1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38 
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42 
anchor()43 void Constant::anchor() { }
44 
isNegativeZeroValue() const45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49 
50   // Equivalent for a vector of -0.0's.
51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55 
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59 
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63 
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
isZeroValue() const66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70 
71   // Otherwise, just use +0.0.
72   return isNullValue();
73 }
74 
isNullValue() const75 bool Constant::isNullValue() const {
76   // 0 is null.
77   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78     return CI->isZero();
79 
80   // +0.0 is null.
81   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82     return CFP->isZero() && !CFP->isNegative();
83 
84   // constant zero is zero for aggregates and cpnull is null for pointers.
85   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87 
isAllOnesValue() const88 bool Constant::isAllOnesValue() const {
89   // Check for -1 integers
90   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91     return CI->isMinusOne();
92 
93   // Check for FP which are bitcasted from -1 integers
94   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96 
97   // Check for constant vectors which are splats of -1 values.
98   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99     if (Constant *Splat = CV->getSplatValue())
100       return Splat->isAllOnesValue();
101 
102   // Check for constant vectors which are splats of -1 values.
103   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104     if (Constant *Splat = CV->getSplatValue())
105       return Splat->isAllOnesValue();
106 
107   return false;
108 }
109 
isOneValue() const110 bool Constant::isOneValue() const {
111   // Check for 1 integers
112   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113     return CI->isOne();
114 
115   // Check for FP which are bitcasted from 1 integers
116   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117     return CFP->getValueAPF().bitcastToAPInt() == 1;
118 
119   // Check for constant vectors which are splats of 1 values.
120   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121     if (Constant *Splat = CV->getSplatValue())
122       return Splat->isOneValue();
123 
124   // Check for constant vectors which are splats of 1 values.
125   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126     if (Constant *Splat = CV->getSplatValue())
127       return Splat->isOneValue();
128 
129   return false;
130 }
131 
isMinSignedValue() const132 bool Constant::isMinSignedValue() const {
133   // Check for INT_MIN integers
134   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
135     return CI->isMinValue(/*isSigned=*/true);
136 
137   // Check for FP which are bitcasted from INT_MIN integers
138   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
139     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
140 
141   // Check for constant vectors which are splats of INT_MIN values.
142   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
143     if (Constant *Splat = CV->getSplatValue())
144       return Splat->isMinSignedValue();
145 
146   // Check for constant vectors which are splats of INT_MIN values.
147   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
148     if (Constant *Splat = CV->getSplatValue())
149       return Splat->isMinSignedValue();
150 
151   return false;
152 }
153 
isNotMinSignedValue() const154 bool Constant::isNotMinSignedValue() const {
155   // Check for INT_MIN integers
156   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
157     return !CI->isMinValue(/*isSigned=*/true);
158 
159   // Check for FP which are bitcasted from INT_MIN integers
160   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
161     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
162 
163   // Check for constant vectors which are splats of INT_MIN values.
164   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
165     if (Constant *Splat = CV->getSplatValue())
166       return Splat->isNotMinSignedValue();
167 
168   // Check for constant vectors which are splats of INT_MIN values.
169   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
170     if (Constant *Splat = CV->getSplatValue())
171       return Splat->isNotMinSignedValue();
172 
173   // It *may* contain INT_MIN, we can't tell.
174   return false;
175 }
176 
177 // Constructor to create a '0' constant of arbitrary type...
getNullValue(Type * Ty)178 Constant *Constant::getNullValue(Type *Ty) {
179   switch (Ty->getTypeID()) {
180   case Type::IntegerTyID:
181     return ConstantInt::get(Ty, 0);
182   case Type::HalfTyID:
183     return ConstantFP::get(Ty->getContext(),
184                            APFloat::getZero(APFloat::IEEEhalf));
185   case Type::FloatTyID:
186     return ConstantFP::get(Ty->getContext(),
187                            APFloat::getZero(APFloat::IEEEsingle));
188   case Type::DoubleTyID:
189     return ConstantFP::get(Ty->getContext(),
190                            APFloat::getZero(APFloat::IEEEdouble));
191   case Type::X86_FP80TyID:
192     return ConstantFP::get(Ty->getContext(),
193                            APFloat::getZero(APFloat::x87DoubleExtended));
194   case Type::FP128TyID:
195     return ConstantFP::get(Ty->getContext(),
196                            APFloat::getZero(APFloat::IEEEquad));
197   case Type::PPC_FP128TyID:
198     return ConstantFP::get(Ty->getContext(),
199                            APFloat(APFloat::PPCDoubleDouble,
200                                    APInt::getNullValue(128)));
201   case Type::PointerTyID:
202     return ConstantPointerNull::get(cast<PointerType>(Ty));
203   case Type::StructTyID:
204   case Type::ArrayTyID:
205   case Type::VectorTyID:
206     return ConstantAggregateZero::get(Ty);
207   default:
208     // Function, Label, or Opaque type?
209     llvm_unreachable("Cannot create a null constant of that type!");
210   }
211 }
212 
getIntegerValue(Type * Ty,const APInt & V)213 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
214   Type *ScalarTy = Ty->getScalarType();
215 
216   // Create the base integer constant.
217   Constant *C = ConstantInt::get(Ty->getContext(), V);
218 
219   // Convert an integer to a pointer, if necessary.
220   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
221     C = ConstantExpr::getIntToPtr(C, PTy);
222 
223   // Broadcast a scalar to a vector, if necessary.
224   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
225     C = ConstantVector::getSplat(VTy->getNumElements(), C);
226 
227   return C;
228 }
229 
getAllOnesValue(Type * Ty)230 Constant *Constant::getAllOnesValue(Type *Ty) {
231   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
232     return ConstantInt::get(Ty->getContext(),
233                             APInt::getAllOnesValue(ITy->getBitWidth()));
234 
235   if (Ty->isFloatingPointTy()) {
236     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
237                                           !Ty->isPPC_FP128Ty());
238     return ConstantFP::get(Ty->getContext(), FL);
239   }
240 
241   VectorType *VTy = cast<VectorType>(Ty);
242   return ConstantVector::getSplat(VTy->getNumElements(),
243                                   getAllOnesValue(VTy->getElementType()));
244 }
245 
246 /// getAggregateElement - For aggregates (struct/array/vector) return the
247 /// constant that corresponds to the specified element if possible, or null if
248 /// not.  This can return null if the element index is a ConstantExpr, or if
249 /// 'this' is a constant expr.
getAggregateElement(unsigned Elt) const250 Constant *Constant::getAggregateElement(unsigned Elt) const {
251   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
252     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
253 
254   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
255     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
256 
257   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
258     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
259 
260   if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
261     return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
262 
263   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
264     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
265 
266   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
267     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
268                                        : nullptr;
269   return nullptr;
270 }
271 
getAggregateElement(Constant * Elt) const272 Constant *Constant::getAggregateElement(Constant *Elt) const {
273   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
274   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
275     return getAggregateElement(CI->getZExtValue());
276   return nullptr;
277 }
278 
279 
destroyConstantImpl()280 void Constant::destroyConstantImpl() {
281   // When a Constant is destroyed, there may be lingering
282   // references to the constant by other constants in the constant pool.  These
283   // constants are implicitly dependent on the module that is being deleted,
284   // but they don't know that.  Because we only find out when the CPV is
285   // deleted, we must now notify all of our users (that should only be
286   // Constants) that they are, in fact, invalid now and should be deleted.
287   //
288   while (!use_empty()) {
289     Value *V = user_back();
290 #ifndef NDEBUG      // Only in -g mode...
291     if (!isa<Constant>(V)) {
292       dbgs() << "While deleting: " << *this
293              << "\n\nUse still stuck around after Def is destroyed: "
294              << *V << "\n\n";
295     }
296 #endif
297     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
298     cast<Constant>(V)->destroyConstant();
299 
300     // The constant should remove itself from our use list...
301     assert((use_empty() || user_back() != V) && "Constant not removed!");
302   }
303 
304   // Value has no outstanding references it is safe to delete it now...
305   delete this;
306 }
307 
canTrapImpl(const Constant * C,SmallPtrSetImpl<const ConstantExpr * > & NonTrappingOps)308 static bool canTrapImpl(const Constant *C,
309                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
310   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
311   // The only thing that could possibly trap are constant exprs.
312   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
313   if (!CE)
314     return false;
315 
316   // ConstantExpr traps if any operands can trap.
317   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
318     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
319       if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
320         return true;
321     }
322   }
323 
324   // Otherwise, only specific operations can trap.
325   switch (CE->getOpcode()) {
326   default:
327     return false;
328   case Instruction::UDiv:
329   case Instruction::SDiv:
330   case Instruction::FDiv:
331   case Instruction::URem:
332   case Instruction::SRem:
333   case Instruction::FRem:
334     // Div and rem can trap if the RHS is not known to be non-zero.
335     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
336       return true;
337     return false;
338   }
339 }
340 
341 /// canTrap - Return true if evaluation of this constant could trap.  This is
342 /// true for things like constant expressions that could divide by zero.
canTrap() const343 bool Constant::canTrap() const {
344   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
345   return canTrapImpl(this, NonTrappingOps);
346 }
347 
348 /// Check if C contains a GlobalValue for which Predicate is true.
349 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))350 ConstHasGlobalValuePredicate(const Constant *C,
351                              bool (*Predicate)(const GlobalValue *)) {
352   SmallPtrSet<const Constant *, 8> Visited;
353   SmallVector<const Constant *, 8> WorkList;
354   WorkList.push_back(C);
355   Visited.insert(C);
356 
357   while (!WorkList.empty()) {
358     const Constant *WorkItem = WorkList.pop_back_val();
359     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
360       if (Predicate(GV))
361         return true;
362     for (const Value *Op : WorkItem->operands()) {
363       const Constant *ConstOp = dyn_cast<Constant>(Op);
364       if (!ConstOp)
365         continue;
366       if (Visited.insert(ConstOp).second)
367         WorkList.push_back(ConstOp);
368     }
369   }
370   return false;
371 }
372 
373 /// Return true if the value can vary between threads.
isThreadDependent() const374 bool Constant::isThreadDependent() const {
375   auto DLLImportPredicate = [](const GlobalValue *GV) {
376     return GV->isThreadLocal();
377   };
378   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
379 }
380 
isDLLImportDependent() const381 bool Constant::isDLLImportDependent() const {
382   auto DLLImportPredicate = [](const GlobalValue *GV) {
383     return GV->hasDLLImportStorageClass();
384   };
385   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
386 }
387 
388 /// Return true if the constant has users other than constant exprs and other
389 /// dangling things.
isConstantUsed() const390 bool Constant::isConstantUsed() const {
391   for (const User *U : users()) {
392     const Constant *UC = dyn_cast<Constant>(U);
393     if (!UC || isa<GlobalValue>(UC))
394       return true;
395 
396     if (UC->isConstantUsed())
397       return true;
398   }
399   return false;
400 }
401 
402 
403 
404 /// getRelocationInfo - This method classifies the entry according to
405 /// whether or not it may generate a relocation entry.  This must be
406 /// conservative, so if it might codegen to a relocatable entry, it should say
407 /// so.  The return values are:
408 ///
409 ///  NoRelocation: This constant pool entry is guaranteed to never have a
410 ///     relocation applied to it (because it holds a simple constant like
411 ///     '4').
412 ///  LocalRelocation: This entry has relocations, but the entries are
413 ///     guaranteed to be resolvable by the static linker, so the dynamic
414 ///     linker will never see them.
415 ///  GlobalRelocations: This entry may have arbitrary relocations.
416 ///
417 /// FIXME: This really should not be in IR.
getRelocationInfo() const418 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
419   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
420     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
421       return LocalRelocation;  // Local to this file/library.
422     return GlobalRelocations;    // Global reference.
423   }
424 
425   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
426     return BA->getFunction()->getRelocationInfo();
427 
428   // While raw uses of blockaddress need to be relocated, differences between
429   // two of them don't when they are for labels in the same function.  This is a
430   // common idiom when creating a table for the indirect goto extension, so we
431   // handle it efficiently here.
