1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
Argument(Type * Ty,const Twine & Name,Function * Par,unsigned ArgNo)83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
setParent(Function * parent)88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
hasNonNullAttr(bool AllowUndefOrPoison) const92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
hasByValAttr() const105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
hasByRefAttr() const110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
hasSwiftSelfAttr() const116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
hasSwiftErrorAttr() const120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
hasInAllocaAttr() const124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
hasPreallocatedAttr() const129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
hasPassPointeeByValueCopyAttr() const135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
hasPointeeInMemoryValueAttr() const143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
getMemoryParamAllocType(AttributeSet ParamAttrs,Type * ArgTy)156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
166     return InAllocaTy;
167 
168   // FIXME: sret and inalloca always depends on pointee element type. It's also
169   // possible for byval to miss it.
170   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
171       ParamAttrs.hasAttribute(Attribute::ByVal) ||
172       ParamAttrs.hasAttribute(Attribute::StructRet) ||
173       ParamAttrs.hasAttribute(Attribute::Preallocated))
174     return cast<PointerType>(ArgTy)->getElementType();
175 
176   return nullptr;
177 }
178 
getPassPointeeByValueCopySize(const DataLayout & DL) const179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
180   AttributeSet ParamAttrs =
181       getParent()->getAttributes().getParamAttributes(getArgNo());
182   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
183     return DL.getTypeAllocSize(MemTy);
184   return 0;
185 }
186 
getPointeeInMemoryValueType() const187 Type *Argument::getPointeeInMemoryValueType() const {
188   AttributeSet ParamAttrs =
189       getParent()->getAttributes().getParamAttributes(getArgNo());
190   return getMemoryParamAllocType(ParamAttrs, getType());
191 }
192 
getParamAlignment() const193 unsigned Argument::getParamAlignment() const {
194   assert(getType()->isPointerTy() && "Only pointers have alignments");
195   return getParent()->getParamAlignment(getArgNo());
196 }
197 
getParamAlign() const198 MaybeAlign Argument::getParamAlign() const {
199   assert(getType()->isPointerTy() && "Only pointers have alignments");
200   return getParent()->getParamAlign(getArgNo());
201 }
202 
getParamStackAlign() const203 MaybeAlign Argument::getParamStackAlign() const {
204   return getParent()->getParamStackAlign(getArgNo());
205 }
206 
getParamByValType() const207 Type *Argument::getParamByValType() const {
208   assert(getType()->isPointerTy() && "Only pointers have byval types");
209   return getParent()->getParamByValType(getArgNo());
210 }
211 
getParamStructRetType() const212 Type *Argument::getParamStructRetType() const {
213   assert(getType()->isPointerTy() && "Only pointers have sret types");
214   return getParent()->getParamStructRetType(getArgNo());
215 }
216 
getParamByRefType() const217 Type *Argument::getParamByRefType() const {
218   assert(getType()->isPointerTy() && "Only pointers have byref types");
219   return getParent()->getParamByRefType(getArgNo());
220 }
221 
getParamInAllocaType() const222 Type *Argument::getParamInAllocaType() const {
223   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
224   return getParent()->getParamInAllocaType(getArgNo());
225 }
226 
getDereferenceableBytes() const227 uint64_t Argument::getDereferenceableBytes() const {
228   assert(getType()->isPointerTy() &&
229          "Only pointers have dereferenceable bytes");
230   return getParent()->getParamDereferenceableBytes(getArgNo());
231 }
232 
getDereferenceableOrNullBytes() const233 uint64_t Argument::getDereferenceableOrNullBytes() const {
234   assert(getType()->isPointerTy() &&
235          "Only pointers have dereferenceable bytes");
236   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
237 }
238 
hasNestAttr() const239 bool Argument::hasNestAttr() const {
240   if (!getType()->isPointerTy()) return false;
241   return hasAttribute(Attribute::Nest);
242 }
243 
hasNoAliasAttr() const244 bool Argument::hasNoAliasAttr() const {
245   if (!getType()->isPointerTy()) return false;
246   return hasAttribute(Attribute::NoAlias);
247 }
248 
hasNoCaptureAttr() const249 bool Argument::hasNoCaptureAttr() const {
250   if (!getType()->isPointerTy()) return false;
251   return hasAttribute(Attribute::NoCapture);
252 }
253 
hasNoFreeAttr() const254 bool Argument::hasNoFreeAttr() const {
255   if (!getType()->isPointerTy()) return false;
256   return hasAttribute(Attribute::NoFree);
257 }
258 
hasStructRetAttr() const259 bool Argument::hasStructRetAttr() const {
260   if (!getType()->isPointerTy()) return false;
261   return hasAttribute(Attribute::StructRet);
262 }
263 
hasInRegAttr() const264 bool Argument::hasInRegAttr() const {
265   return hasAttribute(Attribute::InReg);
266 }
267 
hasReturnedAttr() const268 bool Argument::hasReturnedAttr() const {
269   return hasAttribute(Attribute::Returned);
270 }
271 
hasZExtAttr() const272 bool Argument::hasZExtAttr() const {
273   return hasAttribute(Attribute::ZExt);
274 }
275 
hasSExtAttr() const276 bool Argument::hasSExtAttr() const {
277   return hasAttribute(Attribute::SExt);
278 }
279 
onlyReadsMemory() const280 bool Argument::onlyReadsMemory() const {
281   AttributeList Attrs = getParent()->getAttributes();
282   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
283          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
284 }
285 
addAttrs(AttrBuilder & B)286 void Argument::addAttrs(AttrBuilder &B) {
287   AttributeList AL = getParent()->getAttributes();
288   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
289   getParent()->setAttributes(AL);
290 }
291 
addAttr(Attribute::AttrKind Kind)292 void Argument::addAttr(Attribute::AttrKind Kind) {
293   getParent()->addParamAttr(getArgNo(), Kind);
294 }
295 
addAttr(Attribute Attr)296 void Argument::addAttr(Attribute Attr) {
297   getParent()->addParamAttr(getArgNo(), Attr);
298 }
299 
removeAttr(Attribute::AttrKind Kind)300 void Argument::removeAttr(Attribute::AttrKind Kind) {
301   getParent()->removeParamAttr(getArgNo(), Kind);
302 }
303 
removeAttrs(const AttrBuilder & B)304 void Argument::removeAttrs(const AttrBuilder &B) {
305   AttributeList AL = getParent()->getAttributes();
306   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
307   getParent()->setAttributes(AL);
308 }
309 
hasAttribute(Attribute::AttrKind Kind) const310 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
311   return getParent()->hasParamAttribute(getArgNo(), Kind);
312 }
313 
getAttribute(Attribute::AttrKind Kind) const314 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
315   return getParent()->getParamAttribute(getArgNo(), Kind);
316 }
317 
318 //===----------------------------------------------------------------------===//
319 // Helper Methods in Function
320 //===----------------------------------------------------------------------===//
321 
getContext() const322 LLVMContext &Function::getContext() const {
323   return getType()->getContext();
324 }
325 
getInstructionCount() const326 unsigned Function::getInstructionCount() const {
327   unsigned NumInstrs = 0;
328   for (const BasicBlock &BB : BasicBlocks)
329     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
330                                BB.instructionsWithoutDebug().end());
331   return NumInstrs;
332 }
333 
Create(FunctionType * Ty,LinkageTypes Linkage,const Twine & N,Module & M)334 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
335                            const Twine &N, Module &M) {
336   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
337 }
338 
createWithDefaultAttr(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & N,Module * M)339 Function *Function::createWithDefaultAttr(FunctionType *Ty,
340                                           LinkageTypes Linkage,
341                                           unsigned AddrSpace, const Twine &N,
342                                           Module *M) {
343   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
344   AttrBuilder B;
345   if (M->getUwtable())
346     B.addAttribute(Attribute::UWTable);
347   switch (M->getFramePointer()) {
348   case FramePointerKind::None:
349     // 0 ("none") is the default.
