1 //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file This file implements the utility functions used by the GlobalISel
9 /// pipeline.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/Utils.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/CodeGen/CodeGenCommonISel.h"
16 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
17 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/MachineSizeOpts.h"
26 #include "llvm/CodeGen/RegisterBankInfo.h"
27 #include "llvm/CodeGen/StackProtector.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetPassConfig.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 #include <numeric>
36 #include <optional>
37
38 #define DEBUG_TYPE "globalisel-utils"
39
40 using namespace llvm;
41 using namespace MIPatternMatch;
42
constrainRegToClass(MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,Register Reg,const TargetRegisterClass & RegClass)43 Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
44 const TargetInstrInfo &TII,
45 const RegisterBankInfo &RBI, Register Reg,
46 const TargetRegisterClass &RegClass) {
47 if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
48 return MRI.createVirtualRegister(&RegClass);
49
50 return Reg;
51 }
52
constrainOperandRegClass(const MachineFunction & MF,const TargetRegisterInfo & TRI,MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,MachineInstr & InsertPt,const TargetRegisterClass & RegClass,MachineOperand & RegMO)53 Register llvm::constrainOperandRegClass(
54 const MachineFunction &MF, const TargetRegisterInfo &TRI,
55 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
56 const RegisterBankInfo &RBI, MachineInstr &InsertPt,
57 const TargetRegisterClass &RegClass, MachineOperand &RegMO) {
58 Register Reg = RegMO.getReg();
59 // Assume physical registers are properly constrained.
60 assert(Reg.isVirtual() && "PhysReg not implemented");
61
62 // Save the old register class to check whether
63 // the change notifications will be required.
64 // TODO: A better approach would be to pass
65 // the observers to constrainRegToClass().
66 auto *OldRegClass = MRI.getRegClassOrNull(Reg);
67 Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
68 // If we created a new virtual register because the class is not compatible
69 // then create a copy between the new and the old register.
70 if (ConstrainedReg != Reg) {
71 MachineBasicBlock::iterator InsertIt(&InsertPt);
72 MachineBasicBlock &MBB = *InsertPt.getParent();
73 // FIXME: The copy needs to have the classes constrained for its operands.
74 // Use operand's regbank to get the class for old register (Reg).
75 if (RegMO.isUse()) {
76 BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
77 TII.get(TargetOpcode::COPY), ConstrainedReg)
78 .addReg(Reg);
79 } else {
80 assert(RegMO.isDef() && "Must be a definition");
81 BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
82 TII.get(TargetOpcode::COPY), Reg)
83 .addReg(ConstrainedReg);
84 }
85 if (GISelChangeObserver *Observer = MF.getObserver()) {
86 Observer->changingInstr(*RegMO.getParent());
87 }
88 RegMO.setReg(ConstrainedReg);
89 if (GISelChangeObserver *Observer = MF.getObserver()) {
90 Observer->changedInstr(*RegMO.getParent());
91 }
92 } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) {
93 if (GISelChangeObserver *Observer = MF.getObserver()) {
94 if (!RegMO.isDef()) {
95 MachineInstr *RegDef = MRI.getVRegDef(Reg);
96 Observer->changedInstr(*RegDef);
97 }
98 Observer->changingAllUsesOfReg(MRI, Reg);
99 Observer->finishedChangingAllUsesOfReg();
100 }
101 }
102 return ConstrainedReg;
103 }
104
constrainOperandRegClass(const MachineFunction & MF,const TargetRegisterInfo & TRI,MachineRegisterInfo & MRI,const TargetInstrInfo & TII,const RegisterBankInfo & RBI,MachineInstr & InsertPt,const MCInstrDesc & II,MachineOperand & RegMO,unsigned OpIdx)105 Register llvm::constrainOperandRegClass(
106 const MachineFunction &MF, const TargetRegisterInfo &TRI,
107 MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
108 const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
109 MachineOperand &RegMO, unsigned OpIdx) {
110 Register Reg = RegMO.getReg();
111 // Assume physical registers are properly constrained.
112 assert(Reg.isVirtual() && "PhysReg not implemented");
113
114 const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF);
115 // Some of the target independent instructions, like COPY, may not impose any
116 // register class constraints on some of their operands: If it's a use, we can
117 // skip constraining as the instruction defining the register would constrain
118 // it.
119
120 if (OpRC) {
121 // Obtain the RC from incoming regbank if it is a proper sub-class. Operands
122 // can have multiple regbanks for a superclass that combine different
123 // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity
124 // resolved by targets during regbankselect should not be overridden.
125 if (const auto *SubRC = TRI.getCommonSubClass(
126 OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI)))
127 OpRC = SubRC;
128
129 OpRC = TRI.getAllocatableClass(OpRC);
130 }
131
132 if (!OpRC) {
133 assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
134 "Register class constraint is required unless either the "
135 "instruction is target independent or the operand is a use");
136 // FIXME: Just bailing out like this here could be not enough, unless we
137 // expect the users of this function to do the right thing for PHIs and
138 // COPY:
139 // v1 = COPY v0
140 // v2 = COPY v1
141 // v1 here may end up not being constrained at all. Please notice that to
142 // reproduce the issue we likely need a destination pattern of a selection
143 // rule producing such extra copies, not just an input GMIR with them as
144 // every existing target using selectImpl handles copies before calling it
145 // and they never reach this function.
146 return Reg;
147 }
148 return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC,
149 RegMO);
150 }
151
constrainSelectedInstRegOperands(MachineInstr & I,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)152 bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
153 const TargetInstrInfo &TII,
154 const TargetRegisterInfo &TRI,
155 const RegisterBankInfo &RBI) {
156 assert(!isPreISelGenericOpcode(I.getOpcode()) &&
157 "A selected instruction is expected");
158 MachineBasicBlock &MBB = *I.getParent();
159 MachineFunction &MF = *MBB.getParent();
160 MachineRegisterInfo &MRI = MF.getRegInfo();
161
162 for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
163 MachineOperand &MO = I.getOperand(OpI);
164
165 // There's nothing to be done on non-register operands.
166 if (!MO.isReg())
167 continue;
168
169 LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
170 assert(MO.isReg() && "Unsupported non-reg operand");
171
172 Register Reg = MO.getReg();
173 // Physical registers don't need to be constrained.
174 if (Reg.isPhysical())
175 continue;
176
177 // Register operands with a value of 0 (e.g. predicate operands) don't need
178 // to be constrained.
179 if (Reg == 0)
180 continue;
181
182 // If the operand is a vreg, we should constrain its regclass, and only
183 // insert COPYs if that's impossible.
