return ExprError();
3996 
3997     // Create an implicit call expr that calls it.
3998     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3999     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4000                                                  HadMultipleCandidates);
4001     if (Result.isInvalid())
4002       return ExprError();
4003     // Record usage of conversion in an implicit cast.
4004     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4005                                       CK_UserDefinedConversion, Result.get(),
4006                                       nullptr, Result.get()->getValueKind(),
4007                                       S.CurFPFeatureOverrides());
4008 
4009     return S.MaybeBindToTemporary(Result.get());
4010   }
4011   }
4012 }
4013 
4014 /// PerformImplicitConversion - Perform an implicit conversion of the
4015 /// expression From to the type ToType using the pre-computed implicit
4016 /// conversion sequence ICS. Returns the converted
4017 /// expression. Action is the kind of conversion we're performing,
4018 /// used in the error message.
4019 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)4020 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4021                                 const ImplicitConversionSequence &ICS,
4022                                 AssignmentAction Action,
4023                                 CheckedConversionKind CCK) {
4024   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4025   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4026     return From;
4027 
4028   switch (ICS.getKind()) {
4029   case ImplicitConversionSequence::StandardConversion: {
4030     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4031                                                Action, CCK);
4032     if (Res.isInvalid())
4033       return ExprError();
4034     From = Res.get();
4035     break;
4036   }
4037 
4038   case ImplicitConversionSequence::UserDefinedConversion: {
4039 
4040       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4041       CastKind CastKind;
4042       QualType BeforeToType;
4043       assert(FD && "no conversion function for user-defined conversion seq");
4044       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4045         CastKind = CK_UserDefinedConversion;
4046 
4047         // If the user-defined conversion is specified by a conversion function,
4048         // the initial standard conversion sequence converts the source type to
4049         // the implicit object parameter of the conversion function.
4050         BeforeToType = Context.getTagDeclType(Conv->getParent());
4051       } else {
4052         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4053         CastKind = CK_ConstructorConversion;
4054         // Do no conversion if dealing with ... for the first conversion.
4055         if (!ICS.UserDefined.EllipsisConversion) {
4056           // If the user-defined conversion is specified by a constructor, the
4057           // initial standard conversion sequence converts the source type to
4058           // the type required by the argument of the constructor
4059           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4060         }
4061       }
4062       // Watch out for ellipsis conversion.
4063       if (!ICS.UserDefined.EllipsisConversion) {
4064         ExprResult Res =
4065           PerformImplicitConversion(From, BeforeToType,
4066                                     ICS.UserDefined.Before, AA_Converting,
4067                                     CCK);
4068         if (Res.isInvalid())
4069           return ExprError();
4070         From = Res.get();
4071       }
4072 
4073       ExprResult CastArg = BuildCXXCastArgument(
4074           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4075           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4076           ICS.UserDefined.HadMultipleCandidates, From);
4077 
4078       if (CastArg.isInvalid())
4079         return ExprError();
4080 
4081       From = CastArg.get();
4082 
4083       // C++ [over.match.oper]p7:
4084       //   [...] the second standard conversion sequence of a user-defined
4085       //   conversion sequence is not applied.
4086       if (CCK == CCK_ForBuiltinOverloadedOp)
4087         return From;
4088 
4089       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4090                                        AA_Converting, CCK);
4091   }
4092 
4093   case ImplicitConversionSequence::AmbiguousConversion:
4094     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4095                           PDiag(diag::err_typecheck_ambiguous_condition)
4096                             << From->getSourceRange());
4097     return ExprError();
4098 
4099   case ImplicitConversionSequence::EllipsisConversion:
4100     llvm_unreachable("Cannot perform an ellipsis conversion");
4101 
4102   case ImplicitConversionSequence::BadConversion:
4103     Sema::AssignConvertType ConvTy =
4104         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4105     bool Diagnosed = DiagnoseAssignmentResult(
4106         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4107         ToType, From->getType(), From, Action);
4108     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4109     return ExprError();
4110   }
4111 
4112   // Everything went well.
4113   return From;
4114 }
4115 
4116 /// PerformImplicitConversion - Perform an implicit conversion of the
4117 /// expression From to the type ToType by following the standard
4118 /// conversion sequence SCS. Returns the converted
4119 /// expression. Flavor is the context in which we're performing this
4120 /// conversion, for use in error messages.
4121 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)4122 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4123                                 const StandardConversionSequence& SCS,
4124                                 AssignmentAction Action,
4125                                 CheckedConversionKind CCK) {
4126   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4127 
4128   // Overall FIXME: we are recomputing too many types here and doing far too
4129   // much extra work. What this means is that we need to keep track of more
4130   // information that is computed when we try the implicit conversion initially,
4131   // so that we don't need to recompute anything here.
4132   QualType FromType = From->getType();
4133 
4134   if (SCS.CopyConstructor) {
4135     // FIXME: When can ToType be a reference type?
4136     assert(!ToType->isReferenceType());
4137     if (SCS.Second == ICK_Derived_To_Base) {
4138       SmallVector<Expr*, 8> ConstructorArgs;
4139       if (CompleteConstructorCall(
4140               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4141               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4142         return ExprError();
4143       return BuildCXXConstructExpr(
4144           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4145           SCS.FoundCopyConstructor, SCS.CopyConstructor,
4146           ConstructorArgs, /*HadMultipleCandidates*/ false,
4147           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4148           CXXConstructExpr::CK_Complete, SourceRange());
4149     }
4150     return BuildCXXConstructExpr(
4151         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4152         SCS.FoundCopyConstructor, SCS.CopyConstructor,
4153         From, /*HadMultipleCandidates*/ false,
4154         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4155         CXXConstructExpr::CK_Complete, SourceRange());
4156   }
4157 
4158   // Resolve overloaded function references.
4159   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4160     DeclAccessPair Found;
4161     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4162                                                           true, Found);
4163     if (!Fn)
4164       return ExprError();
4165 
4166     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4167       return ExprError();
4168 
4169     From = FixOverloadedFunctionReference(From, Found, Fn);
4170     FromType = From->getType();
4171   }
4172 
4173   // If we're converting to an atomic type, first convert to the corresponding
4174   // non-atomic type.
4175   QualType ToAtomicType;
4176   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4177     ToAtomicType = ToType;
4178     ToType = ToAtomic->getValueType();
4179   }
4180 
4181   QualType InitialFromType = FromType;
4182   // Perform the first implicit conversion.
4183   switch (SCS.First) {
4184   case ICK_Identity:
4185     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4186       FromType = FromAtomic->getValueType().getUnqualifiedType();
4187       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4188                                       From, /*BasePath=*/nullptr, VK_RValue,
4189                                       FPOptionsOverride());
4190     }
4191     break;
4192 
4193   case ICK_Lvalue_To_Rvalue: {
4194     assert(From->getObjectKind() != OK_ObjCProperty);
4195     ExprResult FromRes = DefaultLvalueConversion(From);
4196     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
4197     From = FromRes.get();
4198     FromType = From->getType();
4199     break;
4200   }
4201 
4202   case ICK_Array_To_Pointer:
4203     FromType = Context.getArrayDecayedType(FromType);
4204     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
4205                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4206     break;
4207 
4208   case ICK_Function_To_Pointer:
4209     FromType = Context.getPointerType(FromType);
4210     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4211                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4212     break;
4213 
4214   default:
4215     llvm_unreachable("Improper first standard conversion");
4216   }
4217 
4218   // Perform the second implicit conversion
4219   switch (SCS.Second) {
4220   case ICK_Identity:
4221     // C++ [except.spec]p5:
4222     //   [For] assignment to and initialization of pointers to functions,
4223     //   pointers to member functions, and references to functions: the
4224     //   target entity shall allow at least the exceptions allowed by the
4225     //   source value in the assignment or initialization.
4226     switch (Action) {
4227     case AA_Assigning:
4228     case AA_Initializing:
4229       // Note, function argument passing and returning are initialization.
4230     case AA_Passing:
4231     case AA_Returning:
4232     case AA_Sending:
4233     case AA_Passing_CFAudited:
4234       if (CheckExceptionSpecCompatibility(From, ToType))
4235         return ExprError();
4236       break;
4237 
4238     case AA_Casting:
4239     case AA_Converting:
4240       // Casts and implicit conversions are not initialization, so are not
4241       // checked for exception specification mismatches.
4242       break;
4243     }
4244     // Nothing else to do.
4245     break;
4246 
4247   case ICK_Integral_Promotion:
4248   case ICK_Integral_Conversion:
4249     if (ToType->isBooleanType()) {
4250       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4251              SCS.Second == ICK_Integral_Promotion &&
4252              "only enums with fixed underlying type can promote to bool");
4253       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4254                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4255     } else {
4256       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4257                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4258     }
4259     break;
4260 
4261   case ICK_Floating_Promotion:
4262   case ICK_Floating_Conversion:
4263     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4264                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4265     break;
4266 
4267   case ICK_Complex_Promotion:
4268   case ICK_Complex_Conversion: {
4269     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4270     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4271     CastKind CK;
4272     if (FromEl->isRealFloatingType()) {
4273       if (ToEl->isRealFloatingType())
4274         CK = CK_FloatingComplexCast;
4275       else
4276         CK = CK_FloatingComplexToIntegralComplex;
4277     } else if (ToEl->isRealFloatingType()) {
4278       CK = CK_IntegralComplexToFloatingComplex;
4279     } else {
4280       CK = CK_IntegralComplexCast;
4281     }
4282     From = ImpCastExprToType(From, ToType, CK,
4283                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4284     break;
4285   }
4286 
4287   case ICK_Floating_Integral:
4288     if (ToType->isRealFloatingType())
4289       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4290                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4291     else
4292       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4293                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4294     break;
4295 
4296   case ICK_Compatible_Conversion:
4297     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4298                              /*BasePath=*/nullptr, CCK).get();
4299     break;
4300 
4301   case ICK_Writeback_Conversion:
4302   case ICK_Pointer_Conversion: {
4303     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4304       // Diagnose incompatible Objective-C conversions
4305       if (Action == AA_Initializing || Action == AA_Assigning)
4306         Diag(From->getBeginLoc(),
4307              diag::ext_typecheck_convert_incompatible_pointer)
4308             << ToType << From->getType() << Action << From->getSourceRange()
4309             << 0;
4310       else
4311         Diag(From->getBeginLoc(),
4312              diag::ext_typecheck_convert_incompatible_pointer)
4313             << From->getType() << ToType << Action << From->getSourceRange()
4314             << 0;
4315 
4316       if (From->getType()->isObjCObjectPointerType() &&
4317           ToType->isObjCObjectPointerType())
4318         EmitRelatedResultTypeNote(From);
4319     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4320                !CheckObjCARCUnavailableWeakConversion(ToType,
4321                                                       From->getType())) {
4322       if (Action == AA_Initializing)
4323         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4324       else
4325         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4326             << (Action == AA_Casting) << From->getType() << ToType
4327             << From->getSourceRange();
4328     }
4329 
4330     // Defer address space conversion to the third conversion.
4331     QualType FromPteeType = From->getType()->getPointeeType();
4332     QualType ToPteeType = ToType->getPointeeType();
4333     QualType NewToType = ToType;
4334     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4335         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4336       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4337       NewToType = Context.getAddrSpaceQualType(NewToType,
4338                                                FromPteeType.getAddressSpace());
4339       if (ToType->isObjCObjectPointerType())
4340         NewToType = Context.getObjCObjectPointerType(NewToType);
4341       else if (ToType->isBlockPointerType())
4342         NewToType = Context.getBlockPointerType(NewToType);
4343       else
4344         NewToType = Context.getPointerType(NewToType);
4345     }
4346 
4347     CastKind Kind;
4348     CXXCastPath BasePath;
4349     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4350       return ExprError();
4351 
4352     // Make sure we extend blocks if necessary.
4353     // FIXME: doing this here is really ugly.
4354     if (Kind == CK_BlockPointerToObjCPointerCast) {
4355       ExprResult E = From;
4356       (void) PrepareCastToObjCObjectPointer(E);
4357       From = E.get();
4358     }
4359     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4360       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4361     From = ImpCastExprToType(From, NewToType, Kind, VK_RValue, &BasePath, CCK)
4362              .get();
4363     break;
4364   }
4365 
4366   case ICK_Pointer_Member: {
4367     CastKind Kind;
4368     CXXCastPath BasePath;
4369     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4370       return ExprError();
4371     if (CheckExceptionSpecCompatibility(From, ToType))
4372       return ExprError();
4373 
4374     // We may not have been able to figure out what this member pointer resolved
4375     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4376     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4377       (void)isCompleteType(From->getExprLoc(), From->getType());
4378       (void)isCompleteType(From->getExprLoc(), ToType);
4379     }
4380 
4381     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4382              .get();
4383     break;
4384   }
4385 
4386   case ICK_Boolean_Conversion:
4387     // Perform half-to-boolean conversion via float.
4388     if (From->getType()->isHalfType()) {
4389       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4390       FromType = Context.FloatTy;
4391     }
4392 
4393     From = ImpCastExprToType(From, Context.BoolTy,
4394                              ScalarTypeToBooleanCastKind(FromType),
4395                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4396     break;
4397 
4398   case ICK_Derived_To_Base: {
4399     CXXCastPath BasePath;
4400     if (CheckDerivedToBaseConversion(
4401             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4402             From->getSourceRange(), &BasePath, CStyle))
4403       return ExprError();
4404 
4405     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4406                       CK_DerivedToBase, From->getValueKind(),
4407                       &BasePath, CCK).get();
4408     break;
4409   }
4410 
4411   case ICK_Vector_Conversion:
4412     From = ImpCastExprToType(From, ToType, CK_BitCast,
4413                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4414     break;
4415 
4416   case ICK_SVE_Vector_Conversion:
4417     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_RValue,
4418                              /*BasePath=*/nullptr, CCK)
4419                .get();
4420     break;
4421 
4422   case ICK_Vector_Splat: {
4423     // Vector splat from any arithmetic type to a vector.
4424     Expr *Elem = prepareVectorSplat(ToType, From).get();
4425     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4426                              /*BasePath=*/nullptr, CCK).get();
4427     break;
4428   }
4429 
4430   case ICK_Complex_Real:
4431     // Case 1.  x -> _Complex y
4432     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4433       QualType ElType = ToComplex->getElementType();
4434       bool isFloatingComplex = ElType->isRealFloatingType();
4435 
4436       // x -> y
4437       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4438         // do nothing
4439       } else if (From->getType()->isRealFloatingType()) {
4440         From = ImpCastExprToType(From, ElType,
4441                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4442       } else {
4443         assert(From->getType()->isIntegerType());
4444         From = ImpCastExprToType(From, ElType,
4445                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4446       }
4447       // y -> _Complex y
4448       From = ImpCastExprToType(From, ToType,
4449                    isFloatingComplex ? CK_FloatingRealToComplex
4450                                      : CK_IntegralRealToComplex).get();
4451 
4452     // Case 2.  _Complex x -> y
4453     } else {
4454       auto *FromComplex = From->getType()->castAs<ComplexType>();
4455       QualType ElType = FromComplex->getElementType();
4456       bool isFloatingComplex = ElType->isRealFloatingType();
4457 
4458       // _Complex x -> x
4459       From = ImpCastExprToType(From, ElType,
4460                    isFloatingComplex ? CK_FloatingComplexToReal
4461                                      : CK_IntegralComplexToReal,
4462                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4463 
4464       // x -> y
4465       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4466         // do nothing
4467       } else if (ToType->isRealFloatingType()) {
4468         From = ImpCastExprToType(From, ToType,
4469                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4470                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4471       } else {
4472         assert(ToType->isIntegerType());
4473         From = ImpCastExprToType(From, ToType,
4474                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4475                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4476       }
4477     }
4478     break;
4479 
4480   case ICK_Block_Pointer_Conversion: {
4481     LangAS AddrSpaceL =
4482         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4483     LangAS AddrSpaceR =
4484         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4485     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4486            "Invalid cast");
4487     CastKind Kind =
4488         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4489     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4490                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4491     break;
4492   }
4493 
4494   case ICK_TransparentUnionConversion: {
4495     ExprResult FromRes = From;
4496     Sema::AssignConvertType ConvTy =
4497       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4498     if (FromRes.isInvalid())
4499       return ExprError();
4500     From = FromRes.get();
4501     assert ((ConvTy == Sema::Compatible) &&
4502             "Improper transparent union conversion");
4503     (void)ConvTy;
4504     break;
4505   }
4506 
4507   case ICK_Zero_Event_Conversion:
4508   case ICK_Zero_Queue_Conversion:
4509     From = ImpCastExprToType(From, ToType,
4510                              CK_ZeroToOCLOpaqueType,
4511                              From->getValueKind()).get();
4512     break;
4513 
4514   case ICK_Lvalue_To_Rvalue:
4515   case ICK_Array_To_Pointer:
4516   case ICK_Function_To_Pointer:
4517   case ICK_Function_Conversion:
4518   case ICK_Qualification:
4519   case ICK_Num_Conversion_Kinds:
4520   case ICK_C_Only_Conversion:
4521   case ICK_Incompatible_Pointer_Conversion:
4522     llvm_unreachable("Improper second standard conversion");
4523   }
4524 
4525   switch (SCS.Third) {
4526   case ICK_Identity:
4527     // Nothing to do.
4528     break;
4529 
4530   case ICK_Function_Conversion:
4531     // If both sides are functions (or pointers/references to them), there could
4532     // be incompatible exception declarations.
4533     if (CheckExceptionSpecCompatibility(From, ToType))
4534       return ExprError();
4535 
4536     From = ImpCastExprToType(From, ToType, CK_NoOp,
4537                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4538     break;
4539 
4540   case ICK_Qualification: {
4541     ExprValueKind VK = From->getValueKind();
4542     CastKind CK = CK_NoOp;
4543 
4544     if (ToType->isReferenceType() &&
4545         ToType->getPointeeType().getAddressSpace() !=
4546             From->getType().getAddressSpace())
4547       CK = CK_AddressSpaceConversion;
4548 
4549     if (ToType->isPointerType() &&
4550         ToType->getPointeeType().getAddressSpace() !=
4551             From->getType()->getPointeeType().getAddressSpace())
4552       CK = CK_AddressSpaceConversion;
4553 
4554     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4555                              /*BasePath=*/nullptr, CCK)
4556                .get();
4557 
4558     if (SCS.DeprecatedStringLiteralToCharPtr &&
4559         !getLangOpts().WritableStrings) {
4560       Diag(From->getBeginLoc(),
4561            getLangOpts().CPlusPlus11
4562                ? diag::ext_deprecated_string_literal_conversion
4563                : diag::warn_deprecated_string_literal_conversion)
4564           << ToType.getNonReferenceType();
4565     }
4566 
4567     break;
4568   }
4569 
4570   default:
4571     llvm_unreachable("Improper third standard conversion");
4572   }
4573 
4574   // If this conversion sequence involved a scalar -> atomic conversion, perform
4575   // that conversion now.
4576   if (!ToAtomicType.isNull()) {
4577     assert(Context.hasSameType(
4578         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4579     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4580                              VK_RValue, nullptr, CCK).get();
4581   }
4582 
4583   // Materialize a temporary if we're implicitly converting to a reference
4584   // type. This is not required by the C++ rules but is necessary to maintain
4585   // AST invariants.
4586   if (ToType->isReferenceType() && From->isRValue()) {
4587     ExprResult Res = TemporaryMaterializationConversion(From);
4588     if (Res.isInvalid())
4589       return ExprError();
4590     From = Res.get();
4591   }
4592 
4593   // If this conversion sequence succeeded and involved implicitly converting a
4594   // _Nullable type to a _Nonnull one, complain.
4595   if (!isCast(CCK))
4596     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4597                                         From->getBeginLoc());
4598 
4599   return From;
4600 }
4601 
4602 /// Check the completeness of a type in a unary type trait.
4603 ///
4604 /// If the particular type trait requires a complete type, tries to complete
4605 /// it. If completing the type fails, a diagnostic is emitted and false
4606 /// returned. If completing the type succeeds or no completion was required,
4607 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)4608 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4609                                                 SourceLocation Loc,
4610                                                 QualType ArgTy) {
4611   // C++0x [meta.unary.prop]p3:
4612   //   For all of the class templates X declared in this Clause, instantiating
4613   //   that template with a template argument that is a class template
4614   //   specialization may result in the implicit instantiation of the template
4615   //   argument if and only if the semantics of X require that the argument
4616   //   must be a complete type.