350     break;
351   case FramePointerKind::NonLeaf:
352     B.addAttribute("frame-pointer", "non-leaf");
353     break;
354   case FramePointerKind::All:
355     B.addAttribute("frame-pointer", "all");
356     break;
357   }
358   F->addAttributes(AttributeList::FunctionIndex, B);
359   return F;
360 }
361 
removeFromParent()362 void Function::removeFromParent() {
363   getParent()->getFunctionList().remove(getIterator());
364 }
365 
eraseFromParent()366 void Function::eraseFromParent() {
367   getParent()->getFunctionList().erase(getIterator());
368 }
369 
370 //===----------------------------------------------------------------------===//
371 // Function Implementation
372 //===----------------------------------------------------------------------===//
373 
computeAddrSpace(unsigned AddrSpace,Module * M)374 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
375   // If AS == -1 and we are passed a valid module pointer we place the function
376   // in the program address space. Otherwise we default to AS0.
377   if (AddrSpace == static_cast<unsigned>(-1))
378     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
379   return AddrSpace;
380 }
381 
Function(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & name,Module * ParentModule)382 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
383                    const Twine &name, Module *ParentModule)
384     : GlobalObject(Ty, Value::FunctionVal,
385                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
386                    computeAddrSpace(AddrSpace, ParentModule)),
387       NumArgs(Ty->getNumParams()) {
388   assert(FunctionType::isValidReturnType(getReturnType()) &&
389          "invalid return type");
390   setGlobalObjectSubClassData(0);
391 
392   // We only need a symbol table for a function if the context keeps value names
393   if (!getContext().shouldDiscardValueNames())
394     SymTab = std::make_unique<ValueSymbolTable>();
395 
396   // If the function has arguments, mark them as lazily built.
397   if (Ty->getNumParams())
398     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
399 
400   if (ParentModule)
401     ParentModule->getFunctionList().push_back(this);
402 
403   HasLLVMReservedName = getName().startswith("llvm.");
404   // Ensure intrinsics have the right parameter attributes.
405   // Note, the IntID field will have been set in Value::setName if this function
406   // name is a valid intrinsic ID.
407   if (IntID)
408     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
409 }
410 
~Function()411 Function::~Function() {
412   dropAllReferences();    // After this it is safe to delete instructions.
413 
414   // Delete all of the method arguments and unlink from symbol table...
415   if (Arguments)
416     clearArguments();
417 
418   // Remove the function from the on-the-side GC table.
419   clearGC();
420 }
421 
BuildLazyArguments() const422 void Function::BuildLazyArguments() const {
423   // Create the arguments vector, all arguments start out unnamed.
424   auto *FT = getFunctionType();
425   if (NumArgs > 0) {
426     Arguments = std::allocator<Argument>().allocate(NumArgs);
427     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
428       Type *ArgTy = FT->getParamType(i);
429       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
430       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
431     }
432   }
433 
434   // Clear the lazy arguments bit.
435   unsigned SDC = getSubclassDataFromValue();
436   SDC &= ~(1 << 0);
437   const_cast<Function*>(this)->setValueSubclassData(SDC);
438   assert(!hasLazyArguments());
439 }
440 
makeArgArray(Argument * Args,size_t Count)441 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
442   return MutableArrayRef<Argument>(Args, Count);
443 }
444 
isConstrainedFPIntrinsic() const445 bool Function::isConstrainedFPIntrinsic() const {
446   switch (getIntrinsicID()) {
447 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
448   case Intrinsic::INTRINSIC:
449 #include "llvm/IR/ConstrainedOps.def"
450     return true;
451 #undef INSTRUCTION
452   default:
453     return false;
454   }
455 }
456 
clearArguments()457 void Function::clearArguments() {
458   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
459     A.setName("");
460     A.~Argument();
461   }
462   std::allocator<Argument>().deallocate(Arguments, NumArgs);
463   Arguments = nullptr;
464 }
465 
stealArgumentListFrom(Function & Src)466 void Function::stealArgumentListFrom(Function &Src) {
467   assert(isDeclaration() && "Expected no references to current arguments");
468 
469   // Drop the current arguments, if any, and set the lazy argument bit.
470   if (!hasLazyArguments()) {
471     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
472                         [](const Argument &A) { return A.use_empty(); }) &&
473            "Expected arguments to be unused in declaration");
474     clearArguments();
475     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
476   }
477 
478   // Nothing to steal if Src has lazy arguments.
479   if (Src.hasLazyArguments())
480     return;
481 
482   // Steal arguments from Src, and fix the lazy argument bits.
483   assert(arg_size() == Src.arg_size());
484   Arguments = Src.Arguments;
485   Src.Arguments = nullptr;
486   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
487     // FIXME: This does the work of transferNodesFromList inefficiently.
488     SmallString<128> Name;
489     if (A.hasName())
490       Name = A.getName();
491     if (!Name.empty())
492       A.setName("");
493     A.setParent(this);
494     if (!Name.empty())
495       A.setName(Name);
496   }
497 
498   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
499   assert(!hasLazyArguments());
500   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
501 }
502 
503 // dropAllReferences() - This function causes all the subinstructions to "let
504 // go" of all references that they are maintaining.  This allows one to
505 // 'delete' a whole class at a time, even though there may be circular
506 // references... first all references are dropped, and all use counts go to
507 // zero.  Then everything is deleted for real.  Note that no operations are
508 // valid on an object that has "dropped all references", except operator
509 // delete.
510 //
dropAllReferences()511 void Function::dropAllReferences() {
512   setIsMaterializable(false);
513 
514   for (BasicBlock &BB : *this)
515     BB.dropAllReferences();
516 
517   // Delete all basic blocks. They are now unused, except possibly by
518   // blockaddresses, but BasicBlock's destructor takes care of those.
519   while (!BasicBlocks.empty())
520     BasicBlocks.begin()->eraseFromParent();
521 
522   // Drop uses of any optional data (real or placeholder).
523   if (getNumOperands()) {
524     User::dropAllReferences();
525     setNumHungOffUseOperands(0);
526     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
527   }
528 
529   // Metadata is stored in a side-table.