184 // constrainOperandRegClass does that for us.
185 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI);
186
187 // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
188 // done.
189 if (MO.isUse()) {
190 int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
191 if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
192 I.tieOperands(DefIdx, OpI);
193 }
194 }
195 return true;
196 }
197
canReplaceReg(Register DstReg,Register SrcReg,MachineRegisterInfo & MRI)198 bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
199 MachineRegisterInfo &MRI) {
200 // Give up if either DstReg or SrcReg is a physical register.
201 if (DstReg.isPhysical() || SrcReg.isPhysical())
202 return false;
203 // Give up if the types don't match.
204 if (MRI.getType(DstReg) != MRI.getType(SrcReg))
205 return false;
206 // Replace if either DstReg has no constraints or the register
207 // constraints match.
208 return !MRI.getRegClassOrRegBank(DstReg) ||
209 MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
210 }
211
isTriviallyDead(const MachineInstr & MI,const MachineRegisterInfo & MRI)212 bool llvm::isTriviallyDead(const MachineInstr &MI,
213 const MachineRegisterInfo &MRI) {
214 // FIXME: This logical is mostly duplicated with
215 // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in
216 // MachineInstr::isLabel?
217
218 // Don't delete frame allocation labels.
219 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE)
220 return false;
221 // LIFETIME markers should be preserved even if they seem dead.
222 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
223 MI.getOpcode() == TargetOpcode::LIFETIME_END)
224 return false;
225
226 // If we can move an instruction, we can remove it. Otherwise, it has
227 // a side-effect of some sort.
228 bool SawStore = false;
229 if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
230 return false;
231
232 // Instructions without side-effects are dead iff they only define dead vregs.
233 for (const auto &MO : MI.operands()) {
234 if (!MO.isReg() || !MO.isDef())
235 continue;
236
237 Register Reg = MO.getReg();
238 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
239 return false;
240 }
241 return true;
242 }
243
reportGISelDiagnostic(DiagnosticSeverity Severity,MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)244 static void reportGISelDiagnostic(DiagnosticSeverity Severity,
245 MachineFunction &MF,
246 const TargetPassConfig &TPC,
247 MachineOptimizationRemarkEmitter &MORE,
248 MachineOptimizationRemarkMissed &R) {
249 bool IsFatal = Severity == DS_Error &&
250 TPC.isGlobalISelAbortEnabled();
251 // Print the function name explicitly if we don't have a debug location (which
252 // makes the diagnostic less useful) or if we're going to emit a raw error.
253 if (!R.getLocation().isValid() || IsFatal)
254 R << (" (in function: " + MF.getName() + ")").str();
255
256 if (IsFatal)
257 report_fatal_error(Twine(R.getMsg()));
258 else
259 MORE.emit(R);
260 }
261
reportGISelWarning(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)262 void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC,
263 MachineOptimizationRemarkEmitter &MORE,
264 MachineOptimizationRemarkMissed &R) {
265 reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R);
266 }
267
reportGISelFailure(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,MachineOptimizationRemarkMissed & R)268 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
269 MachineOptimizationRemarkEmitter &MORE,
270 MachineOptimizationRemarkMissed &R) {
271 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
272 reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R);
273 }
274
reportGISelFailure(MachineFunction & MF,const TargetPassConfig & TPC,MachineOptimizationRemarkEmitter & MORE,const char * PassName,StringRef Msg,const MachineInstr & MI)275 void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
276 MachineOptimizationRemarkEmitter &MORE,
277 const char *PassName, StringRef Msg,
278 const MachineInstr &MI) {
279 MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
280 MI.getDebugLoc(), MI.getParent());
281 R << Msg;
282 // Printing MI is expensive; only do it if expensive remarks are enabled.
283 if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
284 R << ": " << ore::MNV("Inst", MI);
285 reportGISelFailure(MF, TPC, MORE, R);
286 }
287
getIConstantVRegVal(Register VReg,const MachineRegisterInfo & MRI)288 std::optional<APInt> llvm::getIConstantVRegVal(Register VReg,
289 const MachineRegisterInfo &MRI) {
290 std::optional<ValueAndVReg> ValAndVReg = getIConstantVRegValWithLookThrough(
291 VReg, MRI, /*LookThroughInstrs*/ false);
292 assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
293 "Value found while looking through instrs");
294 if (!ValAndVReg)
295 return std::nullopt;
296 return ValAndVReg->Value;
297 }
298
299 std::optional<int64_t>
getIConstantVRegSExtVal(Register VReg,const MachineRegisterInfo & MRI)300 llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) {
301 std::optional<APInt> Val = getIConstantVRegVal(VReg, MRI);
302 if (Val && Val->getBitWidth() <= 64)
303 return Val->getSExtValue();
304 return std::nullopt;
305 }
306
307 namespace {
308
309 typedef std::function<bool(const MachineInstr *)> IsOpcodeFn;
310 typedef std::function<std::optional<APInt>(const MachineInstr *MI)> GetAPCstFn;
311
getConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,IsOpcodeFn IsConstantOpcode,GetAPCstFn getAPCstValue,bool LookThroughInstrs=true,bool LookThroughAnyExt=false)312 std::optional<ValueAndVReg> getConstantVRegValWithLookThrough(
313 Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode,
314 GetAPCstFn getAPCstValue, bool LookThroughInstrs = true,
315 bool LookThroughAnyExt = false) {
316 SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
317 MachineInstr *MI;
318
319 while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) &&
320 LookThroughInstrs) {
321 switch (MI->getOpcode()) {
322 case TargetOpcode::G_ANYEXT:
323 if (!LookThroughAnyExt)
324 return std::nullopt;
325 [[fallthrough]];
326 case TargetOpcode::G_TRUNC:
327 case TargetOpcode::G_SEXT:
328 case TargetOpcode::G_ZEXT:
329 SeenOpcodes.push_back(std::make_pair(
330 MI->getOpcode(),
