1 //===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Lower matrix intrinsics to vector operations.
10 //
11 // TODO:
12 //  * Improve fusion:
13 //   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14 //     transposed.
15 //   * Improve cost-modeling, e.g. choose different number of rows/columns
16 //     columns for tiles, consider cost of copies on alias.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21 #include "llvm/ADT/GraphTraits.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/DomTreeUpdater.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Alignment.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include "llvm/Transforms/Utils/MatrixUtils.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 #define DEBUG_TYPE "lower-matrix-intrinsics"
52 
53 static cl::opt<bool>
54     FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
55                cl::desc("Enable/disable fusing matrix instructions."));
56 // TODO: Allow and use non-square tiles.
57 static cl::opt<unsigned> TileSize(
58     "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
59     cl::desc(
60         "Tile size for matrix instruction fusion using square-shaped tiles."));
61 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
62                                   cl::Hidden,
63                                   cl::desc("Generate loop nest for tiling."));
64 static cl::opt<bool> ForceFusion(
65     "force-fuse-matrix", cl::init(false), cl::Hidden,
66     cl::desc("Force matrix instruction fusion even if not profitable."));
67 static cl::opt<bool> AllowContractEnabled(
68     "matrix-allow-contract", cl::init(false), cl::Hidden,
69     cl::desc("Allow the use of FMAs if available and profitable. This may "
70              "result in different results, due to less rounding error."));
71 
72 enum class MatrixLayoutTy { ColumnMajor, RowMajor };
73 
74 static cl::opt<MatrixLayoutTy> MatrixLayout(
75     "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
76     cl::desc("Sets the default matrix layout"),
77     cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
78                           "Use column-major layout"),
79                clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
80                           "Use row-major layout")));
81 
82 /// Helper function to either return Scope, if it is a subprogram or the
83 /// attached subprogram for a local scope.
getSubprogram(DIScope * Scope)84 static DISubprogram *getSubprogram(DIScope *Scope) {
85   if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
86     return Subprogram;
87   return cast<DILocalScope>(Scope)->getSubprogram();
88 }
89 
90 namespace {
91 
92 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
93 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
94 // assuming \p Stride elements between start two consecutive vectors.
95 // \p Stride must be >= \p NumElements.
96 // For column-major matrixes, the function computes the address of a column
97 // vectors and \p NumElements must be set to the number of elements in a column
98 // (= number of rows of the matrix). For row-major matrixes, the function
99 // computes the address of a row vector and \p NumElements must be set to the
100 // number of elements in a column (= number of columns of the matrix).
101 //
102 // Consider a 4x4 matrix in column-mjaor layout like below
103 //
104 //      0       1      2      3
105 // 0   v_0_0  v_0_1  v_0_2  v_0_3
106 // 1   v_1_0  v_1_1  v_1_2  v_1_3
107 // 2   v_2_0  v_2_1  v_2_2  v_2_3
108 // 3   v_3_0  v_3_1  v_3_2  v_3_3
109 
110 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
111 // we need a pointer to the first element of the submatrix as base pointer.
112 // Then we can use computeVectorAddr to compute the addresses for the columns
113 // of the sub-matrix.
114 //
115 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
116 //           -> just returns Base
117 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
118 //           -> returns Base + (1 * 4)
119 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
120 //           -> returns Base + (2 * 4)
121 //
122 // The graphic below illustrates the number of elements in a column (marked
123 // with |) and the number of skipped elements (marked with }).
124 //
125 //         v_0_0  v_0_1 {v_0_2 {v_0_3
126 //                Base   Col 1  Col 2
127 //                  |     |      |
128 //         v_1_0 |v_1_1 |v_1_2 |v_1_3
129 //         v_2_0 |v_2_1 |v_2_2 |v_2_3
130 //         v_3_0 {v_3_1 {v_3_2  v_3_3
131 //
computeVectorAddr(Value * BasePtr,Value * VecIdx,Value * Stride,unsigned NumElements,Type * EltType,IRBuilder<> & Builder)132 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
133                          unsigned NumElements, Type *EltType,
134                          IRBuilder<> &Builder) {
135 
136   assert((!isa<ConstantInt>(Stride) ||
137           cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
138          "Stride must be >= the number of elements in the result vector.");
139   unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
140 
141   // Compute the start of the vector with index VecIdx as VecIdx * Stride.
142   Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
143 
144   // Get pointer to the start of the selected vector. Skip GEP creation,
145   // if we select vector 0.
146   if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
147     VecStart = BasePtr;
148   else
149     VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
150 
151   // Cast elementwise vector start pointer to a pointer to a vector
152   // (EltType x NumElements)*.
153   auto *VecType = FixedVectorType::get(EltType, NumElements);
154   Type *VecPtrType = PointerType::get(VecType, AS);
155   return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
156 }
157 
158 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
159 ///
160 /// Currently, the lowering for each matrix intrinsic is done as follows:
161 /// 1. Propagate the shape information from intrinsics to connected
162 /// instructions.
163 /// 2. Lower instructions with shape information (assuming column-major layout).
164 ///  The lowering works similarly using row-major layout.
165 ///  2.1. Get column vectors for each argument. If we already lowered the
166 ///       definition of an argument, use the produced column vectors directly.
167 ///       If not, split the operand vector containing an embedded matrix into
168 ///       a set of column vectors,
169 ///  2.2. Lower the instruction in terms of column major operations, which
170 ///       yields a set of column vectors containing result matrix. Note that we
171 ///       lower all instructions that have shape information. Besides the
172 ///       intrinsics, this includes stores for example.
173 ///  2.3. Update uses of the lowered instruction. If we have shape information
174 ///       for a user, there is nothing to do, as we will look up the result
175 ///       column matrix when lowering the user. For other uses, we embed the
176 ///       result matrix in a flat vector and update the use.
177 ///  2.4. Cache the result column matrix for the instruction we lowered
178 /// 3. After we lowered all instructions in a function, remove the now
179 ///    obsolete instructions.
180 ///
181 class LowerMatrixIntrinsics {
182   Function &Func;
183   const DataLayout &DL;
184   const TargetTransformInfo &TTI;
185   AliasAnalysis *AA;
186   DominatorTree *DT;
187   LoopInfo *LI;
188   OptimizationRemarkEmitter *ORE;
189 
190   /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
191   struct OpInfoTy {
192     /// Number of stores emitted to generate this matrix.
193     unsigned NumStores = 0;
194     /// Number of loads emitted to generate this matrix.
195     unsigned NumLoads = 0;
196     /// Number of compute operations emitted to generate this matrix.
197     unsigned NumComputeOps = 0;
198 
operator +=__anonbf9288780111::LowerMatrixIntrinsics::OpInfoTy199     OpInfoTy &operator+=(const OpInfoTy &RHS) {
200       NumStores += RHS.NumStores;
201       NumLoads += RHS.NumLoads;
202       NumComputeOps += RHS.NumComputeOps;
203       return *this;
204     }
205   };
206 
207   /// Wrapper class representing a matrix as a set of vectors, either in row or
208   /// column major layout. All vectors must have the same vector type.
209   class MatrixTy {
210     SmallVector<Value *, 16> Vectors;
211 
212     OpInfoTy OpInfo;
213 
214     bool IsColumnMajor = true;
215 
216   public:
MatrixTy()217     MatrixTy()
218         : Vectors(),
219           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(ArrayRef<Value * > Vectors)220     MatrixTy(ArrayRef<Value *> Vectors)
221         : Vectors(Vectors.begin(), Vectors.end()),
222           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(unsigned NumRows,unsigned NumColumns,Type * EltTy)223     MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
224         : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
225 
226       unsigned D = isColumnMajor() ? NumColumns : NumRows;
227       for (unsigned J = 0; J < D; ++J)
228         addVector(UndefValue::get(FixedVectorType::get(
229             EltTy, isColumnMajor() ? NumRows : NumColumns)));
230     }
231 
getVector(unsigned i) const232     Value *getVector(unsigned i) const { return Vectors[i]; }
getColumn(unsigned i) const233     Value *getColumn(unsigned i) const {
234       assert(isColumnMajor() && "only supported for column-major matrixes");
235       return Vectors[i];
236     }
getRow(unsigned i) const237     Value *getRow(unsigned i) const {
238       assert(!isColumnMajor() && "only supported for row-major matrixes");
239       return Vectors[i];
240     }
241 
setVector(unsigned i,Value * V)242     void setVector(unsigned i, Value *V) { Vectors[i] = V; }
243 
getElementType() const244     Type *getElementType() const { return getVectorTy()->getElementType(); }
245 
getNumVectors() const246     unsigned getNumVectors() const {
247       if (isColumnMajor())
248         return getNumColumns();
249       return getNumRows();
250     }
251 
getNumColumns() const252     unsigned getNumColumns() const {
253       if (isColumnMajor())
254         return Vectors.size();
255       else {
256         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
257         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
258       }
259     }
getNumRows() const260     unsigned getNumRows() const {
261       if (isColumnMajor()) {
262         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
263         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
264       } else
265         return Vectors.size();
266     }
267 
addVector(Value * V)268     void addVector(Value *V) { Vectors.push_back(V); }
getColumnTy()269     VectorType *getColumnTy() {
270       assert(isColumnMajor() && "only supported for column-major matrixes");
271       return getVectorTy();
272     }
273 
getVectorTy() const274     VectorType *getVectorTy() const {
275       return cast<VectorType>(Vectors[0]->getType());
276     }
277 
columns()278     iterator_range<SmallVector<Value *, 8>::iterator> columns() {
279       assert(isColumnMajor() &&
280              "columns() only supported for column-major matrixes");
281       return make_range(Vectors.begin(), Vectors.end());
282     }
283 
vectors()284     iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
285       return make_range(Vectors.begin(), Vectors.end());
286     }
287 
288     /// Embed the vectors of the matrix into a flat vector by concatenating
289     /// them.