530   clearMetadata();
531 }
532 
addAttribute(unsigned i,Attribute::AttrKind Kind)533 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
534   AttributeList PAL = getAttributes();
535   PAL = PAL.addAttribute(getContext(), i, Kind);
536   setAttributes(PAL);
537 }
538 
addAttribute(unsigned i,Attribute Attr)539 void Function::addAttribute(unsigned i, Attribute Attr) {
540   AttributeList PAL = getAttributes();
541   PAL = PAL.addAttribute(getContext(), i, Attr);
542   setAttributes(PAL);
543 }
544 
addAttributes(unsigned i,const AttrBuilder & Attrs)545 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
546   AttributeList PAL = getAttributes();
547   PAL = PAL.addAttributes(getContext(), i, Attrs);
548   setAttributes(PAL);
549 }
550 
addParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)551 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
552   AttributeList PAL = getAttributes();
553   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
554   setAttributes(PAL);
555 }
556 
addParamAttr(unsigned ArgNo,Attribute Attr)557 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
558   AttributeList PAL = getAttributes();
559   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
560   setAttributes(PAL);
561 }
562 
addParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)563 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
564   AttributeList PAL = getAttributes();
565   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
566   setAttributes(PAL);
567 }
568 
removeAttribute(unsigned i,Attribute::AttrKind Kind)569 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
570   AttributeList PAL = getAttributes();
571   PAL = PAL.removeAttribute(getContext(), i, Kind);
572   setAttributes(PAL);
573 }
574 
removeAttribute(unsigned i,StringRef Kind)575 void Function::removeAttribute(unsigned i, StringRef Kind) {
576   AttributeList PAL = getAttributes();
577   PAL = PAL.removeAttribute(getContext(), i, Kind);
578   setAttributes(PAL);
579 }
580 
removeAttributes(unsigned i,const AttrBuilder & Attrs)581 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
582   AttributeList PAL = getAttributes();
583   PAL = PAL.removeAttributes(getContext(), i, Attrs);
584   setAttributes(PAL);
585 }
586 
removeParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)587 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
588   AttributeList PAL = getAttributes();
589   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
590   setAttributes(PAL);
591 }
592 
removeParamAttr(unsigned ArgNo,StringRef Kind)593 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
594   AttributeList PAL = getAttributes();
595   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
596   setAttributes(PAL);
597 }
598 
removeParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)599 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
600   AttributeList PAL = getAttributes();
601   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
602   setAttributes(PAL);
603 }
604 
removeParamUndefImplyingAttrs(unsigned ArgNo)605 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) {
606   AttributeList PAL = getAttributes();
607   PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo);
608   setAttributes(PAL);
609 }
610 
addDereferenceableAttr(unsigned i,uint64_t Bytes)611 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
612   AttributeList PAL = getAttributes();
613   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
614   setAttributes(PAL);
615 }
616 
addDereferenceableParamAttr(unsigned ArgNo,uint64_t Bytes)617 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
618   AttributeList PAL = getAttributes();
619   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
620   setAttributes(PAL);
621 }
622 
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)623 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
624   AttributeList PAL = getAttributes();
625   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
626   setAttributes(PAL);
627 }
628 
addDereferenceableOrNullParamAttr(unsigned ArgNo,uint64_t Bytes)629 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
630                                                  uint64_t Bytes) {
631   AttributeList PAL = getAttributes();
632   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
633   setAttributes(PAL);
634 }
635 
getDenormalMode(const fltSemantics & FPType) const636 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
637   if (&FPType == &APFloat::IEEEsingle()) {
638     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
639     StringRef Val = Attr.getValueAsString();
640     if (!Val.empty())
641       return parseDenormalFPAttribute(Val);
642 
643     // If the f32 variant of the attribute isn't specified, try to use the
644     // generic one.
645   }
646 
647   Attribute Attr = getFnAttribute("denormal-fp-math");
648   return parseDenormalFPAttribute(Attr.getValueAsString());
649 }
650 
getGC() const651 const std::string &Function::getGC() const {
652   assert(hasGC() && "Function has no collector");
653   return getContext().getGC(*this);
654 }
655 
setGC(std::string Str)656 void Function::setGC(std::string Str) {
657   setValueSubclassDataBit(14, !Str.empty());
658   getContext().setGC(*this, std::move(Str));
659 }
660 
clearGC()661 void Function::clearGC() {
662   if (!hasGC())
663     return;
664   getContext().deleteGC(*this);
665   setValueSubclassDataBit(14, false);
666 }
667 
hasStackProtectorFnAttr() const668 bool Function::hasStackProtectorFnAttr() const {
669   return hasFnAttribute(Attribute::StackProtect) ||
670          hasFnAttribute(Attribute::StackProtectStrong) ||
671          hasFnAttribute(Attribute::StackProtectReq);
672 }
673 
674 /// Copy all additional attributes (those not needed to create a Function) from
675 /// the Function Src to this one.
copyAttributesFrom(const Function * Src)676 void Function::copyAttributesFrom(const Function *Src) {
677   GlobalObject::copyAttributesFrom(Src);
678   setCallingConv(Src->getCallingConv());
679   setAttributes(Src->getAttributes());
680   if (Src->hasGC())
681     setGC(Src->getGC());
682   else
683     clearGC();
684   if (Src->hasPersonalityFn())
685     setPersonalityFn(Src->getPersonalityFn());
686   if (Src->hasPrefixData())
687     setPrefixData(Src->getPrefixData());
688   if (Src->hasPrologueData())
689     setPrologueData(Src->getPrologueData());
690 }
691 
692 /// Table of string intrinsic names indexed by enum value.
693 static const char * const IntrinsicNameTable[] = {
694   "not_intrinsic",
695 #define GET_INTRINSIC_NAME_TABLE
696 #include "llvm/IR/IntrinsicImpl.inc"
697 #undef GET_INTRINSIC_NAME_TABLE
698 };
699 
700 /// Table of per-target intrinsic name tables.
701 #define GET_INTRINSIC_TARGET_DATA
702 #include "llvm/IR/IntrinsicImpl.inc"
703 #undef GET_INTRINSIC_TARGET_DATA
704 
isTargetIntrinsic(Intrinsic::ID IID)705 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
706   return IID > TargetInfos[0].Count;
707 }
708 
isTargetIntrinsic() const709 bool Function::isTargetIntrinsic() const {
710   return isTargetIntrinsic(IntID);
711 }
712 
713 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
714 /// target as \c Name, or the generic table if \c Name is not target specific.
715 ///
716 /// Returns the relevant slice of \c IntrinsicNameTable
findTargetSubtable(StringRef Name)717 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
718   assert(Name.startswith("llvm."));
719 
720   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
721   // Drop "llvm." and take the first dotted component. That will be the target
722   // if this is target specific.
723   StringRef Target = Name.drop_front(5).split('.').first;
724   auto It = partition_point(
725       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
726   // We've either found the target or just fall back to the generic set, which
727   // is always first.
728   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
729   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
730 }
731 
732 /// This does the actual lookup of an intrinsic ID which
733 /// matches the given function name.
lookupIntrinsicID(StringRef Name)734 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
735   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
736   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
737   if (Idx == -1)
738     return Intrinsic::not_intrinsic;
739 
740   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
741   // an index into a sub-table.
742   int Adjust = NameTable.data() - IntrinsicNameTable;
743   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
744 
745   // If the intrinsic is not overloaded, require an exact match. If it is
746   // overloaded, require either exact or prefix match.
747   const auto MatchSize = strlen(NameTable[Idx]);
748   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
749   bool IsExactMatch = Name.size() == MatchSize;
750   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
751                                                      : Intrinsic::not_intrinsic;
752 }
753 
recalculateIntrinsicID()754 void Function::recalculateIntrinsicID() {
755   StringRef Name = getName();
756   if (!Name.startswith("llvm.")) {
757     HasLLVMReservedName = false;
758     IntID = Intrinsic::not_intrinsic;
759     return;
760   }
761   HasLLVMReservedName = true;
762   IntID = lookupIntrinsicID(Name);
763 }
764 
765 /// Returns a stable mangling for the type specified for use in the name
766 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
767 /// of named types is simply their name.  Manglings for unnamed types consist
768 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
769 /// combined with the mangling of their component types.  A vararg function
770 /// type will have a suffix of 'vararg'.  Since function types can contain
771 /// other function types, we close a function type mangling with suffix 'f'
772 /// which can't be confused with it's prefix.  This ensures we don't have
773 /// collisions between two unrelated function types. Otherwise, you might
774 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
775 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
776 /// indicating that extra care must be taken to ensure a unique name.
getMangledTypeStr(Type * Ty,bool & HasUnnamedType)777 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
778   std::string Result;
779   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
780     Result += "p" + utostr(PTyp->getAddressSpace()) +
781               getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
782   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
783     Result += "a" + utostr(ATyp->getNumElements()) +
784               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
785   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
786     if (!STyp->isLiteral()) {
787       Result += "s_";
788       if (STyp->hasName())
789         Result += STyp->getName();
790       else
791         HasUnnamedType = true;
792     } else {
793       Result += "sl_";
794       for (auto Elem : STyp->elements())
795         Result += getMangledTypeStr(Elem, HasUnnamedType);
796     }
797     // Ensure nested structs are distinguishable.