4617   // We apply this rule to all the type trait expressions used to implement
4618   // these class templates. We also try to follow any GCC documented behavior
4619   // in these expressions to ensure portability of standard libraries.
4620   switch (UTT) {
4621   default: llvm_unreachable("not a UTT");
4622     // is_complete_type somewhat obviously cannot require a complete type.
4623   case UTT_IsCompleteType:
4624     // Fall-through
4625 
4626     // These traits are modeled on the type predicates in C++0x
4627     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4628     // requiring a complete type, as whether or not they return true cannot be
4629     // impacted by the completeness of the type.
4630   case UTT_IsVoid:
4631   case UTT_IsIntegral:
4632   case UTT_IsFloatingPoint:
4633   case UTT_IsArray:
4634   case UTT_IsPointer:
4635   case UTT_IsLvalueReference:
4636   case UTT_IsRvalueReference:
4637   case UTT_IsMemberFunctionPointer:
4638   case UTT_IsMemberObjectPointer:
4639   case UTT_IsEnum:
4640   case UTT_IsUnion:
4641   case UTT_IsClass:
4642   case UTT_IsFunction:
4643   case UTT_IsReference:
4644   case UTT_IsArithmetic:
4645   case UTT_IsFundamental:
4646   case UTT_IsObject:
4647   case UTT_IsScalar:
4648   case UTT_IsCompound:
4649   case UTT_IsMemberPointer:
4650     // Fall-through
4651 
4652     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4653     // which requires some of its traits to have the complete type. However,
4654     // the completeness of the type cannot impact these traits' semantics, and
4655     // so they don't require it. This matches the comments on these traits in
4656     // Table 49.
4657   case UTT_IsConst:
4658   case UTT_IsVolatile:
4659   case UTT_IsSigned:
4660   case UTT_IsUnsigned:
4661 
4662   // This type trait always returns false, checking the type is moot.
4663   case UTT_IsInterfaceClass:
4664     return true;
4665 
4666   // C++14 [meta.unary.prop]:
4667   //   If T is a non-union class type, T shall be a complete type.
4668   case UTT_IsEmpty:
4669   case UTT_IsPolymorphic:
4670   case UTT_IsAbstract:
4671     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4672       if (!RD->isUnion())
4673         return !S.RequireCompleteType(
4674             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4675     return true;
4676 
4677   // C++14 [meta.unary.prop]:
4678   //   If T is a class type, T shall be a complete type.
4679   case UTT_IsFinal:
4680   case UTT_IsSealed:
4681     if (ArgTy->getAsCXXRecordDecl())
4682       return !S.RequireCompleteType(
4683           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4684     return true;
4685 
4686   // C++1z [meta.unary.prop]:
4687   //   remove_all_extents_t<T> shall be a complete type or cv void.
4688   case UTT_IsAggregate:
4689   case UTT_IsTrivial:
4690   case UTT_IsTriviallyCopyable:
4691   case UTT_IsStandardLayout:
4692   case UTT_IsPOD:
4693   case UTT_IsLiteral:
4694   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4695   // or an array of unknown bound. But GCC actually imposes the same constraints
4696   // as above.
4697   case UTT_HasNothrowAssign:
4698   case UTT_HasNothrowMoveAssign:
4699   case UTT_HasNothrowConstructor:
4700   case UTT_HasNothrowCopy:
4701   case UTT_HasTrivialAssign:
4702   case UTT_HasTrivialMoveAssign:
4703   case UTT_HasTrivialDefaultConstructor:
4704   case UTT_HasTrivialMoveConstructor:
4705   case UTT_HasTrivialCopy:
4706   case UTT_HasTrivialDestructor:
4707   case UTT_HasVirtualDestructor:
4708     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4709     LLVM_FALLTHROUGH;
4710 
4711   // C++1z [meta.unary.prop]:
4712   //   T shall be a complete type, cv void, or an array of unknown bound.
4713   case UTT_IsDestructible:
4714   case UTT_IsNothrowDestructible:
4715   case UTT_IsTriviallyDestructible:
4716   case UTT_HasUniqueObjectRepresentations:
4717     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4718       return true;
4719 
4720     return !S.RequireCompleteType(
4721         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4722   }
4723 }
4724 
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)4725 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4726                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4727                                bool (CXXRecordDecl::*HasTrivial)() const,
4728                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4729                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4730 {
4731   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4732   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4733     return true;
4734 
4735   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4736   DeclarationNameInfo NameInfo(Name, KeyLoc);
4737   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4738   if (Self.LookupQualifiedName(Res, RD)) {
4739     bool FoundOperator = false;
4740     Res.suppressDiagnostics();
4741     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4742          Op != OpEnd; ++Op) {
4743       if (isa<FunctionTemplateDecl>(*Op))
4744         continue;
4745 
4746       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4747       if((Operator->*IsDesiredOp)()) {
4748         FoundOperator = true;
4749         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4750         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4751         if (!CPT || !CPT->isNothrow())
4752           return false;
4753       }
4754     }
4755     return FoundOperator;
4756   }
4757   return false;
4758 }
4759 
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)4760 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4761                                    SourceLocation KeyLoc, QualType T) {
4762   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4763 
4764   ASTContext &C = Self.Context;
4765   switch(UTT) {
4766   default: llvm_unreachable("not a UTT");
4767     // Type trait expressions corresponding to the primary type category
4768     // predicates in C++0x [meta.unary.cat].
4769   case UTT_IsVoid:
4770     return T->isVoidType();
4771   case UTT_IsIntegral:
4772     return T->isIntegralType(C);
4773   case UTT_IsFloatingPoint:
4774     return T->isFloatingType();
4775   case UTT_IsArray:
4776     return T->isArrayType();
4777   case UTT_IsPointer:
4778     return T->isAnyPointerType();
4779   case UTT_IsLvalueReference:
4780     return T->isLValueReferenceType();
4781   case UTT_IsRvalueReference:
4782     return T->isRValueReferenceType();
4783   case UTT_IsMemberFunctionPointer:
4784     return T->isMemberFunctionPointerType();
4785   case UTT_IsMemberObjectPointer:
4786     return T->isMemberDataPointerType();
4787   case UTT_IsEnum:
4788     return T->isEnumeralType();
4789   case UTT_IsUnion:
4790     return T->isUnionType();
4791   case UTT_IsClass:
4792     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4793   case UTT_IsFunction:
4794     return T->isFunctionType();
4795 
4796     // Type trait expressions which correspond to the convenient composition
4797     // predicates in C++0x [meta.unary.comp].
4798   case UTT_IsReference:
4799     return T->isReferenceType();
4800   case UTT_IsArithmetic:
4801     return T->isArithmeticType() && !T->isEnumeralType();
4802   case UTT_IsFundamental:
4803     return T->isFundamentalType();
4804   case UTT_IsObject:
4805     return T->isObjectType();
4806   case UTT_IsScalar:
4807     // Note: semantic analysis depends on Objective-C lifetime types to be
4808     // considered scalar types. However, such types do not actually behave
4809     // like scalar types at run time (since they may require retain/release
4810     // operations), so we report them as non-scalar.
4811     if (T->isObjCLifetimeType()) {
4812       switch (T.getObjCLifetime()) {
4813       case Qualifiers::OCL_None:
4814       case Qualifiers::OCL_ExplicitNone:
4815         return true;
4816 
4817       case Qualifiers::OCL_Strong:
4818       case Qualifiers::OCL_Weak:
4819       case Qualifiers::OCL_Autoreleasing:
4820         return false;
4821       }
4822     }
4823 
4824     return T->isScalarType();
4825   case UTT_IsCompound:
4826     return T->isCompoundType();
4827   case UTT_IsMemberPointer:
4828     return T->isMemberPointerType();
4829 
4830     // Type trait expressions which correspond to the type property predicates
4831     // in C++0x [meta.unary.prop].
4832   case UTT_IsConst:
4833     return T.isConstQualified();
4834   case UTT_IsVolatile:
4835     return T.isVolatileQualified();
4836   case UTT_IsTrivial:
4837     return T.isTrivialType(C);
4838   case UTT_IsTriviallyCopyable:
4839     return T.isTriviallyCopyableType(C);
4840   case UTT_IsStandardLayout:
4841     return T->isStandardLayoutType();
4842   case UTT_IsPOD:
4843     return T.isPODType(C);
4844   case UTT_IsLiteral:
4845     return T->isLiteralType(C);
4846   case UTT_IsEmpty:
4847     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4848       return !RD->isUnion() && RD->isEmpty();
4849     return false;
4850   case UTT_IsPolymorphic:
4851     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4852       return !RD->isUnion() && RD->isPolymorphic();
4853     return false;
4854   case UTT_IsAbstract:
4855     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4856       return !RD->isUnion() && RD->isAbstract();
4857     return false;
4858   case UTT_IsAggregate:
4859     // Report vector extensions and complex types as aggregates because they
4860     // support aggregate initialization. GCC mirrors this behavior for vectors
4861     // but not _Complex.
4862     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4863            T->isAnyComplexType();
4864   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4865   // even then only when it is used with the 'interface struct ...' syntax
4866   // Clang doesn't support /CLR which makes this type trait moot.
4867   case UTT_IsInterfaceClass:
4868     return false;
4869   case UTT_IsFinal:
4870   case UTT_IsSealed:
4871     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4872       return RD->hasAttr<FinalAttr>();
4873     return false;
4874   case UTT_IsSigned:
4875     // Enum types should always return false.
4876     // Floating points should always return true.
4877     return T->isFloatingType() ||
4878            (T->isSignedIntegerType() && !T->isEnumeralType());
4879   case UTT_IsUnsigned:
4880     // Enum types should always return false.
4881     return T->isUnsignedIntegerType() && !T->isEnumeralType();
4882 
4883     // Type trait expressions which query classes regarding their construction,
4884     // destruction, and copying. Rather than being based directly on the
4885     // related type predicates in the standard, they are specified by both
4886     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4887     // specifications.
4888     //
4889     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4890     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4891     //
4892     // Note that these builtins do not behave as documented in g++: if a class
4893     // has both a trivial and a non-trivial special member of a particular kind,
4894     // they return false! For now, we emulate this behavior.
4895     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4896     // does not correctly compute triviality in the presence of multiple special
4897     // members of the same kind. Revisit this once the g++ bug is fixed.
4898   case UTT_HasTrivialDefaultConstructor:
4899     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4900     //   If __is_pod (type) is true then the trait is true, else if type is
4901     //   a cv class or union type (or array thereof) with a trivial default
4902     //   constructor ([class.ctor]) then the trait is true, else it is false.
4903     if (T.isPODType(C))
4904       return true;
4905     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4906       return RD->hasTrivialDefaultConstructor() &&
4907              !RD->hasNonTrivialDefaultConstructor();
4908     return false;
4909   case UTT_HasTrivialMoveConstructor:
4910     //  This trait is implemented by MSVC 2012 and needed to parse the
4911     //  standard library headers. Specifically this is used as the logic
4912     //  behind std::is_trivially_move_constructible (20.9.4.3).
4913     if (T.isPODType(C))
4914       return true;
4915     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4916       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4917     return false;
4918   case UTT_HasTrivialCopy:
4919     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4920     //   If __is_pod (type) is true or type is a reference type then
4921     //   the trait is true, else if type is a cv class or union type
4922     //   with a trivial copy constructor ([class.copy]) then the trait
4923     //   is true, else it is false.
4924     if (T.isPODType(C) || T->isReferenceType())
4925       return true;
4926     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4927       return RD->hasTrivialCopyConstructor() &&
4928              !RD->hasNonTrivialCopyConstructor();
4929     return false;
4930   case UTT_HasTrivialMoveAssign:
4931     //  This trait is implemented by MSVC 2012 and needed to parse the
4932     //  standard library headers. Specifically it is used as the logic
4933     //  behind std::is_trivially_move_assignable (20.9.4.3)
4934     if (T.isPODType(C))
4935       return true;
4936     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4937       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4938     return false;
4939   case UTT_HasTrivialAssign:
4940     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4941     //   If type is const qualified or is a reference type then the
4942     //   trait is false. Otherwise if __is_pod (type) is true then the
4943     //   trait is true, else if type is a cv class or union type with
4944     //   a trivial copy assignment ([class.copy]) then the trait is
4945     //   true, else it is false.
4946     // Note: the const and reference restrictions are interesting,
4947     // given that const and reference members don't prevent a class
4948     // from having a trivial copy assignment operator (but do cause
4949     // errors if the copy assignment operator is actually used, q.v.
4950     // [class.copy]p12).
4951 
4952     if (T.isConstQualified())
4953       return false;
4954     if (T.isPODType(C))
4955       return true;
4956     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4957       return RD->hasTrivialCopyAssignment() &&
4958              !RD->hasNonTrivialCopyAssignment();
4959     return false;
4960   case UTT_IsDestructible:
4961   case UTT_IsTriviallyDestructible:
4962   case UTT_IsNothrowDestructible:
4963     // C++14 [meta.unary.prop]:
4964     //   For reference types, is_destructible<T>::value is true.
4965     if (T->isReferenceType())
4966       return true;
4967 
4968     // Objective-C++ ARC: autorelease types don't require destruction.
4969     if (T->isObjCLifetimeType() &&
4970         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4971       return true;
4972 
4973     // C++14 [meta.unary.prop]:
4974     //   For incomplete types and function types, is_destructible<T>::value is
4975     //   false.
4976     if (T->isIncompleteType() || T->isFunctionType())
4977       return false;
4978 
4979     // A type that requires destruction (via a non-trivial destructor or ARC
4980     // lifetime semantics) is not trivially-destructible.
4981     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4982       return false;
4983 
4984     // C++14 [meta.unary.prop]:
4985     //   For object types and given U equal to remove_all_extents_t<T>, if the
4986     //   expression std::declval<U&>().~U() is well-formed when treated as an
4987     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
4988     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4989       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4990       if (!Destructor)
4991         return false;
4992       //  C++14 [dcl.fct.def.delete]p2:
4993       //    A program that refers to a deleted function implicitly or
4994       //    explicitly, other than to declare it, is ill-formed.
4995       if (Destructor->isDeleted())
4996         return false;
4997       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4998         return false;
4999       if (UTT == UTT_IsNothrowDestructible) {
5000         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5001         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5002         if (!CPT || !CPT->isNothrow())
5003           return false;
5004       }
5005     }
5006     return true;
5007 
5008   case UTT_HasTrivialDestructor:
5009     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5010     //   If __is_pod (type) is true or type is a reference type
5011     //   then the trait is true, else if type is a cv class or union
5012     //   type (or array thereof) with a trivial destructor
5013     //   ([class.dtor]) then the trait is true, else it is
5014     //   false.
5015     if (T.isPODType(C) || T->isReferenceType())
5016       return true;
5017 
5018     // Objective-C++ ARC: autorelease types don't require destruction.
5019     if (T->isObjCLifetimeType() &&
5020         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5021       return true;
5022 
5023     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5024       return RD->hasTrivialDestructor();
5025     return false;
5026   // TODO: Propagate nothrowness for implicitly declared special members.
5027   case UTT_HasNothrowAssign:
5028     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5029     //   If type is const qualified or is a reference type then the
5030     //   trait is false. Otherwise if __has_trivial_assign (type)
5031     //   is true then the trait is true, else if type is a cv class
5032     //   or union type with copy assignment operators that are known
5033     //   not to throw an exception then the trait is true, else it is
5034     //   false.
5035     if (C.getBaseElementType(T).isConstQualified())
5036       return false;
5037     if (T->isReferenceType())
5038       return false;
5039     if (T.isPODType(C) || T->isObjCLifetimeType())
5040       return true;
5041 
5042     if (const RecordType *RT = T->getAs<RecordType>())
5043       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5044                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5045                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5046                                 &CXXMethodDecl::isCopyAssignmentOperator);
5047     return false;
5048   case UTT_HasNothrowMoveAssign:
5049     //  This trait is implemented by MSVC 2012 and needed to parse the
5050     //  standard library headers. Specifically this is used as the logic
5051     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5052     if (T.isPODType(C))
5053       return true;
5054 
5055     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5056       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5057                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5058                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5059                                 &CXXMethodDecl::isMoveAssignmentOperator);
5060     return false;
5061   case UTT_HasNothrowCopy:
5062     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5063     //   If __has_trivial_copy (type) is true then the trait is true, else
5064     //   if type is a cv class or union type with copy constructors that are
5065     //   known not to throw an exception then the trait is true, else it is
5066     //   false.
5067     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5068       return true;
5069     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5070       if (RD->hasTrivialCopyConstructor() &&
5071           !RD->hasNonTrivialCopyConstructor())
5072         return true;
5073 
5074       bool FoundConstructor = false;
5075       unsigned FoundTQs;
5076       for (const auto *ND : Self.LookupConstructors(RD)) {
5077         // A template constructor is never a copy constructor.
5078         // FIXME: However, it may actually be selected at the actual overload
5079         // resolution point.
5080         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5081           continue;
5082         // UsingDecl itself is not a constructor
5083         if (isa<UsingDecl>(ND))
5084           continue;
5085         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5086         if (Constructor->isCopyConstructor(FoundTQs)) {
5087           FoundConstructor = true;
5088           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5089           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5090           if (!CPT)
5091             return false;
5092           // TODO: check whether evaluating default arguments can throw.
5093           // For now, we'll be conservative and assume that they can throw.
5094           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5095             return false;
5096         }
5097       }
5098 
5099       return FoundConstructor;
5100     }
5101     return false;
5102   case UTT_HasNothrowConstructor:
5103     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5104     //   If __has_trivial_constructor (type) is true then the trait is
5105     //   true, else if type is a cv class or union type (or array
5106     //   thereof) with a default constructor that is known not to
5107     //   throw an exception then the trait is true, else it is false.
5108     if (T.isPODType(C) || T->isObjCLifetimeType())
5109       return true;
5110     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5111       if (RD->hasTrivialDefaultConstructor() &&
5112           !RD->hasNonTrivialDefaultConstructor())
5113         return true;
5114 
5115       bool FoundConstructor = false;
5116       for (const auto *ND : Self.LookupConstructors(RD)) {
5117         // FIXME: In C++0x, a constructor template can be a default constructor.
5118         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5119           continue;
5120         // UsingDecl itself is not a constructor
5121         if (isa<UsingDecl>(ND))
5122           continue;
5123         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5124         if (Constructor->isDefaultConstructor()) {
5125           FoundConstructor = true;
5126           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5127           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5128           if (!CPT)
5129             return false;
5130           // FIXME: check whether evaluating default arguments can throw.
5131           // For now, we'll be conservative and assume that they can throw.
5132           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5133             return false;
5134         }
5135       }
5136       return FoundConstructor;
5137     }
5138     return false;
5139   case UTT_HasVirtualDestructor:
5140     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5141     //   If type is a class type with a virtual destructor ([class.dtor])
5142     //   then the trait is true, else it is false.
5143     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5144       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5145         return Destructor->isVirtual();
5146     return false;
5147 
5148     // These type trait expressions are modeled on the specifications for the
5149     // Embarcadero C++0x type trait functions:
5150     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5151   case UTT_IsCompleteType:
5152     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5153     //   Returns True if and only if T is a complete type at the point of the
5154     //   function call.
5155     return !T->isIncompleteType();
5156   case UTT_HasUniqueObjectRepresentations:
5157     return C.hasUniqueObjectRepresentations(T);
5158   }
5159 }
5160 
5161 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5162                                     QualType RhsT, SourceLocation KeyLoc);
5163 
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5164 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5165                               ArrayRef<TypeSourceInfo *> Args,
5166                               SourceLocation RParenLoc) {
5167   if (Kind <= UTT_Last)
5168     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5169 
5170   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5171   // traits to avoid duplication.
5172   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5173     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5174                                    Args[1]->getType(), RParenLoc);
5175 
5176   switch (Kind) {
5177   case clang::BTT_ReferenceBindsToTemporary:
5178   case clang::TT_IsConstructible:
5179   case clang::TT_IsNothrowConstructible:
5180   case clang::TT_IsTriviallyConstructible: {
5181     // C++11 [meta.unary.prop]:
5182     //   is_trivially_constructible is defined as:
5183     //
5184     //     is_constructible<T, Args...>::value is true and the variable
5185     //     definition for is_constructible, as defined below, is known to call
5186     //     no operation that is not trivial.