331 MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
332 VReg = MI->getOperand(1).getReg();
333 break;
334 case TargetOpcode::COPY:
335 VReg = MI->getOperand(1).getReg();
336 if (VReg.isPhysical())
337 return std::nullopt;
338 break;
339 case TargetOpcode::G_INTTOPTR:
340 VReg = MI->getOperand(1).getReg();
341 break;
342 default:
343 return std::nullopt;
344 }
345 }
346 if (!MI || !IsConstantOpcode(MI))
347 return std::nullopt;
348
349 std::optional<APInt> MaybeVal = getAPCstValue(MI);
350 if (!MaybeVal)
351 return std::nullopt;
352 APInt &Val = *MaybeVal;
353 while (!SeenOpcodes.empty()) {
354 std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
355 switch (OpcodeAndSize.first) {
356 case TargetOpcode::G_TRUNC:
357 Val = Val.trunc(OpcodeAndSize.second);
358 break;
359 case TargetOpcode::G_ANYEXT:
360 case TargetOpcode::G_SEXT:
361 Val = Val.sext(OpcodeAndSize.second);
362 break;
363 case TargetOpcode::G_ZEXT:
364 Val = Val.zext(OpcodeAndSize.second);
365 break;
366 }
367 }
368
369 return ValueAndVReg{Val, VReg};
370 }
371
isIConstant(const MachineInstr * MI)372 bool isIConstant(const MachineInstr *MI) {
373 if (!MI)
374 return false;
375 return MI->getOpcode() == TargetOpcode::G_CONSTANT;
376 }
377
isFConstant(const MachineInstr * MI)378 bool isFConstant(const MachineInstr *MI) {
379 if (!MI)
380 return false;
381 return MI->getOpcode() == TargetOpcode::G_FCONSTANT;
382 }
383
isAnyConstant(const MachineInstr * MI)384 bool isAnyConstant(const MachineInstr *MI) {
385 if (!MI)
386 return false;
387 unsigned Opc = MI->getOpcode();
388 return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT;
389 }
390
getCImmAsAPInt(const MachineInstr * MI)391 std::optional<APInt> getCImmAsAPInt(const MachineInstr *MI) {
392 const MachineOperand &CstVal = MI->getOperand(1);
393 if (CstVal.isCImm())
394 return CstVal.getCImm()->getValue();
395 return std::nullopt;
396 }
397
getCImmOrFPImmAsAPInt(const MachineInstr * MI)398 std::optional<APInt> getCImmOrFPImmAsAPInt(const MachineInstr *MI) {
399 const MachineOperand &CstVal = MI->getOperand(1);
400 if (CstVal.isCImm())
401 return CstVal.getCImm()->getValue();
402 if (CstVal.isFPImm())
403 return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
404 return std::nullopt;
405 }
406
407 } // end anonymous namespace
408
getIConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,bool LookThroughInstrs)409 std::optional<ValueAndVReg> llvm::getIConstantVRegValWithLookThrough(
410 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
411 return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant,
412 getCImmAsAPInt, LookThroughInstrs);
413 }
414
getAnyConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,bool LookThroughInstrs,bool LookThroughAnyExt)415 std::optional<ValueAndVReg> llvm::getAnyConstantVRegValWithLookThrough(
416 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
417 bool LookThroughAnyExt) {
418 return getConstantVRegValWithLookThrough(
419 VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs,
420 LookThroughAnyExt);
421 }
422
getFConstantVRegValWithLookThrough(Register VReg,const MachineRegisterInfo & MRI,bool LookThroughInstrs)423 std::optional<FPValueAndVReg> llvm::getFConstantVRegValWithLookThrough(
424 Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) {
425 auto Reg = getConstantVRegValWithLookThrough(
426 VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs);
427 if (!Reg)
428 return std::nullopt;
429 return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(),
430 Reg->VReg};
431 }
432
433 const ConstantFP *
getConstantFPVRegVal(Register VReg,const MachineRegisterInfo & MRI)434 llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
435 MachineInstr *MI = MRI.getVRegDef(VReg);
436 if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
437 return nullptr;
438 return MI->getOperand(1).getFPImm();
439 }
440
441 std::optional<DefinitionAndSourceRegister>
getDefSrcRegIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)442 llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
443 Register DefSrcReg = Reg;
444 auto *DefMI = MRI.getVRegDef(Reg);
445 auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
446 if (!DstTy.isValid())
447 return std::nullopt;
448 unsigned Opc = DefMI->getOpcode();
449 while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) {
450 Register SrcReg = DefMI->getOperand(1).getReg();
451 auto SrcTy = MRI.getType(SrcReg);
452 if (!SrcTy.isValid())
453 break;
454 DefMI = MRI.getVRegDef(SrcReg);
455 DefSrcReg = SrcReg;
456 Opc = DefMI->getOpcode();
457 }
458 return DefinitionAndSourceRegister{DefMI, DefSrcReg};
459 }
460
getDefIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)461 MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
462 const MachineRegisterInfo &MRI) {
463 std::optional<DefinitionAndSourceRegister> DefSrcReg =
464 getDefSrcRegIgnoringCopies(Reg, MRI);
465 return DefSrcReg ? DefSrcReg->MI : nullptr;
466 }
467
getSrcRegIgnoringCopies(Register Reg,const MachineRegisterInfo & MRI)468 Register llvm::getSrcRegIgnoringCopies(Register Reg,
469 const MachineRegisterInfo &MRI) {
470 std::optional<DefinitionAndSourceRegister> DefSrcReg =
471 getDefSrcRegIgnoringCopies(Reg, MRI);
472 return DefSrcReg ? DefSrcReg->Reg : Register();
473 }
474
getOpcodeDef(unsigned Opcode,Register Reg,const MachineRegisterInfo & MRI)475 MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
476 const MachineRegisterInfo &MRI) {
477 MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
478 return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
479 }
480
getAPFloatFromSize(double Val,unsigned Size)481 APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
482 if (Size == 32)
483 return APFloat(float(Val));
484 if (Size == 64)
485 return APFloat(Val);
486 if (Size != 16)
487 llvm_unreachable("Unsupported FPConstant size");
488 bool Ignored;
489 APFloat APF(Val);
490 APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
491 return APF;
492 }
493
ConstantFoldBinOp(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)494 std::optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode,
495 const Register Op1,
496 const Register Op2,
497 const MachineRegisterInfo &MRI) {