embedInVector(IRBuilder<> & Builder) const290     Value *embedInVector(IRBuilder<> &Builder) const {
291       return Vectors.size() == 1 ? Vectors[0]
292                                  : concatenateVectors(Builder, Vectors);
293     }
294 
addNumLoads(unsigned N)295     MatrixTy &addNumLoads(unsigned N) {
296       OpInfo.NumLoads += N;
297       return *this;
298     }
299 
setNumLoads(unsigned N)300     void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
301 
addNumStores(unsigned N)302     MatrixTy &addNumStores(unsigned N) {
303       OpInfo.NumStores += N;
304       return *this;
305     }
306 
addNumComputeOps(unsigned N)307     MatrixTy &addNumComputeOps(unsigned N) {
308       OpInfo.NumComputeOps += N;
309       return *this;
310     }
311 
getNumStores() const312     unsigned getNumStores() const { return OpInfo.NumStores; }
getNumLoads() const313     unsigned getNumLoads() const { return OpInfo.NumLoads; }
getNumComputeOps() const314     unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
315 
getOpInfo() const316     const OpInfoTy &getOpInfo() const { return OpInfo; }
317 
isColumnMajor() const318     bool isColumnMajor() const { return IsColumnMajor; }
319 
getStride() const320     unsigned getStride() const {
321       if (isColumnMajor())
322         return getNumRows();
323       return getNumColumns();
324     }
325 
326     /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
327     /// matrix is column-major, the result vector is extracted from a column
328     /// vector, otherwise from a row vector.
extractVector(unsigned I,unsigned J,unsigned NumElts,IRBuilder<> & Builder) const329     Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
330                          IRBuilder<> &Builder) const {
331       Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
332       return Builder.CreateShuffleVector(
333           Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
334           "block");
335     }
336   };
337 
338   struct ShapeInfo {
339     unsigned NumRows;
340     unsigned NumColumns;
341 
342     bool IsColumnMajor;
343 
ShapeInfo__anonbf9288780111::LowerMatrixIntrinsics::ShapeInfo344     ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
345         : NumRows(NumRows), NumColumns(NumColumns),
346           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
347 
ShapeInfo__anonbf9288780111::LowerMatrixIntrinsics::ShapeInfo348     ShapeInfo(Value *NumRows, Value *NumColumns)
349         : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
350                     cast<ConstantInt>(NumColumns)->getZExtValue()) {}
351 
operator ==__anonbf9288780111::LowerMatrixIntrinsics::ShapeInfo352     bool operator==(const ShapeInfo &other) {
353       return NumRows == other.NumRows && NumColumns == other.NumColumns;
354     }
operator !=__anonbf9288780111::LowerMatrixIntrinsics::ShapeInfo355     bool operator!=(const ShapeInfo &other) { return !(*this == other); }
356 
357     /// Returns true if shape-information is defined, meaning both dimensions
358     /// are != 0.
operator bool__anonbf9288780111::LowerMatrixIntrinsics::ShapeInfo359     operator bool() const {
360       assert(NumRows == 0 || NumColumns != 0);
361       return NumRows != 0;
362     }
363 
getStride__anonbf9288780111::LowerMatrixIntrinsics::ShapeInfo364     unsigned getStride() const {
365       if (IsColumnMajor)
366         return NumRows;
367       return NumColumns;
368     }
369 
getNumVectors__anonbf9288780111::LowerMatrixIntrinsics::ShapeInfo370     unsigned getNumVectors() const {
371       if (IsColumnMajor)
372         return NumColumns;
373       return NumRows;
374     }
375   };
376 
377   /// Maps instructions to their shape information. The shape information
378   /// describes the shape to be used while lowering. This matches the shape of
379   /// the result value of the instruction, with the only exceptions being store
380   /// instructions and the matrix_column_major_store intrinsics. For those, the
381   /// shape information indicates that those instructions should be lowered
382   /// using shape information as well.
383   DenseMap<Value *, ShapeInfo> ShapeMap;
384 
385   /// List of instructions to remove. While lowering, we are not replacing all
386   /// users of a lowered instruction, if shape information is available and
387   /// those need to be removed after we finished lowering.
388   SmallVector<Instruction *, 16> ToRemove;
389 
390   /// Map from instructions to their produced column matrix.
391   MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
392 
393 public:
LowerMatrixIntrinsics(Function & F,TargetTransformInfo & TTI,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,OptimizationRemarkEmitter * ORE)394   LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
395                         AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
396                         OptimizationRemarkEmitter *ORE)
397       : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
398         LI(LI), ORE(ORE) {}
399 
getNumOps(Type * VT)400   unsigned getNumOps(Type *VT) {
401     assert(isa<VectorType>(VT) && "Expected vector type");
402     return getNumOps(VT->getScalarType(),
403                      cast<FixedVectorType>(VT)->getNumElements());
404   }
405 
406   //
407   /// Return the estimated number of vector ops required for an operation on
408   /// \p VT * N.
getNumOps(Type * ST,unsigned N)409   unsigned getNumOps(Type *ST, unsigned N) {
410     return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
411                      double(TTI.getRegisterBitWidth(
412                                    TargetTransformInfo::RGK_FixedWidthVector)
413                                 .getFixedSize()));
414   }
415 
416   /// Return the set of vectors that a matrix value is lowered to.
417   ///
418   /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
419   /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
420   /// into vectors.
getMatrix(Value * MatrixVal,const ShapeInfo & SI,IRBuilder<> & Builder)421   MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
422                      IRBuilder<> &Builder) {
423     VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
424     assert(VType && "MatrixVal must be a vector type");
425     assert(cast<FixedVectorType>(VType)->getNumElements() ==
426                SI.NumRows * SI.NumColumns &&
427            "The vector size must match the number of matrix elements");
428 
429     // Check if we lowered MatrixVal using shape information. In that case,
430     // return the existing matrix, if it matches the requested shape
431     // information. If there is a mis-match, embed the result in a flat
432     // vector and split it later.
433     auto Found = Inst2ColumnMatrix.find(MatrixVal);
434     if (Found != Inst2ColumnMatrix.end()) {
435       MatrixTy &M = Found->second;
436       // Return the found matrix, if its shape matches the requested shape
437       // information
438       if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
439         return M;
440 
441       MatrixVal = M.embedInVector(Builder);
442     }
443 
444     // Otherwise split MatrixVal.
445     SmallVector<Value *, 16> SplitVecs;
446     for (unsigned MaskStart = 0;
447          MaskStart < cast<FixedVectorType>(VType)->getNumElements();
448          MaskStart += SI.getStride()) {
449       Value *V = Builder.CreateShuffleVector(
450           MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
451           "split");
452       SplitVecs.push_back(V);
453     }
454 
455     return {SplitVecs};
456   }
457 
458   /// If \p V already has a known shape return false.  Otherwise set the shape
459   /// for instructions that support it.
setShapeInfo(Value * V,ShapeInfo Shape)460   bool setShapeInfo(Value *V, ShapeInfo Shape) {
461     assert(Shape && "Shape not set");
462     if (isa<UndefValue>(V) || !supportsShapeInfo(V))
463       return false;
464 
465     auto SIter = ShapeMap.find(V);
466     if (SIter != ShapeMap.end()) {
467       LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
468                         << SIter->second.NumRows << " "
469                         << SIter->second.NumColumns << " for " << *V << "\n");
470       return false;
471     }
472 
473     ShapeMap.insert({V, Shape});
474     LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
475                       << " for " << *V << "\n");
476     return true;
477   }
478 
isUniformShape(Value * V)479   bool isUniformShape(Value *V) {
480     Instruction *I = dyn_cast<Instruction>(V);
481     if (!I)
482       return true;
483 
484     switch (I->getOpcode()) {
485     case Instruction::FAdd:
486     case Instruction::FSub:
487     case Instruction::FMul: // Scalar multiply.
488     case Instruction::FNeg:
489     case Instruction::Add:
490     case Instruction::Mul:
491     case Instruction::Sub:
492       return true;
493     default:
494       return false;
495     }
496   }
497 
498   /// Returns true if shape information can be used for \p V. The supported
499   /// instructions must match the instructions that can be lowered by this pass.
supportsShapeInfo(Value * V)500   bool supportsShapeInfo(Value *V) {
501     Instruction *Inst = dyn_cast<Instruction>(V);
502     if (!Inst)
503       return false;
504 
505     IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
506     if (II)
507       switch (II->getIntrinsicID()) {
508       case Intrinsic::matrix_multiply:
509       case Intrinsic::matrix_transpose:
510       case Intrinsic::matrix_column_major_load:
511       case Intrinsic::matrix_column_major_store:
512         return true;
513       default:
514         return false;
515       }
516     return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
517   }
518 
519   /// Propagate the shape information of instructions to their users.
520   /// The work list contains instructions for which we can compute the shape,
521   /// either based on the information provided by matrix intrinsics or known
522   /// shapes of operands.
523   SmallVector<Instruction *, 32>
propagateShapeForward(SmallVectorImpl<Instruction * > & WorkList)524   propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
525     SmallVector<Instruction *, 32> NewWorkList;
526     // Pop an element for which we guaranteed to have at least one of the
527     // operand shapes.  Add the shape for this and then add users to the work
528     // list.
529     LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
530     while (!WorkList.empty()) {
531       Instruction *Inst = WorkList.pop_back_val();
532 
533       // New entry, set the value and insert operands
534       bool Propagate = false;
535 
536       Value *MatrixA;
537       Value *MatrixB;
538       Value *M;
539       Value *N;
540       Value *K;
541       if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
542                           m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
543                           m_Value(N), m_Value(K)))) {
544         Propagate = setShapeInfo(Inst, {M, K});
545       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
546                                  m_Value(MatrixA), m_Value(M), m_Value(N)))) {
547         // Flip dimensions.