5187     //
5188     //   The predicate condition for a template specialization
5189     //   is_constructible<T, Args...> shall be satisfied if and only if the
5190     //   following variable definition would be well-formed for some invented
5191     //   variable t:
5192     //
5193     //     T t(create<Args>()...);
5194     assert(!Args.empty());
5195 
5196     // Precondition: T and all types in the parameter pack Args shall be
5197     // complete types, (possibly cv-qualified) void, or arrays of
5198     // unknown bound.
5199     for (const auto *TSI : Args) {
5200       QualType ArgTy = TSI->getType();
5201       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5202         continue;
5203 
5204       if (S.RequireCompleteType(KWLoc, ArgTy,
5205           diag::err_incomplete_type_used_in_type_trait_expr))
5206         return false;
5207     }
5208 
5209     // Make sure the first argument is not incomplete nor a function type.
5210     QualType T = Args[0]->getType();
5211     if (T->isIncompleteType() || T->isFunctionType())
5212       return false;
5213 
5214     // Make sure the first argument is not an abstract type.
5215     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5216     if (RD && RD->isAbstract())
5217       return false;
5218 
5219     llvm::BumpPtrAllocator OpaqueExprAllocator;
5220     SmallVector<Expr *, 2> ArgExprs;
5221     ArgExprs.reserve(Args.size() - 1);
5222     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5223       QualType ArgTy = Args[I]->getType();
5224       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5225         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5226       ArgExprs.push_back(
5227           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5228               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5229                               ArgTy.getNonLValueExprType(S.Context),
5230                               Expr::getValueKindForType(ArgTy)));
5231     }
5232 
5233     // Perform the initialization in an unevaluated context within a SFINAE
5234     // trap at translation unit scope.
5235     EnterExpressionEvaluationContext Unevaluated(
5236         S, Sema::ExpressionEvaluationContext::Unevaluated);
5237     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5238     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5239     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
5240     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5241                                                                  RParenLoc));
5242     InitializationSequence Init(S, To, InitKind, ArgExprs);
5243     if (Init.Failed())
5244       return false;
5245 
5246     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5247     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5248       return false;
5249 
5250     if (Kind == clang::TT_IsConstructible)
5251       return true;
5252 
5253     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5254       if (!T->isReferenceType())
5255         return false;
5256 
5257       return !Init.isDirectReferenceBinding();
5258     }
5259 
5260     if (Kind == clang::TT_IsNothrowConstructible)
5261       return S.canThrow(Result.get()) == CT_Cannot;
5262 
5263     if (Kind == clang::TT_IsTriviallyConstructible) {
5264       // Under Objective-C ARC and Weak, if the destination has non-trivial
5265       // Objective-C lifetime, this is a non-trivial construction.
5266       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5267         return false;
5268 
5269       // The initialization succeeded; now make sure there are no non-trivial
5270       // calls.
5271       return !Result.get()->hasNonTrivialCall(S.Context);
5272     }
5273 
5274     llvm_unreachable("unhandled type trait");
5275     return false;
5276   }
5277     default: llvm_unreachable("not a TT");
5278   }
5279 
5280   return false;
5281 }
5282 
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)5283 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5284                                 ArrayRef<TypeSourceInfo *> Args,
5285                                 SourceLocation RParenLoc) {
5286   QualType ResultType = Context.getLogicalOperationType();
5287 
5288   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5289                                *this, Kind, KWLoc, Args[0]->getType()))
5290     return ExprError();
5291 
5292   bool Dependent = false;
5293   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5294     if (Args[I]->getType()->isDependentType()) {
5295       Dependent = true;
5296       break;
5297     }
5298   }
5299 
5300   bool Result = false;
5301   if (!Dependent)
5302     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5303 
5304   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5305                                RParenLoc, Result);
5306 }
5307 
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)5308 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5309                                 ArrayRef<ParsedType> Args,
5310                                 SourceLocation RParenLoc) {
5311   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5312   ConvertedArgs.reserve(Args.size());
5313 
5314   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5315     TypeSourceInfo *TInfo;
5316     QualType T = GetTypeFromParser(Args[I], &TInfo);
5317     if (!TInfo)
5318       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5319 
5320     ConvertedArgs.push_back(TInfo);
5321   }
5322 
5323   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5324 }
5325 
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)5326 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5327                                     QualType RhsT, SourceLocation KeyLoc) {
5328   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5329          "Cannot evaluate traits of dependent types");
5330 
5331   switch(BTT) {
5332   case BTT_IsBaseOf: {
5333     // C++0x [meta.rel]p2
5334     // Base is a base class of Derived without regard to cv-qualifiers or
5335     // Base and Derived are not unions and name the same class type without
5336     // regard to cv-qualifiers.
5337 
5338     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5339     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5340     if (!rhsRecord || !lhsRecord) {
5341       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5342       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5343       if (!LHSObjTy || !RHSObjTy)
5344         return false;
5345 
5346       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5347       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5348       if (!BaseInterface || !DerivedInterface)
5349         return false;
5350 
5351       if (Self.RequireCompleteType(
5352               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5353         return false;
5354 
5355       return BaseInterface->isSuperClassOf(DerivedInterface);
5356     }
5357 
5358     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5359              == (lhsRecord == rhsRecord));
5360 
5361     // Unions are never base classes, and never have base classes.
5362     // It doesn't matter if they are complete or not. See PR#41843
5363     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5364       return false;
5365     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5366       return false;
5367 
5368     if (lhsRecord == rhsRecord)
5369       return true;
5370 
5371     // C++0x [meta.rel]p2:
5372     //   If Base and Derived are class types and are different types
5373     //   (ignoring possible cv-qualifiers) then Derived shall be a
5374     //   complete type.
5375     if (Self.RequireCompleteType(KeyLoc, RhsT,
5376                           diag::err_incomplete_type_used_in_type_trait_expr))
5377       return false;
5378 
5379     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5380       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5381   }
5382   case BTT_IsSame:
5383     return Self.Context.hasSameType(LhsT, RhsT);
5384   case BTT_TypeCompatible: {
5385     // GCC ignores cv-qualifiers on arrays for this builtin.
5386     Qualifiers LhsQuals, RhsQuals;
5387     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5388     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5389     return Self.Context.typesAreCompatible(Lhs, Rhs);
5390   }
5391   case BTT_IsConvertible:
5392   case BTT_IsConvertibleTo: {
5393     // C++0x [meta.rel]p4:
5394     //   Given the following function prototype:
5395     //
5396     //     template <class T>
5397     //       typename add_rvalue_reference<T>::type create();
5398     //
5399     //   the predicate condition for a template specialization
5400     //   is_convertible<From, To> shall be satisfied if and only if
5401     //   the return expression in the following code would be
5402     //   well-formed, including any implicit conversions to the return
5403     //   type of the function:
5404     //
5405     //     To test() {
5406     //       return create<From>();
5407     //     }
5408     //
5409     //   Access checking is performed as if in a context unrelated to To and
5410     //   From. Only the validity of the immediate context of the expression
5411     //   of the return-statement (including conversions to the return type)
5412     //   is considered.
5413     //
5414     // We model the initialization as a copy-initialization of a temporary
5415     // of the appropriate type, which for this expression is identical to the
5416     // return statement (since NRVO doesn't apply).
5417 
5418     // Functions aren't allowed to return function or array types.
5419     if (RhsT->isFunctionType() || RhsT->isArrayType())
5420       return false;
5421 
5422     // A return statement in a void function must have void type.
5423     if (RhsT->isVoidType())
5424       return LhsT->isVoidType();
5425 
5426     // A function definition requires a complete, non-abstract return type.
5427     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5428       return false;
5429 
5430     // Compute the result of add_rvalue_reference.
5431     if (LhsT->isObjectType() || LhsT->isFunctionType())
5432       LhsT = Self.Context.getRValueReferenceType(LhsT);
5433 
5434     // Build a fake source and destination for initialization.
5435     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5436     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5437                          Expr::getValueKindForType(LhsT));
5438     Expr *FromPtr = &From;
5439     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5440                                                            SourceLocation()));
5441 
5442     // Perform the initialization in an unevaluated context within a SFINAE
5443     // trap at translation unit scope.
5444     EnterExpressionEvaluationContext Unevaluated(
5445         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5446     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5447     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5448     InitializationSequence Init(Self, To, Kind, FromPtr);
5449     if (Init.Failed())
5450       return false;
5451 
5452     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5453     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5454   }
5455 
5456   case BTT_IsAssignable:
5457   case BTT_IsNothrowAssignable:
5458   case BTT_IsTriviallyAssignable: {
5459     // C++11 [meta.unary.prop]p3:
5460     //   is_trivially_assignable is defined as:
5461     //     is_assignable<T, U>::value is true and the assignment, as defined by
5462     //     is_assignable, is known to call no operation that is not trivial
5463     //
5464     //   is_assignable is defined as:
5465     //     The expression declval<T>() = declval<U>() is well-formed when
5466     //     treated as an unevaluated operand (Clause 5).
5467     //
5468     //   For both, T and U shall be complete types, (possibly cv-qualified)
5469     //   void, or arrays of unknown bound.
5470     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5471         Self.RequireCompleteType(KeyLoc, LhsT,
5472           diag::err_incomplete_type_used_in_type_trait_expr))
5473       return false;
5474     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5475         Self.RequireCompleteType(KeyLoc, RhsT,
5476           diag::err_incomplete_type_used_in_type_trait_expr))
5477       return false;
5478 
5479     // cv void is never assignable.
5480     if (LhsT->isVoidType() || RhsT->isVoidType())
5481       return false;
5482 
5483     // Build expressions that emulate the effect of declval<T>() and
5484     // declval<U>().
5485     if (LhsT->isObjectType() || LhsT->isFunctionType())
5486       LhsT = Self.Context.getRValueReferenceType(LhsT);
5487     if (RhsT->isObjectType() || RhsT->isFunctionType())
5488       RhsT = Self.Context.getRValueReferenceType(RhsT);
5489     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5490                         Expr::getValueKindForType(LhsT));
5491     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5492                         Expr::getValueKindForType(RhsT));
5493 
5494     // Attempt the assignment in an unevaluated context within a SFINAE
5495     // trap at translation unit scope.
5496     EnterExpressionEvaluationContext Unevaluated(
5497         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5498     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5499     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5500     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5501                                         &Rhs);
5502     if (Result.isInvalid())
5503       return false;
5504 
5505     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5506     Self.CheckUnusedVolatileAssignment(Result.get());
5507 
5508     if (SFINAE.hasErrorOccurred())
5509       return false;
5510 
5511     if (BTT == BTT_IsAssignable)
5512       return true;
5513 
5514     if (BTT == BTT_IsNothrowAssignable)
5515       return Self.canThrow(Result.get()) == CT_Cannot;
5516 
5517     if (BTT == BTT_IsTriviallyAssignable) {
5518       // Under Objective-C ARC and Weak, if the destination has non-trivial
5519       // Objective-C lifetime, this is a non-trivial assignment.
5520       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5521         return false;
5522 
5523       return !Result.get()->hasNonTrivialCall(Self.Context);
5524     }
5525 
5526     llvm_unreachable("unhandled type trait");
5527     return false;
5528   }
5529     default: llvm_unreachable("not a BTT");
5530   }
5531   llvm_unreachable("Unknown type trait or not implemented");
5532 }
5533 
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)5534 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5535                                      SourceLocation KWLoc,
5536                                      ParsedType Ty,
5537                                      Expr* DimExpr,
5538                                      SourceLocation RParen) {
5539   TypeSourceInfo *TSInfo;
5540   QualType T = GetTypeFromParser(Ty, &TSInfo);
5541   if (!TSInfo)
5542     TSInfo = Context.getTrivialTypeSourceInfo(T);
5543 
5544   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5545 }
5546 
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)5547 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5548                                            QualType T, Expr *DimExpr,
5549                                            SourceLocation KeyLoc) {
5550   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5551 
5552   switch(ATT) {
5553   case ATT_ArrayRank:
5554     if (T->isArrayType()) {
5555       unsigned Dim = 0;
5556       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5557         ++Dim;
5558         T = AT->getElementType();
5559       }
5560       return Dim;
5561     }
5562     return 0;
5563 
5564   case ATT_ArrayExtent: {
5565     llvm::APSInt Value;
5566     uint64_t Dim;
5567     if (Self.VerifyIntegerConstantExpression(
5568                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5569             .isInvalid())
5570       return 0;
5571     if (Value.isSigned() && Value.isNegative()) {
5572       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5573         << DimExpr->getSourceRange();
5574       return 0;
5575     }
5576     Dim = Value.getLimitedValue();
5577 
5578     if (T->isArrayType()) {
5579       unsigned D = 0;
5580       bool Matched = false;
5581       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5582         if (Dim == D) {
5583           Matched = true;
5584           break;
5585         }
5586         ++D;
5587         T = AT->getElementType();
5588       }
5589 
5590       if (Matched && T->isArrayType()) {
5591         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5592           return CAT->getSize().getLimitedValue();
5593       }
5594     }
5595     return 0;
5596   }
5597   }
5598   llvm_unreachable("Unknown type trait or not implemented");
5599 }
5600 
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)5601 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5602                                      SourceLocation KWLoc,
5603                                      TypeSourceInfo *TSInfo,
5604                                      Expr* DimExpr,
5605                                      SourceLocation RParen) {
5606   QualType T = TSInfo->getType();
5607 
5608   // FIXME: This should likely be tracked as an APInt to remove any host
5609   // assumptions about the width of size_t on the target.
5610   uint64_t Value = 0;
5611   if (!T->isDependentType())
5612     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5613 
5614   // While the specification for these traits from the Embarcadero C++
5615   // compiler's documentation says the return type is 'unsigned int', Clang
5616   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5617   // compiler, there is no difference. On several other platforms this is an
5618   // important distinction.
5619   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5620                                           RParen, Context.getSizeType());
5621 }
5622 
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5623 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5624                                       SourceLocation KWLoc,
5625                                       Expr *Queried,
5626                                       SourceLocation RParen) {
5627   // If error parsing the expression, ignore.
5628   if (!Queried)
5629     return ExprError();
5630 
5631   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5632 
5633   return Result;
5634 }
5635 
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)5636 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5637   switch (ET) {
5638   case ET_IsLValueExpr: return E->isLValue();
5639   case ET_IsRValueExpr: return E->isRValue();
5640   }
5641   llvm_unreachable("Expression trait not covered by switch");
5642 }
5643 
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)5644 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5645                                       SourceLocation KWLoc,
5646                                       Expr *Queried,
5647                                       SourceLocation RParen) {
5648   if (Queried->isTypeDependent()) {
5649     // Delay type-checking for type-dependent expressions.
5650   } else if (Queried->getType()->isPlaceholderType()) {
5651     ExprResult PE = CheckPlaceholderExpr(Queried);
5652     if (PE.isInvalid()) return ExprError();
5653     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5654   }
5655 
5656   bool Value = EvaluateExpressionTrait(ET, Queried);
5657 
5658   return new (Context)
5659       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5660 }
5661 
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)5662 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5663                                             ExprValueKind &VK,
5664                                             SourceLocation Loc,
5665                                             bool isIndirect) {
5666   assert(!LHS.get()->getType()->isPlaceholderType() &&
5667          !RHS.get()->getType()->isPlaceholderType() &&
5668          "placeholders should have been weeded out by now");
5669 
5670   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5671   // temporary materialization conversion otherwise.
5672   if (isIndirect)
5673     LHS = DefaultLvalueConversion(LHS.get());
5674   else if (LHS.get()->isRValue())
5675     LHS = TemporaryMaterializationConversion(LHS.get());
5676   if (LHS.isInvalid())
5677     return QualType();
5678 
5679   // The RHS always undergoes lvalue conversions.
5680   RHS = DefaultLvalueConversion(RHS.get());
5681   if (RHS.isInvalid()) return QualType();
5682 
5683   const char *OpSpelling = isIndirect ? "->*" : ".*";
5684   // C++ 5.5p2
5685   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5686   //   be of type "pointer to member of T" (where T is a completely-defined
5687   //   class type) [...]
5688   QualType RHSType = RHS.get()->getType();
5689   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5690   if (!MemPtr) {
5691     Diag(Loc, diag::err_bad_memptr_rhs)
5692       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5693     return QualType();
5694   }
5695 
5696   QualType Class(MemPtr->getClass(), 0);
5697 
5698   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5699   // member pointer points must be completely-defined. However, there is no
5700   // reason for this semantic distinction, and the rule is not enforced by
5701   // other compilers. Therefore, we do not check this property, as it is
5702   // likely to be considered a defect.
5703 
5704   // C++ 5.5p2
5705   //   [...] to its first operand, which shall be of class T or of a class of
5706   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5707   //   such a class]
5708   QualType LHSType = LHS.get()->getType();
5709   if (isIndirect) {
5710     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5711       LHSType = Ptr->getPointeeType();
5712     else {
5713       Diag(Loc, diag::err_bad_memptr_lhs)
5714         << OpSpelling << 1 << LHSType
5715         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5716       return QualType();
5717     }
5718   }
5719 
5720   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5721     // If we want to check the hierarchy, we need a complete type.
5722     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5723                             OpSpelling, (int)isIndirect)) {
5724       return QualType();
5725     }
5726 
5727     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5728       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5729         << (int)isIndirect << LHS.get()->getType();
5730       return QualType();
5731     }
5732 
5733     CXXCastPath BasePath;
5734     if (CheckDerivedToBaseConversion(
5735             LHSType, Class, Loc,
5736             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5737             &BasePath))
5738       return QualType();
5739 
5740     // Cast LHS to type of use.
5741     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5742     if (isIndirect)
5743       UseType = Context.getPointerType(UseType);
5744     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5745     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5746                             &BasePath);
5747   }
5748 
5749   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5750     // Diagnose use of pointer-to-member type which when used as
5751     // the functional cast in a pointer-to-member expression.
5752     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5753      return QualType();
5754   }
5755 
5756   // C++ 5.5p2
5757   //   The result is an object or a function of the type specified by the
5758   //   second operand.
5759   // The cv qualifiers are the union of those in the pointer and the left side,
5760   // in accordance with 5.5p5 and 5.2.5.
5761   QualType Result = MemPtr->getPointeeType();
5762   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5763 
5764   // C++0x [expr.mptr.oper]p6:
5765   //   In a .* expression whose object expression is an rvalue, the program is
5766   //   ill-formed if the second operand is a pointer to member function with
5767   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5768   //   expression is an lvalue, the program is ill-formed if the second operand
5769   //   is a pointer to member function with ref-qualifier &&.
5770   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5771     switch (Proto->getRefQualifier()) {
5772     case RQ_None:
5773       // Do nothing
5774       break;
5775 
5776     case RQ_LValue:
5777       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5778         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5779         // is (exactly) 'const'.
5780         if (Proto->isConst() && !Proto->isVolatile())
5781           Diag(Loc, getLangOpts().CPlusPlus20
5782                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5783                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5784         else
5785           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5786               << RHSType << 1 << LHS.get()->getSourceRange();
5787       }
5788       break;
5789 
5790     case RQ_RValue:
5791       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5792         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5793           << RHSType << 0 << LHS.get()->getSourceRange();
5794       break;
5795     }
5796   }
5797 
5798   // C++ [expr.mptr.oper]p6:
5799   //   The result of a .* expression whose second operand is a pointer
5800   //   to a data member is of the same value category as its
5801   //   first operand. The result of a .* expression whose second
5802   //   operand is a pointer to a member function is a prvalue. The
5803   //   result of an ->* expression is an lvalue if its second operand
5804   //   is a pointer to data member and a prvalue otherwise.
5805   if (Result->isFunctionType()) {
5806     VK = VK_RValue;
5807     return Context.BoundMemberTy;
5808   } else if (isIndirect) {
5809     VK = VK_LValue;
5810   } else {
5811     VK = LHS.get()->getValueKind();
5812   }
5813 
5814   return Result;
5815 }
5816 
5817 /// Try to convert a type to another according to C++11 5.16p3.