432   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
433     if (CE->getOpcode() == Instruction::Sub) {
434       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
435       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
436       if (LHS && RHS &&
437           LHS->getOpcode() == Instruction::PtrToInt &&
438           RHS->getOpcode() == Instruction::PtrToInt &&
439           isa<BlockAddress>(LHS->getOperand(0)) &&
440           isa<BlockAddress>(RHS->getOperand(0)) &&
441           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
442             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
443         return NoRelocation;
444     }
445 
446   PossibleRelocationsTy Result = NoRelocation;
447   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
448     Result = std::max(Result,
449                       cast<Constant>(getOperand(i))->getRelocationInfo());
450 
451   return Result;
452 }
453 
454 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
455 /// it.  This involves recursively eliminating any dead users of the
456 /// constantexpr.
removeDeadUsersOfConstant(const Constant * C)457 static bool removeDeadUsersOfConstant(const Constant *C) {
458   if (isa<GlobalValue>(C)) return false; // Cannot remove this
459 
460   while (!C->use_empty()) {
461     const Constant *User = dyn_cast<Constant>(C->user_back());
462     if (!User) return false; // Non-constant usage;
463     if (!removeDeadUsersOfConstant(User))
464       return false; // Constant wasn't dead
465   }
466 
467   const_cast<Constant*>(C)->destroyConstant();
468   return true;
469 }
470 
471 
472 /// removeDeadConstantUsers - If there are any dead constant users dangling
473 /// off of this constant, remove them.  This method is useful for clients
474 /// that want to check to see if a global is unused, but don't want to deal
475 /// with potentially dead constants hanging off of the globals.
removeDeadConstantUsers() const476 void Constant::removeDeadConstantUsers() const {
477   Value::const_user_iterator I = user_begin(), E = user_end();
478   Value::const_user_iterator LastNonDeadUser = E;
479   while (I != E) {
480     const Constant *User = dyn_cast<Constant>(*I);
481     if (!User) {
482       LastNonDeadUser = I;
483       ++I;
484       continue;
485     }
486 
487     if (!removeDeadUsersOfConstant(User)) {
488       // If the constant wasn't dead, remember that this was the last live use
489       // and move on to the next constant.
490       LastNonDeadUser = I;
491       ++I;
492       continue;
493     }
494 
495     // If the constant was dead, then the iterator is invalidated.
496     if (LastNonDeadUser == E) {
497       I = user_begin();
498       if (I == E) break;
499     } else {
500       I = LastNonDeadUser;
501       ++I;
502     }
503   }
504 }
505 
506 
507 
508 //===----------------------------------------------------------------------===//
509 //                                ConstantInt
510 //===----------------------------------------------------------------------===//
511 
anchor()512 void ConstantInt::anchor() { }
513 
ConstantInt(IntegerType * Ty,const APInt & V)514 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
515   : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
516   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
517 }
518 
getTrue(LLVMContext & Context)519 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
520   LLVMContextImpl *pImpl = Context.pImpl;
521   if (!pImpl->TheTrueVal)
522     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
523   return pImpl->TheTrueVal;
524 }
525 
getFalse(LLVMContext & Context)526 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
527   LLVMContextImpl *pImpl = Context.pImpl;
528   if (!pImpl->TheFalseVal)
529     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
530   return pImpl->TheFalseVal;
531 }
532 
getTrue(Type * Ty)533 Constant *ConstantInt::getTrue(Type *Ty) {
534   VectorType *VTy = dyn_cast<VectorType>(Ty);
535   if (!VTy) {
536     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
537     return ConstantInt::getTrue(Ty->getContext());
538   }
539   assert(VTy->getElementType()->isIntegerTy(1) &&
540          "True must be vector of i1 or i1.");
541   return ConstantVector::getSplat(VTy->getNumElements(),
542                                   ConstantInt::getTrue(Ty->getContext()));
543 }
544 
getFalse(Type * Ty)545 Constant *ConstantInt::getFalse(Type *Ty) {
546   VectorType *VTy = dyn_cast<VectorType>(Ty);
547   if (!VTy) {
548     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
549     return ConstantInt::getFalse(Ty->getContext());
550   }
551   assert(VTy->getElementType()->isIntegerTy(1) &&
552          "False must be vector of i1 or i1.");
553   return ConstantVector::getSplat(VTy->getNumElements(),
554                                   ConstantInt::getFalse(Ty->getContext()));
555 }
556 
557 // Get a ConstantInt from an APInt.
get(LLVMContext & Context,const APInt & V)558 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
559   // get an existing value or the insertion position
560   LLVMContextImpl *pImpl = Context.pImpl;
561   ConstantInt *&Slot = pImpl->IntConstants[V];
562   if (!Slot) {
563     // Get the corresponding integer type for the bit width of the value.
564     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
565     Slot = new ConstantInt(ITy, V);
566   }
567   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
568   return Slot;
569 }
570 
get(Type * Ty,uint64_t V,bool isSigned)571 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
572   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
573 
574   // For vectors, broadcast the value.
575   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
576     return ConstantVector::getSplat(VTy->getNumElements(), C);
577 
578   return C;
579 }
580 
get(IntegerType * Ty,uint64_t V,bool isSigned)581 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
582                               bool isSigned) {
583   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
584 }
585 
getSigned(IntegerType * Ty,int64_t V)586 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
587   return get(Ty, V, true);
588 }
589 
getSigned(Type * Ty,int64_t V)590 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
591   return get(Ty, V, true);
592 }
593 
get(Type * Ty,const APInt & V)594 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
595   ConstantInt *C = get(Ty->getContext(), V);
596   assert(C->getType() == Ty->getScalarType() &&
597          "ConstantInt type doesn't match the type implied by its value!");
598 
599   // For vectors, broadcast the value.
600   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601     return ConstantVector::getSplat(VTy->getNumElements(), C);
602 
603   return C;
604 }
605 
get(IntegerType * Ty,StringRef Str,uint8_t radix)606 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
607                               uint8_t radix) {
608   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
609 }
610 
611 //===----------------------------------------------------------------------===//
612 //                                ConstantFP
613 //===----------------------------------------------------------------------===//
614 
TypeToFloatSemantics(Type * Ty)615 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
616   if (Ty->isHalfTy())
617     return &APFloat::IEEEhalf;
618   if (Ty->isFloatTy())
619     return &APFloat::IEEEsingle;
620   if (Ty->isDoubleTy())
621     return &APFloat::IEEEdouble;
622   if (Ty->isX86_FP80Ty())
623     return &APFloat::x87DoubleExtended;
624   else if (Ty->isFP128Ty())
625     return &APFloat::IEEEquad;
626 
627   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
628   return &APFloat::PPCDoubleDouble;
629 }
630 
anchor()631 void ConstantFP::anchor() { }
632 
633 /// get() - This returns a constant fp for the specified value in the
634 /// specified type.  This should only be used for simple constant values like
635 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
get(Type * Ty,double V)636 Constant *ConstantFP::get(Type *Ty, double V) {
637   LLVMContext &Context = Ty->getContext();
638 
639   APFloat FV(V);
640   bool ignored;
641   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
642              APFloat::rmNearestTiesToEven, &ignored);
643   Constant *C = get(Context, FV);
644 
645   // For vectors, broadcast the value.
646   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
647     return ConstantVector::getSplat(VTy->getNumElements(), C);
648 
649   return C;
650 }
651 
652 
get(Type * Ty,StringRef Str)653 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
654   LLVMContext &Context = Ty->getContext();
655 
656   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
657   Constant *C = get(Context, FV);
658 
659   // For vectors, broadcast the value.
660   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
661     return ConstantVector::getSplat(VTy->getNumElements(), C);
662 
663   return C;
664 }
665 
getNegativeZero(Type * Ty)666 Constant *ConstantFP::getNegativeZero(Type *Ty) {
667   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
668   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
669   Constant *C = get(Ty->getContext(), NegZero);
670 
671   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
672     return ConstantVector::getSplat(VTy->getNumElements(), C);
673 
674   return C;
675 }
676 
677 
getZeroValueForNegation(Type * Ty)678 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
679   if (Ty->isFPOrFPVectorTy())
680     return getNegativeZero(Ty);
681 
682   return Constant::getNullValue(Ty);
683 }
684 
685 
686 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)687 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
688   LLVMContextImpl* pImpl = Context.pImpl;
689 
690   ConstantFP *&Slot = pImpl->FPConstants[V];
691 
692   if (!Slot) {
693     Type *Ty;
694     if (&V.getSemantics() == &APFloat::IEEEhalf)
695       Ty = Type::getHalfTy(Context);
696     else if (&V.getSemantics() == &APFloat::IEEEsingle)
697       Ty = Type::getFloatTy(Context);
698     else if (&V.getSemantics() == &APFloat::IEEEdouble)
699       Ty = Type::getDoubleTy(Context);
700     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
701       Ty = Type::getX86_FP80Ty(Context);
702     else if (&V.getSemantics() == &APFloat::IEEEquad)
703       Ty = Type::getFP128Ty(Context);
704     else {
705       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
706              "Unknown FP format");
707       Ty = Type::getPPC_FP128Ty(Context);
708     }
709     Slot = new ConstantFP(Ty, V);
710   }
711 
712   return Slot;
713 }
714 
getInfinity(Type * Ty,bool Negative)715 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
716   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
717   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
718 
719   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720     return ConstantVector::getSplat(VTy->getNumElements(), C);
721 
722   return C;
723 }
724 
ConstantFP(Type * Ty,const APFloat & V)725 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
726   : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
727   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
728          "FP type Mismatch");
729 }
730 
isExactlyValue(const APFloat & V) const731 bool ConstantFP::isExactlyValue(const APFloat &V) const {
732   return Val.bitwiseIsEqual(V);
733 }
734 
735 //===----------------------------------------------------------------------===//
736 //                   ConstantAggregateZero Implementation
737 //===----------------------------------------------------------------------===//
738 
739 /// getSequentialElement - If this CAZ has array or vector type, return a zero
740 /// with the right element type.
getSequentialElement() const741 Constant *ConstantAggregateZero::getSequentialElement() const {
742   return Constant::getNullValue(getType()->getSequentialElementType());
743 }
744 
745 /// getStructElement - If this CAZ has struct type, return a zero with the
746 /// right element type for the specified element.
getStructElement(unsigned Elt) const747 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
748   return Constant::getNullValue(getType()->getStructElementType(Elt));
749 }
750 
751 /// getElementValue - Return a zero of the right value for the specified GEP
752 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const753 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
754   if (isa<SequentialType>(getType()))
755     return getSequentialElement();
756   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
757 }
758 
759 /// getElementValue - Return a zero of the right value for the specified GEP
760 /// index.
getElementValue(unsigned Idx) const761 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
762   if (isa<SequentialType>(getType()))
763     return getSequentialElement();
764   return getStructElement(Idx);
765 }
766 
getNumElements() const767 unsigned ConstantAggregateZero::getNumElements() const {
768   const Type *Ty = getType();
769   if (const auto *AT = dyn_cast<ArrayType>(Ty))
770     return AT->getNumElements();
771   if (const auto *VT = dyn_cast<VectorType>(Ty))
772     return VT->getNumElements();
773   return Ty->getStructNumElements();
774 }
775 
776 //===----------------------------------------------------------------------===//
777 //                         UndefValue Implementation
778 //===----------------------------------------------------------------------===//
779 
780 /// getSequentialElement - If this undef has array or vector type, return an
781 /// undef with the right element type.
getSequentialElement() const782 UndefValue *UndefValue::getSequentialElement() const {
783   return UndefValue::get(getType()->getSequentialElementType());
784 }
785 
786 /// getStructElement - If this undef has struct type, return a zero with the
787 /// right element type for the specified element.
getStructElement(unsigned Elt) const788 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
789   return UndefValue::get(getType()->getStructElementType(Elt));
790 }
791 
792 /// getElementValue - Return an undef of the right value for the specified GEP
793 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const794 UndefValue *UndefValue::getElementValue(Constant *C) const {
795   if (isa<SequentialType>(getType()))
796     return getSequentialElement();
797   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
798 }
799 
800 /// getElementValue - Return an undef of the right value for the specified GEP
801 /// index.
getElementValue(unsigned Idx) const802 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
803   if (isa<SequentialType>(getType()))
804     return getSequentialElement();
805   return getStructElement(Idx);
806 }
807 
getNumElements() const808 unsigned UndefValue::getNumElements() const {
809   const Type *Ty = getType();
810   if (const auto *AT = dyn_cast<ArrayType>(Ty))
811     return AT->getNumElements();
812   if (const auto *VT = dyn_cast<VectorType>(Ty))
813     return VT->getNumElements();
814   return Ty->getStructNumElements();
815 }
816 
817 //===----------------------------------------------------------------------===//
818 //                            ConstantXXX Classes
819 //===----------------------------------------------------------------------===//
820 
821 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)822 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
823   for (; Start != End; ++Start)
824     if (*Start != Elt)
825       return false;
826   return true;
827 }
828 
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)829 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
830   : Constant(T, ConstantArrayVal,
831              OperandTraits<ConstantArray>::op_end(this) - V.size(),
832              V.size()) {
833   assert(V.size() == T->getNumElements() &&
834          "Invalid initializer vector for constant array");
835   for (unsigned i = 0, e = V.size(); i != e; ++i)
836     assert(V[i]->getType() == T->getElementType() &&
837            "Initializer for array element doesn't match array element type!");
838   std::copy(V.begin(), V.end(), op_begin());
839 }
840 
get(ArrayType * Ty,ArrayRef<Constant * > V)841 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
842   if (Constant *C = getImpl(Ty, V))
843     return C;
844   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
845 }
getImpl(ArrayType * Ty,ArrayRef<Constant * > V)846 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
847   // Empty arrays are canonicalized to ConstantAggregateZero.