548         Propagate = setShapeInfo(Inst, {N, M});
549       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
550                                  m_Value(MatrixA), m_Value(), m_Value(),
551                                  m_Value(), m_Value(M), m_Value(N)))) {
552         Propagate = setShapeInfo(Inst, {N, M});
553       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
554                                  m_Value(), m_Value(), m_Value(), m_Value(M),
555                                  m_Value(N)))) {
556         Propagate = setShapeInfo(Inst, {M, N});
557       } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
558         auto OpShape = ShapeMap.find(MatrixA);
559         if (OpShape != ShapeMap.end())
560           setShapeInfo(Inst, OpShape->second);
561         continue;
562       } else if (isUniformShape(Inst)) {
563         // Find the first operand that has a known shape and use that.
564         for (auto &Op : Inst->operands()) {
565           auto OpShape = ShapeMap.find(Op.get());
566           if (OpShape != ShapeMap.end()) {
567             Propagate |= setShapeInfo(Inst, OpShape->second);
568             break;
569           }
570         }
571       }
572 
573       if (Propagate) {
574         NewWorkList.push_back(Inst);
575         for (auto *User : Inst->users())
576           if (ShapeMap.count(User) == 0)
577             WorkList.push_back(cast<Instruction>(User));
578       }
579     }
580 
581     return NewWorkList;
582   }
583 
584   /// Propagate the shape to operands of instructions with shape information.
585   /// \p Worklist contains the instruction for which we already know the shape.
586   SmallVector<Instruction *, 32>
propagateShapeBackward(SmallVectorImpl<Instruction * > & WorkList)587   propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
588     SmallVector<Instruction *, 32> NewWorkList;
589 
590     auto pushInstruction = [](Value *V,
591                               SmallVectorImpl<Instruction *> &WorkList) {
592       Instruction *I = dyn_cast<Instruction>(V);
593       if (I)
594         WorkList.push_back(I);
595     };
596     // Pop an element with known shape.  Traverse the operands, if their shape
597     // derives from the result shape and is unknown, add it and add them to the
598     // worklist.
599     LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
600     while (!WorkList.empty()) {
601       Value *V = WorkList.pop_back_val();
602 
603       size_t BeforeProcessingV = WorkList.size();
604       if (!isa<Instruction>(V))
605         continue;
606 
607       Value *MatrixA;
608       Value *MatrixB;
609       Value *M;
610       Value *N;
611       Value *K;
612       if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
613                        m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
614                        m_Value(N), m_Value(K)))) {
615         if (setShapeInfo(MatrixA, {M, N}))
616           pushInstruction(MatrixA, WorkList);
617 
618         if (setShapeInfo(MatrixB, {N, K}))
619           pushInstruction(MatrixB, WorkList);
620 
621       } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
622                               m_Value(MatrixA), m_Value(M), m_Value(N)))) {
623         // Flip dimensions.
624         if (setShapeInfo(MatrixA, {M, N}))
625           pushInstruction(MatrixA, WorkList);
626       } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
627                               m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
628                               m_Value(M), m_Value(N)))) {
629         if (setShapeInfo(MatrixA, {M, N})) {
630           pushInstruction(MatrixA, WorkList);
631         }
632       } else if (isa<LoadInst>(V) ||
633                  match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
634         // Nothing to do, no matrix input.
635       } else if (isa<StoreInst>(V)) {
636         // Nothing to do.  We forward-propagated to this so we would just
637         // backward propagate to an instruction with an already known shape.
638       } else if (isUniformShape(V)) {
639         // Propagate to all operands.
640         ShapeInfo Shape = ShapeMap[V];
641         for (Use &U : cast<Instruction>(V)->operands()) {
642           if (setShapeInfo(U.get(), Shape))
643             pushInstruction(U.get(), WorkList);
644         }
645       }
646       // After we discovered new shape info for new instructions in the
647       // worklist, we use their users as seeds for the next round of forward
648       // propagation.
649       for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
650         for (User *U : WorkList[I]->users())
651           if (isa<Instruction>(U) && V != U)
652             NewWorkList.push_back(cast<Instruction>(U));
653     }
654     return NewWorkList;
655   }
656 
Visit()657   bool Visit() {
658     SmallVector<Instruction *, 32> WorkList;
659 
660     // Initially only the shape of matrix intrinsics is known.
661     // Initialize the work list with ops carrying shape information.
662     for (BasicBlock &BB : Func)
663       for (Instruction &Inst : BB) {
664         IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
665         if (!II)
666           continue;
667 
668         switch (II->getIntrinsicID()) {
669         case Intrinsic::matrix_multiply:
670         case Intrinsic::matrix_transpose:
671         case Intrinsic::matrix_column_major_load:
672         case Intrinsic::matrix_column_major_store:
673           WorkList.push_back(&Inst);
674           break;
675         default:
676           break;
677         }
678       }
679 
680     // Avoid unnecessary work if there are no matrix intrinsics in the function.
681     if (WorkList.empty())
682       return false;
683 
684     // Propagate shapes until nothing changes any longer.
685     while (!WorkList.empty()) {
686       WorkList = propagateShapeForward(WorkList);
687       WorkList = propagateShapeBackward(WorkList);
688     }
689 
690     bool Changed = false;
691     SmallVector<CallInst *, 16> MaybeFusableInsts;
692     SmallVector<Instruction *, 16> MatrixInsts;
693 
694     // First, collect all instructions with shape information and candidates for
695     // fusion (currently only matrix multiplies).
696     ReversePostOrderTraversal<Function *> RPOT(&Func);
697     for (auto *BB : RPOT)
698       for (Instruction &I : *BB) {
699         if (ShapeMap.find(&I) == ShapeMap.end())
700           continue;
701         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
702           MaybeFusableInsts.push_back(cast<CallInst>(&I));
703         MatrixInsts.push_back(&I);
704       }
705 
706     // Second, try to fuse candidates.
707     SmallPtrSet<Instruction *, 16> FusedInsts;
708     for (CallInst *CI : MaybeFusableInsts)
709       LowerMatrixMultiplyFused(CI, FusedInsts);
710     Changed = !FusedInsts.empty();
711 
712     // Third, lower remaining instructions with shape information.
713     for (Instruction *Inst : MatrixInsts) {
714       if (FusedInsts.count(Inst))
715         continue;
716 
717       IRBuilder<> Builder(Inst);
718 
719       if (CallInst *CInst = dyn_cast<CallInst>(Inst))
720         Changed |= VisitCallInst(CInst);
721 
722       Value *Op1;
723       Value *Op2;
724       if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
725         Changed |= VisitBinaryOperator(BinOp);
726       if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
727         Changed |= VisitUnaryOperator(UnOp);
728       if (match(Inst, m_Load(m_Value(Op1))))
729         Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
730       else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
731         Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
732     }
733 
734     if (ORE) {
735       RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
736       RemarkGen.emitRemarks();
737     }
738 
739     // Delete the instructions backwards, as it has a reduced likelihood of
740     // having to update as many def-use and use-def chains.
741     for (auto *Inst : reverse(ToRemove)) {
742       if (!Inst->use_empty())
743         Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
744       Inst->eraseFromParent();
745     }
746 
747     return Changed;
748   }
749 
750   /// Turns \p BasePtr into an elementwise pointer to \p EltType.
createElementPtr(Value * BasePtr,Type * EltType,IRBuilder<> & Builder)751   Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
752     unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
753     Type *EltPtrType = PointerType::get(EltType, AS);
754     return Builder.CreatePointerCast(BasePtr, EltPtrType);
755   }
756 
757   /// Replace intrinsic calls
VisitCallInst(CallInst * Inst)758   bool VisitCallInst(CallInst *Inst) {
759     if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
760       return false;
761 
762     switch (Inst->getCalledFunction()->getIntrinsicID()) {
763     case Intrinsic::matrix_multiply:
764       LowerMultiply(Inst);
765       break;
766     case Intrinsic::matrix_transpose:
767       LowerTranspose(Inst);
768       break;
769     case Intrinsic::matrix_column_major_load:
770       LowerColumnMajorLoad(Inst);
771       break;
772     case Intrinsic::matrix_column_major_store:
773       LowerColumnMajorStore(Inst);
774       break;
775     default:
776       return false;
777     }
778     return true;
779   }
780 
781   /// Compute the alignment for a column/row \p Idx with \p Stride between them.
782   /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
783   /// ConstantInt, reduce the initial alignment based on the byte offset. For
784   /// non-ConstantInt strides, return the common alignment of the initial
785   /// alignment and the element size in bytes.
getAlignForIndex(unsigned Idx,Value * Stride,Type * ElementTy,MaybeAlign A) const786   Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
787                          MaybeAlign A) const {
788     Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
789     if (Idx == 0)
790       return InitialAlign;
791 
792     TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
793     if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
794       uint64_t StrideInBytes =
795           ConstStride->getZExtValue() * ElementSizeInBits / 8;
796       return commonAlignment(InitialAlign, Idx * StrideInBytes);
797     }
798     return commonAlignment(InitialAlign, ElementSizeInBits / 8);
799   }
800 
801   /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
802   /// vectors.
loadMatrix(Type * Ty,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,ShapeInfo Shape,IRBuilder<> & Builder)803   MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
804                       bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
805     auto *VType = cast<VectorType>(Ty);
806     Type *EltTy = VType->getElementType();
807     Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
808     Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
809     MatrixTy Result;
810     for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
811       Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride,
812                                      Shape.getStride(), EltTy, Builder);
813       Value *Vector = Builder.CreateAlignedLoad(
814           VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
815           IsVolatile, "col.load");
816 
817       Result.addVector(Vector);
818     }
819     return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
820                               Result.getNumVectors());
821   }
822 
823   /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
824   /// starting at \p MatrixPtr[I][J].
loadMatrix(Value * MatrixPtr,MaybeAlign Align,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,ShapeInfo ResultShape,Type * EltTy,IRBuilder<> & Builder)825   MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
826                       ShapeInfo MatrixShape, Value *I, Value *J,
827                       ShapeInfo ResultShape, Type *EltTy,
828                       IRBuilder<> &Builder) {
829 
830     Value *Offset = Builder.CreateAdd(
831         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
832 
833     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
834     Value *EltPtr =
835         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
836     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
837     auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
838                                                    ResultShape.NumColumns);
839     Type *TilePtrTy = PointerType::get(TileTy, AS);
840     Value *TilePtr =
841         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
842 
843     return loadMatrix(TileTy, TilePtr, Align,
844                       Builder.getInt64(MatrixShape.getStride()), IsVolatile,
845                       ResultShape, Builder);
846   }
847 
848   /// Lower a load instruction with shape information.
