1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/SizeOpts.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <cstdlib>
76 #include <limits>
77 #include <set>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 /// makeVTList - Return an instance of the SDVTList struct initialized with the
85 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
87   SDVTList Res = {VTs, NumVTs};
88   return Res;
89 }
90 
91 // Default null implementations of the callbacks.
NodeDeleted(SDNode *,SDNode *)92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
NodeUpdated(SDNode *)93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
NodeInserted(SDNode *)94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
95 
anchor()96 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
97 
98 #define DEBUG_TYPE "selectiondag"
99 
100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
101        cl::Hidden, cl::init(true),
102        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
103 
104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
105        cl::desc("Number limit for gluing ld/st of memcpy."),
106        cl::Hidden, cl::init(0));
107 
NewSDValueDbgMsg(SDValue V,StringRef Msg,SelectionDAG * G)108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
109   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
110 }
111 
112 //===----------------------------------------------------------------------===//
113 //                              ConstantFPSDNode Class
114 //===----------------------------------------------------------------------===//
115 
116 /// isExactlyValue - We don't rely on operator== working on double values, as
117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
118 /// As such, this method can be used to do an exact bit-for-bit comparison of
119 /// two floating point values.
isExactlyValue(const APFloat & V) const120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
121   return getValueAPF().bitwiseIsEqual(V);
122 }
123 
isValueValidForType(EVT VT,const APFloat & Val)124 bool ConstantFPSDNode::isValueValidForType(EVT VT,
125                                            const APFloat& Val) {
126   assert(VT.isFloatingPoint() && "Can only convert between FP types");
127 
128   // convert modifies in place, so make a copy.
129   APFloat Val2 = APFloat(Val);
130   bool losesInfo;
131   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
132                       APFloat::rmNearestTiesToEven,
133                       &losesInfo);
134   return !losesInfo;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 //                              ISD Namespace
139 //===----------------------------------------------------------------------===//
140 
isConstantSplatVector(const SDNode * N,APInt & SplatVal)141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
142   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
143     unsigned EltSize =
144         N->getValueType(0).getVectorElementType().getSizeInBits();
145     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
146       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
147       return true;
148     }
149     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
151       return true;
152     }
153   }
154 
155   auto *BV = dyn_cast<BuildVectorSDNode>(N);
156   if (!BV)
157     return false;
158 
159   APInt SplatUndef;
160   unsigned SplatBitSize;
161   bool HasUndefs;
162   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
163   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
164                              EltSize) &&
165          EltSize == SplatBitSize;
166 }
167 
168 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
169 // specializations of the more general isConstantSplatVector()?
170 
isConstantSplatVectorAllOnes(const SDNode * N,bool BuildVectorOnly)171 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
172   // Look through a bit convert.
173   while (N->getOpcode() == ISD::BITCAST)
174     N = N->getOperand(0).getNode();
175 
176   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
177     APInt SplatVal;
178     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue();
179   }
180 
181   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
182 
183   unsigned i = 0, e = N->getNumOperands();
184 
185   // Skip over all of the undef values.
186   while (i != e && N->getOperand(i).isUndef())
187     ++i;
188 
189   // Do not accept an all-undef vector.
190   if (i == e) return false;
191 
192   // Do not accept build_vectors that aren't all constants or which have non-~0
193   // elements. We have to be a bit careful here, as the type of the constant
194   // may not be the same as the type of the vector elements due to type
195   // legalization (the elements are promoted to a legal type for the target and
196   // a vector of a type may be legal when the base element type is not).
197   // We only want to check enough bits to cover the vector elements, because
198   // we care if the resultant vector is all ones, not whether the individual
199   // constants are.
200   SDValue NotZero = N->getOperand(i);
201   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
202   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
203     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
204       return false;
205   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
206     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
207       return false;
208   } else
209     return false;
210 
211   // Okay, we have at least one ~0 value, check to see if the rest match or are
212   // undefs. Even with the above element type twiddling, this should be OK, as
213   // the same type legalization should have applied to all the elements.
214   for (++i; i != e; ++i)
215     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
216       return false;
217   return true;
218 }
219 
isConstantSplatVectorAllZeros(const SDNode * N,bool BuildVectorOnly)220 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
221   // Look through a bit convert.
222   while (N->getOpcode() == ISD::BITCAST)
223     N = N->getOperand(0).getNode();
224 
225   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
226     APInt SplatVal;
227     return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue();
228   }
229 
230   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
231 
232   bool IsAllUndef = true;
233   for (const SDValue &Op : N->op_values()) {
234     if (Op.isUndef())
235       continue;
236     IsAllUndef = false;
237     // Do not accept build_vectors that aren't all constants or which have non-0
238     // elements. We have to be a bit careful here, as the type of the constant
239     // may not be the same as the type of the vector elements due to type
240     // legalization (the elements are promoted to a legal type for the target
241     // and a vector of a type may be legal when the base element type is not).
242     // We only want to check enough bits to cover the vector elements, because
243     // we care if the resultant vector is all zeros, not whether the individual
244     // constants are.
245     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
246     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
247       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
248         return false;
249     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
250       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
251         return false;
252     } else
253       return false;
254   }
255 
256   // Do not accept an all-undef vector.
257   if (IsAllUndef)
258     return false;
259   return true;
260 }
261 
isBuildVectorAllOnes(const SDNode * N)262 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
263   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
264 }
265 
isBuildVectorAllZeros(const SDNode * N)266 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
267   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
268 }
269 
isBuildVectorOfConstantSDNodes(const SDNode * N)270 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
271   if (N->getOpcode() != ISD::BUILD_VECTOR)
272     return false;
273 
274   for (const SDValue &Op : N->op_values()) {
275     if (Op.isUndef())
276       continue;
277     if (!isa<ConstantSDNode>(Op))
278       return false;
279   }
280   return true;
281 }
282 
isBuildVectorOfConstantFPSDNodes(const SDNode * N)283 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
284   if (N->getOpcode() != ISD::BUILD_VECTOR)
285     return false;
286 
287   for (const SDValue &Op : N->op_values()) {
288     if (Op.isUndef())
289       continue;
290     if (!isa<ConstantFPSDNode>(Op))
291       return false;
292   }
293   return true;
294 }
295 
allOperandsUndef(const SDNode * N)296 bool ISD::allOperandsUndef(const SDNode *N) {
297   // Return false if the node has no operands.
298   // This is "logically inconsistent" with the definition of "all" but
299   // is probably the desired behavior.
300   if (N->getNumOperands() == 0)
301     return false;
302   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
303 }
304 
matchUnaryPredicate(SDValue Op,std::function<bool (ConstantSDNode *)> Match,bool AllowUndefs)305 bool ISD::matchUnaryPredicate(SDValue Op,
306                               std::function<bool(ConstantSDNode *)> Match,
307                               bool AllowUndefs) {
308   // FIXME: Add support for scalar UNDEF cases?
309   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
310     return Match(Cst);
311 
312   // FIXME: Add support for vector UNDEF cases?
313   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
314       ISD::SPLAT_VECTOR != Op.getOpcode())
315     return false;
316 
317   EVT SVT = Op.getValueType().getScalarType();
318   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
319     if (AllowUndefs && Op.getOperand(i).isUndef()) {
320       if (!Match(nullptr))
321         return false;
322       continue;
323     }
324 
325     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
326     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
327       return false;
328   }
329   return true;
330 }
331 
matchBinaryPredicate(SDValue LHS,SDValue RHS,std::function<bool (ConstantSDNode *,ConstantSDNode *)> Match,bool AllowUndefs,bool AllowTypeMismatch)332 bool ISD::matchBinaryPredicate(
333     SDValue LHS, SDValue RHS,
334     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
335     bool AllowUndefs, bool AllowTypeMismatch) {
336   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
337     return false;
338 
339   // TODO: Add support for scalar UNDEF cases?
340   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
341     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
342       return Match(LHSCst, RHSCst);
343 
344   // TODO: Add support for vector UNDEF cases?
345   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
346       ISD::BUILD_VECTOR != RHS.getOpcode())
347     return false;
348 
349   EVT SVT = LHS.getValueType().getScalarType();
350   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
351     SDValue LHSOp = LHS.getOperand(i);
352     SDValue RHSOp = RHS.getOperand(i);
353     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
354     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
355     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
356     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
357     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
358       return false;
359     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
360                                LHSOp.getValueType() != RHSOp.getValueType()))
361       return false;
362     if (!Match(LHSCst, RHSCst))
363       return false;
364   }
365   return true;
366 }
367 
getVecReduceBaseOpcode(unsigned VecReduceOpcode)368 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
369   switch (VecReduceOpcode) {
370   default:
371     llvm_unreachable("Expected VECREDUCE opcode");
372   case ISD::VECREDUCE_FADD:
373   case ISD::VECREDUCE_SEQ_FADD:
374     return ISD::FADD;
375   case ISD::VECREDUCE_FMUL:
376   case ISD::VECREDUCE_SEQ_FMUL:
377     return ISD::FMUL;
378   case ISD::VECREDUCE_ADD:
379     return ISD::ADD;
380   case ISD::VECREDUCE_MUL:
381     return ISD::MUL;
382   case ISD::VECREDUCE_AND:
383     return ISD::AND;
384   case ISD::VECREDUCE_OR:
385     return ISD::OR;
386   case ISD::VECREDUCE_XOR:
387     return ISD::XOR;
388   case ISD::VECREDUCE_SMAX:
389     return ISD::SMAX;
390   case ISD::VECREDUCE_SMIN:
391     return ISD::SMIN;
392   case ISD::VECREDUCE_UMAX:
393     return ISD::UMAX;
394   case ISD::VECREDUCE_UMIN:
395     return ISD::UMIN;
396   case ISD::VECREDUCE_FMAX:
397     return ISD::FMAXNUM;
398   case ISD::VECREDUCE_FMIN:
399     return ISD::FMINNUM;
400   }
401 }
402 
isVPOpcode(unsigned Opcode)403 bool ISD::isVPOpcode(unsigned Opcode) {
404   switch (Opcode) {
405   default:
406     return false;
407 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
408   case ISD::SDOPC:                                                             \
409     return true;
410 #include "llvm/IR/VPIntrinsics.def"
411   }
412 }
413 
414 /// The operand position of the vector mask.
getVPMaskIdx(unsigned Opcode)415 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
416   switch (Opcode) {
417   default:
418     return None;
419 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...)        \
420   case ISD::SDOPC:                                                             \
421     return MASKPOS;
422 #include "llvm/IR/VPIntrinsics.def"
423   }
424 }
425 
426 /// The operand position of the explicit vector length parameter.
getVPExplicitVectorLengthIdx(unsigned Opcode)427 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
428   switch (Opcode) {
429   default:
430     return None;
431 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS)     \
432   case ISD::SDOPC:                                                             \
433     return EVLPOS;
434 #include "llvm/IR/VPIntrinsics.def"
435   }
436 }
437 
getExtForLoadExtType(bool IsFP,ISD::LoadExtType ExtType)438 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
439   switch (ExtType) {
440   case ISD::EXTLOAD:
441     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
442   case ISD::SEXTLOAD:
443     return ISD::SIGN_EXTEND;
444   case ISD::ZEXTLOAD:
445     return ISD::ZERO_EXTEND;
446   default:
447     break;
448   }
449 
450   llvm_unreachable("Invalid LoadExtType");
451 }
452 
getSetCCSwappedOperands(ISD::CondCode Operation)453 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
454   // To perform this operation, we just need to swap the L and G bits of the
455   // operation.
456   unsigned OldL = (Operation >> 2) & 1;
457   unsigned OldG = (Operation >> 1) & 1;
458   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
459                        (OldL << 1) |       // New G bit
460                        (OldG << 2));       // New L bit.
461 }
462 
getSetCCInverseImpl(ISD::CondCode Op,bool isIntegerLike)463 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
464   unsigned Operation = Op;
465   if (isIntegerLike)
466     Operation ^= 7;   // Flip L, G, E bits, but not U.
467   else
468     Operation ^= 15;  // Flip all of the condition bits.
469 
470   if (Operation > ISD::SETTRUE2)
471     Operation &= ~8;  // Don't let N and U bits get set.
472 
473   return ISD::CondCode(Operation);
474 }
475 
getSetCCInverse(ISD::CondCode Op,EVT Type)476 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
477   return getSetCCInverseImpl(Op, Type.isInteger());
478 }
479 
getSetCCInverse(ISD::CondCode Op,bool isIntegerLike)480 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
481                                                bool isIntegerLike) {
482   return getSetCCInverseImpl(Op, isIntegerLike);
483 }
484 
485 /// For an integer comparison, return 1 if the comparison is a signed operation
486 /// and 2 if the result is an unsigned comparison. Return zero if the operation
487 /// does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)488 static int isSignedOp(ISD::CondCode Opcode) {
489   switch (Opcode) {
490   default: llvm_unreachable("Illegal integer setcc operation!");
491   case ISD::SETEQ:
492   case ISD::SETNE: return 0;
493   case ISD::SETLT:
494   case ISD::SETLE:
495   case ISD::SETGT:
496   case ISD::SETGE: return 1;
497   case ISD::SETULT:
498   case ISD::SETULE:
499   case ISD::SETUGT:
500   case ISD::SETUGE: return 2;
501   }
502 }
503 
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)504 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
505                                        EVT Type) {
506   bool IsInteger = Type.isInteger();
507   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
508     // Cannot fold a signed integer setcc with an unsigned integer setcc.
509     return ISD::SETCC_INVALID;
510 
511   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
512 
513   // If the N and U bits get set, then the resultant comparison DOES suddenly
514   // care about orderedness, and it is true when ordered.
515   if (Op > ISD::SETTRUE2)
516     Op &= ~16;     // Clear the U bit if the N bit is set.
517 
518   // Canonicalize illegal integer setcc's.
519   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
520     Op = ISD::SETNE;
521 
522   return ISD::CondCode(Op);
523 }
524 
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)525 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
526                                         EVT Type) {
527   bool IsInteger = Type.isInteger();
528   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
529     // Cannot fold a signed setcc with an unsigned setcc.
530     return ISD::SETCC_INVALID;
531 
532   // Combine all of the condition bits.
533   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
534 
535   // Canonicalize illegal integer setcc's.
536   if (IsInteger) {
537     switch (Result) {
538     default: break;
539     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
540     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
541     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
542     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
543     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
544     }
545   }
546 
547   return Result;
548 }
549 
550 //===----------------------------------------------------------------------===//
551 //                           SDNode Profile Support
552 //===----------------------------------------------------------------------===//
553 
554 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)555 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
556   ID.AddInteger(OpC);
557 }
558 
559 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
560 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)561 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
562   ID.AddPointer(VTList.VTs);
563 }
564 
565 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDValue> Ops)566 static void AddNodeIDOperands(FoldingSetNodeID &ID,
567                               ArrayRef<SDValue> Ops) {
568   for (auto& Op : Ops) {
569     ID.AddPointer(Op.getNode());
570     ID.AddInteger(Op.getResNo());
571   }
572 }
573 
574 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDUse> Ops)575 static void AddNodeIDOperands(FoldingSetNodeID &ID,
576                               ArrayRef<SDUse> Ops) {
577   for (auto& Op : Ops) {
578     ID.AddPointer(Op.getNode());
579     ID.AddInteger(Op.getResNo());
580   }
581 }
582 
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,ArrayRef<SDValue> OpList)583 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
584                           SDVTList VTList, ArrayRef<SDValue> OpList) {
585   AddNodeIDOpcode(ID, OpC);
586   AddNodeIDValueTypes(ID, VTList);
587   AddNodeIDOperands(ID, OpList);
588 }
589 
590 /// If this is an SDNode with special info, add this info to the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)591 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
592   switch (N->getOpcode()) {
593   case ISD::TargetExternalSymbol:
594   case ISD::ExternalSymbol:
595   case ISD::MCSymbol:
596     llvm_unreachable("Should only be used on nodes with operands");
597   default: break;  // Normal nodes don't need extra info.
598   case ISD::TargetConstant:
599   case ISD::Constant: {
600     const ConstantSDNode *C = cast<ConstantSDNode>(N);
601     ID.AddPointer(C->getConstantIntValue());
602     ID.AddBoolean(C->isOpaque());
603     break;
604   }
605   case ISD::TargetConstantFP:
606   case ISD::ConstantFP:
607     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
608     break;
609   case ISD::TargetGlobalAddress:
610   case ISD::GlobalAddress:
611   case ISD::TargetGlobalTLSAddress:
612   case ISD::GlobalTLSAddress: {
613     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
614     ID.AddPointer(GA->getGlobal());
615     ID.AddInteger(GA->getOffset());
616     ID.AddInteger(GA->getTargetFlags());
617     break;
618   }
619   case ISD::BasicBlock:
620     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
621     break;
622   case ISD::Register:
623     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
624     break;
625   case ISD::RegisterMask:
626     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
627     break;
628   case ISD::SRCVALUE:
629     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
630     break;
631   case ISD::FrameIndex:
632   case ISD::TargetFrameIndex:
633     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
634     break;
635   case ISD::LIFETIME_START:
636   case ISD::LIFETIME_END:
637     if (cast<LifetimeSDNode>(N)->hasOffset()) {
638       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
639       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
640     }
641     break;
642   case ISD::PSEUDO_PROBE:
643     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
644     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
645     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
646     break;
647   case ISD::JumpTable:
648   case ISD::TargetJumpTable:
649     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
650     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
651     break;
652   case ISD::ConstantPool:
653   case ISD::TargetConstantPool: {
654     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
655     ID.AddInteger(CP->getAlign().value());
656     ID.AddInteger(CP->getOffset());
657     if (CP->isMachineConstantPoolEntry())
658       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
659     else
660       ID.AddPointer(CP->getConstVal());
661     ID.AddInteger(CP->getTargetFlags());
662     break;
663   }
664   case ISD::TargetIndex: {
665     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
666     ID.AddInteger(TI->getIndex());
667     ID.AddInteger(TI->getOffset());
668     ID.AddInteger(TI->getTargetFlags());
669     break;
670   }
671   case ISD::LOAD: {
672     const LoadSDNode *LD = cast<LoadSDNode>(N);
673     ID.AddInteger(LD->getMemoryVT().getRawBits());
674     ID.AddInteger(LD->getRawSubclassData());
675     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
676     break;
677   }
678   case ISD::STORE: {
679     const StoreSDNode *ST = cast<StoreSDNode>(N);
680     ID.AddInteger(ST->getMemoryVT().getRawBits());
681     ID.AddInteger(ST->getRawSubclassData());
682     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
683     break;
684   }
685   case ISD::MLOAD: {
686     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
687     ID.AddInteger(MLD->getMemoryVT().getRawBits());
688     ID.AddInteger(MLD->getRawSubclassData());
689     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
690     break;
691   }
692   case ISD::MSTORE: {
693     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
694     ID.AddInteger(MST->getMemoryVT().getRawBits());
695     ID.AddInteger(MST->getRawSubclassData());
696     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
697     break;
698   }
699   case ISD::MGATHER: {
700     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
701     ID.AddInteger(MG->getMemoryVT().getRawBits());
702     ID.AddInteger(MG->getRawSubclassData());
703     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
704     break;
705   }
706   case ISD::MSCATTER: {
707     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
708     ID.AddInteger(MS->getMemoryVT().getRawBits());
709     ID.AddInteger(MS->getRawSubclassData());
710     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
711     break;
712   }
713   case ISD::ATOMIC_CMP_SWAP:
714   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
715   case ISD::ATOMIC_SWAP:
716   case ISD::ATOMIC_LOAD_ADD:
717   case ISD::ATOMIC_LOAD_SUB:
718   case ISD::ATOMIC_LOAD_AND:
719   case ISD::ATOMIC_LOAD_CLR:
720   case ISD::ATOMIC_LOAD_OR:
721   case ISD::ATOMIC_LOAD_XOR:
722   case ISD::ATOMIC_LOAD_NAND:
723   case ISD::ATOMIC_LOAD_MIN:
724   case ISD::ATOMIC_LOAD_MAX:
725   case ISD::ATOMIC_LOAD_UMIN:
726   case ISD::ATOMIC_LOAD_UMAX:
727   case ISD::ATOMIC_LOAD:
728   case ISD::ATOMIC_STORE: {
729     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
730     ID.AddInteger(AT->getMemoryVT().getRawBits());
731     ID.AddInteger(AT->getRawSubclassData());
732     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
733     break;
734   }
735   case ISD::PREFETCH: {
736     const MemSDNode *PF = cast<MemSDNode>(N);
737     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
738     break;
739   }
740   case ISD::VECTOR_SHUFFLE: {
741     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
742     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
743          i != e; ++i)
744       ID.AddInteger(SVN->getMaskElt(i));
745     break;
746   }
747   case ISD::TargetBlockAddress:
748   case ISD::BlockAddress: {
749     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
750     ID.AddPointer(BA->getBlockAddress());
751     ID.AddInteger(BA->getOffset());
752     ID.AddInteger(BA->getTargetFlags());
753     break;
754   }
755   } // end switch (N->getOpcode())
756 
757   // Target specific memory nodes could also have address spaces to check.
758   if (N->isTargetMemoryOpcode())
759     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
760 }
761 
762 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
763 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)764 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
765   AddNodeIDOpcode(ID, N->getOpcode());
766   // Add the return value info.
767   AddNodeIDValueTypes(ID, N->getVTList());
768   // Add the operand info.
769   AddNodeIDOperands(ID, N->ops());
770 
771   // Handle SDNode leafs with special info.
772   AddNodeIDCustom(ID, N);
773 }
774 
775 //===----------------------------------------------------------------------===//
776 //                              SelectionDAG Class
777 //===----------------------------------------------------------------------===//
778 
779 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)780 static bool doNotCSE(SDNode *N) {
781   if (N->getValueType(0) == MVT::Glue)
782     return true; // Never CSE anything that produces a flag.
783 
784   switch (N->getOpcode()) {
785   default: break;
786   case ISD::HANDLENODE:
787   case ISD::EH_LABEL:
788     return true;   // Never CSE these nodes.
789   }
790 
791   // Check that remaining values produced are not flags.
792   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
793     if (N->getValueType(i) == MVT::Glue)
794       return true; // Never CSE anything that produces a flag.
795 
796   return false;
797 }
798 
799 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
800 /// SelectionDAG.
RemoveDeadNodes()801 void SelectionDAG::RemoveDeadNodes() {
802   // Create a dummy node (which is not added to allnodes), that adds a reference
803   // to the root node, preventing it from being deleted.
804   HandleSDNode Dummy(getRoot());
805 
806   SmallVector<SDNode*, 128> DeadNodes;
807 
808   // Add all obviously-dead nodes to the DeadNodes worklist.
809   for (SDNode &Node : allnodes())
810     if (Node.use_empty())
811       DeadNodes.push_back(&Node);
812 
813   RemoveDeadNodes(DeadNodes);
814 
815   // If the root changed (e.g. it was a dead load, update the root).
816   setRoot(Dummy.getValue());
817 }
818 
819 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
820 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes)821 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
822 
823   // Process the worklist, deleting the nodes and adding their uses to the
824   // worklist.
825   while (!DeadNodes.empty()) {
826     SDNode *N = DeadNodes.pop_back_val();
827     // Skip to next node if we've already managed to delete the node. This could
828     // happen if replacing a node causes a node previously added to the node to
829     // be deleted.
830     if (N->getOpcode() == ISD::DELETED_NODE)
831       continue;
832 
833     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
834       DUL->NodeDeleted(N, nullptr);
835 
836     // Take the node out of the appropriate CSE map.
837     RemoveNodeFromCSEMaps(N);
838 
839     // Next, brutally remove the operand list.  This is safe to do, as there are
840     // no cycles in the graph.
841     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
842       SDUse &Use = *I++;
843       SDNode *Operand = Use.getNode();
844       Use.set(SDValue());
845 
846       // Now that we removed this operand, see if there are no uses of it left.
847       if (Operand->use_empty())
848         DeadNodes.push_back(Operand);
849     }
850 
851     DeallocateNode(N);
852   }
853 }
854 
RemoveDeadNode(SDNode * N)855 void SelectionDAG::RemoveDeadNode(SDNode *N){
856   SmallVector<SDNode*, 16> DeadNodes(1, N);
857 
858   // Create a dummy node that adds a reference to the root node, preventing
859   // it from being deleted.  (This matters if the root is an operand of the
860   // dead node.)
861   HandleSDNode Dummy(getRoot());
862 
863   RemoveDeadNodes(DeadNodes);
864 }
865 
DeleteNode(SDNode * N)866 void SelectionDAG::DeleteNode(SDNode *N) {
867   // First take this out of the appropriate CSE map.
868   RemoveNodeFromCSEMaps(N);
869 
870   // Finally, remove uses due to operands of this node, remove from the
871   // AllNodes list, and delete the node.
872   DeleteNodeNotInCSEMaps(N);
873 }
874 
DeleteNodeNotInCSEMaps(SDNode * N)875 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
876   assert(N->getIterator() != AllNodes.begin() &&
877          "Cannot delete the entry node!");
878   assert(N->use_empty() && "Cannot delete a node that is not dead!");
879 
880   // Drop all of the operands and decrement used node's use counts.
881   N->DropOperands();
882 
883   DeallocateNode(N);
884 }
885 
add(SDDbgValue * V,bool isParameter)886 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
887   assert(!(V->isVariadic() && isParameter));
888   if (isParameter)
889     ByvalParmDbgValues.push_back(V);
890   else
891     DbgValues.push_back(V);
892   for (const SDNode *Node : V->getSDNodes())
893     if (Node)
894       DbgValMap[Node].push_back(V);
895 }
896 
erase(const SDNode * Node)897 void SDDbgInfo::erase(const SDNode *Node) {
898   DbgValMapType::iterator I = DbgValMap.find(Node);
899   if (I == DbgValMap.end())
900     return;
901   for (auto &Val: I->second)
902     Val->setIsInvalidated();
903   DbgValMap.erase(I);
904 }
905 
DeallocateNode(SDNode * N)906 void SelectionDAG::DeallocateNode(SDNode *N) {
907   // If we have operands, deallocate them.
908   removeOperands(N);
909 
910   NodeAllocator.Deallocate(AllNodes.remove(N));
911 
912   // Set the opcode to DELETED_NODE to help catch bugs when node
913   // memory is reallocated.
914   // FIXME: There are places in SDag that have grown a dependency on the opcode
915   // value in the released node.
916   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
917   N->NodeType = ISD::DELETED_NODE;
918 
919   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
920   // them and forget about that node.
921   DbgInfo->erase(N);
922 }
923 
924 #ifndef NDEBUG
925 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
VerifySDNode(SDNode * N)926 static void VerifySDNode(SDNode *N) {
927   switch (N->getOpcode()) {
928   default:
929     break;
930   case ISD::BUILD_PAIR: {
931     EVT VT = N->getValueType(0);
932     assert(N->getNumValues() == 1 && "Too many results!");
933     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
934            "Wrong return type!");
935     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
936     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
937            "Mismatched operand types!");
938     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
939            "Wrong operand type!");
940     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
941            "Wrong return type size");
942     break;
943   }
944   case ISD::BUILD_VECTOR: {
945     assert(N->getNumValues() == 1 && "Too many results!");
946     assert(N->getValueType(0).isVector() && "Wrong return type!");
947     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
948            "Wrong number of operands!");
949     EVT EltVT = N->getValueType(0).getVectorElementType();
950     for (const SDUse &Op : N->ops()) {
951       assert((Op.getValueType() == EltVT ||
952               (EltVT.isInteger() && Op.getValueType().isInteger() &&
953                EltVT.bitsLE(Op.getValueType()))) &&
954              "Wrong operand type!");
955       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
956              "Operands must all have the same type");
957     }
958     break;
959   }
960   }
961 }
962 #endif // NDEBUG
963 
964 /// Insert a newly allocated node into the DAG.
965 ///
966 /// Handles insertion into the all nodes list and CSE map, as well as
967 /// verification and other common operations when a new node is allocated.
InsertNode(SDNode * N)968 void SelectionDAG::InsertNode(SDNode *N) {
969   AllNodes.push_back(N);
970 #ifndef NDEBUG
971   N->PersistentId = NextPersistentId++;
972   VerifySDNode(N);
973 #endif
974   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
975     DUL->NodeInserted(N);
976 }
977 
978 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
979 /// correspond to it.  This is useful when we're about to delete or repurpose
980 /// the node.  We don't want future request for structurally identical nodes
981 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)982 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
983   bool Erased = false;
984   switch (N->getOpcode()) {
985   case ISD::HANDLENODE: return false;  // noop.
986   case ISD::CONDCODE:
987     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
988            "Cond code doesn't exist!");
989     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
990     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
991     break;
992   case ISD::ExternalSymbol:
993     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
994     break;
995   case ISD::TargetExternalSymbol: {
996     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
997     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
998         ESN->getSymbol(), ESN->getTargetFlags()));
999     break;
1000   }
1001   case ISD::MCSymbol: {
1002     auto *MCSN = cast<MCSymbolSDNode>(N);
1003     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1004     break;
1005   }
1006   case ISD::VALUETYPE: {
1007     EVT VT = cast<VTSDNode>(N)->getVT();
1008     if (VT.isExtended()) {
1009       Erased = ExtendedValueTypeNodes.erase(VT);
1010     } else {
1011       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1012       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1013     }
1014     break;
1015   }
1016   default:
1017     // Remove it from the CSE Map.