498 auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false);
499 if (!MaybeOp2Cst)
500 return std::nullopt;
501
502 auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false);
503 if (!MaybeOp1Cst)
504 return std::nullopt;
505
506 const APInt &C1 = MaybeOp1Cst->Value;
507 const APInt &C2 = MaybeOp2Cst->Value;
508 switch (Opcode) {
509 default:
510 break;
511 case TargetOpcode::G_ADD:
512 case TargetOpcode::G_PTR_ADD:
513 return C1 + C2;
514 case TargetOpcode::G_AND:
515 return C1 & C2;
516 case TargetOpcode::G_ASHR:
517 return C1.ashr(C2);
518 case TargetOpcode::G_LSHR:
519 return C1.lshr(C2);
520 case TargetOpcode::G_MUL:
521 return C1 * C2;
522 case TargetOpcode::G_OR:
523 return C1 | C2;
524 case TargetOpcode::G_SHL:
525 return C1 << C2;
526 case TargetOpcode::G_SUB:
527 return C1 - C2;
528 case TargetOpcode::G_XOR:
529 return C1 ^ C2;
530 case TargetOpcode::G_UDIV:
531 if (!C2.getBoolValue())
532 break;
533 return C1.udiv(C2);
534 case TargetOpcode::G_SDIV:
535 if (!C2.getBoolValue())
536 break;
537 return C1.sdiv(C2);
538 case TargetOpcode::G_UREM:
539 if (!C2.getBoolValue())
540 break;
541 return C1.urem(C2);
542 case TargetOpcode::G_SREM:
543 if (!C2.getBoolValue())
544 break;
545 return C1.srem(C2);
546 case TargetOpcode::G_SMIN:
547 return APIntOps::smin(C1, C2);
548 case TargetOpcode::G_SMAX:
549 return APIntOps::smax(C1, C2);
550 case TargetOpcode::G_UMIN:
551 return APIntOps::umin(C1, C2);
552 case TargetOpcode::G_UMAX:
553 return APIntOps::umax(C1, C2);
554 }
555
556 return std::nullopt;
557 }
558
559 std::optional<APFloat>
ConstantFoldFPBinOp(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)560 llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1,
561 const Register Op2, const MachineRegisterInfo &MRI) {
562 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
563 if (!Op2Cst)
564 return std::nullopt;
565
566 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
567 if (!Op1Cst)
568 return std::nullopt;
569
570 APFloat C1 = Op1Cst->getValueAPF();
571 const APFloat &C2 = Op2Cst->getValueAPF();
572 switch (Opcode) {
573 case TargetOpcode::G_FADD:
574 C1.add(C2, APFloat::rmNearestTiesToEven);
575 return C1;
576 case TargetOpcode::G_FSUB:
577 C1.subtract(C2, APFloat::rmNearestTiesToEven);
578 return C1;
579 case TargetOpcode::G_FMUL:
580 C1.multiply(C2, APFloat::rmNearestTiesToEven);
581 return C1;
582 case TargetOpcode::G_FDIV:
583 C1.divide(C2, APFloat::rmNearestTiesToEven);
584 return C1;
585 case TargetOpcode::G_FREM:
586 C1.mod(C2);
587 return C1;
588 case TargetOpcode::G_FCOPYSIGN:
589 C1.copySign(C2);
590 return C1;
591 case TargetOpcode::G_FMINNUM:
592 return minnum(C1, C2);
593 case TargetOpcode::G_FMAXNUM:
594 return maxnum(C1, C2);
595 case TargetOpcode::G_FMINIMUM:
596 return minimum(C1, C2);
597 case TargetOpcode::G_FMAXIMUM:
598 return maximum(C1, C2);
599 case TargetOpcode::G_FMINNUM_IEEE:
600 case TargetOpcode::G_FMAXNUM_IEEE:
601 // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not
602 // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax,
603 // and currently there isn't a nice wrapper in APFloat for the version with
604 // correct snan handling.
605 break;
606 default:
607 break;
608 }
609
610 return std::nullopt;
611 }
612
613 SmallVector<APInt>
ConstantFoldVectorBinop(unsigned Opcode,const Register Op1,const Register Op2,const MachineRegisterInfo & MRI)614 llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1,
615 const Register Op2,
616 const MachineRegisterInfo &MRI) {
617 auto *SrcVec2 = getOpcodeDef<GBuildVector>(Op2, MRI);
618 if (!SrcVec2)
619 return SmallVector<APInt>();
620
621 auto *SrcVec1 = getOpcodeDef<GBuildVector>(Op1, MRI);
622 if (!SrcVec1)
623 return SmallVector<APInt>();
624
625 SmallVector<APInt> FoldedElements;
626 for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) {
627 auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx),
628 SrcVec2->getSourceReg(Idx), MRI);
629 if (!MaybeCst)
630 return SmallVector<APInt>();
631 FoldedElements.push_back(*MaybeCst);
632 }
633 return FoldedElements;
634 }
635
isKnownNeverNaN(Register Val,const MachineRegisterInfo & MRI,bool SNaN)636 bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
637 bool SNaN) {
638 const MachineInstr *DefMI = MRI.getVRegDef(Val);
639 if (!DefMI)
640 return false;
641
642 const TargetMachine& TM = DefMI->getMF()->getTarget();
643 if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath)
644 return true;
645
646 // If the value is a constant, we can obviously see if it is a NaN or not.
647 if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) {
648 return !FPVal->getValueAPF().isNaN() ||
649 (SNaN && !FPVal->getValueAPF().isSignaling());
650 }
651
652 if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
653 for (const auto &Op : DefMI->uses())
654 if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN))
655 return false;
656 return true;
657 }
658
659 switch (DefMI->getOpcode()) {
660 default:
661 break;
662 case TargetOpcode::G_FADD:
663 case TargetOpcode::G_FSUB:
664 case TargetOpcode::G_FMUL:
665 case TargetOpcode::G_FDIV:
666 case TargetOpcode::G_FREM:
667 case TargetOpcode::G_FSIN:
668 case TargetOpcode::G_FCOS:
669 case TargetOpcode::G_FMA:
670 case TargetOpcode::G_FMAD:
671 if (SNaN)
672 return true;
673
674 // TODO: Need isKnownNeverInfinity
675 return false;
676 case TargetOpcode::G_FMINNUM_IEEE:
677 case TargetOpcode::G_FMAXNUM_IEEE: {
678 if (SNaN)
679 return true;
680 // This can return a NaN if either operand is an sNaN, or if both operands
681 // are NaN.
682 return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) &&
683 isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) ||
684 (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) &&
685 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI));
686 }
687 case TargetOpcode::G_FMINNUM:
688 case TargetOpcode::G_FMAXNUM: {
689 // Only one needs to be known not-nan, since it will be returned if the
690 // other ends up being one.
691 return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) ||
692 isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN);
693 }
694 }
695
696 if (SNaN) {
697 // FP operations quiet. For now, just handle the ones inserted during
698 // legalization.