LowerLoad(Instruction * Inst,Value * Ptr,MaybeAlign Align,Value * Stride,bool IsVolatile,ShapeInfo Shape)849   void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
850                  bool IsVolatile, ShapeInfo Shape) {
851     IRBuilder<> Builder(Inst);
852     finalizeLowering(Inst,
853                      loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
854                                 Shape, Builder),
855                      Builder);
856   }
857 
858   /// Lowers llvm.matrix.column.major.load.
859   ///
860   /// The intrinsic loads a matrix from memory using a stride between columns.
LowerColumnMajorLoad(CallInst * Inst)861   void LowerColumnMajorLoad(CallInst *Inst) {
862     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
863            "Intrinsic only supports column-major layout!");
864     Value *Ptr = Inst->getArgOperand(0);
865     Value *Stride = Inst->getArgOperand(1);
866     LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
867               cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
868               {Inst->getArgOperand(3), Inst->getArgOperand(4)});
869   }
870 
871   /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
872   /// MatrixPtr[I][J].
storeMatrix(const MatrixTy & StoreVal,Value * MatrixPtr,MaybeAlign MAlign,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,Type * EltTy,IRBuilder<> & Builder)873   void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
874                    MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
875                    Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
876     Value *Offset = Builder.CreateAdd(
877         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
878 
879     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
880     Value *EltPtr =
881         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
882     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
883     auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
884                                                    StoreVal.getNumColumns());
885     Type *TilePtrTy = PointerType::get(TileTy, AS);
886     Value *TilePtr =
887         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
888 
889     storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
890                 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
891   }
892 
893   /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
894   /// vectors.
storeMatrix(Type * Ty,MatrixTy StoreVal,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,IRBuilder<> & Builder)895   MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
896                        MaybeAlign MAlign, Value *Stride, bool IsVolatile,
897                        IRBuilder<> &Builder) {
898     auto VType = cast<VectorType>(Ty);
899     Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
900     for (auto Vec : enumerate(StoreVal.vectors())) {
901       Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()),
902                                      Stride, StoreVal.getStride(),
903                                      VType->getElementType(), Builder);
904       Builder.CreateAlignedStore(Vec.value(), GEP,
905                                  getAlignForIndex(Vec.index(), Stride,
906                                                   VType->getElementType(),
907                                                   MAlign),
908                                  IsVolatile);
909     }
910     return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
911                                    StoreVal.getNumVectors());
912   }
913 
914   /// Lower a store instruction with shape information.
LowerStore(Instruction * Inst,Value * Matrix,Value * Ptr,MaybeAlign A,Value * Stride,bool IsVolatile,ShapeInfo Shape)915   void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
916                   Value *Stride, bool IsVolatile, ShapeInfo Shape) {
917     IRBuilder<> Builder(Inst);
918     auto StoreVal = getMatrix(Matrix, Shape, Builder);
919     finalizeLowering(Inst,
920                      storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
921                                  IsVolatile, Builder),
922                      Builder);
923   }
924 
925   /// Lowers llvm.matrix.column.major.store.
926   ///
927   /// The intrinsic store a matrix back memory using a stride between columns.
LowerColumnMajorStore(CallInst * Inst)928   void LowerColumnMajorStore(CallInst *Inst) {
929     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
930            "Intrinsic only supports column-major layout!");
931     Value *Matrix = Inst->getArgOperand(0);
932     Value *Ptr = Inst->getArgOperand(1);
933     Value *Stride = Inst->getArgOperand(2);
934     LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
935                cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
936                {Inst->getArgOperand(4), Inst->getArgOperand(5)});
937   }
938 
939   // Set elements I..I+NumElts-1 to Block
insertVector(Value * Col,unsigned I,Value * Block,IRBuilder<> & Builder)940   Value *insertVector(Value *Col, unsigned I, Value *Block,
941                       IRBuilder<> &Builder) {
942 
943     // First, bring Block to the same size as Col
944     unsigned BlockNumElts =
945         cast<FixedVectorType>(Block->getType())->getNumElements();
946     unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
947     assert(NumElts >= BlockNumElts && "Too few elements for current block");
948 
949     Block = Builder.CreateShuffleVector(
950         Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
951 
952     // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
953     // 8, 4, 5, 6
954     SmallVector<int, 16> Mask;
955     unsigned i;
956     for (i = 0; i < I; i++)
957       Mask.push_back(i);
958 
959     unsigned VecNumElts =
960         cast<FixedVectorType>(Col->getType())->getNumElements();
961     for (; i < I + BlockNumElts; i++)
962       Mask.push_back(i - I + VecNumElts);
963 
964     for (; i < VecNumElts; i++)
965       Mask.push_back(i);
966 
967     return Builder.CreateShuffleVector(Col, Block, Mask);
968   }
969 
createMulAdd(Value * Sum,Value * A,Value * B,bool UseFPOp,IRBuilder<> & Builder,bool AllowContraction,unsigned & NumComputeOps)970   Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
971                       IRBuilder<> &Builder, bool AllowContraction,
972                       unsigned &NumComputeOps) {
973     NumComputeOps += getNumOps(A->getType());
974     if (!Sum)
975       return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
976 
977     if (UseFPOp) {
978       if (AllowContraction) {
979         // Use fmuladd for floating point operations and let the backend decide
980         // if that's profitable.
981         Function *FMulAdd = Intrinsic::getDeclaration(
982             Func.getParent(), Intrinsic::fmuladd, A->getType());
983         return Builder.CreateCall(FMulAdd, {A, B, Sum});
984       }
985       NumComputeOps += getNumOps(A->getType());
986       Value *Mul = Builder.CreateFMul(A, B);
987       return Builder.CreateFAdd(Sum, Mul);
988     }
989 
990     NumComputeOps += getNumOps(A->getType());
991     Value *Mul = Builder.CreateMul(A, B);
992     return Builder.CreateAdd(Sum, Mul);
993   }
994 
995   /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
996   /// users with shape information, there's nothing to do: they will use the
997   /// cached value when they are lowered. For other users, \p Matrix is
998   /// flattened and the uses are updated to use it. Also marks \p Inst for
999   /// deletion.
finalizeLowering(Instruction * Inst,MatrixTy Matrix,IRBuilder<> & Builder)1000   void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1001                         IRBuilder<> &Builder) {
1002     Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1003 
1004     ToRemove.push_back(Inst);
1005     Value *Flattened = nullptr;
1006     for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1007       if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1008         if (!Flattened)
1009           Flattened = Matrix.embedInVector(Builder);
1010         U.set(Flattened);
1011       }
1012     }
1013   }
1014 
1015   /// Compute \p Result += \p A * \p B for input matrices with left-associating
1016   /// addition.
1017   ///
1018   /// We can fold a transpose into the operand that is used to extract scalars.
1019   /// This is the first operands with row-major and the second with
1020   /// column-major.  If \p IsScalarMatrixTransposed we assume the appropriate
1021   /// operand is transposed.
emitMatrixMultiply(MatrixTy & Result,const MatrixTy & A,const MatrixTy & B,bool AllowContraction,IRBuilder<> & Builder,bool IsTiled,bool IsScalarMatrixTransposed)1022   void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1023                           const MatrixTy &B, bool AllowContraction,
1024                           IRBuilder<> &Builder, bool IsTiled,
1025                           bool IsScalarMatrixTransposed) {
1026     const unsigned VF = std::max<unsigned>(
1027         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1028                 .getFixedSize() /
1029             Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1030         1U);
1031     unsigned R = Result.getNumRows();
1032     unsigned C = Result.getNumColumns();
1033     unsigned M = A.getNumColumns();
1034 
1035     bool IsFP = Result.getElementType()->isFloatingPointTy();
1036     assert(A.isColumnMajor() == B.isColumnMajor() &&
1037            Result.isColumnMajor() == A.isColumnMajor() &&
1038            "operands must agree on matrix layout");
1039     unsigned NumComputeOps = 0;
1040     if (A.isColumnMajor()) {
1041       // Multiply columns from the first operand with scalars from the second
1042       // operand. Then move along the K axes and accumulate the columns.  With
1043       // this the adds can be vectorized without reassociation.
1044       for (unsigned J = 0; J < C; ++J) {
1045         unsigned BlockSize = VF;
1046         // If Result is zero, we don't need to accumulate in the K==0 iteration.
1047         bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1048 
1049         for (unsigned I = 0; I < R; I += BlockSize) {
1050           // Gradually lower the vectorization factor to cover the remainder.
1051           while (I + BlockSize > R)
1052             BlockSize /= 2;
1053 
1054           Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1055                                : nullptr;
1056           for (unsigned K = 0; K < M; ++K) {
1057             Value *L = A.extractVector(I, K, BlockSize, Builder);
1058             Value *RH = Builder.CreateExtractElement(
1059                 B.getColumn(IsScalarMatrixTransposed ? K : J),
1060                 IsScalarMatrixTransposed ? J : K);
1061             Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1062             Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1063                                Result.getElementType()->isFloatingPointTy(),
1064                                Builder, AllowContraction, NumComputeOps);
1065           }
1066           Result.setVector(J,
1067                            insertVector(Result.getVector(J), I, Sum, Builder));
1068         }
1069       }
1070     } else {
1071       // Multiply rows from the second operand with scalars from the first
1072       // operand. Then move along the K axes and accumulate the rows.  With this
1073       // the adds can be vectorized without reassociation.