5818 ///
5819 /// This is part of the parameter validation for the ? operator. If either
5820 /// value operand is a class type, the two operands are attempted to be
5821 /// converted to each other. This function does the conversion in one direction.
5822 /// It returns true if the program is ill-formed and has already been diagnosed
5823 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)5824 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5825                                 SourceLocation QuestionLoc,
5826                                 bool &HaveConversion,
5827                                 QualType &ToType) {
5828   HaveConversion = false;
5829   ToType = To->getType();
5830 
5831   InitializationKind Kind =
5832       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5833   // C++11 5.16p3
5834   //   The process for determining whether an operand expression E1 of type T1
5835   //   can be converted to match an operand expression E2 of type T2 is defined
5836   //   as follows:
5837   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5838   //      implicitly converted to type "lvalue reference to T2", subject to the
5839   //      constraint that in the conversion the reference must bind directly to
5840   //      an lvalue.
5841   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5842   //      implicitly converted to the type "rvalue reference to R2", subject to
5843   //      the constraint that the reference must bind directly.
5844   if (To->isLValue() || To->isXValue()) {
5845     QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5846                                 : Self.Context.getRValueReferenceType(ToType);
5847 
5848     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5849 
5850     InitializationSequence InitSeq(Self, Entity, Kind, From);
5851     if (InitSeq.isDirectReferenceBinding()) {
5852       ToType = T;
5853       HaveConversion = true;
5854       return false;
5855     }
5856 
5857     if (InitSeq.isAmbiguous())
5858       return InitSeq.Diagnose(Self, Entity, Kind, From);
5859   }
5860 
5861   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5862   //      -- if E1 and E2 have class type, and the underlying class types are
5863   //         the same or one is a base class of the other:
5864   QualType FTy = From->getType();
5865   QualType TTy = To->getType();
5866   const RecordType *FRec = FTy->getAs<RecordType>();
5867   const RecordType *TRec = TTy->getAs<RecordType>();
5868   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5869                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5870   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5871                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5872     //         E1 can be converted to match E2 if the class of T2 is the
5873     //         same type as, or a base class of, the class of T1, and
5874     //         [cv2 > cv1].
5875     if (FRec == TRec || FDerivedFromT) {
5876       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5877         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5878         InitializationSequence InitSeq(Self, Entity, Kind, From);
5879         if (InitSeq) {
5880           HaveConversion = true;
5881           return false;
5882         }
5883 
5884         if (InitSeq.isAmbiguous())
5885           return InitSeq.Diagnose(Self, Entity, Kind, From);
5886       }
5887     }
5888 
5889     return false;
5890   }
5891 
5892   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5893   //        implicitly converted to the type that expression E2 would have
5894   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5895   //        an rvalue).
5896   //
5897   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5898   // to the array-to-pointer or function-to-pointer conversions.
5899   TTy = TTy.getNonLValueExprType(Self.Context);
5900 
5901   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5902   InitializationSequence InitSeq(Self, Entity, Kind, From);
5903   HaveConversion = !InitSeq.Failed();
5904   ToType = TTy;
5905   if (InitSeq.isAmbiguous())
5906     return InitSeq.Diagnose(Self, Entity, Kind, From);
5907 
5908   return false;
5909 }
5910 
5911 /// Try to find a common type for two according to C++0x 5.16p5.
5912 ///
5913 /// This is part of the parameter validation for the ? operator. If either
5914 /// value operand is a class type, overload resolution is used to find a
5915 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)5916 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5917                                     SourceLocation QuestionLoc) {
5918   Expr *Args[2] = { LHS.get(), RHS.get() };
5919   OverloadCandidateSet CandidateSet(QuestionLoc,
5920                                     OverloadCandidateSet::CSK_Operator);
5921   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5922                                     CandidateSet);
5923 
5924   OverloadCandidateSet::iterator Best;
5925   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5926     case OR_Success: {
5927       // We found a match. Perform the conversions on the arguments and move on.
5928       ExprResult LHSRes = Self.PerformImplicitConversion(
5929           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5930           Sema::AA_Converting);
5931       if (LHSRes.isInvalid())
5932         break;
5933       LHS = LHSRes;
5934 
5935       ExprResult RHSRes = Self.PerformImplicitConversion(
5936           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5937           Sema::AA_Converting);
5938       if (RHSRes.isInvalid())
5939         break;
5940       RHS = RHSRes;
5941       if (Best->Function)
5942         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5943       return false;
5944     }
5945 
5946     case OR_No_Viable_Function:
5947 
5948       // Emit a better diagnostic if one of the expressions is a null pointer
5949       // constant and the other is a pointer type. In this case, the user most
5950       // likely forgot to take the address of the other expression.
5951       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5952         return true;
5953 
5954       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5955         << LHS.get()->getType() << RHS.get()->getType()
5956         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5957       return true;
5958 
5959     case OR_Ambiguous:
5960       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5961         << LHS.get()->getType() << RHS.get()->getType()
5962         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5963       // FIXME: Print the possible common types by printing the return types of
5964       // the viable candidates.
5965       break;
5966 
5967     case OR_Deleted:
5968       llvm_unreachable("Conditional operator has only built-in overloads");
5969   }
5970   return true;
5971 }
5972 
5973 /// Perform an "extended" implicit conversion as returned by
5974 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)5975 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5976   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5977   InitializationKind Kind =
5978       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
5979   Expr *Arg = E.get();
5980   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5981   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5982   if (Result.isInvalid())
5983     return true;
5984 
5985   E = Result;
5986   return false;
5987 }
5988 
5989 // Check the condition operand of ?: to see if it is valid for the GCC
5990 // extension.
isValidVectorForConditionalCondition(ASTContext & Ctx,QualType CondTy)5991 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
5992                                                  QualType CondTy) {
5993   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
5994     return false;
5995   const QualType EltTy =
5996       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
5997   assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&
5998          "Vectors cant be boolean or enum types");
5999   return EltTy->isIntegralType(Ctx);
6000 }
6001 
CheckVectorConditionalTypes(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6002 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6003                                            ExprResult &RHS,
6004                                            SourceLocation QuestionLoc) {
6005   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6006   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6007 
6008   QualType CondType = Cond.get()->getType();
6009   const auto *CondVT = CondType->castAs<VectorType>();
6010   QualType CondElementTy = CondVT->getElementType();
6011   unsigned CondElementCount = CondVT->getNumElements();
6012   QualType LHSType = LHS.get()->getType();
6013   const auto *LHSVT = LHSType->getAs<VectorType>();
6014   QualType RHSType = RHS.get()->getType();
6015   const auto *RHSVT = RHSType->getAs<VectorType>();
6016 
6017   QualType ResultType;
6018 
6019 
6020   if (LHSVT && RHSVT) {
6021     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6022       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6023           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6024       return {};
6025     }
6026 
6027     // If both are vector types, they must be the same type.
6028     if (!Context.hasSameType(LHSType, RHSType)) {
6029       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6030           << LHSType << RHSType;
6031       return {};
6032     }
6033     ResultType = LHSType;
6034   } else if (LHSVT || RHSVT) {
6035     ResultType = CheckVectorOperands(
6036         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6037         /*AllowBoolConversions*/ false);
6038     if (ResultType.isNull())
6039       return {};
6040   } else {
6041     // Both are scalar.
6042     QualType ResultElementTy;
6043     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6044     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6045 
6046     if (Context.hasSameType(LHSType, RHSType))
6047       ResultElementTy = LHSType;
6048     else
6049       ResultElementTy =
6050           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6051 
6052     if (ResultElementTy->isEnumeralType()) {
6053       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6054           << ResultElementTy;
6055       return {};
6056     }
6057     if (CondType->isExtVectorType())
6058       ResultType =
6059           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6060     else
6061       ResultType = Context.getVectorType(
6062           ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6063 
6064     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6065     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6066   }
6067 
6068   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6069          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6070          "Result should have been a vector type");
6071   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6072   QualType ResultElementTy = ResultVectorTy->getElementType();
6073   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6074 
6075   if (ResultElementCount != CondElementCount) {
6076     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6077                                                          << ResultType;
6078     return {};
6079   }
6080 
6081   if (Context.getTypeSize(ResultElementTy) !=
6082       Context.getTypeSize(CondElementTy)) {
6083     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6084                                                                  << ResultType;
6085     return {};
6086   }
6087 
6088   return ResultType;
6089 }
6090 
6091 /// Check the operands of ?: under C++ semantics.
6092 ///
6093 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6094 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6095 ///
6096 /// This function also implements GCC's vector extension and the
6097 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6098 /// permit the use of a?b:c where the type of a is that of a integer vector with
6099 /// the same number of elements and size as the vectors of b and c. If one of
6100 /// either b or c is a scalar it is implicitly converted to match the type of
6101 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6102 /// scalars, then b and c are checked and converted to the type of a if
6103 /// possible.
6104 ///
6105 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6106 /// For the GCC extension, the ?: operator is evaluated as
6107 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6108 /// For the OpenCL extensions, the ?: operator is evaluated as
6109 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6110 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)6111 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6112                                            ExprResult &RHS, ExprValueKind &VK,
6113                                            ExprObjectKind &OK,
6114                                            SourceLocation QuestionLoc) {
6115   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6116   // pointers.
6117 
6118   // Assume r-value.
6119   VK = VK_RValue;
6120   OK = OK_Ordinary;
6121   bool IsVectorConditional =
6122       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6123 
6124   // C++11 [expr.cond]p1
6125   //   The first expression is contextually converted to bool.
6126   if (!Cond.get()->isTypeDependent()) {
6127     ExprResult CondRes = IsVectorConditional
6128                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6129                              : CheckCXXBooleanCondition(Cond.get());
6130     if (CondRes.isInvalid())
6131       return QualType();
6132     Cond = CondRes;
6133   } else {
6134     // To implement C++, the first expression typically doesn't alter the result
6135     // type of the conditional, however the GCC compatible vector extension
6136     // changes the result type to be that of the conditional. Since we cannot
6137     // know if this is a vector extension here, delay the conversion of the
6138     // LHS/RHS below until later.
6139     return Context.DependentTy;
6140   }
6141 
6142 
6143   // Either of the arguments dependent?
6144   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6145     return Context.DependentTy;
6146 
6147   // C++11 [expr.cond]p2
6148   //   If either the second or the third operand has type (cv) void, ...
6149   QualType LTy = LHS.get()->getType();
6150   QualType RTy = RHS.get()->getType();
6151   bool LVoid = LTy->isVoidType();
6152   bool RVoid = RTy->isVoidType();
6153   if (LVoid || RVoid) {
6154     //   ... one of the following shall hold:
6155     //   -- The second or the third operand (but not both) is a (possibly
6156     //      parenthesized) throw-expression; the result is of the type
6157     //      and value category of the other.
6158     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6159     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6160 
6161     // Void expressions aren't legal in the vector-conditional expressions.
6162     if (IsVectorConditional) {
6163       SourceRange DiagLoc =
6164           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6165       bool IsThrow = LVoid ? LThrow : RThrow;
6166       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6167           << DiagLoc << IsThrow;
6168       return QualType();
6169     }
6170 
6171     if (LThrow != RThrow) {
6172       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6173       VK = NonThrow->getValueKind();
6174       // DR (no number yet): the result is a bit-field if the
6175       // non-throw-expression operand is a bit-field.
6176       OK = NonThrow->getObjectKind();
6177       return NonThrow->getType();
6178     }
6179 
6180     //   -- Both the second and third operands have type void; the result is of
6181     //      type void and is a prvalue.
6182     if (LVoid && RVoid)
6183       return Context.VoidTy;
6184 
6185     // Neither holds, error.
6186     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6187       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6188       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6189     return QualType();
6190   }
6191 
6192   // Neither is void.
6193   if (IsVectorConditional)
6194     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6195 
6196   // C++11 [expr.cond]p3
6197   //   Otherwise, if the second and third operand have different types, and
6198   //   either has (cv) class type [...] an attempt is made to convert each of
6199   //   those operands to the type of the other.
6200   if (!Context.hasSameType(LTy, RTy) &&
6201       (LTy->isRecordType() || RTy->isRecordType())) {
6202     // These return true if a single direction is already ambiguous.
6203     QualType L2RType, R2LType;
6204     bool HaveL2R, HaveR2L;
6205     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6206       return QualType();
6207     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6208       return QualType();
6209 
6210     //   If both can be converted, [...] the program is ill-formed.
6211     if (HaveL2R && HaveR2L) {
6212       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6213         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6214       return QualType();
6215     }
6216 
6217     //   If exactly one conversion is possible, that conversion is applied to
6218     //   the chosen operand and the converted operands are used in place of the
6219     //   original operands for the remainder of this section.
6220     if (HaveL2R) {
6221       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6222         return QualType();
6223       LTy = LHS.get()->getType();
6224     } else if (HaveR2L) {
6225       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6226         return QualType();
6227       RTy = RHS.get()->getType();
6228     }
6229   }
6230 
6231   // C++11 [expr.cond]p3
6232   //   if both are glvalues of the same value category and the same type except
6233   //   for cv-qualification, an attempt is made to convert each of those
6234   //   operands to the type of the other.
6235   // FIXME:
6236   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6237   //   one of the operands is reference-compatible with the other, in order
6238   //   to support conditionals between functions differing in noexcept. This
6239   //   will similarly cover difference in array bounds after P0388R4.
6240   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6241   //   that instead?
6242   ExprValueKind LVK = LHS.get()->getValueKind();
6243   ExprValueKind RVK = RHS.get()->getValueKind();
6244   if (!Context.hasSameType(LTy, RTy) &&
6245       LVK == RVK && LVK != VK_RValue) {
6246     // DerivedToBase was already handled by the class-specific case above.
6247     // FIXME: Should we allow ObjC conversions here?
6248     const ReferenceConversions AllowedConversions =
6249         ReferenceConversions::Qualification |
6250         ReferenceConversions::NestedQualification |
6251         ReferenceConversions::Function;
6252 
6253     ReferenceConversions RefConv;
6254     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6255             Ref_Compatible &&
6256         !(RefConv & ~AllowedConversions) &&
6257         // [...] subject to the constraint that the reference must bind
6258         // directly [...]
6259         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6260       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6261       RTy = RHS.get()->getType();
6262     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6263                    Ref_Compatible &&
6264                !(RefConv & ~AllowedConversions) &&
6265                !LHS.get()->refersToBitField() &&
6266                !LHS.get()->refersToVectorElement()) {
6267       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6268       LTy = LHS.get()->getType();
6269     }
6270   }
6271 
6272   // C++11 [expr.cond]p4
6273   //   If the second and third operands are glvalues of the same value
6274   //   category and have the same type, the result is of that type and
6275   //   value category and it is a bit-field if the second or the third
6276   //   operand is a bit-field, or if both are bit-fields.
6277   // We only extend this to bitfields, not to the crazy other kinds of
6278   // l-values.
6279   bool Same = Context.hasSameType(LTy, RTy);
6280   if (Same && LVK == RVK && LVK != VK_RValue &&
6281       LHS.get()->isOrdinaryOrBitFieldObject() &&
6282       RHS.get()->isOrdinaryOrBitFieldObject()) {
6283     VK = LHS.get()->getValueKind();
6284     if (LHS.get()->getObjectKind() == OK_BitField ||
6285         RHS.get()->getObjectKind() == OK_BitField)
6286       OK = OK_BitField;
6287 
6288     // If we have function pointer types, unify them anyway to unify their
6289     // exception specifications, if any.
6290     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6291       Qualifiers Qs = LTy.getQualifiers();
6292       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6293                                      /*ConvertArgs*/false);
6294       LTy = Context.getQualifiedType(LTy, Qs);
6295 
6296       assert(!LTy.isNull() && "failed to find composite pointer type for "
6297                               "canonically equivalent function ptr types");
6298       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
6299     }
6300 
6301     return LTy;
6302   }
6303 
6304   // C++11 [expr.cond]p5
6305   //   Otherwise, the result is a prvalue. If the second and third operands
6306   //   do not have the same type, and either has (cv) class type, ...
6307   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6308     //   ... overload resolution is used to determine the conversions (if any)
6309     //   to be applied to the operands. If the overload resolution fails, the
6310     //   program is ill-formed.
6311     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6312       return QualType();
6313   }
6314 
6315   // C++11 [expr.cond]p6
6316   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6317   //   conversions are performed on the second and third operands.
6318   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6319   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6320   if (LHS.isInvalid() || RHS.isInvalid())
6321     return QualType();
6322   LTy = LHS.get()->getType();
6323   RTy = RHS.get()->getType();
6324 
6325   //   After those conversions, one of the following shall hold:
6326   //   -- The second and third operands have the same type; the result
6327   //      is of that type. If the operands have class type, the result
6328   //      is a prvalue temporary of the result type, which is
6329   //      copy-initialized from either the second operand or the third
6330   //      operand depending on the value of the first operand.
6331   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6332     if (LTy->isRecordType()) {
6333       // The operands have class type. Make a temporary copy.
6334       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6335 
6336       ExprResult LHSCopy = PerformCopyInitialization(Entity,
6337                                                      SourceLocation(),
6338                                                      LHS);
6339       if (LHSCopy.isInvalid())
6340         return QualType();
6341 
6342       ExprResult RHSCopy = PerformCopyInitialization(Entity,
6343                                                      SourceLocation(),
6344                                                      RHS);
6345       if (RHSCopy.isInvalid())
6346         return QualType();
6347 
6348       LHS = LHSCopy;
6349       RHS = RHSCopy;
6350     }
6351 
6352     // If we have function pointer types, unify them anyway to unify their
6353     // exception specifications, if any.
6354     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6355       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6356       assert(!LTy.isNull() && "failed to find composite pointer type for "
6357                               "canonically equivalent function ptr types");
6358     }
6359 
6360     return LTy;
6361   }
6362 
6363   // Extension: conditional operator involving vector types.
6364   if (LTy->isVectorType() || RTy->isVectorType())
6365     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6366                                /*AllowBothBool*/true,
6367                                /*AllowBoolConversions*/false);
6368 
6369   //   -- The second and third operands have arithmetic or enumeration type;
6370   //      the usual arithmetic conversions are performed to bring them to a
6371   //      common type, and the result is of that type.
6372   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6373     QualType ResTy =
6374         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6375     if (LHS.isInvalid() || RHS.isInvalid())
6376       return QualType();
6377     if (ResTy.isNull()) {
6378       Diag(QuestionLoc,
6379            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6380         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6381       return QualType();
6382     }
6383 
6384     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6385     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6386 
6387     return ResTy;
6388   }
6389 
6390   //   -- The second and third operands have pointer type, or one has pointer
6391   //      type and the other is a null pointer constant, or both are null
6392   //      pointer constants, at least one of which is non-integral; pointer
6393   //      conversions and qualification conversions are performed to bring them
6394   //      to their composite pointer type. The result is of the composite
6395   //      pointer type.
6396   //   -- The second and third operands have pointer to member type, or one has
6397   //      pointer to member type and the other is a null pointer constant;
6398   //      pointer to member conversions and qualification conversions are
6399   //      performed to bring them to a common type, whose cv-qualification
6400   //      shall match the cv-qualification of either the second or the third
6401   //      operand. The result is of the common type.
6402   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6403   if (!Composite.isNull())
6404     return Composite;
6405 
6406   // Similarly, attempt to find composite type of two objective-c pointers.
6407   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6408   if (LHS.isInvalid() || RHS.isInvalid())
6409     return QualType();
6410   if (!Composite.isNull())
6411     return Composite;
6412 
6413   // Check if we are using a null with a non-pointer type.
6414   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6415     return QualType();
6416 
6417   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6418     << LHS.get()->getType() << RHS.get()->getType()
6419     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6420   return QualType();
6421 }
6422 
6423 static FunctionProtoType::ExceptionSpecInfo
mergeExceptionSpecs(Sema & S,FunctionProtoType::ExceptionSpecInfo ESI1,FunctionProtoType::ExceptionSpecInfo ESI2,SmallVectorImpl<QualType> & ExceptionTypeStorage)6424 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6425                     FunctionProtoType::ExceptionSpecInfo ESI2,
6426                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6427   ExceptionSpecificationType EST1 = ESI1.Type;
6428   ExceptionSpecificationType EST2 = ESI2.Type;
6429 
6430   // If either of them can throw anything, that is the result.