1018     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1019     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1020     Erased = CSEMap.RemoveNode(N);
1021     break;
1022   }
1023 #ifndef NDEBUG
1024   // Verify that the node was actually in one of the CSE maps, unless it has a
1025   // flag result (which cannot be CSE'd) or is one of the special cases that are
1026   // not subject to CSE.
1027   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1028       !N->isMachineOpcode() && !doNotCSE(N)) {
1029     N->dump(this);
1030     dbgs() << "\n";
1031     llvm_unreachable("Node is not in map!");
1032   }
1033 #endif
1034   return Erased;
1035 }
1036 
1037 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1038 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1039 /// node already exists, in which case transfer all its users to the existing
1040 /// node. This transfer can potentially trigger recursive merging.
1041 void
AddModifiedNodeToCSEMaps(SDNode * N)1042 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1043   // For node types that aren't CSE'd, just act as if no identical node
1044   // already exists.
1045   if (!doNotCSE(N)) {
1046     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1047     if (Existing != N) {
1048       // If there was already an existing matching node, use ReplaceAllUsesWith
1049       // to replace the dead one with the existing one.  This can cause
1050       // recursive merging of other unrelated nodes down the line.
1051       ReplaceAllUsesWith(N, Existing);
1052 
1053       // N is now dead. Inform the listeners and delete it.
1054       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1055         DUL->NodeDeleted(N, Existing);
1056       DeleteNodeNotInCSEMaps(N);
1057       return;
1058     }
1059   }
1060 
1061   // If the node doesn't already exist, we updated it.  Inform listeners.
1062   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1063     DUL->NodeUpdated(N);
1064 }
1065 
1066 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1067 /// were replaced with those specified.  If this node is never memoized,
1068 /// return null, otherwise return a pointer to the slot it would take.  If a
1069 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)1070 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1071                                            void *&InsertPos) {
1072   if (doNotCSE(N))
1073     return nullptr;
1074 
1075   SDValue Ops[] = { Op };
1076   FoldingSetNodeID ID;
1077   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1078   AddNodeIDCustom(ID, N);
1079   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1080   if (Node)
1081     Node->intersectFlagsWith(N->getFlags());
1082   return Node;
1083 }
1084 
1085 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1086 /// were replaced with those specified.  If this node is never memoized,
1087 /// return null, otherwise return a pointer to the slot it would take.  If a
1088 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)1089 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1090                                            SDValue Op1, SDValue Op2,
1091                                            void *&InsertPos) {
1092   if (doNotCSE(N))
1093     return nullptr;
1094 
1095   SDValue Ops[] = { Op1, Op2 };
1096   FoldingSetNodeID ID;
1097   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1098   AddNodeIDCustom(ID, N);
1099   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1100   if (Node)
1101     Node->intersectFlagsWith(N->getFlags());
1102   return Node;
1103 }
1104 
1105 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1106 /// were replaced with those specified.  If this node is never memoized,
1107 /// return null, otherwise return a pointer to the slot it would take.  If a
1108 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,ArrayRef<SDValue> Ops,void * & InsertPos)1109 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1110                                            void *&InsertPos) {
1111   if (doNotCSE(N))
1112     return nullptr;
1113 
1114   FoldingSetNodeID ID;
1115   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1116   AddNodeIDCustom(ID, N);
1117   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1118   if (Node)
1119     Node->intersectFlagsWith(N->getFlags());
1120   return Node;
1121 }
1122 
getEVTAlign(EVT VT) const1123 Align SelectionDAG::getEVTAlign(EVT VT) const {
1124   Type *Ty = VT == MVT::iPTR ?
1125                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1126                    VT.getTypeForEVT(*getContext());
1127 
1128   return getDataLayout().getABITypeAlign(Ty);
1129 }
1130 
1131 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm,CodeGenOpt::Level OL)1132 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1133     : TM(tm), OptLevel(OL),
1134       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1135       Root(getEntryNode()) {
1136   InsertNode(&EntryNode);
1137   DbgInfo = new SDDbgInfo();
1138 }
1139 
init(MachineFunction & NewMF,OptimizationRemarkEmitter & NewORE,Pass * PassPtr,const TargetLibraryInfo * LibraryInfo,LegacyDivergenceAnalysis * Divergence,ProfileSummaryInfo * PSIin,BlockFrequencyInfo * BFIin)1140 void SelectionDAG::init(MachineFunction &NewMF,
1141                         OptimizationRemarkEmitter &NewORE,
1142                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1143                         LegacyDivergenceAnalysis * Divergence,
1144                         ProfileSummaryInfo *PSIin,
1145                         BlockFrequencyInfo *BFIin) {
1146   MF = &NewMF;
1147   SDAGISelPass = PassPtr;
1148   ORE = &NewORE;
1149   TLI = getSubtarget().getTargetLowering();
1150   TSI = getSubtarget().getSelectionDAGInfo();
1151   LibInfo = LibraryInfo;
1152   Context = &MF->getFunction().getContext();
1153   DA = Divergence;
1154   PSI = PSIin;
1155   BFI = BFIin;
1156 }
1157 
~SelectionDAG()1158 SelectionDAG::~SelectionDAG() {
1159   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1160   allnodes_clear();
1161   OperandRecycler.clear(OperandAllocator);
1162   delete DbgInfo;
1163 }
1164 
shouldOptForSize() const1165 bool SelectionDAG::shouldOptForSize() const {
1166   return MF->getFunction().hasOptSize() ||
1167       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1168 }
1169 
allnodes_clear()1170 void SelectionDAG::allnodes_clear() {
1171   assert(&*AllNodes.begin() == &EntryNode);
1172   AllNodes.remove(AllNodes.begin());
1173   while (!AllNodes.empty())
1174     DeallocateNode(&AllNodes.front());
1175 #ifndef NDEBUG
1176   NextPersistentId = 0;
1177 #endif
1178 }
1179 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1181                                           void *&InsertPos) {
1182   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1183   if (N) {
1184     switch (N->getOpcode()) {
1185     default: break;
1186     case ISD::Constant:
1187     case ISD::ConstantFP:
1188       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1189                        "debug location.  Use another overload.");
1190     }
1191   }
1192   return N;
1193 }
1194 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,const SDLoc & DL,void * & InsertPos)1195 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1196                                           const SDLoc &DL, void *&InsertPos) {
1197   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1198   if (N) {
1199     switch (N->getOpcode()) {
1200     case ISD::Constant:
1201     case ISD::ConstantFP:
1202       // Erase debug location from the node if the node is used at several
1203       // different places. Do not propagate one location to all uses as it
1204       // will cause a worse single stepping debugging experience.
1205       if (N->getDebugLoc() != DL.getDebugLoc())
1206         N->setDebugLoc(DebugLoc());
1207       break;
1208     default:
1209       // When the node's point of use is located earlier in the instruction
1210       // sequence than its prior point of use, update its debug info to the
1211       // earlier location.
1212       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1213         N->setDebugLoc(DL.getDebugLoc());
1214       break;
1215     }
1216   }
1217   return N;
1218 }
1219 
clear()1220 void SelectionDAG::clear() {
1221   allnodes_clear();
1222   OperandRecycler.clear(OperandAllocator);
1223   OperandAllocator.Reset();
1224   CSEMap.clear();
1225 
1226   ExtendedValueTypeNodes.clear();
1227   ExternalSymbols.clear();
1228   TargetExternalSymbols.clear();
1229   MCSymbols.clear();
1230   SDCallSiteDbgInfo.clear();
1231   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1232             static_cast<CondCodeSDNode*>(nullptr));
1233   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1234             static_cast<SDNode*>(nullptr));
1235 
1236   EntryNode.UseList = nullptr;
1237   InsertNode(&EntryNode);
1238   Root = getEntryNode();
1239   DbgInfo->clear();
1240 }
1241 
getFPExtendOrRound(SDValue Op,const SDLoc & DL,EVT VT)1242 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1243   return VT.bitsGT(Op.getValueType())
1244              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1245              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1246 }
1247 
1248 std::pair<SDValue, SDValue>
getStrictFPExtendOrRound(SDValue Op,SDValue Chain,const SDLoc & DL,EVT VT)1249 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1250                                        const SDLoc &DL, EVT VT) {
1251   assert(!VT.bitsEq(Op.getValueType()) &&
1252          "Strict no-op FP extend/round not allowed.");
1253   SDValue Res =
1254       VT.bitsGT(Op.getValueType())
1255           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1256           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1257                     {Chain, Op, getIntPtrConstant(0, DL)});
1258 
1259   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1260 }
1261 
getAnyExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1262 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1263   return VT.bitsGT(Op.getValueType()) ?
1264     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1265     getNode(ISD::TRUNCATE, DL, VT, Op);
1266 }
1267 
getSExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1268 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1269   return VT.bitsGT(Op.getValueType()) ?
1270     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1271     getNode(ISD::TRUNCATE, DL, VT, Op);
1272 }
1273 
getZExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1274 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1275   return VT.bitsGT(Op.getValueType()) ?
1276     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1277     getNode(ISD::TRUNCATE, DL, VT, Op);
1278 }
1279 
getBoolExtOrTrunc(SDValue Op,const SDLoc & SL,EVT VT,EVT OpVT)1280 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1281                                         EVT OpVT) {
1282   if (VT.bitsLE(Op.getValueType()))
1283     return getNode(ISD::TRUNCATE, SL, VT, Op);
1284 
1285   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1286   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1287 }
1288 
getZeroExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1289 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1290   EVT OpVT = Op.getValueType();
1291   assert(VT.isInteger() && OpVT.isInteger() &&
1292          "Cannot getZeroExtendInReg FP types");
1293   assert(VT.isVector() == OpVT.isVector() &&
1294          "getZeroExtendInReg type should be vector iff the operand "
1295          "type is vector!");
1296   assert((!VT.isVector() ||
1297           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1298          "Vector element counts must match in getZeroExtendInReg");
1299   assert(VT.bitsLE(OpVT) && "Not extending!");
1300   if (OpVT == VT)
1301     return Op;
1302   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1303                                    VT.getScalarSizeInBits());
1304   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1305 }
1306 
getPtrExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1307 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1308   // Only unsigned pointer semantics are supported right now. In the future this
1309   // might delegate to TLI to check pointer signedness.
1310   return getZExtOrTrunc(Op, DL, VT);
1311 }
1312 
getPtrExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1313 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1314   // Only unsigned pointer semantics are supported right now. In the future this
1315   // might delegate to TLI to check pointer signedness.
1316   return getZeroExtendInReg(Op, DL, VT);
1317 }
1318 
1319 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
getNOT(const SDLoc & DL,SDValue Val,EVT VT)1320 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1321   EVT EltVT = VT.getScalarType();
1322   SDValue NegOne =
1323     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1324   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1325 }
1326 
getLogicalNOT(const SDLoc & DL,SDValue Val,EVT VT)1327 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1328   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1329   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1330 }
1331 
getBoolConstant(bool V,const SDLoc & DL,EVT VT,EVT OpVT)1332 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1333                                       EVT OpVT) {
1334   if (!V)
1335     return getConstant(0, DL, VT);
1336 
1337   switch (TLI->getBooleanContents(OpVT)) {
1338   case TargetLowering::ZeroOrOneBooleanContent:
1339   case TargetLowering::UndefinedBooleanContent:
1340     return getConstant(1, DL, VT);
1341   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1342     return getAllOnesConstant(DL, VT);
1343   }
1344   llvm_unreachable("Unexpected boolean content enum!");
1345 }
1346 
getConstant(uint64_t Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1347 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1348                                   bool isT, bool isO) {
1349   EVT EltVT = VT.getScalarType();
1350   assert((EltVT.getSizeInBits() >= 64 ||
1351           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1352          "getConstant with a uint64_t value that doesn't fit in the type!");
1353   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1354 }
1355 
getConstant(const APInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1356 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1357                                   bool isT, bool isO) {
1358   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1359 }
1360 
getConstant(const ConstantInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1361 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1362                                   EVT VT, bool isT, bool isO) {
1363   assert(VT.isInteger() && "Cannot create FP integer constant!");
1364 
1365   EVT EltVT = VT.getScalarType();
1366   const ConstantInt *Elt = &Val;
1367 
1368   // In some cases the vector type is legal but the element type is illegal and
1369   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1370   // inserted value (the type does not need to match the vector element type).
1371   // Any extra bits introduced will be truncated away.
1372   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1373                            TargetLowering::TypePromoteInteger) {
1374     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1375     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1376     Elt = ConstantInt::get(*getContext(), NewVal);
1377   }
1378   // In other cases the element type is illegal and needs to be expanded, for
1379   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1380   // the value into n parts and use a vector type with n-times the elements.
1381   // Then bitcast to the type requested.
1382   // Legalizing constants too early makes the DAGCombiner's job harder so we
1383   // only legalize if the DAG tells us we must produce legal types.
1384   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1385            TLI->getTypeAction(*getContext(), EltVT) ==
1386                TargetLowering::TypeExpandInteger) {
1387     const APInt &NewVal = Elt->getValue();
1388     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1389     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1390 
1391     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1392     if (VT.isScalableVector()) {
1393       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1394              "Can only handle an even split!");
1395       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1396 
1397       SmallVector<SDValue, 2> ScalarParts;
1398       for (unsigned i = 0; i != Parts; ++i)
1399         ScalarParts.push_back(getConstant(
1400             NewVal.lshr(i * ViaEltSizeInBits).trunc(ViaEltSizeInBits), DL,
1401             ViaEltVT, isT, isO));
1402 
1403       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1404     }
1405 
1406     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1407     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1408 
1409     // Check the temporary vector is the correct size. If this fails then
1410     // getTypeToTransformTo() probably returned a type whose size (in bits)
1411     // isn't a power-of-2 factor of the requested type size.
1412     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1413 
1414     SmallVector<SDValue, 2> EltParts;
1415     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1416       EltParts.push_back(getConstant(
1417           NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL,
1418           ViaEltVT, isT, isO));
1419     }
1420 
1421     // EltParts is currently in little endian order. If we actually want
1422     // big-endian order then reverse it now.
1423     if (getDataLayout().isBigEndian())
1424       std::reverse(EltParts.begin(), EltParts.end());
1425 
1426     // The elements must be reversed when the element order is different
1427     // to the endianness of the elements (because the BITCAST is itself a
1428     // vector shuffle in this situation). However, we do not need any code to
1429     // perform this reversal because getConstant() is producing a vector
1430     // splat.
1431     // This situation occurs in MIPS MSA.
1432 
1433     SmallVector<SDValue, 8> Ops;
1434     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1435       llvm::append_range(Ops, EltParts);
1436 
1437     SDValue V =
1438         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1439     return V;
1440   }
1441 
1442   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1443          "APInt size does not match type size!");
1444   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1445   FoldingSetNodeID ID;
1446   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1447   ID.AddPointer(Elt);
1448   ID.AddBoolean(isO);
1449   void *IP = nullptr;
1450   SDNode *N = nullptr;
1451   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1452     if (!VT.isVector())
1453       return SDValue(N, 0);
1454 
1455   if (!N) {
1456     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1457     CSEMap.InsertNode(N, IP);
1458     InsertNode(N);
1459     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1460   }
1461 
1462   SDValue Result(N, 0);
1463   if (VT.isScalableVector())
1464     Result = getSplatVector(VT, DL, Result);
1465   else if (VT.isVector())
1466     Result = getSplatBuildVector(VT, DL, Result);
1467 
1468   return Result;
1469 }
1470 
getIntPtrConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1471 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1472                                         bool isTarget) {
1473   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1474 }
1475 
getShiftAmountConstant(uint64_t Val,EVT VT,const SDLoc & DL,bool LegalTypes)1476 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1477                                              const SDLoc &DL, bool LegalTypes) {
1478   assert(VT.isInteger() && "Shift amount is not an integer type!");
1479   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1480   return getConstant(Val, DL, ShiftVT);
1481 }
1482 
getVectorIdxConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1483 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1484                                            bool isTarget) {
1485   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1486 }
1487 
getConstantFP(const APFloat & V,const SDLoc & DL,EVT VT,bool isTarget)1488 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1489                                     bool isTarget) {
1490   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1491 }
1492 
getConstantFP(const ConstantFP & V,const SDLoc & DL,EVT VT,bool isTarget)1493 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1494                                     EVT VT, bool isTarget) {
1495   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1496 
1497   EVT EltVT = VT.getScalarType();
1498 
1499   // Do the map lookup using the actual bit pattern for the floating point
1500   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1501   // we don't have issues with SNANs.
1502   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1503   FoldingSetNodeID ID;
1504   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1505   ID.AddPointer(&V);
1506   void *IP = nullptr;
1507   SDNode *N = nullptr;
1508   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1509     if (!VT.isVector())
1510       return SDValue(N, 0);
1511 
1512   if (!N) {
1513     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1514     CSEMap.InsertNode(N, IP);
1515     InsertNode(N);
1516   }
1517 
1518   SDValue Result(N, 0);
1519   if (VT.isScalableVector())
1520     Result = getSplatVector(VT, DL, Result);
1521   else if (VT.isVector())
1522     Result = getSplatBuildVector(VT, DL, Result);
1523   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1524   return Result;
1525 }
1526 
getConstantFP(double Val,const SDLoc & DL,EVT VT,bool isTarget)1527 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1528                                     bool isTarget) {
1529   EVT EltVT = VT.getScalarType();
1530   if (EltVT == MVT::f32)
1531     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1532   if (EltVT == MVT::f64)
1533     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1534   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1535       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1536     bool Ignored;
1537     APFloat APF = APFloat(Val);
1538     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1539                 &Ignored);
1540     return getConstantFP(APF, DL, VT, isTarget);
1541   }
1542   llvm_unreachable("Unsupported type in getConstantFP");
1543 }
1544 
getGlobalAddress(const GlobalValue * GV,const SDLoc & DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned TargetFlags)1545 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1546                                        EVT VT, int64_t Offset, bool isTargetGA,
1547                                        unsigned TargetFlags) {
1548   assert((TargetFlags == 0 || isTargetGA) &&
1549          "Cannot set target flags on target-independent globals");
1550 
1551   // Truncate (with sign-extension) the offset value to the pointer size.
1552   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1553   if (BitWidth < 64)
1554     Offset = SignExtend64(Offset, BitWidth);
1555 
1556   unsigned Opc;
1557   if (GV->isThreadLocal())
1558     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1559   else
1560     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1561 
1562   FoldingSetNodeID ID;
1563   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1564   ID.AddPointer(GV);
1565   ID.AddInteger(Offset);
1566   ID.AddInteger(TargetFlags);
1567   void *IP = nullptr;
1568   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1569     return SDValue(E, 0);
1570 
1571   auto *N = newSDNode<GlobalAddressSDNode>(
1572       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1573   CSEMap.InsertNode(N, IP);
1574     InsertNode(N);
1575   return SDValue(N, 0);
1576 }
1577 
getFrameIndex(int FI,EVT VT,bool isTarget)1578 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1579   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1580   FoldingSetNodeID ID;
1581   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1582   ID.AddInteger(FI);
1583   void *IP = nullptr;
1584   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1585     return SDValue(E, 0);
1586 
1587   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1588   CSEMap.InsertNode(N, IP);
1589   InsertNode(N);
1590   return SDValue(N, 0);
1591 }
1592 
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned TargetFlags)1593 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1594                                    unsigned TargetFlags) {
1595   assert((TargetFlags == 0 || isTarget) &&
1596          "Cannot set target flags on target-independent jump tables");
1597   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1598   FoldingSetNodeID ID;
1599   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1600   ID.AddInteger(JTI);
1601   ID.AddInteger(TargetFlags);
1602   void *IP = nullptr;
1603   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1604     return SDValue(E, 0);
1605 
1606   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1607   CSEMap.InsertNode(N, IP);
1608   InsertNode(N);
1609   return SDValue(N, 0);
1610 }
1611 
getConstantPool(const Constant * C,EVT VT,MaybeAlign Alignment,int Offset,bool isTarget,unsigned TargetFlags)1612 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1613                                       MaybeAlign Alignment, int Offset,
1614                                       bool isTarget, unsigned TargetFlags) {
1615   assert((TargetFlags == 0 || isTarget) &&
1616          "Cannot set target flags on target-independent globals");
1617   if (!Alignment)
1618     Alignment = shouldOptForSize()
1619                     ? getDataLayout().getABITypeAlign(C->getType())
1620                     : getDataLayout().getPrefTypeAlign(C->getType());
1621   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1622   FoldingSetNodeID ID;
1623   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1624   ID.AddInteger(Alignment->value());
1625   ID.AddInteger(Offset);
1626   ID.AddPointer(C);
1627   ID.AddInteger(TargetFlags);
1628   void *IP = nullptr;
1629   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1630     return SDValue(E, 0);
1631 
1632   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1633                                           TargetFlags);
1634   CSEMap.InsertNode(N, IP);
1635   InsertNode(N);
1636   SDValue V = SDValue(N, 0);
1637   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1638   return V;
1639 }
1640 
getConstantPool(MachineConstantPoolValue * C,EVT VT,MaybeAlign Alignment,int Offset,bool isTarget,unsigned TargetFlags)1641 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1642                                       MaybeAlign Alignment, int Offset,
1643                                       bool isTarget, unsigned TargetFlags) {
1644   assert((TargetFlags == 0 || isTarget) &&
1645          "Cannot set target flags on target-independent globals");
1646   if (!Alignment)
1647     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1648   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1649   FoldingSetNodeID ID;
1650   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1651   ID.AddInteger(Alignment->value());
1652   ID.AddInteger(Offset);
1653   C->addSelectionDAGCSEId(ID);
1654   ID.AddInteger(TargetFlags);
1655   void *IP = nullptr;
1656   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1657     return SDValue(E, 0);
1658 
1659   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1660                                           TargetFlags);
1661   CSEMap.InsertNode(N, IP);
1662   InsertNode(N);
1663   return SDValue(N, 0);
1664 }
1665 
getTargetIndex(int Index,EVT VT,int64_t Offset,unsigned TargetFlags)1666 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1667                                      unsigned TargetFlags) {
1668   FoldingSetNodeID ID;
1669   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1670   ID.AddInteger(Index);
1671   ID.AddInteger(Offset);
1672   ID.AddInteger(TargetFlags);
1673   void *IP = nullptr;
1674   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1675     return SDValue(E, 0);
1676 
1677   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1678   CSEMap.InsertNode(N, IP);
1679   InsertNode(N);
1680   return SDValue(N, 0);
1681 }
1682 
getBasicBlock(MachineBasicBlock * MBB)1683 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1684   FoldingSetNodeID ID;
1685   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1686   ID.AddPointer(MBB);
1687   void *IP = nullptr;
1688   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1689     return SDValue(E, 0);
1690 
1691   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1692   CSEMap.InsertNode(N, IP);
1693   InsertNode(N);
1694   return SDValue(N, 0);
1695 }
1696 
getValueType(EVT VT)1697 SDValue SelectionDAG::getValueType(EVT VT) {
1698   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1699       ValueTypeNodes.size())
1700     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1701 
1702   SDNode *&N = VT.isExtended() ?
1703     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1704 
1705   if (N) return SDValue(N, 0);
1706   N = newSDNode<VTSDNode>(VT);
1707   InsertNode(N);
1708   return SDValue(N, 0);
1709 }
1710 
getExternalSymbol(const char * Sym,EVT VT)1711 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1712   SDNode *&N = ExternalSymbols[Sym];
1713   if (N) return SDValue(N, 0);
1714   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1715   InsertNode(N);
1716   return SDValue(N, 0);
1717 }
1718 
getMCSymbol(MCSymbol * Sym,EVT VT)1719 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1720   SDNode *&N = MCSymbols[Sym];
1721   if (N)
1722     return SDValue(N, 0);
1723   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1724   InsertNode(N);
1725   return SDValue(N, 0);
1726 }
1727 
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned TargetFlags)1728 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1729                                               unsigned TargetFlags) {
1730   SDNode *&N =
1731       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1732   if (N) return SDValue(N, 0);
1733   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1734   InsertNode(N);
1735   return SDValue(N, 0);
1736 }
1737 
getCondCode(ISD::CondCode Cond)1738 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1739   if ((unsigned)Cond >= CondCodeNodes.size())
1740     CondCodeNodes.resize(Cond+1);
1741 
1742   if (!CondCodeNodes[Cond]) {
1743     auto *N = newSDNode<CondCodeSDNode>(Cond);
1744     CondCodeNodes[Cond] = N;
1745     InsertNode(N);
1746   }
1747 
1748   return SDValue(CondCodeNodes[Cond], 0);
1749 }
1750 
getStepVector(const SDLoc & DL,EVT ResVT,SDValue Step)1751 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, SDValue Step) {
1752   if (ResVT.isScalableVector())
1753     return getNode(ISD::STEP_VECTOR, DL, ResVT, Step);
1754 
1755   EVT OpVT = Step.getValueType();
1756   APInt StepVal = cast<ConstantSDNode>(Step)->getAPIntValue();
1757   SmallVector<SDValue, 16> OpsStepConstants;
1758   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1759     OpsStepConstants.push_back(getConstant(StepVal * i, DL, OpVT));
1760   return getBuildVector(ResVT, DL, OpsStepConstants);
1761 }
1762 
1763 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1764 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,MutableArrayRef<int> M)1765 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1766   std::swap(N1, N2);
1767   ShuffleVectorSDNode::commuteMask(M);
1768 }
1769 
getVectorShuffle(EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask)1770 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1771                                        SDValue N2, ArrayRef<int> Mask) {
1772   assert(VT.getVectorNumElements() == Mask.size() &&
1773            "Must have the same number of vector elements as mask elements!");
1774   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1775          "Invalid VECTOR_SHUFFLE");
1776 
1777   // Canonicalize shuffle undef, undef -> undef
1778   if (N1.isUndef() && N2.isUndef())
1779     return getUNDEF(VT);
1780 
1781   // Validate that all indices in Mask are within the range of the elements
1782   // input to the shuffle.
1783   int NElts = Mask.size();
1784   assert(llvm::all_of(Mask,
1785                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1786          "Index out of range");
1787 
1788   // Copy the mask so we can do any needed cleanup.
1789   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1790 
1791   // Canonicalize shuffle v, v -> v, undef
1792   if (N1 == N2) {
1793     N2 = getUNDEF(VT);
1794     for (int i = 0; i != NElts; ++i)
1795       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1796   }
1797 
1798   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1799   if (N1.isUndef())
1800     commuteShuffle(N1, N2, MaskVec);
1801 
1802   if (TLI->hasVectorBlend()) {
1803     // If shuffling a splat, try to blend the splat instead. We do this here so
1804     // that even when this arises during lowering we don't have to re-handle it.
1805     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1806       BitVector UndefElements;
1807       SDValue Splat = BV->getSplatValue(&UndefElements);
1808       if (!Splat)
1809         return;
1810 
1811       for (int i = 0; i < NElts; ++i) {
1812         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1813           continue;
1814 
1815         // If this input comes from undef, mark it as such.
1816         if (UndefElements[MaskVec[i] - Offset]) {
1817           MaskVec[i] = -1;
1818           continue;
1819         }
1820 
1821         // If we can blend a non-undef lane, use that instead.
1822         if (!UndefElements[i])
1823           MaskVec[i] = i + Offset;
1824       }
1825     };
1826     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1827       BlendSplat(N1BV, 0);
1828     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1829       BlendSplat(N2BV, NElts);
1830   }
1831 
1832   // Canonicalize all index into lhs, -> shuffle lhs, undef
1833   // Canonicalize all index into rhs, -> shuffle rhs, undef
1834   bool AllLHS = true, AllRHS = true;
1835   bool N2Undef = N2.isUndef();
1836   for (int i = 0; i != NElts; ++i) {
1837     if (MaskVec[i] >= NElts) {
1838       if (N2Undef)
1839         MaskVec[i] = -1;
1840       else
1841         AllLHS = false;
1842     } else if (MaskVec[i] >= 0) {
1843       AllRHS = false;
1844     }
1845   }
1846   if (AllLHS && AllRHS)
1847     return getUNDEF(VT);
1848   if (AllLHS && !N2Undef)
1849     N2 = getUNDEF(VT);
1850   if (AllRHS) {
1851     N1 = getUNDEF(VT);
1852     commuteShuffle(N1, N2, MaskVec);
1853   }
1854   // Reset our undef status after accounting for the mask.
1855   N2Undef = N2.isUndef();
1856   // Re-check whether both sides ended up undef.
1857   if (N1.isUndef() && N2Undef)
1858     return getUNDEF(VT);
1859 
1860   // If Identity shuffle return that node.
1861   bool Identity = true, AllSame = true;
1862   for (int i = 0; i != NElts; ++i) {
1863     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1864     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1865   }
1866   if (Identity && NElts)
1867     return N1;
1868 
1869   // Shuffling a constant splat doesn't change the result.
1870   if (N2Undef) {
1871     SDValue V = N1;
1872 
1873     // Look through any bitcasts. We check that these don't change the number
1874     // (and size) of elements and just changes their types.
1875     while (V.getOpcode() == ISD::BITCAST)
1876       V = V->getOperand(0);
1877 
1878     // A splat should always show up as a build vector node.
1879     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1880       BitVector UndefElements;
1881       SDValue Splat = BV->getSplatValue(&UndefElements);
1882       // If this is a splat of an undef, shuffling it is also undef.