798     Result += "s";
799   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
800     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
801     for (size_t i = 0; i < FT->getNumParams(); i++)
802       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
803     if (FT->isVarArg())
804       Result += "vararg";
805     // Ensure nested function types are distinguishable.
806     Result += "f";
807   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
808     ElementCount EC = VTy->getElementCount();
809     if (EC.isScalable())
810       Result += "nx";
811     Result += "v" + utostr(EC.getKnownMinValue()) +
812               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
813   } else if (Ty) {
814     switch (Ty->getTypeID()) {
815     default: llvm_unreachable("Unhandled type");
816     case Type::VoidTyID:      Result += "isVoid";   break;
817     case Type::MetadataTyID:  Result += "Metadata"; break;
818     case Type::HalfTyID:      Result += "f16";      break;
819     case Type::BFloatTyID:    Result += "bf16";     break;
820     case Type::FloatTyID:     Result += "f32";      break;
821     case Type::DoubleTyID:    Result += "f64";      break;
822     case Type::X86_FP80TyID:  Result += "f80";      break;
823     case Type::FP128TyID:     Result += "f128";     break;
824     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
825     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
826     case Type::X86_AMXTyID:   Result += "x86amx";   break;
827     case Type::IntegerTyID:
828       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
829       break;
830     }
831   }
832   return Result;
833 }
834 
getName(ID id)835 StringRef Intrinsic::getName(ID id) {
836   assert(id < num_intrinsics && "Invalid intrinsic ID!");
837   assert(!Intrinsic::isOverloaded(id) &&
838          "This version of getName does not support overloading");
839   return IntrinsicNameTable[id];
840 }
841 
getName(ID Id,ArrayRef<Type * > Tys,Module * M,FunctionType * FT)842 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
843                                FunctionType *FT) {
844   assert(Id < num_intrinsics && "Invalid intrinsic ID!");
845   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
846          "This version of getName is for overloaded intrinsics only");
847   bool HasUnnamedType = false;
848   std::string Result(IntrinsicNameTable[Id]);
849   for (Type *Ty : Tys) {
850     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
851   }
852   assert((M || !HasUnnamedType) && "unnamed types need a module");
853   if (M && HasUnnamedType) {
854     if (!FT)
855       FT = getType(M->getContext(), Id, Tys);
856     else
857       assert((FT == getType(M->getContext(), Id, Tys)) &&
858              "Provided FunctionType must match arguments");
859     return M->getUniqueIntrinsicName(Result, Id, FT);
860   }
861   return Result;
862 }
863 
getName(ID Id,ArrayRef<Type * > Tys)864 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) {
865   return getName(Id, Tys, nullptr, nullptr);
866 }
867 
868 /// IIT_Info - These are enumerators that describe the entries returned by the
869 /// getIntrinsicInfoTableEntries function.
870 ///
871 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
872 enum IIT_Info {
873   // Common values should be encoded with 0-15.
874   IIT_Done = 0,
875   IIT_I1   = 1,
876   IIT_I8   = 2,
877   IIT_I16  = 3,
878   IIT_I32  = 4,
879   IIT_I64  = 5,
880   IIT_F16  = 6,
881   IIT_F32  = 7,
882   IIT_F64  = 8,
883   IIT_V2   = 9,
884   IIT_V4   = 10,
885   IIT_V8   = 11,
886   IIT_V16  = 12,
887   IIT_V32  = 13,
888   IIT_PTR  = 14,
889   IIT_ARG  = 15,
890 
891   // Values from 16+ are only encodable with the inefficient encoding.
892   IIT_V64  = 16,
893   IIT_MMX  = 17,
894   IIT_TOKEN = 18,
895   IIT_METADATA = 19,
896   IIT_EMPTYSTRUCT = 20,
897   IIT_STRUCT2 = 21,
898   IIT_STRUCT3 = 22,
899   IIT_STRUCT4 = 23,
900   IIT_STRUCT5 = 24,
901   IIT_EXTEND_ARG = 25,
902   IIT_TRUNC_ARG = 26,
903   IIT_ANYPTR = 27,
904   IIT_V1   = 28,
905   IIT_VARARG = 29,
906   IIT_HALF_VEC_ARG = 30,
907   IIT_SAME_VEC_WIDTH_ARG = 31,
908   IIT_PTR_TO_ARG = 32,
909   IIT_PTR_TO_ELT = 33,
910   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
911   IIT_I128 = 35,
912   IIT_V512 = 36,
913   IIT_V1024 = 37,
914   IIT_STRUCT6 = 38,
915   IIT_STRUCT7 = 39,
916   IIT_STRUCT8 = 40,
917   IIT_F128 = 41,
918   IIT_VEC_ELEMENT = 42,
919   IIT_SCALABLE_VEC = 43,
920   IIT_SUBDIVIDE2_ARG = 44,
921   IIT_SUBDIVIDE4_ARG = 45,
922   IIT_VEC_OF_BITCASTS_TO_INT = 46,
923   IIT_V128 = 47,
924   IIT_BF16 = 48,
925   IIT_STRUCT9 = 49,
926   IIT_V256 = 50,
927   IIT_AMX  = 51
928 };
929 
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,IIT_Info LastInfo,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)930 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
931                       IIT_Info LastInfo,
932                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
933   using namespace Intrinsic;
934 
935   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
936 
937   IIT_Info Info = IIT_Info(Infos[NextElt++]);
938   unsigned StructElts = 2;
939 
940   switch (Info) {
941   case IIT_Done:
942     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
943     return;
944   case IIT_VARARG:
945     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
946     return;
947   case IIT_MMX:
948     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
949     return;
950   case IIT_AMX:
951     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
952     return;
953   case IIT_TOKEN:
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
955     return;
956   case IIT_METADATA:
957     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
958     return;
959   case IIT_F16:
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
961     return;
962   case IIT_BF16:
963     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
964     return;
965   case IIT_F32:
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
967     return;
968   case IIT_F64:
969     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
970     return;
971   case IIT_F128:
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
973     return;
974   case IIT_I1:
975     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
976     return;
977   case IIT_I8:
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
979     return;
980   case IIT_I16:
981     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
982     return;
983   case IIT_I32:
984     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
985     return;
986   case IIT_I64:
987     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
988     return;
989   case IIT_I128:
990     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
991     return;
992   case IIT_V1:
993     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
994     DecodeIITType(NextElt, Infos, Info, OutputTable);
995     return;
996   case IIT_V2:
997     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
998     DecodeIITType(NextElt, Infos, Info, OutputTable);
999     return;
1000   case IIT_V4:
1001     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1002     DecodeIITType(NextElt, Infos, Info, OutputTable);
1003     return;
1004   case IIT_V8:
1005     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1006     DecodeIITType(NextElt, Infos, Info, OutputTable);
1007     return;
1008   case IIT_V16:
1009     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1010     DecodeIITType(NextElt, Infos, Info, OutputTable);
1011     return;
1012   case IIT_V32:
1013     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1014     DecodeIITType(NextElt, Infos, Info, OutputTable);
1015     return;
1016   case IIT_V64:
1017     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1018     DecodeIITType(NextElt, Infos, Info, OutputTable);
1019     return;
1020   case IIT_V128:
1021     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1022     DecodeIITType(NextElt, Infos, Info, OutputTable);
1023     return;
1024   case IIT_V256:
1025     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1026     DecodeIITType(NextElt, Infos, Info, OutputTable);
1027     return;
1028   case IIT_V512:
1029     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1030     DecodeIITType(NextElt, Infos, Info, OutputTable);
1031     return;
1032   case IIT_V1024:
1033     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1034     DecodeIITType(NextElt, Infos, Info, OutputTable);
1035     return;
1036   case IIT_PTR:
1037     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1038     DecodeIITType(NextElt, Infos, Info, OutputTable);
1039     return;
1040   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1041     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1042                                              Infos[NextElt++]));
