1 //===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the C++ Decl subclasses, other than those for templates
11 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_AST_DECLCXX_H
16 #define LLVM_CLANG_AST_DECLCXX_H
17 
18 #include "clang/AST/ASTUnresolvedSet.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclarationName.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExternalASTSource.h"
24 #include "clang/AST/LambdaCapture.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/Redeclarable.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/LLVM.h"
32 #include "clang/Basic/Lambda.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/OperatorKinds.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/TinyPtrVector.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/PointerLikeTypeTraits.h"
47 #include "llvm/Support/TrailingObjects.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <iterator>
51 #include <memory>
52 #include <vector>
53 
54 namespace clang {
55 
56 class ASTContext;
57 class ClassTemplateDecl;
58 class ConstructorUsingShadowDecl;
59 class CXXBasePath;
60 class CXXBasePaths;
61 class CXXConstructorDecl;
62 class CXXDestructorDecl;
63 class CXXFinalOverriderMap;
64 class CXXIndirectPrimaryBaseSet;
65 class CXXMethodDecl;
66 class DecompositionDecl;
67 class FriendDecl;
68 class FunctionTemplateDecl;
69 class IdentifierInfo;
70 class MemberSpecializationInfo;
71 class BaseUsingDecl;
72 class TemplateDecl;
73 class TemplateParameterList;
74 class UsingDecl;
75 
76 /// Represents an access specifier followed by colon ':'.
77 ///
78 /// An objects of this class represents sugar for the syntactic occurrence
79 /// of an access specifier followed by a colon in the list of member
80 /// specifiers of a C++ class definition.
81 ///
82 /// Note that they do not represent other uses of access specifiers,
83 /// such as those occurring in a list of base specifiers.
84 /// Also note that this class has nothing to do with so-called
85 /// "access declarations" (C++98 11.3 [class.access.dcl]).
86 class AccessSpecDecl : public Decl {
87   /// The location of the ':'.
88   SourceLocation ColonLoc;
89 
AccessSpecDecl(AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)90   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
91                  SourceLocation ASLoc, SourceLocation ColonLoc)
92     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
93     setAccess(AS);
94   }
95 
AccessSpecDecl(EmptyShell Empty)96   AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
97 
98   virtual void anchor();
99 
100 public:
101   /// The location of the access specifier.
getAccessSpecifierLoc()102   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
103 
104   /// Sets the location of the access specifier.
setAccessSpecifierLoc(SourceLocation ASLoc)105   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
106 
107   /// The location of the colon following the access specifier.
getColonLoc()108   SourceLocation getColonLoc() const { return ColonLoc; }
109 
110   /// Sets the location of the colon.
setColonLoc(SourceLocation CLoc)111   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
112 
getSourceRange()113   SourceRange getSourceRange() const override LLVM_READONLY {
114     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
115   }
116 
Create(ASTContext & C,AccessSpecifier AS,DeclContext * DC,SourceLocation ASLoc,SourceLocation ColonLoc)117   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
118                                 DeclContext *DC, SourceLocation ASLoc,
119                                 SourceLocation ColonLoc) {
120     return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
121   }
122 
123   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
124 
125   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)126   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)127   static bool classofKind(Kind K) { return K == AccessSpec; }
128 };
129 
130 /// Represents a base class of a C++ class.
131 ///
132 /// Each CXXBaseSpecifier represents a single, direct base class (or
133 /// struct) of a C++ class (or struct). It specifies the type of that
134 /// base class, whether it is a virtual or non-virtual base, and what
135 /// level of access (public, protected, private) is used for the
136 /// derivation. For example:
137 ///
138 /// \code
139 ///   class A { };
140 ///   class B { };
141 ///   class C : public virtual A, protected B { };
142 /// \endcode
143 ///
144 /// In this code, C will have two CXXBaseSpecifiers, one for "public
145 /// virtual A" and the other for "protected B".
146 class CXXBaseSpecifier {
147   /// The source code range that covers the full base
148   /// specifier, including the "virtual" (if present) and access
149   /// specifier (if present).
150   SourceRange Range;
151 
152   /// The source location of the ellipsis, if this is a pack
153   /// expansion.
154   SourceLocation EllipsisLoc;
155 
156   /// Whether this is a virtual base class or not.
157   LLVM_PREFERRED_TYPE(bool)
158   unsigned Virtual : 1;
159 
160   /// Whether this is the base of a class (true) or of a struct (false).
161   ///
162   /// This determines the mapping from the access specifier as written in the
163   /// source code to the access specifier used for semantic analysis.
164   LLVM_PREFERRED_TYPE(bool)
165   unsigned BaseOfClass : 1;
166 
167   /// Access specifier as written in the source code (may be AS_none).
168   ///
169   /// The actual type of data stored here is an AccessSpecifier, but we use
170   /// "unsigned" here to work around Microsoft ABI.
171   LLVM_PREFERRED_TYPE(AccessSpecifier)
172   unsigned Access : 2;
173 
174   /// Whether the class contains a using declaration
175   /// to inherit the named class's constructors.
176   LLVM_PREFERRED_TYPE(bool)
177   unsigned InheritConstructors : 1;
178 
179   /// The type of the base class.
180   ///
181   /// This will be a class or struct (or a typedef of such). The source code
182   /// range does not include the \c virtual or the access specifier.
183   TypeSourceInfo *BaseTypeInfo;
184 
185 public:
186   CXXBaseSpecifier() = default;
CXXBaseSpecifier(SourceRange R,bool V,bool BC,AccessSpecifier A,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)187   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
188                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
189     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
190       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
191 
192   /// Retrieves the source range that contains the entire base specifier.
getSourceRange()193   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
getBeginLoc()194   SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
getEndLoc()195   SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
196 
197   /// Get the location at which the base class type was written.
getBaseTypeLoc()198   SourceLocation getBaseTypeLoc() const LLVM_READONLY {
199     return BaseTypeInfo->getTypeLoc().getBeginLoc();
200   }
201 
202   /// Determines whether the base class is a virtual base class (or not).
isVirtual()203   bool isVirtual() const { return Virtual; }
204 
205   /// Determine whether this base class is a base of a class declared
206   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
isBaseOfClass()207   bool isBaseOfClass() const { return BaseOfClass; }
208 
209   /// Determine whether this base specifier is a pack expansion.
isPackExpansion()210   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
211 
212   /// Determine whether this base class's constructors get inherited.
getInheritConstructors()213   bool getInheritConstructors() const { return InheritConstructors; }
214 
215   /// Set that this base class's constructors should be inherited.
216   void setInheritConstructors(bool Inherit = true) {
217     InheritConstructors = Inherit;
218   }
219 
220   /// For a pack expansion, determine the location of the ellipsis.
getEllipsisLoc()221   SourceLocation getEllipsisLoc() const {
222     return EllipsisLoc;
223   }
224 
225   /// Returns the access specifier for this base specifier.
226   ///
227   /// This is the actual base specifier as used for semantic analysis, so
228   /// the result can never be AS_none. To retrieve the access specifier as
229   /// written in the source code, use getAccessSpecifierAsWritten().
getAccessSpecifier()230   AccessSpecifier getAccessSpecifier() const {
231     if ((AccessSpecifier)Access == AS_none)
232       return BaseOfClass? AS_private : AS_public;
233     else
234       return (AccessSpecifier)Access;
235   }
236 
237   /// Retrieves the access specifier as written in the source code
238   /// (which may mean that no access specifier was explicitly written).
239   ///
240   /// Use getAccessSpecifier() to retrieve the access specifier for use in
241   /// semantic analysis.
getAccessSpecifierAsWritten()242   AccessSpecifier getAccessSpecifierAsWritten() const {
243     return (AccessSpecifier)Access;
244   }
245 
246   /// Retrieves the type of the base class.
247   ///
248   /// This type will always be an unqualified class type.
getType()249   QualType getType() const {
250     return BaseTypeInfo->getType().getUnqualifiedType();
251   }
252 
253   /// Retrieves the type and source location of the base class.
getTypeSourceInfo()254   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
255 };
256 
257 /// Represents a C++ struct/union/class.
258 class CXXRecordDecl : public RecordDecl {
259   friend class ASTDeclReader;
260   friend class ASTDeclWriter;
261   friend class ASTNodeImporter;
262   friend class ASTReader;
263   friend class ASTRecordWriter;
264   friend class ASTWriter;
265   friend class DeclContext;
266   friend class LambdaExpr;
267   friend class ODRDiagsEmitter;
268 
269   friend void FunctionDecl::setIsPureVirtual(bool);
270   friend void TagDecl::startDefinition();
271 
272   /// Values used in DefinitionData fields to represent special members.
273   enum SpecialMemberFlags {
274     SMF_DefaultConstructor = 0x1,
275     SMF_CopyConstructor = 0x2,
276     SMF_MoveConstructor = 0x4,
277     SMF_CopyAssignment = 0x8,
278     SMF_MoveAssignment = 0x10,
279     SMF_Destructor = 0x20,
280     SMF_All = 0x3f
281   };
282 
283 public:
284   enum LambdaDependencyKind {
285     LDK_Unknown = 0,
286     LDK_AlwaysDependent,
287     LDK_NeverDependent,
288   };
289 
290 private:
291   struct DefinitionData {
292     #define FIELD(Name, Width, Merge) \
293     unsigned Name : Width;
294     #include "CXXRecordDeclDefinitionBits.def"
295 
296     /// Whether this class describes a C++ lambda.
297     LLVM_PREFERRED_TYPE(bool)
298     unsigned IsLambda : 1;
299 
300     /// Whether we are currently parsing base specifiers.
301     LLVM_PREFERRED_TYPE(bool)
302     unsigned IsParsingBaseSpecifiers : 1;
303 
304     /// True when visible conversion functions are already computed
305     /// and are available.
306     LLVM_PREFERRED_TYPE(bool)
307     unsigned ComputedVisibleConversions : 1;
308 
309     LLVM_PREFERRED_TYPE(bool)
310     unsigned HasODRHash : 1;
311 
312     /// A hash of parts of the class to help in ODR checking.
313     unsigned ODRHash = 0;
314 
315     /// The number of base class specifiers in Bases.
316     unsigned NumBases = 0;
317 
318     /// The number of virtual base class specifiers in VBases.
319     unsigned NumVBases = 0;
320 
321     /// Base classes of this class.
322     ///
323     /// FIXME: This is wasted space for a union.
324     LazyCXXBaseSpecifiersPtr Bases;
325 
326     /// direct and indirect virtual base classes of this class.
327     LazyCXXBaseSpecifiersPtr VBases;
328 
329     /// The conversion functions of this C++ class (but not its
330     /// inherited conversion functions).
331     ///
332     /// Each of the entries in this overload set is a CXXConversionDecl.
333     LazyASTUnresolvedSet Conversions;
334 
335     /// The conversion functions of this C++ class and all those
336     /// inherited conversion functions that are visible in this class.
337     ///
338     /// Each of the entries in this overload set is a CXXConversionDecl or a
339     /// FunctionTemplateDecl.
340     LazyASTUnresolvedSet VisibleConversions;
341 
342     /// The declaration which defines this record.
343     CXXRecordDecl *Definition;
344 
345     /// The first friend declaration in this class, or null if there
346     /// aren't any.
347     ///
348     /// This is actually currently stored in reverse order.
349     LazyDeclPtr FirstFriend;
350 
351     DefinitionData(CXXRecordDecl *D);
352 
353     /// Retrieve the set of direct base classes.
getBasesDefinitionData354     CXXBaseSpecifier *getBases() const {
355       if (!Bases.isOffset())
356         return Bases.get(nullptr);
357       return getBasesSlowCase();
358     }
359 
360     /// Retrieve the set of virtual base classes.
getVBasesDefinitionData361     CXXBaseSpecifier *getVBases() const {
362       if (!VBases.isOffset())
363         return VBases.get(nullptr);
364       return getVBasesSlowCase();
365     }
366 
basesDefinitionData367     ArrayRef<CXXBaseSpecifier> bases() const {
368       return llvm::ArrayRef(getBases(), NumBases);
369     }
370 
vbasesDefinitionData371     ArrayRef<CXXBaseSpecifier> vbases() const {
372       return llvm::ArrayRef(getVBases(), NumVBases);
373     }
374 
375   private:
376     CXXBaseSpecifier *getBasesSlowCase() const;
377     CXXBaseSpecifier *getVBasesSlowCase() const;
378   };
379 
380   struct DefinitionData *DefinitionData;
381 
382   /// Describes a C++ closure type (generated by a lambda expression).
383   struct LambdaDefinitionData : public DefinitionData {
384     using Capture = LambdaCapture;
385 
386     /// Whether this lambda is known to be dependent, even if its
387     /// context isn't dependent.
388     ///
389     /// A lambda with a non-dependent context can be dependent if it occurs
390     /// within the default argument of a function template, because the
391     /// lambda will have been created with the enclosing context as its
392     /// declaration context, rather than function. This is an unfortunate
393     /// artifact of having to parse the default arguments before.
394     LLVM_PREFERRED_TYPE(LambdaDependencyKind)
395     unsigned DependencyKind : 2;
396 
397     /// Whether this lambda is a generic lambda.
398     LLVM_PREFERRED_TYPE(bool)
399     unsigned IsGenericLambda : 1;
400 
401     /// The Default Capture.
402     LLVM_PREFERRED_TYPE(LambdaCaptureDefault)
403     unsigned CaptureDefault : 2;
404 
405     /// The number of captures in this lambda is limited 2^NumCaptures.
406     unsigned NumCaptures : 15;
407 
408     /// The number of explicit captures in this lambda.
409     unsigned NumExplicitCaptures : 12;
410 
411     /// Has known `internal` linkage.
412     LLVM_PREFERRED_TYPE(bool)
413     unsigned HasKnownInternalLinkage : 1;
414 
415     /// The number used to indicate this lambda expression for name
416     /// mangling in the Itanium C++ ABI.
417     unsigned ManglingNumber : 31;
418 
419     /// The index of this lambda within its context declaration. This is not in
420     /// general the same as the mangling number.
421     unsigned IndexInContext;
422 
423     /// The declaration that provides context for this lambda, if the
424     /// actual DeclContext does not suffice. This is used for lambdas that
425     /// occur within default arguments of function parameters within the class
426     /// or within a data member initializer.
427     LazyDeclPtr ContextDecl;
428 
429     /// The lists of captures, both explicit and implicit, for this
430     /// lambda. One list is provided for each merged copy of the lambda.
431     /// The first list corresponds to the canonical definition.
432     /// The destructor is registered by AddCaptureList when necessary.
433     llvm::TinyPtrVector<Capture*> Captures;
434 
435     /// The type of the call method.
436     TypeSourceInfo *MethodTyInfo;
437 
LambdaDefinitionDataLambdaDefinitionData438     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, unsigned DK,
439                          bool IsGeneric, LambdaCaptureDefault CaptureDefault)
440         : DefinitionData(D), DependencyKind(DK), IsGenericLambda(IsGeneric),
441           CaptureDefault(CaptureDefault), NumCaptures(0),
442           NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
443           IndexInContext(0), MethodTyInfo(Info) {
444       IsLambda = true;
445 
446       // C++1z [expr.prim.lambda]p4:
447       //   This class type is not an aggregate type.
448       Aggregate = false;
449       PlainOldData = false;
450     }
451 
452     // Add a list of captures.
453     void AddCaptureList(ASTContext &Ctx, Capture *CaptureList);
454   };
455 
dataPtr()456   struct DefinitionData *dataPtr() const {
457     // Complete the redecl chain (if necessary).
458     getMostRecentDecl();
459     return DefinitionData;
460   }
461 
data()462   struct DefinitionData &data() const {
463     auto *DD = dataPtr();
464     assert(DD && "queried property of class with no definition");
465     return *DD;
466   }
467 
getLambdaData()468   struct LambdaDefinitionData &getLambdaData() const {
469     // No update required: a merged definition cannot change any lambda
470     // properties.
471     auto *DD = DefinitionData;
472     assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
473     return static_cast<LambdaDefinitionData&>(*DD);
474   }
475 
476   /// The template or declaration that this declaration
477   /// describes or was instantiated from, respectively.
478   ///
479   /// For non-templates, this value will be null. For record
480   /// declarations that describe a class template, this will be a
481   /// pointer to a ClassTemplateDecl. For member
482   /// classes of class template specializations, this will be the
483   /// MemberSpecializationInfo referring to the member class that was
484   /// instantiated or specialized.
485   llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
486       TemplateOrInstantiation;
487 
488   /// Called from setBases and addedMember to notify the class that a
489   /// direct or virtual base class or a member of class type has been added.
490   void addedClassSubobject(CXXRecordDecl *Base);
491 
492   /// Notify the class that member has been added.
493   ///
494   /// This routine helps maintain information about the class based on which
495   /// members have been added. It will be invoked by DeclContext::addDecl()
496   /// whenever a member is added to this record.
497   void addedMember(Decl *D);
498 
499   void markedVirtualFunctionPure();
500 
501   /// Get the head of our list of friend declarations, possibly
502   /// deserializing the friends from an external AST source.
503   FriendDecl *getFirstFriend() const;
504 
505   /// Determine whether this class has an empty base class subobject of type X
506   /// or of one of the types that might be at offset 0 within X (per the C++
507   /// "standard layout" rules).
508   bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
509                                                const CXXRecordDecl *X);
510 
511 protected:
512   CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
513                 SourceLocation StartLoc, SourceLocation IdLoc,
514                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
515 
516 public:
517   /// Iterator that traverses the base classes of a class.
518   using base_class_iterator = CXXBaseSpecifier *;
519 
520   /// Iterator that traverses the base classes of a class.
521   using base_class_const_iterator = const CXXBaseSpecifier *;
522 
getCanonicalDecl()523   CXXRecordDecl *getCanonicalDecl() override {
524     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
525   }
526 
getCanonicalDecl()527   const CXXRecordDecl *getCanonicalDecl() const {
528     return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
529   }
530 
getPreviousDecl()531   CXXRecordDecl *getPreviousDecl() {
532     return cast_or_null<CXXRecordDecl>(
533             static_cast<RecordDecl *>(this)->getPreviousDecl());
534   }
535 
getPreviousDecl()536   const CXXRecordDecl *getPreviousDecl() const {
537     return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
538   }
539 
getMostRecentDecl()540   CXXRecordDecl *getMostRecentDecl() {
541     return cast<CXXRecordDecl>(
542             static_cast<RecordDecl *>(this)->getMostRecentDecl());
543   }
544 
getMostRecentDecl()545   const CXXRecordDecl *getMostRecentDecl() const {
546     return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
547   }
548 
getMostRecentNonInjectedDecl()549   CXXRecordDecl *getMostRecentNonInjectedDecl() {
550     CXXRecordDecl *Recent =
551         static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
552     while (Recent->isInjectedClassName()) {
553       // FIXME: Does injected class name need to be in the redeclarations chain?
554       assert(Recent->getPreviousDecl());
555       Recent = Recent->getPreviousDecl();
556     }
557     return Recent;
558   }
559 
getMostRecentNonInjectedDecl()560   const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
561     return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
562   }
563 
getDefinition()564   CXXRecordDecl *getDefinition() const {
565     // We only need an update if we don't already know which
566     // declaration is the definition.
567     auto *DD = DefinitionData ? DefinitionData : dataPtr();
568     return DD ? DD->Definition : nullptr;
569   }
570 
hasDefinition()571   bool hasDefinition() const { return DefinitionData || dataPtr(); }
572 
573   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
574                                SourceLocation StartLoc, SourceLocation IdLoc,
575                                IdentifierInfo *Id,
576                                CXXRecordDecl *PrevDecl = nullptr,
577                                bool DelayTypeCreation = false);
578   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
579                                      TypeSourceInfo *Info, SourceLocation Loc,
580                                      unsigned DependencyKind, bool IsGeneric,
581                                      LambdaCaptureDefault CaptureDefault);
582   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
583 
isDynamicClass()584   bool isDynamicClass() const {
585     return data().Polymorphic || data().NumVBases != 0;
586   }
587 
588   /// @returns true if class is dynamic or might be dynamic because the
589   /// definition is incomplete of dependent.
mayBeDynamicClass()590   bool mayBeDynamicClass() const {
591     return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
592   }
593 
594   /// @returns true if class is non dynamic or might be non dynamic because the
595   /// definition is incomplete of dependent.
mayBeNonDynamicClass()596   bool mayBeNonDynamicClass() const {
597     return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
598   }
599 
setIsParsingBaseSpecifiers()600   void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
601 
isParsingBaseSpecifiers()602   bool isParsingBaseSpecifiers() const {
603     return data().IsParsingBaseSpecifiers;
604   }
605 
606   unsigned getODRHash() const;
607 
608   /// Sets the base classes of this struct or class.