1883       if (Splat && Splat.isUndef())
1884         return getUNDEF(VT);
1885 
1886       bool SameNumElts =
1887           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1888 
1889       // We only have a splat which can skip shuffles if there is a splatted
1890       // value and no undef lanes rearranged by the shuffle.
1891       if (Splat && UndefElements.none()) {
1892         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1893         // number of elements match or the value splatted is a zero constant.
1894         if (SameNumElts)
1895           return N1;
1896         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1897           if (C->isNullValue())
1898             return N1;
1899       }
1900 
1901       // If the shuffle itself creates a splat, build the vector directly.
1902       if (AllSame && SameNumElts) {
1903         EVT BuildVT = BV->getValueType(0);
1904         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1905         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1906 
1907         // We may have jumped through bitcasts, so the type of the
1908         // BUILD_VECTOR may not match the type of the shuffle.
1909         if (BuildVT != VT)
1910           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1911         return NewBV;
1912       }
1913     }
1914   }
1915 
1916   FoldingSetNodeID ID;
1917   SDValue Ops[2] = { N1, N2 };
1918   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1919   for (int i = 0; i != NElts; ++i)
1920     ID.AddInteger(MaskVec[i]);
1921 
1922   void* IP = nullptr;
1923   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1924     return SDValue(E, 0);
1925 
1926   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1927   // SDNode doesn't have access to it.  This memory will be "leaked" when
1928   // the node is deallocated, but recovered when the NodeAllocator is released.
1929   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1930   llvm::copy(MaskVec, MaskAlloc);
1931 
1932   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1933                                            dl.getDebugLoc(), MaskAlloc);
1934   createOperands(N, Ops);
1935 
1936   CSEMap.InsertNode(N, IP);
1937   InsertNode(N);
1938   SDValue V = SDValue(N, 0);
1939   NewSDValueDbgMsg(V, "Creating new node: ", this);
1940   return V;
1941 }
1942 
getCommutedVectorShuffle(const ShuffleVectorSDNode & SV)1943 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1944   EVT VT = SV.getValueType(0);
1945   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1946   ShuffleVectorSDNode::commuteMask(MaskVec);
1947 
1948   SDValue Op0 = SV.getOperand(0);
1949   SDValue Op1 = SV.getOperand(1);
1950   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1951 }
1952 
getRegister(unsigned RegNo,EVT VT)1953 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1954   FoldingSetNodeID ID;
1955   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1956   ID.AddInteger(RegNo);
1957   void *IP = nullptr;
1958   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1959     return SDValue(E, 0);
1960 
1961   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1962   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1963   CSEMap.InsertNode(N, IP);
1964   InsertNode(N);
1965   return SDValue(N, 0);
1966 }
1967 
getRegisterMask(const uint32_t * RegMask)1968 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1969   FoldingSetNodeID ID;
1970   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1971   ID.AddPointer(RegMask);
1972   void *IP = nullptr;
1973   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1974     return SDValue(E, 0);
1975 
1976   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1977   CSEMap.InsertNode(N, IP);
1978   InsertNode(N);
1979   return SDValue(N, 0);
1980 }
1981 
getEHLabel(const SDLoc & dl,SDValue Root,MCSymbol * Label)1982 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1983                                  MCSymbol *Label) {
1984   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1985 }
1986 
getLabelNode(unsigned Opcode,const SDLoc & dl,SDValue Root,MCSymbol * Label)1987 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1988                                    SDValue Root, MCSymbol *Label) {
1989   FoldingSetNodeID ID;
1990   SDValue Ops[] = { Root };
1991   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1992   ID.AddPointer(Label);
1993   void *IP = nullptr;
1994   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1995     return SDValue(E, 0);
1996 
1997   auto *N =
1998       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1999   createOperands(N, Ops);
2000 
2001   CSEMap.InsertNode(N, IP);
2002   InsertNode(N);
2003   return SDValue(N, 0);
2004 }
2005 
getBlockAddress(const BlockAddress * BA,EVT VT,int64_t Offset,bool isTarget,unsigned TargetFlags)2006 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2007                                       int64_t Offset, bool isTarget,
2008                                       unsigned TargetFlags) {
2009   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2010 
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2013   ID.AddPointer(BA);
2014   ID.AddInteger(Offset);
2015   ID.AddInteger(TargetFlags);
2016   void *IP = nullptr;
2017   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2018     return SDValue(E, 0);
2019 
2020   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2021   CSEMap.InsertNode(N, IP);
2022   InsertNode(N);
2023   return SDValue(N, 0);
2024 }
2025 
getSrcValue(const Value * V)2026 SDValue SelectionDAG::getSrcValue(const Value *V) {
2027   FoldingSetNodeID ID;
2028   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2029   ID.AddPointer(V);
2030 
2031   void *IP = nullptr;
2032   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2033     return SDValue(E, 0);
2034 
2035   auto *N = newSDNode<SrcValueSDNode>(V);
2036   CSEMap.InsertNode(N, IP);
2037   InsertNode(N);
2038   return SDValue(N, 0);
2039 }
2040 
getMDNode(const MDNode * MD)2041 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2042   FoldingSetNodeID ID;
2043   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2044   ID.AddPointer(MD);
2045 
2046   void *IP = nullptr;
2047   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2048     return SDValue(E, 0);
2049 
2050   auto *N = newSDNode<MDNodeSDNode>(MD);
2051   CSEMap.InsertNode(N, IP);
2052   InsertNode(N);
2053   return SDValue(N, 0);
2054 }
2055 
getBitcast(EVT VT,SDValue V)2056 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2057   if (VT == V.getValueType())
2058     return V;
2059 
2060   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2061 }
2062 
getAddrSpaceCast(const SDLoc & dl,EVT VT,SDValue Ptr,unsigned SrcAS,unsigned DestAS)2063 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2064                                        unsigned SrcAS, unsigned DestAS) {
2065   SDValue Ops[] = {Ptr};
2066   FoldingSetNodeID ID;
2067   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2068   ID.AddInteger(SrcAS);
2069   ID.AddInteger(DestAS);
2070 
2071   void *IP = nullptr;
2072   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2073     return SDValue(E, 0);
2074 
2075   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2076                                            VT, SrcAS, DestAS);
2077   createOperands(N, Ops);
2078 
2079   CSEMap.InsertNode(N, IP);
2080   InsertNode(N);
2081   return SDValue(N, 0);
2082 }
2083 
getFreeze(SDValue V)2084 SDValue SelectionDAG::getFreeze(SDValue V) {
2085   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2086 }
2087 
2088 /// getShiftAmountOperand - Return the specified value casted to
2089 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)2090 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2091   EVT OpTy = Op.getValueType();
2092   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2093   if (OpTy == ShTy || OpTy.isVector()) return Op;
2094 
2095   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2096 }
2097 
expandVAArg(SDNode * Node)2098 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2099   SDLoc dl(Node);
2100   const TargetLowering &TLI = getTargetLoweringInfo();
2101   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2102   EVT VT = Node->getValueType(0);
2103   SDValue Tmp1 = Node->getOperand(0);
2104   SDValue Tmp2 = Node->getOperand(1);
2105   const MaybeAlign MA(Node->getConstantOperandVal(3));
2106 
2107   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2108                                Tmp2, MachinePointerInfo(V));
2109   SDValue VAList = VAListLoad;
2110 
2111   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2112     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2113                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2114 
2115     VAList =
2116         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2117                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2118   }
2119 
2120   // Increment the pointer, VAList, to the next vaarg
2121   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2122                  getConstant(getDataLayout().getTypeAllocSize(
2123                                                VT.getTypeForEVT(*getContext())),
2124                              dl, VAList.getValueType()));
2125   // Store the incremented VAList to the legalized pointer
2126   Tmp1 =
2127       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2128   // Load the actual argument out of the pointer VAList
2129   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2130 }
2131 
expandVACopy(SDNode * Node)2132 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2133   SDLoc dl(Node);
2134   const TargetLowering &TLI = getTargetLoweringInfo();
2135   // This defaults to loading a pointer from the input and storing it to the
2136   // output, returning the chain.
2137   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2138   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2139   SDValue Tmp1 =
2140       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2141               Node->getOperand(2), MachinePointerInfo(VS));
2142   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2143                   MachinePointerInfo(VD));
2144 }
2145 
getReducedAlign(EVT VT,bool UseABI)2146 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2147   const DataLayout &DL = getDataLayout();
2148   Type *Ty = VT.getTypeForEVT(*getContext());
2149   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2150 
2151   if (TLI->isTypeLegal(VT) || !VT.isVector())
2152     return RedAlign;
2153 
2154   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2155   const Align StackAlign = TFI->getStackAlign();
2156 
2157   // See if we can choose a smaller ABI alignment in cases where it's an
2158   // illegal vector type that will get broken down.
2159   if (RedAlign > StackAlign) {
2160     EVT IntermediateVT;
2161     MVT RegisterVT;
2162     unsigned NumIntermediates;
2163     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2164                                 NumIntermediates, RegisterVT);
2165     Ty = IntermediateVT.getTypeForEVT(*getContext());
2166     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2167     if (RedAlign2 < RedAlign)
2168       RedAlign = RedAlign2;
2169   }
2170 
2171   return RedAlign;
2172 }
2173 
CreateStackTemporary(TypeSize Bytes,Align Alignment)2174 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2175   MachineFrameInfo &MFI = MF->getFrameInfo();
2176   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2177   int StackID = 0;
2178   if (Bytes.isScalable())
2179     StackID = TFI->getStackIDForScalableVectors();
2180   // The stack id gives an indication of whether the object is scalable or
2181   // not, so it's safe to pass in the minimum size here.
2182   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2183                                        false, nullptr, StackID);
2184   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2185 }
2186 
CreateStackTemporary(EVT VT,unsigned minAlign)2187 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2188   Type *Ty = VT.getTypeForEVT(*getContext());
2189   Align StackAlign =
2190       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2191   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2192 }
2193 
CreateStackTemporary(EVT VT1,EVT VT2)2194 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2195   TypeSize VT1Size = VT1.getStoreSize();
2196   TypeSize VT2Size = VT2.getStoreSize();
2197   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2198          "Don't know how to choose the maximum size when creating a stack "
2199          "temporary");
2200   TypeSize Bytes =
2201       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2202 
2203   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2204   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2205   const DataLayout &DL = getDataLayout();
2206   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2207   return CreateStackTemporary(Bytes, Align);
2208 }
2209 
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,const SDLoc & dl)2210 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2211                                 ISD::CondCode Cond, const SDLoc &dl) {
2212   EVT OpVT = N1.getValueType();
2213 
2214   // These setcc operations always fold.
2215   switch (Cond) {
2216   default: break;
2217   case ISD::SETFALSE:
2218   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2219   case ISD::SETTRUE:
2220   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2221 
2222   case ISD::SETOEQ:
2223   case ISD::SETOGT:
2224   case ISD::SETOGE:
2225   case ISD::SETOLT:
2226   case ISD::SETOLE:
2227   case ISD::SETONE:
2228   case ISD::SETO:
2229   case ISD::SETUO:
2230   case ISD::SETUEQ:
2231   case ISD::SETUNE:
2232     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2233     break;
2234   }
2235 
2236   if (OpVT.isInteger()) {
2237     // For EQ and NE, we can always pick a value for the undef to make the
2238     // predicate pass or fail, so we can return undef.
2239     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2240     // icmp eq/ne X, undef -> undef.
2241     if ((N1.isUndef() || N2.isUndef()) &&
2242         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2243       return getUNDEF(VT);
2244 
2245     // If both operands are undef, we can return undef for int comparison.
2246     // icmp undef, undef -> undef.
2247     if (N1.isUndef() && N2.isUndef())
2248       return getUNDEF(VT);
2249 
2250     // icmp X, X -> true/false
2251     // icmp X, undef -> true/false because undef could be X.
2252     if (N1 == N2)
2253       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2254   }
2255 
2256   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2257     const APInt &C2 = N2C->getAPIntValue();
2258     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2259       const APInt &C1 = N1C->getAPIntValue();
2260 
2261       switch (Cond) {
2262       default: llvm_unreachable("Unknown integer setcc!");
2263       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2264       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2265       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2266       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2267       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2268       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2269       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2270       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2271       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2272       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2273       }
2274     }
2275   }
2276 
2277   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2278   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2279 
2280   if (N1CFP && N2CFP) {
2281     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2282     switch (Cond) {
2283     default: break;
2284     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2285                         return getUNDEF(VT);
2286                       LLVM_FALLTHROUGH;
2287     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2288                                              OpVT);
2289     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2290                         return getUNDEF(VT);
2291                       LLVM_FALLTHROUGH;
2292     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2293                                              R==APFloat::cmpLessThan, dl, VT,
2294                                              OpVT);
2295     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2296                         return getUNDEF(VT);
2297                       LLVM_FALLTHROUGH;
2298     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2299                                              OpVT);
2300     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2301                         return getUNDEF(VT);
2302                       LLVM_FALLTHROUGH;
2303     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2304                                              VT, OpVT);
2305     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2306                         return getUNDEF(VT);
2307                       LLVM_FALLTHROUGH;
2308     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2309                                              R==APFloat::cmpEqual, dl, VT,
2310                                              OpVT);
2311     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2312                         return getUNDEF(VT);
2313                       LLVM_FALLTHROUGH;
2314     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2315                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2316     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2317                                              OpVT);
2318     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2319                                              OpVT);
2320     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2321                                              R==APFloat::cmpEqual, dl, VT,
2322                                              OpVT);
2323     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2324                                              OpVT);
2325     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2326                                              R==APFloat::cmpLessThan, dl, VT,
2327                                              OpVT);
2328     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2329                                              R==APFloat::cmpUnordered, dl, VT,
2330                                              OpVT);
2331     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2332                                              VT, OpVT);
2333     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2334                                              OpVT);
2335     }
2336   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2337     // Ensure that the constant occurs on the RHS.
2338     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2339     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2340       return SDValue();
2341     return getSetCC(dl, VT, N2, N1, SwappedCond);
2342   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2343              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2344     // If an operand is known to be a nan (or undef that could be a nan), we can
2345     // fold it.
2346     // Choosing NaN for the undef will always make unordered comparison succeed
2347     // and ordered comparison fails.
2348     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2349     switch (ISD::getUnorderedFlavor(Cond)) {
2350     default:
2351       llvm_unreachable("Unknown flavor!");
2352     case 0: // Known false.
2353       return getBoolConstant(false, dl, VT, OpVT);
2354     case 1: // Known true.
2355       return getBoolConstant(true, dl, VT, OpVT);
2356     case 2: // Undefined.
2357       return getUNDEF(VT);
2358     }
2359   }
2360 
2361   // Could not fold it.
2362   return SDValue();
2363 }
2364 
2365 /// See if the specified operand can be simplified with the knowledge that only
2366 /// the bits specified by DemandedBits are used.
2367 /// TODO: really we should be making this into the DAG equivalent of
2368 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits)2369 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2370   EVT VT = V.getValueType();
2371 
2372   if (VT.isScalableVector())
2373     return SDValue();
2374 
2375   APInt DemandedElts = VT.isVector()
2376                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2377                            : APInt(1, 1);
2378   return GetDemandedBits(V, DemandedBits, DemandedElts);
2379 }
2380 
2381 /// See if the specified operand can be simplified with the knowledge that only
2382 /// the bits specified by DemandedBits are used in the elements specified by
2383 /// DemandedElts.
2384 /// TODO: really we should be making this into the DAG equivalent of
2385 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits,const APInt & DemandedElts)2386 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2387                                       const APInt &DemandedElts) {
2388   switch (V.getOpcode()) {
2389   default:
2390     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2391                                                 *this, 0);
2392   case ISD::Constant: {
2393     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2394     APInt NewVal = CVal & DemandedBits;
2395     if (NewVal != CVal)
2396       return getConstant(NewVal, SDLoc(V), V.getValueType());
2397     break;
2398   }
2399   case ISD::SRL:
2400     // Only look at single-use SRLs.
2401     if (!V.getNode()->hasOneUse())
2402       break;
2403     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2404       // See if we can recursively simplify the LHS.
2405       unsigned Amt = RHSC->getZExtValue();
2406 
2407       // Watch out for shift count overflow though.
2408       if (Amt >= DemandedBits.getBitWidth())
2409         break;
2410       APInt SrcDemandedBits = DemandedBits << Amt;
2411       if (SDValue SimplifyLHS =
2412               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2413         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2414                        V.getOperand(1));
2415     }
2416     break;
2417   }
2418   return SDValue();
2419 }
2420 
2421 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2422 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const2423 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2424   unsigned BitWidth = Op.getScalarValueSizeInBits();
2425   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2426 }
2427 
2428 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2429 /// this predicate to simplify operations downstream.  Mask is known to be zero
2430 /// for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,unsigned Depth) const2431 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2432                                      unsigned Depth) const {
2433   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2434 }
2435 
2436 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2437 /// DemandedElts.  We use this predicate to simplify operations downstream.
2438 /// Mask is known to be zero for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,const APInt & DemandedElts,unsigned Depth) const2439 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2440                                      const APInt &DemandedElts,
2441                                      unsigned Depth) const {
2442   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2443 }
2444 
2445 /// Return true if the DemandedElts of the vector Op are all zero.  We
2446 /// use this predicate to simplify operations downstream.
MaskedElementsAreZero(SDValue Op,const APInt & DemandedElts,unsigned Depth) const2447 bool SelectionDAG::MaskedElementsAreZero(SDValue Op, const APInt &DemandedElts,
2448                                          unsigned Depth) const {
2449   unsigned BitWidth = Op.getScalarValueSizeInBits();
2450   APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
2451   return MaskedValueIsZero(Op, DemandedBits, DemandedElts, Depth);
2452 }
2453 
2454 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
MaskedValueIsAllOnes(SDValue V,const APInt & Mask,unsigned Depth) const2455 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2456                                         unsigned Depth) const {
2457   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2458 }
2459 
2460 /// isSplatValue - Return true if the vector V has the same value
2461 /// across all DemandedElts. For scalable vectors it does not make
2462 /// sense to specify which elements are demanded or undefined, therefore
2463 /// they are simply ignored.
isSplatValue(SDValue V,const APInt & DemandedElts,APInt & UndefElts,unsigned Depth)2464 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2465                                 APInt &UndefElts, unsigned Depth) {
2466   EVT VT = V.getValueType();
2467   assert(VT.isVector() && "Vector type expected");
2468 
2469   if (!VT.isScalableVector() && !DemandedElts)
2470     return false; // No demanded elts, better to assume we don't know anything.
2471 
2472   if (Depth >= MaxRecursionDepth)
2473     return false; // Limit search depth.
2474 
2475   // Deal with some common cases here that work for both fixed and scalable
2476   // vector types.
2477   switch (V.getOpcode()) {
2478   case ISD::SPLAT_VECTOR:
2479     UndefElts = V.getOperand(0).isUndef()
2480                     ? APInt::getAllOnesValue(DemandedElts.getBitWidth())
2481                     : APInt(DemandedElts.getBitWidth(), 0);
2482     return true;
2483   case ISD::ADD:
2484   case ISD::SUB:
2485   case ISD::AND:
2486   case ISD::XOR:
2487   case ISD::OR: {
2488     APInt UndefLHS, UndefRHS;
2489     SDValue LHS = V.getOperand(0);
2490     SDValue RHS = V.getOperand(1);
2491     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2492         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2493       UndefElts = UndefLHS | UndefRHS;
2494       return true;
2495     }
2496     return false;
2497   }
2498   case ISD::ABS:
2499   case ISD::TRUNCATE:
2500   case ISD::SIGN_EXTEND:
2501   case ISD::ZERO_EXTEND:
2502     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2503   }
2504 
2505   // We don't support other cases than those above for scalable vectors at
2506   // the moment.
2507   if (VT.isScalableVector())
2508     return false;
2509 
2510   unsigned NumElts = VT.getVectorNumElements();
2511   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2512   UndefElts = APInt::getNullValue(NumElts);
2513 
2514   switch (V.getOpcode()) {
2515   case ISD::BUILD_VECTOR: {
2516     SDValue Scl;
2517     for (unsigned i = 0; i != NumElts; ++i) {
2518       SDValue Op = V.getOperand(i);
2519       if (Op.isUndef()) {
2520         UndefElts.setBit(i);
2521         continue;
2522       }
2523       if (!DemandedElts[i])
2524         continue;
2525       if (Scl && Scl != Op)
2526         return false;
2527       Scl = Op;
2528     }
2529     return true;
2530   }
2531   case ISD::VECTOR_SHUFFLE: {
2532     // Check if this is a shuffle node doing a splat.
2533     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2534     int SplatIndex = -1;
2535     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2536     for (int i = 0; i != (int)NumElts; ++i) {
2537       int M = Mask[i];
2538       if (M < 0) {
2539         UndefElts.setBit(i);
2540         continue;
2541       }
2542       if (!DemandedElts[i])
2543         continue;
2544       if (0 <= SplatIndex && SplatIndex != M)
2545         return false;
2546       SplatIndex = M;
2547     }
2548     return true;
2549   }
2550   case ISD::EXTRACT_SUBVECTOR: {
2551     // Offset the demanded elts by the subvector index.
2552     SDValue Src = V.getOperand(0);
2553     // We don't support scalable vectors at the moment.
2554     if (Src.getValueType().isScalableVector())
2555       return false;
2556     uint64_t Idx = V.getConstantOperandVal(1);
2557     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2558     APInt UndefSrcElts;
2559     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2560     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2561       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2562       return true;
2563     }
2564     break;
2565   }
2566   }
2567 
2568   return false;
2569 }
2570 
2571 /// Helper wrapper to main isSplatValue function.
isSplatValue(SDValue V,bool AllowUndefs)2572 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2573   EVT VT = V.getValueType();
2574   assert(VT.isVector() && "Vector type expected");
2575 
2576   APInt UndefElts;
2577   APInt DemandedElts;
2578 
2579   // For now we don't support this with scalable vectors.
2580   if (!VT.isScalableVector())
2581     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2582   return isSplatValue(V, DemandedElts, UndefElts) &&
2583          (AllowUndefs || !UndefElts);
2584 }
2585 
getSplatSourceVector(SDValue V,int & SplatIdx)2586 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2587   V = peekThroughExtractSubvectors(V);
2588 
2589   EVT VT = V.getValueType();
2590   unsigned Opcode = V.getOpcode();
2591   switch (Opcode) {
2592   default: {
2593     APInt UndefElts;
2594     APInt DemandedElts;
2595 
2596     if (!VT.isScalableVector())
2597       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2598 
2599     if (isSplatValue(V, DemandedElts, UndefElts)) {
2600       if (VT.isScalableVector()) {
2601         // DemandedElts and UndefElts are ignored for scalable vectors, since
2602         // the only supported cases are SPLAT_VECTOR nodes.
2603         SplatIdx = 0;
2604       } else {
2605         // Handle case where all demanded elements are UNDEF.
2606         if (DemandedElts.isSubsetOf(UndefElts)) {
2607           SplatIdx = 0;
2608           return getUNDEF(VT);
2609         }
2610         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2611       }
2612       return V;
2613     }
2614     break;
2615   }
2616   case ISD::SPLAT_VECTOR:
2617     SplatIdx = 0;
2618     return V;
2619   case ISD::VECTOR_SHUFFLE: {
2620     if (VT.isScalableVector())
2621       return SDValue();
2622 
2623     // Check if this is a shuffle node doing a splat.
2624     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2625     // getTargetVShiftNode currently struggles without the splat source.
2626     auto *SVN = cast<ShuffleVectorSDNode>(V);
2627     if (!SVN->isSplat())
2628       break;
2629     int Idx = SVN->getSplatIndex();
2630     int NumElts = V.getValueType().getVectorNumElements();
2631     SplatIdx = Idx % NumElts;
2632     return V.getOperand(Idx / NumElts);
2633   }
2634   }
2635 
2636   return SDValue();
2637 }
2638 
getSplatValue(SDValue V,bool LegalTypes)2639 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2640   int SplatIdx;
2641   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2642     EVT SVT = SrcVector.getValueType().getScalarType();
2643     EVT LegalSVT = SVT;
2644     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2645       if (!SVT.isInteger())
2646         return SDValue();
2647       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2648       if (LegalSVT.bitsLT(SVT))
2649         return SDValue();
2650     }
2651     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2652                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2653   }
2654   return SDValue();
2655 }
2656 
2657 const APInt *
getValidShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2658 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2659                                           const APInt &DemandedElts) const {
2660   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2661           V.getOpcode() == ISD::SRA) &&
2662          "Unknown shift node");
2663   unsigned BitWidth = V.getScalarValueSizeInBits();
2664   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2665     // Shifting more than the bitwidth is not valid.
2666     const APInt &ShAmt = SA->getAPIntValue();
2667     if (ShAmt.ult(BitWidth))
2668       return &ShAmt;
2669   }
2670   return nullptr;
2671 }
2672 
getValidMinimumShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2673 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2674     SDValue V, const APInt &DemandedElts) const {
2675   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2676           V.getOpcode() == ISD::SRA) &&
2677          "Unknown shift node");
2678   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2679     return ValidAmt;
2680   unsigned BitWidth = V.getScalarValueSizeInBits();
2681   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2682   if (!BV)
2683     return nullptr;
2684   const APInt *MinShAmt = nullptr;
2685   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2686     if (!DemandedElts[i])
2687       continue;
2688     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2689     if (!SA)
2690       return nullptr;
2691     // Shifting more than the bitwidth is not valid.
2692     const APInt &ShAmt = SA->getAPIntValue();
2693     if (ShAmt.uge(BitWidth))
2694       return nullptr;
2695     if (MinShAmt && MinShAmt->ule(ShAmt))
2696       continue;
2697     MinShAmt = &ShAmt;
2698   }
2699   return MinShAmt;
2700 }
2701 
getValidMaximumShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2702 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2703     SDValue V, const APInt &DemandedElts) const {
2704   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2705           V.getOpcode() == ISD::SRA) &&
2706          "Unknown shift node");
2707   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2708     return ValidAmt;
2709   unsigned BitWidth = V.getScalarValueSizeInBits();
2710   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2711   if (!BV)
2712     return nullptr;
2713   const APInt *MaxShAmt = nullptr;
2714   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2715     if (!DemandedElts[i])
2716       continue;
2717     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2718     if (!SA)
2719       return nullptr;
2720     // Shifting more than the bitwidth is not valid.
2721     const APInt &ShAmt = SA->getAPIntValue();
2722     if (ShAmt.uge(BitWidth))
2723       return nullptr;
2724     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2725       continue;
2726     MaxShAmt = &ShAmt;
2727   }
2728   return MaxShAmt;
2729 }
2730 
2731 /// Determine which bits of Op are known to be either zero or one and return
2732 /// them in Known. For vectors, the known bits are those that are shared by
2733 /// every vector element.
computeKnownBits(SDValue Op,unsigned Depth) const2734 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2735   EVT VT = Op.getValueType();
2736 
2737   // TOOD: Until we have a plan for how to represent demanded elements for
2738   // scalable vectors, we can just bail out for now.
2739   if (Op.getValueType().isScalableVector()) {
2740     unsigned BitWidth = Op.getScalarValueSizeInBits();
2741     return KnownBits(BitWidth);
2742   }
2743 
2744   APInt DemandedElts = VT.isVector()
2745                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2746                            : APInt(1, 1);
2747   return computeKnownBits(Op, DemandedElts, Depth);
2748 }
2749 
2750 /// Determine which bits of Op are known to be either zero or one and return
2751 /// them in Known. The DemandedElts argument allows us to only collect the known
2752 /// bits that are shared by the requested vector elements.
computeKnownBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const2753 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2754                                          unsigned Depth) const {
2755   unsigned BitWidth = Op.getScalarValueSizeInBits();
2756 
2757   KnownBits Known(BitWidth);   // Don't know anything.
2758 
2759   // TOOD: Until we have a plan for how to represent demanded elements for
2760   // scalable vectors, we can just bail out for now.
2761   if (Op.getValueType().isScalableVector())
2762     return Known;
2763 
2764   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2765     // We know all of the bits for a constant!
2766     return KnownBits::makeConstant(C->getAPIntValue());
2767   }
2768   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2769     // We know all of the bits for a constant fp!
2770     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2771   }
2772 
2773   if (Depth >= MaxRecursionDepth)
2774     return Known;  // Limit search depth.
2775 
2776   KnownBits Known2;
2777   unsigned NumElts = DemandedElts.getBitWidth();
2778   assert((!Op.getValueType().isVector() ||
2779           NumElts == Op.getValueType().getVectorNumElements()) &&
2780          "Unexpected vector size");
2781 
2782   if (!DemandedElts)
2783     return Known;  // No demanded elts, better to assume we don't know anything.
2784 
2785   unsigned Opcode = Op.getOpcode();
2786   switch (Opcode) {
2787   case ISD::BUILD_VECTOR:
2788     // Collect the known bits that are shared by every demanded vector element.
2789     Known.Zero.setAllBits(); Known.One.setAllBits();
2790     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2791       if (!DemandedElts[i])
2792         continue;
2793 
2794       SDValue SrcOp = Op.getOperand(i);
2795       Known2 = computeKnownBits(SrcOp, Depth + 1);
2796 
2797       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2798       if (SrcOp.getValueSizeInBits() != BitWidth) {
2799         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2800                "Expected BUILD_VECTOR implicit truncation");
2801         Known2 = Known2.trunc(BitWidth);
2802       }
2803 
2804       // Known bits are the values that are shared by every demanded element.