1043     DecodeIITType(NextElt, Infos, Info, OutputTable);
1044     return;
1045   }
1046   case IIT_ARG: {
1047     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1048     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1049     return;
1050   }
1051   case IIT_EXTEND_ARG: {
1052     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1054                                              ArgInfo));
1055     return;
1056   }
1057   case IIT_TRUNC_ARG: {
1058     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1059     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1060                                              ArgInfo));
1061     return;
1062   }
1063   case IIT_HALF_VEC_ARG: {
1064     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1065     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1066                                              ArgInfo));
1067     return;
1068   }
1069   case IIT_SAME_VEC_WIDTH_ARG: {
1070     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1071     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1072                                              ArgInfo));
1073     return;
1074   }
1075   case IIT_PTR_TO_ARG: {
1076     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1077     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1078                                              ArgInfo));
1079     return;
1080   }
1081   case IIT_PTR_TO_ELT: {
1082     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1084     return;
1085   }
1086   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1087     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1088     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1089     OutputTable.push_back(
1090         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1091     return;
1092   }
1093   case IIT_EMPTYSTRUCT:
1094     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1095     return;
1096   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1097   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1098   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1099   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1100   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1101   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1102   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1103   case IIT_STRUCT2: {
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1105 
1106     for (unsigned i = 0; i != StructElts; ++i)
1107       DecodeIITType(NextElt, Infos, Info, OutputTable);
1108     return;
1109   }
1110   case IIT_SUBDIVIDE2_ARG: {
1111     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1113                                              ArgInfo));
1114     return;
1115   }
1116   case IIT_SUBDIVIDE4_ARG: {
1117     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1118     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1119                                              ArgInfo));
1120     return;
1121   }
1122   case IIT_VEC_ELEMENT: {
1123     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1124     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1125                                              ArgInfo));
1126     return;
1127   }
1128   case IIT_SCALABLE_VEC: {
1129     DecodeIITType(NextElt, Infos, Info, OutputTable);
1130     return;
1131   }
1132   case IIT_VEC_OF_BITCASTS_TO_INT: {
1133     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1135                                              ArgInfo));
1136     return;
1137   }
1138   }
1139   llvm_unreachable("unhandled");
1140 }
1141 
1142 #define GET_INTRINSIC_GENERATOR_GLOBAL
1143 #include "llvm/IR/IntrinsicImpl.inc"
1144 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1145 
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)1146 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1147                                              SmallVectorImpl<IITDescriptor> &T){
1148   // Check to see if the intrinsic's type was expressible by the table.
1149   unsigned TableVal = IIT_Table[id-1];
1150 
1151   // Decode the TableVal into an array of IITValues.
1152   SmallVector<unsigned char, 8> IITValues;
1153   ArrayRef<unsigned char> IITEntries;
1154   unsigned NextElt = 0;
1155   if ((TableVal >> 31) != 0) {
1156     // This is an offset into the IIT_LongEncodingTable.
1157     IITEntries = IIT_LongEncodingTable;
1158 
1159     // Strip sentinel bit.
1160     NextElt = (TableVal << 1) >> 1;
1161   } else {
1162     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1163     // into a single word in the table itself, decode it now.
1164     do {
1165       IITValues.push_back(TableVal & 0xF);
1166       TableVal >>= 4;
1167     } while (TableVal);
1168 
1169     IITEntries = IITValues;
1170     NextElt = 0;
1171   }
1172 
1173   // Okay, decode the table into the output vector of IITDescriptors.
1174   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1175   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1176     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1177 }
1178 
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)1179 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1180                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1181   using namespace Intrinsic;
1182 
1183   IITDescriptor D = Infos.front();
1184   Infos = Infos.slice(1);
1185 
1186   switch (D.Kind) {
1187   case IITDescriptor::Void: return Type::getVoidTy(Context);
1188   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1189   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1190   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1191   case IITDescriptor::Token: return Type::getTokenTy(Context);
1192   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1193   case IITDescriptor::Half: return Type::getHalfTy(Context);
1194   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1195   case IITDescriptor::Float: return Type::getFloatTy(Context);
1196   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1197   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1198 
1199   case IITDescriptor::Integer:
1200     return IntegerType::get(Context, D.Integer_Width);
1201   case IITDescriptor::Vector:
1202     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1203                            D.Vector_Width);
1204   case IITDescriptor::Pointer:
1205     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1206                             D.Pointer_AddressSpace);
1207   case IITDescriptor::Struct: {
1208     SmallVector<Type *, 8> Elts;
1209     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1210       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1211     return StructType::get(Context, Elts);
1212   }
1213   case IITDescriptor::Argument:
1214     return Tys[D.getArgumentNumber()];
1215   case IITDescriptor::ExtendArgument: {
1216     Type *Ty = Tys[D.getArgumentNumber()];
1217     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1218       return VectorType::getExtendedElementVectorType(VTy);
1219 
1220     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1221   }
1222   case IITDescriptor::TruncArgument: {
1223     Type *Ty = Tys[D.getArgumentNumber()];
1224     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1225       return VectorType::getTruncatedElementVectorType(VTy);
1226 
1227     IntegerType *ITy = cast<IntegerType>(Ty);
1228     assert(ITy->getBitWidth() % 2 == 0);
1229     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1230   }
1231   case IITDescriptor::Subdivide2Argument:
1232   case IITDescriptor::Subdivide4Argument: {
1233     Type *Ty = Tys[D.getArgumentNumber()];
1234     VectorType *VTy = dyn_cast<VectorType>(Ty);
1235     assert(VTy && "Expected an argument of Vector Type");
1236     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1237     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1238   }
1239   case IITDescriptor::HalfVecArgument:
1240     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1241                                                   Tys[D.getArgumentNumber()]));
1242   case IITDescriptor::SameVecWidthArgument: {
1243     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1244     Type *Ty = Tys[D.getArgumentNumber()];
1245     if (auto *VTy = dyn_cast<VectorType>(Ty))
1246       return VectorType::get(EltTy, VTy->getElementCount());
1247     return EltTy;
1248   }
1249   case IITDescriptor::PtrToArgument: {
1250     Type *Ty = Tys[D.getArgumentNumber()];
1251     return PointerType::getUnqual(Ty);
1252   }
1253   case IITDescriptor::PtrToElt: {
1254     Type *Ty = Tys[D.getArgumentNumber()];
1255     VectorType *VTy = dyn_cast<VectorType>(Ty);
1256     if (!VTy)
1257       llvm_unreachable("Expected an argument of Vector Type");