6431   if (EST1 == EST_None) return ESI1;
6432   if (EST2 == EST_None) return ESI2;
6433   if (EST1 == EST_MSAny) return ESI1;
6434   if (EST2 == EST_MSAny) return ESI2;
6435   if (EST1 == EST_NoexceptFalse) return ESI1;
6436   if (EST2 == EST_NoexceptFalse) return ESI2;
6437 
6438   // If either of them is non-throwing, the result is the other.
6439   if (EST1 == EST_NoThrow) return ESI2;
6440   if (EST2 == EST_NoThrow) return ESI1;
6441   if (EST1 == EST_DynamicNone) return ESI2;
6442   if (EST2 == EST_DynamicNone) return ESI1;
6443   if (EST1 == EST_BasicNoexcept) return ESI2;
6444   if (EST2 == EST_BasicNoexcept) return ESI1;
6445   if (EST1 == EST_NoexceptTrue) return ESI2;
6446   if (EST2 == EST_NoexceptTrue) return ESI1;
6447 
6448   // If we're left with value-dependent computed noexcept expressions, we're
6449   // stuck. Before C++17, we can just drop the exception specification entirely,
6450   // since it's not actually part of the canonical type. And this should never
6451   // happen in C++17, because it would mean we were computing the composite
6452   // pointer type of dependent types, which should never happen.
6453   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6454     assert(!S.getLangOpts().CPlusPlus17 &&
6455            "computing composite pointer type of dependent types");
6456     return FunctionProtoType::ExceptionSpecInfo();
6457   }
6458 
6459   // Switch over the possibilities so that people adding new values know to
6460   // update this function.
6461   switch (EST1) {
6462   case EST_None:
6463   case EST_DynamicNone:
6464   case EST_MSAny:
6465   case EST_BasicNoexcept:
6466   case EST_DependentNoexcept:
6467   case EST_NoexceptFalse:
6468   case EST_NoexceptTrue:
6469   case EST_NoThrow:
6470     llvm_unreachable("handled above");
6471 
6472   case EST_Dynamic: {
6473     // This is the fun case: both exception specifications are dynamic. Form
6474     // the union of the two lists.
6475     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6476     llvm::SmallPtrSet<QualType, 8> Found;
6477     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6478       for (QualType E : Exceptions)
6479         if (Found.insert(S.Context.getCanonicalType(E)).second)
6480           ExceptionTypeStorage.push_back(E);
6481 
6482     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6483     Result.Exceptions = ExceptionTypeStorage;
6484     return Result;
6485   }
6486 
6487   case EST_Unevaluated:
6488   case EST_Uninstantiated:
6489   case EST_Unparsed:
6490     llvm_unreachable("shouldn't see unresolved exception specifications here");
6491   }
6492 
6493   llvm_unreachable("invalid ExceptionSpecificationType");
6494 }
6495 
6496 /// Find a merged pointer type and convert the two expressions to it.
6497 ///
6498 /// This finds the composite pointer type for \p E1 and \p E2 according to
6499 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6500 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6501 /// is \c true).
6502 ///
6503 /// \param Loc The location of the operator requiring these two expressions to
6504 /// be converted to the composite pointer type.
6505 ///
6506 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool ConvertArgs)6507 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6508                                         Expr *&E1, Expr *&E2,
6509                                         bool ConvertArgs) {
6510   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6511 
6512   // C++1z [expr]p14:
6513   //   The composite pointer type of two operands p1 and p2 having types T1
6514   //   and T2
6515   QualType T1 = E1->getType(), T2 = E2->getType();
6516 
6517   //   where at least one is a pointer or pointer to member type or
6518   //   std::nullptr_t is:
6519   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6520                          T1->isNullPtrType();
6521   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6522                          T2->isNullPtrType();
6523   if (!T1IsPointerLike && !T2IsPointerLike)
6524     return QualType();
6525 
6526   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6527   // This can't actually happen, following the standard, but we also use this
6528   // to implement the end of [expr.conv], which hits this case.
6529   //
6530   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6531   if (T1IsPointerLike &&
6532       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6533     if (ConvertArgs)
6534       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6535                                          ? CK_NullToMemberPointer
6536                                          : CK_NullToPointer).get();
6537     return T1;
6538   }
6539   if (T2IsPointerLike &&
6540       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6541     if (ConvertArgs)
6542       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6543                                          ? CK_NullToMemberPointer
6544                                          : CK_NullToPointer).get();
6545     return T2;
6546   }
6547 
6548   // Now both have to be pointers or member pointers.
6549   if (!T1IsPointerLike || !T2IsPointerLike)
6550     return QualType();
6551   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6552          "nullptr_t should be a null pointer constant");
6553 
6554   struct Step {
6555     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6556     // Qualifiers to apply under the step kind.
6557     Qualifiers Quals;
6558     /// The class for a pointer-to-member; a constant array type with a bound
6559     /// (if any) for an array.
6560     const Type *ClassOrBound;
6561 
6562     Step(Kind K, const Type *ClassOrBound = nullptr)
6563         : K(K), Quals(), ClassOrBound(ClassOrBound) {}
6564     QualType rebuild(ASTContext &Ctx, QualType T) const {
6565       T = Ctx.getQualifiedType(T, Quals);
6566       switch (K) {
6567       case Pointer:
6568         return Ctx.getPointerType(T);
6569       case MemberPointer:
6570         return Ctx.getMemberPointerType(T, ClassOrBound);
6571       case ObjCPointer:
6572         return Ctx.getObjCObjectPointerType(T);
6573       case Array:
6574         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6575           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6576                                           ArrayType::Normal, 0);
6577         else
6578           return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6579       }
6580       llvm_unreachable("unknown step kind");
6581     }
6582   };
6583 
6584   SmallVector<Step, 8> Steps;
6585 
6586   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6587   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6588   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6589   //    respectively;
6590   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6591   //    to member of C2 of type cv2 U2" for some non-function type U, where
6592   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6593   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6594   //    respectively;
6595   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6596   //    T2;
6597   //
6598   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6599   // and to prepare to form the cv-combined type if so.
6600   QualType Composite1 = T1;
6601   QualType Composite2 = T2;
6602   unsigned NeedConstBefore = 0;
6603   while (true) {
6604     assert(!Composite1.isNull() && !Composite2.isNull());
6605 
6606     Qualifiers Q1, Q2;
6607     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6608     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6609 
6610     // Top-level qualifiers are ignored. Merge at all lower levels.
6611     if (!Steps.empty()) {
6612       // Find the qualifier union: (approximately) the unique minimal set of
6613       // qualifiers that is compatible with both types.
6614       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6615                                                   Q2.getCVRUQualifiers());
6616 
6617       // Under one level of pointer or pointer-to-member, we can change to an
6618       // unambiguous compatible address space.
6619       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6620         Quals.setAddressSpace(Q1.getAddressSpace());
6621       } else if (Steps.size() == 1) {
6622         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6623         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6624         if (MaybeQ1 == MaybeQ2)
6625           return QualType(); // No unique best address space.
6626         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6627                                       : Q2.getAddressSpace());
6628       } else {
6629         return QualType();
6630       }
6631 
6632       // FIXME: In C, we merge __strong and none to __strong at the top level.
6633       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6634         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6635       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6636         assert(Steps.size() == 1);
6637       else
6638         return QualType();
6639 
6640       // Mismatched lifetime qualifiers never compatibly include each other.
6641       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6642         Quals.setObjCLifetime(Q1.getObjCLifetime());
6643       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6644         assert(Steps.size() == 1);
6645       else
6646         return QualType();
6647 
6648       Steps.back().Quals = Quals;
6649       if (Q1 != Quals || Q2 != Quals)
6650         NeedConstBefore = Steps.size() - 1;
6651     }
6652 
6653     // FIXME: Can we unify the following with UnwrapSimilarTypes?
6654     const PointerType *Ptr1, *Ptr2;
6655     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6656         (Ptr2 = Composite2->getAs<PointerType>())) {
6657       Composite1 = Ptr1->getPointeeType();
6658       Composite2 = Ptr2->getPointeeType();
6659       Steps.emplace_back(Step::Pointer);
6660       continue;
6661     }
6662 
6663     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6664     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6665         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6666       Composite1 = ObjPtr1->getPointeeType();
6667       Composite2 = ObjPtr2->getPointeeType();
6668       Steps.emplace_back(Step::ObjCPointer);
6669       continue;
6670     }
6671 
6672     const MemberPointerType *MemPtr1, *MemPtr2;
6673     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6674         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6675       Composite1 = MemPtr1->getPointeeType();
6676       Composite2 = MemPtr2->getPointeeType();
6677 
6678       // At the top level, we can perform a base-to-derived pointer-to-member
6679       // conversion:
6680       //
6681       //  - [...] where C1 is reference-related to C2 or C2 is
6682       //    reference-related to C1
6683       //
6684       // (Note that the only kinds of reference-relatedness in scope here are
6685       // "same type or derived from".) At any other level, the class must
6686       // exactly match.
6687       const Type *Class = nullptr;
6688       QualType Cls1(MemPtr1->getClass(), 0);
6689       QualType Cls2(MemPtr2->getClass(), 0);
6690       if (Context.hasSameType(Cls1, Cls2))
6691         Class = MemPtr1->getClass();
6692       else if (Steps.empty())
6693         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6694                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6695       if (!Class)
6696         return QualType();
6697 
6698       Steps.emplace_back(Step::MemberPointer, Class);
6699       continue;
6700     }
6701 
6702     // Special case: at the top level, we can decompose an Objective-C pointer
6703     // and a 'cv void *'. Unify the qualifiers.
6704     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6705                            Composite2->isObjCObjectPointerType()) ||
6706                           (Composite1->isObjCObjectPointerType() &&
6707                            Composite2->isVoidPointerType()))) {
6708       Composite1 = Composite1->getPointeeType();
6709       Composite2 = Composite2->getPointeeType();
6710       Steps.emplace_back(Step::Pointer);
6711       continue;
6712     }
6713 
6714     // FIXME: arrays
6715 
6716     // FIXME: block pointer types?
6717 
6718     // Cannot unwrap any more types.
6719     break;
6720   }
6721 
6722   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6723   //    "pointer to function", where the function types are otherwise the same,
6724   //    "pointer to function";
6725   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
6726   //    type is "pointer to member of C2 of type noexcept function", and C1
6727   //    is reference-related to C2 or C2 is reference-related to C1, where
6728   //    the function types are otherwise the same, "pointer to member of C2 of
6729   //    type function" or "pointer to member of C1 of type function",
6730   //    respectively;
6731   //
6732   // We also support 'noreturn' here, so as a Clang extension we generalize the
6733   // above to:
6734   //
6735   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
6736   //    "pointer to member function" and the pointee types can be unified
6737   //    by a function pointer conversion, that conversion is applied
6738   //    before checking the following rules.
6739   //
6740   // We've already unwrapped down to the function types, and we want to merge
6741   // rather than just convert, so do this ourselves rather than calling
6742   // IsFunctionConversion.
6743   //
6744   // FIXME: In order to match the standard wording as closely as possible, we
6745   // currently only do this under a single level of pointers. Ideally, we would
6746   // allow this in general, and set NeedConstBefore to the relevant depth on
6747   // the side(s) where we changed anything. If we permit that, we should also
6748   // consider this conversion when determining type similarity and model it as
6749   // a qualification conversion.
6750   if (Steps.size() == 1) {
6751     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6752       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6753         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6754         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6755 
6756         // The result is noreturn if both operands are.
6757         bool Noreturn =
6758             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6759         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6760         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6761 
6762         // The result is nothrow if both operands are.
6763         SmallVector<QualType, 8> ExceptionTypeStorage;
6764         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6765             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6766                                 ExceptionTypeStorage);
6767 
6768         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6769                                              FPT1->getParamTypes(), EPI1);
6770         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6771                                              FPT2->getParamTypes(), EPI2);
6772       }
6773     }
6774   }
6775 
6776   // There are some more conversions we can perform under exactly one pointer.
6777   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
6778       !Context.hasSameType(Composite1, Composite2)) {
6779     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6780     //    "pointer to cv2 T", where T is an object type or void,
6781     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
6782     if (Composite1->isVoidType() && Composite2->isObjectType())
6783       Composite2 = Composite1;
6784     else if (Composite2->isVoidType() && Composite1->isObjectType())
6785       Composite1 = Composite2;
6786     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6787     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6788     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
6789     //    T1, respectively;
6790     //
6791     // The "similar type" handling covers all of this except for the "T1 is a
6792     // base class of T2" case in the definition of reference-related.
6793     else if (IsDerivedFrom(Loc, Composite1, Composite2))
6794       Composite1 = Composite2;
6795     else if (IsDerivedFrom(Loc, Composite2, Composite1))
6796       Composite2 = Composite1;
6797   }
6798 
6799   // At this point, either the inner types are the same or we have failed to
6800   // find a composite pointer type.
6801   if (!Context.hasSameType(Composite1, Composite2))
6802     return QualType();
6803 
6804   // Per C++ [conv.qual]p3, add 'const' to every level before the last
6805   // differing qualifier.
6806   for (unsigned I = 0; I != NeedConstBefore; ++I)
6807     Steps[I].Quals.addConst();
6808 
6809   // Rebuild the composite type.
6810   QualType Composite = Composite1;
6811   for (auto &S : llvm::reverse(Steps))
6812     Composite = S.rebuild(Context, Composite);
6813 
6814   if (ConvertArgs) {
6815     // Convert the expressions to the composite pointer type.
6816     InitializedEntity Entity =
6817         InitializedEntity::InitializeTemporary(Composite);
6818     InitializationKind Kind =
6819         InitializationKind::CreateCopy(Loc, SourceLocation());
6820 
6821     InitializationSequence E1ToC(*this, Entity, Kind, E1);
6822     if (!E1ToC)
6823       return QualType();
6824 
6825     InitializationSequence E2ToC(*this, Entity, Kind, E2);
6826     if (!E2ToC)
6827       return QualType();
6828 
6829     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
6830     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
6831     if (E1Result.isInvalid())
6832       return QualType();
6833     E1 = E1Result.get();
6834 
6835     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
6836     if (E2Result.isInvalid())
6837       return QualType();
6838     E2 = E2Result.get();
6839   }
6840 
6841   return Composite;
6842 }
6843 
MaybeBindToTemporary(Expr * E)6844 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6845   if (!E)
6846     return ExprError();
6847 
6848   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6849 
6850   // If the result is a glvalue, we shouldn't bind it.
6851   if (!E->isRValue())
6852     return E;
6853 
6854   // In ARC, calls that return a retainable type can return retained,
6855   // in which case we have to insert a consuming cast.
6856   if (getLangOpts().ObjCAutoRefCount &&
6857       E->getType()->isObjCRetainableType()) {
6858 
6859     bool ReturnsRetained;
6860 
6861     // For actual calls, we compute this by examining the type of the
6862     // called value.
6863     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6864       Expr *Callee = Call->getCallee()->IgnoreParens();
6865       QualType T = Callee->getType();
6866 
6867       if (T == Context.BoundMemberTy) {
6868         // Handle pointer-to-members.
6869         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6870           T = BinOp->getRHS()->getType();
6871         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6872           T = Mem->getMemberDecl()->getType();
6873       }
6874 
6875       if (const PointerType *Ptr = T->getAs<PointerType>())
6876         T = Ptr->getPointeeType();
6877       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6878         T = Ptr->getPointeeType();
6879       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6880         T = MemPtr->getPointeeType();
6881 
6882       auto *FTy = T->castAs<FunctionType>();
6883       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6884 
6885     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6886     // type always produce a +1 object.
6887     } else if (isa<StmtExpr>(E)) {
6888       ReturnsRetained = true;
6889 
6890     // We hit this case with the lambda conversion-to-block optimization;
6891     // we don't want any extra casts here.
6892     } else if (isa<CastExpr>(E) &&
6893                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6894       return E;
6895 
6896     // For message sends and property references, we try to find an
6897     // actual method.  FIXME: we should infer retention by selector in
6898     // cases where we don't have an actual method.
6899     } else {
6900       ObjCMethodDecl *D = nullptr;
6901       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6902         D = Send->getMethodDecl();
6903       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6904         D = BoxedExpr->getBoxingMethod();
6905       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6906         // Don't do reclaims if we're using the zero-element array
6907         // constant.
6908         if (ArrayLit->getNumElements() == 0 &&
6909             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6910           return E;
6911 
6912         D = ArrayLit->getArrayWithObjectsMethod();
6913       } else if (ObjCDictionaryLiteral *DictLit
6914                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
6915         // Don't do reclaims if we're using the zero-element dictionary
6916         // constant.
6917         if (DictLit->getNumElements() == 0 &&
6918             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6919           return E;
6920 
6921         D = DictLit->getDictWithObjectsMethod();
6922       }
6923 
6924       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6925 
6926       // Don't do reclaims on performSelector calls; despite their
6927       // return type, the invoked method doesn't necessarily actually
6928       // return an object.
6929       if (!ReturnsRetained &&
6930           D && D->getMethodFamily() == OMF_performSelector)
6931         return E;
6932     }
6933 
6934     // Don't reclaim an object of Class type.
6935     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6936       return E;
6937 
6938     Cleanup.setExprNeedsCleanups(true);
6939 
6940     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6941                                    : CK_ARCReclaimReturnedObject);
6942     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6943                                     VK_RValue, FPOptionsOverride());
6944   }
6945 
6946   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
6947     Cleanup.setExprNeedsCleanups(true);
6948 
6949   if (!getLangOpts().CPlusPlus)
6950     return E;
6951 
6952   // Search for the base element type (cf. ASTContext::getBaseElementType) with
6953   // a fast path for the common case that the type is directly a RecordType.
6954   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
6955   const RecordType *RT = nullptr;
6956   while (!RT) {
6957     switch (T->getTypeClass()) {
6958     case Type::Record:
6959       RT = cast<RecordType>(T);
6960       break;
6961     case Type::ConstantArray:
6962     case Type::IncompleteArray:
6963     case Type::VariableArray:
6964     case Type::DependentSizedArray:
6965       T = cast<ArrayType>(T)->getElementType().getTypePtr();
6966       break;
6967     default:
6968       return E;
6969     }
6970   }
6971 
6972   // That should be enough to guarantee that this type is complete, if we're
6973   // not processing a decltype expression.
6974   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6975   if (RD->isInvalidDecl() || RD->isDependentContext())
6976     return E;
6977 
6978   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
6979                     ExpressionEvaluationContextRecord::EK_Decltype;
6980   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
6981 
6982   if (Destructor) {
6983     MarkFunctionReferenced(E->getExprLoc(), Destructor);
6984     CheckDestructorAccess(E->getExprLoc(), Destructor,
6985                           PDiag(diag::err_access_dtor_temp)
6986                             << E->getType());
6987     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
6988       return ExprError();
6989 
6990     // If destructor is trivial, we can avoid the extra copy.
6991     if (Destructor->isTrivial())
6992       return E;
6993 
6994     // We need a cleanup, but we don't need to remember the temporary.
6995     Cleanup.setExprNeedsCleanups(true);
6996   }
6997 
6998   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
6999   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7000 
7001   if (IsDecltype)
7002     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7003 
7004   return Bind;
7005 }
7006 
7007 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)7008 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7009   if (SubExpr.isInvalid())
7010     return ExprError();
7011 
7012   return MaybeCreateExprWithCleanups(SubExpr.get());
7013 }
7014 
MaybeCreateExprWithCleanups(Expr * SubExpr)7015 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7016   assert(SubExpr && "subexpression can't be null!");
7017 
7018   CleanupVarDeclMarking();
7019 
7020   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7021   assert(ExprCleanupObjects.size() >= FirstCleanup);
7022   assert(Cleanup.exprNeedsCleanups() ||
7023          ExprCleanupObjects.size() == FirstCleanup);
7024   if (!Cleanup.exprNeedsCleanups())
7025     return SubExpr;
7026 
7027   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7028                                      ExprCleanupObjects.size() - FirstCleanup);
7029 
7030   auto *E = ExprWithCleanups::Create(
7031       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7032   DiscardCleanupsInEvaluationContext();
7033 
7034   return E;
7035 }
7036 
MaybeCreateStmtWithCleanups(Stmt * SubStmt)7037 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7038   assert(SubStmt && "sub-statement can't be null!");
7039 
7040   CleanupVarDeclMarking();
7041 
7042   if (!Cleanup.exprNeedsCleanups())
7043     return SubStmt;
7044 
7045   // FIXME: In order to attach the temporaries, wrap the statement into
7046   // a StmtExpr; currently this is only used for asm statements.