2805       Known = KnownBits::commonBits(Known, Known2);
2806 
2807       // If we don't know any bits, early out.
2808       if (Known.isUnknown())
2809         break;
2810     }
2811     break;
2812   case ISD::VECTOR_SHUFFLE: {
2813     // Collect the known bits that are shared by every vector element referenced
2814     // by the shuffle.
2815     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2816     Known.Zero.setAllBits(); Known.One.setAllBits();
2817     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2818     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2819     for (unsigned i = 0; i != NumElts; ++i) {
2820       if (!DemandedElts[i])
2821         continue;
2822 
2823       int M = SVN->getMaskElt(i);
2824       if (M < 0) {
2825         // For UNDEF elements, we don't know anything about the common state of
2826         // the shuffle result.
2827         Known.resetAll();
2828         DemandedLHS.clearAllBits();
2829         DemandedRHS.clearAllBits();
2830         break;
2831       }
2832 
2833       if ((unsigned)M < NumElts)
2834         DemandedLHS.setBit((unsigned)M % NumElts);
2835       else
2836         DemandedRHS.setBit((unsigned)M % NumElts);
2837     }
2838     // Known bits are the values that are shared by every demanded element.
2839     if (!!DemandedLHS) {
2840       SDValue LHS = Op.getOperand(0);
2841       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2842       Known = KnownBits::commonBits(Known, Known2);
2843     }
2844     // If we don't know any bits, early out.
2845     if (Known.isUnknown())
2846       break;
2847     if (!!DemandedRHS) {
2848       SDValue RHS = Op.getOperand(1);
2849       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2850       Known = KnownBits::commonBits(Known, Known2);
2851     }
2852     break;
2853   }
2854   case ISD::CONCAT_VECTORS: {
2855     // Split DemandedElts and test each of the demanded subvectors.
2856     Known.Zero.setAllBits(); Known.One.setAllBits();
2857     EVT SubVectorVT = Op.getOperand(0).getValueType();
2858     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2859     unsigned NumSubVectors = Op.getNumOperands();
2860     for (unsigned i = 0; i != NumSubVectors; ++i) {
2861       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2862       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2863       if (!!DemandedSub) {
2864         SDValue Sub = Op.getOperand(i);
2865         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2866         Known = KnownBits::commonBits(Known, Known2);
2867       }
2868       // If we don't know any bits, early out.
2869       if (Known.isUnknown())
2870         break;
2871     }
2872     break;
2873   }
2874   case ISD::INSERT_SUBVECTOR: {
2875     // Demand any elements from the subvector and the remainder from the src its
2876     // inserted into.
2877     SDValue Src = Op.getOperand(0);
2878     SDValue Sub = Op.getOperand(1);
2879     uint64_t Idx = Op.getConstantOperandVal(2);
2880     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2881     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2882     APInt DemandedSrcElts = DemandedElts;
2883     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2884 
2885     Known.One.setAllBits();
2886     Known.Zero.setAllBits();
2887     if (!!DemandedSubElts) {
2888       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2889       if (Known.isUnknown())
2890         break; // early-out.
2891     }
2892     if (!!DemandedSrcElts) {
2893       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2894       Known = KnownBits::commonBits(Known, Known2);
2895     }
2896     break;
2897   }
2898   case ISD::EXTRACT_SUBVECTOR: {
2899     // Offset the demanded elts by the subvector index.
2900     SDValue Src = Op.getOperand(0);
2901     // Bail until we can represent demanded elements for scalable vectors.
2902     if (Src.getValueType().isScalableVector())
2903       break;
2904     uint64_t Idx = Op.getConstantOperandVal(1);
2905     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2906     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2907     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2908     break;
2909   }
2910   case ISD::SCALAR_TO_VECTOR: {
2911     // We know about scalar_to_vector as much as we know about it source,
2912     // which becomes the first element of otherwise unknown vector.
2913     if (DemandedElts != 1)
2914       break;
2915 
2916     SDValue N0 = Op.getOperand(0);
2917     Known = computeKnownBits(N0, Depth + 1);
2918     if (N0.getValueSizeInBits() != BitWidth)
2919       Known = Known.trunc(BitWidth);
2920 
2921     break;
2922   }
2923   case ISD::BITCAST: {
2924     SDValue N0 = Op.getOperand(0);
2925     EVT SubVT = N0.getValueType();
2926     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2927 
2928     // Ignore bitcasts from unsupported types.
2929     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2930       break;
2931 
2932     // Fast handling of 'identity' bitcasts.
2933     if (BitWidth == SubBitWidth) {
2934       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2935       break;
2936     }
2937 
2938     bool IsLE = getDataLayout().isLittleEndian();
2939 
2940     // Bitcast 'small element' vector to 'large element' scalar/vector.
2941     if ((BitWidth % SubBitWidth) == 0) {
2942       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2943 
2944       // Collect known bits for the (larger) output by collecting the known
2945       // bits from each set of sub elements and shift these into place.
2946       // We need to separately call computeKnownBits for each set of
2947       // sub elements as the knownbits for each is likely to be different.
2948       unsigned SubScale = BitWidth / SubBitWidth;
2949       APInt SubDemandedElts(NumElts * SubScale, 0);
2950       for (unsigned i = 0; i != NumElts; ++i)
2951         if (DemandedElts[i])
2952           SubDemandedElts.setBit(i * SubScale);
2953 
2954       for (unsigned i = 0; i != SubScale; ++i) {
2955         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2956                          Depth + 1);
2957         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2958         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2959         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2960       }
2961     }
2962 
2963     // Bitcast 'large element' scalar/vector to 'small element' vector.
2964     if ((SubBitWidth % BitWidth) == 0) {
2965       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2966 
2967       // Collect known bits for the (smaller) output by collecting the known
2968       // bits from the overlapping larger input elements and extracting the
2969       // sub sections we actually care about.
2970       unsigned SubScale = SubBitWidth / BitWidth;
2971       APInt SubDemandedElts(NumElts / SubScale, 0);
2972       for (unsigned i = 0; i != NumElts; ++i)
2973         if (DemandedElts[i])
2974           SubDemandedElts.setBit(i / SubScale);
2975 
2976       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2977 
2978       Known.Zero.setAllBits(); Known.One.setAllBits();
2979       for (unsigned i = 0; i != NumElts; ++i)
2980         if (DemandedElts[i]) {
2981           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2982           unsigned Offset = (Shifts % SubScale) * BitWidth;
2983           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2984           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2985           // If we don't know any bits, early out.
2986           if (Known.isUnknown())
2987             break;
2988         }
2989     }
2990     break;
2991   }
2992   case ISD::AND:
2993     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2994     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2995 
2996     Known &= Known2;
2997     break;
2998   case ISD::OR:
2999     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3000     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3001 
3002     Known |= Known2;
3003     break;
3004   case ISD::XOR:
3005     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3006     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3007 
3008     Known ^= Known2;
3009     break;
3010   case ISD::MUL: {
3011     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3012     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3013     Known = KnownBits::mul(Known, Known2);
3014     break;
3015   }
3016   case ISD::MULHU: {
3017     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3018     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3019     Known = KnownBits::mulhu(Known, Known2);
3020     break;
3021   }
3022   case ISD::MULHS: {
3023     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3024     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3025     Known = KnownBits::mulhs(Known, Known2);
3026     break;
3027   }
3028   case ISD::UMUL_LOHI: {
3029     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3030     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3031     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3032     if (Op.getResNo() == 0)
3033       Known = KnownBits::mul(Known, Known2);
3034     else
3035       Known = KnownBits::mulhu(Known, Known2);
3036     break;
3037   }
3038   case ISD::SMUL_LOHI: {
3039     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3040     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3041     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3042     if (Op.getResNo() == 0)
3043       Known = KnownBits::mul(Known, Known2);
3044     else
3045       Known = KnownBits::mulhs(Known, Known2);
3046     break;
3047   }
3048   case ISD::UDIV: {
3049     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3050     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3051     Known = KnownBits::udiv(Known, Known2);
3052     break;
3053   }
3054   case ISD::SELECT:
3055   case ISD::VSELECT:
3056     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3057     // If we don't know any bits, early out.
3058     if (Known.isUnknown())
3059       break;
3060     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3061 
3062     // Only known if known in both the LHS and RHS.
3063     Known = KnownBits::commonBits(Known, Known2);
3064     break;
3065   case ISD::SELECT_CC:
3066     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3067     // If we don't know any bits, early out.
3068     if (Known.isUnknown())
3069       break;
3070     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3071 
3072     // Only known if known in both the LHS and RHS.
3073     Known = KnownBits::commonBits(Known, Known2);
3074     break;
3075   case ISD::SMULO:
3076   case ISD::UMULO:
3077     if (Op.getResNo() != 1)
3078       break;
3079     // The boolean result conforms to getBooleanContents.
3080     // If we know the result of a setcc has the top bits zero, use this info.
3081     // We know that we have an integer-based boolean since these operations
3082     // are only available for integer.
3083     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3084             TargetLowering::ZeroOrOneBooleanContent &&
3085         BitWidth > 1)
3086       Known.Zero.setBitsFrom(1);
3087     break;
3088   case ISD::SETCC:
3089   case ISD::STRICT_FSETCC:
3090   case ISD::STRICT_FSETCCS: {
3091     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3092     // If we know the result of a setcc has the top bits zero, use this info.
3093     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3094             TargetLowering::ZeroOrOneBooleanContent &&
3095         BitWidth > 1)
3096       Known.Zero.setBitsFrom(1);
3097     break;
3098   }
3099   case ISD::SHL:
3100     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3101     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3102     Known = KnownBits::shl(Known, Known2);
3103 
3104     // Minimum shift low bits are known zero.
3105     if (const APInt *ShMinAmt =
3106             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3107       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3108     break;
3109   case ISD::SRL:
3110     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3111     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3112     Known = KnownBits::lshr(Known, Known2);
3113 
3114     // Minimum shift high bits are known zero.
3115     if (const APInt *ShMinAmt =
3116             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3117       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3118     break;
3119   case ISD::SRA:
3120     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3121     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3122     Known = KnownBits::ashr(Known, Known2);
3123     // TODO: Add minimum shift high known sign bits.
3124     break;
3125   case ISD::FSHL:
3126   case ISD::FSHR:
3127     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3128       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3129 
3130       // For fshl, 0-shift returns the 1st arg.
3131       // For fshr, 0-shift returns the 2nd arg.
3132       if (Amt == 0) {
3133         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3134                                  DemandedElts, Depth + 1);
3135         break;
3136       }
3137 
3138       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3139       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3140       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3141       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3142       if (Opcode == ISD::FSHL) {
3143         Known.One <<= Amt;
3144         Known.Zero <<= Amt;
3145         Known2.One.lshrInPlace(BitWidth - Amt);
3146         Known2.Zero.lshrInPlace(BitWidth - Amt);
3147       } else {
3148         Known.One <<= BitWidth - Amt;
3149         Known.Zero <<= BitWidth - Amt;
3150         Known2.One.lshrInPlace(Amt);
3151         Known2.Zero.lshrInPlace(Amt);
3152       }
3153       Known.One |= Known2.One;
3154       Known.Zero |= Known2.Zero;
3155     }
3156     break;
3157   case ISD::SIGN_EXTEND_INREG: {
3158     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3159     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3160     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3161     break;
3162   }
3163   case ISD::CTTZ:
3164   case ISD::CTTZ_ZERO_UNDEF: {
3165     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3166     // If we have a known 1, its position is our upper bound.
3167     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3168     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3169     Known.Zero.setBitsFrom(LowBits);
3170     break;
3171   }
3172   case ISD::CTLZ:
3173   case ISD::CTLZ_ZERO_UNDEF: {
3174     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3175     // If we have a known 1, its position is our upper bound.
3176     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3177     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3178     Known.Zero.setBitsFrom(LowBits);
3179     break;
3180   }
3181   case ISD::CTPOP: {
3182     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3183     // If we know some of the bits are zero, they can't be one.
3184     unsigned PossibleOnes = Known2.countMaxPopulation();
3185     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3186     break;
3187   }
3188   case ISD::PARITY: {
3189     // Parity returns 0 everywhere but the LSB.
3190     Known.Zero.setBitsFrom(1);
3191     break;
3192   }
3193   case ISD::LOAD: {
3194     LoadSDNode *LD = cast<LoadSDNode>(Op);
3195     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3196     if (ISD::isNON_EXTLoad(LD) && Cst) {
3197       // Determine any common known bits from the loaded constant pool value.
3198       Type *CstTy = Cst->getType();
3199       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3200         // If its a vector splat, then we can (quickly) reuse the scalar path.
3201         // NOTE: We assume all elements match and none are UNDEF.
3202         if (CstTy->isVectorTy()) {
3203           if (const Constant *Splat = Cst->getSplatValue()) {
3204             Cst = Splat;
3205             CstTy = Cst->getType();
3206           }
3207         }
3208         // TODO - do we need to handle different bitwidths?
3209         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3210           // Iterate across all vector elements finding common known bits.
3211           Known.One.setAllBits();
3212           Known.Zero.setAllBits();
3213           for (unsigned i = 0; i != NumElts; ++i) {
3214             if (!DemandedElts[i])
3215               continue;
3216             if (Constant *Elt = Cst->getAggregateElement(i)) {
3217               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3218                 const APInt &Value = CInt->getValue();
3219                 Known.One &= Value;
3220                 Known.Zero &= ~Value;
3221                 continue;
3222               }
3223               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3224                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3225                 Known.One &= Value;
3226                 Known.Zero &= ~Value;
3227                 continue;
3228               }
3229             }
3230             Known.One.clearAllBits();
3231             Known.Zero.clearAllBits();
3232             break;
3233           }
3234         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3235           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3236             Known = KnownBits::makeConstant(CInt->getValue());
3237           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3238             Known =
3239                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3240           }
3241         }
3242       }
3243     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3244       // If this is a ZEXTLoad and we are looking at the loaded value.
3245       EVT VT = LD->getMemoryVT();
3246       unsigned MemBits = VT.getScalarSizeInBits();
3247       Known.Zero.setBitsFrom(MemBits);
3248     } else if (const MDNode *Ranges = LD->getRanges()) {
3249       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3250         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3251     }
3252     break;
3253   }
3254   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3255     EVT InVT = Op.getOperand(0).getValueType();
3256     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3257     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3258     Known = Known.zext(BitWidth);
3259     break;
3260   }
3261   case ISD::ZERO_EXTEND: {
3262     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3263     Known = Known.zext(BitWidth);
3264     break;
3265   }
3266   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3267     EVT InVT = Op.getOperand(0).getValueType();
3268     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3269     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3270     // If the sign bit is known to be zero or one, then sext will extend
3271     // it to the top bits, else it will just zext.
3272     Known = Known.sext(BitWidth);
3273     break;
3274   }
3275   case ISD::SIGN_EXTEND: {
3276     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3277     // If the sign bit is known to be zero or one, then sext will extend
3278     // it to the top bits, else it will just zext.
3279     Known = Known.sext(BitWidth);
3280     break;
3281   }
3282   case ISD::ANY_EXTEND_VECTOR_INREG: {
3283     EVT InVT = Op.getOperand(0).getValueType();
3284     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3285     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3286     Known = Known.anyext(BitWidth);
3287     break;
3288   }
3289   case ISD::ANY_EXTEND: {
3290     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3291     Known = Known.anyext(BitWidth);
3292     break;
3293   }
3294   case ISD::TRUNCATE: {
3295     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3296     Known = Known.trunc(BitWidth);
3297     break;
3298   }
3299   case ISD::AssertZext: {
3300     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3301     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3302     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3303     Known.Zero |= (~InMask);
3304     Known.One  &= (~Known.Zero);
3305     break;
3306   }
3307   case ISD::AssertAlign: {
3308     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3309     assert(LogOfAlign != 0);
3310     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3311     // well as clearing one bits.
3312     Known.Zero.setLowBits(LogOfAlign);
3313     Known.One.clearLowBits(LogOfAlign);
3314     break;
3315   }
3316   case ISD::FGETSIGN:
3317     // All bits are zero except the low bit.
3318     Known.Zero.setBitsFrom(1);
3319     break;
3320   case ISD::USUBO:
3321   case ISD::SSUBO:
3322     if (Op.getResNo() == 1) {
3323       // If we know the result of a setcc has the top bits zero, use this info.
3324       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3325               TargetLowering::ZeroOrOneBooleanContent &&
3326           BitWidth > 1)
3327         Known.Zero.setBitsFrom(1);
3328       break;
3329     }
3330     LLVM_FALLTHROUGH;
3331   case ISD::SUB:
3332   case ISD::SUBC: {
3333     assert(Op.getResNo() == 0 &&
3334            "We only compute knownbits for the difference here.");
3335 
3336     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3338     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3339                                         Known, Known2);
3340     break;
3341   }
3342   case ISD::UADDO:
3343   case ISD::SADDO:
3344   case ISD::ADDCARRY:
3345     if (Op.getResNo() == 1) {
3346       // If we know the result of a setcc has the top bits zero, use this info.
3347       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3348               TargetLowering::ZeroOrOneBooleanContent &&
3349           BitWidth > 1)
3350         Known.Zero.setBitsFrom(1);
3351       break;
3352     }
3353     LLVM_FALLTHROUGH;
3354   case ISD::ADD:
3355   case ISD::ADDC:
3356   case ISD::ADDE: {
3357     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3358 
3359     // With ADDE and ADDCARRY, a carry bit may be added in.
3360     KnownBits Carry(1);
3361     if (Opcode == ISD::ADDE)
3362       // Can't track carry from glue, set carry to unknown.
3363       Carry.resetAll();
3364     else if (Opcode == ISD::ADDCARRY)
3365       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3366       // the trouble (how often will we find a known carry bit). And I haven't
3367       // tested this very much yet, but something like this might work:
3368       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3369       //   Carry = Carry.zextOrTrunc(1, false);
3370       Carry.resetAll();
3371     else
3372       Carry.setAllZero();
3373 
3374     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3375     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3376     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3377     break;
3378   }
3379   case ISD::SREM: {
3380     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3381     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3382     Known = KnownBits::srem(Known, Known2);
3383     break;
3384   }
3385   case ISD::UREM: {
3386     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3387     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3388     Known = KnownBits::urem(Known, Known2);
3389     break;
3390   }
3391   case ISD::EXTRACT_ELEMENT: {
3392     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3393     const unsigned Index = Op.getConstantOperandVal(1);
3394     const unsigned EltBitWidth = Op.getValueSizeInBits();
3395 
3396     // Remove low part of known bits mask
3397     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3398     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3399 
3400     // Remove high part of known bit mask
3401     Known = Known.trunc(EltBitWidth);
3402     break;
3403   }
3404   case ISD::EXTRACT_VECTOR_ELT: {
3405     SDValue InVec = Op.getOperand(0);
3406     SDValue EltNo = Op.getOperand(1);
3407     EVT VecVT = InVec.getValueType();
3408     // computeKnownBits not yet implemented for scalable vectors.
3409     if (VecVT.isScalableVector())
3410       break;
3411     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3412     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3413 
3414     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3415     // anything about the extended bits.
3416     if (BitWidth > EltBitWidth)
3417       Known = Known.trunc(EltBitWidth);
3418 
3419     // If we know the element index, just demand that vector element, else for
3420     // an unknown element index, ignore DemandedElts and demand them all.
3421     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3422     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3423     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3424       DemandedSrcElts =
3425           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3426 
3427     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3428     if (BitWidth > EltBitWidth)
3429       Known = Known.anyext(BitWidth);
3430     break;
3431   }
3432   case ISD::INSERT_VECTOR_ELT: {
3433     // If we know the element index, split the demand between the
3434     // source vector and the inserted element, otherwise assume we need
3435     // the original demanded vector elements and the value.
3436     SDValue InVec = Op.getOperand(0);
3437     SDValue InVal = Op.getOperand(1);
3438     SDValue EltNo = Op.getOperand(2);
3439     bool DemandedVal = true;
3440     APInt DemandedVecElts = DemandedElts;
3441     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3442     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3443       unsigned EltIdx = CEltNo->getZExtValue();
3444       DemandedVal = !!DemandedElts[EltIdx];
3445       DemandedVecElts.clearBit(EltIdx);
3446     }
3447     Known.One.setAllBits();
3448     Known.Zero.setAllBits();
3449     if (DemandedVal) {
3450       Known2 = computeKnownBits(InVal, Depth + 1);
3451       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3452     }
3453     if (!!DemandedVecElts) {
3454       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3455       Known = KnownBits::commonBits(Known, Known2);
3456     }
3457     break;
3458   }
3459   case ISD::BITREVERSE: {
3460     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3461     Known = Known2.reverseBits();
3462     break;
3463   }
3464   case ISD::BSWAP: {
3465     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3466     Known = Known2.byteSwap();
3467     break;
3468   }
3469   case ISD::ABS: {
3470     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3471     Known = Known2.abs();
3472     break;
3473   }
3474   case ISD::USUBSAT: {
3475     // The result of usubsat will never be larger than the LHS.
3476     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3477     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3478     break;
3479   }
3480   case ISD::UMIN: {
3481     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3482     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3483     Known = KnownBits::umin(Known, Known2);
3484     break;
3485   }
3486   case ISD::UMAX: {
3487     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3488     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3489     Known = KnownBits::umax(Known, Known2);
3490     break;
3491   }
3492   case ISD::SMIN:
3493   case ISD::SMAX: {
3494     // If we have a clamp pattern, we know that the number of sign bits will be
3495     // the minimum of the clamp min/max range.
3496     bool IsMax = (Opcode == ISD::SMAX);
3497     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3498     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3499       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3500         CstHigh =
3501             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3502     if (CstLow && CstHigh) {
3503       if (!IsMax)
3504         std::swap(CstLow, CstHigh);
3505 
3506       const APInt &ValueLow = CstLow->getAPIntValue();
3507       const APInt &ValueHigh = CstHigh->getAPIntValue();
3508       if (ValueLow.sle(ValueHigh)) {
3509         unsigned LowSignBits = ValueLow.getNumSignBits();
3510         unsigned HighSignBits = ValueHigh.getNumSignBits();
3511         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3512         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3513           Known.One.setHighBits(MinSignBits);
3514           break;
3515         }
3516         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3517           Known.Zero.setHighBits(MinSignBits);
3518           break;
3519         }
3520       }
3521     }
3522 
3523     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3524     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3525     if (IsMax)
3526       Known = KnownBits::smax(Known, Known2);
3527     else
3528       Known = KnownBits::smin(Known, Known2);
3529     break;
3530   }
3531   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3532     if (Op.getResNo() == 1) {
3533       // The boolean result conforms to getBooleanContents.
3534       // If we know the result of a setcc has the top bits zero, use this info.
3535       // We know that we have an integer-based boolean since these operations
3536       // are only available for integer.
3537       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3538               TargetLowering::ZeroOrOneBooleanContent &&
3539           BitWidth > 1)
3540         Known.Zero.setBitsFrom(1);
3541       break;
3542     }
3543     LLVM_FALLTHROUGH;
3544   case ISD::ATOMIC_CMP_SWAP:
3545   case ISD::ATOMIC_SWAP:
3546   case ISD::ATOMIC_LOAD_ADD:
3547   case ISD::ATOMIC_LOAD_SUB:
3548   case ISD::ATOMIC_LOAD_AND:
3549   case ISD::ATOMIC_LOAD_CLR:
3550   case ISD::ATOMIC_LOAD_OR:
3551   case ISD::ATOMIC_LOAD_XOR:
3552   case ISD::ATOMIC_LOAD_NAND:
3553   case ISD::ATOMIC_LOAD_MIN:
3554   case ISD::ATOMIC_LOAD_MAX:
3555   case ISD::ATOMIC_LOAD_UMIN:
3556   case ISD::ATOMIC_LOAD_UMAX:
3557   case ISD::ATOMIC_LOAD: {
3558     unsigned MemBits =
3559         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3560     // If we are looking at the loaded value.
3561     if (Op.getResNo() == 0) {
3562       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3563         Known.Zero.setBitsFrom(MemBits);
3564     }
3565     break;
3566   }
3567   case ISD::FrameIndex:
3568   case ISD::TargetFrameIndex:
3569     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3570                                        Known, getMachineFunction());
3571     break;
3572 
3573   default:
3574     if (Opcode < ISD::BUILTIN_OP_END)
3575       break;
3576     LLVM_FALLTHROUGH;
3577   case ISD::INTRINSIC_WO_CHAIN:
3578   case ISD::INTRINSIC_W_CHAIN:
3579   case ISD::INTRINSIC_VOID:
3580     // Allow the target to implement this method for its nodes.
3581     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3582     break;
3583   }
3584 
3585   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3586   return Known;
3587 }
3588 
computeOverflowKind(SDValue N0,SDValue N1) const3589 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3590                                                              SDValue N1) const {
3591   // X + 0 never overflow
3592   if (isNullConstant(N1))
3593     return OFK_Never;
3594 
3595   KnownBits N1Known = computeKnownBits(N1);
3596   if (N1Known.Zero.getBoolValue()) {
3597     KnownBits N0Known = computeKnownBits(N0);
3598 
3599     bool overflow;
3600     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3601     if (!overflow)
3602       return OFK_Never;
3603   }
3604 
3605   // mulhi + 1 never overflow
3606   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3607       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3608     return OFK_Never;
3609 
3610   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3611     KnownBits N0Known = computeKnownBits(N0);
3612 
3613     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3614       return OFK_Never;
3615   }
3616 
3617   return OFK_Sometime;
3618 }
3619 
isKnownToBeAPowerOfTwo(SDValue Val) const3620 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3621   EVT OpVT = Val.getValueType();
3622   unsigned BitWidth = OpVT.getScalarSizeInBits();
3623 
3624   // Is the constant a known power of 2?
3625   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3626     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3627 
3628   // A left-shift of a constant one will have exactly one bit set because
3629   // shifting the bit off the end is undefined.
3630   if (Val.getOpcode() == ISD::SHL) {
3631     auto *C = isConstOrConstSplat(Val.getOperand(0));
3632     if (C && C->getAPIntValue() == 1)
3633       return true;
3634   }
3635 
3636   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3637   // one bit set.
3638   if (Val.getOpcode() == ISD::SRL) {
3639     auto *C = isConstOrConstSplat(Val.getOperand(0));
3640     if (C && C->getAPIntValue().isSignMask())
3641       return true;
3642   }
3643 
3644   // Are all operands of a build vector constant powers of two?
3645   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3646     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3647           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3648             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3649           return false;
3650         }))
3651       return true;
3652 
3653   // More could be done here, though the above checks are enough
3654   // to handle some common cases.
3655 
3656   // Fall back to computeKnownBits to catch other known cases.
3657   KnownBits Known = computeKnownBits(Val);
3658   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3659 }
3660 
ComputeNumSignBits(SDValue Op,unsigned Depth) const3661 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3662   EVT VT = Op.getValueType();
3663 
3664   // TODO: Assume we don't know anything for now.
3665   if (VT.isScalableVector())
3666     return 1;
3667 
3668   APInt DemandedElts = VT.isVector()
3669                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3670                            : APInt(1, 1);
3671   return ComputeNumSignBits(Op, DemandedElts, Depth);
3672 }
3673 
ComputeNumSignBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const3674 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3675                                           unsigned Depth) const {
3676   EVT VT = Op.getValueType();
3677   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3678   unsigned VTBits = VT.getScalarSizeInBits();
3679   unsigned NumElts = DemandedElts.getBitWidth();
3680   unsigned Tmp, Tmp2;
3681   unsigned FirstAnswer = 1;
3682 
3683   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3684     const APInt &Val = C->getAPIntValue();
3685     return Val.getNumSignBits();
3686   }
3687 
3688   if (Depth >= MaxRecursionDepth)
3689     return 1;  // Limit search depth.
3690 
3691   if (!DemandedElts || VT.isScalableVector())
3692     return 1;  // No demanded elts, better to assume we don't know anything.
3693 
3694   unsigned Opcode = Op.getOpcode();
3695   switch (Opcode) {
3696   default: break;
3697   case ISD::AssertSext:
3698     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3699     return VTBits-Tmp+1;
3700   case ISD::AssertZext:
3701     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3702     return VTBits-Tmp;
3703 
3704   case ISD::BUILD_VECTOR:
3705     Tmp = VTBits;
3706     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3707       if (!DemandedElts[i])
3708         continue;
3709 
3710       SDValue SrcOp = Op.getOperand(i);
3711       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3712 
3713       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3714       if (SrcOp.getValueSizeInBits() != VTBits) {
3715         assert(SrcOp.getValueSizeInBits() > VTBits &&
3716                "Expected BUILD_VECTOR implicit truncation");
3717         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3718         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3719       }
3720       Tmp = std::min(Tmp, Tmp2);
3721     }
3722     return Tmp;
3723 
3724   case ISD::VECTOR_SHUFFLE: {
3725     // Collect the minimum number of sign bits that are shared by every vector
3726     // element referenced by the shuffle.
3727     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3728     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3729     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3730     for (unsigned i = 0; i != NumElts; ++i) {
3731       int M = SVN->getMaskElt(i);
3732       if (!DemandedElts[i])
3733         continue;
3734       // For UNDEF elements, we don't know anything about the common state of
3735       // the shuffle result.