1258     Type *EltTy = VTy->getElementType();
1259     return PointerType::getUnqual(EltTy);
1260   }
1261   case IITDescriptor::VecElementArgument: {
1262     Type *Ty = Tys[D.getArgumentNumber()];
1263     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1264       return VTy->getElementType();
1265     llvm_unreachable("Expected an argument of Vector Type");
1266   }
1267   case IITDescriptor::VecOfBitcastsToInt: {
1268     Type *Ty = Tys[D.getArgumentNumber()];
1269     VectorType *VTy = dyn_cast<VectorType>(Ty);
1270     assert(VTy && "Expected an argument of Vector Type");
1271     return VectorType::getInteger(VTy);
1272   }
1273   case IITDescriptor::VecOfAnyPtrsToElt:
1274     // Return the overloaded type (which determines the pointers address space)
1275     return Tys[D.getOverloadArgNumber()];
1276   }
1277   llvm_unreachable("unhandled");
1278 }
1279 
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)1280 FunctionType *Intrinsic::getType(LLVMContext &Context,
1281                                  ID id, ArrayRef<Type*> Tys) {
1282   SmallVector<IITDescriptor, 8> Table;
1283   getIntrinsicInfoTableEntries(id, Table);
1284 
1285   ArrayRef<IITDescriptor> TableRef = Table;
1286   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1287 
1288   SmallVector<Type*, 8> ArgTys;
1289   while (!TableRef.empty())
1290     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1291 
1292   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1293   // If we see void type as the type of the last argument, it is vararg intrinsic
1294   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1295     ArgTys.pop_back();
1296     return FunctionType::get(ResultTy, ArgTys, true);
1297   }
1298   return FunctionType::get(ResultTy, ArgTys, false);
1299 }
1300 
isOverloaded(ID id)1301 bool Intrinsic::isOverloaded(ID id) {
1302 #define GET_INTRINSIC_OVERLOAD_TABLE
1303 #include "llvm/IR/IntrinsicImpl.inc"
1304 #undef GET_INTRINSIC_OVERLOAD_TABLE
1305 }
1306 
isLeaf(ID id)1307 bool Intrinsic::isLeaf(ID id) {
1308   switch (id) {
1309   default:
1310     return true;
1311 
1312   case Intrinsic::experimental_gc_statepoint:
1313   case Intrinsic::experimental_patchpoint_void:
1314   case Intrinsic::experimental_patchpoint_i64:
1315     return false;
1316   }
1317 }
1318 
1319 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1320 #define GET_INTRINSIC_ATTRIBUTES
1321 #include "llvm/IR/IntrinsicImpl.inc"
1322 #undef GET_INTRINSIC_ATTRIBUTES
1323 
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)1324 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1325   // There can never be multiple globals with the same name of different types,
1326   // because intrinsics must be a specific type.
1327   auto *FT = getType(M->getContext(), id, Tys);
1328   return cast<Function>(
1329       M->getOrInsertFunction(Tys.empty() ? getName(id)
1330                                          : getName(id, Tys, M, FT),
1331                              getType(M->getContext(), id, Tys))
1332           .getCallee());
1333 }
1334 
1335 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1336 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1337 #include "llvm/IR/IntrinsicImpl.inc"
1338 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1339 
1340 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1341 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1342 #include "llvm/IR/IntrinsicImpl.inc"
1343 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1344 
1345 using DeferredIntrinsicMatchPair =
1346     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1347 
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys,SmallVectorImpl<DeferredIntrinsicMatchPair> & DeferredChecks,bool IsDeferredCheck)1348 static bool matchIntrinsicType(
1349     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1350     SmallVectorImpl<Type *> &ArgTys,
1351     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1352     bool IsDeferredCheck) {
1353   using namespace Intrinsic;
1354 
1355   // If we ran out of descriptors, there are too many arguments.
1356   if (Infos.empty()) return true;
1357 
1358   // Do this before slicing off the 'front' part
1359   auto InfosRef = Infos;
1360   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1361     DeferredChecks.emplace_back(T, InfosRef);
1362     return false;
1363   };
1364 
1365   IITDescriptor D = Infos.front();
1366   Infos = Infos.slice(1);
1367 
1368   switch (D.Kind) {
1369     case IITDescriptor::Void: return !Ty->isVoidTy();
1370     case IITDescriptor::VarArg: return true;
1371     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1372     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1373     case IITDescriptor::Token: return !Ty->isTokenTy();
1374     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1375     case IITDescriptor::Half: return !Ty->isHalfTy();
1376     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1377     case IITDescriptor::Float: return !Ty->isFloatTy();
1378     case IITDescriptor::Double: return !Ty->isDoubleTy();
1379     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1380     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1381     case IITDescriptor::Vector: {
1382       VectorType *VT = dyn_cast<VectorType>(Ty);
1383       return !VT || VT->getElementCount() != D.Vector_Width ||
1384              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1385                                 DeferredChecks, IsDeferredCheck);
1386     }
1387     case IITDescriptor::Pointer: {
1388       PointerType *PT = dyn_cast<PointerType>(Ty);
1389       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1390              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1391                                 DeferredChecks, IsDeferredCheck);
1392     }
1393 
1394     case IITDescriptor::Struct: {
1395       StructType *ST = dyn_cast<StructType>(Ty);
1396       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1397         return true;
1398 
1399       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1400         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1401                                DeferredChecks, IsDeferredCheck))
1402           return true;
1403       return false;
1404     }
1405 
1406     case IITDescriptor::Argument:
1407       // If this is the second occurrence of an argument,
1408       // verify that the later instance matches the previous instance.
1409       if (D.getArgumentNumber() < ArgTys.size())
1410         return Ty != ArgTys[D.getArgumentNumber()];
1411 
1412       if (D.getArgumentNumber() > ArgTys.size() ||
1413           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1414         return IsDeferredCheck || DeferCheck(Ty);
1415 
1416       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1417              "Table consistency error");
1418       ArgTys.push_back(Ty);
1419 
1420       switch (D.getArgumentKind()) {
1421         case IITDescriptor::AK_Any:        return false; // Success
1422         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1423         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1424         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1425         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1426         default:                           break;
1427       }
1428       llvm_unreachable("all argument kinds not covered");
1429 
1430     case IITDescriptor::ExtendArgument: {
1431       // If this is a forward reference, defer the check for later.
1432       if (D.getArgumentNumber() >= ArgTys.size())
1433         return IsDeferredCheck || DeferCheck(Ty);
1434 
1435       Type *NewTy = ArgTys[D.getArgumentNumber()];
1436       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1437         NewTy = VectorType::getExtendedElementVectorType(VTy);
1438       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1439         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1440       else
1441         return true;
1442 
1443       return Ty != NewTy;
1444     }
1445     case IITDescriptor::TruncArgument: {
1446       // If this is a forward reference, defer the check for later.
1447       if (D.getArgumentNumber() >= ArgTys.size())
1448         return IsDeferredCheck || DeferCheck(Ty);
1449 
1450       Type *NewTy = ArgTys[D.getArgumentNumber()];
1451       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1452         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1453       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1454         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1455       else
1456         return true;
1457 
1458       return Ty != NewTy;
1459     }
1460     case IITDescriptor::HalfVecArgument:
1461       // If this is a forward reference, defer the check for later.