1074       for (unsigned I = 0; I < R; ++I) {
1075         unsigned BlockSize = VF;
1076         bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1077         for (unsigned J = 0; J < C; J += BlockSize) {
1078           // Gradually lower the vectorization factor to cover the remainder.
1079           while (J + BlockSize > C)
1080             BlockSize /= 2;
1081 
1082           Value *Sum = nullptr;
1083           for (unsigned K = 0; K < M; ++K) {
1084             Value *R = B.extractVector(K, J, BlockSize, Builder);
1085             Value *LH = Builder.CreateExtractElement(
1086                 A.getVector(IsScalarMatrixTransposed ? K : I),
1087                 IsScalarMatrixTransposed ? I : K);
1088             Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1089             Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1090                                IsFP, Builder, AllowContraction, NumComputeOps);
1091           }
1092           Result.setVector(I,
1093                            insertVector(Result.getVector(I), J, Sum, Builder));
1094         }
1095       }
1096     }
1097     Result.addNumComputeOps(NumComputeOps);
1098   }
1099 
1100   /// Ensure that the memory in \p Load does not alias \p Store by potentially
1101   /// copying it to a new location.  This new or otherwise the original location
1102   /// is returned.
getNonAliasingPointer(LoadInst * Load,StoreInst * Store,CallInst * MatMul)1103   Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1104                                CallInst *MatMul) {
1105     MemoryLocation StoreLoc = MemoryLocation::get(Store);
1106     MemoryLocation LoadLoc = MemoryLocation::get(Load);
1107 
1108     // If we can statically determine noalias we're good.
1109     if (AA->isNoAlias(LoadLoc, StoreLoc))
1110       return Load->getPointerOperand();
1111 
1112     // Create code to check if the memory locations of the Load and Store
1113     // overlap and if they do, copy Load's operand to a new buffer.
1114 
1115     // First, create  new blocks for 2n part of the check and the copy.
1116     BasicBlock *Check0 = MatMul->getParent();
1117     // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1118     // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1119     // as we adjust Check0 and Check1's branches.
1120     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1121     for (BasicBlock *Succ : successors(Check0))
1122       DTUpdates.push_back({DT->Delete, Check0, Succ});
1123 
1124     BasicBlock *Check1 =
1125         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1126                    nullptr, "alias_cont");
1127     BasicBlock *Copy =
1128         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1129                    nullptr, "copy");
1130     BasicBlock *Fusion =
1131         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1132                    nullptr, "no_alias");
1133 
1134     // Check if the loaded memory location begins before the end of the store
1135     // location. If the condition holds, they might overlap, otherwise they are
1136     // guaranteed to not overlap.
1137     IRBuilder<> Builder(MatMul);
1138     Check0->getTerminator()->eraseFromParent();
1139     Builder.SetInsertPoint(Check0);
1140     Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1141     Value *StoreBegin = Builder.CreatePtrToInt(
1142         const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1143     Value *StoreEnd = Builder.CreateAdd(
1144         StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1145         "store.end", true, true);
1146     Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1147                                               IntPtrTy, "load.begin");
1148     Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1149                          Fusion);
1150 
1151     // Check if the store begins before the end of the load location. If the
1152     // condition holds, they alias, otherwise they are guaranteed to not
1153     // overlap.
1154     Check1->getTerminator()->eraseFromParent();
1155     Builder.SetInsertPoint(Check1, Check1->begin());
1156     Value *LoadEnd = Builder.CreateAdd(
1157         LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1158         "load.end", true, true);
1159     Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1160                          Fusion);
1161 
1162     // Copy load operand to new alloca.
1163     Builder.SetInsertPoint(Copy, Copy->begin());
1164     AllocaInst *NewLd =
1165         Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace());
1166     Builder.CreateMemCpy(NewLd, NewLd->getAlign(),
1167                          Load->getPointerOperand(), Load->getAlign(),
1168                          LoadLoc.Size.getValue());
1169     Builder.SetInsertPoint(Fusion, Fusion->begin());
1170     PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1171     PHI->addIncoming(Load->getPointerOperand(), Check0);
1172     PHI->addIncoming(Load->getPointerOperand(), Check1);
1173     PHI->addIncoming(NewLd, Copy);
1174 
1175     // Adjust DT.
1176     DTUpdates.push_back({DT->Insert, Check0, Check1});
1177     DTUpdates.push_back({DT->Insert, Check0, Fusion});
1178     DTUpdates.push_back({DT->Insert, Check1, Copy});
1179     DTUpdates.push_back({DT->Insert, Check1, Fusion});
1180     DT->applyUpdates(DTUpdates);
1181     return PHI;
1182   }
1183 
isFusionProfitable(CallInst * MatMul)1184   bool isFusionProfitable(CallInst *MatMul) {
1185     if (ForceFusion)
1186       return true;
1187 
1188     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1189     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1190 
1191     const unsigned R = LShape.NumRows;
1192     const unsigned C = RShape.NumColumns;
1193     const unsigned M = LShape.NumColumns;
1194     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1195 
1196     const unsigned VF = std::max<unsigned>(
1197         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1198                 .getFixedSize() /
1199             EltType->getPrimitiveSizeInBits().getFixedSize(),
1200         1U);
1201 
1202     // Cost model for tiling
1203     //
1204     // For tiling to be beneficial, we need reuse either along the R or
1205     // the C axis.  We vectorize along the R axis so that means at least
1206     // 3 elements.
1207     // TODO: Also consider cost of copying if operands alias.
1208     if (R <= VF && C == 1)
1209       return false;
1210     // Then we need enough elements to exceed the number of vector
1211     // registers we have.  Note that this is an oversimplification since
1212     // fusing also takes some extra loads which may exceed the number of
1213     // reloads necessary.
1214     unsigned Op0Regs = (R + VF - 1) / VF * M;
1215     unsigned Op1Regs = (M + VF - 1) / VF * C;
1216     return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true);
1217   }
1218 
getZeroMatrix(Type * EltType,unsigned R,unsigned C)1219   MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1220     MatrixTy Res;
1221     auto *ColumType = FixedVectorType::get(EltType, R);
1222     for (unsigned I = 0; I < C; ++I)
1223       Res.addVector(ConstantAggregateZero::get(ColumType));
1224     return Res;
1225   }
1226 
createTiledLoops(CallInst * MatMul,Value * LPtr,ShapeInfo LShape,Value * RPtr,ShapeInfo RShape,StoreInst * Store,bool AllowContract)1227   void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1228                         Value *RPtr, ShapeInfo RShape, StoreInst *Store,
1229                         bool AllowContract) {
1230     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1231 
1232     // Create the main tiling loop nest.
1233     TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1234     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1235     Instruction *InsertI = cast<Instruction>(MatMul);
1236     BasicBlock *Start = InsertI->getParent();
1237     BasicBlock *End =
1238         SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1239     IRBuilder<> Builder(MatMul);
1240     BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1241 
1242     Type *TileVecTy =
1243         FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1244     MatrixTy TileResult;
1245     // Insert in the inner loop header.
1246     Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator());
1247     // Create PHI nodes for the result columns to accumulate across iterations.
1248     SmallVector<PHINode *, 4> ColumnPhis;
1249     for (unsigned I = 0; I < TileSize; I++) {
1250       auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1251       Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1252                        TI.RowLoopHeader->getSingleSuccessor());
1253       TileResult.addVector(Phi);
1254       ColumnPhis.push_back(Phi);
1255     }
1256 
1257     // Insert in the inner loop body, which computes
1258     //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1259     Builder.SetInsertPoint(InnerBody->getTerminator());
1260     // Load tiles of the operands.
1261     MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK,
1262                             {TileSize, TileSize}, EltType, Builder);
1263     MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol,
1264                             {TileSize, TileSize}, EltType, Builder);
1265     emitMatrixMultiply(TileResult, A, B, AllowContract, Builder, true, false);
1266     // Store result after the inner loop is done.
1267     Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator());
1268     storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1269                 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1270                 TI.CurrentRow, TI.CurrentCol, EltType, Builder);
1271 
1272     for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1273       ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch);
1274 
1275     // Force unrolling of a few iterations of the inner loop, to make sure there
1276     // is enough work per iteration.
1277     // FIXME: The unroller should make this decision directly instead, but
1278     // currently the cost-model is not up to the task.
1279     unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1280     addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader),
1281                             "llvm.loop.unroll.count", InnerLoopUnrollCount);
1282   }
1283 
emitSIMDTiling(CallInst * MatMul,LoadInst * LoadOp0,LoadInst * LoadOp1,StoreInst * Store,SmallPtrSetImpl<Instruction * > & FusedInsts)1284   void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1285                       StoreInst *Store,
1286                       SmallPtrSetImpl<Instruction *> &FusedInsts) {
1287     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1288            "Tiling only supported for column-major matrixes at the moment!");
1289     if (!isFusionProfitable(MatMul))
1290       return;
1291 
1292     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1293     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1294 
1295     const unsigned R = LShape.NumRows;
1296     const unsigned C = RShape.NumColumns;
1297     const unsigned M = LShape.NumColumns;
1298     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1299 
1300     Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1301     Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1302     Value *CPtr = Store->getPointerOperand();
1303 
1304     bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
1305                                                   MatMul->hasAllowContract());
1306     if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1307       createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store,
1308                        AllowContract);
1309     else {
1310       IRBuilder<> Builder(Store);
1311       for (unsigned J = 0; J < C; J += TileSize)
1312         for (unsigned I = 0; I < R; I += TileSize) {
1313           const unsigned TileR = std::min(R - I, unsigned(TileSize));
1314           const unsigned TileC = std::min(C - J, unsigned(TileSize));
1315           MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1316 
1317           for (unsigned K = 0; K < M; K += TileSize) {
1318             const unsigned TileM = std::min(M - K, unsigned(TileSize));
1319             MatrixTy A =
1320                 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1321                            LShape, Builder.getInt64(I), Builder.getInt64(K),
1322                            {TileR, TileM}, EltType, Builder);
1323             MatrixTy B =
1324                 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1325                            RShape, Builder.getInt64(K), Builder.getInt64(J),
1326                            {TileM, TileC}, EltType, Builder);
1327             emitMatrixMultiply(Res, A, B, AllowContract, Builder, true, false);
1328           }
1329           storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1330                       Builder.getInt64(I), Builder.getInt64(J), EltType,
1331                       Builder);
1332         }
1333     }
1334 
1335     // Mark eliminated instructions as fused and remove them.