848   if (V.empty())
849     return ConstantAggregateZero::get(Ty);
850 
851   for (unsigned i = 0, e = V.size(); i != e; ++i) {
852     assert(V[i]->getType() == Ty->getElementType() &&
853            "Wrong type in array element initializer");
854   }
855 
856   // If this is an all-zero array, return a ConstantAggregateZero object.  If
857   // all undef, return an UndefValue, if "all simple", then return a
858   // ConstantDataArray.
859   Constant *C = V[0];
860   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
861     return UndefValue::get(Ty);
862 
863   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
864     return ConstantAggregateZero::get(Ty);
865 
866   // Check to see if all of the elements are ConstantFP or ConstantInt and if
867   // the element type is compatible with ConstantDataVector.  If so, use it.
868   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
869     // We speculatively build the elements here even if it turns out that there
870     // is a constantexpr or something else weird in the array, since it is so
871     // uncommon for that to happen.
872     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
873       if (CI->getType()->isIntegerTy(8)) {
874         SmallVector<uint8_t, 16> Elts;
875         for (unsigned i = 0, e = V.size(); i != e; ++i)
876           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
877             Elts.push_back(CI->getZExtValue());
878           else
879             break;
880         if (Elts.size() == V.size())
881           return ConstantDataArray::get(C->getContext(), Elts);
882       } else if (CI->getType()->isIntegerTy(16)) {
883         SmallVector<uint16_t, 16> Elts;
884         for (unsigned i = 0, e = V.size(); i != e; ++i)
885           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
886             Elts.push_back(CI->getZExtValue());
887           else
888             break;
889         if (Elts.size() == V.size())
890           return ConstantDataArray::get(C->getContext(), Elts);
891       } else if (CI->getType()->isIntegerTy(32)) {
892         SmallVector<uint32_t, 16> Elts;
893         for (unsigned i = 0, e = V.size(); i != e; ++i)
894           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
895             Elts.push_back(CI->getZExtValue());
896           else
897             break;
898         if (Elts.size() == V.size())
899           return ConstantDataArray::get(C->getContext(), Elts);
900       } else if (CI->getType()->isIntegerTy(64)) {
901         SmallVector<uint64_t, 16> Elts;
902         for (unsigned i = 0, e = V.size(); i != e; ++i)
903           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
904             Elts.push_back(CI->getZExtValue());
905           else
906             break;
907         if (Elts.size() == V.size())
908           return ConstantDataArray::get(C->getContext(), Elts);
909       }
910     }
911 
912     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
913       if (CFP->getType()->isFloatTy()) {
914         SmallVector<float, 16> Elts;
915         for (unsigned i = 0, e = V.size(); i != e; ++i)
916           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
917             Elts.push_back(CFP->getValueAPF().convertToFloat());
918           else
919             break;
920         if (Elts.size() == V.size())
921           return ConstantDataArray::get(C->getContext(), Elts);
922       } else if (CFP->getType()->isDoubleTy()) {
923         SmallVector<double, 16> Elts;
924         for (unsigned i = 0, e = V.size(); i != e; ++i)
925           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
926             Elts.push_back(CFP->getValueAPF().convertToDouble());
927           else
928             break;
929         if (Elts.size() == V.size())
930           return ConstantDataArray::get(C->getContext(), Elts);
931       }
932     }
933   }
934 
935   // Otherwise, we really do want to create a ConstantArray.
936   return nullptr;
937 }
938 
939 /// getTypeForElements - Return an anonymous struct type to use for a constant
940 /// with the specified set of elements.  The list must not be empty.
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)941 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
942                                                ArrayRef<Constant*> V,
943                                                bool Packed) {
944   unsigned VecSize = V.size();
945   SmallVector<Type*, 16> EltTypes(VecSize);
946   for (unsigned i = 0; i != VecSize; ++i)
947     EltTypes[i] = V[i]->getType();
948 
949   return StructType::get(Context, EltTypes, Packed);
950 }
951 
952 
getTypeForElements(ArrayRef<Constant * > V,bool Packed)953 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
954                                                bool Packed) {
955   assert(!V.empty() &&
956          "ConstantStruct::getTypeForElements cannot be called on empty list");
957   return getTypeForElements(V[0]->getContext(), V, Packed);
958 }
959 
960 
ConstantStruct(StructType * T,ArrayRef<Constant * > V)961 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
962   : Constant(T, ConstantStructVal,
963              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
964              V.size()) {
965   assert(V.size() == T->getNumElements() &&
966          "Invalid initializer vector for constant structure");
967   for (unsigned i = 0, e = V.size(); i != e; ++i)
968     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
969            "Initializer for struct element doesn't match struct element type!");
970   std::copy(V.begin(), V.end(), op_begin());
971 }
972 
973 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)974 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
975   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
976          "Incorrect # elements specified to ConstantStruct::get");
977 
978   // Create a ConstantAggregateZero value if all elements are zeros.
979   bool isZero = true;
980   bool isUndef = false;
981 
982   if (!V.empty()) {
983     isUndef = isa<UndefValue>(V[0]);
984     isZero = V[0]->isNullValue();
985     if (isUndef || isZero) {
986       for (unsigned i = 0, e = V.size(); i != e; ++i) {
987         if (!V[i]->isNullValue())
988           isZero = false;
989         if (!isa<UndefValue>(V[i]))
990           isUndef = false;
991       }
992     }
993   }
994   if (isZero)
995     return ConstantAggregateZero::get(ST);
996   if (isUndef)
997     return UndefValue::get(ST);
998 
999   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1000 }
1001 
get(StructType * T,...)1002 Constant *ConstantStruct::get(StructType *T, ...) {
1003   va_list ap;
1004   SmallVector<Constant*, 8> Values;
1005   va_start(ap, T);
1006   while (Constant *Val = va_arg(ap, llvm::Constant*))
1007     Values.push_back(Val);
1008   va_end(ap);
1009   return get(T, Values);
1010 }
1011 
ConstantVector(VectorType * T,ArrayRef<Constant * > V)1012 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1013   : Constant(T, ConstantVectorVal,
1014              OperandTraits<ConstantVector>::op_end(this) - V.size(),
1015              V.size()) {
1016   for (size_t i = 0, e = V.size(); i != e; i++)
1017     assert(V[i]->getType() == T->getElementType() &&
1018            "Initializer for vector element doesn't match vector element type!");
1019   std::copy(V.begin(), V.end(), op_begin());
1020 }
1021 
1022 // ConstantVector accessors.
get(ArrayRef<Constant * > V)1023 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1024   if (Constant *C = getImpl(V))
1025     return C;
1026   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1027   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1028 }
getImpl(ArrayRef<Constant * > V)1029 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1030   assert(!V.empty() && "Vectors can't be empty");
1031   VectorType *T = VectorType::get(V.front()->getType(), V.size());
1032 
1033   // If this is an all-undef or all-zero vector, return a
1034   // ConstantAggregateZero or UndefValue.
1035   Constant *C = V[0];
1036   bool isZero = C->isNullValue();
1037   bool isUndef = isa<UndefValue>(C);
1038 
1039   if (isZero || isUndef) {
1040     for (unsigned i = 1, e = V.size(); i != e; ++i)
1041       if (V[i] != C) {
1042         isZero = isUndef = false;
1043         break;
1044       }
1045   }
1046 
1047   if (isZero)
1048     return ConstantAggregateZero::get(T);
1049   if (isUndef)
1050     return UndefValue::get(T);
1051 
1052   // Check to see if all of the elements are ConstantFP or ConstantInt and if
1053   // the element type is compatible with ConstantDataVector.  If so, use it.
1054   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
1055     // We speculatively build the elements here even if it turns out that there
1056     // is a constantexpr or something else weird in the array, since it is so
1057     // uncommon for that to happen.
1058     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1059       if (CI->getType()->isIntegerTy(8)) {
1060         SmallVector<uint8_t, 16> Elts;
1061         for (unsigned i = 0, e = V.size(); i != e; ++i)
1062           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1063             Elts.push_back(CI->getZExtValue());
1064           else
1065             break;
1066         if (Elts.size() == V.size())
1067           return ConstantDataVector::get(C->getContext(), Elts);
1068       } else if (CI->getType()->isIntegerTy(16)) {
1069         SmallVector<uint16_t, 16> Elts;
1070         for (unsigned i = 0, e = V.size(); i != e; ++i)
1071           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1072             Elts.push_back(CI->getZExtValue());
1073           else
1074             break;
1075         if (Elts.size() == V.size())
1076           return ConstantDataVector::get(C->getContext(), Elts);
1077       } else if (CI->getType()->isIntegerTy(32)) {
1078         SmallVector<uint32_t, 16> Elts;
1079         for (unsigned i = 0, e = V.size(); i != e; ++i)
1080           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1081             Elts.push_back(CI->getZExtValue());
1082           else
1083             break;
1084         if (Elts.size() == V.size())
1085           return ConstantDataVector::get(C->getContext(), Elts);
1086       } else if (CI->getType()->isIntegerTy(64)) {
1087         SmallVector<uint64_t, 16> Elts;
1088         for (unsigned i = 0, e = V.size(); i != e; ++i)
1089           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1090             Elts.push_back(CI->getZExtValue());
1091           else
1092             break;
1093         if (Elts.size() == V.size())
1094           return ConstantDataVector::get(C->getContext(), Elts);
1095       }
1096     }
1097 
1098     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1099       if (CFP->getType()->isFloatTy()) {
1100         SmallVector<float, 16> Elts;
1101         for (unsigned i = 0, e = V.size(); i != e; ++i)
1102           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1103             Elts.push_back(CFP->getValueAPF().convertToFloat());
1104           else
1105             break;
1106         if (Elts.size() == V.size())
1107           return ConstantDataVector::get(C->getContext(), Elts);
1108       } else if (CFP->getType()->isDoubleTy()) {
1109         SmallVector<double, 16> Elts;
1110         for (unsigned i = 0, e = V.size(); i != e; ++i)
1111           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1112             Elts.push_back(CFP->getValueAPF().convertToDouble());
1113           else
1114             break;
1115         if (Elts.size() == V.size())
1116           return ConstantDataVector::get(C->getContext(), Elts);
1117       }
1118     }
1119   }
1120 
1121   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1122   // the operand list constants a ConstantExpr or something else strange.