1462       if (D.getArgumentNumber() >= ArgTys.size())
1463         return IsDeferredCheck || DeferCheck(Ty);
1464       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1465              VectorType::getHalfElementsVectorType(
1466                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1467     case IITDescriptor::SameVecWidthArgument: {
1468       if (D.getArgumentNumber() >= ArgTys.size()) {
1469         // Defer check and subsequent check for the vector element type.
1470         Infos = Infos.slice(1);
1471         return IsDeferredCheck || DeferCheck(Ty);
1472       }
1473       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1474       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1475       // Both must be vectors of the same number of elements or neither.
1476       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1477         return true;
1478       Type *EltTy = Ty;
1479       if (ThisArgType) {
1480         if (ReferenceType->getElementCount() !=
1481             ThisArgType->getElementCount())
1482           return true;
1483         EltTy = ThisArgType->getElementType();
1484       }
1485       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1486                                 IsDeferredCheck);
1487     }
1488     case IITDescriptor::PtrToArgument: {
1489       if (D.getArgumentNumber() >= ArgTys.size())
1490         return IsDeferredCheck || DeferCheck(Ty);
1491       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1492       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1493       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1494     }
1495     case IITDescriptor::PtrToElt: {
1496       if (D.getArgumentNumber() >= ArgTys.size())
1497         return IsDeferredCheck || DeferCheck(Ty);
1498       VectorType * ReferenceType =
1499         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1500       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1501 
1502       return (!ThisArgType || !ReferenceType ||
1503               ThisArgType->getElementType() != ReferenceType->getElementType());
1504     }
1505     case IITDescriptor::VecOfAnyPtrsToElt: {
1506       unsigned RefArgNumber = D.getRefArgNumber();
1507       if (RefArgNumber >= ArgTys.size()) {
1508         if (IsDeferredCheck)
1509           return true;
1510         // If forward referencing, already add the pointer-vector type and
1511         // defer the checks for later.
1512         ArgTys.push_back(Ty);
1513         return DeferCheck(Ty);
1514       }
1515 
1516       if (!IsDeferredCheck){
1517         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1518                "Table consistency error");
1519         ArgTys.push_back(Ty);
1520       }
1521 
1522       // Verify the overloaded type "matches" the Ref type.
1523       // i.e. Ty is a vector with the same width as Ref.
1524       // Composed of pointers to the same element type as Ref.
1525       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1526       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1527       if (!ThisArgVecTy || !ReferenceType ||
1528           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1529         return true;
1530       PointerType *ThisArgEltTy =
1531           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1532       if (!ThisArgEltTy)
1533         return true;
1534       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1535     }
1536     case IITDescriptor::VecElementArgument: {
1537       if (D.getArgumentNumber() >= ArgTys.size())
1538         return IsDeferredCheck ? true : DeferCheck(Ty);
1539       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1540       return !ReferenceType || Ty != ReferenceType->getElementType();
1541     }
1542     case IITDescriptor::Subdivide2Argument:
1543     case IITDescriptor::Subdivide4Argument: {
1544       // If this is a forward reference, defer the check for later.
1545       if (D.getArgumentNumber() >= ArgTys.size())
1546         return IsDeferredCheck || DeferCheck(Ty);
1547 
1548       Type *NewTy = ArgTys[D.getArgumentNumber()];
1549       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1550         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1551         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1552         return Ty != NewTy;
1553       }
1554       return true;
1555     }
1556     case IITDescriptor::VecOfBitcastsToInt: {
1557       if (D.getArgumentNumber() >= ArgTys.size())
1558         return IsDeferredCheck || DeferCheck(Ty);
1559       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1560       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1561       if (!ThisArgVecTy || !ReferenceType)
1562         return true;
1563       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1564     }
1565   }
1566   llvm_unreachable("unhandled");
1567 }
1568 
1569 Intrinsic::MatchIntrinsicTypesResult
matchIntrinsicSignature(FunctionType * FTy,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1570 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1571                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1572                                    SmallVectorImpl<Type *> &ArgTys) {
1573   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1574   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1575                          false))
1576     return MatchIntrinsicTypes_NoMatchRet;
1577 
1578   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1579 
1580   for (auto Ty : FTy->params())
1581     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1582       return MatchIntrinsicTypes_NoMatchArg;
1583 
1584   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1585     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1586     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1587                            true))
1588       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1589                                          : MatchIntrinsicTypes_NoMatchArg;
1590   }
1591 
1592   return MatchIntrinsicTypes_Match;
1593 }
1594 
1595 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1596 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1597                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1598   // If there are no descriptors left, then it can't be a vararg.
1599   if (Infos.empty())
1600     return isVarArg;
1601 
1602   // There should be only one descriptor remaining at this point.
1603   if (Infos.size() != 1)
1604     return true;
1605 
1606   // Check and verify the descriptor.
1607   IITDescriptor D = Infos.front();
1608   Infos = Infos.slice(1);
1609   if (D.Kind == IITDescriptor::VarArg)
1610     return !isVarArg;
1611 
1612   return true;
1613 }
1614 
getIntrinsicSignature(Function * F,SmallVectorImpl<Type * > & ArgTys)1615 bool Intrinsic::getIntrinsicSignature(Function *F,
1616                                       SmallVectorImpl<Type *> &ArgTys) {
1617   Intrinsic::ID ID = F->getIntrinsicID();
1618   if (!ID)
1619     return false;
1620 
1621   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1622   getIntrinsicInfoTableEntries(ID, Table);
1623   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1624 
1625   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1626                                          ArgTys) !=
1627       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1628     return false;
1629   }
1630   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1631                                       TableRef))
1632     return false;
1633   return true;
1634 }
1635 
remangleIntrinsicFunction(Function * F)1636 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1637   SmallVector<Type *, 4> ArgTys;
1638   if (!getIntrinsicSignature(F, ArgTys))
1639     return None;
1640 
1641   Intrinsic::ID ID = F->getIntrinsicID();
1642   StringRef Name = F->getName();
1643   if (Name ==
1644       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1645     return None;
1646 
1647   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1648   NewDecl->setCallingConv(F->getCallingConv());
1649   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1650          "Shouldn't change the signature");
1651   return NewDecl;
1652 }
1653 
1654 /// hasAddressTaken - returns true if there are any uses of this function
1655 /// other than direct calls or invokes to it. Optionally ignores callback
1656 /// uses, assume like pointer annotation calls, and references in llvm.used
1657 /// and llvm.compiler.used variables.