609   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
610 
611   /// Retrieves the number of base classes of this class.
getNumBases()612   unsigned getNumBases() const { return data().NumBases; }
613 
614   using base_class_range = llvm::iterator_range<base_class_iterator>;
615   using base_class_const_range =
616       llvm::iterator_range<base_class_const_iterator>;
617 
bases()618   base_class_range bases() {
619     return base_class_range(bases_begin(), bases_end());
620   }
bases()621   base_class_const_range bases() const {
622     return base_class_const_range(bases_begin(), bases_end());
623   }
624 
bases_begin()625   base_class_iterator bases_begin() { return data().getBases(); }
bases_begin()626   base_class_const_iterator bases_begin() const { return data().getBases(); }
bases_end()627   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
bases_end()628   base_class_const_iterator bases_end() const {
629     return bases_begin() + data().NumBases;
630   }
631 
632   /// Retrieves the number of virtual base classes of this class.
getNumVBases()633   unsigned getNumVBases() const { return data().NumVBases; }
634 
vbases()635   base_class_range vbases() {
636     return base_class_range(vbases_begin(), vbases_end());
637   }
vbases()638   base_class_const_range vbases() const {
639     return base_class_const_range(vbases_begin(), vbases_end());
640   }
641 
vbases_begin()642   base_class_iterator vbases_begin() { return data().getVBases(); }
vbases_begin()643   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
vbases_end()644   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
vbases_end()645   base_class_const_iterator vbases_end() const {
646     return vbases_begin() + data().NumVBases;
647   }
648 
649   /// Determine whether this class has any dependent base classes which
650   /// are not the current instantiation.
651   bool hasAnyDependentBases() const;
652 
653   /// Iterator access to method members.  The method iterator visits
654   /// all method members of the class, including non-instance methods,
655   /// special methods, etc.
656   using method_iterator = specific_decl_iterator<CXXMethodDecl>;
657   using method_range =
658       llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
659 
methods()660   method_range methods() const {
661     return method_range(method_begin(), method_end());
662   }
663 
664   /// Method begin iterator.  Iterates in the order the methods
665   /// were declared.
method_begin()666   method_iterator method_begin() const {
667     return method_iterator(decls_begin());
668   }
669 
670   /// Method past-the-end iterator.
method_end()671   method_iterator method_end() const {
672     return method_iterator(decls_end());
673   }
674 
675   /// Iterator access to constructor members.
676   using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
677   using ctor_range =
678       llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
679 
ctors()680   ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
681 
ctor_begin()682   ctor_iterator ctor_begin() const {
683     return ctor_iterator(decls_begin());
684   }
685 
ctor_end()686   ctor_iterator ctor_end() const {
687     return ctor_iterator(decls_end());
688   }
689 
690   /// An iterator over friend declarations.  All of these are defined
691   /// in DeclFriend.h.
692   class friend_iterator;
693   using friend_range = llvm::iterator_range<friend_iterator>;
694 
695   friend_range friends() const;
696   friend_iterator friend_begin() const;
697   friend_iterator friend_end() const;
698   void pushFriendDecl(FriendDecl *FD);
699 
700   /// Determines whether this record has any friends.
hasFriends()701   bool hasFriends() const {
702     return data().FirstFriend.isValid();
703   }
704 
705   /// \c true if a defaulted copy constructor for this class would be
706   /// deleted.
defaultedCopyConstructorIsDeleted()707   bool defaultedCopyConstructorIsDeleted() const {
708     assert((!needsOverloadResolutionForCopyConstructor() ||
709             (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
710            "this property has not yet been computed by Sema");
711     return data().DefaultedCopyConstructorIsDeleted;
712   }
713 
714   /// \c true if a defaulted move constructor for this class would be
715   /// deleted.
defaultedMoveConstructorIsDeleted()716   bool defaultedMoveConstructorIsDeleted() const {
717     assert((!needsOverloadResolutionForMoveConstructor() ||
718             (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
719            "this property has not yet been computed by Sema");
720     return data().DefaultedMoveConstructorIsDeleted;
721   }
722 
723   /// \c true if a defaulted destructor for this class would be deleted.
defaultedDestructorIsDeleted()724   bool defaultedDestructorIsDeleted() const {
725     assert((!needsOverloadResolutionForDestructor() ||
726             (data().DeclaredSpecialMembers & SMF_Destructor)) &&
727            "this property has not yet been computed by Sema");
728     return data().DefaultedDestructorIsDeleted;
729   }
730 
731   /// \c true if we know for sure that this class has a single,
732   /// accessible, unambiguous copy constructor that is not deleted.
hasSimpleCopyConstructor()733   bool hasSimpleCopyConstructor() const {
734     return !hasUserDeclaredCopyConstructor() &&
735            !data().DefaultedCopyConstructorIsDeleted;
736   }
737 
738   /// \c true if we know for sure that this class has a single,
739   /// accessible, unambiguous move constructor that is not deleted.
hasSimpleMoveConstructor()740   bool hasSimpleMoveConstructor() const {
741     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
742            !data().DefaultedMoveConstructorIsDeleted;
743   }
744 
745   /// \c true if we know for sure that this class has a single,
746   /// accessible, unambiguous copy assignment operator that is not deleted.
hasSimpleCopyAssignment()747   bool hasSimpleCopyAssignment() const {
748     return !hasUserDeclaredCopyAssignment() &&
749            !data().DefaultedCopyAssignmentIsDeleted;
750   }
751 
752   /// \c true if we know for sure that this class has a single,
753   /// accessible, unambiguous move assignment operator that is not deleted.
hasSimpleMoveAssignment()754   bool hasSimpleMoveAssignment() const {
755     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
756            !data().DefaultedMoveAssignmentIsDeleted;
757   }
758 
759   /// \c true if we know for sure that this class has an accessible
760   /// destructor that is not deleted.
hasSimpleDestructor()761   bool hasSimpleDestructor() const {
762     return !hasUserDeclaredDestructor() &&
763            !data().DefaultedDestructorIsDeleted;
764   }
765 
766   /// Determine whether this class has any default constructors.
hasDefaultConstructor()767   bool hasDefaultConstructor() const {
768     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
769            needsImplicitDefaultConstructor();
770   }
771 
772   /// Determine if we need to declare a default constructor for
773   /// this class.
774   ///
775   /// This value is used for lazy creation of default constructors.
needsImplicitDefaultConstructor()776   bool needsImplicitDefaultConstructor() const {
777     return (!data().UserDeclaredConstructor &&
778             !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
779             (!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) ||
780            // FIXME: Proposed fix to core wording issue: if a class inherits
781            // a default constructor and doesn't explicitly declare one, one
782            // is declared implicitly.
783            (data().HasInheritedDefaultConstructor &&
784             !(data().DeclaredSpecialMembers & SMF_DefaultConstructor));
785   }
786 
787   /// Determine whether this class has any user-declared constructors.
788   ///
789   /// When true, a default constructor will not be implicitly declared.
hasUserDeclaredConstructor()790   bool hasUserDeclaredConstructor() const {
791     return data().UserDeclaredConstructor;
792   }
793 
794   /// Whether this class has a user-provided default constructor
795   /// per C++11.
hasUserProvidedDefaultConstructor()796   bool hasUserProvidedDefaultConstructor() const {
797     return data().UserProvidedDefaultConstructor;
798   }
799 
800   /// Determine whether this class has a user-declared copy constructor.
801   ///
802   /// When false, a copy constructor will be implicitly declared.
hasUserDeclaredCopyConstructor()803   bool hasUserDeclaredCopyConstructor() const {
804     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
805   }
806 
807   /// Determine whether this class needs an implicit copy
808   /// constructor to be lazily declared.
needsImplicitCopyConstructor()809   bool needsImplicitCopyConstructor() const {
810     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
811   }
812 
813   /// Determine whether we need to eagerly declare a defaulted copy
814   /// constructor for this class.
needsOverloadResolutionForCopyConstructor()815   bool needsOverloadResolutionForCopyConstructor() const {
816     // C++17 [class.copy.ctor]p6:
817     //   If the class definition declares a move constructor or move assignment
818     //   operator, the implicitly declared copy constructor is defined as
819     //   deleted.
820     // In MSVC mode, sometimes a declared move assignment does not delete an
821     // implicit copy constructor, so defer this choice to Sema.
822     if (data().UserDeclaredSpecialMembers &
823         (SMF_MoveConstructor | SMF_MoveAssignment))
824       return true;
825     return data().NeedOverloadResolutionForCopyConstructor;
826   }
827 
828   /// Determine whether an implicit copy constructor for this type
829   /// would have a parameter with a const-qualified reference type.
implicitCopyConstructorHasConstParam()830   bool implicitCopyConstructorHasConstParam() const {
831     return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
832            (isAbstract() ||
833             data().ImplicitCopyConstructorCanHaveConstParamForVBase);
834   }
835 
836   /// Determine whether this class has a copy constructor with
837   /// a parameter type which is a reference to a const-qualified type.
hasCopyConstructorWithConstParam()838   bool hasCopyConstructorWithConstParam() const {
839     return data().HasDeclaredCopyConstructorWithConstParam ||
840            (needsImplicitCopyConstructor() &&
841             implicitCopyConstructorHasConstParam());
842   }
843 
844   /// Whether this class has a user-declared move constructor or
845   /// assignment operator.
846   ///
847   /// When false, a move constructor and assignment operator may be
848   /// implicitly declared.
hasUserDeclaredMoveOperation()849   bool hasUserDeclaredMoveOperation() const {
850     return data().UserDeclaredSpecialMembers &
851              (SMF_MoveConstructor | SMF_MoveAssignment);
852   }
853 
854   /// Determine whether this class has had a move constructor
855   /// declared by the user.
hasUserDeclaredMoveConstructor()856   bool hasUserDeclaredMoveConstructor() const {
857     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
858   }
859 
860   /// Determine whether this class has a move constructor.
hasMoveConstructor()861   bool hasMoveConstructor() const {
862     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
863            needsImplicitMoveConstructor();
864   }
865 
866   /// Set that we attempted to declare an implicit copy
867   /// constructor, but overload resolution failed so we deleted it.
setImplicitCopyConstructorIsDeleted()868   void setImplicitCopyConstructorIsDeleted() {
869     assert((data().DefaultedCopyConstructorIsDeleted ||
870             needsOverloadResolutionForCopyConstructor()) &&
871            "Copy constructor should not be deleted");
872     data().DefaultedCopyConstructorIsDeleted = true;
873   }
874 
875   /// Set that we attempted to declare an implicit move
876   /// constructor, but overload resolution failed so we deleted it.
setImplicitMoveConstructorIsDeleted()877   void setImplicitMoveConstructorIsDeleted() {
878     assert((data().DefaultedMoveConstructorIsDeleted ||
879             needsOverloadResolutionForMoveConstructor()) &&
880            "move constructor should not be deleted");
881     data().DefaultedMoveConstructorIsDeleted = true;
882   }
883 
884   /// Set that we attempted to declare an implicit destructor,
885   /// but overload resolution failed so we deleted it.
setImplicitDestructorIsDeleted()886   void setImplicitDestructorIsDeleted() {
887     assert((data().DefaultedDestructorIsDeleted ||
888             needsOverloadResolutionForDestructor()) &&
889            "destructor should not be deleted");
890     data().DefaultedDestructorIsDeleted = true;
891   }
892 
893   /// Determine whether this class should get an implicit move
894   /// constructor or if any existing special member function inhibits this.
needsImplicitMoveConstructor()895   bool needsImplicitMoveConstructor() const {
896     return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
897            !hasUserDeclaredCopyConstructor() &&
898            !hasUserDeclaredCopyAssignment() &&
899            !hasUserDeclaredMoveAssignment() &&
900            !hasUserDeclaredDestructor();
901   }
902 
903   /// Determine whether we need to eagerly declare a defaulted move
904   /// constructor for this class.
needsOverloadResolutionForMoveConstructor()905   bool needsOverloadResolutionForMoveConstructor() const {
906     return data().NeedOverloadResolutionForMoveConstructor;
907   }
908 
909   /// Determine whether this class has a user-declared copy assignment
910   /// operator.
911   ///
912   /// When false, a copy assignment operator will be implicitly declared.
hasUserDeclaredCopyAssignment()913   bool hasUserDeclaredCopyAssignment() const {
914     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
915   }
916 
917   /// Set that we attempted to declare an implicit copy assignment
918   /// operator, but overload resolution failed so we deleted it.
setImplicitCopyAssignmentIsDeleted()919   void setImplicitCopyAssignmentIsDeleted() {
920     assert((data().DefaultedCopyAssignmentIsDeleted ||
921             needsOverloadResolutionForCopyAssignment()) &&
922            "copy assignment should not be deleted");
923     data().DefaultedCopyAssignmentIsDeleted = true;
924   }
925 
926   /// Determine whether this class needs an implicit copy
927   /// assignment operator to be lazily declared.
needsImplicitCopyAssignment()928   bool needsImplicitCopyAssignment() const {
929     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
930   }
931 
932   /// Determine whether we need to eagerly declare a defaulted copy
933   /// assignment operator for this class.
needsOverloadResolutionForCopyAssignment()934   bool needsOverloadResolutionForCopyAssignment() const {
935     // C++20 [class.copy.assign]p2:
936     //   If the class definition declares a move constructor or move assignment
937     //   operator, the implicitly declared copy assignment operator is defined
938     //   as deleted.
939     // In MSVC mode, sometimes a declared move constructor does not delete an
940     // implicit copy assignment, so defer this choice to Sema.
941     if (data().UserDeclaredSpecialMembers &
942         (SMF_MoveConstructor | SMF_MoveAssignment))
943       return true;
944     return data().NeedOverloadResolutionForCopyAssignment;
945   }
946 
947   /// Determine whether an implicit copy assignment operator for this
948   /// type would have a parameter with a const-qualified reference type.
implicitCopyAssignmentHasConstParam()949   bool implicitCopyAssignmentHasConstParam() const {
950     return data().ImplicitCopyAssignmentHasConstParam;
951   }
952 
953   /// Determine whether this class has a copy assignment operator with
954   /// a parameter type which is a reference to a const-qualified type or is not
955   /// a reference.
hasCopyAssignmentWithConstParam()956   bool hasCopyAssignmentWithConstParam() const {
957     return data().HasDeclaredCopyAssignmentWithConstParam ||
958            (needsImplicitCopyAssignment() &&
959             implicitCopyAssignmentHasConstParam());
960   }
961 
962   /// Determine whether this class has had a move assignment
963   /// declared by the user.
hasUserDeclaredMoveAssignment()964   bool hasUserDeclaredMoveAssignment() const {
965     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
966   }
967 
968   /// Determine whether this class has a move assignment operator.
hasMoveAssignment()969   bool hasMoveAssignment() const {
970     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
971            needsImplicitMoveAssignment();
972   }
973 
974   /// Set that we attempted to declare an implicit move assignment
975   /// operator, but overload resolution failed so we deleted it.
setImplicitMoveAssignmentIsDeleted()976   void setImplicitMoveAssignmentIsDeleted() {
977     assert((data().DefaultedMoveAssignmentIsDeleted ||
978             needsOverloadResolutionForMoveAssignment()) &&
979            "move assignment should not be deleted");
980     data().DefaultedMoveAssignmentIsDeleted = true;
981   }
982 
983   /// Determine whether this class should get an implicit move
984   /// assignment operator or if any existing special member function inhibits
985   /// this.
needsImplicitMoveAssignment()986   bool needsImplicitMoveAssignment() const {
987     return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
988            !hasUserDeclaredCopyConstructor() &&
989            !hasUserDeclaredCopyAssignment() &&
990            !hasUserDeclaredMoveConstructor() &&
991            !hasUserDeclaredDestructor() &&
992            (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
993   }
994 
995   /// Determine whether we need to eagerly declare a move assignment
996   /// operator for this class.
needsOverloadResolutionForMoveAssignment()997   bool needsOverloadResolutionForMoveAssignment() const {
998     return data().NeedOverloadResolutionForMoveAssignment;
999   }
1000 
1001   /// Determine whether this class has a user-declared destructor.
1002   ///
1003   /// When false, a destructor will be implicitly declared.
hasUserDeclaredDestructor()1004   bool hasUserDeclaredDestructor() const {
1005     return data().UserDeclaredSpecialMembers & SMF_Destructor;
1006   }
1007 
1008   /// Determine whether this class needs an implicit destructor to
1009   /// be lazily declared.
needsImplicitDestructor()1010   bool needsImplicitDestructor() const {
1011     return !(data().DeclaredSpecialMembers & SMF_Destructor);
1012   }
1013 
1014   /// Determine whether we need to eagerly declare a destructor for this
1015   /// class.
needsOverloadResolutionForDestructor()1016   bool needsOverloadResolutionForDestructor() const {
1017     return data().NeedOverloadResolutionForDestructor;
1018   }
1019 
1020   /// Determine whether this class describes a lambda function object.
isLambda()1021   bool isLambda() const {
1022     // An update record can't turn a non-lambda into a lambda.
1023     auto *DD = DefinitionData;
1024     return DD && DD->IsLambda;
1025   }
1026 
1027   /// Determine whether this class describes a generic
1028   /// lambda function object (i.e. function call operator is
1029   /// a template).
1030   bool isGenericLambda() const;
1031 
1032   /// Determine whether this lambda should have an implicit default constructor
1033   /// and copy and move assignment operators.
1034   bool lambdaIsDefaultConstructibleAndAssignable() const;
1035 
1036   /// Retrieve the lambda call operator of the closure type
1037   /// if this is a closure type.
1038   CXXMethodDecl *getLambdaCallOperator() const;
1039 
1040   /// Retrieve the dependent lambda call operator of the closure type
1041   /// if this is a templated closure type.
1042   FunctionTemplateDecl *getDependentLambdaCallOperator() const;
1043 
1044   /// Retrieve the lambda static invoker, the address of which
1045   /// is returned by the conversion operator, and the body of which
1046   /// is forwarded to the lambda call operator. The version that does not
1047   /// take a calling convention uses the 'default' calling convention for free
1048   /// functions if the Lambda's calling convention was not modified via
1049   /// attribute. Otherwise, it will return the calling convention specified for
1050   /// the lambda.
1051   CXXMethodDecl *getLambdaStaticInvoker() const;
1052   CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
1053 
1054   /// Retrieve the generic lambda's template parameter list.
1055   /// Returns null if the class does not represent a lambda or a generic
1056   /// lambda.
1057   TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1058 
1059   /// Retrieve the lambda template parameters that were specified explicitly.
1060   ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
1061 
getLambdaCaptureDefault()1062   LambdaCaptureDefault getLambdaCaptureDefault() const {
1063     assert(isLambda());
1064     return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1065   }
1066 
isCapturelessLambda()1067   bool isCapturelessLambda() const {
1068     if (!isLambda())
1069       return false;
1070     return getLambdaCaptureDefault() == LCD_None && capture_size() == 0;
1071   }
1072 
1073   /// Set the captures for this lambda closure type.
1074   void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
1075 
1076   /// For a closure type, retrieve the mapping from captured
1077   /// variables and \c this to the non-static data members that store the
1078   /// values or references of the captures.
1079   ///
1080   /// \param Captures Will be populated with the mapping from captured
1081   /// variables to the corresponding fields.
1082   ///
1083   /// \param ThisCapture Will be set to the field declaration for the
1084   /// \c this capture.
1085   ///
1086   /// \note No entries will be added for init-captures, as they do not capture
1087   /// variables.
1088   ///
1089   /// \note If multiple versions of the lambda are merged together, they may
1090   /// have different variable declarations corresponding to the same capture.
1091   /// In that case, all of those variable declarations will be added to the
1092   /// Captures list, so it may have more than one variable listed per field.
1093   void
1094   getCaptureFields(llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1095                    FieldDecl *&ThisCapture) const;
1096 
1097   using capture_const_iterator = const LambdaCapture *;
1098   using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1099 
captures()1100   capture_const_range captures() const {
1101     return capture_const_range(captures_begin(), captures_end());
1102   }
1103 
captures_begin()1104   capture_const_iterator captures_begin() const {
1105     if (!isLambda()) return nullptr;
1106     LambdaDefinitionData &LambdaData = getLambdaData();
1107     return LambdaData.Captures.empty() ? nullptr : LambdaData.Captures.front();
1108   }
1109 
captures_end()1110   capture_const_iterator captures_end() const {
1111     return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1112                       : nullptr;
1113   }
1114 
capture_size()1115   unsigned capture_size() const { return getLambdaData().NumCaptures; }
1116 
getCapture(unsigned I)1117   const LambdaCapture *getCapture(unsigned I) const {
1118     assert(isLambda() && I < capture_size() && "invalid index for capture");
1119     return captures_begin() + I;
1120   }
1121 
1122   using conversion_iterator = UnresolvedSetIterator;
1123 
conversion_begin()1124   conversion_iterator conversion_begin() const {
1125     return data().Conversions.get(getASTContext()).begin();
1126   }
1127 
conversion_end()1128   conversion_iterator conversion_end() const {
1129     return data().Conversions.get(getASTContext()).end();
1130   }
1131 
1132   /// Removes a conversion function from this class.  The conversion
1133   /// function must currently be a member of this class.  Furthermore,
1134   /// this class must currently be in the process of being defined.