699 switch (DefMI->getOpcode()) {
700 case TargetOpcode::G_FPEXT:
701 case TargetOpcode::G_FPTRUNC:
702 case TargetOpcode::G_FCANONICALIZE:
703 return true;
704 default:
705 return false;
706 }
707 }
708
709 return false;
710 }
711
inferAlignFromPtrInfo(MachineFunction & MF,const MachinePointerInfo & MPO)712 Align llvm::inferAlignFromPtrInfo(MachineFunction &MF,
713 const MachinePointerInfo &MPO) {
714 auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
715 if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
716 MachineFrameInfo &MFI = MF.getFrameInfo();
717 return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()),
718 MPO.Offset);
719 }
720
721 if (const Value *V = MPO.V.dyn_cast<const Value *>()) {
722 const Module *M = MF.getFunction().getParent();
723 return V->getPointerAlignment(M->getDataLayout());
724 }
725
726 return Align(1);
727 }
728
getFunctionLiveInPhysReg(MachineFunction & MF,const TargetInstrInfo & TII,MCRegister PhysReg,const TargetRegisterClass & RC,const DebugLoc & DL,LLT RegTy)729 Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF,
730 const TargetInstrInfo &TII,
731 MCRegister PhysReg,
732 const TargetRegisterClass &RC,
733 const DebugLoc &DL, LLT RegTy) {
734 MachineBasicBlock &EntryMBB = MF.front();
735 MachineRegisterInfo &MRI = MF.getRegInfo();
736 Register LiveIn = MRI.getLiveInVirtReg(PhysReg);
737 if (LiveIn) {
738 MachineInstr *Def = MRI.getVRegDef(LiveIn);
739 if (Def) {
740 // FIXME: Should the verifier check this is in the entry block?
741 assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block");
742 return LiveIn;
743 }
744
745 // It's possible the incoming argument register and copy was added during
746 // lowering, but later deleted due to being/becoming dead. If this happens,
747 // re-insert the copy.
748 } else {
749 // The live in register was not present, so add it.
750 LiveIn = MF.addLiveIn(PhysReg, &RC);
751 if (RegTy.isValid())
752 MRI.setType(LiveIn, RegTy);
753 }
754
755 BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn)
756 .addReg(PhysReg);
757 if (!EntryMBB.isLiveIn(PhysReg))
758 EntryMBB.addLiveIn(PhysReg);
759 return LiveIn;
760 }
761
ConstantFoldExtOp(unsigned Opcode,const Register Op1,uint64_t Imm,const MachineRegisterInfo & MRI)762 std::optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode,
763 const Register Op1, uint64_t Imm,
764 const MachineRegisterInfo &MRI) {
765 auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI);
766 if (MaybeOp1Cst) {
767 switch (Opcode) {
768 default:
769 break;
770 case TargetOpcode::G_SEXT_INREG: {
771 LLT Ty = MRI.getType(Op1);
772 return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits());
773 }
774 }
775 }
776 return std::nullopt;
777 }
778
779 std::optional<APFloat>
ConstantFoldIntToFloat(unsigned Opcode,LLT DstTy,Register Src,const MachineRegisterInfo & MRI)780 llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src,
781 const MachineRegisterInfo &MRI) {
782 assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP);
783 if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) {
784 APFloat DstVal(getFltSemanticForLLT(DstTy));
785 DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP,
786 APFloat::rmNearestTiesToEven);
787 return DstVal;
788 }
789 return std::nullopt;
790 }
791
792 std::optional<SmallVector<unsigned>>
ConstantFoldCTLZ(Register Src,const MachineRegisterInfo & MRI)793 llvm::ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI) {
794 LLT Ty = MRI.getType(Src);
795 SmallVector<unsigned> FoldedCTLZs;
796 auto tryFoldScalar = [&](Register R) -> std::optional<unsigned> {
797 auto MaybeCst = getIConstantVRegVal(R, MRI);
798 if (!MaybeCst)
799 return std::nullopt;
800 return MaybeCst->countLeadingZeros();
801 };
802 if (Ty.isVector()) {
803 // Try to constant fold each element.
804 auto *BV = getOpcodeDef<GBuildVector>(Src, MRI);
805 if (!BV)
806 return std::nullopt;
807 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
808 if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) {
809 FoldedCTLZs.emplace_back(*MaybeFold);
810 continue;
811 }
812 return std::nullopt;
813 }
814 return FoldedCTLZs;
815 }
816 if (auto MaybeCst = tryFoldScalar(Src)) {
817 FoldedCTLZs.emplace_back(*MaybeCst);
818 return FoldedCTLZs;
819 }
820 return std::nullopt;
821 }
822
isKnownToBeAPowerOfTwo(Register Reg,const MachineRegisterInfo & MRI,GISelKnownBits * KB)823 bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI,
824 GISelKnownBits *KB) {
825 std::optional<DefinitionAndSourceRegister> DefSrcReg =
826 getDefSrcRegIgnoringCopies(Reg, MRI);
827 if (!DefSrcReg)
828 return false;
829
830 const MachineInstr &MI = *DefSrcReg->MI;
831 const LLT Ty = MRI.getType(Reg);
832
833 switch (MI.getOpcode()) {
834 case TargetOpcode::G_CONSTANT: {
835 unsigned BitWidth = Ty.getScalarSizeInBits();
836 const ConstantInt *CI = MI.getOperand(1).getCImm();
837 return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2();
838 }
839 case TargetOpcode::G_SHL: {
840 // A left-shift of a constant one will have exactly one bit set because
841 // shifting the bit off the end is undefined.
842
843 // TODO: Constant splat
844 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
845 if (*ConstLHS == 1)
846 return true;
847 }
848
849 break;
850 }
851 case TargetOpcode::G_LSHR: {
852 if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) {
853 if (ConstLHS->isSignMask())
854 return true;
855 }
856
857 break;
858 }
859 case TargetOpcode::G_BUILD_VECTOR: {
860 // TODO: Probably should have a recursion depth guard since you could have
861 // bitcasted vector elements.
862 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
863 if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB))
864 return false;
865
866 return true;
867 }
868 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
869 // Only handle constants since we would need to know if number of leading
870 // zeros is greater than the truncation amount.
871 const unsigned BitWidth = Ty.getScalarSizeInBits();
872 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
873 auto Const = getIConstantVRegVal(MO.getReg(), MRI);
874 if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2())
875 return false;
876 }
877
878 return true;
879 }
880 default:
881 break;
882 }
883
884 if (!KB)
885 return false;
886
887 // More could be done here, though the above checks are enough
888 // to handle some common cases.
889
890 // Fall back to computeKnownBits to catch other known cases.