7047   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7048   // a new AsmStmtWithTemporaries.
7049   CompoundStmt *CompStmt = CompoundStmt::Create(
7050       Context, SubStmt, SourceLocation(), SourceLocation());
7051   Expr *E = new (Context)
7052       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7053                /*FIXME TemplateDepth=*/0);
7054   return MaybeCreateExprWithCleanups(E);
7055 }
7056 
7057 /// Process the expression contained within a decltype. For such expressions,
7058 /// certain semantic checks on temporaries are delayed until this point, and
7059 /// are omitted for the 'topmost' call in the decltype expression. If the
7060 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)7061 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7062   assert(ExprEvalContexts.back().ExprContext ==
7063              ExpressionEvaluationContextRecord::EK_Decltype &&
7064          "not in a decltype expression");
7065 
7066   ExprResult Result = CheckPlaceholderExpr(E);
7067   if (Result.isInvalid())
7068     return ExprError();
7069   E = Result.get();
7070 
7071   // C++11 [expr.call]p11:
7072   //   If a function call is a prvalue of object type,
7073   // -- if the function call is either
7074   //   -- the operand of a decltype-specifier, or
7075   //   -- the right operand of a comma operator that is the operand of a
7076   //      decltype-specifier,
7077   //   a temporary object is not introduced for the prvalue.
7078 
7079   // Recursively rebuild ParenExprs and comma expressions to strip out the
7080   // outermost CXXBindTemporaryExpr, if any.
7081   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7082     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7083     if (SubExpr.isInvalid())
7084       return ExprError();
7085     if (SubExpr.get() == PE->getSubExpr())
7086       return E;
7087     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7088   }
7089   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7090     if (BO->getOpcode() == BO_Comma) {
7091       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7092       if (RHS.isInvalid())
7093         return ExprError();
7094       if (RHS.get() == BO->getRHS())
7095         return E;
7096       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7097                                     BO->getType(), BO->getValueKind(),
7098                                     BO->getObjectKind(), BO->getOperatorLoc(),
7099                                     BO->getFPFeatures(getLangOpts()));
7100     }
7101   }
7102 
7103   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7104   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7105                               : nullptr;
7106   if (TopCall)
7107     E = TopCall;
7108   else
7109     TopBind = nullptr;
7110 
7111   // Disable the special decltype handling now.
7112   ExprEvalContexts.back().ExprContext =
7113       ExpressionEvaluationContextRecord::EK_Other;
7114 
7115   Result = CheckUnevaluatedOperand(E);
7116   if (Result.isInvalid())
7117     return ExprError();
7118   E = Result.get();
7119 
7120   // In MS mode, don't perform any extra checking of call return types within a
7121   // decltype expression.
7122   if (getLangOpts().MSVCCompat)
7123     return E;
7124 
7125   // Perform the semantic checks we delayed until this point.
7126   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7127        I != N; ++I) {
7128     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7129     if (Call == TopCall)
7130       continue;
7131 
7132     if (CheckCallReturnType(Call->getCallReturnType(Context),
7133                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7134       return ExprError();
7135   }
7136 
7137   // Now all relevant types are complete, check the destructors are accessible
7138   // and non-deleted, and annotate them on the temporaries.
7139   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7140        I != N; ++I) {
7141     CXXBindTemporaryExpr *Bind =
7142       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7143     if (Bind == TopBind)
7144       continue;
7145 
7146     CXXTemporary *Temp = Bind->getTemporary();
7147 
7148     CXXRecordDecl *RD =
7149       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7150     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7151     Temp->setDestructor(Destructor);
7152 
7153     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7154     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7155                           PDiag(diag::err_access_dtor_temp)
7156                             << Bind->getType());
7157     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7158       return ExprError();
7159 
7160     // We need a cleanup, but we don't need to remember the temporary.
7161     Cleanup.setExprNeedsCleanups(true);
7162   }
7163 
7164   // Possibly strip off the top CXXBindTemporaryExpr.
7165   return E;
7166 }
7167 
7168 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)7169 static void noteOperatorArrows(Sema &S,
7170                                ArrayRef<FunctionDecl *> OperatorArrows) {
7171   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7172   // FIXME: Make this configurable?
7173   unsigned Limit = 9;
7174   if (OperatorArrows.size() > Limit) {
7175     // Produce Limit-1 normal notes and one 'skipping' note.
7176     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7177     SkipCount = OperatorArrows.size() - (Limit - 1);
7178   }
7179 
7180   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7181     if (I == SkipStart) {
7182       S.Diag(OperatorArrows[I]->getLocation(),
7183              diag::note_operator_arrows_suppressed)
7184           << SkipCount;
7185       I += SkipCount;
7186     } else {
7187       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7188           << OperatorArrows[I]->getCallResultType();
7189       ++I;
7190     }
7191   }
7192 }
7193 
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)7194 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7195                                               SourceLocation OpLoc,
7196                                               tok::TokenKind OpKind,
7197                                               ParsedType &ObjectType,
7198                                               bool &MayBePseudoDestructor) {
7199   // Since this might be a postfix expression, get rid of ParenListExprs.
7200   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7201   if (Result.isInvalid()) return ExprError();
7202   Base = Result.get();
7203 
7204   Result = CheckPlaceholderExpr(Base);
7205   if (Result.isInvalid()) return ExprError();
7206   Base = Result.get();
7207 
7208   QualType BaseType = Base->getType();
7209   MayBePseudoDestructor = false;
7210   if (BaseType->isDependentType()) {
7211     // If we have a pointer to a dependent type and are using the -> operator,
7212     // the object type is the type that the pointer points to. We might still
7213     // have enough information about that type to do something useful.
7214     if (OpKind == tok::arrow)
7215       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7216         BaseType = Ptr->getPointeeType();
7217 
7218     ObjectType = ParsedType::make(BaseType);
7219     MayBePseudoDestructor = true;
7220     return Base;
7221   }
7222 
7223   // C++ [over.match.oper]p8:
7224   //   [...] When operator->returns, the operator-> is applied  to the value
7225   //   returned, with the original second operand.
7226   if (OpKind == tok::arrow) {
7227     QualType StartingType = BaseType;
7228     bool NoArrowOperatorFound = false;
7229     bool FirstIteration = true;
7230     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7231     // The set of types we've considered so far.
7232     llvm::SmallPtrSet<CanQualType,8> CTypes;
7233     SmallVector<FunctionDecl*, 8> OperatorArrows;
7234     CTypes.insert(Context.getCanonicalType(BaseType));
7235 
7236     while (BaseType->isRecordType()) {
7237       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7238         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7239           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7240         noteOperatorArrows(*this, OperatorArrows);
7241         Diag(OpLoc, diag::note_operator_arrow_depth)
7242           << getLangOpts().ArrowDepth;
7243         return ExprError();
7244       }
7245 
7246       Result = BuildOverloadedArrowExpr(
7247           S, Base, OpLoc,
7248           // When in a template specialization and on the first loop iteration,
7249           // potentially give the default diagnostic (with the fixit in a
7250           // separate note) instead of having the error reported back to here
7251           // and giving a diagnostic with a fixit attached to the error itself.
7252           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7253               ? nullptr
7254               : &NoArrowOperatorFound);
7255       if (Result.isInvalid()) {
7256         if (NoArrowOperatorFound) {
7257           if (FirstIteration) {
7258             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7259               << BaseType << 1 << Base->getSourceRange()
7260               << FixItHint::CreateReplacement(OpLoc, ".");
7261             OpKind = tok::period;
7262             break;
7263           }
7264           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7265             << BaseType << Base->getSourceRange();
7266           CallExpr *CE = dyn_cast<CallExpr>(Base);
7267           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7268             Diag(CD->getBeginLoc(),
7269                  diag::note_member_reference_arrow_from_operator_arrow);
7270           }
7271         }
7272         return ExprError();
7273       }
7274       Base = Result.get();
7275       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7276         OperatorArrows.push_back(OpCall->getDirectCallee());
7277       BaseType = Base->getType();
7278       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7279       if (!CTypes.insert(CBaseType).second) {
7280         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7281         noteOperatorArrows(*this, OperatorArrows);
7282         return ExprError();
7283       }
7284       FirstIteration = false;
7285     }
7286 
7287     if (OpKind == tok::arrow) {
7288       if (BaseType->isPointerType())
7289         BaseType = BaseType->getPointeeType();
7290       else if (auto *AT = Context.getAsArrayType(BaseType))
7291         BaseType = AT->getElementType();
7292     }
7293   }
7294 
7295   // Objective-C properties allow "." access on Objective-C pointer types,
7296   // so adjust the base type to the object type itself.
7297   if (BaseType->isObjCObjectPointerType())
7298     BaseType = BaseType->getPointeeType();
7299 
7300   // C++ [basic.lookup.classref]p2:
7301   //   [...] If the type of the object expression is of pointer to scalar
7302   //   type, the unqualified-id is looked up in the context of the complete
7303   //   postfix-expression.
7304   //
7305   // This also indicates that we could be parsing a pseudo-destructor-name.
7306   // Note that Objective-C class and object types can be pseudo-destructor
7307   // expressions or normal member (ivar or property) access expressions, and
7308   // it's legal for the type to be incomplete if this is a pseudo-destructor
7309   // call.  We'll do more incomplete-type checks later in the lookup process,
7310   // so just skip this check for ObjC types.
7311   if (!BaseType->isRecordType()) {
7312     ObjectType = ParsedType::make(BaseType);
7313     MayBePseudoDestructor = true;
7314     return Base;
7315   }
7316 
7317   // The object type must be complete (or dependent), or
7318   // C++11 [expr.prim.general]p3:
7319   //   Unlike the object expression in other contexts, *this is not required to
7320   //   be of complete type for purposes of class member access (5.2.5) outside
7321   //   the member function body.
7322   if (!BaseType->isDependentType() &&
7323       !isThisOutsideMemberFunctionBody(BaseType) &&
7324       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
7325     return ExprError();
7326 
7327   // C++ [basic.lookup.classref]p2:
7328   //   If the id-expression in a class member access (5.2.5) is an
7329   //   unqualified-id, and the type of the object expression is of a class
7330   //   type C (or of pointer to a class type C), the unqualified-id is looked
7331   //   up in the scope of class C. [...]
7332   ObjectType = ParsedType::make(BaseType);
7333   return Base;
7334 }
7335 
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)7336 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7337                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7338   if (Base->hasPlaceholderType()) {
7339     ExprResult result = S.CheckPlaceholderExpr(Base);
7340     if (result.isInvalid()) return true;
7341     Base = result.get();
7342   }
7343   ObjectType = Base->getType();
7344 
7345   // C++ [expr.pseudo]p2:
7346   //   The left-hand side of the dot operator shall be of scalar type. The
7347   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7348   //   This scalar type is the object type.
7349   // Note that this is rather different from the normal handling for the
7350   // arrow operator.
7351   if (OpKind == tok::arrow) {
7352     // The operator requires a prvalue, so perform lvalue conversions.
7353     // Only do this if we might plausibly end with a pointer, as otherwise
7354     // this was likely to be intended to be a '.'.
7355     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7356         ObjectType->isFunctionType()) {
7357       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7358       if (BaseResult.isInvalid())
7359         return true;
7360       Base = BaseResult.get();
7361       ObjectType = Base->getType();
7362     }
7363 
7364     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7365       ObjectType = Ptr->getPointeeType();
7366     } else if (!Base->isTypeDependent()) {
7367       // The user wrote "p->" when they probably meant "p."; fix it.
7368       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7369         << ObjectType << true
7370         << FixItHint::CreateReplacement(OpLoc, ".");
7371       if (S.isSFINAEContext())
7372         return true;
7373 
7374       OpKind = tok::period;
7375     }
7376   }
7377 
7378   return false;
7379 }
7380 
7381 /// Check if it's ok to try and recover dot pseudo destructor calls on
7382 /// pointer objects.
7383 static bool
canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema & SemaRef,QualType DestructedType)7384 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7385                                                    QualType DestructedType) {
7386   // If this is a record type, check if its destructor is callable.
7387   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7388     if (RD->hasDefinition())
7389       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7390         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7391     return false;
7392   }
7393 
7394   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7395   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7396          DestructedType->isVectorType();
7397 }
7398 
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed)7399 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7400                                            SourceLocation OpLoc,
7401                                            tok::TokenKind OpKind,
7402                                            const CXXScopeSpec &SS,
7403                                            TypeSourceInfo *ScopeTypeInfo,
7404                                            SourceLocation CCLoc,
7405                                            SourceLocation TildeLoc,
7406                                          PseudoDestructorTypeStorage Destructed) {
7407   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7408 
7409   QualType ObjectType;
7410   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7411     return ExprError();
7412 
7413   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7414       !ObjectType->isVectorType()) {
7415     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7416       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7417     else {
7418       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7419         << ObjectType << Base->getSourceRange();
7420       return ExprError();
7421     }
7422   }
7423 
7424   // C++ [expr.pseudo]p2:
7425   //   [...] The cv-unqualified versions of the object type and of the type
7426   //   designated by the pseudo-destructor-name shall be the same type.
7427   if (DestructedTypeInfo) {
7428     QualType DestructedType = DestructedTypeInfo->getType();
7429     SourceLocation DestructedTypeStart
7430       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7431     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7432       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7433         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7434         //   Foo *foo;
7435         //   foo.~Foo();
7436         if (OpKind == tok::period && ObjectType->isPointerType() &&
7437             Context.hasSameUnqualifiedType(DestructedType,
7438                                            ObjectType->getPointeeType())) {
7439           auto Diagnostic =
7440               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7441               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7442 
7443           // Issue a fixit only when the destructor is valid.
7444           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7445                   *this, DestructedType))
7446             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7447 
7448           // Recover by setting the object type to the destructed type and the
7449           // operator to '->'.
7450           ObjectType = DestructedType;
7451           OpKind = tok::arrow;
7452         } else {
7453           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7454               << ObjectType << DestructedType << Base->getSourceRange()
7455               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7456 
7457           // Recover by setting the destructed type to the object type.
7458           DestructedType = ObjectType;
7459           DestructedTypeInfo =
7460               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7461           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7462         }
7463       } else if (DestructedType.getObjCLifetime() !=
7464                                                 ObjectType.getObjCLifetime()) {
7465 
7466         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7467           // Okay: just pretend that the user provided the correctly-qualified
7468           // type.
7469         } else {
7470           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7471             << ObjectType << DestructedType << Base->getSourceRange()
7472             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7473         }
7474 
7475         // Recover by setting the destructed type to the object type.
7476         DestructedType = ObjectType;
7477         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7478                                                            DestructedTypeStart);
7479         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7480       }
7481     }
7482   }
7483 
7484   // C++ [expr.pseudo]p2:
7485   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7486   //   form
7487   //
7488   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7489   //
7490   //   shall designate the same scalar type.
7491   if (ScopeTypeInfo) {
7492     QualType ScopeType = ScopeTypeInfo->getType();
7493     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7494         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7495 
7496       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7497            diag::err_pseudo_dtor_type_mismatch)
7498         << ObjectType << ScopeType << Base->getSourceRange()
7499         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7500 
7501       ScopeType = QualType();
7502       ScopeTypeInfo = nullptr;
7503     }
7504   }
7505 
7506   Expr *Result
7507     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7508                                             OpKind == tok::arrow, OpLoc,
7509                                             SS.getWithLocInContext(Context),
7510                                             ScopeTypeInfo,
7511                                             CCLoc,
7512                                             TildeLoc,
7513                                             Destructed);
7514 
7515   return Result;
7516 }
7517 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName)7518 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7519                                            SourceLocation OpLoc,
7520                                            tok::TokenKind OpKind,
7521                                            CXXScopeSpec &SS,
7522                                            UnqualifiedId &FirstTypeName,
7523                                            SourceLocation CCLoc,
7524                                            SourceLocation TildeLoc,
7525                                            UnqualifiedId &SecondTypeName) {
7526   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7527           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7528          "Invalid first type name in pseudo-destructor");
7529   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7530           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7531          "Invalid second type name in pseudo-destructor");
7532 
7533   QualType ObjectType;
7534   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7535     return ExprError();
7536 
7537   // Compute the object type that we should use for name lookup purposes. Only
7538   // record types and dependent types matter.
7539   ParsedType ObjectTypePtrForLookup;
7540   if (!SS.isSet()) {
7541     if (ObjectType->isRecordType())
7542       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7543     else if (ObjectType->isDependentType())
7544       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7545   }
7546 
7547   // Convert the name of the type being destructed (following the ~) into a
7548   // type (with source-location information).
7549   QualType DestructedType;
7550   TypeSourceInfo *DestructedTypeInfo = nullptr;
7551   PseudoDestructorTypeStorage Destructed;
7552   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7553     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7554                                SecondTypeName.StartLocation,
7555                                S, &SS, true, false, ObjectTypePtrForLookup,
7556                                /*IsCtorOrDtorName*/true);
7557     if (!T &&
7558         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7559          (!SS.isSet() && ObjectType->isDependentType()))) {
7560       // The name of the type being destroyed is a dependent name, and we
7561       // couldn't find anything useful in scope. Just store the identifier and
7562       // it's location, and we'll perform (qualified) name lookup again at
7563       // template instantiation time.
7564       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7565                                                SecondTypeName.StartLocation);
7566     } else if (!T) {
7567       Diag(SecondTypeName.StartLocation,
7568            diag::err_pseudo_dtor_destructor_non_type)
7569         << SecondTypeName.Identifier << ObjectType;
7570       if (isSFINAEContext())
7571         return ExprError();
7572 
7573       // Recover by assuming we had the right type all along.
7574       DestructedType = ObjectType;
7575     } else
7576       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7577   } else {
7578     // Resolve the template-id to a type.
7579     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7580     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7581                                        TemplateId->NumArgs);
7582     TypeResult T = ActOnTemplateIdType(S,
7583                                        SS,
7584                                        TemplateId->TemplateKWLoc,
7585                                        TemplateId->Template,
7586                                        TemplateId->Name,
7587                                        TemplateId->TemplateNameLoc,
7588                                        TemplateId->LAngleLoc,
7589                                        TemplateArgsPtr,
7590                                        TemplateId->RAngleLoc,
7591                                        /*IsCtorOrDtorName*/true);
7592     if (T.isInvalid() || !T.get()) {
7593       // Recover by assuming we had the right type all along.
7594       DestructedType = ObjectType;
7595     } else
7596       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7597   }
7598 
7599   // If we've performed some kind of recovery, (re-)build the type source
7600   // information.
7601   if (!DestructedType.isNull()) {
7602     if (!DestructedTypeInfo)
7603       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7604                                                   SecondTypeName.StartLocation);
7605     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7606   }
7607 
7608   // Convert the name of the scope type (the type prior to '::') into a type.
7609   TypeSourceInfo *ScopeTypeInfo = nullptr;
7610   QualType ScopeType;
7611   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7612       FirstTypeName.Identifier) {
7613     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7614       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7615                                  FirstTypeName.StartLocation,
7616                                  S, &SS, true, false, ObjectTypePtrForLookup,
7617                                  /*IsCtorOrDtorName*/true);
7618       if (!T) {
7619         Diag(FirstTypeName.StartLocation,
7620              diag::err_pseudo_dtor_destructor_non_type)
7621           << FirstTypeName.Identifier << ObjectType;
7622 
7623         if (isSFINAEContext())
7624           return ExprError();
7625 
7626         // Just drop this type. It's unnecessary anyway.
7627         ScopeType = QualType();
7628       } else
7629         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7630     } else {
7631       // Resolve the template-id to a type.
7632       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7633       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7634                                          TemplateId->NumArgs);
7635       TypeResult T = ActOnTemplateIdType(S,
7636                                          SS,
7637                                          TemplateId->TemplateKWLoc,
7638                                          TemplateId->Template,
7639                                          TemplateId->Name,
7640                                          TemplateId->TemplateNameLoc,
7641                                          TemplateId->LAngleLoc,
7642                                          TemplateArgsPtr,
7643                                          TemplateId->RAngleLoc,
7644                                          /*IsCtorOrDtorName*/true);
7645       if (T.isInvalid() || !T.get()) {
7646         // Recover by dropping this type.