1135   void removeConversion(const NamedDecl *Old);
1136 
1137   /// Get all conversion functions visible in current class,
1138   /// including conversion function templates.
1139   llvm::iterator_range<conversion_iterator>
1140   getVisibleConversionFunctions() const;
1141 
1142   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1143   /// which is a class with no user-declared constructors, no private
1144   /// or protected non-static data members, no base classes, and no virtual
1145   /// functions (C++ [dcl.init.aggr]p1).
isAggregate()1146   bool isAggregate() const { return data().Aggregate; }
1147 
1148   /// Whether this class has any in-class initializers
1149   /// for non-static data members (including those in anonymous unions or
1150   /// structs).
hasInClassInitializer()1151   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1152 
1153   /// Whether this class or any of its subobjects has any members of
1154   /// reference type which would make value-initialization ill-formed.
1155   ///
1156   /// Per C++03 [dcl.init]p5:
1157   ///  - if T is a non-union class type without a user-declared constructor,
1158   ///    then every non-static data member and base-class component of T is
1159   ///    value-initialized [...] A program that calls for [...]
1160   ///    value-initialization of an entity of reference type is ill-formed.
hasUninitializedReferenceMember()1161   bool hasUninitializedReferenceMember() const {
1162     return !isUnion() && !hasUserDeclaredConstructor() &&
1163            data().HasUninitializedReferenceMember;
1164   }
1165 
1166   /// Whether this class is a POD-type (C++ [class]p4)
1167   ///
1168   /// For purposes of this function a class is POD if it is an aggregate
1169   /// that has no non-static non-POD data members, no reference data
1170   /// members, no user-defined copy assignment operator and no
1171   /// user-defined destructor.
1172   ///
1173   /// Note that this is the C++ TR1 definition of POD.
isPOD()1174   bool isPOD() const { return data().PlainOldData; }
1175 
1176   /// True if this class is C-like, without C++-specific features, e.g.
1177   /// it contains only public fields, no bases, tag kind is not 'class', etc.
1178   bool isCLike() const;
1179 
1180   /// Determine whether this is an empty class in the sense of
1181   /// (C++11 [meta.unary.prop]).
1182   ///
1183   /// The CXXRecordDecl is a class type, but not a union type,
1184   /// with no non-static data members other than bit-fields of length 0,
1185   /// no virtual member functions, no virtual base classes,
1186   /// and no base class B for which is_empty<B>::value is false.
1187   ///
1188   /// \note This does NOT include a check for union-ness.
isEmpty()1189   bool isEmpty() const { return data().Empty; }
1190   /// Marks this record as empty. This is used by DWARFASTParserClang
1191   /// when parsing records with empty fields having [[no_unique_address]]
1192   /// attribute
markEmpty()1193   void markEmpty() { data().Empty = true; }
1194 
setInitMethod(bool Val)1195   void setInitMethod(bool Val) { data().HasInitMethod = Val; }
hasInitMethod()1196   bool hasInitMethod() const { return data().HasInitMethod; }
1197 
hasPrivateFields()1198   bool hasPrivateFields() const {
1199     return data().HasPrivateFields;
1200   }
1201 
hasProtectedFields()1202   bool hasProtectedFields() const {
1203     return data().HasProtectedFields;
1204   }
1205 
1206   /// Determine whether this class has direct non-static data members.
hasDirectFields()1207   bool hasDirectFields() const {
1208     auto &D = data();
1209     return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1210   }
1211 
1212   /// Whether this class is polymorphic (C++ [class.virtual]),
1213   /// which means that the class contains or inherits a virtual function.
isPolymorphic()1214   bool isPolymorphic() const { return data().Polymorphic; }
1215 
1216   /// Determine whether this class has a pure virtual function.
1217   ///
1218   /// The class is abstract per (C++ [class.abstract]p2) if it declares
1219   /// a pure virtual function or inherits a pure virtual function that is
1220   /// not overridden.
isAbstract()1221   bool isAbstract() const { return data().Abstract; }
1222 
1223   /// Determine whether this class is standard-layout per
1224   /// C++ [class]p7.
isStandardLayout()1225   bool isStandardLayout() const { return data().IsStandardLayout; }
1226 
1227   /// Determine whether this class was standard-layout per
1228   /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
isCXX11StandardLayout()1229   bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1230 
1231   /// Determine whether this class, or any of its class subobjects,
1232   /// contains a mutable field.
hasMutableFields()1233   bool hasMutableFields() const { return data().HasMutableFields; }
1234 
1235   /// Determine whether this class has any variant members.
hasVariantMembers()1236   bool hasVariantMembers() const { return data().HasVariantMembers; }
1237 
1238   /// Determine whether this class has a trivial default constructor
1239   /// (C++11 [class.ctor]p5).
hasTrivialDefaultConstructor()1240   bool hasTrivialDefaultConstructor() const {
1241     return hasDefaultConstructor() &&
1242            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1243   }
1244 
1245   /// Determine whether this class has a non-trivial default constructor
1246   /// (C++11 [class.ctor]p5).
hasNonTrivialDefaultConstructor()1247   bool hasNonTrivialDefaultConstructor() const {
1248     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1249            (needsImplicitDefaultConstructor() &&
1250             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1251   }
1252 
1253   /// Determine whether this class has at least one constexpr constructor
1254   /// other than the copy or move constructors.
hasConstexprNonCopyMoveConstructor()1255   bool hasConstexprNonCopyMoveConstructor() const {
1256     return data().HasConstexprNonCopyMoveConstructor ||
1257            (needsImplicitDefaultConstructor() &&
1258             defaultedDefaultConstructorIsConstexpr());
1259   }
1260 
1261   /// Determine whether a defaulted default constructor for this class
1262   /// would be constexpr.
defaultedDefaultConstructorIsConstexpr()1263   bool defaultedDefaultConstructorIsConstexpr() const {
1264     return data().DefaultedDefaultConstructorIsConstexpr &&
1265            (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1266             getLangOpts().CPlusPlus20);
1267   }
1268 
1269   /// Determine whether this class has a constexpr default constructor.
hasConstexprDefaultConstructor()1270   bool hasConstexprDefaultConstructor() const {
1271     return data().HasConstexprDefaultConstructor ||
1272            (needsImplicitDefaultConstructor() &&
1273             defaultedDefaultConstructorIsConstexpr());
1274   }
1275 
1276   /// Determine whether this class has a trivial copy constructor
1277   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
hasTrivialCopyConstructor()1278   bool hasTrivialCopyConstructor() const {
1279     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1280   }
1281 
hasTrivialCopyConstructorForCall()1282   bool hasTrivialCopyConstructorForCall() const {
1283     return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1284   }
1285 
1286   /// Determine whether this class has a non-trivial copy constructor
1287   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
hasNonTrivialCopyConstructor()1288   bool hasNonTrivialCopyConstructor() const {
1289     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1290            !hasTrivialCopyConstructor();
1291   }
1292 
hasNonTrivialCopyConstructorForCall()1293   bool hasNonTrivialCopyConstructorForCall() const {
1294     return (data().DeclaredNonTrivialSpecialMembersForCall &
1295             SMF_CopyConstructor) ||
1296            !hasTrivialCopyConstructorForCall();
1297   }
1298 
1299   /// Determine whether this class has a trivial move constructor
1300   /// (C++11 [class.copy]p12)
hasTrivialMoveConstructor()1301   bool hasTrivialMoveConstructor() const {
1302     return hasMoveConstructor() &&
1303            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1304   }
1305 
hasTrivialMoveConstructorForCall()1306   bool hasTrivialMoveConstructorForCall() const {
1307     return hasMoveConstructor() &&
1308            (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1309   }
1310 
1311   /// Determine whether this class has a non-trivial move constructor
1312   /// (C++11 [class.copy]p12)
hasNonTrivialMoveConstructor()1313   bool hasNonTrivialMoveConstructor() const {
1314     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1315            (needsImplicitMoveConstructor() &&
1316             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1317   }
1318 
hasNonTrivialMoveConstructorForCall()1319   bool hasNonTrivialMoveConstructorForCall() const {
1320     return (data().DeclaredNonTrivialSpecialMembersForCall &
1321             SMF_MoveConstructor) ||
1322            (needsImplicitMoveConstructor() &&
1323             !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1324   }
1325 
1326   /// Determine whether this class has a trivial copy assignment operator
1327   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
hasTrivialCopyAssignment()1328   bool hasTrivialCopyAssignment() const {
1329     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1330   }
1331 
1332   /// Determine whether this class has a non-trivial copy assignment
1333   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
hasNonTrivialCopyAssignment()1334   bool hasNonTrivialCopyAssignment() const {
1335     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1336            !hasTrivialCopyAssignment();
1337   }
1338 
1339   /// Determine whether this class has a trivial move assignment operator
1340   /// (C++11 [class.copy]p25)
hasTrivialMoveAssignment()1341   bool hasTrivialMoveAssignment() const {
1342     return hasMoveAssignment() &&
1343            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1344   }
1345 
1346   /// Determine whether this class has a non-trivial move assignment
1347   /// operator (C++11 [class.copy]p25)
hasNonTrivialMoveAssignment()1348   bool hasNonTrivialMoveAssignment() const {
1349     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1350            (needsImplicitMoveAssignment() &&
1351             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1352   }
1353 
1354   /// Determine whether a defaulted default constructor for this class
1355   /// would be constexpr.
defaultedDestructorIsConstexpr()1356   bool defaultedDestructorIsConstexpr() const {
1357     return data().DefaultedDestructorIsConstexpr &&
1358            getLangOpts().CPlusPlus20;
1359   }
1360 
1361   /// Determine whether this class has a constexpr destructor.
1362   bool hasConstexprDestructor() const;
1363 
1364   /// Determine whether this class has a trivial destructor
1365   /// (C++ [class.dtor]p3)
hasTrivialDestructor()1366   bool hasTrivialDestructor() const {
1367     return data().HasTrivialSpecialMembers & SMF_Destructor;
1368   }
1369 
hasTrivialDestructorForCall()1370   bool hasTrivialDestructorForCall() const {
1371     return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1372   }
1373 
1374   /// Determine whether this class has a non-trivial destructor
1375   /// (C++ [class.dtor]p3)
hasNonTrivialDestructor()1376   bool hasNonTrivialDestructor() const {
1377     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1378   }
1379 
hasNonTrivialDestructorForCall()1380   bool hasNonTrivialDestructorForCall() const {
1381     return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1382   }
1383 
setHasTrivialSpecialMemberForCall()1384   void setHasTrivialSpecialMemberForCall() {
1385     data().HasTrivialSpecialMembersForCall =
1386         (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1387   }
1388 
1389   /// Determine whether declaring a const variable with this type is ok
1390   /// per core issue 253.
allowConstDefaultInit()1391   bool allowConstDefaultInit() const {
1392     return !data().HasUninitializedFields ||
1393            !(data().HasDefaultedDefaultConstructor ||
1394              needsImplicitDefaultConstructor());
1395   }
1396 
1397   /// Determine whether this class has a destructor which has no
1398   /// semantic effect.
1399   ///
1400   /// Any such destructor will be trivial, public, defaulted and not deleted,
1401   /// and will call only irrelevant destructors.
hasIrrelevantDestructor()1402   bool hasIrrelevantDestructor() const {
1403     return data().HasIrrelevantDestructor;
1404   }
1405 
1406   /// Determine whether this class has a non-literal or/ volatile type
1407   /// non-static data member or base class.
hasNonLiteralTypeFieldsOrBases()1408   bool hasNonLiteralTypeFieldsOrBases() const {
1409     return data().HasNonLiteralTypeFieldsOrBases;
1410   }
1411 
1412   /// Determine whether this class has a using-declaration that names
1413   /// a user-declared base class constructor.
hasInheritedConstructor()1414   bool hasInheritedConstructor() const {
1415     return data().HasInheritedConstructor;
1416   }
1417 
1418   /// Determine whether this class has a using-declaration that names
1419   /// a base class assignment operator.
hasInheritedAssignment()1420   bool hasInheritedAssignment() const {
1421     return data().HasInheritedAssignment;
1422   }
1423 
1424   /// Determine whether this class is considered trivially copyable per
1425   /// (C++11 [class]p6).
1426   bool isTriviallyCopyable() const;
1427 
1428   /// Determine whether this class is considered trivially copyable per
1429   bool isTriviallyCopyConstructible() const;
1430 
1431   /// Determine whether this class is considered trivial.
1432   ///
1433   /// C++11 [class]p6:
1434   ///    "A trivial class is a class that has a trivial default constructor and
1435   ///    is trivially copyable."
isTrivial()1436   bool isTrivial() const {
1437     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1438   }
1439 
1440   /// Determine whether this class is a literal type.
1441   ///
1442   /// C++20 [basic.types]p10:
1443   ///   A class type that has all the following properties:
1444   ///     - it has a constexpr destructor
1445   ///     - all of its non-static non-variant data members and base classes
1446   ///       are of non-volatile literal types, and it:
1447   ///        - is a closure type
1448   ///        - is an aggregate union type that has either no variant members
1449   ///          or at least one variant member of non-volatile literal type
1450   ///        - is a non-union aggregate type for which each of its anonymous
1451   ///          union members satisfies the above requirements for an aggregate
1452   ///          union type, or
1453   ///        - has at least one constexpr constructor or constructor template
1454   ///          that is not a copy or move constructor.
1455   bool isLiteral() const;
1456 
1457   /// Determine whether this is a structural type.
isStructural()1458   bool isStructural() const {
1459     return isLiteral() && data().StructuralIfLiteral;
1460   }
1461 
1462   /// Notify the class that this destructor is now selected.
1463   ///
1464   /// Important properties of the class depend on destructor properties. Since
1465   /// C++20, it is possible to have multiple destructor declarations in a class
1466   /// out of which one will be selected at the end.
1467   /// This is called separately from addedMember because it has to be deferred
1468   /// to the completion of the class.
1469   void addedSelectedDestructor(CXXDestructorDecl *DD);
1470 
1471   /// Notify the class that an eligible SMF has been added.
1472   /// This updates triviality and destructor based properties of the class accordingly.
1473   void addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, unsigned SMKind);
1474 
1475   /// If this record is an instantiation of a member class,
1476   /// retrieves the member class from which it was instantiated.
1477   ///
1478   /// This routine will return non-null for (non-templated) member
1479   /// classes of class templates. For example, given:
1480   ///
1481   /// \code
1482   /// template<typename T>
1483   /// struct X {
1484   ///   struct A { };
1485   /// };
1486   /// \endcode
1487   ///
1488   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1489   /// whose parent is the class template specialization X<int>. For
1490   /// this declaration, getInstantiatedFromMemberClass() will return
1491   /// the CXXRecordDecl X<T>::A. When a complete definition of
1492   /// X<int>::A is required, it will be instantiated from the
1493   /// declaration returned by getInstantiatedFromMemberClass().
1494   CXXRecordDecl *getInstantiatedFromMemberClass() const;
1495 
1496   /// If this class is an instantiation of a member class of a
1497   /// class template specialization, retrieves the member specialization
1498   /// information.
1499   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1500 
1501   /// Specify that this record is an instantiation of the
1502   /// member class \p RD.
1503   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1504                                      TemplateSpecializationKind TSK);
1505 
1506   /// Retrieves the class template that is described by this
1507   /// class declaration.
1508   ///
1509   /// Every class template is represented as a ClassTemplateDecl and a
1510   /// CXXRecordDecl. The former contains template properties (such as
1511   /// the template parameter lists) while the latter contains the
1512   /// actual description of the template's
1513   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1514   /// CXXRecordDecl that from a ClassTemplateDecl, while
1515   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1516   /// a CXXRecordDecl.
1517   ClassTemplateDecl *getDescribedClassTemplate() const;
1518 
1519   void setDescribedClassTemplate(ClassTemplateDecl *Template);
1520 
1521   /// Determine whether this particular class is a specialization or
1522   /// instantiation of a class template or member class of a class template,
1523   /// and how it was instantiated or specialized.
1524   TemplateSpecializationKind getTemplateSpecializationKind() const;
1525 
1526   /// Set the kind of specialization or template instantiation this is.
1527   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1528 
1529   /// Retrieve the record declaration from which this record could be
1530   /// instantiated. Returns null if this class is not a template instantiation.
1531   const CXXRecordDecl *getTemplateInstantiationPattern() const;
1532 
getTemplateInstantiationPattern()1533   CXXRecordDecl *getTemplateInstantiationPattern() {
1534     return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1535                                            ->getTemplateInstantiationPattern());
1536   }
1537 
1538   /// Returns the destructor decl for this class.
1539   CXXDestructorDecl *getDestructor() const;
1540 
1541   /// Returns true if the class destructor, or any implicitly invoked
1542   /// destructors are marked noreturn.
isAnyDestructorNoReturn()1543   bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; }
1544 
1545   /// If the class is a local class [class.local], returns
1546   /// the enclosing function declaration.
isLocalClass()1547   const FunctionDecl *isLocalClass() const {
1548     if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1549       return RD->isLocalClass();
1550 
1551     return dyn_cast<FunctionDecl>(getDeclContext());
1552   }
1553 
isLocalClass()1554   FunctionDecl *isLocalClass() {
1555     return const_cast<FunctionDecl*>(
1556         const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1557   }
1558 
1559   /// Determine whether this dependent class is a current instantiation,
1560   /// when viewed from within the given context.
1561   bool isCurrentInstantiation(const DeclContext *CurContext) const;
1562 
1563   /// Determine whether this class is derived from the class \p Base.
1564   ///
1565   /// This routine only determines whether this class is derived from \p Base,
1566   /// but does not account for factors that may make a Derived -> Base class
1567   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1568   /// base class subobjects.
1569   ///
1570   /// \param Base the base class we are searching for.
1571   ///
1572   /// \returns true if this class is derived from Base, false otherwise.
1573   bool isDerivedFrom(const CXXRecordDecl *Base) const;
1574 
1575   /// Determine whether this class is derived from the type \p Base.
1576   ///
1577   /// This routine only determines whether this class is derived from \p Base,
1578   /// but does not account for factors that may make a Derived -> Base class
1579   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1580   /// base class subobjects.
1581   ///
1582   /// \param Base the base class we are searching for.
1583   ///
1584   /// \param Paths will contain the paths taken from the current class to the
1585   /// given \p Base class.
1586   ///
1587   /// \returns true if this class is derived from \p Base, false otherwise.
1588   ///
1589   /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1590   /// tangling input and output in \p Paths
1591   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1592 
1593   /// Determine whether this class is virtually derived from
1594   /// the class \p Base.
1595   ///
1596   /// This routine only determines whether this class is virtually
1597   /// derived from \p Base, but does not account for factors that may
1598   /// make a Derived -> Base class ill-formed, such as
1599   /// private/protected inheritance or multiple, ambiguous base class
1600   /// subobjects.
1601   ///
1602   /// \param Base the base class we are searching for.
1603   ///
1604   /// \returns true if this class is virtually derived from Base,
1605   /// false otherwise.
1606   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1607 
1608   /// Determine whether this class is provably not derived from
1609   /// the type \p Base.
1610   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1611 
1612   /// Function type used by forallBases() as a callback.
1613   ///
1614   /// \param BaseDefinition the definition of the base class
1615   ///
1616   /// \returns true if this base matched the search criteria
1617   using ForallBasesCallback =
1618       llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1619 
1620   /// Determines if the given callback holds for all the direct
1621   /// or indirect base classes of this type.
1622   ///
1623   /// The class itself does not count as a base class.  This routine
1624   /// returns false if the class has non-computable base classes.
1625   ///
1626   /// \param BaseMatches Callback invoked for each (direct or indirect) base
1627   /// class of this type until a call returns false.
1628   bool forallBases(ForallBasesCallback BaseMatches) const;
1629 
1630   /// Function type used by lookupInBases() to determine whether a
1631   /// specific base class subobject matches the lookup criteria.
1632   ///
1633   /// \param Specifier the base-class specifier that describes the inheritance
1634   /// from the base class we are trying to match.
1635   ///
1636   /// \param Path the current path, from the most-derived class down to the
1637   /// base named by the \p Specifier.
1638   ///
1639   /// \returns true if this base matched the search criteria, false otherwise.
1640   using BaseMatchesCallback =
1641       llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1642                               CXXBasePath &Path)>;
1643 
1644   /// Look for entities within the base classes of this C++ class,
1645   /// transitively searching all base class subobjects.
1646   ///
1647   /// This routine uses the callback function \p BaseMatches to find base
1648   /// classes meeting some search criteria, walking all base class subobjects
1649   /// and populating the given \p Paths structure with the paths through the
1650   /// inheritance hierarchy that resulted in a match. On a successful search,
1651   /// the \p Paths structure can be queried to retrieve the matching paths and
1652   /// to determine if there were any ambiguities.