3736       if (M < 0)
3737         return 1;
3738       if ((unsigned)M < NumElts)
3739         DemandedLHS.setBit((unsigned)M % NumElts);
3740       else
3741         DemandedRHS.setBit((unsigned)M % NumElts);
3742     }
3743     Tmp = std::numeric_limits<unsigned>::max();
3744     if (!!DemandedLHS)
3745       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3746     if (!!DemandedRHS) {
3747       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3748       Tmp = std::min(Tmp, Tmp2);
3749     }
3750     // If we don't know anything, early out and try computeKnownBits fall-back.
3751     if (Tmp == 1)
3752       break;
3753     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3754     return Tmp;
3755   }
3756 
3757   case ISD::BITCAST: {
3758     SDValue N0 = Op.getOperand(0);
3759     EVT SrcVT = N0.getValueType();
3760     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3761 
3762     // Ignore bitcasts from unsupported types..
3763     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3764       break;
3765 
3766     // Fast handling of 'identity' bitcasts.
3767     if (VTBits == SrcBits)
3768       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3769 
3770     bool IsLE = getDataLayout().isLittleEndian();
3771 
3772     // Bitcast 'large element' scalar/vector to 'small element' vector.
3773     if ((SrcBits % VTBits) == 0) {
3774       assert(VT.isVector() && "Expected bitcast to vector");
3775 
3776       unsigned Scale = SrcBits / VTBits;
3777       APInt SrcDemandedElts(NumElts / Scale, 0);
3778       for (unsigned i = 0; i != NumElts; ++i)
3779         if (DemandedElts[i])
3780           SrcDemandedElts.setBit(i / Scale);
3781 
3782       // Fast case - sign splat can be simply split across the small elements.
3783       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3784       if (Tmp == SrcBits)
3785         return VTBits;
3786 
3787       // Slow case - determine how far the sign extends into each sub-element.
3788       Tmp2 = VTBits;
3789       for (unsigned i = 0; i != NumElts; ++i)
3790         if (DemandedElts[i]) {
3791           unsigned SubOffset = i % Scale;
3792           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3793           SubOffset = SubOffset * VTBits;
3794           if (Tmp <= SubOffset)
3795             return 1;
3796           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3797         }
3798       return Tmp2;
3799     }
3800     break;
3801   }
3802 
3803   case ISD::SIGN_EXTEND:
3804     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3805     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3806   case ISD::SIGN_EXTEND_INREG:
3807     // Max of the input and what this extends.
3808     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3809     Tmp = VTBits-Tmp+1;
3810     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3811     return std::max(Tmp, Tmp2);
3812   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3813     SDValue Src = Op.getOperand(0);
3814     EVT SrcVT = Src.getValueType();
3815     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3816     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3817     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3818   }
3819   case ISD::SRA:
3820     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3821     // SRA X, C -> adds C sign bits.
3822     if (const APInt *ShAmt =
3823             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3824       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3825     return Tmp;
3826   case ISD::SHL:
3827     if (const APInt *ShAmt =
3828             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3829       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3830       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831       if (ShAmt->ult(Tmp))
3832         return Tmp - ShAmt->getZExtValue();
3833     }
3834     break;
3835   case ISD::AND:
3836   case ISD::OR:
3837   case ISD::XOR:    // NOT is handled here.
3838     // Logical binary ops preserve the number of sign bits at the worst.
3839     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3840     if (Tmp != 1) {
3841       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3842       FirstAnswer = std::min(Tmp, Tmp2);
3843       // We computed what we know about the sign bits as our first
3844       // answer. Now proceed to the generic code that uses
3845       // computeKnownBits, and pick whichever answer is better.
3846     }
3847     break;
3848 
3849   case ISD::SELECT:
3850   case ISD::VSELECT:
3851     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3852     if (Tmp == 1) return 1;  // Early out.
3853     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3854     return std::min(Tmp, Tmp2);
3855   case ISD::SELECT_CC:
3856     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3857     if (Tmp == 1) return 1;  // Early out.
3858     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3859     return std::min(Tmp, Tmp2);
3860 
3861   case ISD::SMIN:
3862   case ISD::SMAX: {
3863     // If we have a clamp pattern, we know that the number of sign bits will be
3864     // the minimum of the clamp min/max range.
3865     bool IsMax = (Opcode == ISD::SMAX);
3866     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3867     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3868       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3869         CstHigh =
3870             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3871     if (CstLow && CstHigh) {
3872       if (!IsMax)
3873         std::swap(CstLow, CstHigh);
3874       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3875         Tmp = CstLow->getAPIntValue().getNumSignBits();
3876         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3877         return std::min(Tmp, Tmp2);
3878       }
3879     }
3880 
3881     // Fallback - just get the minimum number of sign bits of the operands.
3882     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3883     if (Tmp == 1)
3884       return 1;  // Early out.
3885     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3886     return std::min(Tmp, Tmp2);
3887   }
3888   case ISD::UMIN:
3889   case ISD::UMAX:
3890     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3891     if (Tmp == 1)
3892       return 1;  // Early out.
3893     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3894     return std::min(Tmp, Tmp2);
3895   case ISD::SADDO:
3896   case ISD::UADDO:
3897   case ISD::SSUBO:
3898   case ISD::USUBO:
3899   case ISD::SMULO:
3900   case ISD::UMULO:
3901     if (Op.getResNo() != 1)
3902       break;
3903     // The boolean result conforms to getBooleanContents.  Fall through.
3904     // If setcc returns 0/-1, all bits are sign bits.
3905     // We know that we have an integer-based boolean since these operations
3906     // are only available for integer.
3907     if (TLI->getBooleanContents(VT.isVector(), false) ==
3908         TargetLowering::ZeroOrNegativeOneBooleanContent)
3909       return VTBits;
3910     break;
3911   case ISD::SETCC:
3912   case ISD::STRICT_FSETCC:
3913   case ISD::STRICT_FSETCCS: {
3914     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3915     // If setcc returns 0/-1, all bits are sign bits.
3916     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3917         TargetLowering::ZeroOrNegativeOneBooleanContent)
3918       return VTBits;
3919     break;
3920   }
3921   case ISD::ROTL:
3922   case ISD::ROTR:
3923     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3924 
3925     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3926     if (Tmp == VTBits)
3927       return VTBits;
3928 
3929     if (ConstantSDNode *C =
3930             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3931       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3932 
3933       // Handle rotate right by N like a rotate left by 32-N.
3934       if (Opcode == ISD::ROTR)
3935         RotAmt = (VTBits - RotAmt) % VTBits;
3936 
3937       // If we aren't rotating out all of the known-in sign bits, return the
3938       // number that are left.  This handles rotl(sext(x), 1) for example.
3939       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3940     }
3941     break;
3942   case ISD::ADD:
3943   case ISD::ADDC:
3944     // Add can have at most one carry bit.  Thus we know that the output
3945     // is, at worst, one more bit than the inputs.
3946     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3947     if (Tmp == 1) return 1; // Early out.
3948 
3949     // Special case decrementing a value (ADD X, -1):
3950     if (ConstantSDNode *CRHS =
3951             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3952       if (CRHS->isAllOnesValue()) {
3953         KnownBits Known =
3954             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3955 
3956         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3957         // sign bits set.
3958         if ((Known.Zero | 1).isAllOnesValue())
3959           return VTBits;
3960 
3961         // If we are subtracting one from a positive number, there is no carry
3962         // out of the result.
3963         if (Known.isNonNegative())
3964           return Tmp;
3965       }
3966 
3967     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3968     if (Tmp2 == 1) return 1; // Early out.
3969     return std::min(Tmp, Tmp2) - 1;
3970   case ISD::SUB:
3971     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3972     if (Tmp2 == 1) return 1; // Early out.
3973 
3974     // Handle NEG.
3975     if (ConstantSDNode *CLHS =
3976             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3977       if (CLHS->isNullValue()) {
3978         KnownBits Known =
3979             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3980         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3981         // sign bits set.
3982         if ((Known.Zero | 1).isAllOnesValue())
3983           return VTBits;
3984 
3985         // If the input is known to be positive (the sign bit is known clear),
3986         // the output of the NEG has the same number of sign bits as the input.
3987         if (Known.isNonNegative())
3988           return Tmp2;
3989 
3990         // Otherwise, we treat this like a SUB.
3991       }
3992 
3993     // Sub can have at most one carry bit.  Thus we know that the output
3994     // is, at worst, one more bit than the inputs.
3995     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3996     if (Tmp == 1) return 1; // Early out.
3997     return std::min(Tmp, Tmp2) - 1;
3998   case ISD::MUL: {
3999     // The output of the Mul can be at most twice the valid bits in the inputs.
4000     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4001     if (SignBitsOp0 == 1)
4002       break;
4003     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4004     if (SignBitsOp1 == 1)
4005       break;
4006     unsigned OutValidBits =
4007         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4008     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4009   }
4010   case ISD::SREM:
4011     // The sign bit is the LHS's sign bit, except when the result of the
4012     // remainder is zero. The magnitude of the result should be less than or
4013     // equal to the magnitude of the LHS. Therefore, the result should have
4014     // at least as many sign bits as the left hand side.
4015     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4016   case ISD::TRUNCATE: {
4017     // Check if the sign bits of source go down as far as the truncated value.
4018     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4019     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4020     if (NumSrcSignBits > (NumSrcBits - VTBits))
4021       return NumSrcSignBits - (NumSrcBits - VTBits);
4022     break;
4023   }
4024   case ISD::EXTRACT_ELEMENT: {
4025     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4026     const int BitWidth = Op.getValueSizeInBits();
4027     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4028 
4029     // Get reverse index (starting from 1), Op1 value indexes elements from
4030     // little end. Sign starts at big end.
4031     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4032 
4033     // If the sign portion ends in our element the subtraction gives correct
4034     // result. Otherwise it gives either negative or > bitwidth result
4035     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4036   }
4037   case ISD::INSERT_VECTOR_ELT: {
4038     // If we know the element index, split the demand between the
4039     // source vector and the inserted element, otherwise assume we need
4040     // the original demanded vector elements and the value.
4041     SDValue InVec = Op.getOperand(0);
4042     SDValue InVal = Op.getOperand(1);
4043     SDValue EltNo = Op.getOperand(2);
4044     bool DemandedVal = true;
4045     APInt DemandedVecElts = DemandedElts;
4046     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4047     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4048       unsigned EltIdx = CEltNo->getZExtValue();
4049       DemandedVal = !!DemandedElts[EltIdx];
4050       DemandedVecElts.clearBit(EltIdx);
4051     }
4052     Tmp = std::numeric_limits<unsigned>::max();
4053     if (DemandedVal) {
4054       // TODO - handle implicit truncation of inserted elements.
4055       if (InVal.getScalarValueSizeInBits() != VTBits)
4056         break;
4057       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4058       Tmp = std::min(Tmp, Tmp2);
4059     }
4060     if (!!DemandedVecElts) {
4061       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4062       Tmp = std::min(Tmp, Tmp2);
4063     }
4064     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4065     return Tmp;
4066   }
4067   case ISD::EXTRACT_VECTOR_ELT: {
4068     SDValue InVec = Op.getOperand(0);
4069     SDValue EltNo = Op.getOperand(1);
4070     EVT VecVT = InVec.getValueType();
4071     // ComputeNumSignBits not yet implemented for scalable vectors.
4072     if (VecVT.isScalableVector())
4073       break;
4074     const unsigned BitWidth = Op.getValueSizeInBits();
4075     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4076     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4077 
4078     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4079     // anything about sign bits. But if the sizes match we can derive knowledge
4080     // about sign bits from the vector operand.
4081     if (BitWidth != EltBitWidth)
4082       break;
4083 
4084     // If we know the element index, just demand that vector element, else for
4085     // an unknown element index, ignore DemandedElts and demand them all.
4086     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4087     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4088     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4089       DemandedSrcElts =
4090           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4091 
4092     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4093   }
4094   case ISD::EXTRACT_SUBVECTOR: {
4095     // Offset the demanded elts by the subvector index.
4096     SDValue Src = Op.getOperand(0);
4097     // Bail until we can represent demanded elements for scalable vectors.
4098     if (Src.getValueType().isScalableVector())
4099       break;
4100     uint64_t Idx = Op.getConstantOperandVal(1);
4101     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4102     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4103     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4104   }
4105   case ISD::CONCAT_VECTORS: {
4106     // Determine the minimum number of sign bits across all demanded
4107     // elts of the input vectors. Early out if the result is already 1.
4108     Tmp = std::numeric_limits<unsigned>::max();
4109     EVT SubVectorVT = Op.getOperand(0).getValueType();
4110     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4111     unsigned NumSubVectors = Op.getNumOperands();
4112     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4113       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4114       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4115       if (!DemandedSub)
4116         continue;
4117       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4118       Tmp = std::min(Tmp, Tmp2);
4119     }
4120     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4121     return Tmp;
4122   }
4123   case ISD::INSERT_SUBVECTOR: {
4124     // Demand any elements from the subvector and the remainder from the src its
4125     // inserted into.
4126     SDValue Src = Op.getOperand(0);
4127     SDValue Sub = Op.getOperand(1);
4128     uint64_t Idx = Op.getConstantOperandVal(2);
4129     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4130     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4131     APInt DemandedSrcElts = DemandedElts;
4132     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4133 
4134     Tmp = std::numeric_limits<unsigned>::max();
4135     if (!!DemandedSubElts) {
4136       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4137       if (Tmp == 1)
4138         return 1; // early-out
4139     }
4140     if (!!DemandedSrcElts) {
4141       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4142       Tmp = std::min(Tmp, Tmp2);
4143     }
4144     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4145     return Tmp;
4146   }
4147   case ISD::ATOMIC_CMP_SWAP:
4148   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4149   case ISD::ATOMIC_SWAP:
4150   case ISD::ATOMIC_LOAD_ADD:
4151   case ISD::ATOMIC_LOAD_SUB:
4152   case ISD::ATOMIC_LOAD_AND:
4153   case ISD::ATOMIC_LOAD_CLR:
4154   case ISD::ATOMIC_LOAD_OR:
4155   case ISD::ATOMIC_LOAD_XOR:
4156   case ISD::ATOMIC_LOAD_NAND:
4157   case ISD::ATOMIC_LOAD_MIN:
4158   case ISD::ATOMIC_LOAD_MAX:
4159   case ISD::ATOMIC_LOAD_UMIN:
4160   case ISD::ATOMIC_LOAD_UMAX:
4161   case ISD::ATOMIC_LOAD: {
4162     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4163     // If we are looking at the loaded value.
4164     if (Op.getResNo() == 0) {
4165       if (Tmp == VTBits)
4166         return 1; // early-out
4167       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4168         return VTBits - Tmp + 1;
4169       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4170         return VTBits - Tmp;
4171     }
4172     break;
4173   }
4174   }
4175 
4176   // If we are looking at the loaded value of the SDNode.
4177   if (Op.getResNo() == 0) {
4178     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4179     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4180       unsigned ExtType = LD->getExtensionType();
4181       switch (ExtType) {
4182       default: break;
4183       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4184         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4185         return VTBits - Tmp + 1;
4186       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4187         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4188         return VTBits - Tmp;
4189       case ISD::NON_EXTLOAD:
4190         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4191           // We only need to handle vectors - computeKnownBits should handle
4192           // scalar cases.
4193           Type *CstTy = Cst->getType();
4194           if (CstTy->isVectorTy() &&
4195               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4196             Tmp = VTBits;
4197             for (unsigned i = 0; i != NumElts; ++i) {
4198               if (!DemandedElts[i])
4199                 continue;
4200               if (Constant *Elt = Cst->getAggregateElement(i)) {
4201                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4202                   const APInt &Value = CInt->getValue();
4203                   Tmp = std::min(Tmp, Value.getNumSignBits());
4204                   continue;
4205                 }
4206                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4207                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4208                   Tmp = std::min(Tmp, Value.getNumSignBits());
4209                   continue;
4210                 }
4211               }
4212               // Unknown type. Conservatively assume no bits match sign bit.
4213               return 1;
4214             }
4215             return Tmp;
4216           }
4217         }
4218         break;
4219       }
4220     }
4221   }
4222 
4223   // Allow the target to implement this method for its nodes.
4224   if (Opcode >= ISD::BUILTIN_OP_END ||
4225       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4226       Opcode == ISD::INTRINSIC_W_CHAIN ||
4227       Opcode == ISD::INTRINSIC_VOID) {
4228     unsigned NumBits =
4229         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4230     if (NumBits > 1)
4231       FirstAnswer = std::max(FirstAnswer, NumBits);
4232   }
4233 
4234   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4235   // use this information.
4236   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4237 
4238   APInt Mask;
4239   if (Known.isNonNegative()) {        // sign bit is 0
4240     Mask = Known.Zero;
4241   } else if (Known.isNegative()) {  // sign bit is 1;
4242     Mask = Known.One;
4243   } else {
4244     // Nothing known.
4245     return FirstAnswer;
4246   }
4247 
4248   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4249   // the number of identical bits in the top of the input value.
4250   Mask <<= Mask.getBitWidth()-VTBits;
4251   return std::max(FirstAnswer, Mask.countLeadingOnes());
4252 }
4253 
isBaseWithConstantOffset(SDValue Op) const4254 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4255   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4256       !isa<ConstantSDNode>(Op.getOperand(1)))
4257     return false;
4258 
4259   if (Op.getOpcode() == ISD::OR &&
4260       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4261     return false;
4262 
4263   return true;
4264 }
4265 
isKnownNeverNaN(SDValue Op,bool SNaN,unsigned Depth) const4266 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4267   // If we're told that NaNs won't happen, assume they won't.
4268   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4269     return true;
4270 
4271   if (Depth >= MaxRecursionDepth)
4272     return false; // Limit search depth.
4273 
4274   // TODO: Handle vectors.
4275   // If the value is a constant, we can obviously see if it is a NaN or not.
4276   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4277     return !C->getValueAPF().isNaN() ||
4278            (SNaN && !C->getValueAPF().isSignaling());
4279   }
4280 
4281   unsigned Opcode = Op.getOpcode();
4282   switch (Opcode) {
4283   case ISD::FADD:
4284   case ISD::FSUB:
4285   case ISD::FMUL:
4286   case ISD::FDIV:
4287   case ISD::FREM:
4288   case ISD::FSIN:
4289   case ISD::FCOS: {
4290     if (SNaN)
4291       return true;
4292     // TODO: Need isKnownNeverInfinity
4293     return false;
4294   }
4295   case ISD::FCANONICALIZE:
4296   case ISD::FEXP:
4297   case ISD::FEXP2:
4298   case ISD::FTRUNC:
4299   case ISD::FFLOOR:
4300   case ISD::FCEIL:
4301   case ISD::FROUND:
4302   case ISD::FROUNDEVEN:
4303   case ISD::FRINT:
4304   case ISD::FNEARBYINT: {
4305     if (SNaN)
4306       return true;
4307     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4308   }
4309   case ISD::FABS:
4310   case ISD::FNEG:
4311   case ISD::FCOPYSIGN: {
4312     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4313   }
4314   case ISD::SELECT:
4315     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4316            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4317   case ISD::FP_EXTEND:
4318   case ISD::FP_ROUND: {
4319     if (SNaN)
4320       return true;
4321     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4322   }
4323   case ISD::SINT_TO_FP:
4324   case ISD::UINT_TO_FP:
4325     return true;
4326   case ISD::FMA:
4327   case ISD::FMAD: {
4328     if (SNaN)
4329       return true;
4330     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4331            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4332            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4333   }
4334   case ISD::FSQRT: // Need is known positive
4335   case ISD::FLOG:
4336   case ISD::FLOG2:
4337   case ISD::FLOG10:
4338   case ISD::FPOWI:
4339   case ISD::FPOW: {
4340     if (SNaN)
4341       return true;
4342     // TODO: Refine on operand
4343     return false;
4344   }
4345   case ISD::FMINNUM:
4346   case ISD::FMAXNUM: {
4347     // Only one needs to be known not-nan, since it will be returned if the
4348     // other ends up being one.
4349     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4350            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4351   }
4352   case ISD::FMINNUM_IEEE:
4353   case ISD::FMAXNUM_IEEE: {
4354     if (SNaN)
4355       return true;
4356     // This can return a NaN if either operand is an sNaN, or if both operands
4357     // are NaN.
4358     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4359             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4360            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4361             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4362   }
4363   case ISD::FMINIMUM:
4364   case ISD::FMAXIMUM: {
4365     // TODO: Does this quiet or return the origina NaN as-is?
4366     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4367            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4368   }
4369   case ISD::EXTRACT_VECTOR_ELT: {
4370     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4371   }
4372   default:
4373     if (Opcode >= ISD::BUILTIN_OP_END ||
4374         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4375         Opcode == ISD::INTRINSIC_W_CHAIN ||
4376         Opcode == ISD::INTRINSIC_VOID) {
4377       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4378     }
4379 
4380     return false;
4381   }
4382 }
4383 
isKnownNeverZeroFloat(SDValue Op) const4384 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4385   assert(Op.getValueType().isFloatingPoint() &&
4386          "Floating point type expected");
4387 
4388   // If the value is a constant, we can obviously see if it is a zero or not.
4389   // TODO: Add BuildVector support.
4390   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4391     return !C->isZero();
4392   return false;
4393 }
4394 
isKnownNeverZero(SDValue Op) const4395 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4396   assert(!Op.getValueType().isFloatingPoint() &&
4397          "Floating point types unsupported - use isKnownNeverZeroFloat");
4398 
4399   // If the value is a constant, we can obviously see if it is a zero or not.
4400   if (ISD::matchUnaryPredicate(
4401           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4402     return true;
4403 
4404   // TODO: Recognize more cases here.
4405   switch (Op.getOpcode()) {
4406   default: break;
4407   case ISD::OR:
4408     if (isKnownNeverZero(Op.getOperand(1)) ||
4409         isKnownNeverZero(Op.getOperand(0)))
4410       return true;
4411     break;
4412   }
4413 
4414   return false;
4415 }
4416 
isEqualTo(SDValue A,SDValue B) const4417 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4418   // Check the obvious case.
4419   if (A == B) return true;
4420 
4421   // For for negative and positive zero.
4422   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4423     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4424       if (CA->isZero() && CB->isZero()) return true;
4425 
4426   // Otherwise they may not be equal.
4427   return false;
4428 }
4429 
4430 // FIXME: unify with llvm::haveNoCommonBitsSet.
4431 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
haveNoCommonBitsSet(SDValue A,SDValue B) const4432 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4433   assert(A.getValueType() == B.getValueType() &&
4434          "Values must have the same type");
4435   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4436                                         computeKnownBits(B));
4437 }
4438 
FoldSTEP_VECTOR(const SDLoc & DL,EVT VT,SDValue Step,SelectionDAG & DAG)4439 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4440                                SelectionDAG &DAG) {
4441   if (cast<ConstantSDNode>(Step)->isNullValue())
4442     return DAG.getConstant(0, DL, VT);
4443 
4444   return SDValue();
4445 }
4446 
FoldBUILD_VECTOR(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4447 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4448                                 ArrayRef<SDValue> Ops,
4449                                 SelectionDAG &DAG) {
4450   int NumOps = Ops.size();
4451   assert(NumOps != 0 && "Can't build an empty vector!");
4452   assert(!VT.isScalableVector() &&
4453          "BUILD_VECTOR cannot be used with scalable types");
4454   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4455          "Incorrect element count in BUILD_VECTOR!");
4456 
4457   // BUILD_VECTOR of UNDEFs is UNDEF.
4458   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4459     return DAG.getUNDEF(VT);
4460 
4461   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4462   SDValue IdentitySrc;
4463   bool IsIdentity = true;
4464   for (int i = 0; i != NumOps; ++i) {
4465     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4466         Ops[i].getOperand(0).getValueType() != VT ||
4467         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4468         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4469         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4470       IsIdentity = false;
4471       break;
4472     }
4473     IdentitySrc = Ops[i].getOperand(0);
4474   }
4475   if (IsIdentity)
4476     return IdentitySrc;
4477 
4478   return SDValue();
4479 }
4480 
4481 /// Try to simplify vector concatenation to an input value, undef, or build
4482 /// vector.
foldCONCAT_VECTORS(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4483 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4484                                   ArrayRef<SDValue> Ops,
4485                                   SelectionDAG &DAG) {
4486   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4487   assert(llvm::all_of(Ops,
4488                       [Ops](SDValue Op) {
4489                         return Ops[0].getValueType() == Op.getValueType();
4490                       }) &&
4491          "Concatenation of vectors with inconsistent value types!");
4492   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4493              VT.getVectorElementCount() &&
4494          "Incorrect element count in vector concatenation!");
4495 
4496   if (Ops.size() == 1)
4497     return Ops[0];
4498 
4499   // Concat of UNDEFs is UNDEF.
4500   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4501     return DAG.getUNDEF(VT);
4502 
4503   // Scan the operands and look for extract operations from a single source
4504   // that correspond to insertion at the same location via this concatenation:
4505   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4506   SDValue IdentitySrc;
4507   bool IsIdentity = true;
4508   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4509     SDValue Op = Ops[i];
4510     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4511     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4512         Op.getOperand(0).getValueType() != VT ||
4513         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4514         Op.getConstantOperandVal(1) != IdentityIndex) {
4515       IsIdentity = false;
4516       break;
4517     }
4518     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4519            "Unexpected identity source vector for concat of extracts");
4520     IdentitySrc = Op.getOperand(0);
4521   }
4522   if (IsIdentity) {
4523     assert(IdentitySrc && "Failed to set source vector of extracts");
4524     return IdentitySrc;
4525   }
4526 
4527   // The code below this point is only designed to work for fixed width
4528   // vectors, so we bail out for now.
4529   if (VT.isScalableVector())
4530     return SDValue();
4531 
4532   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4533   // simplified to one big BUILD_VECTOR.
4534   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4535   EVT SVT = VT.getScalarType();
4536   SmallVector<SDValue, 16> Elts;
4537   for (SDValue Op : Ops) {
4538     EVT OpVT = Op.getValueType();
4539     if (Op.isUndef())
4540       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4541     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4542       Elts.append(Op->op_begin(), Op->op_end());
4543     else
4544       return SDValue();
4545   }
4546 
4547   // BUILD_VECTOR requires all inputs to be of the same type, find the
4548   // maximum type and extend them all.
4549   for (SDValue Op : Elts)
4550     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4551 
4552   if (SVT.bitsGT(VT.getScalarType())) {
4553     for (SDValue &Op : Elts) {
4554       if (Op.isUndef())
4555         Op = DAG.getUNDEF(SVT);
4556       else
4557         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4558                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4559                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4560     }
4561   }
4562 
4563   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4564   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4565   return V;
4566 }
4567 
4568 /// Gets or creates the specified node.
getNode(unsigned Opcode,const SDLoc & DL,EVT VT)4569 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4570   FoldingSetNodeID ID;
4571   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4572   void *IP = nullptr;
4573   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4574     return SDValue(E, 0);
4575 
4576   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4577                               getVTList(VT));
4578   CSEMap.InsertNode(N, IP);
4579 
4580   InsertNode(N);
4581   SDValue V = SDValue(N, 0);
4582   NewSDValueDbgMsg(V, "Creating new node: ", this);
4583   return V;
4584 }
4585 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand)4586 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4587                               SDValue Operand) {
4588   SDNodeFlags Flags;
4589   if (Inserter)
4590     Flags = Inserter->getFlags();
4591   return getNode(Opcode, DL, VT, Operand, Flags);
4592 }
4593 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand,const SDNodeFlags Flags)4594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4595                               SDValue Operand, const SDNodeFlags Flags) {
4596   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4597          "Operand is DELETED_NODE!");
4598   // Constant fold unary operations with an integer constant operand. Even
4599   // opaque constant will be folded, because the folding of unary operations
4600   // doesn't create new constants with different values. Nevertheless, the
4601   // opaque flag is preserved during folding to prevent future folding with
4602   // other constants.
4603   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4604     const APInt &Val = C->getAPIntValue();
4605     switch (Opcode) {
4606     default: break;
4607     case ISD::SIGN_EXTEND:
4608       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4609                          C->isTargetOpcode(), C->isOpaque());
4610     case ISD::TRUNCATE:
4611       if (C->isOpaque())
4612         break;
4613       LLVM_FALLTHROUGH;
4614     case ISD::ANY_EXTEND:
4615     case ISD::ZERO_EXTEND:
4616       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4617                          C->isTargetOpcode(), C->isOpaque());
4618     case ISD::UINT_TO_FP:
4619     case ISD::SINT_TO_FP: {
4620       APFloat apf(EVTToAPFloatSemantics(VT),
4621                   APInt::getNullValue(VT.getSizeInBits()));
4622       (void)apf.convertFromAPInt(Val,
4623                                  Opcode==ISD::SINT_TO_FP,
4624                                  APFloat::rmNearestTiesToEven);
4625       return getConstantFP(apf, DL, VT);
4626     }
4627     case ISD::BITCAST:
4628       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4629         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4630       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4631         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4632       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4633         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4634       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4635         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4636       break;
4637     case ISD::ABS:
4638       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4639                          C->isOpaque());
4640     case ISD::BITREVERSE:
4641       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4642                          C->isOpaque());
4643     case ISD::BSWAP:
4644       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4645                          C->isOpaque());
4646     case ISD::CTPOP:
4647       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4648                          C->isOpaque());
4649     case ISD::CTLZ:
4650     case ISD::CTLZ_ZERO_UNDEF:
4651       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4652                          C->isOpaque());
4653     case ISD::CTTZ:
4654     case ISD::CTTZ_ZERO_UNDEF:
4655       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4656                          C->isOpaque());
4657     case ISD::FP16_TO_FP: {
4658       bool Ignored;
4659       APFloat FPV(APFloat::IEEEhalf(),
4660                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4661 
4662       // This can return overflow, underflow, or inexact; we don't care.