891 KnownBits Known = KB->getKnownBits(Reg);
892 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
893 }
894
getSelectionDAGFallbackAnalysisUsage(AnalysisUsage & AU)895 void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
896 AU.addPreserved<StackProtector>();
897 }
898
getLCMType(LLT OrigTy,LLT TargetTy)899 LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) {
900 const unsigned OrigSize = OrigTy.getSizeInBits();
901 const unsigned TargetSize = TargetTy.getSizeInBits();
902
903 if (OrigSize == TargetSize)
904 return OrigTy;
905
906 if (OrigTy.isVector()) {
907 const LLT OrigElt = OrigTy.getElementType();
908
909 if (TargetTy.isVector()) {
910 const LLT TargetElt = TargetTy.getElementType();
911
912 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
913 int GCDElts =
914 std::gcd(OrigTy.getNumElements(), TargetTy.getNumElements());
915 // Prefer the original element type.
916 ElementCount Mul = OrigTy.getElementCount() * TargetTy.getNumElements();
917 return LLT::vector(Mul.divideCoefficientBy(GCDElts),
918 OrigTy.getElementType());
919 }
920 } else {
921 if (OrigElt.getSizeInBits() == TargetSize)
922 return OrigTy;
923 }
924
925 unsigned LCMSize = std::lcm(OrigSize, TargetSize);
926 return LLT::fixed_vector(LCMSize / OrigElt.getSizeInBits(), OrigElt);
927 }
928
929 if (TargetTy.isVector()) {
930 unsigned LCMSize = std::lcm(OrigSize, TargetSize);
931 return LLT::fixed_vector(LCMSize / OrigSize, OrigTy);
932 }
933
934 unsigned LCMSize = std::lcm(OrigSize, TargetSize);
935
936 // Preserve pointer types.
937 if (LCMSize == OrigSize)
938 return OrigTy;
939 if (LCMSize == TargetSize)
940 return TargetTy;
941
942 return LLT::scalar(LCMSize);
943 }
944
getCoverTy(LLT OrigTy,LLT TargetTy)945 LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) {
946 if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy ||
947 (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits()))
948 return getLCMType(OrigTy, TargetTy);
949
950 unsigned OrigTyNumElts = OrigTy.getNumElements();
951 unsigned TargetTyNumElts = TargetTy.getNumElements();
952 if (OrigTyNumElts % TargetTyNumElts == 0)
953 return OrigTy;
954
955 unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts);
956 return LLT::scalarOrVector(ElementCount::getFixed(NumElts),
957 OrigTy.getElementType());
958 }
959
getGCDType(LLT OrigTy,LLT TargetTy)960 LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
961 const unsigned OrigSize = OrigTy.getSizeInBits();
962 const unsigned TargetSize = TargetTy.getSizeInBits();
963
964 if (OrigSize == TargetSize)
965 return OrigTy;
966
967 if (OrigTy.isVector()) {
968 LLT OrigElt = OrigTy.getElementType();
969 if (TargetTy.isVector()) {
970 LLT TargetElt = TargetTy.getElementType();
971 if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) {
972 int GCD = std::gcd(OrigTy.getNumElements(), TargetTy.getNumElements());
973 return LLT::scalarOrVector(ElementCount::getFixed(GCD), OrigElt);
974 }
975 } else {
976 // If the source is a vector of pointers, return a pointer element.
977 if (OrigElt.getSizeInBits() == TargetSize)
978 return OrigElt;
979 }
980
981 unsigned GCD = std::gcd(OrigSize, TargetSize);
982 if (GCD == OrigElt.getSizeInBits())
983 return OrigElt;
984
985 // If we can't produce the original element type, we have to use a smaller
986 // scalar.
987 if (GCD < OrigElt.getSizeInBits())
988 return LLT::scalar(GCD);
989 return LLT::fixed_vector(GCD / OrigElt.getSizeInBits(), OrigElt);
990 }
991
992 if (TargetTy.isVector()) {
993 // Try to preserve the original element type.
994 LLT TargetElt = TargetTy.getElementType();
995 if (TargetElt.getSizeInBits() == OrigSize)
996 return OrigTy;
997 }
998
999 unsigned GCD = std::gcd(OrigSize, TargetSize);
1000 return LLT::scalar(GCD);
1001 }
1002
getSplatIndex(MachineInstr & MI)1003 std::optional<int> llvm::getSplatIndex(MachineInstr &MI) {
1004 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
1005 "Only G_SHUFFLE_VECTOR can have a splat index!");
1006 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
1007 auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
1008
1009 // If all elements are undefined, this shuffle can be considered a splat.
1010 // Return 0 for better potential for callers to simplify.
1011 if (FirstDefinedIdx == Mask.end())
1012 return 0;
1013
1014 // Make sure all remaining elements are either undef or the same
1015 // as the first non-undef value.
1016 int SplatValue = *FirstDefinedIdx;
1017 if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
1018 [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
1019 return std::nullopt;
1020
1021 return SplatValue;
1022 }
1023
isBuildVectorOp(unsigned Opcode)1024 static bool isBuildVectorOp(unsigned Opcode) {
1025 return Opcode == TargetOpcode::G_BUILD_VECTOR ||
1026 Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC;
1027 }
1028
1029 namespace {
1030
getAnyConstantSplat(Register VReg,const MachineRegisterInfo & MRI,bool AllowUndef)1031 std::optional<ValueAndVReg> getAnyConstantSplat(Register VReg,
1032 const MachineRegisterInfo &MRI,
1033 bool AllowUndef) {
1034 MachineInstr *MI = getDefIgnoringCopies(VReg, MRI);
1035 if (!MI)
1036 return std::nullopt;
1037
1038 bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS;
1039 if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp)
1040 return std::nullopt;
1041
1042 std::optional<ValueAndVReg> SplatValAndReg;
1043 for (MachineOperand &Op : MI->uses()) {
1044 Register Element = Op.getReg();
1045 // If we have a G_CONCAT_VECTOR, we recursively look into the
1046 // vectors that we're concatenating to see if they're splats.
1047 auto ElementValAndReg =
1048 isConcatVectorsOp
1049 ? getAnyConstantSplat(Element, MRI, AllowUndef)
1050 : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true);
1051
1052 // If AllowUndef, treat undef as value that will result in a constant splat.
1053 if (!ElementValAndReg) {
1054 if (AllowUndef && isa<GImplicitDef>(MRI.getVRegDef(Element)))
1055 continue;
1056 return std::nullopt;
1057 }
1058
1059 // Record splat value
1060 if (!SplatValAndReg)
1061 SplatValAndReg = ElementValAndReg;
1062
1063 // Different constant than the one already recorded, not a constant splat.