1336     FusedInsts.insert(Store);
1337     FusedInsts.insert(MatMul);
1338     Store->eraseFromParent();
1339     MatMul->eraseFromParent();
1340     if (LoadOp0->hasNUses(0)) {
1341       FusedInsts.insert(LoadOp0);
1342       LoadOp0->eraseFromParent();
1343     }
1344     if (LoadOp1->hasNUses(0)) {
1345       FusedInsts.insert(LoadOp1);
1346       LoadOp1->eraseFromParent();
1347     }
1348   }
1349 
1350   /// Try to lower matrix multiply chains by fusing operations.
1351   ///
1352   /// Call finalizeLowering on lowered instructions.  Instructions that are
1353   /// completely eliminated by fusion are added to \p FusedInsts.
LowerMatrixMultiplyFused(CallInst * MatMul,SmallPtrSetImpl<Instruction * > & FusedInsts)1354   void LowerMatrixMultiplyFused(CallInst *MatMul,
1355                                 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1356     if (!FuseMatrix || !DT)
1357       return;
1358 
1359     assert(AA && LI && "Analyses should be available");
1360 
1361     Value *A = MatMul->getArgOperand(0);
1362     Value *B = MatMul->getArgOperand(1);
1363 
1364     // We can fold the transpose into the operand that is used to fetch scalars.
1365     Value *T;
1366     if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1367             ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1368             : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1369       IRBuilder<> Builder(MatMul);
1370       auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1371       ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1372       ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1373       const unsigned R = LShape.NumRows;
1374       const unsigned M = LShape.NumColumns;
1375       const unsigned C = RShape.NumColumns;
1376 
1377       MatrixTy MA;
1378       MatrixTy MB;
1379 
1380       Value *Transpose;
1381       if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1382         MA = getMatrix(A, ShapeInfo(R, M), Builder);
1383         MB = getMatrix(T, ShapeInfo(C, M), Builder);
1384         Transpose = B;
1385       } else {
1386         MA = getMatrix(T, ShapeInfo(R, M), Builder);
1387         MB = getMatrix(B, ShapeInfo(C, M), Builder);
1388         Transpose = A;
1389       }
1390 
1391       // Initialize the output
1392       MatrixTy Result(R, C, EltType);
1393 
1394       bool AllowContract =
1395           AllowContractEnabled ||
1396           (isa<FPMathOperator>(MatMul) && MatMul->hasAllowContract());
1397       emitMatrixMultiply(Result, MA, MB, AllowContract, Builder, false, true);
1398 
1399       FusedInsts.insert(MatMul);
1400       FusedInsts.insert(cast<Instruction>(Transpose));
1401       if (Transpose->hasOneUse())
1402         ToRemove.push_back(cast<Instruction>(Transpose));
1403       finalizeLowering(MatMul, Result, Builder);
1404       // TODO: add a fake entry for the folded instruction so that this is
1405       // included in the expression in the remark.
1406       Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1407       return;
1408     }
1409 
1410     if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1411       return;
1412 
1413     // Lower {ld, ld} -> matmul -> st chains.  No need to call finalizeLowering
1414     // since the single store user will be lowered as part of this.
1415     auto *LoadOp0 = dyn_cast<LoadInst>(A);
1416     auto *LoadOp1 = dyn_cast<LoadInst>(B);
1417     auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1418     if (LoadOp0 && LoadOp1 && Store) {
1419       // The store address must dominate the MatMul instruction, otherwise
1420       // we create invalid IR.
1421       // FIXME: See if we can hoist the store address computation.
1422       auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1));
1423       if (AddrI && (!DT->dominates(AddrI, MatMul)))
1424         return;
1425 
1426       emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1427       return;
1428     }
1429   }
1430 
1431   /// Lowers llvm.matrix.multiply.
LowerMultiply(CallInst * MatMul)1432   void LowerMultiply(CallInst *MatMul) {
1433     IRBuilder<> Builder(MatMul);
1434     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1435     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1436     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1437 
1438     const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1439     const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
1440     assert(Lhs.getElementType() == Rhs.getElementType() &&
1441            "Matrix multiply argument element types do not match.");
1442 
1443     const unsigned R = LShape.NumRows;
1444     const unsigned C = RShape.NumColumns;
1445     assert(LShape.NumColumns == RShape.NumRows);
1446 
1447     // Initialize the output
1448     MatrixTy Result(R, C, EltType);
1449     assert(Lhs.getElementType() == Result.getElementType() &&
1450            "Matrix multiply result element type does not match arguments.");
1451 
1452     bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
1453                                                   MatMul->hasAllowContract());
1454     emitMatrixMultiply(Result, Lhs, Rhs, AllowContract, Builder, false, false);
1455     finalizeLowering(MatMul, Result, Builder);
1456   }
1457 
1458   /// Lowers llvm.matrix.transpose.
LowerTranspose(CallInst * Inst)1459   void LowerTranspose(CallInst *Inst) {
1460     MatrixTy Result;
1461     IRBuilder<> Builder(Inst);
1462     Value *InputVal = Inst->getArgOperand(0);
1463     VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1464     ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1465     MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1466 
1467     const unsigned NewNumVecs =
1468         InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1469     const unsigned NewNumElts =
1470         InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1471 
1472     for (unsigned I = 0; I < NewNumVecs; ++I) {
1473       // Build a single result vector. First initialize it.
1474       Value *ResultVector = UndefValue::get(
1475           FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1476       // Go through the old elements and insert it into the resulting vector.
1477       for (auto J : enumerate(InputMatrix.vectors())) {
1478         Value *Elt = Builder.CreateExtractElement(J.value(), I);
1479         // Row and column indices are transposed.
1480         ResultVector =
1481             Builder.CreateInsertElement(ResultVector, Elt, J.index());
1482       }
1483       Result.addVector(ResultVector);
1484     }
1485 
1486     // TODO: Improve estimate of operations needed for transposes. Currently we
1487     // just count the insertelement/extractelement instructions, but do not
1488     // account for later simplifications/combines.
1489     finalizeLowering(
1490         Inst,
1491         Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns),
1492         Builder);
1493   }
1494 
1495   /// Lower load instructions, if shape information is available.
VisitLoad(LoadInst * Inst,Value * Ptr,IRBuilder<> & Builder)1496   bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
1497     auto I = ShapeMap.find(Inst);
1498     if (I == ShapeMap.end())
1499       return false;
1500 
1501     LowerLoad(Inst, Ptr, Inst->getAlign(),
1502               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1503               I->second);
1504     return true;
1505   }
1506 
VisitStore(StoreInst * Inst,Value * StoredVal,Value * Ptr,IRBuilder<> & Builder)1507   bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1508                   IRBuilder<> &Builder) {
1509     auto I = ShapeMap.find(StoredVal);
1510     if (I == ShapeMap.end())
1511       return false;
1512 
1513     LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
1514                Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1515                I->second);
1516     return true;
1517   }
1518 
1519   /// Lower binary operators, if shape information is available.
VisitBinaryOperator(BinaryOperator * Inst)1520   bool VisitBinaryOperator(BinaryOperator *Inst) {
1521     auto I = ShapeMap.find(Inst);
1522     if (I == ShapeMap.end())
1523       return false;
1524 
1525     Value *Lhs = Inst->getOperand(0);
1526     Value *Rhs = Inst->getOperand(1);
1527 
1528     IRBuilder<> Builder(Inst);
1529     ShapeInfo &Shape = I->second;
1530 
1531     MatrixTy Result;
1532     MatrixTy A = getMatrix(Lhs, Shape, Builder);
1533     MatrixTy B = getMatrix(Rhs, Shape, Builder);
1534     assert(A.isColumnMajor() == B.isColumnMajor() &&
1535            Result.isColumnMajor() == A.isColumnMajor() &&
1536            "operands must agree on matrix layout");
1537 
1538     // Helper to perform binary op on vectors.
1539     auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1540       switch (Inst->getOpcode()) {
1541       case Instruction::Add:
1542         return Builder.CreateAdd(LHS, RHS);
1543       case Instruction::Mul:
1544         return Builder.CreateMul(LHS, RHS);
1545       case Instruction::Sub:
1546         return Builder.CreateSub(LHS, RHS);
1547       case Instruction::FAdd:
1548         return Builder.CreateFAdd(LHS, RHS);
1549       case Instruction::FMul:
1550         return Builder.CreateFMul(LHS, RHS);
1551       case Instruction::FSub:
1552         return Builder.CreateFSub(LHS, RHS);
1553       default:
1554         llvm_unreachable("Unsupported binary operator for matrix");
1555       }
1556     };
1557 
1558     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1559       Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1560 
1561     finalizeLowering(Inst,
1562                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1563                                              Result.getNumVectors()),
1564                      Builder);
1565     return true;
1566   }
1567 
1568   /// Lower unary operators, if shape information is available.
VisitUnaryOperator(UnaryOperator * Inst)1569   bool VisitUnaryOperator(UnaryOperator *Inst) {
1570     auto I = ShapeMap.find(Inst);
1571     if (I == ShapeMap.end())
1572       return false;
1573 
1574     Value *Op = Inst->getOperand(0);
1575 
1576     IRBuilder<> Builder(Inst);
1577     ShapeInfo &Shape = I->second;
1578 
1579     MatrixTy Result;
1580     MatrixTy M = getMatrix(Op, Shape, Builder);
1581 
1582     // Helper to perform unary op on vectors.