1123   return nullptr;
1124 }
1125 
getSplat(unsigned NumElts,Constant * V)1126 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1127   // If this splat is compatible with ConstantDataVector, use it instead of
1128   // ConstantVector.
1129   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1130       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1131     return ConstantDataVector::getSplat(NumElts, V);
1132 
1133   SmallVector<Constant*, 32> Elts(NumElts, V);
1134   return get(Elts);
1135 }
1136 
1137 
1138 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1139 // can't be inline because we don't want to #include Instruction.h into
1140 // Constant.h
isCast() const1141 bool ConstantExpr::isCast() const {
1142   return Instruction::isCast(getOpcode());
1143 }
1144 
isCompare() const1145 bool ConstantExpr::isCompare() const {
1146   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1147 }
1148 
isGEPWithNoNotionalOverIndexing() const1149 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1150   if (getOpcode() != Instruction::GetElementPtr) return false;
1151 
1152   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1153   User::const_op_iterator OI = std::next(this->op_begin());
1154 
1155   // Skip the first index, as it has no static limit.
1156   ++GEPI;
1157   ++OI;
1158 
1159   // The remaining indices must be compile-time known integers within the
1160   // bounds of the corresponding notional static array types.
1161   for (; GEPI != E; ++GEPI, ++OI) {
1162     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1163     if (!CI) return false;
1164     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1165       if (CI->getValue().getActiveBits() > 64 ||
1166           CI->getZExtValue() >= ATy->getNumElements())
1167         return false;
1168   }
1169 
1170   // All the indices checked out.
1171   return true;
1172 }
1173 
hasIndices() const1174 bool ConstantExpr::hasIndices() const {
1175   return getOpcode() == Instruction::ExtractValue ||
1176          getOpcode() == Instruction::InsertValue;
1177 }
1178 
getIndices() const1179 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1180   if (const ExtractValueConstantExpr *EVCE =
1181         dyn_cast<ExtractValueConstantExpr>(this))
1182     return EVCE->Indices;
1183 
1184   return cast<InsertValueConstantExpr>(this)->Indices;
1185 }
1186 
getPredicate() const1187 unsigned ConstantExpr::getPredicate() const {
1188   assert(isCompare());
1189   return ((const CompareConstantExpr*)this)->predicate;
1190 }
1191 
1192 /// getWithOperandReplaced - Return a constant expression identical to this
1193 /// one, but with the specified operand set to the specified value.
1194 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1195 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1196   assert(Op->getType() == getOperand(OpNo)->getType() &&
1197          "Replacing operand with value of different type!");
1198   if (getOperand(OpNo) == Op)
1199     return const_cast<ConstantExpr*>(this);
1200 
1201   SmallVector<Constant*, 8> NewOps;
1202   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1203     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1204 
1205   return getWithOperands(NewOps);
1206 }
1207 
1208 /// getWithOperands - This returns the current constant expression with the
1209 /// operands replaced with the specified values.  The specified array must
1210 /// have the same number of operands as our current one.
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty,bool OnlyIfReduced) const1211 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1212                                         bool OnlyIfReduced) const {
1213   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1214   bool AnyChange = Ty != getType();
1215   for (unsigned i = 0; i != Ops.size(); ++i)
1216     AnyChange |= Ops[i] != getOperand(i);
1217 
1218   if (!AnyChange)  // No operands changed, return self.
1219     return const_cast<ConstantExpr*>(this);
1220 
1221   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1222   switch (getOpcode()) {
1223   case Instruction::Trunc:
1224   case Instruction::ZExt:
1225   case Instruction::SExt:
1226   case Instruction::FPTrunc:
1227   case Instruction::FPExt:
1228   case Instruction::UIToFP:
1229   case Instruction::SIToFP:
1230   case Instruction::FPToUI:
1231   case Instruction::FPToSI:
1232   case Instruction::PtrToInt:
1233   case Instruction::IntToPtr:
1234   case Instruction::BitCast:
1235   case Instruction::AddrSpaceCast:
1236     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1237   case Instruction::Select:
1238     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1239   case Instruction::InsertElement:
1240     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1241                                           OnlyIfReducedTy);
1242   case Instruction::ExtractElement:
1243     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1244   case Instruction::InsertValue:
1245     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1246                                         OnlyIfReducedTy);
1247   case Instruction::ExtractValue:
1248     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1249   case Instruction::ShuffleVector:
1250     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1251                                           OnlyIfReducedTy);
1252   case Instruction::GetElementPtr:
1253     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1254                                           cast<GEPOperator>(this)->isInBounds(),
1255                                           OnlyIfReducedTy);
1256   case Instruction::ICmp:
1257   case Instruction::FCmp:
1258     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1259                                     OnlyIfReducedTy);
1260   default:
1261     assert(getNumOperands() == 2 && "Must be binary operator?");
1262     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1263                              OnlyIfReducedTy);
1264   }
1265 }
1266 
1267 
1268 //===----------------------------------------------------------------------===//
1269 //                      isValueValidForType implementations
1270 
isValueValidForType(Type * Ty,uint64_t Val)1271 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1272   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1273   if (Ty->isIntegerTy(1))
1274     return Val == 0 || Val == 1;
1275   if (NumBits >= 64)
1276     return true; // always true, has to fit in largest type
1277   uint64_t Max = (1ll << NumBits) - 1;
1278   return Val <= Max;
1279 }
1280 
isValueValidForType(Type * Ty,int64_t Val)1281 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1282   unsigned NumBits = Ty->getIntegerBitWidth();
1283   if (Ty->isIntegerTy(1))
1284     return Val == 0 || Val == 1 || Val == -1;
1285   if (NumBits >= 64)
1286     return true; // always true, has to fit in largest type
1287   int64_t Min = -(1ll << (NumBits-1));
1288   int64_t Max = (1ll << (NumBits-1)) - 1;
1289   return (Val >= Min && Val <= Max);
1290 }
1291 
isValueValidForType(Type * Ty,const APFloat & Val)1292 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1293   // convert modifies in place, so make a copy.
1294   APFloat Val2 = APFloat(Val);
1295   bool losesInfo;
1296   switch (Ty->getTypeID()) {
1297   default:
1298     return false;         // These can't be represented as floating point!
1299 
1300   // FIXME rounding mode needs to be more flexible
1301   case Type::HalfTyID: {
1302     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1303       return true;
1304     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1305     return !losesInfo;
1306   }
1307   case Type::FloatTyID: {
1308     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1309       return true;
1310     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1311     return !losesInfo;
1312   }
1313   case Type::DoubleTyID: {
1314     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1315         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1316         &Val2.getSemantics() == &APFloat::IEEEdouble)
1317       return true;
1318     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1319     return !losesInfo;
1320   }
1321   case Type::X86_FP80TyID:
1322     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1323            &Val2.getSemantics() == &APFloat::IEEEsingle ||
1324            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1325            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1326   case Type::FP128TyID:
1327     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1328            &Val2.getSemantics() == &APFloat::IEEEsingle ||
1329            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1330            &Val2.getSemantics() == &APFloat::IEEEquad;
1331   case Type::PPC_FP128TyID:
1332     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1333            &Val2.getSemantics() == &APFloat::IEEEsingle ||
1334            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1335            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1336   }
1337 }
1338 
1339 
1340 //===----------------------------------------------------------------------===//
1341 //                      Factory Function Implementation
1342 
get(Type * Ty)1343 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1344   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1345          "Cannot create an aggregate zero of non-aggregate type!");
1346 
1347   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1348   if (!Entry)
1349     Entry = new ConstantAggregateZero(Ty);
1350 
1351   return Entry;
1352 }
1353 
1354 /// destroyConstant - Remove the constant from the constant table.
1355 ///
destroyConstant()1356 void ConstantAggregateZero::destroyConstant() {
1357   getContext().pImpl->CAZConstants.erase(getType());
1358   destroyConstantImpl();
1359 }
1360 
1361 /// destroyConstant - Remove the constant from the constant table...
1362 ///
destroyConstant()1363 void ConstantArray::destroyConstant() {
1364   getType()->getContext().pImpl->ArrayConstants.remove(this);
1365   destroyConstantImpl();
1366 }
1367 
1368 
1369 //---- ConstantStruct::get() implementation...
1370 //
1371 
1372 // destroyConstant - Remove the constant from the constant table...
1373 //
destroyConstant()1374 void ConstantStruct::destroyConstant() {
1375   getType()->getContext().pImpl->StructConstants.remove(this);
1376   destroyConstantImpl();
1377 }
1378 
1379 // destroyConstant - Remove the constant from the constant table...
1380 //
destroyConstant()1381 void ConstantVector::destroyConstant() {
1382   getType()->getContext().pImpl->VectorConstants.remove(this);
1383   destroyConstantImpl();
1384 }
1385 
1386 /// getSplatValue - If this is a splat vector constant, meaning that all of
1387 /// the elements have the same value, return that value. Otherwise return 0.
getSplatValue() const1388 Constant *Constant::getSplatValue() const {
1389   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1390   if (isa<ConstantAggregateZero>(this))
1391     return getNullValue(this->getType()->getVectorElementType());
1392   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1393     return CV->getSplatValue();
1394   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1395     return CV->getSplatValue();
1396   return nullptr;
1397 }
1398 
1399 /// getSplatValue - If this is a splat constant, where all of the
1400 /// elements have the same value, return that value. Otherwise return null.
getSplatValue() const1401 Constant *ConstantVector::getSplatValue() const {
1402   // Check out first element.
1403   Constant *Elt = getOperand(0);
1404   // Then make sure all remaining elements point to the same value.
1405   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1406     if (getOperand(I) != Elt)
1407       return nullptr;
1408   return Elt;
1409 }
1410 
1411 /// If C is a constant integer then return its value, otherwise C must be a
1412 /// vector of constant integers, all equal, and the common value is returned.
getUniqueInteger() const1413 const APInt &Constant::getUniqueInteger() const {
1414   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1415     return CI->getValue();
1416   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1417   const Constant *C = this->getAggregateElement(0U);
1418   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1419   return cast<ConstantInt>(C)->getValue();
1420 }
1421 
1422 
1423 //---- ConstantPointerNull::get() implementation.
1424 //
1425 
get(PointerType * Ty)1426 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1427   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1428   if (!Entry)
1429     Entry = new ConstantPointerNull(Ty);
1430 
1431   return Entry;
1432 }
1433 
1434 // destroyConstant - Remove the constant from the constant table...
1435 //
destroyConstant()1436 void ConstantPointerNull::destroyConstant() {
1437   getContext().pImpl->CPNConstants.erase(getType());
1438   // Free the constant and any dangling references to it.
1439   destroyConstantImpl();
1440 }
1441 
1442 
1443 //---- UndefValue::get() implementation.
1444 //
1445 
get(Type * Ty)1446 UndefValue *UndefValue::get(Type *Ty) {
1447   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1448   if (!Entry)
1449     Entry = new UndefValue(Ty);
1450 
1451   return Entry;
1452 }
1453 
1454 // destroyConstant - Remove the constant from the constant table.
1455 //
destroyConstant()1456 void UndefValue::destroyConstant() {
1457   // Free the constant and any dangling references to it.
1458   getContext().pImpl->UVConstants.erase(getType());
1459   destroyConstantImpl();
1460 }
1461 
1462 //---- BlockAddress::get() implementation.
1463 //
1464 
get(BasicBlock * BB)1465 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1466   assert(BB->getParent() && "Block must have a parent");
1467   return get(BB->getParent(), BB);
1468 }
1469 
get(Function * F,BasicBlock * BB)1470 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1471   BlockAddress *&BA =
1472     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1473   if (!BA)
1474     BA = new BlockAddress(F, BB);
1475 
1476   assert(BA->getFunction() == F && "Basic block moved between functions");
1477   return BA;
1478 }
1479 
BlockAddress(Function * F,BasicBlock * BB)1480 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1481 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1482            &Op<0>(), 2) {
1483   setOperand(0, F);
1484   setOperand(1, BB);
1485   BB->AdjustBlockAddressRefCount(1);
1486 }
1487 
lookup(const BasicBlock * BB)1488 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1489   if (!BB->hasAddressTaken())
1490     return nullptr;
1491 
1492   const Function *F = BB->getParent();
1493   assert(F && "Block must have a parent");
1494   BlockAddress *BA =
1495       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1496   assert(BA && "Refcount and block address map disagree!");
1497   return BA;
1498 }
1499 
1500 // destroyConstant - Remove the constant from the constant table.