1064 if (SplatValAndReg->Value != ElementValAndReg->Value)
1065 return std::nullopt;
1066 }
1067
1068 return SplatValAndReg;
1069 }
1070
1071 } // end anonymous namespace
1072
isBuildVectorConstantSplat(const Register Reg,const MachineRegisterInfo & MRI,int64_t SplatValue,bool AllowUndef)1073 bool llvm::isBuildVectorConstantSplat(const Register Reg,
1074 const MachineRegisterInfo &MRI,
1075 int64_t SplatValue, bool AllowUndef) {
1076 if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef))
1077 return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue));
1078 return false;
1079 }
1080
isBuildVectorConstantSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI,int64_t SplatValue,bool AllowUndef)1081 bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI,
1082 const MachineRegisterInfo &MRI,
1083 int64_t SplatValue, bool AllowUndef) {
1084 return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue,
1085 AllowUndef);
1086 }
1087
1088 std::optional<APInt>
getIConstantSplatVal(const Register Reg,const MachineRegisterInfo & MRI)1089 llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) {
1090 if (auto SplatValAndReg =
1091 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) {
1092 std::optional<ValueAndVReg> ValAndVReg =
1093 getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
1094 return ValAndVReg->Value;
1095 }
1096
1097 return std::nullopt;
1098 }
1099
1100 std::optional<APInt>
getIConstantSplatVal(const MachineInstr & MI,const MachineRegisterInfo & MRI)1101 llvm::getIConstantSplatVal(const MachineInstr &MI,
1102 const MachineRegisterInfo &MRI) {
1103 return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI);
1104 }
1105
1106 std::optional<int64_t>
getIConstantSplatSExtVal(const Register Reg,const MachineRegisterInfo & MRI)1107 llvm::getIConstantSplatSExtVal(const Register Reg,
1108 const MachineRegisterInfo &MRI) {
1109 if (auto SplatValAndReg =
1110 getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false))
1111 return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI);
1112 return std::nullopt;
1113 }
1114
1115 std::optional<int64_t>
getIConstantSplatSExtVal(const MachineInstr & MI,const MachineRegisterInfo & MRI)1116 llvm::getIConstantSplatSExtVal(const MachineInstr &MI,
1117 const MachineRegisterInfo &MRI) {
1118 return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI);
1119 }
1120
1121 std::optional<FPValueAndVReg>
getFConstantSplat(Register VReg,const MachineRegisterInfo & MRI,bool AllowUndef)1122 llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI,
1123 bool AllowUndef) {
1124 if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef))
1125 return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI);
1126 return std::nullopt;
1127 }
1128
isBuildVectorAllZeros(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndef)1129 bool llvm::isBuildVectorAllZeros(const MachineInstr &MI,
1130 const MachineRegisterInfo &MRI,
1131 bool AllowUndef) {
1132 return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef);
1133 }
1134
isBuildVectorAllOnes(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndef)1135 bool llvm::isBuildVectorAllOnes(const MachineInstr &MI,
1136 const MachineRegisterInfo &MRI,
1137 bool AllowUndef) {
1138 return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef);
1139 }
1140
1141 std::optional<RegOrConstant>
getVectorSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI)1142 llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) {
1143 unsigned Opc = MI.getOpcode();
1144 if (!isBuildVectorOp(Opc))
1145 return std::nullopt;
1146 if (auto Splat = getIConstantSplatSExtVal(MI, MRI))
1147 return RegOrConstant(*Splat);
1148 auto Reg = MI.getOperand(1).getReg();
1149 if (any_of(make_range(MI.operands_begin() + 2, MI.operands_end()),
1150 [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; }))
1151 return std::nullopt;
1152 return RegOrConstant(Reg);
1153 }
1154
isConstantScalar(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowFP=true,bool AllowOpaqueConstants=true)1155 static bool isConstantScalar(const MachineInstr &MI,
1156 const MachineRegisterInfo &MRI,
1157 bool AllowFP = true,
1158 bool AllowOpaqueConstants = true) {
1159 switch (MI.getOpcode()) {
1160 case TargetOpcode::G_CONSTANT:
1161 case TargetOpcode::G_IMPLICIT_DEF:
1162 return true;
1163 case TargetOpcode::G_FCONSTANT:
1164 return AllowFP;
1165 case TargetOpcode::G_GLOBAL_VALUE:
1166 case TargetOpcode::G_FRAME_INDEX:
1167 case TargetOpcode::G_BLOCK_ADDR:
1168 case TargetOpcode::G_JUMP_TABLE:
1169 return AllowOpaqueConstants;
1170 default:
1171 return false;
1172 }
1173 }
1174
isConstantOrConstantVector(MachineInstr & MI,const MachineRegisterInfo & MRI)1175 bool llvm::isConstantOrConstantVector(MachineInstr &MI,
1176 const MachineRegisterInfo &MRI) {
1177 Register Def = MI.getOperand(0).getReg();
1178 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1179 return true;
1180 GBuildVector *BV = dyn_cast<GBuildVector>(&MI);
1181 if (!BV)
1182 return false;
1183 for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) {
1184 if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) ||
1185 getOpcodeDef<GImplicitDef>(BV->getSourceReg(SrcIdx), MRI))
1186 continue;
1187 return false;
1188 }
1189 return true;
1190 }
1191
isConstantOrConstantVector(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowFP,bool AllowOpaqueConstants)1192 bool llvm::isConstantOrConstantVector(const MachineInstr &MI,
1193 const MachineRegisterInfo &MRI,
1194 bool AllowFP, bool AllowOpaqueConstants) {
1195 if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants))
1196 return true;
1197
1198 if (!isBuildVectorOp(MI.getOpcode()))
1199 return false;
1200
1201 const unsigned NumOps = MI.getNumOperands();
1202 for (unsigned I = 1; I != NumOps; ++I) {
1203 const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg());
1204 if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants))
1205 return false;
1206 }
1207
1208 return true;
1209 }
1210
1211 std::optional<APInt>
isConstantOrConstantSplatVector(MachineInstr & MI,const MachineRegisterInfo & MRI)1212 llvm::isConstantOrConstantSplatVector(MachineInstr &MI,
1213 const MachineRegisterInfo &MRI) {
1214 Register Def = MI.getOperand(0).getReg();
1215 if (auto C = getIConstantVRegValWithLookThrough(Def, MRI))
1216 return C->Value;
1217 auto MaybeCst = getIConstantSplatSExtVal(MI, MRI);
1218 if (!MaybeCst)
1219 return std::nullopt;
1220 const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits();
1221 return APInt(ScalarSize, *MaybeCst, true);