1583     auto BuildVectorOp = [&Builder, Inst](Value *Op) {
1584       switch (Inst->getOpcode()) {
1585       case Instruction::FNeg:
1586         return Builder.CreateFNeg(Op);
1587       default:
1588         llvm_unreachable("Unsupported unary operator for matrix");
1589       }
1590     };
1591 
1592     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1593       Result.addVector(BuildVectorOp(M.getVector(I)));
1594 
1595     finalizeLowering(Inst,
1596                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1597                                              Result.getNumVectors()),
1598                      Builder);
1599     return true;
1600   }
1601 
1602   /// Helper to linearize a matrix expression tree into a string. Currently
1603   /// matrix expressions are linarized by starting at an expression leaf and
1604   /// linearizing bottom up.
1605   struct ExprLinearizer {
1606     unsigned LengthToBreak = 100;
1607     std::string Str;
1608     raw_string_ostream Stream;
1609     unsigned LineLength = 0;
1610     const DataLayout &DL;
1611 
1612     /// Mapping from instructions to matrixes. It is used to identify
1613     /// matrix instructions.
1614     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1615 
1616     /// Mapping from values to the leaves of all expressions that the value is
1617     /// part of.
1618     const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
1619 
1620     /// Set of matrix expressions in the scope of a given DISubprogram.
1621     const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1622 
1623     /// Leaf node of the expression to linearize.
1624     Value *Leaf;
1625 
1626     /// Used to keep track of sub-expressions that get reused while linearizing
1627     /// the expression. Re-used sub-expressions are marked as (reused).
1628     SmallPtrSet<Value *, 8> ReusedExprs;
1629 
ExprLinearizer__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1630     ExprLinearizer(const DataLayout &DL,
1631                    const MapVector<Value *, MatrixTy> &Inst2Matrix,
1632                    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1633                    const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1634                    Value *Leaf)
1635         : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
1636           ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1637 
indent__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1638     void indent(unsigned N) {
1639       LineLength += N;
1640       for (unsigned i = 0; i < N; i++)
1641         Stream << " ";
1642     }
1643 
lineBreak__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1644     void lineBreak() {
1645       Stream << "\n";
1646       LineLength = 0;
1647     }
1648 
maybeIndent__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1649     void maybeIndent(unsigned Indent) {
1650       if (LineLength >= LengthToBreak)
1651         lineBreak();
1652 
1653       if (LineLength == 0)
1654         indent(Indent);
1655     }
1656 
write__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1657     void write(StringRef S) {
1658       LineLength += S.size();
1659       Stream << S;
1660     }
1661 
getUnderlyingObjectThroughLoads__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1662     Value *getUnderlyingObjectThroughLoads(Value *V) {
1663       if (Value *Ptr = getPointerOperand(V))
1664         return getUnderlyingObjectThroughLoads(Ptr);
1665       else if (V->getType()->isPointerTy())
1666         return getUnderlyingObject(V);
1667       return V;
1668     }
1669 
1670     /// Returns true if \p V is a matrix value in the given subprogram.
isMatrix__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1671     bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1672 
1673     /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1674     /// \p SS.
prettyPrintMatrixType__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1675     void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
1676       auto M = Inst2Matrix.find(V);
1677       if (M == Inst2Matrix.end())
1678         SS << "unknown";
1679       else {
1680         SS << M->second.getNumRows();
1681         SS << "x";
1682         SS << M->second.getNumColumns();
1683       }
1684     }
1685 
1686     /// Write the called function name. Handles calls to llvm.matrix.*
1687     /// specially: we write the name, followed by the dimensions of the input
1688     /// matrixes, followed by the scalar type name.
writeFnName__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1689     void writeFnName(CallInst *CI) {
1690       if (!CI->getCalledFunction())
1691         write("<no called fn>");
1692       else {
1693         StringRef Name = CI->getCalledFunction()->getName();
1694         if (!Name.startswith("llvm.matrix")) {
1695           write(Name);
1696           return;
1697         }
1698         IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1699         write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {}))
1700                   .drop_front(StringRef("llvm.matrix.").size()));
1701         write(".");
1702         std::string Tmp;
1703         raw_string_ostream SS(Tmp);
1704 
1705         switch (II->getIntrinsicID()) {
1706         case Intrinsic::matrix_multiply:
1707           prettyPrintMatrixType(II->getOperand(0), SS);
1708           SS << ".";
1709           prettyPrintMatrixType(II->getOperand(1), SS);
1710           SS << "." << *II->getType()->getScalarType();
1711           break;
1712         case Intrinsic::matrix_transpose:
1713           prettyPrintMatrixType(II->getOperand(0), SS);
1714           SS << "." << *II->getType()->getScalarType();
1715           break;
1716         case Intrinsic::matrix_column_major_load:
1717           prettyPrintMatrixType(II, SS);
1718           SS << "." << *II->getType()->getScalarType();
1719           break;
1720         case Intrinsic::matrix_column_major_store:
1721           prettyPrintMatrixType(II->getOperand(0), SS);
1722           SS << "." << *II->getOperand(0)->getType()->getScalarType();
1723           break;
1724         default:
1725           llvm_unreachable("Unhandled case");
1726         }
1727         SS.flush();
1728         write(Tmp);
1729       }
1730     }
1731 
getNumShapeArgs__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1732     unsigned getNumShapeArgs(CallInst *CI) const {
1733       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1734         switch (II->getIntrinsicID()) {
1735         case Intrinsic::matrix_multiply:
1736           return 3;
1737         case Intrinsic::matrix_transpose:
1738           return 2;
1739         case Intrinsic::matrix_column_major_load:
1740         case Intrinsic::matrix_column_major_store:
1741           return 3;
1742         default:
1743           return 0;
1744         }
1745       }
1746       return 0;
1747     }
1748 
1749     /// Special printing for values: for pointers, we print if they refer to an
1750     /// (function) external address or a stack address, for other values we
1751     /// either print the constant or "scalar"/"matrix" for other values.
write__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1752     void write(Value *V) {
1753       V = getUnderlyingObjectThroughLoads(V);
1754       if (V->getType()->isPointerTy()) {
1755         if (isa<AllocaInst>(V)) {
1756           Stream << "stack addr";
1757           LineLength += StringRef("stack addr").size();
1758         } else {
1759           Stream << "addr";
1760           LineLength += StringRef("addr").size();
1761         }
1762         if (!V->getName().empty()) {
1763           Stream << " %" << V->getName() << "";
1764           LineLength += V->getName().size() + 2;
1765         }
1766         return;
1767       }
1768 
1769       std::string Tmp;
1770       raw_string_ostream TmpStream(Tmp);
1771 
1772       if (auto *CI = dyn_cast<ConstantInt>(V))
1773         TmpStream << CI->getValue();
1774       else if (isa<Constant>(V))
1775         TmpStream << "constant";
1776       else {
1777         if (isMatrix(V))
1778           TmpStream << "matrix";
1779         else
1780           TmpStream << "scalar";
1781       }
1782       TmpStream.flush();
1783       Tmp = std::string(StringRef(Tmp).trim());
1784       LineLength += Tmp.size();
1785       Stream << Tmp;
1786     }
1787 
1788     /// Linearize expression \p Expr starting at an indentation of \p Indent.
1789     /// Expressions that are re-used multiple times are prefixed with (reused)
1790     /// at the re-used root instruction.
linearizeExpr__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1791     void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
1792                        bool ParentShared) {
1793       auto *I = cast<Instruction>(Expr);
1794       maybeIndent(Indent);
1795       SmallVector<Value *, 8> Ops;
1796 
1797       // Is Expr shared with other expression leaves?
1798       bool ExprShared = false;
1799 
1800       // Deal with shared subtrees. Mark them as shared, if required.
1801       if (!ParentShared) {
1802         auto SI = Shared.find(Expr);
1803         assert(SI != Shared.end() && SI->second.count(Leaf));
1804 
1805         for (Value *S : SI->second) {
1806           if (S == Leaf)
1807             continue;
1808           DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
1809           write("shared with remark at line " + std::to_string(DL.getLine()) +
1810                 " column " + std::to_string(DL.getCol()) + " (");
1811         }
1812         ExprShared = SI->second.size() > 1;
1813       }
1814 
1815       bool Reused = !ReusedExprs.insert(Expr).second;
1816       if (Reused && !ParentReused)
1817         write("(reused) ");
1818 
1819       if (auto *CI = dyn_cast<CallInst>(I)) {
1820         writeFnName(CI);
1821 
1822         Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
1823       } else if (isa<BitCastInst>(Expr)) {
1824         // Special case bitcasts, which are used to materialize matrixes from
1825         // non-matrix ops.
1826         write("matrix");
1827         return;
1828       } else {
1829         Ops.append(I->value_op_begin(), I->value_op_end());
1830         write(std::string(I->getOpcodeName()));
1831       }
1832 
1833       write(std::string("("));
1834 
1835       unsigned NumOpsToBreak = 1;
1836       if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
1837         NumOpsToBreak = 2;
1838 
1839       for (Value *Op : Ops) {
1840         if (Ops.size() > NumOpsToBreak)
1841           lineBreak();
1842 
1843         maybeIndent(Indent + 1);
1844         if (isMatrix(Op))
1845           linearizeExpr(Op, Indent + 1, Reused, ExprShared);
1846         else
1847           write(Op);
1848         if (Op != Ops.back())
1849           write(", ");
1850       }
1851 
1852       write(")");
1853     }
1854 
getResult__anonbf9288780111::LowerMatrixIntrinsics::ExprLinearizer1855     const std::string &getResult() {
1856       Stream.flush();
1857       return Str;
1858     }
1859   };
1860 
1861   /// Generate remarks for matrix operations in a function. To generate remarks
1862   /// for matrix expressions, the following approach is used:
1863   /// 1. Use the inlined-at debug information to group matrix operations to the
1864   ///    DISubprograms they are contained in.