hasAddressTaken(const User ** PutOffender,bool IgnoreCallbackUses,bool IgnoreAssumeLikeCalls,bool IgnoreLLVMUsed) const1658 bool Function::hasAddressTaken(const User **PutOffender,
1659                                bool IgnoreCallbackUses,
1660                                bool IgnoreAssumeLikeCalls,
1661                                bool IgnoreLLVMUsed) const {
1662   for (const Use &U : uses()) {
1663     const User *FU = U.getUser();
1664     if (isa<BlockAddress>(FU))
1665       continue;
1666 
1667     if (IgnoreCallbackUses) {
1668       AbstractCallSite ACS(&U);
1669       if (ACS && ACS.isCallbackCall())
1670         continue;
1671     }
1672 
1673     const auto *Call = dyn_cast<CallBase>(FU);
1674     if (!Call) {
1675       if (IgnoreAssumeLikeCalls) {
1676         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1677           if (FI->isCast() && !FI->user_empty() &&
1678               llvm::all_of(FU->users(), [](const User *U) {
1679                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1680                   return I->isAssumeLikeIntrinsic();
1681                 return false;
1682               }))
1683             continue;
1684         }
1685       }
1686       if (IgnoreLLVMUsed && !FU->user_empty()) {
1687         const User *FUU = FU;
1688         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1689             !FU->user_begin()->user_empty())
1690           FUU = *FU->user_begin();
1691         if (llvm::all_of(FUU->users(), [](const User *U) {
1692               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1693                 return GV->hasName() &&
1694                        (GV->getName().equals("llvm.compiler.used") ||
1695                         GV->getName().equals("llvm.used"));
1696               return false;
1697             }))
1698           continue;
1699       }
1700       if (PutOffender)
1701         *PutOffender = FU;
1702       return true;
1703     }
1704     if (!Call->isCallee(&U)) {
1705       if (PutOffender)
1706         *PutOffender = FU;
1707       return true;
1708     }
1709   }
1710   return false;
1711 }
1712 
isDefTriviallyDead() const1713 bool Function::isDefTriviallyDead() const {
1714   // Check the linkage
1715   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1716       !hasAvailableExternallyLinkage())
1717     return false;
1718 
1719   // Check if the function is used by anything other than a blockaddress.
1720   for (const User *U : users())
1721     if (!isa<BlockAddress>(U))
1722       return false;
1723 
1724   return true;
1725 }
1726 
1727 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1728 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1729 bool Function::callsFunctionThatReturnsTwice() const {
1730   for (const Instruction &I : instructions(this))
1731     if (const auto *Call = dyn_cast<CallBase>(&I))
1732       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1733         return true;
1734 
1735   return false;
1736 }
1737 
getPersonalityFn() const1738 Constant *Function::getPersonalityFn() const {
1739   assert(hasPersonalityFn() && getNumOperands());
1740   return cast<Constant>(Op<0>());
1741 }
1742 
setPersonalityFn(Constant * Fn)1743 void Function::setPersonalityFn(Constant *Fn) {
1744   setHungoffOperand<0>(Fn);
1745   setValueSubclassDataBit(3, Fn != nullptr);
1746 }
1747 
getPrefixData() const1748 Constant *Function::getPrefixData() const {
1749   assert(hasPrefixData() && getNumOperands());
1750   return cast<Constant>(Op<1>());
1751 }
1752 
setPrefixData(Constant * PrefixData)1753 void Function::setPrefixData(Constant *PrefixData) {
1754   setHungoffOperand<1>(PrefixData);
1755   setValueSubclassDataBit(1, PrefixData != nullptr);
1756 }
1757 
getPrologueData() const1758 Constant *Function::getPrologueData() const {
1759   assert(hasPrologueData() && getNumOperands());
1760   return cast<Constant>(Op<2>());
1761 }
1762 
setPrologueData(Constant * PrologueData)1763 void Function::setPrologueData(Constant *PrologueData) {
1764   setHungoffOperand<2>(PrologueData);
1765   setValueSubclassDataBit(2, PrologueData != nullptr);
1766 }
1767 
allocHungoffUselist()1768 void Function::allocHungoffUselist() {
1769   // If we've already allocated a uselist, stop here.
1770   if (getNumOperands())
1771     return;
1772 
1773   allocHungoffUses(3, /*IsPhi=*/ false);
1774   setNumHungOffUseOperands(3);
1775 
1776   // Initialize the uselist with placeholder operands to allow traversal.
1777   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1778   Op<0>().set(CPN);
1779   Op<1>().set(CPN);
1780   Op<2>().set(CPN);
1781 }
1782 
1783 template <int Idx>
setHungoffOperand(Constant * C)1784 void Function::setHungoffOperand(Constant *C) {
1785   if (C) {
1786     allocHungoffUselist();
1787     Op<Idx>().set(C);
1788   } else if (getNumOperands()) {
1789     Op<Idx>().set(
1790         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1791   }
1792 }
1793 
setValueSubclassDataBit(unsigned Bit,bool On)1794 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1795   assert(Bit < 16 && "SubclassData contains only 16 bits");
1796   if (On)
1797     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1798   else
1799     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1800 }
1801 
setEntryCount(ProfileCount Count,const DenseSet<GlobalValue::GUID> * S)1802 void Function::setEntryCount(ProfileCount Count,
1803                              const DenseSet<GlobalValue::GUID> *S) {
1804   assert(Count.hasValue());
1805 #if !defined(NDEBUG)
1806   auto PrevCount = getEntryCount();
1807   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1808 #endif
1809 
1810   auto ImportGUIDs = getImportGUIDs();
1811   if (S == nullptr && ImportGUIDs.size())
1812     S = &ImportGUIDs;
1813 
1814   MDBuilder MDB(getContext());
1815   setMetadata(
1816       LLVMContext::MD_prof,
1817       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1818 }
1819 
setEntryCount(uint64_t Count,Function::ProfileCountType Type,const DenseSet<GlobalValue::GUID> * Imports)1820 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1821                              const DenseSet<GlobalValue::GUID> *Imports) {
1822   setEntryCount(ProfileCount(Count, Type), Imports);
1823 }
1824 
getEntryCount(bool AllowSynthetic) const1825 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1826   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1827   if (MD && MD->getOperand(0))
1828     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1829       if (MDS->getString().equals("function_entry_count")) {
1830         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1831         uint64_t Count = CI->getValue().getZExtValue();
1832         // A value of -1 is used for SamplePGO when there were no samples.
1833         // Treat this the same as unknown.
1834         if (Count == (uint64_t)-1)
1835           return ProfileCount::getInvalid();
1836         return ProfileCount(Count, PCT_Real);
1837       } else if (AllowSynthetic &&
1838                  MDS->getString().equals("synthetic_function_entry_count")) {
1839         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1840         uint64_t Count = CI->getValue().getZExtValue();
1841         return ProfileCount(Count, PCT_Synthetic);
1842       }
1843     }
1844   return ProfileCount::getInvalid();
1845 }
1846 
getImportGUIDs() const1847 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1848   DenseSet<GlobalValue::GUID> R;
1849   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1850     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1851       if (MDS->getString().equals("function_entry_count"))
1852         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1853           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1854                        ->getValue()
1855                        .getZExtValue());
1856   return R;
1857 }
1858 
setSectionPrefix(StringRef Prefix)1859 void Function::setSectionPrefix(StringRef Prefix) {
1860   MDBuilder MDB(getContext());
1861   setMetadata(LLVMContext::MD_section_prefix,
1862               MDB.createFunctionSectionPrefix(Prefix));
1863 }
1864 
getSectionPrefix() const1865 Optional<StringRef> Function::getSectionPrefix() const {
1866   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1867     assert(cast<MDString>(MD->getOperand(0))
1868                ->getString()
1869                .equals("function_section_prefix") &&
1870            "Metadata not match");
1871     return cast<MDString>(MD->getOperand(1))->getString();
1872   }
1873   return None;
1874 }
1875 
nullPointerIsDefined() const1876 bool Function::nullPointerIsDefined() const {
1877   return hasFnAttribute(Attribute::NullPointerIsValid);
1878 }
1879 
NullPointerIsDefined(const Function * F,unsigned AS)1880 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1881   if (F && F->nullPointerIsDefined())
1882     return true;
1883 
1884   if (AS != 0)
1885     return true;
1886 
1887   return false;
1888 }
1889