1222 }
1223
isNullOrNullSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndefs)1224 bool llvm::isNullOrNullSplat(const MachineInstr &MI,
1225 const MachineRegisterInfo &MRI, bool AllowUndefs) {
1226 switch (MI.getOpcode()) {
1227 case TargetOpcode::G_IMPLICIT_DEF:
1228 return AllowUndefs;
1229 case TargetOpcode::G_CONSTANT:
1230 return MI.getOperand(1).getCImm()->isNullValue();
1231 case TargetOpcode::G_FCONSTANT: {
1232 const ConstantFP *FPImm = MI.getOperand(1).getFPImm();
1233 return FPImm->isZero() && !FPImm->isNegative();
1234 }
1235 default:
1236 if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already
1237 return false;
1238 return isBuildVectorAllZeros(MI, MRI);
1239 }
1240 }
1241
isAllOnesOrAllOnesSplat(const MachineInstr & MI,const MachineRegisterInfo & MRI,bool AllowUndefs)1242 bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI,
1243 const MachineRegisterInfo &MRI,
1244 bool AllowUndefs) {
1245 switch (MI.getOpcode()) {
1246 case TargetOpcode::G_IMPLICIT_DEF:
1247 return AllowUndefs;
1248 case TargetOpcode::G_CONSTANT:
1249 return MI.getOperand(1).getCImm()->isAllOnesValue();
1250 default:
1251 if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already
1252 return false;
1253 return isBuildVectorAllOnes(MI, MRI);
1254 }
1255 }
1256
matchUnaryPredicate(const MachineRegisterInfo & MRI,Register Reg,std::function<bool (const Constant * ConstVal)> Match,bool AllowUndefs)1257 bool llvm::matchUnaryPredicate(
1258 const MachineRegisterInfo &MRI, Register Reg,
1259 std::function<bool(const Constant *ConstVal)> Match, bool AllowUndefs) {
1260
1261 const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
1262 if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
1263 return Match(nullptr);
1264
1265 // TODO: Also handle fconstant
1266 if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
1267 return Match(Def->getOperand(1).getCImm());
1268
1269 if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
1270 return false;
1271
1272 for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) {
1273 Register SrcElt = Def->getOperand(I).getReg();
1274 const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI);
1275 if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) {
1276 if (!Match(nullptr))
1277 return false;
1278 continue;
1279 }
1280
1281 if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT ||
1282 !Match(SrcDef->getOperand(1).getCImm()))
1283 return false;
1284 }
1285
1286 return true;
1287 }
1288
isConstTrueVal(const TargetLowering & TLI,int64_t Val,bool IsVector,bool IsFP)1289 bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector,
1290 bool IsFP) {
1291 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1292 case TargetLowering::UndefinedBooleanContent:
1293 return Val & 0x1;
1294 case TargetLowering::ZeroOrOneBooleanContent:
1295 return Val == 1;
1296 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1297 return Val == -1;
1298 }
1299 llvm_unreachable("Invalid boolean contents");
1300 }
1301
isConstFalseVal(const TargetLowering & TLI,int64_t Val,bool IsVector,bool IsFP)1302 bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val,
1303 bool IsVector, bool IsFP) {
1304 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1305 case TargetLowering::UndefinedBooleanContent:
1306 return ~Val & 0x1;
1307 case TargetLowering::ZeroOrOneBooleanContent:
1308 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1309 return Val == 0;
1310 }
1311 llvm_unreachable("Invalid boolean contents");
1312 }
1313
getICmpTrueVal(const TargetLowering & TLI,bool IsVector,bool IsFP)1314 int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector,
1315 bool IsFP) {
1316 switch (TLI.getBooleanContents(IsVector, IsFP)) {
1317 case TargetLowering::UndefinedBooleanContent:
1318 case TargetLowering::ZeroOrOneBooleanContent:
1319 return 1;
1320 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1321 return -1;
1322 }
1323 llvm_unreachable("Invalid boolean contents");
1324 }
1325
shouldOptForSize(const MachineBasicBlock & MBB,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)1326 bool llvm::shouldOptForSize(const MachineBasicBlock &MBB,
1327 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
1328 const auto &F = MBB.getParent()->getFunction();
1329 return F.hasOptSize() || F.hasMinSize() ||
1330 llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI);
1331 }
1332
saveUsesAndErase(MachineInstr & MI,MachineRegisterInfo & MRI,LostDebugLocObserver * LocObserver,SmallInstListTy & DeadInstChain)1333 void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI,
1334 LostDebugLocObserver *LocObserver,
1335 SmallInstListTy &DeadInstChain) {
1336 for (MachineOperand &Op : MI.uses()) {
1337 if (Op.isReg() && Op.getReg().isVirtual())
1338 DeadInstChain.insert(MRI.getVRegDef(Op.getReg()));
1339 }
1340 LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n");
1341 DeadInstChain.remove(&MI);
1342 MI.eraseFromParent();
1343 if (LocObserver)
1344 LocObserver->checkpoint(false);
1345 }
1346
eraseInstrs(ArrayRef<MachineInstr * > DeadInstrs,MachineRegisterInfo & MRI,LostDebugLocObserver * LocObserver)1347 void llvm::eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs,
1348 MachineRegisterInfo &MRI,
1349 LostDebugLocObserver *LocObserver) {
1350 SmallInstListTy DeadInstChain;
1351 for (MachineInstr *MI : DeadInstrs)
1352 saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain);
1353
1354 while (!DeadInstChain.empty()) {
1355 MachineInstr *Inst = DeadInstChain.pop_back_val();
1356 if (!isTriviallyDead(*Inst, MRI))
1357 continue;
1358 saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain);
1359 }
1360 }
1361
eraseInstr(MachineInstr & MI,MachineRegisterInfo & MRI,LostDebugLocObserver * LocObserver)1362 void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI,
1363 LostDebugLocObserver *LocObserver) {
1364 return eraseInstrs({&MI}, MRI, LocObserver);
1365 }
1366
salvageDebugInfo(const MachineRegisterInfo & MRI,MachineInstr & MI)1367 void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) {
1368 for (auto &Def : MI.defs()) {
1369 assert(Def.isReg() && "Must be a reg");
1370
1371 SmallVector<MachineOperand *, 16> DbgUsers;
1372 for (auto &MOUse : MRI.use_operands(Def.getReg())) {
1373 MachineInstr *DbgValue = MOUse.getParent();
1374 // Ignore partially formed DBG_VALUEs.
1375 if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) {
1376 DbgUsers.push_back(&MOUse);
1377 }
1378 }
1379
1380 if (!DbgUsers.empty()) {
1381 salvageDebugInfoForDbgValue(MRI, MI, DbgUsers);
1382 }
1383 }
1384 }
1385