4663       // FIXME need to be more flexible about rounding mode.
4664       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4665                         APFloat::rmNearestTiesToEven, &Ignored);
4666       return getConstantFP(FPV, DL, VT);
4667     }
4668     case ISD::STEP_VECTOR: {
4669       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4670         return V;
4671       break;
4672     }
4673     }
4674   }
4675 
4676   // Constant fold unary operations with a floating point constant operand.
4677   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4678     APFloat V = C->getValueAPF();    // make copy
4679     switch (Opcode) {
4680     case ISD::FNEG:
4681       V.changeSign();
4682       return getConstantFP(V, DL, VT);
4683     case ISD::FABS:
4684       V.clearSign();
4685       return getConstantFP(V, DL, VT);
4686     case ISD::FCEIL: {
4687       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4688       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4689         return getConstantFP(V, DL, VT);
4690       break;
4691     }
4692     case ISD::FTRUNC: {
4693       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4694       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4695         return getConstantFP(V, DL, VT);
4696       break;
4697     }
4698     case ISD::FFLOOR: {
4699       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4700       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4701         return getConstantFP(V, DL, VT);
4702       break;
4703     }
4704     case ISD::FP_EXTEND: {
4705       bool ignored;
4706       // This can return overflow, underflow, or inexact; we don't care.
4707       // FIXME need to be more flexible about rounding mode.
4708       (void)V.convert(EVTToAPFloatSemantics(VT),
4709                       APFloat::rmNearestTiesToEven, &ignored);
4710       return getConstantFP(V, DL, VT);
4711     }
4712     case ISD::FP_TO_SINT:
4713     case ISD::FP_TO_UINT: {
4714       bool ignored;
4715       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4716       // FIXME need to be more flexible about rounding mode.
4717       APFloat::opStatus s =
4718           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4719       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4720         break;
4721       return getConstant(IntVal, DL, VT);
4722     }
4723     case ISD::BITCAST:
4724       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4725         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4726       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4727         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4728       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4729         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4730       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4731         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4732       break;
4733     case ISD::FP_TO_FP16: {
4734       bool Ignored;
4735       // This can return overflow, underflow, or inexact; we don't care.
4736       // FIXME need to be more flexible about rounding mode.
4737       (void)V.convert(APFloat::IEEEhalf(),
4738                       APFloat::rmNearestTiesToEven, &Ignored);
4739       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4740     }
4741     }
4742   }
4743 
4744   // Constant fold unary operations with a vector integer or float operand.
4745   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4746     if (BV->isConstant()) {
4747       switch (Opcode) {
4748       default:
4749         // FIXME: Entirely reasonable to perform folding of other unary
4750         // operations here as the need arises.
4751         break;
4752       case ISD::FNEG:
4753       case ISD::FABS:
4754       case ISD::FCEIL:
4755       case ISD::FTRUNC:
4756       case ISD::FFLOOR:
4757       case ISD::FP_EXTEND:
4758       case ISD::FP_TO_SINT:
4759       case ISD::FP_TO_UINT:
4760       case ISD::TRUNCATE:
4761       case ISD::ANY_EXTEND:
4762       case ISD::ZERO_EXTEND:
4763       case ISD::SIGN_EXTEND:
4764       case ISD::UINT_TO_FP:
4765       case ISD::SINT_TO_FP:
4766       case ISD::ABS:
4767       case ISD::BITREVERSE:
4768       case ISD::BSWAP:
4769       case ISD::CTLZ:
4770       case ISD::CTLZ_ZERO_UNDEF:
4771       case ISD::CTTZ:
4772       case ISD::CTTZ_ZERO_UNDEF:
4773       case ISD::CTPOP: {
4774         SDValue Ops = { Operand };
4775         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4776           return Fold;
4777       }
4778       }
4779     }
4780   }
4781 
4782   unsigned OpOpcode = Operand.getNode()->getOpcode();
4783   switch (Opcode) {
4784   case ISD::STEP_VECTOR:
4785     assert(VT.isScalableVector() &&
4786            "STEP_VECTOR can only be used with scalable types");
4787     assert(VT.getScalarSizeInBits() >= 8 &&
4788            "STEP_VECTOR can only be used with vectors of integers that are at "
4789            "least 8 bits wide");
4790     assert(isa<ConstantSDNode>(Operand) &&
4791            cast<ConstantSDNode>(Operand)->getAPIntValue().isSignedIntN(
4792                VT.getScalarSizeInBits()) &&
4793            "Expected STEP_VECTOR integer constant to fit in "
4794            "the vector element type");
4795     break;
4796   case ISD::FREEZE:
4797     assert(VT == Operand.getValueType() && "Unexpected VT!");
4798     break;
4799   case ISD::TokenFactor:
4800   case ISD::MERGE_VALUES:
4801   case ISD::CONCAT_VECTORS:
4802     return Operand;         // Factor, merge or concat of one node?  No need.
4803   case ISD::BUILD_VECTOR: {
4804     // Attempt to simplify BUILD_VECTOR.
4805     SDValue Ops[] = {Operand};
4806     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4807       return V;
4808     break;
4809   }
4810   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4811   case ISD::FP_EXTEND:
4812     assert(VT.isFloatingPoint() &&
4813            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4814     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4815     assert((!VT.isVector() ||
4816             VT.getVectorElementCount() ==
4817             Operand.getValueType().getVectorElementCount()) &&
4818            "Vector element count mismatch!");
4819     assert(Operand.getValueType().bitsLT(VT) &&
4820            "Invalid fpext node, dst < src!");
4821     if (Operand.isUndef())
4822       return getUNDEF(VT);
4823     break;
4824   case ISD::FP_TO_SINT:
4825   case ISD::FP_TO_UINT:
4826     if (Operand.isUndef())
4827       return getUNDEF(VT);
4828     break;
4829   case ISD::SINT_TO_FP:
4830   case ISD::UINT_TO_FP:
4831     // [us]itofp(undef) = 0, because the result value is bounded.
4832     if (Operand.isUndef())
4833       return getConstantFP(0.0, DL, VT);
4834     break;
4835   case ISD::SIGN_EXTEND:
4836     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4837            "Invalid SIGN_EXTEND!");
4838     assert(VT.isVector() == Operand.getValueType().isVector() &&
4839            "SIGN_EXTEND result type type should be vector iff the operand "
4840            "type is vector!");
4841     if (Operand.getValueType() == VT) return Operand;   // noop extension
4842     assert((!VT.isVector() ||
4843             VT.getVectorElementCount() ==
4844                 Operand.getValueType().getVectorElementCount()) &&
4845            "Vector element count mismatch!");
4846     assert(Operand.getValueType().bitsLT(VT) &&
4847            "Invalid sext node, dst < src!");
4848     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4849       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4850     if (OpOpcode == ISD::UNDEF)
4851       // sext(undef) = 0, because the top bits will all be the same.
4852       return getConstant(0, DL, VT);
4853     break;
4854   case ISD::ZERO_EXTEND:
4855     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4856            "Invalid ZERO_EXTEND!");
4857     assert(VT.isVector() == Operand.getValueType().isVector() &&
4858            "ZERO_EXTEND result type type should be vector iff the operand "
4859            "type is vector!");
4860     if (Operand.getValueType() == VT) return Operand;   // noop extension
4861     assert((!VT.isVector() ||
4862             VT.getVectorElementCount() ==
4863                 Operand.getValueType().getVectorElementCount()) &&
4864            "Vector element count mismatch!");
4865     assert(Operand.getValueType().bitsLT(VT) &&
4866            "Invalid zext node, dst < src!");
4867     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4868       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4869     if (OpOpcode == ISD::UNDEF)
4870       // zext(undef) = 0, because the top bits will be zero.
4871       return getConstant(0, DL, VT);
4872     break;
4873   case ISD::ANY_EXTEND:
4874     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4875            "Invalid ANY_EXTEND!");
4876     assert(VT.isVector() == Operand.getValueType().isVector() &&
4877            "ANY_EXTEND result type type should be vector iff the operand "
4878            "type is vector!");
4879     if (Operand.getValueType() == VT) return Operand;   // noop extension
4880     assert((!VT.isVector() ||
4881             VT.getVectorElementCount() ==
4882                 Operand.getValueType().getVectorElementCount()) &&
4883            "Vector element count mismatch!");
4884     assert(Operand.getValueType().bitsLT(VT) &&
4885            "Invalid anyext node, dst < src!");
4886 
4887     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4888         OpOpcode == ISD::ANY_EXTEND)
4889       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4890       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4891     if (OpOpcode == ISD::UNDEF)
4892       return getUNDEF(VT);
4893 
4894     // (ext (trunc x)) -> x
4895     if (OpOpcode == ISD::TRUNCATE) {
4896       SDValue OpOp = Operand.getOperand(0);
4897       if (OpOp.getValueType() == VT) {
4898         transferDbgValues(Operand, OpOp);
4899         return OpOp;
4900       }
4901     }
4902     break;
4903   case ISD::TRUNCATE:
4904     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4905            "Invalid TRUNCATE!");
4906     assert(VT.isVector() == Operand.getValueType().isVector() &&
4907            "TRUNCATE result type type should be vector iff the operand "
4908            "type is vector!");
4909     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4910     assert((!VT.isVector() ||
4911             VT.getVectorElementCount() ==
4912                 Operand.getValueType().getVectorElementCount()) &&
4913            "Vector element count mismatch!");
4914     assert(Operand.getValueType().bitsGT(VT) &&
4915            "Invalid truncate node, src < dst!");
4916     if (OpOpcode == ISD::TRUNCATE)
4917       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4918     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4919         OpOpcode == ISD::ANY_EXTEND) {
4920       // If the source is smaller than the dest, we still need an extend.
4921       if (Operand.getOperand(0).getValueType().getScalarType()
4922             .bitsLT(VT.getScalarType()))
4923         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4924       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4925         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4926       return Operand.getOperand(0);
4927     }
4928     if (OpOpcode == ISD::UNDEF)
4929       return getUNDEF(VT);
4930     break;
4931   case ISD::ANY_EXTEND_VECTOR_INREG:
4932   case ISD::ZERO_EXTEND_VECTOR_INREG:
4933   case ISD::SIGN_EXTEND_VECTOR_INREG:
4934     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4935     assert(Operand.getValueType().bitsLE(VT) &&
4936            "The input must be the same size or smaller than the result.");
4937     assert(VT.getVectorMinNumElements() <
4938                Operand.getValueType().getVectorMinNumElements() &&
4939            "The destination vector type must have fewer lanes than the input.");
4940     break;
4941   case ISD::ABS:
4942     assert(VT.isInteger() && VT == Operand.getValueType() &&
4943            "Invalid ABS!");
4944     if (OpOpcode == ISD::UNDEF)
4945       return getUNDEF(VT);
4946     break;
4947   case ISD::BSWAP:
4948     assert(VT.isInteger() && VT == Operand.getValueType() &&
4949            "Invalid BSWAP!");
4950     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4951            "BSWAP types must be a multiple of 16 bits!");
4952     if (OpOpcode == ISD::UNDEF)
4953       return getUNDEF(VT);
4954     break;
4955   case ISD::BITREVERSE:
4956     assert(VT.isInteger() && VT == Operand.getValueType() &&
4957            "Invalid BITREVERSE!");
4958     if (OpOpcode == ISD::UNDEF)
4959       return getUNDEF(VT);
4960     break;
4961   case ISD::BITCAST:
4962     // Basic sanity checking.
4963     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4964            "Cannot BITCAST between types of different sizes!");
4965     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4966     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4967       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4968     if (OpOpcode == ISD::UNDEF)
4969       return getUNDEF(VT);
4970     break;
4971   case ISD::SCALAR_TO_VECTOR:
4972     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4973            (VT.getVectorElementType() == Operand.getValueType() ||
4974             (VT.getVectorElementType().isInteger() &&
4975              Operand.getValueType().isInteger() &&
4976              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4977            "Illegal SCALAR_TO_VECTOR node!");
4978     if (OpOpcode == ISD::UNDEF)
4979       return getUNDEF(VT);
4980     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4981     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4982         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4983         Operand.getConstantOperandVal(1) == 0 &&
4984         Operand.getOperand(0).getValueType() == VT)
4985       return Operand.getOperand(0);
4986     break;
4987   case ISD::FNEG:
4988     // Negation of an unknown bag of bits is still completely undefined.
4989     if (OpOpcode == ISD::UNDEF)
4990       return getUNDEF(VT);
4991 
4992     if (OpOpcode == ISD::FNEG)  // --X -> X
4993       return Operand.getOperand(0);
4994     break;
4995   case ISD::FABS:
4996     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4997       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4998     break;
4999   case ISD::VSCALE:
5000     assert(VT == Operand.getValueType() && "Unexpected VT!");
5001     break;
5002   case ISD::CTPOP:
5003     if (Operand.getValueType().getScalarType() == MVT::i1)
5004       return Operand;
5005     break;
5006   case ISD::CTLZ:
5007   case ISD::CTTZ:
5008     if (Operand.getValueType().getScalarType() == MVT::i1)
5009       return getNOT(DL, Operand, Operand.getValueType());
5010     break;
5011   case ISD::VECREDUCE_SMIN:
5012   case ISD::VECREDUCE_UMAX:
5013     if (Operand.getValueType().getScalarType() == MVT::i1)
5014       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5015     break;
5016   case ISD::VECREDUCE_SMAX:
5017   case ISD::VECREDUCE_UMIN:
5018     if (Operand.getValueType().getScalarType() == MVT::i1)
5019       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5020     break;
5021   }
5022 
5023   SDNode *N;
5024   SDVTList VTs = getVTList(VT);
5025   SDValue Ops[] = {Operand};
5026   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5027     FoldingSetNodeID ID;
5028     AddNodeIDNode(ID, Opcode, VTs, Ops);
5029     void *IP = nullptr;
5030     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5031       E->intersectFlagsWith(Flags);
5032       return SDValue(E, 0);
5033     }
5034 
5035     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5036     N->setFlags(Flags);
5037     createOperands(N, Ops);
5038     CSEMap.InsertNode(N, IP);
5039   } else {
5040     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5041     createOperands(N, Ops);
5042   }
5043 
5044   InsertNode(N);
5045   SDValue V = SDValue(N, 0);
5046   NewSDValueDbgMsg(V, "Creating new node: ", this);
5047   return V;
5048 }
5049 
FoldValue(unsigned Opcode,const APInt & C1,const APInt & C2)5050 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5051                                        const APInt &C2) {
5052   switch (Opcode) {
5053   case ISD::ADD:  return C1 + C2;
5054   case ISD::SUB:  return C1 - C2;
5055   case ISD::MUL:  return C1 * C2;
5056   case ISD::AND:  return C1 & C2;
5057   case ISD::OR:   return C1 | C2;
5058   case ISD::XOR:  return C1 ^ C2;
5059   case ISD::SHL:  return C1 << C2;
5060   case ISD::SRL:  return C1.lshr(C2);
5061   case ISD::SRA:  return C1.ashr(C2);
5062   case ISD::ROTL: return C1.rotl(C2);
5063   case ISD::ROTR: return C1.rotr(C2);
5064   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5065   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5066   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5067   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5068   case ISD::SADDSAT: return C1.sadd_sat(C2);
5069   case ISD::UADDSAT: return C1.uadd_sat(C2);
5070   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5071   case ISD::USUBSAT: return C1.usub_sat(C2);
5072   case ISD::UDIV:
5073     if (!C2.getBoolValue())
5074       break;
5075     return C1.udiv(C2);
5076   case ISD::UREM:
5077     if (!C2.getBoolValue())
5078       break;
5079     return C1.urem(C2);
5080   case ISD::SDIV:
5081     if (!C2.getBoolValue())
5082       break;
5083     return C1.sdiv(C2);
5084   case ISD::SREM:
5085     if (!C2.getBoolValue())
5086       break;
5087     return C1.srem(C2);
5088   }
5089   return llvm::None;
5090 }
5091 
FoldSymbolOffset(unsigned Opcode,EVT VT,const GlobalAddressSDNode * GA,const SDNode * N2)5092 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5093                                        const GlobalAddressSDNode *GA,
5094                                        const SDNode *N2) {
5095   if (GA->getOpcode() != ISD::GlobalAddress)
5096     return SDValue();
5097   if (!TLI->isOffsetFoldingLegal(GA))
5098     return SDValue();
5099   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5100   if (!C2)
5101     return SDValue();
5102   int64_t Offset = C2->getSExtValue();
5103   switch (Opcode) {
5104   case ISD::ADD: break;
5105   case ISD::SUB: Offset = -uint64_t(Offset); break;
5106   default: return SDValue();
5107   }
5108   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5109                           GA->getOffset() + uint64_t(Offset));
5110 }
5111 
isUndef(unsigned Opcode,ArrayRef<SDValue> Ops)5112 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5113   switch (Opcode) {
5114   case ISD::SDIV:
5115   case ISD::UDIV:
5116   case ISD::SREM:
5117   case ISD::UREM: {
5118     // If a divisor is zero/undef or any element of a divisor vector is
5119     // zero/undef, the whole op is undef.
5120     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5121     SDValue Divisor = Ops[1];
5122     if (Divisor.isUndef() || isNullConstant(Divisor))
5123       return true;
5124 
5125     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5126            llvm::any_of(Divisor->op_values(),
5127                         [](SDValue V) { return V.isUndef() ||
5128                                         isNullConstant(V); });
5129     // TODO: Handle signed overflow.
5130   }
5131   // TODO: Handle oversized shifts.
5132   default:
5133     return false;
5134   }
5135 }
5136 
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops)5137 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5138                                              EVT VT, ArrayRef<SDValue> Ops) {
5139   // If the opcode is a target-specific ISD node, there's nothing we can
5140   // do here and the operand rules may not line up with the below, so
5141   // bail early.
5142   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5143   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5144   // foldCONCAT_VECTORS in getNode before this is called.
5145   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5146     return SDValue();
5147 
5148   // For now, the array Ops should only contain two values.
5149   // This enforcement will be removed once this function is merged with
5150   // FoldConstantVectorArithmetic
5151   if (Ops.size() != 2)
5152     return SDValue();
5153 
5154   if (isUndef(Opcode, Ops))
5155     return getUNDEF(VT);
5156 
5157   SDNode *N1 = Ops[0].getNode();
5158   SDNode *N2 = Ops[1].getNode();
5159 
5160   // Handle the case of two scalars.
5161   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
5162     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
5163       if (C1->isOpaque() || C2->isOpaque())
5164         return SDValue();
5165 
5166       Optional<APInt> FoldAttempt =
5167           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5168       if (!FoldAttempt)
5169         return SDValue();
5170 
5171       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5172       assert((!Folded || !VT.isVector()) &&
5173              "Can't fold vectors ops with scalar operands");
5174       return Folded;
5175     }
5176   }
5177 
5178   // fold (add Sym, c) -> Sym+c
5179   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5180     return FoldSymbolOffset(Opcode, VT, GA, N2);
5181   if (TLI->isCommutativeBinOp(Opcode))
5182     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5183       return FoldSymbolOffset(Opcode, VT, GA, N1);
5184 
5185   // For fixed width vectors, extract each constant element and fold them
5186   // individually. Either input may be an undef value.
5187   bool IsBVOrSV1 = N1->getOpcode() == ISD::BUILD_VECTOR ||
5188                    N1->getOpcode() == ISD::SPLAT_VECTOR;
5189   if (!IsBVOrSV1 && !N1->isUndef())
5190     return SDValue();
5191   bool IsBVOrSV2 = N2->getOpcode() == ISD::BUILD_VECTOR ||
5192                    N2->getOpcode() == ISD::SPLAT_VECTOR;
5193   if (!IsBVOrSV2 && !N2->isUndef())
5194     return SDValue();
5195   // If both operands are undef, that's handled the same way as scalars.
5196   if (!IsBVOrSV1 && !IsBVOrSV2)
5197     return SDValue();
5198 
5199   EVT SVT = VT.getScalarType();
5200   EVT LegalSVT = SVT;
5201   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5202     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5203     if (LegalSVT.bitsLT(SVT))
5204       return SDValue();
5205   }
5206 
5207   SmallVector<SDValue, 4> Outputs;
5208   unsigned NumOps = 0;
5209   if (IsBVOrSV1)
5210     NumOps = std::max(NumOps, N1->getNumOperands());
5211   if (IsBVOrSV2)
5212     NumOps = std::max(NumOps, N2->getNumOperands());
5213   assert(NumOps != 0 && "Expected non-zero operands");
5214   // Scalable vectors should only be SPLAT_VECTOR or UNDEF here. We only need
5215   // one iteration for that.
5216   assert((!VT.isScalableVector() || NumOps == 1) &&
5217          "Scalar vector should only have one scalar");
5218 
5219   for (unsigned I = 0; I != NumOps; ++I) {
5220     // We can have a fixed length SPLAT_VECTOR and a BUILD_VECTOR so we need
5221     // to use operand 0 of the SPLAT_VECTOR for each fixed element.
5222     SDValue V1;
5223     if (N1->getOpcode() == ISD::BUILD_VECTOR)
5224       V1 = N1->getOperand(I);
5225     else if (N1->getOpcode() == ISD::SPLAT_VECTOR)
5226       V1 = N1->getOperand(0);
5227     else
5228       V1 = getUNDEF(SVT);
5229 
5230     SDValue V2;
5231     if (N2->getOpcode() == ISD::BUILD_VECTOR)
5232       V2 = N2->getOperand(I);
5233     else if (N2->getOpcode() == ISD::SPLAT_VECTOR)
5234       V2 = N2->getOperand(0);
5235     else
5236       V2 = getUNDEF(SVT);
5237 
5238     if (SVT.isInteger()) {
5239       if (V1.getValueType().bitsGT(SVT))
5240         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5241       if (V2.getValueType().bitsGT(SVT))
5242         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5243     }
5244 
5245     if (V1.getValueType() != SVT || V2.getValueType() != SVT)
5246       return SDValue();
5247 
5248     // Fold one vector element.
5249     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5250     if (LegalSVT != SVT)
5251       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5252 
5253     // Scalar folding only succeeded if the result is a constant or UNDEF.
5254     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5255         ScalarResult.getOpcode() != ISD::ConstantFP)
5256       return SDValue();
5257     Outputs.push_back(ScalarResult);
5258   }
5259 
5260   if (N1->getOpcode() == ISD::BUILD_VECTOR ||
5261       N2->getOpcode() == ISD::BUILD_VECTOR) {
5262     assert(VT.getVectorNumElements() == Outputs.size() &&
5263            "Vector size mismatch!");
5264 
5265     // Build a big vector out of the scalar elements we generated.
5266     return getBuildVector(VT, SDLoc(), Outputs);
5267   }
5268 
5269   assert((N1->getOpcode() == ISD::SPLAT_VECTOR ||
5270           N2->getOpcode() == ISD::SPLAT_VECTOR) &&
5271          "One operand should be a splat vector");
5272 
5273   assert(Outputs.size() == 1 && "Vector size mismatch!");
5274   return getSplatVector(VT, SDLoc(), Outputs[0]);
5275 }
5276 
5277 // TODO: Merge with FoldConstantArithmetic
FoldConstantVectorArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)5278 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5279                                                    const SDLoc &DL, EVT VT,
5280                                                    ArrayRef<SDValue> Ops,
5281                                                    const SDNodeFlags Flags) {
5282   // If the opcode is a target-specific ISD node, there's nothing we can
5283   // do here and the operand rules may not line up with the below, so
5284   // bail early.
5285   if (Opcode >= ISD::BUILTIN_OP_END)
5286     return SDValue();
5287 
5288   if (isUndef(Opcode, Ops))
5289     return getUNDEF(VT);
5290 
5291   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5292   if (!VT.isVector())
5293     return SDValue();
5294 
5295   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5296   // vector width, however we should be able to do constant folds involving
5297   // splat vector nodes too.
5298   if (VT.isScalableVector())
5299     return SDValue();
5300 
5301   // From this point onwards all vectors are assumed to be fixed width.
5302   unsigned NumElts = VT.getVectorNumElements();
5303 
5304   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5305     return !Op.getValueType().isVector() ||
5306            Op.getValueType().getVectorNumElements() == NumElts;
5307   };
5308 
5309   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5310     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5311     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5312            (BV && BV->isConstant());
5313   };
5314 
5315   // All operands must be vector types with the same number of elements as
5316   // the result type and must be either UNDEF or a build vector of constant
5317   // or UNDEF scalars.
5318   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5319       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5320     return SDValue();
5321 
5322   // If we are comparing vectors, then the result needs to be a i1 boolean
5323   // that is then sign-extended back to the legal result type.
5324   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5325 
5326   // Find legal integer scalar type for constant promotion and
5327   // ensure that its scalar size is at least as large as source.
5328   EVT LegalSVT = VT.getScalarType();
5329   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5330     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5331     if (LegalSVT.bitsLT(VT.getScalarType()))
5332       return SDValue();
5333   }
5334 
5335   // Constant fold each scalar lane separately.
5336   SmallVector<SDValue, 4> ScalarResults;
5337   for (unsigned i = 0; i != NumElts; i++) {
5338     SmallVector<SDValue, 4> ScalarOps;
5339     for (SDValue Op : Ops) {
5340       EVT InSVT = Op.getValueType().getScalarType();
5341       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5342       if (!InBV) {
5343         // We've checked that this is UNDEF or a constant of some kind.
5344         if (Op.isUndef())
5345           ScalarOps.push_back(getUNDEF(InSVT));
5346         else
5347           ScalarOps.push_back(Op);
5348         continue;
5349       }
5350 
5351       SDValue ScalarOp = InBV->getOperand(i);
5352       EVT ScalarVT = ScalarOp.getValueType();
5353 
5354       // Build vector (integer) scalar operands may need implicit
5355       // truncation - do this before constant folding.
5356       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5357         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5358 
5359       ScalarOps.push_back(ScalarOp);
5360     }
5361 
5362     // Constant fold the scalar operands.
5363     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5364 
5365     // Legalize the (integer) scalar constant if necessary.
5366     if (LegalSVT != SVT)
5367       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5368 
5369     // Scalar folding only succeeded if the result is a constant or UNDEF.
5370     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5371         ScalarResult.getOpcode() != ISD::ConstantFP)
5372       return SDValue();
5373     ScalarResults.push_back(ScalarResult);
5374   }
5375 
5376   SDValue V = getBuildVector(VT, DL, ScalarResults);
5377   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5378   return V;
5379 }
5380 
foldConstantFPMath(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2)5381 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5382                                          EVT VT, SDValue N1, SDValue N2) {
5383   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5384   //       should. That will require dealing with a potentially non-default
5385   //       rounding mode, checking the "opStatus" return value from the APFloat
5386   //       math calculations, and possibly other variations.
5387   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5388   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5389   if (N1CFP && N2CFP) {
5390     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5391     switch (Opcode) {
5392     case ISD::FADD:
5393       C1.add(C2, APFloat::rmNearestTiesToEven);
5394       return getConstantFP(C1, DL, VT);
5395     case ISD::FSUB:
5396       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5397       return getConstantFP(C1, DL, VT);
5398     case ISD::FMUL:
5399       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5400       return getConstantFP(C1, DL, VT);
5401     case ISD::FDIV:
5402       C1.divide(C2, APFloat::rmNearestTiesToEven);
5403       return getConstantFP(C1, DL, VT);
5404     case ISD::FREM:
5405       C1.mod(C2);
5406       return getConstantFP(C1, DL, VT);
5407     case ISD::FCOPYSIGN:
5408       C1.copySign(C2);
5409       return getConstantFP(C1, DL, VT);
5410     default: break;
5411     }
5412   }
5413   if (N1CFP && Opcode == ISD::FP_ROUND) {
5414     APFloat C1 = N1CFP->getValueAPF();    // make copy
5415     bool Unused;
5416     // This can return overflow, underflow, or inexact; we don't care.
5417     // FIXME need to be more flexible about rounding mode.
5418     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5419                       &Unused);
5420     return getConstantFP(C1, DL, VT);
5421   }
5422 
5423   switch (Opcode) {
5424   case ISD::FSUB:
5425     // -0.0 - undef --> undef (consistent with "fneg undef")
5426     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5427       return getUNDEF(VT);
5428     LLVM_FALLTHROUGH;
5429 
5430   case ISD::FADD:
5431   case ISD::FMUL:
5432   case ISD::FDIV:
5433   case ISD::FREM:
5434     // If both operands are undef, the result is undef. If 1 operand is undef,
5435     // the result is NaN. This should match the behavior of the IR optimizer.
5436     if (N1.isUndef() && N2.isUndef())
5437       return getUNDEF(VT);
5438     if (N1.isUndef() || N2.isUndef())
5439       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5440   }
5441   return SDValue();
5442 }
5443 
getAssertAlign(const SDLoc & DL,SDValue Val,Align A)5444 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5445   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5446 
5447   // There's no need to assert on a byte-aligned pointer. All pointers are at
5448   // least byte aligned.