1653   ///
1654   /// \param BaseMatches callback function used to determine whether a given
1655   /// base matches the user-defined search criteria.
1656   ///
1657   /// \param Paths used to record the paths from this class to its base class
1658   /// subobjects that match the search criteria.
1659   ///
1660   /// \param LookupInDependent can be set to true to extend the search to
1661   /// dependent base classes.
1662   ///
1663   /// \returns true if there exists any path from this class to a base class
1664   /// subobject that matches the search criteria.
1665   bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1666                      bool LookupInDependent = false) const;
1667 
1668   /// Base-class lookup callback that determines whether the given
1669   /// base class specifier refers to a specific class declaration.
1670   ///
1671   /// This callback can be used with \c lookupInBases() to determine whether
1672   /// a given derived class has is a base class subobject of a particular type.
1673   /// The base record pointer should refer to the canonical CXXRecordDecl of the
1674   /// base class that we are searching for.
1675   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1676                             CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1677 
1678   /// Base-class lookup callback that determines whether the
1679   /// given base class specifier refers to a specific class
1680   /// declaration and describes virtual derivation.
1681   ///
1682   /// This callback can be used with \c lookupInBases() to determine
1683   /// whether a given derived class has is a virtual base class
1684   /// subobject of a particular type.  The base record pointer should
1685   /// refer to the canonical CXXRecordDecl of the base class that we
1686   /// are searching for.
1687   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1688                                    CXXBasePath &Path,
1689                                    const CXXRecordDecl *BaseRecord);
1690 
1691   /// Retrieve the final overriders for each virtual member
1692   /// function in the class hierarchy where this class is the
1693   /// most-derived class in the class hierarchy.
1694   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1695 
1696   /// Get the indirect primary bases for this class.
1697   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1698 
1699   /// Determine whether this class has a member with the given name, possibly
1700   /// in a non-dependent base class.
1701   ///
1702   /// No check for ambiguity is performed, so this should never be used when
1703   /// implementing language semantics, but it may be appropriate for warnings,
1704   /// static analysis, or similar.
1705   bool hasMemberName(DeclarationName N) const;
1706 
1707   /// Performs an imprecise lookup of a dependent name in this class.
1708   ///
1709   /// This function does not follow strict semantic rules and should be used
1710   /// only when lookup rules can be relaxed, e.g. indexing.
1711   std::vector<const NamedDecl *>
1712   lookupDependentName(DeclarationName Name,
1713                       llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1714 
1715   /// Renders and displays an inheritance diagram
1716   /// for this C++ class and all of its base classes (transitively) using
1717   /// GraphViz.
1718   void viewInheritance(ASTContext& Context) const;
1719 
1720   /// Calculates the access of a decl that is reached
1721   /// along a path.
MergeAccess(AccessSpecifier PathAccess,AccessSpecifier DeclAccess)1722   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1723                                      AccessSpecifier DeclAccess) {
1724     assert(DeclAccess != AS_none);
1725     if (DeclAccess == AS_private) return AS_none;
1726     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1727   }
1728 
1729   /// Indicates that the declaration of a defaulted or deleted special
1730   /// member function is now complete.
1731   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1732 
1733   void setTrivialForCallFlags(CXXMethodDecl *MD);
1734 
1735   /// Indicates that the definition of this class is now complete.
1736   void completeDefinition() override;
1737 
1738   /// Indicates that the definition of this class is now complete,
1739   /// and provides a final overrider map to help determine
1740   ///
1741   /// \param FinalOverriders The final overrider map for this class, which can
1742   /// be provided as an optimization for abstract-class checking. If NULL,
1743   /// final overriders will be computed if they are needed to complete the
1744   /// definition.
1745   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1746 
1747   /// Determine whether this class may end up being abstract, even though
1748   /// it is not yet known to be abstract.
1749   ///
1750   /// \returns true if this class is not known to be abstract but has any
1751   /// base classes that are abstract. In this case, \c completeDefinition()
1752   /// will need to compute final overriders to determine whether the class is
1753   /// actually abstract.
1754   bool mayBeAbstract() const;
1755 
1756   /// Determine whether it's impossible for a class to be derived from this
1757   /// class. This is best-effort, and may conservatively return false.
1758   bool isEffectivelyFinal() const;
1759 
1760   /// If this is the closure type of a lambda expression, retrieve the
1761   /// number to be used for name mangling in the Itanium C++ ABI.
1762   ///
1763   /// Zero indicates that this closure type has internal linkage, so the
1764   /// mangling number does not matter, while a non-zero value indicates which
1765   /// lambda expression this is in this particular context.
getLambdaManglingNumber()1766   unsigned getLambdaManglingNumber() const {
1767     assert(isLambda() && "Not a lambda closure type!");
1768     return getLambdaData().ManglingNumber;
1769   }
1770 
1771   /// The lambda is known to has internal linkage no matter whether it has name
1772   /// mangling number.
hasKnownLambdaInternalLinkage()1773   bool hasKnownLambdaInternalLinkage() const {
1774     assert(isLambda() && "Not a lambda closure type!");
1775     return getLambdaData().HasKnownInternalLinkage;
1776   }
1777 
1778   /// Retrieve the declaration that provides additional context for a
1779   /// lambda, when the normal declaration context is not specific enough.
1780   ///
1781   /// Certain contexts (default arguments of in-class function parameters and
1782   /// the initializers of data members) have separate name mangling rules for
1783   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1784   /// the declaration in which the lambda occurs, e.g., the function parameter
1785   /// or the non-static data member. Otherwise, it returns NULL to imply that
1786   /// the declaration context suffices.
1787   Decl *getLambdaContextDecl() const;
1788 
1789   /// Retrieve the index of this lambda within the context declaration returned
1790   /// by getLambdaContextDecl().
getLambdaIndexInContext()1791   unsigned getLambdaIndexInContext() const {
1792     assert(isLambda() && "Not a lambda closure type!");
1793     return getLambdaData().IndexInContext;
1794   }
1795 
1796   /// Information about how a lambda is numbered within its context.
1797   struct LambdaNumbering {
1798     Decl *ContextDecl = nullptr;
1799     unsigned IndexInContext = 0;
1800     unsigned ManglingNumber = 0;
1801     unsigned DeviceManglingNumber = 0;
1802     bool HasKnownInternalLinkage = false;
1803   };
1804 
1805   /// Set the mangling numbers and context declaration for a lambda class.
1806   void setLambdaNumbering(LambdaNumbering Numbering);
1807 
1808   // Get the mangling numbers and context declaration for a lambda class.
getLambdaNumbering()1809   LambdaNumbering getLambdaNumbering() const {
1810     return {getLambdaContextDecl(), getLambdaIndexInContext(),
1811             getLambdaManglingNumber(), getDeviceLambdaManglingNumber(),
1812             hasKnownLambdaInternalLinkage()};
1813   }
1814 
1815   /// Retrieve the device side mangling number.
1816   unsigned getDeviceLambdaManglingNumber() const;
1817 
1818   /// Returns the inheritance model used for this record.
1819   MSInheritanceModel getMSInheritanceModel() const;
1820 
1821   /// Calculate what the inheritance model would be for this class.
1822   MSInheritanceModel calculateInheritanceModel() const;
1823 
1824   /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1825   /// member pointer if we can guarantee that zero is not a valid field offset,
1826   /// or if the member pointer has multiple fields.  Polymorphic classes have a
1827   /// vfptr at offset zero, so we can use zero for null.  If there are multiple
1828   /// fields, we can use zero even if it is a valid field offset because
1829   /// null-ness testing will check the other fields.
1830   bool nullFieldOffsetIsZero() const;
1831 
1832   /// Controls when vtordisps will be emitted if this record is used as a
1833   /// virtual base.
1834   MSVtorDispMode getMSVtorDispMode() const;
1835 
1836   /// Determine whether this lambda expression was known to be dependent
1837   /// at the time it was created, even if its context does not appear to be
1838   /// dependent.
1839   ///
1840   /// This flag is a workaround for an issue with parsing, where default
1841   /// arguments are parsed before their enclosing function declarations have
1842   /// been created. This means that any lambda expressions within those
1843   /// default arguments will have as their DeclContext the context enclosing
1844   /// the function declaration, which may be non-dependent even when the
1845   /// function declaration itself is dependent. This flag indicates when we
1846   /// know that the lambda is dependent despite that.
isDependentLambda()1847   bool isDependentLambda() const {
1848     return isLambda() && getLambdaData().DependencyKind == LDK_AlwaysDependent;
1849   }
1850 
isNeverDependentLambda()1851   bool isNeverDependentLambda() const {
1852     return isLambda() && getLambdaData().DependencyKind == LDK_NeverDependent;
1853   }
1854 
getLambdaDependencyKind()1855   unsigned getLambdaDependencyKind() const {
1856     if (!isLambda())
1857       return LDK_Unknown;
1858     return getLambdaData().DependencyKind;
1859   }
1860 
getLambdaTypeInfo()1861   TypeSourceInfo *getLambdaTypeInfo() const {
1862     return getLambdaData().MethodTyInfo;
1863   }
1864 
setLambdaTypeInfo(TypeSourceInfo * TS)1865   void setLambdaTypeInfo(TypeSourceInfo *TS) {
1866     assert(DefinitionData && DefinitionData->IsLambda &&
1867            "setting lambda property of non-lambda class");
1868     auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1869     DL.MethodTyInfo = TS;
1870   }
1871 
setLambdaIsGeneric(bool IsGeneric)1872   void setLambdaIsGeneric(bool IsGeneric) {
1873     assert(DefinitionData && DefinitionData->IsLambda &&
1874            "setting lambda property of non-lambda class");
1875     auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1876     DL.IsGenericLambda = IsGeneric;
1877   }
1878 
1879   // Determine whether this type is an Interface Like type for
1880   // __interface inheritance purposes.
1881   bool isInterfaceLike() const;
1882 
classof(const Decl * D)1883   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)1884   static bool classofKind(Kind K) {
1885     return K >= firstCXXRecord && K <= lastCXXRecord;
1886   }
markAbstract()1887   void markAbstract() { data().Abstract = true; }
1888 };
1889 
1890 /// Store information needed for an explicit specifier.
1891 /// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1892 class ExplicitSpecifier {
1893   llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1894       nullptr, ExplicitSpecKind::ResolvedFalse};
1895 
1896 public:
1897   ExplicitSpecifier() = default;
ExplicitSpecifier(Expr * Expression,ExplicitSpecKind Kind)1898   ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1899       : ExplicitSpec(Expression, Kind) {}
getKind()1900   ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
getExpr()1901   const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
getExpr()1902   Expr *getExpr() { return ExplicitSpec.getPointer(); }
1903 
1904   /// Determine if the declaration had an explicit specifier of any kind.
isSpecified()1905   bool isSpecified() const {
1906     return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1907            ExplicitSpec.getPointer();
1908   }
1909 
1910   /// Check for equivalence of explicit specifiers.
1911   /// \return true if the explicit specifier are equivalent, false otherwise.
1912   bool isEquivalent(const ExplicitSpecifier Other) const;
1913   /// Determine whether this specifier is known to correspond to an explicit
1914   /// declaration. Returns false if the specifier is absent or has an
1915   /// expression that is value-dependent or evaluates to false.
isExplicit()1916   bool isExplicit() const {
1917     return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1918   }
1919   /// Determine if the explicit specifier is invalid.
1920   /// This state occurs after a substitution failures.
isInvalid()1921   bool isInvalid() const {
1922     return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1923            !ExplicitSpec.getPointer();
1924   }
setKind(ExplicitSpecKind Kind)1925   void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
setExpr(Expr * E)1926   void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1927   // Retrieve the explicit specifier in the given declaration, if any.
1928   static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
getFromDecl(const FunctionDecl * Function)1929   static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1930     return getFromDecl(const_cast<FunctionDecl *>(Function));
1931   }
Invalid()1932   static ExplicitSpecifier Invalid() {
1933     return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1934   }
1935 };
1936 
1937 /// Represents a C++ deduction guide declaration.
1938 ///
1939 /// \code
1940 /// template<typename T> struct A { A(); A(T); };
1941 /// A() -> A<int>;
1942 /// \endcode
1943 ///
1944 /// In this example, there will be an explicit deduction guide from the
1945 /// second line, and implicit deduction guide templates synthesized from
1946 /// the constructors of \c A.
1947 class CXXDeductionGuideDecl : public FunctionDecl {
1948   void anchor() override;
1949 
1950 private:
CXXDeductionGuideDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,ExplicitSpecifier ES,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,SourceLocation EndLocation,CXXConstructorDecl * Ctor,DeductionCandidate Kind)1951   CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1952                         ExplicitSpecifier ES,
1953                         const DeclarationNameInfo &NameInfo, QualType T,
1954                         TypeSourceInfo *TInfo, SourceLocation EndLocation,
1955                         CXXConstructorDecl *Ctor, DeductionCandidate Kind)
1956       : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1957                      SC_None, false, false, ConstexprSpecKind::Unspecified),
1958         Ctor(Ctor), ExplicitSpec(ES) {
1959     if (EndLocation.isValid())
1960       setRangeEnd(EndLocation);
1961     setDeductionCandidateKind(Kind);
1962   }
1963 
1964   CXXConstructorDecl *Ctor;
1965   ExplicitSpecifier ExplicitSpec;
setExplicitSpecifier(ExplicitSpecifier ES)1966   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1967 
1968 public:
1969   friend class ASTDeclReader;
1970   friend class ASTDeclWriter;
1971 
1972   static CXXDeductionGuideDecl *
1973   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1974          ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1975          TypeSourceInfo *TInfo, SourceLocation EndLocation,
1976          CXXConstructorDecl *Ctor = nullptr,
1977          DeductionCandidate Kind = DeductionCandidate::Normal);
1978 
1979   static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1980 
getExplicitSpecifier()1981   ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
getExplicitSpecifier()1982   const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1983 
1984   /// Return true if the declaration is already resolved to be explicit.
isExplicit()1985   bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1986 
1987   /// Get the template for which this guide performs deduction.
getDeducedTemplate()1988   TemplateDecl *getDeducedTemplate() const {
1989     return getDeclName().getCXXDeductionGuideTemplate();
1990   }
1991 
1992   /// Get the constructor from which this deduction guide was generated, if
1993   /// this is an implicit deduction guide.
getCorrespondingConstructor()1994   CXXConstructorDecl *getCorrespondingConstructor() const { return Ctor; }
1995 
setDeductionCandidateKind(DeductionCandidate K)1996   void setDeductionCandidateKind(DeductionCandidate K) {
1997     FunctionDeclBits.DeductionCandidateKind = static_cast<unsigned char>(K);
1998   }
1999 
getDeductionCandidateKind()2000   DeductionCandidate getDeductionCandidateKind() const {
2001     return static_cast<DeductionCandidate>(
2002         FunctionDeclBits.DeductionCandidateKind);
2003   }
2004 
2005   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2006   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2007   static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
2008 };
2009 
2010 /// \brief Represents the body of a requires-expression.
2011 ///
2012 /// This decl exists merely to serve as the DeclContext for the local
2013 /// parameters of the requires expression as well as other declarations inside
2014 /// it.
2015 ///
2016 /// \code
2017 /// template<typename T> requires requires (T t) { {t++} -> regular; }
2018 /// \endcode
2019 ///
2020 /// In this example, a RequiresExpr object will be generated for the expression,
2021 /// and a RequiresExprBodyDecl will be created to hold the parameter t and the
2022 /// template argument list imposed by the compound requirement.
2023 class RequiresExprBodyDecl : public Decl, public DeclContext {
RequiresExprBodyDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc)2024   RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
2025       : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
2026 
2027 public:
2028   friend class ASTDeclReader;
2029   friend class ASTDeclWriter;
2030 
2031   static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
2032                                       SourceLocation StartLoc);
2033 
2034   static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2035 
2036   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2037   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2038   static bool classofKind(Kind K) { return K == RequiresExprBody; }
2039 
castToDeclContext(const RequiresExprBodyDecl * D)2040   static DeclContext *castToDeclContext(const RequiresExprBodyDecl *D) {
2041     return static_cast<DeclContext *>(const_cast<RequiresExprBodyDecl *>(D));
2042   }
2043 
castFromDeclContext(const DeclContext * DC)2044   static RequiresExprBodyDecl *castFromDeclContext(const DeclContext *DC) {
2045     return static_cast<RequiresExprBodyDecl *>(const_cast<DeclContext *>(DC));
2046   }
2047 };
2048 
2049 /// Represents a static or instance method of a struct/union/class.
2050 ///
2051 /// In the terminology of the C++ Standard, these are the (static and
2052 /// non-static) member functions, whether virtual or not.
2053 class CXXMethodDecl : public FunctionDecl {
2054   void anchor() override;
2055 
2056 protected:
2057   CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
2058                 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
2059                 QualType T, TypeSourceInfo *TInfo, StorageClass SC,
2060                 bool UsesFPIntrin, bool isInline,
2061                 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2062                 Expr *TrailingRequiresClause = nullptr)
FunctionDecl(DK,C,RD,StartLoc,NameInfo,T,TInfo,SC,UsesFPIntrin,isInline,ConstexprKind,TrailingRequiresClause)2063       : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2064                      isInline, ConstexprKind, TrailingRequiresClause) {
2065     if (EndLocation.isValid())
2066       setRangeEnd(EndLocation);
2067   }
2068 
2069 public:
2070   static CXXMethodDecl *
2071   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2072          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2073          StorageClass SC, bool UsesFPIntrin, bool isInline,
2074          ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2075          Expr *TrailingRequiresClause = nullptr);
2076 
2077   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2078 
2079   bool isStatic() const;
isInstance()2080   bool isInstance() const { return !isStatic(); }
2081 
2082   /// [C++2b][dcl.fct]/p7
2083   /// An explicit object member function is a non-static
2084   /// member function with an explicit object parameter. e.g.,
2085   ///   void func(this SomeType);
2086   bool isExplicitObjectMemberFunction() const;
2087 
2088   /// [C++2b][dcl.fct]/p7
2089   /// An implicit object member function is a non-static
2090   /// member function without an explicit object parameter.
2091   bool isImplicitObjectMemberFunction() const;
2092 
2093   /// Returns true if the given operator is implicitly static in a record
2094   /// context.
isStaticOverloadedOperator(OverloadedOperatorKind OOK)2095   static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
2096     // [class.free]p1:
2097     // Any allocation function for a class T is a static member
2098     // (even if not explicitly declared static).
2099     // [class.free]p6 Any deallocation function for a class X is a static member
2100     // (even if not explicitly declared static).
2101     return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
2102            OOK == OO_Array_Delete;
2103   }
2104 
isConst()2105   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
isVolatile()2106   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
2107 
isVirtual()2108   bool isVirtual() const {
2109     CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2110 
2111     // Member function is virtual if it is marked explicitly so, or if it is
2112     // declared in __interface -- then it is automatically pure virtual.
2113     if (CD->isVirtualAsWritten() || CD->isPureVirtual())
2114       return true;
2115 
2116     return CD->size_overridden_methods() != 0;
2117   }
2118 
2119   /// If it's possible to devirtualize a call to this method, return the called
2120   /// function. Otherwise, return null.
2121 
2122   /// \param Base The object on which this virtual function is called.
2123   /// \param IsAppleKext True if we are compiling for Apple kext.
2124   CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
2125 
getDevirtualizedMethod(const Expr * Base,bool IsAppleKext)2126   const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
2127                                               bool IsAppleKext) const {
2128     return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
2129         Base, IsAppleKext);
2130   }
2131 
2132   /// Determine whether this is a usual deallocation function (C++
2133   /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2134   /// delete[] operator with a particular signature. Populates \p PreventedBy
2135   /// with the declarations of the functions of the same kind if they were the
2136   /// reason for this function returning false. This is used by
2137   /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2138   /// context.
2139   bool isUsualDeallocationFunction(
2140       SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2141 
2142   /// Determine whether this is a copy-assignment operator, regardless
2143   /// of whether it was declared implicitly or explicitly.
2144   bool isCopyAssignmentOperator() const;
2145 
2146   /// Determine whether this is a move assignment operator.
2147   bool isMoveAssignmentOperator() const;
2148 
getCanonicalDecl()2149   CXXMethodDecl *getCanonicalDecl() override {
2150     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2151   }
getCanonicalDecl()2152   const CXXMethodDecl *getCanonicalDecl() const {
2153     return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2154   }
2155 
getMostRecentDecl()2156   CXXMethodDecl *getMostRecentDecl() {
2157     return cast<CXXMethodDecl>(
2158             static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2159   }
getMostRecentDecl()2160   const CXXMethodDecl *getMostRecentDecl() const {
2161     return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2162   }
2163 
2164   void addOverriddenMethod(const CXXMethodDecl *MD);
2165 
2166   using method_iterator = const CXXMethodDecl *const *;
2167 
2168   method_iterator begin_overridden_methods() const;
2169   method_iterator end_overridden_methods() const;
2170   unsigned size_overridden_methods() const;
2171 
2172   using overridden_method_range = llvm::iterator_range<
2173       llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
2174 
2175   overridden_method_range overridden_methods() const;
2176 
2177   /// Return the parent of this method declaration, which
2178   /// is the class in which this method is defined.
getParent()2179   const CXXRecordDecl *getParent() const {
2180     return cast<CXXRecordDecl>(FunctionDecl::getParent());
2181   }
2182 
2183   /// Return the parent of this method declaration, which
2184   /// is the class in which this method is defined.
getParent()2185   CXXRecordDecl *getParent() {
2186     return const_cast<CXXRecordDecl *>(
2187              cast<CXXRecordDecl>(FunctionDecl::getParent()));
2188   }
2189 
2190   /// Return the type of the \c this pointer.