1501 //
destroyConstant()1502 void BlockAddress::destroyConstant() {
1503   getFunction()->getType()->getContext().pImpl
1504     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1505   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1506   destroyConstantImpl();
1507 }
1508 
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1509 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1510   // This could be replacing either the Basic Block or the Function.  In either
1511   // case, we have to remove the map entry.
1512   Function *NewF = getFunction();
1513   BasicBlock *NewBB = getBasicBlock();
1514 
1515   if (U == &Op<0>())
1516     NewF = cast<Function>(To->stripPointerCasts());
1517   else
1518     NewBB = cast<BasicBlock>(To);
1519 
1520   // See if the 'new' entry already exists, if not, just update this in place
1521   // and return early.
1522   BlockAddress *&NewBA =
1523     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1524   if (NewBA) {
1525     replaceUsesOfWithOnConstantImpl(NewBA);
1526     return;
1527   }
1528 
1529   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1530 
1531   // Remove the old entry, this can't cause the map to rehash (just a
1532   // tombstone will get added).
1533   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1534                                                           getBasicBlock()));
1535   NewBA = this;
1536   setOperand(0, NewF);
1537   setOperand(1, NewBB);
1538   getBasicBlock()->AdjustBlockAddressRefCount(1);
1539 }
1540 
1541 //---- ConstantExpr::get() implementations.
1542 //
1543 
1544 /// This is a utility function to handle folding of casts and lookup of the
1545 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty,bool OnlyIfReduced=false)1546 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1547                                bool OnlyIfReduced = false) {
1548   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1549   // Fold a few common cases
1550   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1551     return FC;
1552 
1553   if (OnlyIfReduced)
1554     return nullptr;
1555 
1556   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1557 
1558   // Look up the constant in the table first to ensure uniqueness.
1559   ConstantExprKeyType Key(opc, C);
1560 
1561   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1562 }
1563 
getCast(unsigned oc,Constant * C,Type * Ty,bool OnlyIfReduced)1564 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1565                                 bool OnlyIfReduced) {
1566   Instruction::CastOps opc = Instruction::CastOps(oc);
1567   assert(Instruction::isCast(opc) && "opcode out of range");
1568   assert(C && Ty && "Null arguments to getCast");
1569   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1570 
1571   switch (opc) {
1572   default:
1573     llvm_unreachable("Invalid cast opcode");
1574   case Instruction::Trunc:
1575     return getTrunc(C, Ty, OnlyIfReduced);
1576   case Instruction::ZExt:
1577     return getZExt(C, Ty, OnlyIfReduced);
1578   case Instruction::SExt:
1579     return getSExt(C, Ty, OnlyIfReduced);
1580   case Instruction::FPTrunc:
1581     return getFPTrunc(C, Ty, OnlyIfReduced);
1582   case Instruction::FPExt:
1583     return getFPExtend(C, Ty, OnlyIfReduced);
1584   case Instruction::UIToFP:
1585     return getUIToFP(C, Ty, OnlyIfReduced);
1586   case Instruction::SIToFP:
1587     return getSIToFP(C, Ty, OnlyIfReduced);
1588   case Instruction::FPToUI:
1589     return getFPToUI(C, Ty, OnlyIfReduced);
1590   case Instruction::FPToSI:
1591     return getFPToSI(C, Ty, OnlyIfReduced);
1592   case Instruction::PtrToInt:
1593     return getPtrToInt(C, Ty, OnlyIfReduced);
1594   case Instruction::IntToPtr:
1595     return getIntToPtr(C, Ty, OnlyIfReduced);
1596   case Instruction::BitCast:
1597     return getBitCast(C, Ty, OnlyIfReduced);
1598   case Instruction::AddrSpaceCast:
1599     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1600   }
1601 }
1602 
getZExtOrBitCast(Constant * C,Type * Ty)1603 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1604   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1605     return getBitCast(C, Ty);
1606   return getZExt(C, Ty);
1607 }
1608 
getSExtOrBitCast(Constant * C,Type * Ty)1609 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1610   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1611     return getBitCast(C, Ty);
1612   return getSExt(C, Ty);
1613 }
1614 
getTruncOrBitCast(Constant * C,Type * Ty)1615 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1616   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1617     return getBitCast(C, Ty);
1618   return getTrunc(C, Ty);
1619 }
1620 
getPointerCast(Constant * S,Type * Ty)1621 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1622   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1623   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1624           "Invalid cast");
1625 
1626   if (Ty->isIntOrIntVectorTy())
1627     return getPtrToInt(S, Ty);
1628 
1629   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1630   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1631     return getAddrSpaceCast(S, Ty);
1632 
1633   return getBitCast(S, Ty);
1634 }
1635 
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)1636 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1637                                                          Type *Ty) {
1638   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1639   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1640 
1641   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1642     return getAddrSpaceCast(S, Ty);
1643 
1644   return getBitCast(S, Ty);
1645 }
1646 
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1647 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1648                                        bool isSigned) {
1649   assert(C->getType()->isIntOrIntVectorTy() &&
1650          Ty->isIntOrIntVectorTy() && "Invalid cast");
1651   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1652   unsigned DstBits = Ty->getScalarSizeInBits();
1653   Instruction::CastOps opcode =
1654     (SrcBits == DstBits ? Instruction::BitCast :
1655      (SrcBits > DstBits ? Instruction::Trunc :
1656       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1657   return getCast(opcode, C, Ty);
1658 }
1659 
getFPCast(Constant * C,Type * Ty)1660 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1661   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1662          "Invalid cast");
1663   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1664   unsigned DstBits = Ty->getScalarSizeInBits();
1665   if (SrcBits == DstBits)
1666     return C; // Avoid a useless cast
1667   Instruction::CastOps opcode =
1668     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1669   return getCast(opcode, C, Ty);
1670 }
1671 
getTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1672 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1673 #ifndef NDEBUG
1674   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1675   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1676 #endif
1677   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1678   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1679   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1680   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1681          "SrcTy must be larger than DestTy for Trunc!");
1682 
1683   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1684 }
1685 
getSExt(Constant * C,Type * Ty,bool OnlyIfReduced)1686 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1687 #ifndef NDEBUG
1688   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1689   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1690 #endif
1691   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1692   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1693   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1694   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1695          "SrcTy must be smaller than DestTy for SExt!");
1696 
1697   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1698 }
1699 
getZExt(Constant * C,Type * Ty,bool OnlyIfReduced)1700 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1701 #ifndef NDEBUG
1702   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1703   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1704 #endif
1705   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1706   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1707   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1708   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1709          "SrcTy must be smaller than DestTy for ZExt!");
1710 
1711   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1712 }
1713 
getFPTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1714 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1715 #ifndef NDEBUG
1716   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1717   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1718 #endif
1719   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1720   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1721          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1722          "This is an illegal floating point truncation!");
1723   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1724 }
1725 
getFPExtend(Constant * C,Type * Ty,bool OnlyIfReduced)1726 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1727 #ifndef NDEBUG
1728   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1729   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1730 #endif
1731   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1732   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1733          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1734          "This is an illegal floating point extension!");
1735   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1736 }
1737 
getUIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1738 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1739 #ifndef NDEBUG
1740   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1741   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1742 #endif
1743   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1744   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1745          "This is an illegal uint to floating point cast!");
1746   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1747 }
1748 
getSIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1749 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1750 #ifndef NDEBUG
1751   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1752   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1753 #endif
1754   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1755   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1756          "This is an illegal sint to floating point cast!");
1757   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1758 }
1759 
getFPToUI(Constant * C,Type * Ty,bool OnlyIfReduced)1760 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1761 #ifndef NDEBUG
1762   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1763   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1764 #endif
1765   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1766   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1767          "This is an illegal floating point to uint cast!");
1768   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1769 }
1770 
getFPToSI(Constant * C,Type * Ty,bool OnlyIfReduced)1771 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1772 #ifndef NDEBUG
1773   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1774   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1775 #endif
1776   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1777   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1778          "This is an illegal floating point to sint cast!");
1779   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1780 }
1781 
getPtrToInt(Constant * C,Type * DstTy,bool OnlyIfReduced)1782 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1783                                     bool OnlyIfReduced) {
1784   assert(C->getType()->getScalarType()->isPointerTy() &&
1785          "PtrToInt source must be pointer or pointer vector");
1786   assert(DstTy->getScalarType()->isIntegerTy() &&
1787          "PtrToInt destination must be integer or integer vector");
1788   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1789   if (isa<VectorType>(C->getType()))
1790     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1791            "Invalid cast between a different number of vector elements");
1792   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1793 }
1794 
getIntToPtr(Constant * C,Type * DstTy,bool OnlyIfReduced)1795 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1796                                     bool OnlyIfReduced) {
1797   assert(C->getType()->getScalarType()->isIntegerTy() &&
1798          "IntToPtr source must be integer or integer vector");
1799   assert(DstTy->getScalarType()->isPointerTy() &&
1800          "IntToPtr destination must be a pointer or pointer vector");
1801   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1802   if (isa<VectorType>(C->getType()))
1803     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1804            "Invalid cast between a different number of vector elements");
1805   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1806 }
1807 
getBitCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1808 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1809                                    bool OnlyIfReduced) {
1810   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1811          "Invalid constantexpr bitcast!");
1812 
1813   // It is common to ask for a bitcast of a value to its own type, handle this
1814   // speedily.
1815   if (C->getType() == DstTy) return C;
1816 
1817   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1818 }
1819 
getAddrSpaceCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1820 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1821                                          bool OnlyIfReduced) {
1822   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1823          "Invalid constantexpr addrspacecast!");
1824 
1825   // Canonicalize addrspacecasts between different pointer types by first
1826   // bitcasting the pointer type and then converting the address space.
1827   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1828   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1829   Type *DstElemTy = DstScalarTy->getElementType();
1830   if (SrcScalarTy->getElementType() != DstElemTy) {
1831     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1832     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1833       // Handle vectors of pointers.
1834       MidTy = VectorType::get(MidTy, VT->getNumElements());
1835     }
1836     C = getBitCast(C, MidTy);
1837   }
1838   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1839 }
1840 
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags,Type * OnlyIfReducedTy)1841 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1842                             unsigned Flags, Type *OnlyIfReducedTy) {
1843   // Check the operands for consistency first.
1844   assert(Opcode >= Instruction::BinaryOpsBegin &&
1845          Opcode <  Instruction::BinaryOpsEnd   &&
1846          "Invalid opcode in binary constant expression");
1847   assert(C1->getType() == C2->getType() &&
1848          "Operand types in binary constant expression should match");
1849 
1850 #ifndef NDEBUG
1851   switch (Opcode) {
1852   case Instruction::Add:
1853   case Instruction::Sub:
1854   case Instruction::Mul:
1855     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1856     assert(C1->getType()->isIntOrIntVectorTy() &&
1857            "Tried to create an integer operation on a non-integer type!");
1858     break;
1859   case Instruction::FAdd:
1860   case Instruction::FSub:
1861   case Instruction::FMul:
1862     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1863     assert(C1->getType()->isFPOrFPVectorTy() &&
1864            "Tried to create a floating-point operation on a "
1865            "non-floating-point type!");
1866     break;
1867   case Instruction::UDiv:
1868   case Instruction::SDiv:
1869     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1870     assert(C1->getType()->isIntOrIntVectorTy() &&
1871            "Tried to create an arithmetic operation on a non-arithmetic type!");
1872     break;
1873   case Instruction::FDiv:
1874     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1875     assert(C1->getType()->isFPOrFPVectorTy() &&
1876            "Tried to create an arithmetic operation on a non-arithmetic type!");
1877     break;
1878   case Instruction::URem:
1879   case Instruction::SRem:
1880     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1881     assert(C1->getType()->isIntOrIntVectorTy() &&
1882            "Tried to create an arithmetic operation on a non-arithmetic type!");
1883     break;
1884   case Instruction::FRem:
1885     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1886     assert(C1->getType()->isFPOrFPVectorTy() &&
1887            "Tried to create an arithmetic operation on a non-arithmetic type!");
1888     break;
1889   case Instruction::And:
1890   case Instruction::Or:
1891   case Instruction::Xor:
1892     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1893     assert(C1->getType()->isIntOrIntVectorTy() &&
1894            "Tried to create a logical operation on a non-integral type!");
1895     break;
1896   case Instruction::Shl:
1897   case Instruction::LShr:
1898   case Instruction::AShr:
1899     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1900     assert(C1->getType()->isIntOrIntVectorTy() &&
1901            "Tried to create a shift operation on a non-integer type!");
1902     break;
1903   default:
1904     break;
1905   }
1906 #endif
1907 
1908   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1909     return FC;          // Fold a few common cases.