7647         ScopeType = QualType();
7648       } else
7649         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7650     }
7651   }
7652 
7653   if (!ScopeType.isNull() && !ScopeTypeInfo)
7654     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7655                                                   FirstTypeName.StartLocation);
7656 
7657 
7658   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7659                                    ScopeTypeInfo, CCLoc, TildeLoc,
7660                                    Destructed);
7661 }
7662 
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS)7663 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7664                                            SourceLocation OpLoc,
7665                                            tok::TokenKind OpKind,
7666                                            SourceLocation TildeLoc,
7667                                            const DeclSpec& DS) {
7668   QualType ObjectType;
7669   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7670     return ExprError();
7671 
7672   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7673     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7674     return true;
7675   }
7676 
7677   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7678                                  false);
7679 
7680   TypeLocBuilder TLB;
7681   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7682   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7683   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7684   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7685 
7686   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7687                                    nullptr, SourceLocation(), TildeLoc,
7688                                    Destructed);
7689 }
7690 
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)7691 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7692                                         CXXConversionDecl *Method,
7693                                         bool HadMultipleCandidates) {
7694   // Convert the expression to match the conversion function's implicit object
7695   // parameter.
7696   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7697                                           FoundDecl, Method);
7698   if (Exp.isInvalid())
7699     return true;
7700 
7701   if (Method->getParent()->isLambda() &&
7702       Method->getConversionType()->isBlockPointerType()) {
7703     // This is a lambda conversion to block pointer; check if the argument
7704     // was a LambdaExpr.
7705     Expr *SubE = E;
7706     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7707     if (CE && CE->getCastKind() == CK_NoOp)
7708       SubE = CE->getSubExpr();
7709     SubE = SubE->IgnoreParens();
7710     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7711       SubE = BE->getSubExpr();
7712     if (isa<LambdaExpr>(SubE)) {
7713       // For the conversion to block pointer on a lambda expression, we
7714       // construct a special BlockLiteral instead; this doesn't really make
7715       // a difference in ARC, but outside of ARC the resulting block literal
7716       // follows the normal lifetime rules for block literals instead of being
7717       // autoreleased.
7718       PushExpressionEvaluationContext(
7719           ExpressionEvaluationContext::PotentiallyEvaluated);
7720       ExprResult BlockExp = BuildBlockForLambdaConversion(
7721           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7722       PopExpressionEvaluationContext();
7723 
7724       // FIXME: This note should be produced by a CodeSynthesisContext.
7725       if (BlockExp.isInvalid())
7726         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7727       return BlockExp;
7728     }
7729   }
7730 
7731   MemberExpr *ME =
7732       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7733                       NestedNameSpecifierLoc(), SourceLocation(), Method,
7734                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7735                       HadMultipleCandidates, DeclarationNameInfo(),
7736                       Context.BoundMemberTy, VK_RValue, OK_Ordinary);
7737 
7738   QualType ResultType = Method->getReturnType();
7739   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7740   ResultType = ResultType.getNonLValueExprType(Context);
7741 
7742   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7743       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
7744       CurFPFeatureOverrides());
7745 
7746   if (CheckFunctionCall(Method, CE,
7747                         Method->getType()->castAs<FunctionProtoType>()))
7748     return ExprError();
7749 
7750   return CE;
7751 }
7752 
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)7753 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7754                                       SourceLocation RParen) {
7755   // If the operand is an unresolved lookup expression, the expression is ill-
7756   // formed per [over.over]p1, because overloaded function names cannot be used
7757   // without arguments except in explicit contexts.
7758   ExprResult R = CheckPlaceholderExpr(Operand);
7759   if (R.isInvalid())
7760     return R;
7761 
7762   R = CheckUnevaluatedOperand(R.get());
7763   if (R.isInvalid())
7764     return ExprError();
7765 
7766   Operand = R.get();
7767 
7768   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
7769       Operand->HasSideEffects(Context, false)) {
7770     // The expression operand for noexcept is in an unevaluated expression
7771     // context, so side effects could result in unintended consequences.
7772     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7773   }
7774 
7775   CanThrowResult CanThrow = canThrow(Operand);
7776   return new (Context)
7777       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7778 }
7779 
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)7780 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7781                                    Expr *Operand, SourceLocation RParen) {
7782   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7783 }
7784 
7785 /// Perform the conversions required for an expression used in a
7786 /// context that ignores the result.
IgnoredValueConversions(Expr * E)7787 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7788   if (E->hasPlaceholderType()) {
7789     ExprResult result = CheckPlaceholderExpr(E);
7790     if (result.isInvalid()) return E;
7791     E = result.get();
7792   }
7793 
7794   // C99 6.3.2.1:
7795   //   [Except in specific positions,] an lvalue that does not have
7796   //   array type is converted to the value stored in the
7797   //   designated object (and is no longer an lvalue).
7798   if (E->isRValue()) {
7799     // In C, function designators (i.e. expressions of function type)
7800     // are r-values, but we still want to do function-to-pointer decay
7801     // on them.  This is both technically correct and convenient for
7802     // some clients.
7803     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7804       return DefaultFunctionArrayConversion(E);
7805 
7806     return E;
7807   }
7808 
7809   if (getLangOpts().CPlusPlus) {
7810     // The C++11 standard defines the notion of a discarded-value expression;
7811     // normally, we don't need to do anything to handle it, but if it is a
7812     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7813     // conversion.
7814     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
7815       ExprResult Res = DefaultLvalueConversion(E);
7816       if (Res.isInvalid())
7817         return E;
7818       E = Res.get();
7819     } else {
7820       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7821       // it occurs as a discarded-value expression.
7822       CheckUnusedVolatileAssignment(E);
7823     }
7824 
7825     // C++1z:
7826     //   If the expression is a prvalue after this optional conversion, the
7827     //   temporary materialization conversion is applied.
7828     //
7829     // We skip this step: IR generation is able to synthesize the storage for
7830     // itself in the aggregate case, and adding the extra node to the AST is
7831     // just clutter.
7832     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7833     // FIXME: Do any other AST consumers care about this?
7834     return E;
7835   }
7836 
7837   // GCC seems to also exclude expressions of incomplete enum type.
7838   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7839     if (!T->getDecl()->isComplete()) {
7840       // FIXME: stupid workaround for a codegen bug!
7841       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7842       return E;
7843     }
7844   }
7845 
7846   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7847   if (Res.isInvalid())
7848     return E;
7849   E = Res.get();
7850 
7851   if (!E->getType()->isVoidType())
7852     RequireCompleteType(E->getExprLoc(), E->getType(),
7853                         diag::err_incomplete_type);
7854   return E;
7855 }
7856 
CheckUnevaluatedOperand(Expr * E)7857 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7858   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7859   // it occurs as an unevaluated operand.
7860   CheckUnusedVolatileAssignment(E);
7861 
7862   return E;
7863 }
7864 
7865 // If we can unambiguously determine whether Var can never be used
7866 // in a constant expression, return true.
7867 //  - if the variable and its initializer are non-dependent, then
7868 //    we can unambiguously check if the variable is a constant expression.
7869 //  - if the initializer is not value dependent - we can determine whether
7870 //    it can be used to initialize a constant expression.  If Init can not
7871 //    be used to initialize a constant expression we conclude that Var can
7872 //    never be a constant expression.
7873 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7874 //    identify certain cases unambiguously as non-const by using a Visitor:
7875 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7876 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)7877 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7878     ASTContext &Context) {
7879   if (isa<ParmVarDecl>(Var)) return true;
7880   const VarDecl *DefVD = nullptr;
7881 
7882   // If there is no initializer - this can not be a constant expression.
7883   if (!Var->getAnyInitializer(DefVD)) return true;
7884   assert(DefVD);
7885   if (DefVD->isWeak()) return false;
7886   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7887 
7888   Expr *Init = cast<Expr>(Eval->Value);
7889 
7890   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7891     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7892     // of value-dependent expressions, and use it here to determine whether the
7893     // initializer is a potential constant expression.
7894     return false;
7895   }
7896 
7897   return !Var->isUsableInConstantExpressions(Context);
7898 }
7899 
7900 /// Check if the current lambda has any potential captures
7901 /// that must be captured by any of its enclosing lambdas that are ready to
7902 /// capture. If there is a lambda that can capture a nested
7903 /// potential-capture, go ahead and do so.  Also, check to see if any
7904 /// variables are uncaptureable or do not involve an odr-use so do not
7905 /// need to be captured.
7906 
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)7907 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7908     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7909 
7910   assert(!S.isUnevaluatedContext());
7911   assert(S.CurContext->isDependentContext());
7912 #ifndef NDEBUG
7913   DeclContext *DC = S.CurContext;
7914   while (DC && isa<CapturedDecl>(DC))
7915     DC = DC->getParent();
7916   assert(
7917       CurrentLSI->CallOperator == DC &&
7918       "The current call operator must be synchronized with Sema's CurContext");
7919 #endif // NDEBUG
7920 
7921   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7922 
7923   // All the potentially captureable variables in the current nested
7924   // lambda (within a generic outer lambda), must be captured by an
7925   // outer lambda that is enclosed within a non-dependent context.
7926   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
7927     // If the variable is clearly identified as non-odr-used and the full
7928     // expression is not instantiation dependent, only then do we not
7929     // need to check enclosing lambda's for speculative captures.
7930     // For e.g.:
7931     // Even though 'x' is not odr-used, it should be captured.
7932     // int test() {
7933     //   const int x = 10;
7934     //   auto L = [=](auto a) {
7935     //     (void) +x + a;
7936     //   };
7937     // }
7938     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
7939         !IsFullExprInstantiationDependent)
7940       return;
7941 
7942     // If we have a capture-capable lambda for the variable, go ahead and
7943     // capture the variable in that lambda (and all its enclosing lambdas).
7944     if (const Optional<unsigned> Index =
7945             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7946                 S.FunctionScopes, Var, S))
7947       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
7948                                           Index.getValue());
7949     const bool IsVarNeverAConstantExpression =
7950         VariableCanNeverBeAConstantExpression(Var, S.Context);
7951     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
7952       // This full expression is not instantiation dependent or the variable
7953       // can not be used in a constant expression - which means
7954       // this variable must be odr-used here, so diagnose a
7955       // capture violation early, if the variable is un-captureable.
7956       // This is purely for diagnosing errors early.  Otherwise, this
7957       // error would get diagnosed when the lambda becomes capture ready.
7958       QualType CaptureType, DeclRefType;
7959       SourceLocation ExprLoc = VarExpr->getExprLoc();
7960       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7961                           /*EllipsisLoc*/ SourceLocation(),
7962                           /*BuildAndDiagnose*/false, CaptureType,
7963                           DeclRefType, nullptr)) {
7964         // We will never be able to capture this variable, and we need
7965         // to be able to in any and all instantiations, so diagnose it.
7966         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7967                           /*EllipsisLoc*/ SourceLocation(),
7968                           /*BuildAndDiagnose*/true, CaptureType,
7969                           DeclRefType, nullptr);
7970       }
7971     }
7972   });
7973 
7974   // Check if 'this' needs to be captured.
7975   if (CurrentLSI->hasPotentialThisCapture()) {
7976     // If we have a capture-capable lambda for 'this', go ahead and capture
7977     // 'this' in that lambda (and all its enclosing lambdas).
7978     if (const Optional<unsigned> Index =
7979             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7980                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
7981       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7982       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
7983                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
7984                             &FunctionScopeIndexOfCapturableLambda);
7985     }
7986   }
7987 
7988   // Reset all the potential captures at the end of each full-expression.
7989   CurrentLSI->clearPotentialCaptures();
7990 }
7991 
attemptRecovery(Sema & SemaRef,const TypoCorrectionConsumer & Consumer,const TypoCorrection & TC)7992 static ExprResult attemptRecovery(Sema &SemaRef,
7993                                   const TypoCorrectionConsumer &Consumer,
7994                                   const TypoCorrection &TC) {
7995   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
7996                  Consumer.getLookupResult().getLookupKind());
7997   const CXXScopeSpec *SS = Consumer.getSS();
7998   CXXScopeSpec NewSS;
7999 
8000   // Use an approprate CXXScopeSpec for building the expr.
8001   if (auto *NNS = TC.getCorrectionSpecifier())
8002     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8003   else if (SS && !TC.WillReplaceSpecifier())
8004     NewSS = *SS;
8005 
8006   if (auto *ND = TC.getFoundDecl()) {
8007     R.setLookupName(ND->getDeclName());
8008     R.addDecl(ND);
8009     if (ND->isCXXClassMember()) {
8010       // Figure out the correct naming class to add to the LookupResult.
8011       CXXRecordDecl *Record = nullptr;
8012       if (auto *NNS = TC.getCorrectionSpecifier())
8013         Record = NNS->getAsType()->getAsCXXRecordDecl();
8014       if (!Record)
8015         Record =
8016             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8017       if (Record)
8018         R.setNamingClass(Record);
8019 
8020       // Detect and handle the case where the decl might be an implicit
8021       // member.
8022       bool MightBeImplicitMember;
8023       if (!Consumer.isAddressOfOperand())
8024         MightBeImplicitMember = true;
8025       else if (!NewSS.isEmpty())
8026         MightBeImplicitMember = false;
8027       else if (R.isOverloadedResult())
8028         MightBeImplicitMember = false;
8029       else if (R.isUnresolvableResult())
8030         MightBeImplicitMember = true;
8031       else
8032         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8033                                 isa<IndirectFieldDecl>(ND) ||
8034                                 isa<MSPropertyDecl>(ND);
8035 
8036       if (MightBeImplicitMember)
8037         return SemaRef.BuildPossibleImplicitMemberExpr(
8038             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8039             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8040     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8041       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8042                                         Ivar->getIdentifier());
8043     }
8044   }
8045 
8046   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8047                                           /*AcceptInvalidDecl*/ true);
8048 }
8049 
8050 namespace {
8051 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8052   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8053 
8054 public:
FindTypoExprs(llvm::SmallSetVector<TypoExpr *,2> & TypoExprs)8055   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8056       : TypoExprs(TypoExprs) {}
VisitTypoExpr(TypoExpr * TE)8057   bool VisitTypoExpr(TypoExpr *TE) {
8058     TypoExprs.insert(TE);
8059     return true;
8060   }
8061 };
8062 
8063 class TransformTypos : public TreeTransform<TransformTypos> {
8064   typedef TreeTransform<TransformTypos> BaseTransform;
8065 
8066   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8067                      // process of being initialized.
8068   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8069   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8070   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8071   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8072 
8073   /// Emit diagnostics for all of the TypoExprs encountered.
8074   ///
8075   /// If the TypoExprs were successfully corrected, then the diagnostics should
8076   /// suggest the corrections. Otherwise the diagnostics will not suggest
8077   /// anything (having been passed an empty TypoCorrection).
8078   ///
8079   /// If we've failed to correct due to ambiguous corrections, we need to
8080   /// be sure to pass empty corrections and replacements. Otherwise it's
8081   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8082   /// and we don't want to report those diagnostics.
EmitAllDiagnostics(bool IsAmbiguous)8083   void EmitAllDiagnostics(bool IsAmbiguous) {
8084     for (TypoExpr *TE : TypoExprs) {
8085       auto &State = SemaRef.getTypoExprState(TE);
8086       if (State.DiagHandler) {
8087         TypoCorrection TC = IsAmbiguous
8088             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8089         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8090 
8091         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8092         // TypoCorrection, replacing the existing decls. This ensures the right
8093         // NamedDecl is used in diagnostics e.g. in the case where overload
8094         // resolution was used to select one from several possible decls that
8095         // had been stored in the TypoCorrection.
8096         if (auto *ND = getDeclFromExpr(
8097                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8098           TC.setCorrectionDecl(ND);
8099 
8100         State.DiagHandler(TC);
8101       }
8102       SemaRef.clearDelayedTypo(TE);
8103     }
8104   }
8105 
8106   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8107   /// We allow advancement of the correction stream by removing it from the
8108   /// TransformCache which allows `TransformTypoExpr` to advance during the
8109   /// next transformation attempt.
8110   ///
8111   /// Any substitution attempts for the previous TypoExprs (which must have been
8112   /// finished) will need to be retried since it's possible that they will now
8113   /// be invalid given the latest advancement.
8114   ///
8115   /// We need to be sure that we're making progress - it's possible that the
8116   /// tree is so malformed that the transform never makes it to the
8117   /// `TransformTypoExpr`.
8118   ///
8119   /// Returns true if there are any untried correction combinations.
CheckAndAdvanceTypoExprCorrectionStreams()8120   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8121     for (auto TE : TypoExprs) {
8122       auto &State = SemaRef.getTypoExprState(TE);
8123       TransformCache.erase(TE);
8124       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8125         return false;
8126       if (!State.Consumer->finished())
8127         return true;
8128       State.Consumer->resetCorrectionStream();
8129     }
8130     return false;
8131   }
8132 
getDeclFromExpr(Expr * E)8133   NamedDecl *getDeclFromExpr(Expr *E) {
8134     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8135       E = OverloadResolution[OE];
8136 
8137     if (!E)
8138       return nullptr;
8139     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8140       return DRE->getFoundDecl();
8141     if (auto *ME = dyn_cast<MemberExpr>(E))
8142       return ME->getFoundDecl();
8143     // FIXME: Add any other expr types that could be be seen by the delayed typo
8144     // correction TreeTransform for which the corresponding TypoCorrection could
8145     // contain multiple decls.
8146     return nullptr;
8147   }
8148 
TryTransform(Expr * E)8149   ExprResult TryTransform(Expr *E) {
8150     Sema::SFINAETrap Trap(SemaRef);
8151     ExprResult Res = TransformExpr(E);
8152     if (Trap.hasErrorOccurred() || Res.isInvalid())
8153       return ExprError();
8154 
8155     return ExprFilter(Res.get());
8156   }
8157 
8158   // Since correcting typos may intoduce new TypoExprs, this function
8159   // checks for new TypoExprs and recurses if it finds any. Note that it will
8160   // only succeed if it is able to correct all typos in the given expression.
CheckForRecursiveTypos(ExprResult Res,bool & IsAmbiguous)8161   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8162     if (Res.isInvalid()) {
8163       return Res;
8164     }
8165     // Check to see if any new TypoExprs were created. If so, we need to recurse
8166     // to check their validity.
8167     Expr *FixedExpr = Res.get();
8168 
8169     auto SavedTypoExprs = std::move(TypoExprs);
8170     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8171     TypoExprs.clear();
8172     AmbiguousTypoExprs.clear();
8173 
8174     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8175     if (!TypoExprs.empty()) {
8176       // Recurse to handle newly created TypoExprs. If we're not able to
8177       // handle them, discard these TypoExprs.
8178       ExprResult RecurResult =
8179           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8180       if (RecurResult.isInvalid()) {
8181         Res = ExprError();
8182         // Recursive corrections didn't work, wipe them away and don't add
8183         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8184         // since we don't want to clear them twice. Note: it's possible the
8185         // TypoExprs were created recursively and thus won't be in our
8186         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8187         auto &SemaTypoExprs = SemaRef.TypoExprs;
8188         for (auto TE : TypoExprs) {
8189           TransformCache.erase(TE);
8190           SemaRef.clearDelayedTypo(TE);
8191 
8192           auto SI = find(SemaTypoExprs, TE);
8193           if (SI != SemaTypoExprs.end()) {
8194             SemaTypoExprs.erase(SI);
8195           }
8196         }
8197       } else {
8198         // TypoExpr is valid: add newly created TypoExprs since we were
8199         // able to correct them.
8200         Res = RecurResult;
8201         SavedTypoExprs.set_union(TypoExprs);
8202       }
8203     }
8204 
8205     TypoExprs = std::move(SavedTypoExprs);
8206     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8207 
8208     return Res;
8209   }
8210 
8211   // Try to transform the given expression, looping through the correction
8212   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8213   //
8214   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8215   // true and this method immediately will return an `ExprError`.
RecursiveTransformLoop(Expr * E,bool & IsAmbiguous)8216   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8217     ExprResult Res;
8218     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8219     SemaRef.TypoExprs.clear();
8220 
8221     while (true) {
8222       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8223 
8224       // Recursion encountered an ambiguous correction. This means that our
8225       // correction itself is ambiguous, so stop now.