2191   ///
2192   /// Should only be called for instance (i.e., non-static) methods. Note
2193   /// that for the call operator of a lambda closure type, this returns the
2194   /// desugared 'this' type (a pointer to the closure type), not the captured
2195   /// 'this' type.
2196   QualType getThisType() const;
2197 
2198   /// Return the type of the object pointed by \c this.
2199   ///
2200   /// See getThisType() for usage restriction.
2201 
2202   QualType getFunctionObjectParameterReferenceType() const;
getFunctionObjectParameterType()2203   QualType getFunctionObjectParameterType() const {
2204     return getFunctionObjectParameterReferenceType().getNonReferenceType();
2205   }
2206 
getNumExplicitParams()2207   unsigned getNumExplicitParams() const {
2208     return getNumParams() - (isExplicitObjectMemberFunction() ? 1 : 0);
2209   }
2210 
2211   static QualType getThisType(const FunctionProtoType *FPT,
2212                               const CXXRecordDecl *Decl);
2213 
getMethodQualifiers()2214   Qualifiers getMethodQualifiers() const {
2215     return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2216   }
2217 
2218   /// Retrieve the ref-qualifier associated with this method.
2219   ///
2220   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2221   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2222   /// @code
2223   /// struct X {
2224   ///   void f() &;
2225   ///   void g() &&;
2226   ///   void h();
2227   /// };
2228   /// @endcode
getRefQualifier()2229   RefQualifierKind getRefQualifier() const {
2230     return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2231   }
2232 
2233   bool hasInlineBody() const;
2234 
2235   /// Determine whether this is a lambda closure type's static member
2236   /// function that is used for the result of the lambda's conversion to
2237   /// function pointer (for a lambda with no captures).
2238   ///
2239   /// The function itself, if used, will have a placeholder body that will be
2240   /// supplied by IR generation to either forward to the function call operator
2241   /// or clone the function call operator.
2242   bool isLambdaStaticInvoker() const;
2243 
2244   /// Find the method in \p RD that corresponds to this one.
2245   ///
2246   /// Find if \p RD or one of the classes it inherits from override this method.
2247   /// If so, return it. \p RD is assumed to be a subclass of the class defining
2248   /// this method (or be the class itself), unless \p MayBeBase is set to true.
2249   CXXMethodDecl *
2250   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2251                                 bool MayBeBase = false);
2252 
2253   const CXXMethodDecl *
2254   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2255                                 bool MayBeBase = false) const {
2256     return const_cast<CXXMethodDecl *>(this)
2257               ->getCorrespondingMethodInClass(RD, MayBeBase);
2258   }
2259 
2260   /// Find if \p RD declares a function that overrides this function, and if so,
2261   /// return it. Does not search base classes.
2262   CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2263                                                        bool MayBeBase = false);
2264   const CXXMethodDecl *
2265   getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2266                                         bool MayBeBase = false) const {
2267     return const_cast<CXXMethodDecl *>(this)
2268         ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2269   }
2270 
2271   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2272   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2273   static bool classofKind(Kind K) {
2274     return K >= firstCXXMethod && K <= lastCXXMethod;
2275   }
2276 };
2277 
2278 /// Represents a C++ base or member initializer.
2279 ///
2280 /// This is part of a constructor initializer that
2281 /// initializes one non-static member variable or one base class. For
2282 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2283 /// initializers:
2284 ///
2285 /// \code
2286 /// class A { };
2287 /// class B : public A {
2288 ///   float f;
2289 /// public:
2290 ///   B(A& a) : A(a), f(3.14159) { }
2291 /// };
2292 /// \endcode
2293 class CXXCtorInitializer final {
2294   /// Either the base class name/delegating constructor type (stored as
2295   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2296   /// (IndirectFieldDecl*) being initialized.
2297   llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2298       Initializee;
2299 
2300   /// The argument used to initialize the base or member, which may
2301   /// end up constructing an object (when multiple arguments are involved).
2302   Stmt *Init;
2303 
2304   /// The source location for the field name or, for a base initializer
2305   /// pack expansion, the location of the ellipsis.
2306   ///
2307   /// In the case of a delegating
2308   /// constructor, it will still include the type's source location as the
2309   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2310   SourceLocation MemberOrEllipsisLocation;
2311 
2312   /// Location of the left paren of the ctor-initializer.
2313   SourceLocation LParenLoc;
2314 
2315   /// Location of the right paren of the ctor-initializer.
2316   SourceLocation RParenLoc;
2317 
2318   /// If the initializee is a type, whether that type makes this
2319   /// a delegating initialization.
2320   LLVM_PREFERRED_TYPE(bool)
2321   unsigned IsDelegating : 1;
2322 
2323   /// If the initializer is a base initializer, this keeps track
2324   /// of whether the base is virtual or not.
2325   LLVM_PREFERRED_TYPE(bool)
2326   unsigned IsVirtual : 1;
2327 
2328   /// Whether or not the initializer is explicitly written
2329   /// in the sources.
2330   LLVM_PREFERRED_TYPE(bool)
2331   unsigned IsWritten : 1;
2332 
2333   /// If IsWritten is true, then this number keeps track of the textual order
2334   /// of this initializer in the original sources, counting from 0.
2335   unsigned SourceOrder : 13;
2336 
2337 public:
2338   /// Creates a new base-class initializer.
2339   explicit
2340   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2341                      SourceLocation L, Expr *Init, SourceLocation R,
2342                      SourceLocation EllipsisLoc);
2343 
2344   /// Creates a new member initializer.
2345   explicit
2346   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2347                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2348                      SourceLocation R);
2349 
2350   /// Creates a new anonymous field initializer.
2351   explicit
2352   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2353                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2354                      SourceLocation R);
2355 
2356   /// Creates a new delegating initializer.
2357   explicit
2358   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2359                      SourceLocation L, Expr *Init, SourceLocation R);
2360 
2361   /// \return Unique reproducible object identifier.
2362   int64_t getID(const ASTContext &Context) const;
2363 
2364   /// Determine whether this initializer is initializing a base class.
isBaseInitializer()2365   bool isBaseInitializer() const {
2366     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2367   }
2368 
2369   /// Determine whether this initializer is initializing a non-static
2370   /// data member.
isMemberInitializer()2371   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2372 
isAnyMemberInitializer()2373   bool isAnyMemberInitializer() const {
2374     return isMemberInitializer() || isIndirectMemberInitializer();
2375   }
2376 
isIndirectMemberInitializer()2377   bool isIndirectMemberInitializer() const {
2378     return Initializee.is<IndirectFieldDecl*>();
2379   }
2380 
2381   /// Determine whether this initializer is an implicit initializer
2382   /// generated for a field with an initializer defined on the member
2383   /// declaration.
2384   ///
2385   /// In-class member initializers (also known as "non-static data member
2386   /// initializations", NSDMIs) were introduced in C++11.
isInClassMemberInitializer()2387   bool isInClassMemberInitializer() const {
2388     return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2389   }
2390 
2391   /// Determine whether this initializer is creating a delegating
2392   /// constructor.
isDelegatingInitializer()2393   bool isDelegatingInitializer() const {
2394     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2395   }
2396 
2397   /// Determine whether this initializer is a pack expansion.
isPackExpansion()2398   bool isPackExpansion() const {
2399     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2400   }
2401 
2402   // For a pack expansion, returns the location of the ellipsis.
getEllipsisLoc()2403   SourceLocation getEllipsisLoc() const {
2404     if (!isPackExpansion())
2405       return {};
2406     return MemberOrEllipsisLocation;
2407   }
2408 
2409   /// If this is a base class initializer, returns the type of the
2410   /// base class with location information. Otherwise, returns an NULL
2411   /// type location.
2412   TypeLoc getBaseClassLoc() const;
2413 
2414   /// If this is a base class initializer, returns the type of the base class.
2415   /// Otherwise, returns null.
2416   const Type *getBaseClass() const;
2417 
2418   /// Returns whether the base is virtual or not.
isBaseVirtual()2419   bool isBaseVirtual() const {
2420     assert(isBaseInitializer() && "Must call this on base initializer!");
2421 
2422     return IsVirtual;
2423   }
2424 
2425   /// Returns the declarator information for a base class or delegating
2426   /// initializer.
getTypeSourceInfo()2427   TypeSourceInfo *getTypeSourceInfo() const {
2428     return Initializee.dyn_cast<TypeSourceInfo *>();
2429   }
2430 
2431   /// If this is a member initializer, returns the declaration of the
2432   /// non-static data member being initialized. Otherwise, returns null.
getMember()2433   FieldDecl *getMember() const {
2434     if (isMemberInitializer())
2435       return Initializee.get<FieldDecl*>();
2436     return nullptr;
2437   }
2438 
getAnyMember()2439   FieldDecl *getAnyMember() const {
2440     if (isMemberInitializer())
2441       return Initializee.get<FieldDecl*>();
2442     if (isIndirectMemberInitializer())
2443       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2444     return nullptr;
2445   }
2446 
getIndirectMember()2447   IndirectFieldDecl *getIndirectMember() const {
2448     if (isIndirectMemberInitializer())
2449       return Initializee.get<IndirectFieldDecl*>();
2450     return nullptr;
2451   }
2452 
getMemberLocation()2453   SourceLocation getMemberLocation() const {
2454     return MemberOrEllipsisLocation;
2455   }
2456 
2457   /// Determine the source location of the initializer.
2458   SourceLocation getSourceLocation() const;
2459 
2460   /// Determine the source range covering the entire initializer.
2461   SourceRange getSourceRange() const LLVM_READONLY;
2462 
2463   /// Determine whether this initializer is explicitly written
2464   /// in the source code.
isWritten()2465   bool isWritten() const { return IsWritten; }
2466 
2467   /// Return the source position of the initializer, counting from 0.
2468   /// If the initializer was implicit, -1 is returned.
getSourceOrder()2469   int getSourceOrder() const {
2470     return IsWritten ? static_cast<int>(SourceOrder) : -1;
2471   }
2472 
2473   /// Set the source order of this initializer.
2474   ///
2475   /// This can only be called once for each initializer; it cannot be called
2476   /// on an initializer having a positive number of (implicit) array indices.
2477   ///
2478   /// This assumes that the initializer was written in the source code, and
2479   /// ensures that isWritten() returns true.
setSourceOrder(int Pos)2480   void setSourceOrder(int Pos) {
2481     assert(!IsWritten &&
2482            "setSourceOrder() used on implicit initializer");
2483     assert(SourceOrder == 0 &&
2484            "calling twice setSourceOrder() on the same initializer");
2485     assert(Pos >= 0 &&
2486            "setSourceOrder() used to make an initializer implicit");
2487     IsWritten = true;
2488     SourceOrder = static_cast<unsigned>(Pos);
2489   }
2490 
getLParenLoc()2491   SourceLocation getLParenLoc() const { return LParenLoc; }
getRParenLoc()2492   SourceLocation getRParenLoc() const { return RParenLoc; }
2493 
2494   /// Get the initializer.
getInit()2495   Expr *getInit() const { return static_cast<Expr *>(Init); }
2496 };
2497 
2498 /// Description of a constructor that was inherited from a base class.
2499 class InheritedConstructor {
2500   ConstructorUsingShadowDecl *Shadow = nullptr;
2501   CXXConstructorDecl *BaseCtor = nullptr;
2502 
2503 public:
2504   InheritedConstructor() = default;
InheritedConstructor(ConstructorUsingShadowDecl * Shadow,CXXConstructorDecl * BaseCtor)2505   InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2506                        CXXConstructorDecl *BaseCtor)
2507       : Shadow(Shadow), BaseCtor(BaseCtor) {}
2508 
2509   explicit operator bool() const { return Shadow; }
2510 
getShadowDecl()2511   ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
getConstructor()2512   CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2513 };
2514 
2515 /// Represents a C++ constructor within a class.
2516 ///
2517 /// For example:
2518 ///
2519 /// \code
2520 /// class X {
2521 /// public:
2522 ///   explicit X(int); // represented by a CXXConstructorDecl.
2523 /// };
2524 /// \endcode
2525 class CXXConstructorDecl final
2526     : public CXXMethodDecl,
2527       private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2528                                     ExplicitSpecifier> {
2529   // This class stores some data in DeclContext::CXXConstructorDeclBits
2530   // to save some space. Use the provided accessors to access it.
2531 
2532   /// \name Support for base and member initializers.
2533   /// \{
2534   /// The arguments used to initialize the base or member.
2535   LazyCXXCtorInitializersPtr CtorInitializers;
2536 
2537   CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2538                      const DeclarationNameInfo &NameInfo, QualType T,
2539                      TypeSourceInfo *TInfo, ExplicitSpecifier ES,
2540                      bool UsesFPIntrin, bool isInline,
2541                      bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2542                      InheritedConstructor Inherited,
2543                      Expr *TrailingRequiresClause);
2544 
2545   void anchor() override;
2546 
numTrailingObjects(OverloadToken<InheritedConstructor>)2547   size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2548     return CXXConstructorDeclBits.IsInheritingConstructor;
2549   }
numTrailingObjects(OverloadToken<ExplicitSpecifier>)2550   size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2551     return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2552   }
2553 
getExplicitSpecifierInternal()2554   ExplicitSpecifier getExplicitSpecifierInternal() const {
2555     if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2556       return *getTrailingObjects<ExplicitSpecifier>();
2557     return ExplicitSpecifier(
2558         nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2559                      ? ExplicitSpecKind::ResolvedTrue
2560                      : ExplicitSpecKind::ResolvedFalse);
2561   }
2562 
2563   enum TrailingAllocKind {
2564     TAKInheritsConstructor = 1,
2565     TAKHasTailExplicit = 1 << 1,
2566   };
2567 
getTrailingAllocKind()2568   uint64_t getTrailingAllocKind() const {
2569     return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2570            (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2571   }
2572 
2573 public:
2574   friend class ASTDeclReader;
2575   friend class ASTDeclWriter;
2576   friend TrailingObjects;
2577 
2578   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
2579                                                 uint64_t AllocKind);
2580   static CXXConstructorDecl *
2581   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2582          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2583          ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2584          bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2585          InheritedConstructor Inherited = InheritedConstructor(),
2586          Expr *TrailingRequiresClause = nullptr);
2587 
setExplicitSpecifier(ExplicitSpecifier ES)2588   void setExplicitSpecifier(ExplicitSpecifier ES) {
2589     assert((!ES.getExpr() ||
2590             CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
2591            "cannot set this explicit specifier. no trail-allocated space for "
2592            "explicit");
2593     if (ES.getExpr())
2594       *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2595     else
2596       CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2597   }
2598 
getExplicitSpecifier()2599   ExplicitSpecifier getExplicitSpecifier() {
2600     return getCanonicalDecl()->getExplicitSpecifierInternal();
2601   }
getExplicitSpecifier()2602   const ExplicitSpecifier getExplicitSpecifier() const {
2603     return getCanonicalDecl()->getExplicitSpecifierInternal();
2604   }
2605 
2606   /// Return true if the declaration is already resolved to be explicit.
isExplicit()2607   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2608 
2609   /// Iterates through the member/base initializer list.
2610   using init_iterator = CXXCtorInitializer **;
2611 
2612   /// Iterates through the member/base initializer list.
2613   using init_const_iterator = CXXCtorInitializer *const *;
2614 
2615   using init_range = llvm::iterator_range<init_iterator>;
2616   using init_const_range = llvm::iterator_range<init_const_iterator>;
2617 
inits()2618   init_range inits() { return init_range(init_begin(), init_end()); }
inits()2619   init_const_range inits() const {
2620     return init_const_range(init_begin(), init_end());
2621   }
2622 
2623   /// Retrieve an iterator to the first initializer.
init_begin()2624   init_iterator init_begin() {
2625     const auto *ConstThis = this;
2626     return const_cast<init_iterator>(ConstThis->init_begin());
2627   }
2628 
2629   /// Retrieve an iterator to the first initializer.
2630   init_const_iterator init_begin() const;
2631 
2632   /// Retrieve an iterator past the last initializer.
init_end()2633   init_iterator       init_end()       {
2634     return init_begin() + getNumCtorInitializers();
2635   }
2636 
2637   /// Retrieve an iterator past the last initializer.
init_end()2638   init_const_iterator init_end() const {
2639     return init_begin() + getNumCtorInitializers();
2640   }
2641 
2642   using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2643   using init_const_reverse_iterator =
2644       std::reverse_iterator<init_const_iterator>;
2645 
init_rbegin()2646   init_reverse_iterator init_rbegin() {
2647     return init_reverse_iterator(init_end());
2648   }
init_rbegin()2649   init_const_reverse_iterator init_rbegin() const {
2650     return init_const_reverse_iterator(init_end());
2651   }
2652 
init_rend()2653   init_reverse_iterator init_rend() {
2654     return init_reverse_iterator(init_begin());
2655   }
init_rend()2656   init_const_reverse_iterator init_rend() const {
2657     return init_const_reverse_iterator(init_begin());
2658   }
2659 
2660   /// Determine the number of arguments used to initialize the member
2661   /// or base.
getNumCtorInitializers()2662   unsigned getNumCtorInitializers() const {
2663       return CXXConstructorDeclBits.NumCtorInitializers;
2664   }
2665 
setNumCtorInitializers(unsigned numCtorInitializers)2666   void setNumCtorInitializers(unsigned numCtorInitializers) {
2667     CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2668     // This assert added because NumCtorInitializers is stored
2669     // in CXXConstructorDeclBits as a bitfield and its width has
2670     // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2671     assert(CXXConstructorDeclBits.NumCtorInitializers ==
2672            numCtorInitializers && "NumCtorInitializers overflow!");
2673   }
2674 
setCtorInitializers(CXXCtorInitializer ** Initializers)2675   void setCtorInitializers(CXXCtorInitializer **Initializers) {
2676     CtorInitializers = Initializers;
2677   }
2678 
2679   /// Determine whether this constructor is a delegating constructor.
isDelegatingConstructor()2680   bool isDelegatingConstructor() const {
2681     return (getNumCtorInitializers() == 1) &&
2682            init_begin()[0]->isDelegatingInitializer();
2683   }
2684 
2685   /// When this constructor delegates to another, retrieve the target.
2686   CXXConstructorDecl *getTargetConstructor() const;
2687 
2688   /// Whether this constructor is a default
2689   /// constructor (C++ [class.ctor]p5), which can be used to
2690   /// default-initialize a class of this type.
2691   bool isDefaultConstructor() const;
2692 
2693   /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2694   /// which can be used to copy the class.
2695   ///
2696   /// \p TypeQuals will be set to the qualifiers on the
2697   /// argument type. For example, \p TypeQuals would be set to \c
2698   /// Qualifiers::Const for the following copy constructor:
2699   ///
2700   /// \code
2701   /// class X {
2702   /// public:
2703   ///   X(const X&);
2704   /// };
2705   /// \endcode
2706   bool isCopyConstructor(unsigned &TypeQuals) const;
2707 
2708   /// Whether this constructor is a copy
2709   /// constructor (C++ [class.copy]p2, which can be used to copy the
2710   /// class.
isCopyConstructor()2711   bool isCopyConstructor() const {
2712     unsigned TypeQuals = 0;
2713     return isCopyConstructor(TypeQuals);
2714   }
2715 
2716   /// Determine whether this constructor is a move constructor
2717   /// (C++11 [class.copy]p3), which can be used to move values of the class.
2718   ///
2719   /// \param TypeQuals If this constructor is a move constructor, will be set
2720   /// to the type qualifiers on the referent of the first parameter's type.
2721   bool isMoveConstructor(unsigned &TypeQuals) const;
2722 
2723   /// Determine whether this constructor is a move constructor
2724   /// (C++11 [class.copy]p3), which can be used to move values of the class.
isMoveConstructor()2725   bool isMoveConstructor() const {
2726     unsigned TypeQuals = 0;
2727     return isMoveConstructor(TypeQuals);
2728   }
2729 
2730   /// Determine whether this is a copy or move constructor.
2731   ///
2732   /// \param TypeQuals Will be set to the type qualifiers on the reference
2733   /// parameter, if in fact this is a copy or move constructor.