1865   /// 2. Collect leaves of matrix expressions (done in
1866   ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
1867   //     mapping.  Leaves are lowered matrix instructions without other matrix
1868   //     users (like stores) in the current subprogram.
1869   /// 3. For each leaf, create a remark containing a linearizied version of the
1870   ///    matrix expression. The expression is linearized by a recursive
1871   ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
1872   ///    that multiple leaves can share sub-expressions. Shared subexpressions
1873   ///    are explicitly marked as shared().
1874   struct RemarkGenerator {
1875     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1876     OptimizationRemarkEmitter &ORE;
1877     Function &Func;
1878     const DataLayout &DL;
1879 
RemarkGenerator__anonbf9288780111::LowerMatrixIntrinsics::RemarkGenerator1880     RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
1881                     OptimizationRemarkEmitter &ORE, Function &Func)
1882         : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
1883           DL(Func.getParent()->getDataLayout()) {}
1884 
1885     /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
1886     /// instructions in Inst2Matrix returning void or without any users in
1887     /// \p ExprsInSubprogram. Currently that should only include stores.
1888     SmallVector<Value *, 4>
getExpressionLeaves__anonbf9288780111::LowerMatrixIntrinsics::RemarkGenerator1889     getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
1890       SmallVector<Value *, 4> Leaves;
1891       for (auto *Expr : ExprsInSubprogram)
1892         if (Expr->getType()->isVoidTy() ||
1893             !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
1894               return ExprsInSubprogram.count(U);
1895             }))
1896           Leaves.push_back(Expr);
1897       return Leaves;
1898     }
1899 
1900     /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
1901     /// to all visited expressions in \p Shared. Limit the matrix operations to
1902     /// the ones in \p ExprsInSubprogram.
collectSharedInfo__anonbf9288780111::LowerMatrixIntrinsics::RemarkGenerator1903     void collectSharedInfo(Value *Leaf, Value *V,
1904                            const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1905                            DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
1906 
1907       if (!ExprsInSubprogram.count(V))
1908         return;
1909 
1910       auto I = Shared.insert({V, {}});
1911       I.first->second.insert(Leaf);
1912 
1913       for (Value *Op : cast<Instruction>(V)->operand_values())
1914         collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
1915     }
1916 
1917     /// Calculate the number of exclusive and shared op counts for expression
1918     /// starting at \p V. Expressions used multiple times are counted once.
1919     /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
1920     std::pair<OpInfoTy, OpInfoTy>
sumOpInfos__anonbf9288780111::LowerMatrixIntrinsics::RemarkGenerator1921     sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
1922                const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1923                DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
1924       if (!ExprsInSubprogram.count(Root))
1925         return {};
1926 
1927       // Already counted this expression. Stop.
1928       if (!ReusedExprs.insert(Root).second)
1929         return {};
1930 
1931       OpInfoTy SharedCount;
1932       OpInfoTy Count;
1933 
1934       auto I = Shared.find(Root);
1935       auto CM = Inst2Matrix.find(Root);
1936       if (I->second.size() == 1)
1937         Count = CM->second.getOpInfo();
1938       else
1939         SharedCount = CM->second.getOpInfo();
1940 
1941       for (Value *Op : cast<Instruction>(Root)->operand_values()) {
1942         auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
1943         Count += C.first;
1944         SharedCount += C.second;
1945       }
1946       return {Count, SharedCount};
1947     }
1948 
emitRemarks__anonbf9288780111::LowerMatrixIntrinsics::RemarkGenerator1949     void emitRemarks() {
1950       if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
1951         return;
1952 
1953       // Map matrix operations to their containting subprograms, by traversing
1954       // the inlinedAt chain. If the function does not have a DISubprogram, we
1955       // only map them to the containing function.
1956       MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
1957       for (auto &KV : Inst2Matrix) {
1958         if (Func.getSubprogram()) {
1959           auto *I = cast<Instruction>(KV.first);
1960           DILocation *Context = I->getDebugLoc();
1961           while (Context) {
1962             auto I =
1963                 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
1964             I.first->second.push_back(KV.first);
1965             Context = DebugLoc(Context).getInlinedAt();
1966           }
1967         } else {
1968           auto I = Subprog2Exprs.insert({nullptr, {}});
1969           I.first->second.push_back(KV.first);
1970         }
1971       }
1972       for (auto &KV : Subprog2Exprs) {
1973         SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
1974                                                       KV.second.end());
1975         auto Leaves = getExpressionLeaves(ExprsInSubprogram);
1976 
1977         DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
1978         for (Value *Leaf : Leaves)
1979           collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
1980 
1981         // Generate remarks for each leaf.
1982         for (auto *L : Leaves) {
1983 
1984           DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
1985           DILocation *Context = cast<Instruction>(L)->getDebugLoc();
1986           while (Context) {
1987             if (getSubprogram(Context->getScope()) == KV.first) {
1988               Loc = Context;
1989               break;
1990             }
1991             Context = DebugLoc(Context).getInlinedAt();
1992           }
1993 
1994           SmallPtrSet<Value *, 8> ReusedExprs;
1995           OpInfoTy Counts, SharedCounts;
1996           std::tie(Counts, SharedCounts) =
1997               sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
1998 
1999           OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2000                                  cast<Instruction>(L)->getParent());
2001 
2002           Rem << "Lowered with ";
2003           Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2004               << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2005               << ore::NV("NumComputeOps", Counts.NumComputeOps)
2006               << " compute ops";
2007 
2008           if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2009               SharedCounts.NumComputeOps > 0) {
2010             Rem << ",\nadditionally "
2011                 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2012                 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2013                 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2014                 << " compute ops"
2015                 << " are shared with other expressions";
2016           }
2017 
2018           Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2019           ORE.emit(Rem);
2020         }
2021       }
2022     }
2023 
2024     std::string
linearize__anonbf9288780111::LowerMatrixIntrinsics::RemarkGenerator2025     linearize(Value *L,
2026               const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2027               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2028               const DataLayout &DL) {
2029       ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2030       Lin.linearizeExpr(L, 0, false, false);
2031       return Lin.getResult();
2032     }
2033   };
2034 };
2035 } // namespace
2036 
run(Function & F,FunctionAnalysisManager & AM)2037 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2038                                                  FunctionAnalysisManager &AM) {
2039   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2040   OptimizationRemarkEmitter *ORE = nullptr;
2041   AAResults *AA = nullptr;
2042   DominatorTree *DT = nullptr;
2043   LoopInfo *LI = nullptr;
2044 
2045   if (!Minimal) {
2046     ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2047     AA = &AM.getResult<AAManager>(F);
2048     DT = &AM.getResult<DominatorTreeAnalysis>(F);
2049     LI = &AM.getResult<LoopAnalysis>(F);
2050   }
2051 
2052   LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2053   if (LMT.Visit()) {
2054     PreservedAnalyses PA;
2055     if (!Minimal) {
2056       PA.preserve<LoopAnalysis>();
2057       PA.preserve<DominatorTreeAnalysis>();
2058     }
2059     return PA;
2060   }
2061   return PreservedAnalyses::all();
2062 }
2063 
2064 namespace {
2065 
2066 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2067 public:
2068   static char ID;
2069 
LowerMatrixIntrinsicsLegacyPass()2070   LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2071     initializeLowerMatrixIntrinsicsLegacyPassPass(
2072         *PassRegistry::getPassRegistry());
2073   }
2074 
runOnFunction(Function & F)2075   bool runOnFunction(Function &F) override {
2076     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2077     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2078     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2079     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2080     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2081     LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2082     bool C = LMT.Visit();
2083     return C;
2084   }
2085 
getAnalysisUsage(AnalysisUsage & AU) const2086   void getAnalysisUsage(AnalysisUsage &AU) const override {
2087     AU.addRequired<TargetTransformInfoWrapperPass>();
2088     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2089     AU.addRequired<AAResultsWrapperPass>();
2090     AU.addRequired<DominatorTreeWrapperPass>();
2091     AU.addPreserved<DominatorTreeWrapperPass>();
2092     AU.addRequired<LoopInfoWrapperPass>();
2093     AU.addPreserved<LoopInfoWrapperPass>();
2094   }
2095 };
2096 } // namespace
2097 
2098 static const char pass_name[] = "Lower the matrix intrinsics";
2099 char LowerMatrixIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass,DEBUG_TYPE,pass_name,false,false)2100 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2101                       false, false)
2102 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2103 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2104 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2105 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2106 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2107                     false, false)
2108 
2109 Pass *llvm::createLowerMatrixIntrinsicsPass() {
2110   return new LowerMatrixIntrinsicsLegacyPass();
2111 }
2112 
2113 namespace {
2114 
2115 /// A lightweight version of the matrix lowering pass that only requires TTI.
2116 /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2117 /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2118 /// example with -O0.
2119 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2120 public:
2121   static char ID;
2122 
LowerMatrixIntrinsicsMinimalLegacyPass()2123   LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2124     initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2125         *PassRegistry::getPassRegistry());
2126   }
2127 
runOnFunction(Function & F)2128   bool runOnFunction(Function &F) override {
2129     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2130     LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2131     bool C = LMT.Visit();
2132     return C;
2133   }
2134 
getAnalysisUsage(AnalysisUsage & AU) const2135   void getAnalysisUsage(AnalysisUsage &AU) const override {
2136     AU.addRequired<TargetTransformInfoWrapperPass>();
2137     AU.setPreservesCFG();
2138   }
2139 };
2140 } // namespace
2141 
2142 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2143 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2144 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2145                       "lower-matrix-intrinsics-minimal", pass_name_minimal,
2146                       false, false)
2147 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2148                     "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2149                     false)
2150 
createLowerMatrixIntrinsicsMinimalPass()2151 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2152   return new LowerMatrixIntrinsicsMinimalLegacyPass();
2153 }
2154