1910 
1911   if (OnlyIfReducedTy == C1->getType())
1912     return nullptr;
1913 
1914   Constant *ArgVec[] = { C1, C2 };
1915   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1916 
1917   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1918   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1919 }
1920 
getSizeOf(Type * Ty)1921 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1922   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1923   // Note that a non-inbounds gep is used, as null isn't within any object.
1924   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1925   Constant *GEP = getGetElementPtr(
1926                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1927   return getPtrToInt(GEP,
1928                      Type::getInt64Ty(Ty->getContext()));
1929 }
1930 
getAlignOf(Type * Ty)1931 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1932   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1933   // Note that a non-inbounds gep is used, as null isn't within any object.
1934   Type *AligningTy =
1935     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1936   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1937   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1938   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1939   Constant *Indices[2] = { Zero, One };
1940   Constant *GEP = getGetElementPtr(NullPtr, Indices);
1941   return getPtrToInt(GEP,
1942                      Type::getInt64Ty(Ty->getContext()));
1943 }
1944 
getOffsetOf(StructType * STy,unsigned FieldNo)1945 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1946   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1947                                            FieldNo));
1948 }
1949 
getOffsetOf(Type * Ty,Constant * FieldNo)1950 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1951   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1952   // Note that a non-inbounds gep is used, as null isn't within any object.
1953   Constant *GEPIdx[] = {
1954     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1955     FieldNo
1956   };
1957   Constant *GEP = getGetElementPtr(
1958                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1959   return getPtrToInt(GEP,
1960                      Type::getInt64Ty(Ty->getContext()));
1961 }
1962 
getCompare(unsigned short Predicate,Constant * C1,Constant * C2,bool OnlyIfReduced)1963 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1964                                    Constant *C2, bool OnlyIfReduced) {
1965   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1966 
1967   switch (Predicate) {
1968   default: llvm_unreachable("Invalid CmpInst predicate");
1969   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1970   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1971   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1972   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1973   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1974   case CmpInst::FCMP_TRUE:
1975     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1976 
1977   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1978   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1979   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1980   case CmpInst::ICMP_SLE:
1981     return getICmp(Predicate, C1, C2, OnlyIfReduced);
1982   }
1983 }
1984 
getSelect(Constant * C,Constant * V1,Constant * V2,Type * OnlyIfReducedTy)1985 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1986                                   Type *OnlyIfReducedTy) {
1987   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1988 
1989   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1990     return SC;        // Fold common cases
1991 
1992   if (OnlyIfReducedTy == V1->getType())
1993     return nullptr;
1994 
1995   Constant *ArgVec[] = { C, V1, V2 };
1996   ConstantExprKeyType Key(Instruction::Select, ArgVec);
1997 
1998   LLVMContextImpl *pImpl = C->getContext().pImpl;
1999   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2000 }
2001 
getGetElementPtr(Constant * C,ArrayRef<Value * > Idxs,bool InBounds,Type * OnlyIfReducedTy)2002 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
2003                                          bool InBounds, Type *OnlyIfReducedTy) {
2004   assert(C->getType()->isPtrOrPtrVectorTy() &&
2005          "Non-pointer type for constant GetElementPtr expression");
2006 
2007   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
2008     return FC;          // Fold a few common cases.
2009 
2010   // Get the result type of the getelementptr!
2011   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
2012   assert(Ty && "GEP indices invalid!");
2013   unsigned AS = C->getType()->getPointerAddressSpace();
2014   Type *ReqTy = Ty->getPointerTo(AS);
2015   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2016     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
2017 
2018   if (OnlyIfReducedTy == ReqTy)
2019     return nullptr;
2020 
2021   // Look up the constant in the table first to ensure uniqueness
2022   std::vector<Constant*> ArgVec;
2023   ArgVec.reserve(1 + Idxs.size());
2024   ArgVec.push_back(C);
2025   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2026     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
2027            "getelementptr index type missmatch");
2028     assert((!Idxs[i]->getType()->isVectorTy() ||
2029             ReqTy->getVectorNumElements() ==
2030             Idxs[i]->getType()->getVectorNumElements()) &&
2031            "getelementptr index type missmatch");
2032     ArgVec.push_back(cast<Constant>(Idxs[i]));
2033   }
2034   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2035                                 InBounds ? GEPOperator::IsInBounds : 0);
2036 
2037   LLVMContextImpl *pImpl = C->getContext().pImpl;
2038   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2039 }
2040 
getICmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2041 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2042                                 Constant *RHS, bool OnlyIfReduced) {
2043   assert(LHS->getType() == RHS->getType());
2044   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2045          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2046 
2047   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2048     return FC;          // Fold a few common cases...
2049 
2050   if (OnlyIfReduced)
2051     return nullptr;
2052 
2053   // Look up the constant in the table first to ensure uniqueness
2054   Constant *ArgVec[] = { LHS, RHS };
2055   // Get the key type with both the opcode and predicate
2056   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2057 
2058   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2059   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2060     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2061 
2062   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2063   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2064 }
2065 
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2066 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2067                                 Constant *RHS, bool OnlyIfReduced) {
2068   assert(LHS->getType() == RHS->getType());
2069   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2070 
2071   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2072     return FC;          // Fold a few common cases...
2073 
2074   if (OnlyIfReduced)
2075     return nullptr;
2076 
2077   // Look up the constant in the table first to ensure uniqueness
2078   Constant *ArgVec[] = { LHS, RHS };
2079   // Get the key type with both the opcode and predicate
2080   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2081 
2082   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2083   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2084     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2085 
2086   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2087   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2088 }
2089 
getExtractElement(Constant * Val,Constant * Idx,Type * OnlyIfReducedTy)2090 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2091                                           Type *OnlyIfReducedTy) {
2092   assert(Val->getType()->isVectorTy() &&
2093          "Tried to create extractelement operation on non-vector type!");
2094   assert(Idx->getType()->isIntegerTy() &&
2095          "Extractelement index must be an integer type!");
2096 
2097   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2098     return FC;          // Fold a few common cases.
2099 
2100   Type *ReqTy = Val->getType()->getVectorElementType();
2101   if (OnlyIfReducedTy == ReqTy)
2102     return nullptr;
2103 
2104   // Look up the constant in the table first to ensure uniqueness
2105   Constant *ArgVec[] = { Val, Idx };
2106   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2107 
2108   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2109   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2110 }
2111 
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx,Type * OnlyIfReducedTy)2112 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2113                                          Constant *Idx, Type *OnlyIfReducedTy) {
2114   assert(Val->getType()->isVectorTy() &&
2115          "Tried to create insertelement operation on non-vector type!");
2116   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2117          "Insertelement types must match!");
2118   assert(Idx->getType()->isIntegerTy() &&
2119          "Insertelement index must be i32 type!");
2120 
2121   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2122     return FC;          // Fold a few common cases.
2123 
2124   if (OnlyIfReducedTy == Val->getType())
2125     return nullptr;
2126 
2127   // Look up the constant in the table first to ensure uniqueness
2128   Constant *ArgVec[] = { Val, Elt, Idx };
2129   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2130 
2131   LLVMContextImpl *pImpl = Val->getContext().pImpl;
2132   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2133 }
2134 
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask,Type * OnlyIfReducedTy)2135 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2136                                          Constant *Mask, Type *OnlyIfReducedTy) {
2137   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2138          "Invalid shuffle vector constant expr operands!");
2139 
2140   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2141     return FC;          // Fold a few common cases.
2142 
2143   unsigned NElts = Mask->getType()->getVectorNumElements();
2144   Type *EltTy = V1->getType()->getVectorElementType();
2145   Type *ShufTy = VectorType::get(EltTy, NElts);
2146 
2147   if (OnlyIfReducedTy == ShufTy)
2148     return nullptr;
2149 
2150   // Look up the constant in the table first to ensure uniqueness
2151   Constant *ArgVec[] = { V1, V2, Mask };
2152   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2153 
2154   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2155   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2156 }
2157 
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2158 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2159                                        ArrayRef<unsigned> Idxs,
2160                                        Type *OnlyIfReducedTy) {
2161   assert(Agg->getType()->isFirstClassType() &&
2162          "Non-first-class type for constant insertvalue expression");
2163 
2164   assert(ExtractValueInst::getIndexedType(Agg->getType(),
2165                                           Idxs) == Val->getType() &&
2166          "insertvalue indices invalid!");
2167   Type *ReqTy = Val->getType();
2168 
2169   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2170     return FC;
2171 
2172   if (OnlyIfReducedTy == ReqTy)
2173     return nullptr;
2174 
2175   Constant *ArgVec[] = { Agg, Val };
2176   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2177 
2178   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2179   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2180 }
2181 
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2182 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2183                                         Type *OnlyIfReducedTy) {
2184   assert(Agg->getType()->isFirstClassType() &&
2185          "Tried to create extractelement operation on non-first-class type!");
2186 
2187   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2188   (void)ReqTy;
2189   assert(ReqTy && "extractvalue indices invalid!");
2190 
2191   assert(Agg->getType()->isFirstClassType() &&
2192          "Non-first-class type for constant extractvalue expression");
2193   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2194     return FC;
2195 
2196   if (OnlyIfReducedTy == ReqTy)
2197     return nullptr;
2198 
2199   Constant *ArgVec[] = { Agg };
2200   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2201 
2202   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2203   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2204 }
2205 
getNeg(Constant * C,bool HasNUW,bool HasNSW)2206 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2207   assert(C->getType()->isIntOrIntVectorTy() &&
2208          "Cannot NEG a nonintegral value!");
2209   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2210                 C, HasNUW, HasNSW);
2211 }
2212 
getFNeg(Constant * C)2213 Constant *ConstantExpr::getFNeg(Constant *C) {
2214   assert(C->getType()->isFPOrFPVectorTy() &&
2215          "Cannot FNEG a non-floating-point value!");
2216   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2217 }
2218 
getNot(Constant * C)2219 Constant *ConstantExpr::getNot(Constant *C) {
2220   assert(C->getType()->isIntOrIntVectorTy() &&
2221          "Cannot NOT a nonintegral value!");
2222   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2223 }
2224 
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2225 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2226                                bool HasNUW, bool HasNSW) {
2227   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2228                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2229   return get(Instruction::Add, C1, C2, Flags);
2230 }
2231 
getFAdd(Constant * C1,Constant * C2)2232 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2233   return get(Instruction::FAdd, C1, C2);
2234 }
2235 
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2236 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2237                                bool HasNUW, bool HasNSW) {
2238   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2239                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2240   return get(Instruction::Sub, C1, C2, Flags);
2241 }
2242 
getFSub(Constant * C1,Constant * C2)2243 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2244   return get(Instruction::FSub, C1, C2);
2245 }
2246 
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2247 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2248                                bool HasNUW, bool HasNSW) {
2249   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2250                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2251   return get(Instruction::Mul, C1, C2, Flags);
2252 }
2253 
getFMul(Constant * C1,Constant * C2)2254 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2255   return get(Instruction::FMul, C1, C2);
2256 }
2257 
getUDiv(Constant * C1,Constant * C2,bool isExact)2258 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2259   return get(Instruction::UDiv, C1, C2,
2260              isExact ? PossiblyExactOperator::IsExact : 0);
2261 }
2262 
getSDiv(Constant * C1,Constant * C2,bool isExact)2263 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2264   return get(Instruction::SDiv, C1, C2,
2265              isExact ? PossiblyExactOperator::IsExact : 0);
2266 }
2267 
getFDiv(Constant * C1,Constant * C2)2268 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2269   return get(Instruction::FDiv, C1, C2);
2270 }
2271 
getURem(Constant * C1,Constant * C2)2272 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2273   return get(Instruction::URem, C1, C2);
2274 }
2275 
getSRem(Constant * C1,Constant * C2)2276 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2277   return get(Instruction::SRem, C1, C2);
2278 }
2279 
getFRem(Constant * C1,Constant * C2)2280 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2281   return get(Instruction::FRem, C1, C2);
2282 }
2283 
getAnd(Constant * C1,Constant * C2)2284 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2285   return get(Instruction::And, C1, C2);
2286 }
2287 
getOr(Constant * C1,Constant * C2)2288 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2289   return get(Instruction::Or, C1, C2);
2290 }
2291 
getXor(Constant * C1,Constant * C2)2292 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2293   return get(Instruction::Xor, C1, C2);
2294 }
2295 
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2296 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2297                                bool HasNUW, bool HasNSW) {
2298   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2299                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2300   return get(Instruction::Shl, C1, C2, Flags);
2301 }
2302 
getLShr(Constant * C1,Constant * C2,bool isExact)2303 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2304   return get(Instruction::LShr, C1, C2,
2305              isExact ? PossiblyExactOperator::IsExact : 0);
2306 }
2307 
getAShr(Constant * C1,Constant * C2,bool isExact)2308 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2309   return get(Instruction::AShr, C1, C2,
2310              isExact ? PossiblyExactOperator::IsExact : 0);
2311 }
2312 
2313 /// getBinOpIdentity - Return the identity for the given binary operation,
2314 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2315 /// returns null if the operator doesn't have an identity.