5449   if (A == Align(1))
5450     return Val;
5451 
5452   FoldingSetNodeID ID;
5453   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5454   ID.AddInteger(A.value());
5455 
5456   void *IP = nullptr;
5457   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5458     return SDValue(E, 0);
5459 
5460   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5461                                          Val.getValueType(), A);
5462   createOperands(N, {Val});
5463 
5464   CSEMap.InsertNode(N, IP);
5465   InsertNode(N);
5466 
5467   SDValue V(N, 0);
5468   NewSDValueDbgMsg(V, "Creating new node: ", this);
5469   return V;
5470 }
5471 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2)5472 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5473                               SDValue N1, SDValue N2) {
5474   SDNodeFlags Flags;
5475   if (Inserter)
5476     Flags = Inserter->getFlags();
5477   return getNode(Opcode, DL, VT, N1, N2, Flags);
5478 }
5479 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,const SDNodeFlags Flags)5480 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5481                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5482   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5483          N2.getOpcode() != ISD::DELETED_NODE &&
5484          "Operand is DELETED_NODE!");
5485   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5486   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5487   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5488   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5489 
5490   // Canonicalize constant to RHS if commutative.
5491   if (TLI->isCommutativeBinOp(Opcode)) {
5492     if (N1C && !N2C) {
5493       std::swap(N1C, N2C);
5494       std::swap(N1, N2);
5495     } else if (N1CFP && !N2CFP) {
5496       std::swap(N1CFP, N2CFP);
5497       std::swap(N1, N2);
5498     }
5499   }
5500 
5501   switch (Opcode) {
5502   default: break;
5503   case ISD::TokenFactor:
5504     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5505            N2.getValueType() == MVT::Other && "Invalid token factor!");
5506     // Fold trivial token factors.
5507     if (N1.getOpcode() == ISD::EntryToken) return N2;
5508     if (N2.getOpcode() == ISD::EntryToken) return N1;
5509     if (N1 == N2) return N1;
5510     break;
5511   case ISD::BUILD_VECTOR: {
5512     // Attempt to simplify BUILD_VECTOR.
5513     SDValue Ops[] = {N1, N2};
5514     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5515       return V;
5516     break;
5517   }
5518   case ISD::CONCAT_VECTORS: {
5519     SDValue Ops[] = {N1, N2};
5520     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5521       return V;
5522     break;
5523   }
5524   case ISD::AND:
5525     assert(VT.isInteger() && "This operator does not apply to FP types!");
5526     assert(N1.getValueType() == N2.getValueType() &&
5527            N1.getValueType() == VT && "Binary operator types must match!");
5528     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5529     // worth handling here.
5530     if (N2C && N2C->isNullValue())
5531       return N2;
5532     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5533       return N1;
5534     break;
5535   case ISD::OR:
5536   case ISD::XOR:
5537   case ISD::ADD:
5538   case ISD::SUB:
5539     assert(VT.isInteger() && "This operator does not apply to FP types!");
5540     assert(N1.getValueType() == N2.getValueType() &&
5541            N1.getValueType() == VT && "Binary operator types must match!");
5542     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5543     // it's worth handling here.
5544     if (N2C && N2C->isNullValue())
5545       return N1;
5546     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5547         VT.getVectorElementType() == MVT::i1)
5548       return getNode(ISD::XOR, DL, VT, N1, N2);
5549     break;
5550   case ISD::MUL:
5551     assert(VT.isInteger() && "This operator does not apply to FP types!");
5552     assert(N1.getValueType() == N2.getValueType() &&
5553            N1.getValueType() == VT && "Binary operator types must match!");
5554     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5555       return getNode(ISD::AND, DL, VT, N1, N2);
5556     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5557       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5558       const APInt &N2CImm = N2C->getAPIntValue();
5559       return getVScale(DL, VT, MulImm * N2CImm);
5560     }
5561     break;
5562   case ISD::UDIV:
5563   case ISD::UREM:
5564   case ISD::MULHU:
5565   case ISD::MULHS:
5566   case ISD::SDIV:
5567   case ISD::SREM:
5568   case ISD::SADDSAT:
5569   case ISD::SSUBSAT:
5570   case ISD::UADDSAT:
5571   case ISD::USUBSAT:
5572     assert(VT.isInteger() && "This operator does not apply to FP types!");
5573     assert(N1.getValueType() == N2.getValueType() &&
5574            N1.getValueType() == VT && "Binary operator types must match!");
5575     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5576       // fold (add_sat x, y) -> (or x, y) for bool types.
5577       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5578         return getNode(ISD::OR, DL, VT, N1, N2);
5579       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5580       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5581         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5582     }
5583     break;
5584   case ISD::SMIN:
5585   case ISD::UMAX:
5586     assert(VT.isInteger() && "This operator does not apply to FP types!");
5587     assert(N1.getValueType() == N2.getValueType() &&
5588            N1.getValueType() == VT && "Binary operator types must match!");
5589     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5590       return getNode(ISD::OR, DL, VT, N1, N2);
5591     break;
5592   case ISD::SMAX:
5593   case ISD::UMIN:
5594     assert(VT.isInteger() && "This operator does not apply to FP types!");
5595     assert(N1.getValueType() == N2.getValueType() &&
5596            N1.getValueType() == VT && "Binary operator types must match!");
5597     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5598       return getNode(ISD::AND, DL, VT, N1, N2);
5599     break;
5600   case ISD::FADD:
5601   case ISD::FSUB:
5602   case ISD::FMUL:
5603   case ISD::FDIV:
5604   case ISD::FREM:
5605     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5606     assert(N1.getValueType() == N2.getValueType() &&
5607            N1.getValueType() == VT && "Binary operator types must match!");
5608     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5609       return V;
5610     break;
5611   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5612     assert(N1.getValueType() == VT &&
5613            N1.getValueType().isFloatingPoint() &&
5614            N2.getValueType().isFloatingPoint() &&
5615            "Invalid FCOPYSIGN!");
5616     break;
5617   case ISD::SHL:
5618     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5619       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5620       const APInt &ShiftImm = N2C->getAPIntValue();
5621       return getVScale(DL, VT, MulImm << ShiftImm);
5622     }
5623     LLVM_FALLTHROUGH;
5624   case ISD::SRA:
5625   case ISD::SRL:
5626     if (SDValue V = simplifyShift(N1, N2))
5627       return V;
5628     LLVM_FALLTHROUGH;
5629   case ISD::ROTL:
5630   case ISD::ROTR:
5631     assert(VT == N1.getValueType() &&
5632            "Shift operators return type must be the same as their first arg");
5633     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5634            "Shifts only work on integers");
5635     assert((!VT.isVector() || VT == N2.getValueType()) &&
5636            "Vector shift amounts must be in the same as their first arg");
5637     // Verify that the shift amount VT is big enough to hold valid shift
5638     // amounts.  This catches things like trying to shift an i1024 value by an
5639     // i8, which is easy to fall into in generic code that uses
5640     // TLI.getShiftAmount().
5641     assert(N2.getValueType().getScalarSizeInBits() >=
5642                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5643            "Invalid use of small shift amount with oversized value!");
5644 
5645     // Always fold shifts of i1 values so the code generator doesn't need to
5646     // handle them.  Since we know the size of the shift has to be less than the
5647     // size of the value, the shift/rotate count is guaranteed to be zero.
5648     if (VT == MVT::i1)
5649       return N1;
5650     if (N2C && N2C->isNullValue())
5651       return N1;
5652     break;
5653   case ISD::FP_ROUND:
5654     assert(VT.isFloatingPoint() &&
5655            N1.getValueType().isFloatingPoint() &&
5656            VT.bitsLE(N1.getValueType()) &&
5657            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5658            "Invalid FP_ROUND!");
5659     if (N1.getValueType() == VT) return N1;  // noop conversion.
5660     break;
5661   case ISD::AssertSext:
5662   case ISD::AssertZext: {
5663     EVT EVT = cast<VTSDNode>(N2)->getVT();
5664     assert(VT == N1.getValueType() && "Not an inreg extend!");
5665     assert(VT.isInteger() && EVT.isInteger() &&
5666            "Cannot *_EXTEND_INREG FP types");
5667     assert(!EVT.isVector() &&
5668            "AssertSExt/AssertZExt type should be the vector element type "
5669            "rather than the vector type!");
5670     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5671     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5672     break;
5673   }
5674   case ISD::SIGN_EXTEND_INREG: {
5675     EVT EVT = cast<VTSDNode>(N2)->getVT();
5676     assert(VT == N1.getValueType() && "Not an inreg extend!");
5677     assert(VT.isInteger() && EVT.isInteger() &&
5678            "Cannot *_EXTEND_INREG FP types");
5679     assert(EVT.isVector() == VT.isVector() &&
5680            "SIGN_EXTEND_INREG type should be vector iff the operand "
5681            "type is vector!");
5682     assert((!EVT.isVector() ||
5683             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5684            "Vector element counts must match in SIGN_EXTEND_INREG");
5685     assert(EVT.bitsLE(VT) && "Not extending!");
5686     if (EVT == VT) return N1;  // Not actually extending
5687 
5688     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5689       unsigned FromBits = EVT.getScalarSizeInBits();
5690       Val <<= Val.getBitWidth() - FromBits;
5691       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5692       return getConstant(Val, DL, ConstantVT);
5693     };
5694 
5695     if (N1C) {
5696       const APInt &Val = N1C->getAPIntValue();
5697       return SignExtendInReg(Val, VT);
5698     }
5699     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5700       SmallVector<SDValue, 8> Ops;
5701       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5702       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5703         SDValue Op = N1.getOperand(i);
5704         if (Op.isUndef()) {
5705           Ops.push_back(getUNDEF(OpVT));
5706           continue;
5707         }
5708         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5709         APInt Val = C->getAPIntValue();
5710         Ops.push_back(SignExtendInReg(Val, OpVT));
5711       }
5712       return getBuildVector(VT, DL, Ops);
5713     }
5714     break;
5715   }
5716   case ISD::FP_TO_SINT_SAT:
5717   case ISD::FP_TO_UINT_SAT: {
5718     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5719            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5720     assert(N1.getValueType().isVector() == VT.isVector() &&
5721            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5722            "vector!");
5723     assert((!VT.isVector() || VT.getVectorNumElements() ==
5724                                   N1.getValueType().getVectorNumElements()) &&
5725            "Vector element counts must match in FP_TO_*INT_SAT");
5726     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5727            "Type to saturate to must be a scalar.");
5728     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5729            "Not extending!");
5730     break;
5731   }
5732   case ISD::EXTRACT_VECTOR_ELT:
5733     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5734            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5735              element type of the vector.");
5736 
5737     // Extract from an undefined value or using an undefined index is undefined.
5738     if (N1.isUndef() || N2.isUndef())
5739       return getUNDEF(VT);
5740 
5741     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5742     // vectors. For scalable vectors we will provide appropriate support for
5743     // dealing with arbitrary indices.
5744     if (N2C && N1.getValueType().isFixedLengthVector() &&
5745         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5746       return getUNDEF(VT);
5747 
5748     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5749     // expanding copies of large vectors from registers. This only works for
5750     // fixed length vectors, since we need to know the exact number of
5751     // elements.
5752     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5753         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5754       unsigned Factor =
5755         N1.getOperand(0).getValueType().getVectorNumElements();
5756       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5757                      N1.getOperand(N2C->getZExtValue() / Factor),
5758                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5759     }
5760 
5761     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5762     // lowering is expanding large vector constants.
5763     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5764                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5765       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5766               N1.getValueType().isFixedLengthVector()) &&
5767              "BUILD_VECTOR used for scalable vectors");
5768       unsigned Index =
5769           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5770       SDValue Elt = N1.getOperand(Index);
5771 
5772       if (VT != Elt.getValueType())
5773         // If the vector element type is not legal, the BUILD_VECTOR operands
5774         // are promoted and implicitly truncated, and the result implicitly
5775         // extended. Make that explicit here.
5776         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5777 
5778       return Elt;
5779     }
5780 
5781     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5782     // operations are lowered to scalars.
5783     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5784       // If the indices are the same, return the inserted element else
5785       // if the indices are known different, extract the element from
5786       // the original vector.
5787       SDValue N1Op2 = N1.getOperand(2);
5788       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5789 
5790       if (N1Op2C && N2C) {
5791         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5792           if (VT == N1.getOperand(1).getValueType())
5793             return N1.getOperand(1);
5794           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5795         }
5796         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5797       }
5798     }
5799 
5800     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5801     // when vector types are scalarized and v1iX is legal.
5802     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5803     // Here we are completely ignoring the extract element index (N2),
5804     // which is fine for fixed width vectors, since any index other than 0
5805     // is undefined anyway. However, this cannot be ignored for scalable
5806     // vectors - in theory we could support this, but we don't want to do this
5807     // without a profitability check.
5808     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5809         N1.getValueType().isFixedLengthVector() &&
5810         N1.getValueType().getVectorNumElements() == 1) {
5811       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5812                      N1.getOperand(1));
5813     }
5814     break;
5815   case ISD::EXTRACT_ELEMENT:
5816     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5817     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5818            (N1.getValueType().isInteger() == VT.isInteger()) &&
5819            N1.getValueType() != VT &&
5820            "Wrong types for EXTRACT_ELEMENT!");
5821 
5822     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5823     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5824     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5825     if (N1.getOpcode() == ISD::BUILD_PAIR)
5826       return N1.getOperand(N2C->getZExtValue());
5827 
5828     // EXTRACT_ELEMENT of a constant int is also very common.
5829     if (N1C) {
5830       unsigned ElementSize = VT.getSizeInBits();
5831       unsigned Shift = ElementSize * N2C->getZExtValue();
5832       const APInt &Val = N1C->getAPIntValue();
5833       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5834     }
5835     break;
5836   case ISD::EXTRACT_SUBVECTOR:
5837     EVT N1VT = N1.getValueType();
5838     assert(VT.isVector() && N1VT.isVector() &&
5839            "Extract subvector VTs must be vectors!");
5840     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5841            "Extract subvector VTs must have the same element type!");
5842     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5843            "Cannot extract a scalable vector from a fixed length vector!");
5844     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5845             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5846            "Extract subvector must be from larger vector to smaller vector!");
5847     assert(N2C && "Extract subvector index must be a constant");
5848     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5849             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5850                 N1VT.getVectorMinNumElements()) &&
5851            "Extract subvector overflow!");
5852     assert(N2C->getAPIntValue().getBitWidth() ==
5853                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5854            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5855 
5856     // Trivial extraction.
5857     if (VT == N1VT)
5858       return N1;
5859 
5860     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5861     if (N1.isUndef())
5862       return getUNDEF(VT);
5863 
5864     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5865     // the concat have the same type as the extract.
5866     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5867         VT == N1.getOperand(0).getValueType()) {
5868       unsigned Factor = VT.getVectorMinNumElements();
5869       return N1.getOperand(N2C->getZExtValue() / Factor);
5870     }
5871 
5872     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5873     // during shuffle legalization.
5874     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5875         VT == N1.getOperand(1).getValueType())
5876       return N1.getOperand(1);
5877     break;
5878   }
5879 
5880   // Perform trivial constant folding.
5881   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5882     return SV;
5883 
5884   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5885     return V;
5886 
5887   // Canonicalize an UNDEF to the RHS, even over a constant.
5888   if (N1.isUndef()) {
5889     if (TLI->isCommutativeBinOp(Opcode)) {
5890       std::swap(N1, N2);
5891     } else {
5892       switch (Opcode) {
5893       case ISD::SIGN_EXTEND_INREG:
5894       case ISD::SUB:
5895         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5896       case ISD::UDIV:
5897       case ISD::SDIV:
5898       case ISD::UREM:
5899       case ISD::SREM:
5900       case ISD::SSUBSAT:
5901       case ISD::USUBSAT:
5902         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5903       }
5904     }
5905   }
5906 
5907   // Fold a bunch of operators when the RHS is undef.
5908   if (N2.isUndef()) {
5909     switch (Opcode) {
5910     case ISD::XOR:
5911       if (N1.isUndef())
5912         // Handle undef ^ undef -> 0 special case. This is a common
5913         // idiom (misuse).
5914         return getConstant(0, DL, VT);
5915       LLVM_FALLTHROUGH;
5916     case ISD::ADD:
5917     case ISD::SUB:
5918     case ISD::UDIV:
5919     case ISD::SDIV:
5920     case ISD::UREM:
5921     case ISD::SREM:
5922       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5923     case ISD::MUL:
5924     case ISD::AND:
5925     case ISD::SSUBSAT:
5926     case ISD::USUBSAT:
5927       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5928     case ISD::OR:
5929     case ISD::SADDSAT:
5930     case ISD::UADDSAT:
5931       return getAllOnesConstant(DL, VT);
5932     }
5933   }
5934 
5935   // Memoize this node if possible.
5936   SDNode *N;
5937   SDVTList VTs = getVTList(VT);
5938   SDValue Ops[] = {N1, N2};
5939   if (VT != MVT::Glue) {
5940     FoldingSetNodeID ID;
5941     AddNodeIDNode(ID, Opcode, VTs, Ops);
5942     void *IP = nullptr;
5943     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5944       E->intersectFlagsWith(Flags);
5945       return SDValue(E, 0);
5946     }
5947 
5948     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5949     N->setFlags(Flags);
5950     createOperands(N, Ops);
5951     CSEMap.InsertNode(N, IP);
5952   } else {
5953     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5954     createOperands(N, Ops);
5955   }
5956 
5957   InsertNode(N);
5958   SDValue V = SDValue(N, 0);
5959   NewSDValueDbgMsg(V, "Creating new node: ", this);
5960   return V;
5961 }
5962 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3)5963 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5964                               SDValue N1, SDValue N2, SDValue N3) {
5965   SDNodeFlags Flags;
5966   if (Inserter)
5967     Flags = Inserter->getFlags();
5968   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
5969 }
5970 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,const SDNodeFlags Flags)5971 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5972                               SDValue N1, SDValue N2, SDValue N3,
5973                               const SDNodeFlags Flags) {
5974   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5975          N2.getOpcode() != ISD::DELETED_NODE &&
5976          N3.getOpcode() != ISD::DELETED_NODE &&
5977          "Operand is DELETED_NODE!");
5978   // Perform various simplifications.
5979   switch (Opcode) {
5980   case ISD::FMA: {
5981     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5982     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5983            N3.getValueType() == VT && "FMA types must match!");
5984     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5985     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5986     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5987     if (N1CFP && N2CFP && N3CFP) {
5988       APFloat  V1 = N1CFP->getValueAPF();
5989       const APFloat &V2 = N2CFP->getValueAPF();
5990       const APFloat &V3 = N3CFP->getValueAPF();
5991       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5992       return getConstantFP(V1, DL, VT);
5993     }
5994     break;
5995   }
5996   case ISD::BUILD_VECTOR: {
5997     // Attempt to simplify BUILD_VECTOR.
5998     SDValue Ops[] = {N1, N2, N3};
5999     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6000       return V;
6001     break;
6002   }
6003   case ISD::CONCAT_VECTORS: {
6004     SDValue Ops[] = {N1, N2, N3};
6005     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6006       return V;
6007     break;
6008   }
6009   case ISD::SETCC: {
6010     assert(VT.isInteger() && "SETCC result type must be an integer!");
6011     assert(N1.getValueType() == N2.getValueType() &&
6012            "SETCC operands must have the same type!");
6013     assert(VT.isVector() == N1.getValueType().isVector() &&
6014            "SETCC type should be vector iff the operand type is vector!");
6015     assert((!VT.isVector() || VT.getVectorElementCount() ==
6016                                   N1.getValueType().getVectorElementCount()) &&
6017            "SETCC vector element counts must match!");
6018     // Use FoldSetCC to simplify SETCC's.
6019     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6020       return V;
6021     // Vector constant folding.
6022     SDValue Ops[] = {N1, N2, N3};
6023     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
6024       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6025       return V;
6026     }
6027     break;
6028   }
6029   case ISD::SELECT:
6030   case ISD::VSELECT:
6031     if (SDValue V = simplifySelect(N1, N2, N3))
6032       return V;
6033     break;
6034   case ISD::VECTOR_SHUFFLE:
6035     llvm_unreachable("should use getVectorShuffle constructor!");
6036   case ISD::INSERT_VECTOR_ELT: {
6037     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6038     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6039     // for scalable vectors where we will generate appropriate code to
6040     // deal with out-of-bounds cases correctly.
6041     if (N3C && N1.getValueType().isFixedLengthVector() &&
6042         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6043       return getUNDEF(VT);
6044 
6045     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6046     if (N3.isUndef())
6047       return getUNDEF(VT);
6048 
6049     // If the inserted element is an UNDEF, just use the input vector.
6050     if (N2.isUndef())
6051       return N1;
6052 
6053     break;
6054   }
6055   case ISD::INSERT_SUBVECTOR: {
6056     // Inserting undef into undef is still undef.
6057     if (N1.isUndef() && N2.isUndef())
6058       return getUNDEF(VT);
6059 
6060     EVT N2VT = N2.getValueType();
6061     assert(VT == N1.getValueType() &&
6062            "Dest and insert subvector source types must match!");
6063     assert(VT.isVector() && N2VT.isVector() &&
6064            "Insert subvector VTs must be vectors!");
6065     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6066            "Cannot insert a scalable vector into a fixed length vector!");
6067     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6068             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6069            "Insert subvector must be from smaller vector to larger vector!");
6070     assert(isa<ConstantSDNode>(N3) &&
6071            "Insert subvector index must be constant");
6072     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6073             (N2VT.getVectorMinNumElements() +
6074              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6075                 VT.getVectorMinNumElements()) &&
6076            "Insert subvector overflow!");
6077     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6078                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6079            "Constant index for INSERT_SUBVECTOR has an invalid size");
6080 
6081     // Trivial insertion.
6082     if (VT == N2VT)
6083       return N2;
6084 
6085     // If this is an insert of an extracted vector into an undef vector, we
6086     // can just use the input to the extract.
6087     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6088         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6089       return N2.getOperand(0);
6090     break;
6091   }
6092   case ISD::BITCAST:
6093     // Fold bit_convert nodes from a type to themselves.
6094     if (N1.getValueType() == VT)
6095       return N1;
6096     break;
6097   }
6098 
6099   // Memoize node if it doesn't produce a flag.
6100   SDNode *N;
6101   SDVTList VTs = getVTList(VT);
6102   SDValue Ops[] = {N1, N2, N3};
6103   if (VT != MVT::Glue) {
6104     FoldingSetNodeID ID;
6105     AddNodeIDNode(ID, Opcode, VTs, Ops);
6106     void *IP = nullptr;
6107     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6108       E->intersectFlagsWith(Flags);
6109       return SDValue(E, 0);
6110     }
6111 
6112     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6113     N->setFlags(Flags);
6114     createOperands(N, Ops);
6115     CSEMap.InsertNode(N, IP);
6116   } else {
6117     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6118     createOperands(N, Ops);
6119   }
6120 
6121   InsertNode(N);
6122   SDValue V = SDValue(N, 0);
6123   NewSDValueDbgMsg(V, "Creating new node: ", this);
6124   return V;
6125 }
6126 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)6127 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6128                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6129   SDValue Ops[] = { N1, N2, N3, N4 };
6130   return getNode(Opcode, DL, VT, Ops);
6131 }
6132 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)6133 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6134                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6135                               SDValue N5) {
6136   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6137   return getNode(Opcode, DL, VT, Ops);
6138 }
6139 
6140 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6141 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)6142 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6143   SmallVector<SDValue, 8> ArgChains;
6144 
6145   // Include the original chain at the beginning of the list. When this is
6146   // used by target LowerCall hooks, this helps legalize find the
6147   // CALLSEQ_BEGIN node.
6148   ArgChains.push_back(Chain);
6149 
6150   // Add a chain value for each stack argument.
6151   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
6152        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
6153     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
6154       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6155         if (FI->getIndex() < 0)
6156           ArgChains.push_back(SDValue(L, 1));
6157 
6158   // Build a tokenfactor for all the chains.
6159   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6160 }
6161 
6162 /// getMemsetValue - Vectorized representation of the memset value
6163 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,const SDLoc & dl)6164 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6165                               const SDLoc &dl) {
6166   assert(!Value.isUndef());
6167 
6168   unsigned NumBits = VT.getScalarSizeInBits();
6169   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6170     assert(C->getAPIntValue().getBitWidth() == 8);
6171     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6172     if (VT.isInteger()) {
6173       bool IsOpaque = VT.getSizeInBits() > 64 ||
6174           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6175       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6176     }
6177     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6178                              VT);
6179   }
6180 
6181   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6182   EVT IntVT = VT.getScalarType();
6183   if (!IntVT.isInteger())
6184     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6185 
6186   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6187   if (NumBits > 8) {
6188     // Use a multiplication with 0x010101... to extend the input to the
6189     // required length.
6190     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6191     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6192                         DAG.getConstant(Magic, dl, IntVT));
6193   }
6194 
6195   if (VT != Value.getValueType() && !VT.isInteger())
6196     Value = DAG.getBitcast(VT.getScalarType(), Value);
6197   if (VT != Value.getValueType())
6198     Value = DAG.getSplatBuildVector(VT, dl, Value);
6199 
6200   return Value;
6201 }
6202 
6203 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6204 /// used when a memcpy is turned into a memset when the source is a constant
6205 /// string ptr.
getMemsetStringVal(EVT VT,const SDLoc & dl,SelectionDAG & DAG,const TargetLowering & TLI,const ConstantDataArraySlice & Slice)6206 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6207                                   const TargetLowering &TLI,
6208                                   const ConstantDataArraySlice &Slice) {
6209   // Handle vector with all elements zero.
6210   if (Slice.Array == nullptr) {
6211     if (VT.isInteger())
6212       return DAG.getConstant(0, dl, VT);
6213     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6214       return DAG.getConstantFP(0.0, dl, VT);
6215     if (VT.isVector()) {
6216       unsigned NumElts = VT.getVectorNumElements();
6217       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6218       return DAG.getNode(ISD::BITCAST, dl, VT,
6219                          DAG.getConstant(0, dl,
6220                                          EVT::getVectorVT(*DAG.getContext(),
6221                                                           EltVT, NumElts)));
6222     }
6223     llvm_unreachable("Expected type!");
6224   }
6225 
6226   assert(!VT.isVector() && "Can't handle vector type here!");
6227   unsigned NumVTBits = VT.getSizeInBits();
6228   unsigned NumVTBytes = NumVTBits / 8;
6229   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6230 
6231   APInt Val(NumVTBits, 0);
6232   if (DAG.getDataLayout().isLittleEndian()) {
6233     for (unsigned i = 0; i != NumBytes; ++i)
6234       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6235   } else {
6236     for (unsigned i = 0; i != NumBytes; ++i)
6237       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6238   }
6239 
6240   // If the "cost" of materializing the integer immediate is less than the cost
6241   // of a load, then it is cost effective to turn the load into the immediate.
6242   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6243   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6244     return DAG.getConstant(Val, dl, VT);
6245   return SDValue(nullptr, 0);
6246 }
6247 
getMemBasePlusOffset(SDValue Base,TypeSize Offset,const SDLoc & DL,const SDNodeFlags Flags)6248 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6249                                            const SDLoc &DL,
6250                                            const SDNodeFlags Flags) {
6251   EVT VT = Base.getValueType();
6252   SDValue Index;
6253 
6254   if (Offset.isScalable())
6255     Index = getVScale(DL, Base.getValueType(),
6256                       APInt(Base.getValueSizeInBits().getFixedSize(),
6257                             Offset.getKnownMinSize()));
6258   else
6259     Index = getConstant(Offset.getFixedSize(), DL, VT);
6260 
6261   return getMemBasePlusOffset(Base, Index, DL, Flags);
6262 }
6263 
getMemBasePlusOffset(SDValue Ptr,SDValue Offset,const SDLoc & DL,const SDNodeFlags Flags)6264 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6265                                            const SDLoc &DL,
6266                                            const SDNodeFlags Flags) {
6267   assert(Offset.getValueType().isInteger());
6268   EVT BasePtrVT = Ptr.getValueType();
6269   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6270 }
6271 
6272 /// Returns true if memcpy source is constant data.
isMemSrcFromConstant(SDValue Src,ConstantDataArraySlice & Slice)6273 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6274   uint64_t SrcDelta = 0;
6275   GlobalAddressSDNode *G = nullptr;
6276   if (Src.getOpcode() == ISD::GlobalAddress)
6277     G = cast<GlobalAddressSDNode>(Src);
6278   else if (Src.getOpcode() == ISD::ADD &&
6279            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6280            Src.getOperand(1).getOpcode() == ISD::Constant) {
6281     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6282     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6283   }
6284   if (!G)
6285     return false;
6286 
6287   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6288                                   SrcDelta + G->getOffset());
6289 }
6290 
shouldLowerMemFuncForSize(const MachineFunction & MF,SelectionDAG & DAG)6291 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6292                                       SelectionDAG &DAG) {
6293   // On Darwin, -Os means optimize for size without hurting performance, so
6294   // only really optimize for size when -Oz (MinSize) is used.
6295   if (MF.getTarget().getTargetTriple().isOSDarwin())
6296     return MF.getFunction().hasMinSize();
6297   return DAG.shouldOptForSize();
6298 }
6299 
chainLoadsAndStoresForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SmallVector<SDValue,32> & OutChains,unsigned From,unsigned To,SmallVector<SDValue,16> & OutLoadChains,SmallVector<SDValue,16> & OutStoreChains)6300 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6301                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6302                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6303                           SmallVector<SDValue, 16> &OutStoreChains) {
6304   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6305   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6306   SmallVector<SDValue, 16> GluedLoadChains;
6307   for (unsigned i = From; i < To; ++i) {
6308     OutChains.push_back(OutLoadChains[i]);
6309     GluedLoadChains.push_back(OutLoadChains[i]);
6310   }
6311 
6312   // Chain for all loads.