8226       if (IsAmbiguous)
8227         break;
8228 
8229       // If the transform is still valid after checking for any new typos,
8230       // it's good to go.
8231       if (!Res.isInvalid())
8232         break;
8233 
8234       // The transform was invalid, see if we have any TypoExprs with untried
8235       // correction candidates.
8236       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8237         break;
8238     }
8239 
8240     // If we found a valid result, double check to make sure it's not ambiguous.
8241     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8242       auto SavedTransformCache =
8243           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8244 
8245       // Ensure none of the TypoExprs have multiple typo correction candidates
8246       // with the same edit length that pass all the checks and filters.
8247       while (!AmbiguousTypoExprs.empty()) {
8248         auto TE  = AmbiguousTypoExprs.back();
8249 
8250         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8251         // and invalidating our TypoExprState, so always fetch it instead of storing.
8252         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8253 
8254         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8255         TypoCorrection Next;
8256         do {
8257           // Fetch the next correction by erasing the typo from the cache and calling
8258           // `TryTransform` which will iterate through corrections in
8259           // `TransformTypoExpr`.
8260           TransformCache.erase(TE);
8261           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8262 
8263           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8264             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8265             SavedTransformCache.erase(TE);
8266             Res = ExprError();
8267             IsAmbiguous = true;
8268             break;
8269           }
8270         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8271                  Next.getEditDistance(false) == TC.getEditDistance(false));
8272 
8273         if (IsAmbiguous)
8274           break;
8275 
8276         AmbiguousTypoExprs.remove(TE);
8277         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8278       }
8279       TransformCache = std::move(SavedTransformCache);
8280     }
8281 
8282     // Wipe away any newly created TypoExprs that we don't know about. Since we
8283     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8284     // possible if a `TypoExpr` is created during a transformation but then
8285     // fails before we can discover it.
8286     auto &SemaTypoExprs = SemaRef.TypoExprs;
8287     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8288       auto TE = *Iterator;
8289       auto FI = find(TypoExprs, TE);
8290       if (FI != TypoExprs.end()) {
8291         Iterator++;
8292         continue;
8293       }
8294       SemaRef.clearDelayedTypo(TE);
8295       Iterator = SemaTypoExprs.erase(Iterator);
8296     }
8297     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8298 
8299     return Res;
8300   }
8301 
8302 public:
TransformTypos(Sema & SemaRef,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)8303   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8304       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8305 
RebuildCallExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig=nullptr)8306   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8307                                    MultiExprArg Args,
8308                                    SourceLocation RParenLoc,
8309                                    Expr *ExecConfig = nullptr) {
8310     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8311                                                  RParenLoc, ExecConfig);
8312     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8313       if (Result.isUsable()) {
8314         Expr *ResultCall = Result.get();
8315         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8316           ResultCall = BE->getSubExpr();
8317         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8318           OverloadResolution[OE] = CE->getCallee();
8319       }
8320     }
8321     return Result;
8322   }
8323 
TransformLambdaExpr(LambdaExpr * E)8324   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8325 
TransformBlockExpr(BlockExpr * E)8326   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8327 
Transform(Expr * E)8328   ExprResult Transform(Expr *E) {
8329     bool IsAmbiguous = false;
8330     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8331 
8332     if (!Res.isUsable())
8333       FindTypoExprs(TypoExprs).TraverseStmt(E);
8334 
8335     EmitAllDiagnostics(IsAmbiguous);
8336 
8337     return Res;
8338   }
8339 
TransformTypoExpr(TypoExpr * E)8340   ExprResult TransformTypoExpr(TypoExpr *E) {
8341     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8342     // cached transformation result if there is one and the TypoExpr isn't the
8343     // first one that was encountered.
8344     auto &CacheEntry = TransformCache[E];
8345     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8346       return CacheEntry;
8347     }
8348 
8349     auto &State = SemaRef.getTypoExprState(E);
8350     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8351 
8352     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8353     // typo correction and return it.
8354     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8355       if (InitDecl && TC.getFoundDecl() == InitDecl)
8356         continue;
8357       // FIXME: If we would typo-correct to an invalid declaration, it's
8358       // probably best to just suppress all errors from this typo correction.
8359       ExprResult NE = State.RecoveryHandler ?
8360           State.RecoveryHandler(SemaRef, E, TC) :
8361           attemptRecovery(SemaRef, *State.Consumer, TC);
8362       if (!NE.isInvalid()) {
8363         // Check whether there may be a second viable correction with the same
8364         // edit distance; if so, remember this TypoExpr may have an ambiguous
8365         // correction so it can be more thoroughly vetted later.
8366         TypoCorrection Next;
8367         if ((Next = State.Consumer->peekNextCorrection()) &&
8368             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8369           AmbiguousTypoExprs.insert(E);
8370         } else {
8371           AmbiguousTypoExprs.remove(E);
8372         }
8373         assert(!NE.isUnset() &&
8374                "Typo was transformed into a valid-but-null ExprResult");
8375         return CacheEntry = NE;
8376       }
8377     }
8378     return CacheEntry = ExprError();
8379   }
8380 };
8381 }
8382 
8383 ExprResult
CorrectDelayedTyposInExpr(Expr * E,VarDecl * InitDecl,bool RecoverUncorrectedTypos,llvm::function_ref<ExprResult (Expr *)> Filter)8384 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8385                                 bool RecoverUncorrectedTypos,
8386                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8387   // If the current evaluation context indicates there are uncorrected typos
8388   // and the current expression isn't guaranteed to not have typos, try to
8389   // resolve any TypoExpr nodes that might be in the expression.
8390   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8391       (E->isTypeDependent() || E->isValueDependent() ||
8392        E->isInstantiationDependent())) {
8393     auto TyposResolved = DelayedTypos.size();
8394     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8395     TyposResolved -= DelayedTypos.size();
8396     if (Result.isInvalid() || Result.get() != E) {
8397       ExprEvalContexts.back().NumTypos -= TyposResolved;
8398       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8399         struct TyposReplace : TreeTransform<TyposReplace> {
8400           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8401           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8402             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8403                                                     E->getEndLoc(), {});
8404           }
8405         } TT(*this);
8406         return TT.TransformExpr(E);
8407       }
8408       return Result;
8409     }
8410     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8411   }
8412   return E;
8413 }
8414 
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr)8415 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8416                                      bool DiscardedValue,
8417                                      bool IsConstexpr) {
8418   ExprResult FullExpr = FE;
8419 
8420   if (!FullExpr.get())
8421     return ExprError();
8422 
8423   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8424     return ExprError();
8425 
8426   if (DiscardedValue) {
8427     // Top-level expressions default to 'id' when we're in a debugger.
8428     if (getLangOpts().DebuggerCastResultToId &&
8429         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8430       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8431       if (FullExpr.isInvalid())
8432         return ExprError();
8433     }
8434 
8435     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8436     if (FullExpr.isInvalid())
8437       return ExprError();
8438 
8439     FullExpr = IgnoredValueConversions(FullExpr.get());
8440     if (FullExpr.isInvalid())
8441       return ExprError();
8442 
8443     DiagnoseUnusedExprResult(FullExpr.get());
8444   }
8445 
8446   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8447                                        /*RecoverUncorrectedTypos=*/true);
8448   if (FullExpr.isInvalid())
8449     return ExprError();
8450 
8451   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8452 
8453   // At the end of this full expression (which could be a deeply nested
8454   // lambda), if there is a potential capture within the nested lambda,
8455   // have the outer capture-able lambda try and capture it.
8456   // Consider the following code:
8457   // void f(int, int);
8458   // void f(const int&, double);
8459   // void foo() {
8460   //  const int x = 10, y = 20;
8461   //  auto L = [=](auto a) {
8462   //      auto M = [=](auto b) {
8463   //         f(x, b); <-- requires x to be captured by L and M
8464   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8465   //      };
8466   //   };
8467   // }
8468 
8469   // FIXME: Also consider what happens for something like this that involves
8470   // the gnu-extension statement-expressions or even lambda-init-captures:
8471   //   void f() {
8472   //     const int n = 0;
8473   //     auto L =  [&](auto a) {
8474   //       +n + ({ 0; a; });
8475   //     };
8476   //   }
8477   //
8478   // Here, we see +n, and then the full-expression 0; ends, so we don't
8479   // capture n (and instead remove it from our list of potential captures),
8480   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8481   // for us to see that we need to capture n after all.
8482 
8483   LambdaScopeInfo *const CurrentLSI =
8484       getCurLambda(/*IgnoreCapturedRegions=*/true);
8485   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8486   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8487   // for an example of the code that might cause this asynchrony.
8488   // By ensuring we are in the context of a lambda's call operator
8489   // we can fix the bug (we only need to check whether we need to capture
8490   // if we are within a lambda's body); but per the comments in that
8491   // PR, a proper fix would entail :
8492   //   "Alternative suggestion:
8493   //   - Add to Sema an integer holding the smallest (outermost) scope
8494   //     index that we are *lexically* within, and save/restore/set to
8495   //     FunctionScopes.size() in InstantiatingTemplate's
8496   //     constructor/destructor.
8497   //  - Teach the handful of places that iterate over FunctionScopes to
8498   //    stop at the outermost enclosing lexical scope."
8499   DeclContext *DC = CurContext;
8500   while (DC && isa<CapturedDecl>(DC))
8501     DC = DC->getParent();
8502   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8503   if (IsInLambdaDeclContext && CurrentLSI &&
8504       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8505     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8506                                                               *this);
8507   return MaybeCreateExprWithCleanups(FullExpr);
8508 }
8509 
ActOnFinishFullStmt(Stmt * FullStmt)8510 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8511   if (!FullStmt) return StmtError();
8512 
8513   return MaybeCreateStmtWithCleanups(FullStmt);
8514 }
8515 
8516 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)8517 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8518                                    CXXScopeSpec &SS,
8519                                    const DeclarationNameInfo &TargetNameInfo) {
8520   DeclarationName TargetName = TargetNameInfo.getName();
8521   if (!TargetName)
8522     return IER_DoesNotExist;
8523 
8524   // If the name itself is dependent, then the result is dependent.
8525   if (TargetName.isDependentName())
8526     return IER_Dependent;
8527 
8528   // Do the redeclaration lookup in the current scope.
8529   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8530                  Sema::NotForRedeclaration);
8531   LookupParsedName(R, S, &SS);
8532   R.suppressDiagnostics();
8533 
8534   switch (R.getResultKind()) {
8535   case LookupResult::Found:
8536   case LookupResult::FoundOverloaded:
8537   case LookupResult::FoundUnresolvedValue:
8538   case LookupResult::Ambiguous:
8539     return IER_Exists;
8540 
8541   case LookupResult::NotFound:
8542     return IER_DoesNotExist;
8543 
8544   case LookupResult::NotFoundInCurrentInstantiation:
8545     return IER_Dependent;
8546   }
8547 
8548   llvm_unreachable("Invalid LookupResult Kind!");
8549 }
8550 
8551 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)8552 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8553                                    bool IsIfExists, CXXScopeSpec &SS,
8554                                    UnqualifiedId &Name) {
8555   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8556 
8557   // Check for an unexpanded parameter pack.
8558   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8559   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8560       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8561     return IER_Error;
8562 
8563   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8564 }
8565 
ActOnSimpleRequirement(Expr * E)8566 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8567   return BuildExprRequirement(E, /*IsSimple=*/true,
8568                               /*NoexceptLoc=*/SourceLocation(),
8569                               /*ReturnTypeRequirement=*/{});
8570 }
8571 
8572 concepts::Requirement *
ActOnTypeRequirement(SourceLocation TypenameKWLoc,CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo * TypeName,TemplateIdAnnotation * TemplateId)8573 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8574                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8575                            TemplateIdAnnotation *TemplateId) {
8576   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8577          "Exactly one of TypeName and TemplateId must be specified.");
8578   TypeSourceInfo *TSI = nullptr;
8579   if (TypeName) {
8580     QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8581                                    SS.getWithLocInContext(Context), *TypeName,
8582                                    NameLoc, &TSI, /*DeducedTypeContext=*/false);
8583     if (T.isNull())
8584       return nullptr;
8585   } else {
8586     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8587                                TemplateId->NumArgs);
8588     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8589                                      TemplateId->TemplateKWLoc,
8590                                      TemplateId->Template, TemplateId->Name,
8591                                      TemplateId->TemplateNameLoc,
8592                                      TemplateId->LAngleLoc, ArgsPtr,
8593                                      TemplateId->RAngleLoc);
8594     if (T.isInvalid())
8595       return nullptr;
8596     if (GetTypeFromParser(T.get(), &TSI).isNull())
8597       return nullptr;
8598   }
8599   return BuildTypeRequirement(TSI);
8600 }
8601 
8602 concepts::Requirement *
ActOnCompoundRequirement(Expr * E,SourceLocation NoexceptLoc)8603 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8604   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8605                               /*ReturnTypeRequirement=*/{});
8606 }
8607 
8608 concepts::Requirement *
ActOnCompoundRequirement(Expr * E,SourceLocation NoexceptLoc,CXXScopeSpec & SS,TemplateIdAnnotation * TypeConstraint,unsigned Depth)8609 Sema::ActOnCompoundRequirement(
8610     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8611     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8612   // C++2a [expr.prim.req.compound] p1.3.3
8613   //   [..] the expression is deduced against an invented function template
8614   //   F [...] F is a void function template with a single type template
8615   //   parameter T declared with the constrained-parameter. Form a new
8616   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
8617   //   around the constrained-parameter. F has a single parameter whose
8618   //   type-specifier is cv T followed by the abstract-declarator. [...]
8619   //
8620   // The cv part is done in the calling function - we get the concept with
8621   // arguments and the abstract declarator with the correct CV qualification and
8622   // have to synthesize T and the single parameter of F.
8623   auto &II = Context.Idents.get("expr-type");
8624   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8625                                               SourceLocation(),
8626                                               SourceLocation(), Depth,
8627                                               /*Index=*/0, &II,
8628                                               /*Typename=*/true,
8629                                               /*ParameterPack=*/false,
8630                                               /*HasTypeConstraint=*/true);
8631 
8632   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8633                           /*EllpsisLoc=*/SourceLocation(),
8634                           /*AllowUnexpandedPack=*/true))
8635     // Just produce a requirement with no type requirements.
8636     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8637 
8638   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8639                                             SourceLocation(),
8640                                             ArrayRef<NamedDecl *>(TParam),
8641                                             SourceLocation(),
8642                                             /*RequiresClause=*/nullptr);
8643   return BuildExprRequirement(
8644       E, /*IsSimple=*/false, NoexceptLoc,
8645       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8646 }
8647 
8648 concepts::ExprRequirement *
BuildExprRequirement(Expr * E,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement)8649 Sema::BuildExprRequirement(
8650     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8651     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8652   auto Status = concepts::ExprRequirement::SS_Satisfied;
8653   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8654   if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8655     Status = concepts::ExprRequirement::SS_Dependent;
8656   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8657     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8658   else if (ReturnTypeRequirement.isSubstitutionFailure())
8659     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8660   else if (ReturnTypeRequirement.isTypeConstraint()) {
8661     // C++2a [expr.prim.req]p1.3.3
8662     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
8663     //     be satisfied.
8664     TemplateParameterList *TPL =
8665         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8666     QualType MatchedType =
8667         getDecltypeForParenthesizedExpr(E).getCanonicalType();
8668     llvm::SmallVector<TemplateArgument, 1> Args;
8669     Args.push_back(TemplateArgument(MatchedType));
8670     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
8671     MultiLevelTemplateArgumentList MLTAL(TAL);
8672     for (unsigned I = 0; I < TPL->getDepth(); ++I)
8673       MLTAL.addOuterRetainedLevel();
8674     Expr *IDC =
8675         cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
8676             ->getImmediatelyDeclaredConstraint();
8677     ExprResult Constraint = SubstExpr(IDC, MLTAL);
8678     assert(!Constraint.isInvalid() &&
8679            "Substitution cannot fail as it is simply putting a type template "
8680            "argument into a concept specialization expression's parameter.");
8681 
8682     SubstitutedConstraintExpr =
8683         cast<ConceptSpecializationExpr>(Constraint.get());
8684     if (!SubstitutedConstraintExpr->isSatisfied())
8685       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
8686   }
8687   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
8688                                                  ReturnTypeRequirement, Status,
8689                                                  SubstitutedConstraintExpr);
8690 }
8691 
8692 concepts::ExprRequirement *
BuildExprRequirement(concepts::Requirement::SubstitutionDiagnostic * ExprSubstitutionDiagnostic,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement)8693 Sema::BuildExprRequirement(
8694     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
8695     bool IsSimple, SourceLocation NoexceptLoc,
8696     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8697   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
8698                                                  IsSimple, NoexceptLoc,
8699                                                  ReturnTypeRequirement);
8700 }
8701 
8702 concepts::TypeRequirement *
BuildTypeRequirement(TypeSourceInfo * Type)8703 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
8704   return new (Context) concepts::TypeRequirement(Type);
8705 }
8706 
8707 concepts::TypeRequirement *
BuildTypeRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)8708 Sema::BuildTypeRequirement(
8709     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8710   return new (Context) concepts::TypeRequirement(SubstDiag);
8711 }
8712 
ActOnNestedRequirement(Expr * Constraint)8713 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
8714   return BuildNestedRequirement(Constraint);
8715 }
8716 
8717 concepts::NestedRequirement *
BuildNestedRequirement(Expr * Constraint)8718 Sema::BuildNestedRequirement(Expr *Constraint) {
8719   ConstraintSatisfaction Satisfaction;
8720   if (!Constraint->isInstantiationDependent() &&
8721       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
8722                                   Constraint->getSourceRange(), Satisfaction))
8723     return nullptr;
8724   return new (Context) concepts::NestedRequirement(Context, Constraint,
8725                                                    Satisfaction);
8726 }
8727 
8728 concepts::NestedRequirement *
BuildNestedRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)8729 Sema::BuildNestedRequirement(
8730     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8731   return new (Context) concepts::NestedRequirement(SubstDiag);
8732 }
8733 
8734 RequiresExprBodyDecl *
ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,ArrayRef<ParmVarDecl * > LocalParameters,Scope * BodyScope)8735 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
8736                              ArrayRef<ParmVarDecl *> LocalParameters,
8737                              Scope *BodyScope) {
8738   assert(BodyScope);
8739 
8740   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
8741                                                             RequiresKWLoc);
8742 
8743   PushDeclContext(BodyScope, Body);
8744 
8745   for (ParmVarDecl *Param : LocalParameters) {
8746     if (Param->hasDefaultArg())
8747       // C++2a [expr.prim.req] p4
8748       //     [...] A local parameter of a requires-expression shall not have a
8749       //     default argument. [...]
8750       Diag(Param->getDefaultArgRange().getBegin(),
8751            diag::err_requires_expr_local_parameter_default_argument);
8752     // Ignore default argument and move on
8753 
8754     Param->setDeclContext(Body);
8755     // If this has an identifier, add it to the scope stack.
8756     if (Param->getIdentifier()) {
8757       CheckShadow(BodyScope, Param);
8758       PushOnScopeChains(Param, BodyScope);
8759     }
8760   }
8761   return Body;
8762 }
8763 
ActOnFinishRequiresExpr()8764 void Sema::ActOnFinishRequiresExpr() {
8765   assert(CurContext && "DeclContext imbalance!");
8766   CurContext = CurContext->getLexicalParent();
8767   assert(CurContext && "Popped translation unit!");
8768 }
8769 
8770 ExprResult
ActOnRequiresExpr(SourceLocation RequiresKWLoc,RequiresExprBodyDecl * Body,ArrayRef<ParmVarDecl * > LocalParameters,ArrayRef<concepts::Requirement * > Requirements,SourceLocation ClosingBraceLoc)8771 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8772                         RequiresExprBodyDecl *Body,
8773                         ArrayRef<ParmVarDecl *> LocalParameters,
8774                         ArrayRef<concepts::Requirement *> Requirements,
8775                         SourceLocation ClosingBraceLoc) {
8776   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
8777                                   Requirements, ClosingBraceLoc);
8778   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
8779     return ExprError();
8780   return RE;
8781 }
8782