getBinOpIdentity(unsigned Opcode,Type * Ty)2316 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2317   switch (Opcode) {
2318   default:
2319     // Doesn't have an identity.
2320     return nullptr;
2321 
2322   case Instruction::Add:
2323   case Instruction::Or:
2324   case Instruction::Xor:
2325     return Constant::getNullValue(Ty);
2326 
2327   case Instruction::Mul:
2328     return ConstantInt::get(Ty, 1);
2329 
2330   case Instruction::And:
2331     return Constant::getAllOnesValue(Ty);
2332   }
2333 }
2334 
2335 /// getBinOpAbsorber - Return the absorbing element for the given binary
2336 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2337 /// every X.  For example, this returns zero for integer multiplication.
2338 /// It returns null if the operator doesn't have an absorbing element.
getBinOpAbsorber(unsigned Opcode,Type * Ty)2339 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2340   switch (Opcode) {
2341   default:
2342     // Doesn't have an absorber.
2343     return nullptr;
2344 
2345   case Instruction::Or:
2346     return Constant::getAllOnesValue(Ty);
2347 
2348   case Instruction::And:
2349   case Instruction::Mul:
2350     return Constant::getNullValue(Ty);
2351   }
2352 }
2353 
2354 // destroyConstant - Remove the constant from the constant table...
2355 //
destroyConstant()2356 void ConstantExpr::destroyConstant() {
2357   getType()->getContext().pImpl->ExprConstants.remove(this);
2358   destroyConstantImpl();
2359 }
2360 
getOpcodeName() const2361 const char *ConstantExpr::getOpcodeName() const {
2362   return Instruction::getOpcodeName(getOpcode());
2363 }
2364 
2365 
2366 
2367 GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2368 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2369                           Type *DestTy)
2370   : ConstantExpr(DestTy, Instruction::GetElementPtr,
2371                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2372                  - (IdxList.size()+1), IdxList.size()+1) {
2373   OperandList[0] = C;
2374   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2375     OperandList[i+1] = IdxList[i];
2376 }
2377 
2378 //===----------------------------------------------------------------------===//
2379 //                       ConstantData* implementations
2380 
anchor()2381 void ConstantDataArray::anchor() {}
anchor()2382 void ConstantDataVector::anchor() {}
2383 
2384 /// getElementType - Return the element type of the array/vector.
getElementType() const2385 Type *ConstantDataSequential::getElementType() const {
2386   return getType()->getElementType();
2387 }
2388 
getRawDataValues() const2389 StringRef ConstantDataSequential::getRawDataValues() const {
2390   return StringRef(DataElements, getNumElements()*getElementByteSize());
2391 }
2392 
2393 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2394 /// formed with a vector or array of the specified element type.
2395 /// ConstantDataArray only works with normal float and int types that are
2396 /// stored densely in memory, not with things like i42 or x86_f80.
isElementTypeCompatible(const Type * Ty)2397 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2398   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2399   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2400     switch (IT->getBitWidth()) {
2401     case 8:
2402     case 16:
2403     case 32:
2404     case 64:
2405       return true;
2406     default: break;
2407     }
2408   }
2409   return false;
2410 }
2411 
2412 /// getNumElements - Return the number of elements in the array or vector.
getNumElements() const2413 unsigned ConstantDataSequential::getNumElements() const {
2414   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2415     return AT->getNumElements();
2416   return getType()->getVectorNumElements();
2417 }
2418 
2419 
2420 /// getElementByteSize - Return the size in bytes of the elements in the data.
getElementByteSize() const2421 uint64_t ConstantDataSequential::getElementByteSize() const {
2422   return getElementType()->getPrimitiveSizeInBits()/8;
2423 }
2424 
2425 /// getElementPointer - Return the start of the specified element.
getElementPointer(unsigned Elt) const2426 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2427   assert(Elt < getNumElements() && "Invalid Elt");
2428   return DataElements+Elt*getElementByteSize();
2429 }
2430 
2431 
2432 /// isAllZeros - return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2433 static bool isAllZeros(StringRef Arr) {
2434   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2435     if (*I != 0)
2436       return false;
2437   return true;
2438 }
2439 
2440 /// getImpl - This is the underlying implementation of all of the
2441 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2442 /// the correct element type.  We take the bytes in as a StringRef because
2443 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2444 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2445   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2446   // If the elements are all zero or there are no elements, return a CAZ, which
2447   // is more dense and canonical.
2448   if (isAllZeros(Elements))
2449     return ConstantAggregateZero::get(Ty);
2450 
2451   // Do a lookup to see if we have already formed one of these.
2452   auto &Slot =
2453       *Ty->getContext()
2454            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2455            .first;
2456 
2457   // The bucket can point to a linked list of different CDS's that have the same
2458   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2459   // of i8, or a 1-element array of i32.  They'll both end up in the same
2460   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2461   ConstantDataSequential **Entry = &Slot.second;
2462   for (ConstantDataSequential *Node = *Entry; Node;
2463        Entry = &Node->Next, Node = *Entry)
2464     if (Node->getType() == Ty)
2465       return Node;
2466 
2467   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2468   // and return it.
2469   if (isa<ArrayType>(Ty))
2470     return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2471 
2472   assert(isa<VectorType>(Ty));
2473   return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2474 }
2475 
destroyConstant()2476 void ConstantDataSequential::destroyConstant() {
2477   // Remove the constant from the StringMap.
2478   StringMap<ConstantDataSequential*> &CDSConstants =
2479     getType()->getContext().pImpl->CDSConstants;
2480 
2481   StringMap<ConstantDataSequential*>::iterator Slot =
2482     CDSConstants.find(getRawDataValues());
2483 
2484   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2485 
2486   ConstantDataSequential **Entry = &Slot->getValue();
2487 
2488   // Remove the entry from the hash table.
2489   if (!(*Entry)->Next) {
2490     // If there is only one value in the bucket (common case) it must be this
2491     // entry, and removing the entry should remove the bucket completely.
2492     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2493     getContext().pImpl->CDSConstants.erase(Slot);
2494   } else {
2495     // Otherwise, there are multiple entries linked off the bucket, unlink the
2496     // node we care about but keep the bucket around.
2497     for (ConstantDataSequential *Node = *Entry; ;
2498          Entry = &Node->Next, Node = *Entry) {
2499       assert(Node && "Didn't find entry in its uniquing hash table!");
2500       // If we found our entry, unlink it from the list and we're done.
2501       if (Node == this) {
2502         *Entry = Node->Next;
2503         break;
2504       }
2505     }
2506   }
2507 
2508   // If we were part of a list, make sure that we don't delete the list that is
2509   // still owned by the uniquing map.
2510   Next = nullptr;
2511 
2512   // Finally, actually delete it.
2513   destroyConstantImpl();
2514 }
2515 
2516 /// get() constructors - Return a constant with array type with an element
2517 /// count and element type matching the ArrayRef passed in.  Note that this
2518 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2519 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2520   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2521   const char *Data = reinterpret_cast<const char *>(Elts.data());
2522   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2523 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2524 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2525   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2526   const char *Data = reinterpret_cast<const char *>(Elts.data());
2527   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2528 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2529 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2530   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2531   const char *Data = reinterpret_cast<const char *>(Elts.data());
2532   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2533 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2534 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2535   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2536   const char *Data = reinterpret_cast<const char *>(Elts.data());
2537   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2538 }
get(LLVMContext & Context,ArrayRef<float> Elts)2539 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2540   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2541   const char *Data = reinterpret_cast<const char *>(Elts.data());
2542   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2543 }
get(LLVMContext & Context,ArrayRef<double> Elts)2544 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2545   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2546   const char *Data = reinterpret_cast<const char *>(Elts.data());
2547   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2548 }
2549 
2550 /// getString - This method constructs a CDS and initializes it with a text
2551 /// string. The default behavior (AddNull==true) causes a null terminator to
2552 /// be placed at the end of the array (increasing the length of the string by
2553 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2554 /// to disable this behavior.
getString(LLVMContext & Context,StringRef Str,bool AddNull)2555 Constant *ConstantDataArray::getString(LLVMContext &Context,
2556                                        StringRef Str, bool AddNull) {
2557   if (!AddNull) {
2558     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2559     return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2560                Str.size()));
2561   }
2562 
2563   SmallVector<uint8_t, 64> ElementVals;
2564   ElementVals.append(Str.begin(), Str.end());
2565   ElementVals.push_back(0);
2566   return get(Context, ElementVals);
2567 }
2568 
2569 /// get() constructors - Return a constant with vector type with an element
2570 /// count and element type matching the ArrayRef passed in.  Note that this
2571 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2572 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2573   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2574   const char *Data = reinterpret_cast<const char *>(Elts.data());
2575   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2576 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2577 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2578   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2579   const char *Data = reinterpret_cast<const char *>(Elts.data());
2580   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2581 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2582 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2583   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2584   const char *Data = reinterpret_cast<const char *>(Elts.data());
2585   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2586 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2587 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2588   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2589   const char *Data = reinterpret_cast<const char *>(Elts.data());
2590   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2591 }
get(LLVMContext & Context,ArrayRef<float> Elts)2592 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2593   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2594   const char *Data = reinterpret_cast<const char *>(Elts.data());
2595   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2596 }
get(LLVMContext & Context,ArrayRef<double> Elts)2597 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2598   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2599   const char *Data = reinterpret_cast<const char *>(Elts.data());
2600   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2601 }
2602 
getSplat(unsigned NumElts,Constant * V)2603 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2604   assert(isElementTypeCompatible(V->getType()) &&
2605          "Element type not compatible with ConstantData");
2606   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2607     if (CI->getType()->isIntegerTy(8)) {
2608       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2609       return get(V->getContext(), Elts);
2610     }
2611     if (CI->getType()->isIntegerTy(16)) {
2612       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2613       return get(V->getContext(), Elts);
2614     }
2615     if (CI->getType()->isIntegerTy(32)) {
2616       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2617       return get(V->getContext(), Elts);
2618     }
2619     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2620     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2621     return get(V->getContext(), Elts);
2622   }
2623 
2624   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2625     if (CFP->getType()->isFloatTy()) {
2626       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2627       return get(V->getContext(), Elts);
2628     }
2629     if (CFP->getType()->isDoubleTy()) {
2630       SmallVector<double, 16> Elts(NumElts,
2631                                    CFP->getValueAPF().convertToDouble());
2632       return get(V->getContext(), Elts);
2633     }
2634   }
2635   return ConstantVector::getSplat(NumElts, V);
2636 }
2637 
2638 
2639 /// getElementAsInteger - If this is a sequential container of integers (of
2640 /// any size), return the specified element in the low bits of a uint64_t.
getElementAsInteger(unsigned Elt) const2641 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2642   assert(isa<IntegerType>(getElementType()) &&
2643          "Accessor can only be used when element is an integer");
2644   const char *EltPtr = getElementPointer(Elt);
2645 
2646   // The data is stored in host byte order, make sure to cast back to the right
2647   // type to load with the right endianness.