2734   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2735 
2736   /// Determine whether this a copy or move constructor.
isCopyOrMoveConstructor()2737   bool isCopyOrMoveConstructor() const {
2738     unsigned Quals;
2739     return isCopyOrMoveConstructor(Quals);
2740   }
2741 
2742   /// Whether this constructor is a
2743   /// converting constructor (C++ [class.conv.ctor]), which can be
2744   /// used for user-defined conversions.
2745   bool isConvertingConstructor(bool AllowExplicit) const;
2746 
2747   /// Determine whether this is a member template specialization that
2748   /// would copy the object to itself. Such constructors are never used to copy
2749   /// an object.
2750   bool isSpecializationCopyingObject() const;
2751 
2752   /// Determine whether this is an implicit constructor synthesized to
2753   /// model a call to a constructor inherited from a base class.
isInheritingConstructor()2754   bool isInheritingConstructor() const {
2755     return CXXConstructorDeclBits.IsInheritingConstructor;
2756   }
2757 
2758   /// State that this is an implicit constructor synthesized to
2759   /// model a call to a constructor inherited from a base class.
2760   void setInheritingConstructor(bool isIC = true) {
2761     CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2762   }
2763 
2764   /// Get the constructor that this inheriting constructor is based on.
getInheritedConstructor()2765   InheritedConstructor getInheritedConstructor() const {
2766     return isInheritingConstructor() ?
2767       *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2768   }
2769 
getCanonicalDecl()2770   CXXConstructorDecl *getCanonicalDecl() override {
2771     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2772   }
getCanonicalDecl()2773   const CXXConstructorDecl *getCanonicalDecl() const {
2774     return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2775   }
2776 
2777   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2778   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2779   static bool classofKind(Kind K) { return K == CXXConstructor; }
2780 };
2781 
2782 /// Represents a C++ destructor within a class.
2783 ///
2784 /// For example:
2785 ///
2786 /// \code
2787 /// class X {
2788 /// public:
2789 ///   ~X(); // represented by a CXXDestructorDecl.
2790 /// };
2791 /// \endcode
2792 class CXXDestructorDecl : public CXXMethodDecl {
2793   friend class ASTDeclReader;
2794   friend class ASTDeclWriter;
2795 
2796   // FIXME: Don't allocate storage for these except in the first declaration
2797   // of a virtual destructor.
2798   FunctionDecl *OperatorDelete = nullptr;
2799   Expr *OperatorDeleteThisArg = nullptr;
2800 
2801   CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2802                     const DeclarationNameInfo &NameInfo, QualType T,
2803                     TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2804                     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2805                     Expr *TrailingRequiresClause = nullptr)
CXXMethodDecl(CXXDestructor,C,RD,StartLoc,NameInfo,T,TInfo,SC_None,UsesFPIntrin,isInline,ConstexprKind,SourceLocation (),TrailingRequiresClause)2806       : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2807                       SC_None, UsesFPIntrin, isInline, ConstexprKind,
2808                       SourceLocation(), TrailingRequiresClause) {
2809     setImplicit(isImplicitlyDeclared);
2810   }
2811 
2812   void anchor() override;
2813 
2814 public:
2815   static CXXDestructorDecl *
2816   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2817          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2818          bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2819          ConstexprSpecKind ConstexprKind,
2820          Expr *TrailingRequiresClause = nullptr);
2821   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2822 
2823   void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2824 
getOperatorDelete()2825   const FunctionDecl *getOperatorDelete() const {
2826     return getCanonicalDecl()->OperatorDelete;
2827   }
2828 
getOperatorDeleteThisArg()2829   Expr *getOperatorDeleteThisArg() const {
2830     return getCanonicalDecl()->OperatorDeleteThisArg;
2831   }
2832 
getCanonicalDecl()2833   CXXDestructorDecl *getCanonicalDecl() override {
2834     return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2835   }
getCanonicalDecl()2836   const CXXDestructorDecl *getCanonicalDecl() const {
2837     return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2838   }
2839 
2840   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2841   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2842   static bool classofKind(Kind K) { return K == CXXDestructor; }
2843 };
2844 
2845 /// Represents a C++ conversion function within a class.
2846 ///
2847 /// For example:
2848 ///
2849 /// \code
2850 /// class X {
2851 /// public:
2852 ///   operator bool();
2853 /// };
2854 /// \endcode
2855 class CXXConversionDecl : public CXXMethodDecl {
2856   CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2857                     const DeclarationNameInfo &NameInfo, QualType T,
2858                     TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2859                     ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2860                     SourceLocation EndLocation,
2861                     Expr *TrailingRequiresClause = nullptr)
CXXMethodDecl(CXXConversion,C,RD,StartLoc,NameInfo,T,TInfo,SC_None,UsesFPIntrin,isInline,ConstexprKind,EndLocation,TrailingRequiresClause)2862       : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2863                       SC_None, UsesFPIntrin, isInline, ConstexprKind,
2864                       EndLocation, TrailingRequiresClause),
2865         ExplicitSpec(ES) {}
2866   void anchor() override;
2867 
2868   ExplicitSpecifier ExplicitSpec;
2869 
2870 public:
2871   friend class ASTDeclReader;
2872   friend class ASTDeclWriter;
2873 
2874   static CXXConversionDecl *
2875   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2876          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2877          bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2878          ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2879          Expr *TrailingRequiresClause = nullptr);
2880   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2881 
getExplicitSpecifier()2882   ExplicitSpecifier getExplicitSpecifier() {
2883     return getCanonicalDecl()->ExplicitSpec;
2884   }
2885 
getExplicitSpecifier()2886   const ExplicitSpecifier getExplicitSpecifier() const {
2887     return getCanonicalDecl()->ExplicitSpec;
2888   }
2889 
2890   /// Return true if the declaration is already resolved to be explicit.
isExplicit()2891   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
setExplicitSpecifier(ExplicitSpecifier ES)2892   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2893 
2894   /// Returns the type that this conversion function is converting to.
getConversionType()2895   QualType getConversionType() const {
2896     return getType()->castAs<FunctionType>()->getReturnType();
2897   }
2898 
2899   /// Determine whether this conversion function is a conversion from
2900   /// a lambda closure type to a block pointer.
2901   bool isLambdaToBlockPointerConversion() const;
2902 
getCanonicalDecl()2903   CXXConversionDecl *getCanonicalDecl() override {
2904     return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2905   }
getCanonicalDecl()2906   const CXXConversionDecl *getCanonicalDecl() const {
2907     return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2908   }
2909 
2910   // Implement isa/cast/dyncast/etc.
classof(const Decl * D)2911   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2912   static bool classofKind(Kind K) { return K == CXXConversion; }
2913 };
2914 
2915 /// Represents the language in a linkage specification.
2916 ///
2917 /// The values are part of the serialization ABI for
2918 /// ASTs and cannot be changed without altering that ABI.
2919 enum class LinkageSpecLanguageIDs { C = 1, CXX = 2 };
2920 
2921 /// Represents a linkage specification.
2922 ///
2923 /// For example:
2924 /// \code
2925 ///   extern "C" void foo();
2926 /// \endcode
2927 class LinkageSpecDecl : public Decl, public DeclContext {
2928   virtual void anchor();
2929   // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2930   // some space. Use the provided accessors to access it.
2931 
2932   /// The source location for the extern keyword.
2933   SourceLocation ExternLoc;
2934 
2935   /// The source location for the right brace (if valid).
2936   SourceLocation RBraceLoc;
2937 
2938   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2939                   SourceLocation LangLoc, LinkageSpecLanguageIDs lang,
2940                   bool HasBraces);
2941 
2942 public:
2943   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2944                                  SourceLocation ExternLoc,
2945                                  SourceLocation LangLoc,
2946                                  LinkageSpecLanguageIDs Lang, bool HasBraces);
2947   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2948 
2949   /// Return the language specified by this linkage specification.
getLanguage()2950   LinkageSpecLanguageIDs getLanguage() const {
2951     return static_cast<LinkageSpecLanguageIDs>(LinkageSpecDeclBits.Language);
2952   }
2953 
2954   /// Set the language specified by this linkage specification.
setLanguage(LinkageSpecLanguageIDs L)2955   void setLanguage(LinkageSpecLanguageIDs L) {
2956     LinkageSpecDeclBits.Language = llvm::to_underlying(L);
2957   }
2958 
2959   /// Determines whether this linkage specification had braces in
2960   /// its syntactic form.
hasBraces()2961   bool hasBraces() const {
2962     assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
2963     return LinkageSpecDeclBits.HasBraces;
2964   }
2965 
getExternLoc()2966   SourceLocation getExternLoc() const { return ExternLoc; }
getRBraceLoc()2967   SourceLocation getRBraceLoc() const { return RBraceLoc; }
setExternLoc(SourceLocation L)2968   void setExternLoc(SourceLocation L) { ExternLoc = L; }
setRBraceLoc(SourceLocation L)2969   void setRBraceLoc(SourceLocation L) {
2970     RBraceLoc = L;
2971     LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2972   }
2973 
getEndLoc()2974   SourceLocation getEndLoc() const LLVM_READONLY {
2975     if (hasBraces())
2976       return getRBraceLoc();
2977     // No braces: get the end location of the (only) declaration in context
2978     // (if present).
2979     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2980   }
2981 
getSourceRange()2982   SourceRange getSourceRange() const override LLVM_READONLY {
2983     return SourceRange(ExternLoc, getEndLoc());
2984   }
2985 
classof(const Decl * D)2986   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)2987   static bool classofKind(Kind K) { return K == LinkageSpec; }
2988 
castToDeclContext(const LinkageSpecDecl * D)2989   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2990     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2991   }
2992 
castFromDeclContext(const DeclContext * DC)2993   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2994     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2995   }
2996 };
2997 
2998 /// Represents C++ using-directive.
2999 ///
3000 /// For example:
3001 /// \code
3002 ///    using namespace std;
3003 /// \endcode
3004 ///
3005 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
3006 /// artificial names for all using-directives in order to store
3007 /// them in DeclContext effectively.
3008 class UsingDirectiveDecl : public NamedDecl {
3009   /// The location of the \c using keyword.
3010   SourceLocation UsingLoc;
3011 
3012   /// The location of the \c namespace keyword.
3013   SourceLocation NamespaceLoc;
3014 
3015   /// The nested-name-specifier that precedes the namespace.
3016   NestedNameSpecifierLoc QualifierLoc;
3017 
3018   /// The namespace nominated by this using-directive.
3019   NamedDecl *NominatedNamespace;
3020 
3021   /// Enclosing context containing both using-directive and nominated
3022   /// namespace.
3023   DeclContext *CommonAncestor;
3024 
UsingDirectiveDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation NamespcLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Nominated,DeclContext * CommonAncestor)3025   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
3026                      SourceLocation NamespcLoc,
3027                      NestedNameSpecifierLoc QualifierLoc,
3028                      SourceLocation IdentLoc,
3029                      NamedDecl *Nominated,
3030                      DeclContext *CommonAncestor)
3031       : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
3032         NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
3033         NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
3034 
3035   /// Returns special DeclarationName used by using-directives.
3036   ///
3037   /// This is only used by DeclContext for storing UsingDirectiveDecls in
3038   /// its lookup structure.
getName()3039   static DeclarationName getName() {
3040     return DeclarationName::getUsingDirectiveName();
3041   }
3042 
3043   void anchor() override;
3044 
3045 public:
3046   friend class ASTDeclReader;
3047 
3048   // Friend for getUsingDirectiveName.
3049   friend class DeclContext;
3050 
3051   /// Retrieve the nested-name-specifier that qualifies the
3052   /// name of the namespace, with source-location information.
getQualifierLoc()3053   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3054 
3055   /// Retrieve the nested-name-specifier that qualifies the
3056   /// name of the namespace.
getQualifier()3057   NestedNameSpecifier *getQualifier() const {
3058     return QualifierLoc.getNestedNameSpecifier();
3059   }
3060 
getNominatedNamespaceAsWritten()3061   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
getNominatedNamespaceAsWritten()3062   const NamedDecl *getNominatedNamespaceAsWritten() const {
3063     return NominatedNamespace;
3064   }
3065 
3066   /// Returns the namespace nominated by this using-directive.
3067   NamespaceDecl *getNominatedNamespace();
3068 
getNominatedNamespace()3069   const NamespaceDecl *getNominatedNamespace() const {
3070     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
3071   }
3072 
3073   /// Returns the common ancestor context of this using-directive and
3074   /// its nominated namespace.
getCommonAncestor()3075   DeclContext *getCommonAncestor() { return CommonAncestor; }
getCommonAncestor()3076   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
3077 
3078   /// Return the location of the \c using keyword.
getUsingLoc()3079   SourceLocation getUsingLoc() const { return UsingLoc; }
3080 
3081   // FIXME: Could omit 'Key' in name.
3082   /// Returns the location of the \c namespace keyword.
getNamespaceKeyLocation()3083   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
3084 
3085   /// Returns the location of this using declaration's identifier.
getIdentLocation()3086   SourceLocation getIdentLocation() const { return getLocation(); }
3087 
3088   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
3089                                     SourceLocation UsingLoc,
3090                                     SourceLocation NamespaceLoc,
3091                                     NestedNameSpecifierLoc QualifierLoc,
3092                                     SourceLocation IdentLoc,
3093                                     NamedDecl *Nominated,
3094                                     DeclContext *CommonAncestor);
3095   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3096 
getSourceRange()3097   SourceRange getSourceRange() const override LLVM_READONLY {
3098     return SourceRange(UsingLoc, getLocation());
3099   }
3100 
classof(const Decl * D)3101   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3102   static bool classofKind(Kind K) { return K == UsingDirective; }
3103 };
3104 
3105 /// Represents a C++ namespace alias.
3106 ///
3107 /// For example:
3108 ///
3109 /// \code
3110 /// namespace Foo = Bar;
3111 /// \endcode
3112 class NamespaceAliasDecl : public NamedDecl,
3113                            public Redeclarable<NamespaceAliasDecl> {
3114   friend class ASTDeclReader;
3115 
3116   /// The location of the \c namespace keyword.
3117   SourceLocation NamespaceLoc;
3118 
3119   /// The location of the namespace's identifier.
3120   ///
3121   /// This is accessed by TargetNameLoc.
3122   SourceLocation IdentLoc;
3123 
3124   /// The nested-name-specifier that precedes the namespace.
3125   NestedNameSpecifierLoc QualifierLoc;
3126 
3127   /// The Decl that this alias points to, either a NamespaceDecl or
3128   /// a NamespaceAliasDecl.
3129   NamedDecl *Namespace;
3130 
NamespaceAliasDecl(ASTContext & C,DeclContext * DC,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)3131   NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
3132                      SourceLocation NamespaceLoc, SourceLocation AliasLoc,
3133                      IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
3134                      SourceLocation IdentLoc, NamedDecl *Namespace)
3135       : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
3136         NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
3137         QualifierLoc(QualifierLoc), Namespace(Namespace) {}
3138 
3139   void anchor() override;
3140 
3141   using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
3142 
3143   NamespaceAliasDecl *getNextRedeclarationImpl() override;
3144   NamespaceAliasDecl *getPreviousDeclImpl() override;
3145   NamespaceAliasDecl *getMostRecentDeclImpl() override;
3146 
3147 public:
3148   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3149                                     SourceLocation NamespaceLoc,
3150                                     SourceLocation AliasLoc,
3151                                     IdentifierInfo *Alias,
3152                                     NestedNameSpecifierLoc QualifierLoc,
3153                                     SourceLocation IdentLoc,
3154                                     NamedDecl *Namespace);
3155 
3156   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3157 
3158   using redecl_range = redeclarable_base::redecl_range;
3159   using redecl_iterator = redeclarable_base::redecl_iterator;
3160 
3161   using redeclarable_base::redecls_begin;
3162   using redeclarable_base::redecls_end;
3163   using redeclarable_base::redecls;
3164   using redeclarable_base::getPreviousDecl;
3165   using redeclarable_base::getMostRecentDecl;
3166 
getCanonicalDecl()3167   NamespaceAliasDecl *getCanonicalDecl() override {
3168     return getFirstDecl();
3169   }
getCanonicalDecl()3170   const NamespaceAliasDecl *getCanonicalDecl() const {
3171     return getFirstDecl();
3172   }
3173 
3174   /// Retrieve the nested-name-specifier that qualifies the
3175   /// name of the namespace, with source-location information.
getQualifierLoc()3176   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3177 
3178   /// Retrieve the nested-name-specifier that qualifies the
3179   /// name of the namespace.
getQualifier()3180   NestedNameSpecifier *getQualifier() const {
3181     return QualifierLoc.getNestedNameSpecifier();
3182   }
3183 
3184   /// Retrieve the namespace declaration aliased by this directive.
getNamespace()3185   NamespaceDecl *getNamespace() {
3186     if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
3187       return AD->getNamespace();
3188 
3189     return cast<NamespaceDecl>(Namespace);
3190   }
3191 
getNamespace()3192   const NamespaceDecl *getNamespace() const {
3193     return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3194   }
3195 
3196   /// Returns the location of the alias name, i.e. 'foo' in
3197   /// "namespace foo = ns::bar;".
getAliasLoc()3198   SourceLocation getAliasLoc() const { return getLocation(); }
3199 
3200   /// Returns the location of the \c namespace keyword.
getNamespaceLoc()3201   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3202 
3203   /// Returns the location of the identifier in the named namespace.
getTargetNameLoc()3204   SourceLocation getTargetNameLoc() const { return IdentLoc; }
3205 
3206   /// Retrieve the namespace that this alias refers to, which
3207   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
getAliasedNamespace()3208   NamedDecl *getAliasedNamespace() const { return Namespace; }
3209 
getSourceRange()3210   SourceRange getSourceRange() const override LLVM_READONLY {
3211     return SourceRange(NamespaceLoc, IdentLoc);
3212   }
3213 
classof(const Decl * D)3214   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3215   static bool classofKind(Kind K) { return K == NamespaceAlias; }
3216 };
3217 
3218 /// Implicit declaration of a temporary that was materialized by
3219 /// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3220 class LifetimeExtendedTemporaryDecl final
3221     : public Decl,
3222       public Mergeable<LifetimeExtendedTemporaryDecl> {
3223   friend class MaterializeTemporaryExpr;
3224   friend class ASTDeclReader;
3225 
3226   Stmt *ExprWithTemporary = nullptr;
3227 
3228   /// The declaration which lifetime-extended this reference, if any.
3229   /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3230   ValueDecl *ExtendingDecl = nullptr;
3231   unsigned ManglingNumber;
3232 
3233   mutable APValue *Value = nullptr;
3234 
3235   virtual void anchor();
3236 
LifetimeExtendedTemporaryDecl(Expr * Temp,ValueDecl * EDecl,unsigned Mangling)3237   LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3238       : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3239              EDecl->getLocation()),
3240         ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3241         ManglingNumber(Mangling) {}
3242 
LifetimeExtendedTemporaryDecl(EmptyShell)3243   LifetimeExtendedTemporaryDecl(EmptyShell)
3244       : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3245 
3246 public:
Create(Expr * Temp,ValueDecl * EDec,unsigned Mangling)3247   static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3248                                                unsigned Mangling) {
3249     return new (EDec->getASTContext(), EDec->getDeclContext())
3250         LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3251   }
CreateDeserialized(ASTContext & C,unsigned ID)3252   static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3253                                                            unsigned ID) {
3254     return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3255   }
3256 
getExtendingDecl()3257   ValueDecl *getExtendingDecl() { return ExtendingDecl; }
getExtendingDecl()3258   const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3259 
3260   /// Retrieve the storage duration for the materialized temporary.
3261   StorageDuration getStorageDuration() const;
3262 
3263   /// Retrieve the expression to which the temporary materialization conversion
3264   /// was applied. This isn't necessarily the initializer of the temporary due
3265   /// to the C++98 delayed materialization rules, but
3266   /// skipRValueSubobjectAdjustments can be used to find said initializer within
3267   /// the subexpression.
getTemporaryExpr()3268   Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
getTemporaryExpr()3269   const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
3270 
getManglingNumber()3271   unsigned getManglingNumber() const { return ManglingNumber; }
3272 
3273   /// Get the storage for the constant value of a materialized temporary
3274   /// of static storage duration.
3275   APValue *getOrCreateValue(bool MayCreate) const;
3276 
getValue()3277   APValue *getValue() const { return Value; }
3278 
3279   // Iterators
childrenExpr()3280   Stmt::child_range childrenExpr() {
3281     return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3282   }
3283 
childrenExpr()3284   Stmt::const_child_range childrenExpr() const {
3285     return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3286   }
3287 
classof(const Decl * D)3288   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3289   static bool classofKind(Kind K) {
3290     return K == Decl::LifetimeExtendedTemporary;
3291   }
3292 };
3293 
3294 /// Represents a shadow declaration implicitly introduced into a scope by a
3295 /// (resolved) using-declaration or using-enum-declaration to achieve
3296 /// the desired lookup semantics.
3297 ///
3298 /// For example:
3299 /// \code
3300 /// namespace A {
3301 ///   void foo();
3302 ///   void foo(int);
3303 ///   struct foo {};
3304 ///   enum bar { bar1, bar2 };
3305 /// }
3306 /// namespace B {
3307 ///   // add a UsingDecl and three UsingShadowDecls (named foo) to B.
3308 ///   using A::foo;
3309 ///   // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B.
3310 ///   using enum A::bar;
3311 /// }
3312 /// \endcode
3313 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3314   friend class BaseUsingDecl;
3315 
3316   /// The referenced declaration.
3317   NamedDecl *Underlying = nullptr;
3318 
3319   /// The using declaration which introduced this decl or the next using
3320   /// shadow declaration contained in the aforementioned using declaration.
3321   NamedDecl *UsingOrNextShadow = nullptr;
3322 
3323   void anchor() override;
3324 
3325   using redeclarable_base = Redeclarable<UsingShadowDecl>;
3326 
getNextRedeclarationImpl()3327   UsingShadowDecl *getNextRedeclarationImpl() override {
3328     return getNextRedeclaration();
3329   }
3330 
getPreviousDeclImpl()3331   UsingShadowDecl *getPreviousDeclImpl() override {
3332     return getPreviousDecl();
3333   }
3334 
getMostRecentDeclImpl()3335   UsingShadowDecl *getMostRecentDeclImpl() override {
3336     return getMostRecentDecl();
3337   }
3338 
3339 protected:
3340   UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3341                   DeclarationName Name, BaseUsingDecl *Introducer,
3342                   NamedDecl *Target);
3343   UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3344 
3345 public:
3346   friend class ASTDeclReader;
3347   friend class ASTDeclWriter;
3348 
Create(ASTContext & C,DeclContext * DC,SourceLocation Loc,DeclarationName Name,BaseUsingDecl * Introducer,NamedDecl * Target)3349   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3350                                  SourceLocation Loc, DeclarationName Name,
3351                                  BaseUsingDecl *Introducer, NamedDecl *Target) {
3352     return new (C, DC)
3353         UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target);
3354   }
3355 
3356   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3357 
3358   using redecl_range = redeclarable_base::redecl_range;
3359   using redecl_iterator = redeclarable_base::redecl_iterator;
3360 
3361   using redeclarable_base::redecls_begin;
3362   using redeclarable_base::redecls_end;
3363   using redeclarable_base::redecls;
3364   using redeclarable_base::getPreviousDecl;
3365   using redeclarable_base::getMostRecentDecl;
3366   using redeclarable_base::isFirstDecl;
3367 
getCanonicalDecl()3368   UsingShadowDecl *getCanonicalDecl() override {
3369     return getFirstDecl();
3370   }
getCanonicalDecl()3371   const UsingShadowDecl *getCanonicalDecl() const {
3372     return getFirstDecl();
3373   }
3374 
3375   /// Gets the underlying declaration which has been brought into the
3376   /// local scope.
getTargetDecl()3377   NamedDecl *getTargetDecl() const { return Underlying; }
3378 
3379   /// Sets the underlying declaration which has been brought into the
3380   /// local scope.
setTargetDecl(NamedDecl * ND)3381   void setTargetDecl(NamedDecl *ND) {
3382     assert(ND && "Target decl is null!");
3383     Underlying = ND;
3384     // A UsingShadowDecl is never a friend or local extern declaration, even
3385     // if it is a shadow declaration for one.
3386     IdentifierNamespace =
3387         ND->getIdentifierNamespace() &
3388         ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3389   }
3390 
3391   /// Gets the (written or instantiated) using declaration that introduced this
3392   /// declaration.
3393   BaseUsingDecl *getIntroducer() const;
3394 
3395   /// The next using shadow declaration contained in the shadow decl
3396   /// chain of the using declaration which introduced this decl.
getNextUsingShadowDecl()3397   UsingShadowDecl *getNextUsingShadowDecl() const {
3398     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
3399   }
3400 
classof(const Decl * D)3401   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3402   static bool classofKind(Kind K) {
3403     return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3404   }
3405 };
3406 
3407 /// Represents a C++ declaration that introduces decls from somewhere else. It
3408 /// provides a set of the shadow decls so introduced.
3409 
3410 class BaseUsingDecl : public NamedDecl {
3411   /// The first shadow declaration of the shadow decl chain associated
3412   /// with this using declaration.
3413   ///
3414   /// The bool member of the pair is a bool flag a derived type may use
3415   /// (UsingDecl makes use of it).
3416   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3417 
3418 protected:
BaseUsingDecl(Kind DK,DeclContext * DC,SourceLocation L,DeclarationName N)3419   BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
3420       : NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, false) {}
3421 
3422 private:
3423   void anchor() override;
3424 
3425 protected:
3426   /// A bool flag for use by a derived type
getShadowFlag()3427   bool getShadowFlag() const { return FirstUsingShadow.getInt(); }
3428 
3429   /// A bool flag a derived type may set
setShadowFlag(bool V)3430   void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); }
3431 
3432 public:
3433   friend class ASTDeclReader;
3434   friend class ASTDeclWriter;
3435 
3436   /// Iterates through the using shadow declarations associated with
3437   /// this using declaration.
3438   class shadow_iterator {
3439     /// The current using shadow declaration.
3440     UsingShadowDecl *Current = nullptr;
3441 
3442   public:
3443     using value_type = UsingShadowDecl *;
3444     using reference = UsingShadowDecl *;
3445     using pointer = UsingShadowDecl *;
3446     using iterator_category = std::forward_iterator_tag;
3447     using difference_type = std::ptrdiff_t;
3448 
3449     shadow_iterator() = default;
shadow_iterator(UsingShadowDecl * C)3450     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3451 
3452     reference operator*() const { return Current; }
3453     pointer operator->() const { return Current; }
3454 
3455     shadow_iterator &operator++() {
3456       Current = Current->getNextUsingShadowDecl();
3457       return *this;
3458     }
3459 
3460     shadow_iterator operator++(int) {
3461       shadow_iterator tmp(*this);
3462       ++(*this);
3463       return tmp;
3464     }
3465 
3466     friend bool operator==(shadow_iterator x, shadow_iterator y) {
3467       return x.Current == y.Current;
3468     }
3469     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3470       return x.Current != y.Current;
3471     }
3472   };
3473 
3474   using shadow_range = llvm::iterator_range<shadow_iterator>;
3475 
shadows()3476   shadow_range shadows() const {
3477     return shadow_range(shadow_begin(), shadow_end());
3478   }
3479 
shadow_begin()3480   shadow_iterator shadow_begin() const {
3481     return shadow_iterator(FirstUsingShadow.getPointer());
3482   }
3483 
shadow_end()3484   shadow_iterator shadow_end() const { return shadow_iterator(); }
3485 
3486   /// Return the number of shadowed declarations associated with this
3487   /// using declaration.
shadow_size()3488   unsigned shadow_size() const {
3489     return std::distance(shadow_begin(), shadow_end());
3490   }
3491 
3492   void addShadowDecl(UsingShadowDecl *S);
3493   void removeShadowDecl(UsingShadowDecl *S);
3494 
classof(const Decl * D)3495   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3496   static bool classofKind(Kind K) { return K == Using || K == UsingEnum; }
3497 };
3498 
3499 /// Represents a C++ using-declaration.
3500 ///
3501 /// For example:
3502 /// \code
3503 ///    using someNameSpace::someIdentifier;
3504 /// \endcode
3505 class UsingDecl : public BaseUsingDecl, public Mergeable<UsingDecl> {
3506   /// The source location of the 'using' keyword itself.
3507   SourceLocation UsingLocation;
3508 
3509   /// The nested-name-specifier that precedes the name.
3510   NestedNameSpecifierLoc QualifierLoc;
3511 
3512   /// Provides source/type location info for the declaration name
3513   /// embedded in the ValueDecl base class.
3514   DeclarationNameLoc DNLoc;
3515 
UsingDecl(DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypenameKeyword)3516   UsingDecl(DeclContext *DC, SourceLocation UL,
3517             NestedNameSpecifierLoc QualifierLoc,
3518             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3519       : BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3520         UsingLocation(UL), QualifierLoc(QualifierLoc),
3521         DNLoc(NameInfo.getInfo()) {
3522     setShadowFlag(HasTypenameKeyword);
3523   }
3524 
3525   void anchor() override;
3526 
3527 public:
3528   friend class ASTDeclReader;
3529   friend class ASTDeclWriter;
3530 
3531   /// Return the source location of the 'using' keyword.
getUsingLoc()3532   SourceLocation getUsingLoc() const { return UsingLocation; }
3533 
3534   /// Set the source location of the 'using' keyword.
setUsingLoc(SourceLocation L)3535   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3536 
3537   /// Retrieve the nested-name-specifier that qualifies the name,
3538   /// with source-location information.
getQualifierLoc()3539   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3540 
3541   /// Retrieve the nested-name-specifier that qualifies the name.
getQualifier()3542   NestedNameSpecifier *getQualifier() const {
3543     return QualifierLoc.getNestedNameSpecifier();
3544   }
3545 
getNameInfo()3546   DeclarationNameInfo getNameInfo() const {
3547     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3548   }
3549 
3550   /// Return true if it is a C++03 access declaration (no 'using').
isAccessDeclaration()3551   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3552 
3553   /// Return true if the using declaration has 'typename'.
hasTypename()3554   bool hasTypename() const { return getShadowFlag(); }
3555 
3556   /// Sets whether the using declaration has 'typename'.
setTypename(bool TN)3557   void setTypename(bool TN) { setShadowFlag(TN); }
3558 
3559   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3560                            SourceLocation UsingL,
3561                            NestedNameSpecifierLoc QualifierLoc,
3562                            const DeclarationNameInfo &NameInfo,
3563                            bool HasTypenameKeyword);
3564 
3565   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3566 
3567   SourceRange getSourceRange() const override LLVM_READONLY;
3568 
3569   /// Retrieves the canonical declaration of this declaration.
getCanonicalDecl()3570   UsingDecl *getCanonicalDecl() override {
3571     return cast<UsingDecl>(getFirstDecl());
3572   }
getCanonicalDecl()3573   const UsingDecl *getCanonicalDecl() const {
3574     return cast<UsingDecl>(getFirstDecl());
3575   }
3576 
classof(const Decl * D)3577   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3578   static bool classofKind(Kind K) { return K == Using; }
3579 };
3580 
3581 /// Represents a shadow constructor declaration introduced into a
3582 /// class by a C++11 using-declaration that names a constructor.
3583 ///
3584 /// For example:
3585 /// \code
3586 /// struct Base { Base(int); };
3587 /// struct Derived {
3588 ///    using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3589 /// };
3590 /// \endcode
3591 class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3592   /// If this constructor using declaration inherted the constructor
3593   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3594   /// in the named direct base class from which the declaration was inherited.
3595   ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3596 
3597   /// If this constructor using declaration inherted the constructor
3598   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3599   /// that will be used to construct the unique direct or virtual base class
3600   /// that receives the constructor arguments.
3601   ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3602 
3603   /// \c true if the constructor ultimately named by this using shadow
3604   /// declaration is within a virtual base class subobject of the class that
3605   /// contains this declaration.
3606   LLVM_PREFERRED_TYPE(bool)
3607   unsigned IsVirtual : 1;
3608 
ConstructorUsingShadowDecl(ASTContext & C,DeclContext * DC,SourceLocation Loc,UsingDecl * Using,NamedDecl * Target,bool TargetInVirtualBase)3609   ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3610                              UsingDecl *Using, NamedDecl *Target,
3611                              bool TargetInVirtualBase)
3612       : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc,
3613                         Using->getDeclName(), Using,
3614                         Target->getUnderlyingDecl()),
3615         NominatedBaseClassShadowDecl(
3616             dyn_cast<ConstructorUsingShadowDecl>(Target)),
3617         ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3618         IsVirtual(TargetInVirtualBase) {
3619     // If we found a constructor that chains to a constructor for a virtual
3620     // base, we should directly call that virtual base constructor instead.
3621     // FIXME: This logic belongs in Sema.
3622     if (NominatedBaseClassShadowDecl &&
3623         NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3624       ConstructedBaseClassShadowDecl =
3625           NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3626       IsVirtual = true;
3627     }
3628   }
3629 
ConstructorUsingShadowDecl(ASTContext & C,EmptyShell Empty)3630   ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3631       : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3632 
3633   void anchor() override;
3634 
3635 public:
3636   friend class ASTDeclReader;
3637   friend class ASTDeclWriter;
3638 
3639   static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3640                                             SourceLocation Loc,
3641                                             UsingDecl *Using, NamedDecl *Target,
3642                                             bool IsVirtual);
3643   static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3644                                                         unsigned ID);
3645 
3646   /// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that
3647   /// introduced this.
getIntroducer()3648   UsingDecl *getIntroducer() const {
3649     return cast<UsingDecl>(UsingShadowDecl::getIntroducer());
3650   }
3651 
3652   /// Returns the parent of this using shadow declaration, which
3653   /// is the class in which this is declared.
3654   //@{
getParent()3655   const CXXRecordDecl *getParent() const {
3656     return cast<CXXRecordDecl>(getDeclContext());
3657   }
getParent()3658   CXXRecordDecl *getParent() {
3659     return cast<CXXRecordDecl>(getDeclContext());
3660   }
3661   //@}
3662 
3663   /// Get the inheriting constructor declaration for the direct base
3664   /// class from which this using shadow declaration was inherited, if there is
3665   /// one. This can be different for each redeclaration of the same shadow decl.
getNominatedBaseClassShadowDecl()3666   ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3667     return NominatedBaseClassShadowDecl;
3668   }
3669 
3670   /// Get the inheriting constructor declaration for the base class
3671   /// for which we don't have an explicit initializer, if there is one.
getConstructedBaseClassShadowDecl()3672   ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3673     return ConstructedBaseClassShadowDecl;
3674   }
3675 
3676   /// Get the base class that was named in the using declaration. This
3677   /// can be different for each redeclaration of this same shadow decl.
3678   CXXRecordDecl *getNominatedBaseClass() const;
3679 
3680   /// Get the base class whose constructor or constructor shadow
3681   /// declaration is passed the constructor arguments.
getConstructedBaseClass()3682   CXXRecordDecl *getConstructedBaseClass() const {
3683     return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3684                                     ? ConstructedBaseClassShadowDecl
3685                                     : getTargetDecl())
3686                                    ->getDeclContext());
3687   }
3688 
3689   /// Returns \c true if the constructed base class is a virtual base
3690   /// class subobject of this declaration's class.
constructsVirtualBase()3691   bool constructsVirtualBase() const {
3692     return IsVirtual;
3693   }
3694 
classof(const Decl * D)3695   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3696   static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3697 };
3698 
3699 /// Represents a C++ using-enum-declaration.
3700 ///
3701 /// For example:
3702 /// \code
3703 ///    using enum SomeEnumTag ;
3704 /// \endcode
3705 
3706 class UsingEnumDecl : public BaseUsingDecl, public Mergeable<UsingEnumDecl> {
3707   /// The source location of the 'using' keyword itself.
3708   SourceLocation UsingLocation;
3709   /// The source location of the 'enum' keyword.
3710   SourceLocation EnumLocation;
3711   /// 'qual::SomeEnum' as an EnumType, possibly with Elaborated/Typedef sugar.
3712   TypeSourceInfo *EnumType;
3713 
UsingEnumDecl(DeclContext * DC,DeclarationName DN,SourceLocation UL,SourceLocation EL,SourceLocation NL,TypeSourceInfo * EnumType)3714   UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL,
3715                 SourceLocation EL, SourceLocation NL, TypeSourceInfo *EnumType)
3716       : BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL), EnumLocation(EL),
3717         EnumType(EnumType){}
3718 
3719   void anchor() override;
3720 
3721 public:
3722   friend class ASTDeclReader;
3723   friend class ASTDeclWriter;
3724 
3725   /// The source location of the 'using' keyword.
getUsingLoc()3726   SourceLocation getUsingLoc() const { return UsingLocation; }
setUsingLoc(SourceLocation L)3727   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3728 
3729   /// The source location of the 'enum' keyword.
getEnumLoc()3730   SourceLocation getEnumLoc() const { return EnumLocation; }
setEnumLoc(SourceLocation L)3731   void setEnumLoc(SourceLocation L) { EnumLocation = L; }
getQualifier()3732   NestedNameSpecifier *getQualifier() const {
3733     return getQualifierLoc().getNestedNameSpecifier();
3734   }
getQualifierLoc()3735   NestedNameSpecifierLoc getQualifierLoc() const {
3736     if (auto ETL = EnumType->getTypeLoc().getAs<ElaboratedTypeLoc>())
3737       return ETL.getQualifierLoc();
3738     return NestedNameSpecifierLoc();
3739   }
3740   // Returns the "qualifier::Name" part as a TypeLoc.
getEnumTypeLoc()3741   TypeLoc getEnumTypeLoc() const {
3742     return EnumType->getTypeLoc();
3743   }
getEnumType()3744   TypeSourceInfo *getEnumType() const {
3745     return EnumType;
3746   }
setEnumType(TypeSourceInfo * TSI)3747   void setEnumType(TypeSourceInfo *TSI) { EnumType = TSI; }
3748 
3749 public:
getEnumDecl()3750   EnumDecl *getEnumDecl() const { return cast<EnumDecl>(EnumType->getType()->getAsTagDecl()); }
3751 
3752   static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC,
3753                                SourceLocation UsingL, SourceLocation EnumL,
3754                                SourceLocation NameL, TypeSourceInfo *EnumType);
3755 
3756   static UsingEnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3757 
3758   SourceRange getSourceRange() const override LLVM_READONLY;
3759 
3760   /// Retrieves the canonical declaration of this declaration.
getCanonicalDecl()3761   UsingEnumDecl *getCanonicalDecl() override {
3762     return cast<UsingEnumDecl>(getFirstDecl());
3763   }
getCanonicalDecl()3764   const UsingEnumDecl *getCanonicalDecl() const {
3765     return cast<UsingEnumDecl>(getFirstDecl());
3766   }
3767 
classof(const Decl * D)3768   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3769   static bool classofKind(Kind K) { return K == UsingEnum; }
3770 };
3771 
3772 /// Represents a pack of using declarations that a single
3773 /// using-declarator pack-expanded into.
3774 ///
3775 /// \code
3776 /// template<typename ...T> struct X : T... {
3777 ///   using T::operator()...;
3778 ///   using T::operator T...;
3779 /// };
3780 /// \endcode
3781 ///
3782 /// In the second case above, the UsingPackDecl will have the name
3783 /// 'operator T' (which contains an unexpanded pack), but the individual
3784 /// UsingDecls and UsingShadowDecls will have more reasonable names.
3785 class UsingPackDecl final
3786     : public NamedDecl, public Mergeable<UsingPackDecl>,
3787       private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3788   /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3789   /// which this waas instantiated.
3790   NamedDecl *InstantiatedFrom;
3791 
3792   /// The number of using-declarations created by this pack expansion.
3793   unsigned NumExpansions;
3794 
UsingPackDecl(DeclContext * DC,NamedDecl * InstantiatedFrom,ArrayRef<NamedDecl * > UsingDecls)3795   UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3796                 ArrayRef<NamedDecl *> UsingDecls)
3797       : NamedDecl(UsingPack, DC,
3798                   InstantiatedFrom ? InstantiatedFrom->getLocation()
3799                                    : SourceLocation(),
3800                   InstantiatedFrom ? InstantiatedFrom->getDeclName()
3801                                    : DeclarationName()),
3802         InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3803     std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3804                             getTrailingObjects<NamedDecl *>());
3805   }
3806 
3807   void anchor() override;
3808 
3809 public:
3810   friend class ASTDeclReader;
3811   friend class ASTDeclWriter;
3812   friend TrailingObjects;
3813 
3814   /// Get the using declaration from which this was instantiated. This will
3815   /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3816   /// that is a pack expansion.
getInstantiatedFromUsingDecl()3817   NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3818 
3819   /// Get the set of using declarations that this pack expanded into. Note that
3820   /// some of these may still be unresolved.
expansions()3821   ArrayRef<NamedDecl *> expansions() const {
3822     return llvm::ArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3823   }
3824 
3825   static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3826                                NamedDecl *InstantiatedFrom,
3827                                ArrayRef<NamedDecl *> UsingDecls);
3828 
3829   static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3830                                            unsigned NumExpansions);
3831 
getSourceRange()3832   SourceRange getSourceRange() const override LLVM_READONLY {
3833     return InstantiatedFrom->getSourceRange();
3834   }
3835 
getCanonicalDecl()3836   UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
getCanonicalDecl()3837   const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3838 
classof(const Decl * D)3839   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3840   static bool classofKind(Kind K) { return K == UsingPack; }
3841 };
3842 
3843 /// Represents a dependent using declaration which was not marked with
3844 /// \c typename.
3845 ///
3846 /// Unlike non-dependent using declarations, these *only* bring through
3847 /// non-types; otherwise they would break two-phase lookup.