2648   switch (getElementType()->getIntegerBitWidth()) {
2649   default: llvm_unreachable("Invalid bitwidth for CDS");
2650   case 8:
2651     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2652   case 16:
2653     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2654   case 32:
2655     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2656   case 64:
2657     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2658   }
2659 }
2660 
2661 /// getElementAsAPFloat - If this is a sequential container of floating point
2662 /// type, return the specified element as an APFloat.
getElementAsAPFloat(unsigned Elt) const2663 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2664   const char *EltPtr = getElementPointer(Elt);
2665 
2666   switch (getElementType()->getTypeID()) {
2667   default:
2668     llvm_unreachable("Accessor can only be used when element is float/double!");
2669   case Type::FloatTyID: {
2670       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2671       return APFloat(*const_cast<float *>(FloatPrt));
2672     }
2673   case Type::DoubleTyID: {
2674       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2675       return APFloat(*const_cast<double *>(DoublePtr));
2676     }
2677   }
2678 }
2679 
2680 /// getElementAsFloat - If this is an sequential container of floats, return
2681 /// the specified element as a float.
getElementAsFloat(unsigned Elt) const2682 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2683   assert(getElementType()->isFloatTy() &&
2684          "Accessor can only be used when element is a 'float'");
2685   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2686   return *const_cast<float *>(EltPtr);
2687 }
2688 
2689 /// getElementAsDouble - If this is an sequential container of doubles, return
2690 /// the specified element as a float.
getElementAsDouble(unsigned Elt) const2691 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2692   assert(getElementType()->isDoubleTy() &&
2693          "Accessor can only be used when element is a 'float'");
2694   const double *EltPtr =
2695       reinterpret_cast<const double *>(getElementPointer(Elt));
2696   return *const_cast<double *>(EltPtr);
2697 }
2698 
2699 /// getElementAsConstant - Return a Constant for a specified index's element.
2700 /// Note that this has to compute a new constant to return, so it isn't as
2701 /// efficient as getElementAsInteger/Float/Double.
getElementAsConstant(unsigned Elt) const2702 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2703   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2704     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2705 
2706   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2707 }
2708 
2709 /// isString - This method returns true if this is an array of i8.
isString() const2710 bool ConstantDataSequential::isString() const {
2711   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2712 }
2713 
2714 /// isCString - This method returns true if the array "isString", ends with a
2715 /// nul byte, and does not contains any other nul bytes.
isCString() const2716 bool ConstantDataSequential::isCString() const {
2717   if (!isString())
2718     return false;
2719 
2720   StringRef Str = getAsString();
2721 
2722   // The last value must be nul.
2723   if (Str.back() != 0) return false;
2724 
2725   // Other elements must be non-nul.
2726   return Str.drop_back().find(0) == StringRef::npos;
2727 }
2728 
2729 /// getSplatValue - If this is a splat constant, meaning that all of the
2730 /// elements have the same value, return that value. Otherwise return nullptr.
getSplatValue() const2731 Constant *ConstantDataVector::getSplatValue() const {
2732   const char *Base = getRawDataValues().data();
2733 
2734   // Compare elements 1+ to the 0'th element.
2735   unsigned EltSize = getElementByteSize();
2736   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2737     if (memcmp(Base, Base+i*EltSize, EltSize))
2738       return nullptr;
2739 
2740   // If they're all the same, return the 0th one as a representative.
2741   return getElementAsConstant(0);
2742 }
2743 
2744 //===----------------------------------------------------------------------===//
2745 //                replaceUsesOfWithOnConstant implementations
2746 
2747 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2748 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2749 /// etc.
2750 ///
2751 /// Note that we intentionally replace all uses of From with To here.  Consider
2752 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2753 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2754 /// single invocation handles all 1000 uses.  Handling them one at a time would
2755 /// work, but would be really slow because it would have to unique each updated
2756 /// array instance.
2757 ///
replaceUsesOfWithOnConstantImpl(Constant * Replacement)2758 void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
2759   // I do need to replace this with an existing value.
2760   assert(Replacement != this && "I didn't contain From!");
2761 
2762   // Everyone using this now uses the replacement.
2763   replaceAllUsesWith(Replacement);
2764 
2765   // Delete the old constant!
2766   destroyConstant();
2767 }
2768 
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2769 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2770                                                 Use *U) {
2771   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2772   Constant *ToC = cast<Constant>(To);
2773 
2774   SmallVector<Constant*, 8> Values;
2775   Values.reserve(getNumOperands());  // Build replacement array.
2776 
2777   // Fill values with the modified operands of the constant array.  Also,
2778   // compute whether this turns into an all-zeros array.
2779   unsigned NumUpdated = 0;
2780 
2781   // Keep track of whether all the values in the array are "ToC".
2782   bool AllSame = true;
2783   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2784     Constant *Val = cast<Constant>(O->get());
2785     if (Val == From) {
2786       Val = ToC;
2787       ++NumUpdated;
2788     }
2789     Values.push_back(Val);
2790     AllSame &= Val == ToC;
2791   }
2792 
2793   if (AllSame && ToC->isNullValue()) {
2794     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2795     return;
2796   }
2797   if (AllSame && isa<UndefValue>(ToC)) {
2798     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2799     return;
2800   }
2801 
2802   // Check for any other type of constant-folding.
2803   if (Constant *C = getImpl(getType(), Values)) {
2804     replaceUsesOfWithOnConstantImpl(C);
2805     return;
2806   }
2807 
2808   // Update to the new value.
2809   if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2810           Values, this, From, ToC, NumUpdated, U - OperandList))
2811     replaceUsesOfWithOnConstantImpl(C);
2812 }
2813 
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2814 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2815                                                  Use *U) {
2816   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2817   Constant *ToC = cast<Constant>(To);
2818 
2819   unsigned OperandToUpdate = U-OperandList;
2820   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2821 
2822   SmallVector<Constant*, 8> Values;
2823   Values.reserve(getNumOperands());  // Build replacement struct.
2824 
2825   // Fill values with the modified operands of the constant struct.  Also,
2826   // compute whether this turns into an all-zeros struct.
2827   bool isAllZeros = false;
2828   bool isAllUndef = false;
2829   if (ToC->isNullValue()) {
2830     isAllZeros = true;
2831     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2832       Constant *Val = cast<Constant>(O->get());
2833       Values.push_back(Val);
2834       if (isAllZeros) isAllZeros = Val->isNullValue();
2835     }
2836   } else if (isa<UndefValue>(ToC)) {
2837     isAllUndef = true;
2838     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2839       Constant *Val = cast<Constant>(O->get());
2840       Values.push_back(Val);
2841       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2842     }
2843   } else {
2844     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2845       Values.push_back(cast<Constant>(O->get()));
2846   }
2847   Values[OperandToUpdate] = ToC;
2848 
2849   if (isAllZeros) {
2850     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2851     return;
2852   }
2853   if (isAllUndef) {
2854     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2855     return;
2856   }
2857 
2858   // Update to the new value.
2859   if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
2860           Values, this, From, ToC))
2861     replaceUsesOfWithOnConstantImpl(C);
2862 }
2863 
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2864 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2865                                                  Use *U) {
2866   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2867   Constant *ToC = cast<Constant>(To);
2868 
2869   SmallVector<Constant*, 8> Values;
2870   Values.reserve(getNumOperands());  // Build replacement array...
2871   unsigned NumUpdated = 0;
2872   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2873     Constant *Val = getOperand(i);
2874     if (Val == From) {
2875       ++NumUpdated;
2876       Val = ToC;
2877     }
2878     Values.push_back(Val);
2879   }
2880 
2881   if (Constant *C = getImpl(Values)) {
2882     replaceUsesOfWithOnConstantImpl(C);
2883     return;
2884   }
2885 
2886   // Update to the new value.
2887   if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2888           Values, this, From, ToC, NumUpdated, U - OperandList))
2889     replaceUsesOfWithOnConstantImpl(C);
2890 }
2891 
replaceUsesOfWithOnConstant(Value * From,Value * ToV,Use * U)2892 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2893                                                Use *U) {
2894   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2895   Constant *To = cast<Constant>(ToV);
2896 
2897   SmallVector<Constant*, 8> NewOps;
2898   unsigned NumUpdated = 0;
2899   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2900     Constant *Op = getOperand(i);
2901     if (Op == From) {
2902       ++NumUpdated;
2903       Op = To;
2904     }
2905     NewOps.push_back(Op);
2906   }
2907   assert(NumUpdated && "I didn't contain From!");
2908 
2909   if (Constant *C = getWithOperands(NewOps, getType(), true)) {
2910     replaceUsesOfWithOnConstantImpl(C);
2911     return;
2912   }
2913 
2914   // Update to the new value.
2915   if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2916           NewOps, this, From, To, NumUpdated, U - OperandList))
2917     replaceUsesOfWithOnConstantImpl(C);
2918 }
2919 
getAsInstruction()2920 Instruction *ConstantExpr::getAsInstruction() {
2921   SmallVector<Value*,4> ValueOperands;
2922   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2923     ValueOperands.push_back(cast<Value>(I));
2924 
2925   ArrayRef<Value*> Ops(ValueOperands);
2926 
2927   switch (getOpcode()) {
2928   case Instruction::Trunc:
2929   case Instruction::ZExt:
2930   case Instruction::SExt:
2931   case Instruction::FPTrunc:
2932   case Instruction::FPExt:
2933   case Instruction::UIToFP:
2934   case Instruction::SIToFP:
2935   case Instruction::FPToUI:
2936   case Instruction::FPToSI:
2937   case Instruction::PtrToInt:
2938   case Instruction::IntToPtr:
2939   case Instruction::BitCast:
2940   case Instruction::AddrSpaceCast:
2941     return CastInst::Create((Instruction::CastOps)getOpcode(),
2942                             Ops[0], getType());
2943   case Instruction::Select:
2944     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2945   case Instruction::InsertElement:
2946     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2947   case Instruction::ExtractElement:
2948     return ExtractElementInst::Create(Ops[0], Ops[1]);
2949   case Instruction::InsertValue:
2950     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2951   case Instruction::ExtractValue:
2952     return ExtractValueInst::Create(Ops[0], getIndices());
2953   case Instruction::ShuffleVector:
2954     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2955 
2956   case Instruction::GetElementPtr:
2957     if (cast<GEPOperator>(this)->isInBounds())
2958       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2959     else
2960       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2961 
2962   case Instruction::ICmp:
2963   case Instruction::FCmp:
2964     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2965                            getPredicate(), Ops[0], Ops[1]);
2966 
2967   default:
2968     assert(getNumOperands() == 2 && "Must be binary operator?");
2969     BinaryOperator *BO =
2970       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2971                              Ops[0], Ops[1]);
2972     if (isa<OverflowingBinaryOperator>(BO)) {
2973       BO->setHasNoUnsignedWrap(SubclassOptionalData &
2974                                OverflowingBinaryOperator::NoUnsignedWrap);
2975       BO->setHasNoSignedWrap(SubclassOptionalData &
2976                              OverflowingBinaryOperator::NoSignedWrap);
2977     }
2978     if (isa<PossiblyExactOperator>(BO))
2979       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2980     return BO;
2981   }
2982 }
2983