3848 ///
3849 /// \code
3850 /// template \<class T> class A : public Base<T> {
3851 ///   using Base<T>::foo;
3852 /// };
3853 /// \endcode
3854 class UnresolvedUsingValueDecl : public ValueDecl,
3855                                  public Mergeable<UnresolvedUsingValueDecl> {
3856   /// The source location of the 'using' keyword
3857   SourceLocation UsingLocation;
3858 
3859   /// If this is a pack expansion, the location of the '...'.
3860   SourceLocation EllipsisLoc;
3861 
3862   /// The nested-name-specifier that precedes the name.
3863   NestedNameSpecifierLoc QualifierLoc;
3864 
3865   /// Provides source/type location info for the declaration name
3866   /// embedded in the ValueDecl base class.
3867   DeclarationNameLoc DNLoc;
3868 
UnresolvedUsingValueDecl(DeclContext * DC,QualType Ty,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,SourceLocation EllipsisLoc)3869   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3870                            SourceLocation UsingLoc,
3871                            NestedNameSpecifierLoc QualifierLoc,
3872                            const DeclarationNameInfo &NameInfo,
3873                            SourceLocation EllipsisLoc)
3874       : ValueDecl(UnresolvedUsingValue, DC,
3875                   NameInfo.getLoc(), NameInfo.getName(), Ty),
3876         UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3877         QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3878 
3879   void anchor() override;
3880 
3881 public:
3882   friend class ASTDeclReader;
3883   friend class ASTDeclWriter;
3884 
3885   /// Returns the source location of the 'using' keyword.
getUsingLoc()3886   SourceLocation getUsingLoc() const { return UsingLocation; }
3887 
3888   /// Set the source location of the 'using' keyword.
setUsingLoc(SourceLocation L)3889   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3890 
3891   /// Return true if it is a C++03 access declaration (no 'using').
isAccessDeclaration()3892   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3893 
3894   /// Retrieve the nested-name-specifier that qualifies the name,
3895   /// with source-location information.
getQualifierLoc()3896   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3897 
3898   /// Retrieve the nested-name-specifier that qualifies the name.
getQualifier()3899   NestedNameSpecifier *getQualifier() const {
3900     return QualifierLoc.getNestedNameSpecifier();
3901   }
3902 
getNameInfo()3903   DeclarationNameInfo getNameInfo() const {
3904     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3905   }
3906 
3907   /// Determine whether this is a pack expansion.
isPackExpansion()3908   bool isPackExpansion() const {
3909     return EllipsisLoc.isValid();
3910   }
3911 
3912   /// Get the location of the ellipsis if this is a pack expansion.
getEllipsisLoc()3913   SourceLocation getEllipsisLoc() const {
3914     return EllipsisLoc;
3915   }
3916 
3917   static UnresolvedUsingValueDecl *
3918     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3919            NestedNameSpecifierLoc QualifierLoc,
3920            const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3921 
3922   static UnresolvedUsingValueDecl *
3923   CreateDeserialized(ASTContext &C, unsigned ID);
3924 
3925   SourceRange getSourceRange() const override LLVM_READONLY;
3926 
3927   /// Retrieves the canonical declaration of this declaration.
getCanonicalDecl()3928   UnresolvedUsingValueDecl *getCanonicalDecl() override {
3929     return getFirstDecl();
3930   }
getCanonicalDecl()3931   const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3932     return getFirstDecl();
3933   }
3934 
classof(const Decl * D)3935   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)3936   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3937 };
3938 
3939 /// Represents a dependent using declaration which was marked with
3940 /// \c typename.
3941 ///
3942 /// \code
3943 /// template \<class T> class A : public Base<T> {
3944 ///   using typename Base<T>::foo;
3945 /// };
3946 /// \endcode
3947 ///
3948 /// The type associated with an unresolved using typename decl is
3949 /// currently always a typename type.
3950 class UnresolvedUsingTypenameDecl
3951     : public TypeDecl,
3952       public Mergeable<UnresolvedUsingTypenameDecl> {
3953   friend class ASTDeclReader;
3954 
3955   /// The source location of the 'typename' keyword
3956   SourceLocation TypenameLocation;
3957 
3958   /// If this is a pack expansion, the location of the '...'.
3959   SourceLocation EllipsisLoc;
3960 
3961   /// The nested-name-specifier that precedes the name.
3962   NestedNameSpecifierLoc QualifierLoc;
3963 
UnresolvedUsingTypenameDecl(DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,IdentifierInfo * TargetName,SourceLocation EllipsisLoc)3964   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3965                               SourceLocation TypenameLoc,
3966                               NestedNameSpecifierLoc QualifierLoc,
3967                               SourceLocation TargetNameLoc,
3968                               IdentifierInfo *TargetName,
3969                               SourceLocation EllipsisLoc)
3970     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3971                UsingLoc),
3972       TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3973       QualifierLoc(QualifierLoc) {}
3974 
3975   void anchor() override;
3976 
3977 public:
3978   /// Returns the source location of the 'using' keyword.
getUsingLoc()3979   SourceLocation getUsingLoc() const { return getBeginLoc(); }
3980 
3981   /// Returns the source location of the 'typename' keyword.
getTypenameLoc()3982   SourceLocation getTypenameLoc() const { return TypenameLocation; }
3983 
3984   /// Retrieve the nested-name-specifier that qualifies the name,
3985   /// with source-location information.
getQualifierLoc()3986   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3987 
3988   /// Retrieve the nested-name-specifier that qualifies the name.
getQualifier()3989   NestedNameSpecifier *getQualifier() const {
3990     return QualifierLoc.getNestedNameSpecifier();
3991   }
3992 
getNameInfo()3993   DeclarationNameInfo getNameInfo() const {
3994     return DeclarationNameInfo(getDeclName(), getLocation());
3995   }
3996 
3997   /// Determine whether this is a pack expansion.
isPackExpansion()3998   bool isPackExpansion() const {
3999     return EllipsisLoc.isValid();
4000   }
4001 
4002   /// Get the location of the ellipsis if this is a pack expansion.
getEllipsisLoc()4003   SourceLocation getEllipsisLoc() const {
4004     return EllipsisLoc;
4005   }
4006 
4007   static UnresolvedUsingTypenameDecl *
4008     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
4009            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
4010            SourceLocation TargetNameLoc, DeclarationName TargetName,
4011            SourceLocation EllipsisLoc);
4012 
4013   static UnresolvedUsingTypenameDecl *
4014   CreateDeserialized(ASTContext &C, unsigned ID);
4015 
4016   /// Retrieves the canonical declaration of this declaration.
getCanonicalDecl()4017   UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
4018     return getFirstDecl();
4019   }
getCanonicalDecl()4020   const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
4021     return getFirstDecl();
4022   }
4023 
classof(const Decl * D)4024   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4025   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
4026 };
4027 
4028 /// This node is generated when a using-declaration that was annotated with
4029 /// __attribute__((using_if_exists)) failed to resolve to a known declaration.
4030 /// In that case, Sema builds a UsingShadowDecl whose target is an instance of
4031 /// this declaration, adding it to the current scope. Referring to this
4032 /// declaration in any way is an error.
4033 class UnresolvedUsingIfExistsDecl final : public NamedDecl {
4034   UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc,
4035                               DeclarationName Name);
4036 
4037   void anchor() override;
4038 
4039 public:
4040   static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC,
4041                                              SourceLocation Loc,
4042                                              DeclarationName Name);
4043   static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx,
4044                                                          unsigned ID);
4045 
classof(const Decl * D)4046   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4047   static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; }
4048 };
4049 
4050 /// Represents a C++11 static_assert declaration.
4051 class StaticAssertDecl : public Decl {
4052   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
4053   Expr *Message;
4054   SourceLocation RParenLoc;
4055 
StaticAssertDecl(DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * Message,SourceLocation RParenLoc,bool Failed)4056   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
4057                    Expr *AssertExpr, Expr *Message, SourceLocation RParenLoc,
4058                    bool Failed)
4059       : Decl(StaticAssert, DC, StaticAssertLoc),
4060         AssertExprAndFailed(AssertExpr, Failed), Message(Message),
4061         RParenLoc(RParenLoc) {}
4062 
4063   virtual void anchor();
4064 
4065 public:
4066   friend class ASTDeclReader;
4067 
4068   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
4069                                   SourceLocation StaticAssertLoc,
4070                                   Expr *AssertExpr, Expr *Message,
4071                                   SourceLocation RParenLoc, bool Failed);
4072   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4073 
getAssertExpr()4074   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
getAssertExpr()4075   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
4076 
getMessage()4077   Expr *getMessage() { return Message; }
getMessage()4078   const Expr *getMessage() const { return Message; }
4079 
isFailed()4080   bool isFailed() const { return AssertExprAndFailed.getInt(); }
4081 
getRParenLoc()4082   SourceLocation getRParenLoc() const { return RParenLoc; }
4083 
getSourceRange()4084   SourceRange getSourceRange() const override LLVM_READONLY {
4085     return SourceRange(getLocation(), getRParenLoc());
4086   }
4087 
classof(const Decl * D)4088   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4089   static bool classofKind(Kind K) { return K == StaticAssert; }
4090 };
4091 
4092 /// A binding in a decomposition declaration. For instance, given:
4093 ///
4094 ///   int n[3];
4095 ///   auto &[a, b, c] = n;
4096 ///
4097 /// a, b, and c are BindingDecls, whose bindings are the expressions
4098 /// x[0], x[1], and x[2] respectively, where x is the implicit
4099 /// DecompositionDecl of type 'int (&)[3]'.
4100 class BindingDecl : public ValueDecl {
4101   /// The declaration that this binding binds to part of.
4102   ValueDecl *Decomp;
4103   /// The binding represented by this declaration. References to this
4104   /// declaration are effectively equivalent to this expression (except
4105   /// that it is only evaluated once at the point of declaration of the
4106   /// binding).
4107   Expr *Binding = nullptr;
4108 
BindingDecl(DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id)4109   BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
4110       : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
4111 
4112   void anchor() override;
4113 
4114 public:
4115   friend class ASTDeclReader;
4116 
4117   static BindingDecl *Create(ASTContext &C, DeclContext *DC,
4118                              SourceLocation IdLoc, IdentifierInfo *Id);
4119   static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4120 
4121   /// Get the expression to which this declaration is bound. This may be null
4122   /// in two different cases: while parsing the initializer for the
4123   /// decomposition declaration, and when the initializer is type-dependent.
getBinding()4124   Expr *getBinding() const { return Binding; }
4125 
4126   /// Get the decomposition declaration that this binding represents a
4127   /// decomposition of.
getDecomposedDecl()4128   ValueDecl *getDecomposedDecl() const { return Decomp; }
4129 
4130   /// Get the variable (if any) that holds the value of evaluating the binding.
4131   /// Only present for user-defined bindings for tuple-like types.
4132   VarDecl *getHoldingVar() const;
4133 
4134   /// Set the binding for this BindingDecl, along with its declared type (which
4135   /// should be a possibly-cv-qualified form of the type of the binding, or a
4136   /// reference to such a type).
setBinding(QualType DeclaredType,Expr * Binding)4137   void setBinding(QualType DeclaredType, Expr *Binding) {
4138     setType(DeclaredType);
4139     this->Binding = Binding;
4140   }
4141 
4142   /// Set the decomposed variable for this BindingDecl.
setDecomposedDecl(ValueDecl * Decomposed)4143   void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
4144 
classof(const Decl * D)4145   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4146   static bool classofKind(Kind K) { return K == Decl::Binding; }
4147 };
4148 
4149 /// A decomposition declaration. For instance, given:
4150 ///
4151 ///   int n[3];
4152 ///   auto &[a, b, c] = n;
4153 ///
4154 /// the second line declares a DecompositionDecl of type 'int (&)[3]', and
4155 /// three BindingDecls (named a, b, and c). An instance of this class is always
4156 /// unnamed, but behaves in almost all other respects like a VarDecl.
4157 class DecompositionDecl final
4158     : public VarDecl,
4159       private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
4160   /// The number of BindingDecl*s following this object.
4161   unsigned NumBindings;
4162 
DecompositionDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation LSquareLoc,QualType T,TypeSourceInfo * TInfo,StorageClass SC,ArrayRef<BindingDecl * > Bindings)4163   DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4164                     SourceLocation LSquareLoc, QualType T,
4165                     TypeSourceInfo *TInfo, StorageClass SC,
4166                     ArrayRef<BindingDecl *> Bindings)
4167       : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
4168                 SC),
4169         NumBindings(Bindings.size()) {
4170     std::uninitialized_copy(Bindings.begin(), Bindings.end(),
4171                             getTrailingObjects<BindingDecl *>());
4172     for (auto *B : Bindings)
4173       B->setDecomposedDecl(this);
4174   }
4175 
4176   void anchor() override;
4177 
4178 public:
4179   friend class ASTDeclReader;
4180   friend TrailingObjects;
4181 
4182   static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
4183                                    SourceLocation StartLoc,
4184                                    SourceLocation LSquareLoc,
4185                                    QualType T, TypeSourceInfo *TInfo,
4186                                    StorageClass S,
4187                                    ArrayRef<BindingDecl *> Bindings);
4188   static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4189                                                unsigned NumBindings);
4190 
bindings()4191   ArrayRef<BindingDecl *> bindings() const {
4192     return llvm::ArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
4193   }
4194 
4195   void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
4196 
classof(const Decl * D)4197   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4198   static bool classofKind(Kind K) { return K == Decomposition; }
4199 };
4200 
4201 /// An instance of this class represents the declaration of a property
4202 /// member.  This is a Microsoft extension to C++, first introduced in
4203 /// Visual Studio .NET 2003 as a parallel to similar features in C#
4204 /// and Managed C++.
4205 ///
4206 /// A property must always be a non-static class member.
4207 ///
4208 /// A property member superficially resembles a non-static data
4209 /// member, except preceded by a property attribute:
4210 ///   __declspec(property(get=GetX, put=PutX)) int x;
4211 /// Either (but not both) of the 'get' and 'put' names may be omitted.
4212 ///
4213 /// A reference to a property is always an lvalue.  If the lvalue
4214 /// undergoes lvalue-to-rvalue conversion, then a getter name is
4215 /// required, and that member is called with no arguments.
4216 /// If the lvalue is assigned into, then a setter name is required,
4217 /// and that member is called with one argument, the value assigned.
4218 /// Both operations are potentially overloaded.  Compound assignments
4219 /// are permitted, as are the increment and decrement operators.
4220 ///
4221 /// The getter and putter methods are permitted to be overloaded,
4222 /// although their return and parameter types are subject to certain
4223 /// restrictions according to the type of the property.
4224 ///
4225 /// A property declared using an incomplete array type may
4226 /// additionally be subscripted, adding extra parameters to the getter
4227 /// and putter methods.
4228 class MSPropertyDecl : public DeclaratorDecl {
4229   IdentifierInfo *GetterId, *SetterId;
4230 
MSPropertyDecl(DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)4231   MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
4232                  QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
4233                  IdentifierInfo *Getter, IdentifierInfo *Setter)
4234       : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
4235         GetterId(Getter), SetterId(Setter) {}
4236 
4237   void anchor() override;
4238 public:
4239   friend class ASTDeclReader;
4240 
4241   static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
4242                                 SourceLocation L, DeclarationName N, QualType T,
4243                                 TypeSourceInfo *TInfo, SourceLocation StartL,
4244                                 IdentifierInfo *Getter, IdentifierInfo *Setter);
4245   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4246 
classof(const Decl * D)4247   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
4248 
hasGetter()4249   bool hasGetter() const { return GetterId != nullptr; }
getGetterId()4250   IdentifierInfo* getGetterId() const { return GetterId; }
hasSetter()4251   bool hasSetter() const { return SetterId != nullptr; }
getSetterId()4252   IdentifierInfo* getSetterId() const { return SetterId; }
4253 };
4254 
4255 /// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary
4256 /// dependencies on DeclCXX.h.
4257 struct MSGuidDeclParts {
4258   /// {01234567-...
4259   uint32_t Part1;
4260   /// ...-89ab-...
4261   uint16_t Part2;
4262   /// ...-cdef-...
4263   uint16_t Part3;
4264   /// ...-0123-456789abcdef}
4265   uint8_t Part4And5[8];
4266 
getPart4And5AsUint64MSGuidDeclParts4267   uint64_t getPart4And5AsUint64() const {
4268     uint64_t Val;
4269     memcpy(&Val, &Part4And5, sizeof(Part4And5));
4270     return Val;
4271   }
4272 };
4273 
4274 /// A global _GUID constant. These are implicitly created by UuidAttrs.
4275 ///
4276 ///   struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{};
4277 ///
4278 /// X is a CXXRecordDecl that contains a UuidAttr that references the (unique)
4279 /// MSGuidDecl for the specified UUID.
4280 class MSGuidDecl : public ValueDecl,
4281                    public Mergeable<MSGuidDecl>,
4282                    public llvm::FoldingSetNode {
4283 public:
4284   using Parts = MSGuidDeclParts;
4285 
4286 private:
4287   /// The decomposed form of the UUID.
4288   Parts PartVal;
4289 
4290   /// The resolved value of the UUID as an APValue. Computed on demand and
4291   /// cached.
4292   mutable APValue APVal;
4293 
4294   void anchor() override;
4295 
4296   MSGuidDecl(DeclContext *DC, QualType T, Parts P);
4297 
4298   static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P);
4299   static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4300 
4301   // Only ASTContext::getMSGuidDecl and deserialization create these.
4302   friend class ASTContext;
4303   friend class ASTReader;
4304   friend class ASTDeclReader;
4305 
4306 public:
4307   /// Print this UUID in a human-readable format.
4308   void printName(llvm::raw_ostream &OS,
4309                  const PrintingPolicy &Policy) const override;
4310 
4311   /// Get the decomposed parts of this declaration.
getParts()4312   Parts getParts() const { return PartVal; }
4313 
4314   /// Get the value of this MSGuidDecl as an APValue. This may fail and return
4315   /// an absent APValue if the type of the declaration is not of the expected
4316   /// shape.
4317   APValue &getAsAPValue() const;
4318 
Profile(llvm::FoldingSetNodeID & ID,Parts P)4319   static void Profile(llvm::FoldingSetNodeID &ID, Parts P) {
4320     ID.AddInteger(P.Part1);
4321     ID.AddInteger(P.Part2);
4322     ID.AddInteger(P.Part3);
4323     ID.AddInteger(P.getPart4And5AsUint64());
4324   }
Profile(llvm::FoldingSetNodeID & ID)4325   void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); }
4326 
classof(const Decl * D)4327   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4328   static bool classofKind(Kind K) { return K == Decl::MSGuid; }
4329 };
4330 
4331 /// An artificial decl, representing a global anonymous constant value which is
4332 /// uniquified by value within a translation unit.
4333 ///
4334 /// These is currently only used to back the LValue returned by
4335 /// __builtin_source_location, but could potentially be used for other similar
4336 /// situations in the future.
4337 class UnnamedGlobalConstantDecl : public ValueDecl,
4338                                   public Mergeable<UnnamedGlobalConstantDecl>,
4339                                   public llvm::FoldingSetNode {
4340 
4341   // The constant value of this global.
4342   APValue Value;
4343 
4344   void anchor() override;
4345 
4346   UnnamedGlobalConstantDecl(const ASTContext &C, DeclContext *DC, QualType T,
4347                             const APValue &Val);
4348 
4349   static UnnamedGlobalConstantDecl *Create(const ASTContext &C, QualType T,
4350                                            const APValue &APVal);
4351   static UnnamedGlobalConstantDecl *CreateDeserialized(ASTContext &C,
4352                                                        unsigned ID);
4353 
4354   // Only ASTContext::getUnnamedGlobalConstantDecl and deserialization create
4355   // these.
4356   friend class ASTContext;
4357   friend class ASTReader;
4358   friend class ASTDeclReader;
4359 
4360 public:
4361   /// Print this in a human-readable format.
4362   void printName(llvm::raw_ostream &OS,
4363                  const PrintingPolicy &Policy) const override;
4364 
getValue()4365   const APValue &getValue() const { return Value; }
4366 
Profile(llvm::FoldingSetNodeID & ID,QualType Ty,const APValue & APVal)4367   static void Profile(llvm::FoldingSetNodeID &ID, QualType Ty,
4368                       const APValue &APVal) {
4369     Ty.Profile(ID);
4370     APVal.Profile(ID);
4371   }
Profile(llvm::FoldingSetNodeID & ID)4372   void Profile(llvm::FoldingSetNodeID &ID) {
4373     Profile(ID, getType(), getValue());
4374   }
4375 
classof(const Decl * D)4376   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
classofKind(Kind K)4377   static bool classofKind(Kind K) { return K == Decl::UnnamedGlobalConstant; }
4378 };
4379 
4380 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
4381 /// into a diagnostic with <<.
4382 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
4383                                       AccessSpecifier AS);
4384 
4385 } // namespace clang
4386 
4387 #endif // LLVM_CLANG_AST_DECLCXX_H
4388