6313   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6314                                   GluedLoadChains);
6315 
6316   for (unsigned i = From; i < To; ++i) {
6317     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6318     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6319                                   ST->getBasePtr(), ST->getMemoryVT(),
6320                                   ST->getMemOperand());
6321     OutChains.push_back(NewStore);
6322   }
6323 }
6324 
getMemcpyLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6325 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6326                                        SDValue Chain, SDValue Dst, SDValue Src,
6327                                        uint64_t Size, Align Alignment,
6328                                        bool isVol, bool AlwaysInline,
6329                                        MachinePointerInfo DstPtrInfo,
6330                                        MachinePointerInfo SrcPtrInfo) {
6331   // Turn a memcpy of undef to nop.
6332   // FIXME: We need to honor volatile even is Src is undef.
6333   if (Src.isUndef())
6334     return Chain;
6335 
6336   // Expand memcpy to a series of load and store ops if the size operand falls
6337   // below a certain threshold.
6338   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6339   // rather than maybe a humongous number of loads and stores.
6340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6341   const DataLayout &DL = DAG.getDataLayout();
6342   LLVMContext &C = *DAG.getContext();
6343   std::vector<EVT> MemOps;
6344   bool DstAlignCanChange = false;
6345   MachineFunction &MF = DAG.getMachineFunction();
6346   MachineFrameInfo &MFI = MF.getFrameInfo();
6347   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6348   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6349   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6350     DstAlignCanChange = true;
6351   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6352   if (!SrcAlign || Alignment > *SrcAlign)
6353     SrcAlign = Alignment;
6354   assert(SrcAlign && "SrcAlign must be set");
6355   ConstantDataArraySlice Slice;
6356   // If marked as volatile, perform a copy even when marked as constant.
6357   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6358   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6359   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6360   const MemOp Op = isZeroConstant
6361                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6362                                     /*IsZeroMemset*/ true, isVol)
6363                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6364                                      *SrcAlign, isVol, CopyFromConstant);
6365   if (!TLI.findOptimalMemOpLowering(
6366           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6367           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6368     return SDValue();
6369 
6370   if (DstAlignCanChange) {
6371     Type *Ty = MemOps[0].getTypeForEVT(C);
6372     Align NewAlign = DL.getABITypeAlign(Ty);
6373 
6374     // Don't promote to an alignment that would require dynamic stack
6375     // realignment.
6376     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6377     if (!TRI->hasStackRealignment(MF))
6378       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6379         NewAlign = NewAlign / 2;
6380 
6381     if (NewAlign > Alignment) {
6382       // Give the stack frame object a larger alignment if needed.
6383       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6384         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6385       Alignment = NewAlign;
6386     }
6387   }
6388 
6389   MachineMemOperand::Flags MMOFlags =
6390       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6391   SmallVector<SDValue, 16> OutLoadChains;
6392   SmallVector<SDValue, 16> OutStoreChains;
6393   SmallVector<SDValue, 32> OutChains;
6394   unsigned NumMemOps = MemOps.size();
6395   uint64_t SrcOff = 0, DstOff = 0;
6396   for (unsigned i = 0; i != NumMemOps; ++i) {
6397     EVT VT = MemOps[i];
6398     unsigned VTSize = VT.getSizeInBits() / 8;
6399     SDValue Value, Store;
6400 
6401     if (VTSize > Size) {
6402       // Issuing an unaligned load / store pair  that overlaps with the previous
6403       // pair. Adjust the offset accordingly.
6404       assert(i == NumMemOps-1 && i != 0);
6405       SrcOff -= VTSize - Size;
6406       DstOff -= VTSize - Size;
6407     }
6408 
6409     if (CopyFromConstant &&
6410         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6411       // It's unlikely a store of a vector immediate can be done in a single
6412       // instruction. It would require a load from a constantpool first.
6413       // We only handle zero vectors here.
6414       // FIXME: Handle other cases where store of vector immediate is done in
6415       // a single instruction.
6416       ConstantDataArraySlice SubSlice;
6417       if (SrcOff < Slice.Length) {
6418         SubSlice = Slice;
6419         SubSlice.move(SrcOff);
6420       } else {
6421         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6422         SubSlice.Array = nullptr;
6423         SubSlice.Offset = 0;
6424         SubSlice.Length = VTSize;
6425       }
6426       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6427       if (Value.getNode()) {
6428         Store = DAG.getStore(
6429             Chain, dl, Value,
6430             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6431             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6432         OutChains.push_back(Store);
6433       }
6434     }
6435 
6436     if (!Store.getNode()) {
6437       // The type might not be legal for the target.  This should only happen
6438       // if the type is smaller than a legal type, as on PPC, so the right
6439       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6440       // to Load/Store if NVT==VT.
6441       // FIXME does the case above also need this?
6442       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6443       assert(NVT.bitsGE(VT));
6444 
6445       bool isDereferenceable =
6446         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6447       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6448       if (isDereferenceable)
6449         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6450 
6451       Value = DAG.getExtLoad(
6452           ISD::EXTLOAD, dl, NVT, Chain,
6453           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6454           SrcPtrInfo.getWithOffset(SrcOff), VT,
6455           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags);
6456       OutLoadChains.push_back(Value.getValue(1));
6457 
6458       Store = DAG.getTruncStore(
6459           Chain, dl, Value,
6460           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6461           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6462       OutStoreChains.push_back(Store);
6463     }
6464     SrcOff += VTSize;
6465     DstOff += VTSize;
6466     Size -= VTSize;
6467   }
6468 
6469   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6470                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6471   unsigned NumLdStInMemcpy = OutStoreChains.size();
6472 
6473   if (NumLdStInMemcpy) {
6474     // It may be that memcpy might be converted to memset if it's memcpy
6475     // of constants. In such a case, we won't have loads and stores, but
6476     // just stores. In the absence of loads, there is nothing to gang up.
6477     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6478       // If target does not care, just leave as it.
6479       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6480         OutChains.push_back(OutLoadChains[i]);
6481         OutChains.push_back(OutStoreChains[i]);
6482       }
6483     } else {
6484       // Ld/St less than/equal limit set by target.
6485       if (NumLdStInMemcpy <= GluedLdStLimit) {
6486           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6487                                         NumLdStInMemcpy, OutLoadChains,
6488                                         OutStoreChains);
6489       } else {
6490         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6491         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6492         unsigned GlueIter = 0;
6493 
6494         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6495           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6496           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6497 
6498           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6499                                        OutLoadChains, OutStoreChains);
6500           GlueIter += GluedLdStLimit;
6501         }
6502 
6503         // Residual ld/st.
6504         if (RemainingLdStInMemcpy) {
6505           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6506                                         RemainingLdStInMemcpy, OutLoadChains,
6507                                         OutStoreChains);
6508         }
6509       }
6510     }
6511   }
6512   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6513 }
6514 
getMemmoveLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6515 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6516                                         SDValue Chain, SDValue Dst, SDValue Src,
6517                                         uint64_t Size, Align Alignment,
6518                                         bool isVol, bool AlwaysInline,
6519                                         MachinePointerInfo DstPtrInfo,
6520                                         MachinePointerInfo SrcPtrInfo) {
6521   // Turn a memmove of undef to nop.
6522   // FIXME: We need to honor volatile even is Src is undef.
6523   if (Src.isUndef())
6524     return Chain;
6525 
6526   // Expand memmove to a series of load and store ops if the size operand falls
6527   // below a certain threshold.
6528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6529   const DataLayout &DL = DAG.getDataLayout();
6530   LLVMContext &C = *DAG.getContext();
6531   std::vector<EVT> MemOps;
6532   bool DstAlignCanChange = false;
6533   MachineFunction &MF = DAG.getMachineFunction();
6534   MachineFrameInfo &MFI = MF.getFrameInfo();
6535   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6536   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6537   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6538     DstAlignCanChange = true;
6539   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6540   if (!SrcAlign || Alignment > *SrcAlign)
6541     SrcAlign = Alignment;
6542   assert(SrcAlign && "SrcAlign must be set");
6543   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6544   if (!TLI.findOptimalMemOpLowering(
6545           MemOps, Limit,
6546           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6547                       /*IsVolatile*/ true),
6548           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6549           MF.getFunction().getAttributes()))
6550     return SDValue();
6551 
6552   if (DstAlignCanChange) {
6553     Type *Ty = MemOps[0].getTypeForEVT(C);
6554     Align NewAlign = DL.getABITypeAlign(Ty);
6555     if (NewAlign > Alignment) {
6556       // Give the stack frame object a larger alignment if needed.
6557       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6558         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6559       Alignment = NewAlign;
6560     }
6561   }
6562 
6563   MachineMemOperand::Flags MMOFlags =
6564       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6565   uint64_t SrcOff = 0, DstOff = 0;
6566   SmallVector<SDValue, 8> LoadValues;
6567   SmallVector<SDValue, 8> LoadChains;
6568   SmallVector<SDValue, 8> OutChains;
6569   unsigned NumMemOps = MemOps.size();
6570   for (unsigned i = 0; i < NumMemOps; i++) {
6571     EVT VT = MemOps[i];
6572     unsigned VTSize = VT.getSizeInBits() / 8;
6573     SDValue Value;
6574 
6575     bool isDereferenceable =
6576       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6577     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6578     if (isDereferenceable)
6579       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6580 
6581     Value =
6582         DAG.getLoad(VT, dl, Chain,
6583                     DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6584                     SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags);
6585     LoadValues.push_back(Value);
6586     LoadChains.push_back(Value.getValue(1));
6587     SrcOff += VTSize;
6588   }
6589   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6590   OutChains.clear();
6591   for (unsigned i = 0; i < NumMemOps; i++) {
6592     EVT VT = MemOps[i];
6593     unsigned VTSize = VT.getSizeInBits() / 8;
6594     SDValue Store;
6595 
6596     Store =
6597         DAG.getStore(Chain, dl, LoadValues[i],
6598                      DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6599                      DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
6600     OutChains.push_back(Store);
6601     DstOff += VTSize;
6602   }
6603 
6604   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6605 }
6606 
6607 /// Lower the call to 'memset' intrinsic function into a series of store
6608 /// operations.
6609 ///
6610 /// \param DAG Selection DAG where lowered code is placed.
6611 /// \param dl Link to corresponding IR location.
6612 /// \param Chain Control flow dependency.
6613 /// \param Dst Pointer to destination memory location.
6614 /// \param Src Value of byte to write into the memory.
6615 /// \param Size Number of bytes to write.
6616 /// \param Alignment Alignment of the destination in bytes.
6617 /// \param isVol True if destination is volatile.
6618 /// \param DstPtrInfo IR information on the memory pointer.
6619 /// \returns New head in the control flow, if lowering was successful, empty
6620 /// SDValue otherwise.
6621 ///
6622 /// The function tries to replace 'llvm.memset' intrinsic with several store
6623 /// operations and value calculation code. This is usually profitable for small
6624 /// memory size.
getMemsetStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,MachinePointerInfo DstPtrInfo)6625 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6626                                SDValue Chain, SDValue Dst, SDValue Src,
6627                                uint64_t Size, Align Alignment, bool isVol,
6628                                MachinePointerInfo DstPtrInfo) {
6629   // Turn a memset of undef to nop.
6630   // FIXME: We need to honor volatile even is Src is undef.
6631   if (Src.isUndef())
6632     return Chain;
6633 
6634   // Expand memset to a series of load/store ops if the size operand
6635   // falls below a certain threshold.
6636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6637   std::vector<EVT> MemOps;
6638   bool DstAlignCanChange = false;
6639   MachineFunction &MF = DAG.getMachineFunction();
6640   MachineFrameInfo &MFI = MF.getFrameInfo();
6641   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6642   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6643   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6644     DstAlignCanChange = true;
6645   bool IsZeroVal =
6646     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6647   if (!TLI.findOptimalMemOpLowering(
6648           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6649           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6650           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6651     return SDValue();
6652 
6653   if (DstAlignCanChange) {
6654     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6655     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6656     if (NewAlign > Alignment) {
6657       // Give the stack frame object a larger alignment if needed.
6658       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6659         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6660       Alignment = NewAlign;
6661     }
6662   }
6663 
6664   SmallVector<SDValue, 8> OutChains;
6665   uint64_t DstOff = 0;
6666   unsigned NumMemOps = MemOps.size();
6667 
6668   // Find the largest store and generate the bit pattern for it.
6669   EVT LargestVT = MemOps[0];
6670   for (unsigned i = 1; i < NumMemOps; i++)
6671     if (MemOps[i].bitsGT(LargestVT))
6672       LargestVT = MemOps[i];
6673   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6674 
6675   for (unsigned i = 0; i < NumMemOps; i++) {
6676     EVT VT = MemOps[i];
6677     unsigned VTSize = VT.getSizeInBits() / 8;
6678     if (VTSize > Size) {
6679       // Issuing an unaligned load / store pair  that overlaps with the previous
6680       // pair. Adjust the offset accordingly.
6681       assert(i == NumMemOps-1 && i != 0);
6682       DstOff -= VTSize - Size;
6683     }
6684 
6685     // If this store is smaller than the largest store see whether we can get
6686     // the smaller value for free with a truncate.
6687     SDValue Value = MemSetValue;
6688     if (VT.bitsLT(LargestVT)) {
6689       if (!LargestVT.isVector() && !VT.isVector() &&
6690           TLI.isTruncateFree(LargestVT, VT))
6691         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6692       else
6693         Value = getMemsetValue(Src, VT, DAG, dl);
6694     }
6695     assert(Value.getValueType() == VT && "Value with wrong type.");
6696     SDValue Store = DAG.getStore(
6697         Chain, dl, Value,
6698         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6699         DstPtrInfo.getWithOffset(DstOff), Alignment,
6700         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6701     OutChains.push_back(Store);
6702     DstOff += VT.getSizeInBits() / 8;
6703     Size -= VTSize;
6704   }
6705 
6706   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6707 }
6708 
checkAddrSpaceIsValidForLibcall(const TargetLowering * TLI,unsigned AS)6709 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6710                                             unsigned AS) {
6711   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6712   // pointer operands can be losslessly bitcasted to pointers of address space 0
6713   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6714     report_fatal_error("cannot lower memory intrinsic in address space " +
6715                        Twine(AS));
6716   }
6717 }
6718 
getMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool AlwaysInline,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6719 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6720                                 SDValue Src, SDValue Size, Align Alignment,
6721                                 bool isVol, bool AlwaysInline, bool isTailCall,
6722                                 MachinePointerInfo DstPtrInfo,
6723                                 MachinePointerInfo SrcPtrInfo) {
6724   // Check to see if we should lower the memcpy to loads and stores first.
6725   // For cases within the target-specified limits, this is the best choice.
6726   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6727   if (ConstantSize) {
6728     // Memcpy with size zero? Just return the original chain.
6729     if (ConstantSize->isNullValue())
6730       return Chain;
6731 
6732     SDValue Result = getMemcpyLoadsAndStores(
6733         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6734         isVol, false, DstPtrInfo, SrcPtrInfo);
6735     if (Result.getNode())
6736       return Result;
6737   }
6738 
6739   // Then check to see if we should lower the memcpy with target-specific
6740   // code. If the target chooses to do this, this is the next best.
6741   if (TSI) {
6742     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6743         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6744         DstPtrInfo, SrcPtrInfo);
6745     if (Result.getNode())
6746       return Result;
6747   }
6748 
6749   // If we really need inline code and the target declined to provide it,
6750   // use a (potentially long) sequence of loads and stores.
6751   if (AlwaysInline) {
6752     assert(ConstantSize && "AlwaysInline requires a constant size!");
6753     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6754                                    ConstantSize->getZExtValue(), Alignment,
6755                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6756   }
6757 
6758   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6759   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6760 
6761   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6762   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6763   // respect volatile, so they may do things like read or write memory
6764   // beyond the given memory regions. But fixing this isn't easy, and most
6765   // people don't care.
6766 
6767   // Emit a library call.
6768   TargetLowering::ArgListTy Args;
6769   TargetLowering::ArgListEntry Entry;
6770   Entry.Ty = Type::getInt8PtrTy(*getContext());
6771   Entry.Node = Dst; Args.push_back(Entry);
6772   Entry.Node = Src; Args.push_back(Entry);
6773 
6774   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6775   Entry.Node = Size; Args.push_back(Entry);
6776   // FIXME: pass in SDLoc
6777   TargetLowering::CallLoweringInfo CLI(*this);
6778   CLI.setDebugLoc(dl)
6779       .setChain(Chain)
6780       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6781                     Dst.getValueType().getTypeForEVT(*getContext()),
6782                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6783                                       TLI->getPointerTy(getDataLayout())),
6784                     std::move(Args))
6785       .setDiscardResult()
6786       .setTailCall(isTailCall);
6787 
6788   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6789   return CallResult.second;
6790 }
6791 
getAtomicMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6792 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6793                                       SDValue Dst, unsigned DstAlign,
6794                                       SDValue Src, unsigned SrcAlign,
6795                                       SDValue Size, Type *SizeTy,
6796                                       unsigned ElemSz, bool isTailCall,
6797                                       MachinePointerInfo DstPtrInfo,
6798                                       MachinePointerInfo SrcPtrInfo) {
6799   // Emit a library call.
6800   TargetLowering::ArgListTy Args;
6801   TargetLowering::ArgListEntry Entry;
6802   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6803   Entry.Node = Dst;
6804   Args.push_back(Entry);
6805 
6806   Entry.Node = Src;
6807   Args.push_back(Entry);
6808 
6809   Entry.Ty = SizeTy;
6810   Entry.Node = Size;
6811   Args.push_back(Entry);
6812 
6813   RTLIB::Libcall LibraryCall =
6814       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6815   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6816     report_fatal_error("Unsupported element size");
6817 
6818   TargetLowering::CallLoweringInfo CLI(*this);
6819   CLI.setDebugLoc(dl)
6820       .setChain(Chain)
6821       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6822                     Type::getVoidTy(*getContext()),
6823                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6824                                       TLI->getPointerTy(getDataLayout())),
6825                     std::move(Args))
6826       .setDiscardResult()
6827       .setTailCall(isTailCall);
6828 
6829   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6830   return CallResult.second;
6831 }
6832 
getMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6833 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6834                                  SDValue Src, SDValue Size, Align Alignment,
6835                                  bool isVol, bool isTailCall,
6836                                  MachinePointerInfo DstPtrInfo,
6837                                  MachinePointerInfo SrcPtrInfo) {
6838   // Check to see if we should lower the memmove to loads and stores first.
6839   // For cases within the target-specified limits, this is the best choice.
6840   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6841   if (ConstantSize) {
6842     // Memmove with size zero? Just return the original chain.
6843     if (ConstantSize->isNullValue())
6844       return Chain;
6845 
6846     SDValue Result = getMemmoveLoadsAndStores(
6847         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6848         isVol, false, DstPtrInfo, SrcPtrInfo);
6849     if (Result.getNode())
6850       return Result;
6851   }
6852 
6853   // Then check to see if we should lower the memmove with target-specific
6854   // code. If the target chooses to do this, this is the next best.
6855   if (TSI) {
6856     SDValue Result =
6857         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6858                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6859     if (Result.getNode())
6860       return Result;
6861   }
6862 
6863   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6864   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6865 
6866   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6867   // not be safe.  See memcpy above for more details.
6868 
6869   // Emit a library call.
6870   TargetLowering::ArgListTy Args;
6871   TargetLowering::ArgListEntry Entry;
6872   Entry.Ty = Type::getInt8PtrTy(*getContext());
6873   Entry.Node = Dst; Args.push_back(Entry);
6874   Entry.Node = Src; Args.push_back(Entry);
6875 
6876   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6877   Entry.Node = Size; Args.push_back(Entry);
6878   // FIXME:  pass in SDLoc
6879   TargetLowering::CallLoweringInfo CLI(*this);
6880   CLI.setDebugLoc(dl)
6881       .setChain(Chain)
6882       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6883                     Dst.getValueType().getTypeForEVT(*getContext()),
6884                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6885                                       TLI->getPointerTy(getDataLayout())),
6886                     std::move(Args))
6887       .setDiscardResult()
6888       .setTailCall(isTailCall);
6889 
6890   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6891   return CallResult.second;
6892 }
6893 
getAtomicMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6894 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6895                                        SDValue Dst, unsigned DstAlign,
6896                                        SDValue Src, unsigned SrcAlign,
6897                                        SDValue Size, Type *SizeTy,
6898                                        unsigned ElemSz, bool isTailCall,
6899                                        MachinePointerInfo DstPtrInfo,
6900                                        MachinePointerInfo SrcPtrInfo) {
6901   // Emit a library call.
6902   TargetLowering::ArgListTy Args;
6903   TargetLowering::ArgListEntry Entry;
6904   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6905   Entry.Node = Dst;
6906   Args.push_back(Entry);
6907 
6908   Entry.Node = Src;
6909   Args.push_back(Entry);
6910 
6911   Entry.Ty = SizeTy;
6912   Entry.Node = Size;
6913   Args.push_back(Entry);
6914 
6915   RTLIB::Libcall LibraryCall =
6916       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6917   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6918     report_fatal_error("Unsupported element size");
6919 
6920   TargetLowering::CallLoweringInfo CLI(*this);
6921   CLI.setDebugLoc(dl)
6922       .setChain(Chain)
6923       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6924                     Type::getVoidTy(*getContext()),
6925                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6926                                       TLI->getPointerTy(getDataLayout())),
6927                     std::move(Args))
6928       .setDiscardResult()
6929       .setTailCall(isTailCall);
6930 
6931   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6932   return CallResult.second;
6933 }
6934 
getMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo)6935 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6936                                 SDValue Src, SDValue Size, Align Alignment,
6937                                 bool isVol, bool isTailCall,
6938                                 MachinePointerInfo DstPtrInfo) {
6939   // Check to see if we should lower the memset to stores first.
6940   // For cases within the target-specified limits, this is the best choice.
6941   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6942   if (ConstantSize) {
6943     // Memset with size zero? Just return the original chain.
6944     if (ConstantSize->isNullValue())
6945       return Chain;
6946 
6947     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6948                                      ConstantSize->getZExtValue(), Alignment,
6949                                      isVol, DstPtrInfo);
6950 
6951     if (Result.getNode())
6952       return Result;
6953   }
6954 
6955   // Then check to see if we should lower the memset with target-specific
6956   // code. If the target chooses to do this, this is the next best.
6957   if (TSI) {
6958     SDValue Result = TSI->EmitTargetCodeForMemset(
6959         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6960     if (Result.getNode())
6961       return Result;
6962   }
6963 
6964   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6965 
6966   // Emit a library call.
6967   TargetLowering::ArgListTy Args;
6968   TargetLowering::ArgListEntry Entry;
6969   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6970   Args.push_back(Entry);
6971   Entry.Node = Src;
6972   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6973   Args.push_back(Entry);
6974   Entry.Node = Size;
6975   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6976   Args.push_back(Entry);
6977 
6978   // FIXME: pass in SDLoc
6979   TargetLowering::CallLoweringInfo CLI(*this);
6980   CLI.setDebugLoc(dl)
6981       .setChain(Chain)
6982       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6983                     Dst.getValueType().getTypeForEVT(*getContext()),
6984                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6985                                       TLI->getPointerTy(getDataLayout())),
6986                     std::move(Args))
6987       .setDiscardResult()
6988       .setTailCall(isTailCall);
6989 
6990   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6991   return CallResult.second;
6992 }
6993 
getAtomicMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Value,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo)6994 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6995                                       SDValue Dst, unsigned DstAlign,
6996                                       SDValue Value, SDValue Size, Type *SizeTy,
6997                                       unsigned ElemSz, bool isTailCall,
6998                                       MachinePointerInfo DstPtrInfo) {
6999   // Emit a library call.
7000   TargetLowering::ArgListTy Args;
7001   TargetLowering::ArgListEntry Entry;
7002   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7003   Entry.Node = Dst;
7004   Args.push_back(Entry);
7005 
7006   Entry.Ty = Type::getInt8Ty(*getContext());
7007   Entry.Node = Value;
7008   Args.push_back(Entry);
7009 
7010   Entry.Ty = SizeTy;
7011   Entry.Node = Size;
7012   Args.push_back(Entry);
7013 
7014   RTLIB::Libcall LibraryCall =
7015       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7016   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7017     report_fatal_error("Unsupported element size");
7018 
7019   TargetLowering::CallLoweringInfo CLI(*this);
7020   CLI.setDebugLoc(dl)
7021       .setChain(Chain)
7022       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7023                     Type::getVoidTy(*getContext()),
7024                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7025                                       TLI->getPointerTy(getDataLayout())),
7026                     std::move(Args))
7027       .setDiscardResult()
7028       .setTailCall(isTailCall);
7029 
7030   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7031   return CallResult.second;
7032 }
7033 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)7034 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7035                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7036                                 MachineMemOperand *MMO) {
7037   FoldingSetNodeID ID;
7038   ID.AddInteger(MemVT.getRawBits());
7039   AddNodeIDNode(ID, Opcode, VTList, Ops);
7040   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7041   void* IP = nullptr;
7042   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7043     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7044     return SDValue(E, 0);
7045   }
7046 
7047   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7048                                     VTList, MemVT, MMO);
7049   createOperands(N, Ops);
7050 
7051   CSEMap.InsertNode(N, IP);
7052   InsertNode(N);
7053   return SDValue(N, 0);
7054 }
7055 
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO)7056 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7057                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7058                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7059                                        MachineMemOperand *MMO) {
7060   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7061          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7062   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7063 
7064   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7065   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7066 }
7067 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO)7068 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7069                                 SDValue Chain, SDValue Ptr, SDValue Val,
7070                                 MachineMemOperand *MMO) {
7071   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7072           Opcode == ISD::ATOMIC_LOAD_SUB ||
7073           Opcode == ISD::ATOMIC_LOAD_AND ||
7074           Opcode == ISD::ATOMIC_LOAD_CLR ||
7075           Opcode == ISD::ATOMIC_LOAD_OR ||
7076           Opcode == ISD::ATOMIC_LOAD_XOR ||
7077           Opcode == ISD::ATOMIC_LOAD_NAND ||
7078           Opcode == ISD::ATOMIC_LOAD_MIN ||
7079           Opcode == ISD::ATOMIC_LOAD_MAX ||
7080           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7081           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7082           Opcode == ISD::ATOMIC_LOAD_FADD ||
7083           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7084           Opcode == ISD::ATOMIC_SWAP ||
7085           Opcode == ISD::ATOMIC_STORE) &&
7086          "Invalid Atomic Op");
7087 
7088   EVT VT = Val.getValueType();
7089 
7090   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7091                                                getVTList(VT, MVT::Other);
7092   SDValue Ops[] = {Chain, Ptr, Val};
7093   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7094 }
7095 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)7096 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7097                                 EVT VT, SDValue Chain, SDValue Ptr,
7098                                 MachineMemOperand *MMO) {
7099   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7100 
7101   SDVTList VTs = getVTList(VT, MVT::Other);
7102   SDValue Ops[] = {Chain, Ptr};
7103   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7104 }
7105 
7106 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(ArrayRef<SDValue> Ops,const SDLoc & dl)7107 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7108   if (Ops.size() == 1)
7109     return Ops[0];
7110 
7111   SmallVector<EVT, 4> VTs;
7112   VTs.reserve(Ops.size());
7113   for (const SDValue &Op : Ops)
7114     VTs.push_back(Op.getValueType());
7115   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7116 }
7117 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachinePointerInfo PtrInfo,Align Alignment,MachineMemOperand::Flags Flags,uint64_t Size,const AAMDNodes & AAInfo)7118 SDValue SelectionDAG::getMemIntrinsicNode(
7119     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7120     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7121     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7122   if (!Size && MemVT.isScalableVector())
7123     Size = MemoryLocation::UnknownSize;
7124   else if (!Size)
7125     Size = MemVT.getStoreSize();
7126 
7127   MachineFunction &MF = getMachineFunction();
7128   MachineMemOperand *MMO =
7129       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7130 
7131   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7132 }
7133 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO)7134 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7135                                           SDVTList VTList,
7136                                           ArrayRef<SDValue> Ops, EVT MemVT,
7137                                           MachineMemOperand *MMO) {
7138   assert((Opcode == ISD::INTRINSIC_VOID ||
7139           Opcode == ISD::INTRINSIC_W_CHAIN ||
7140           Opcode == ISD::PREFETCH ||
7141           ((int)Opcode <= std::numeric_limits<int>::max() &&
7142            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7143          "Opcode is not a memory-accessing opcode!");
7144 
7145   // Memoize the node unless it returns a flag.
7146   MemIntrinsicSDNode *N;
7147   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7148     FoldingSetNodeID ID;
7149     AddNodeIDNode(ID, Opcode, VTList, Ops);
7150     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7151         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7152     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7153     void *IP = nullptr;
7154     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7155       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7156       return SDValue(E, 0);
7157     }
7158 
7159     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7160                                       VTList, MemVT, MMO);
7161     createOperands(N, Ops);
7162 
7163   CSEMap.InsertNode(N, IP);
7164   } else {
7165     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7166                                       VTList, MemVT, MMO);
7167     createOperands(N, Ops);
7168   }
7169   InsertNode(N);
7170   SDValue V(N, 0);
7171   NewSDValueDbgMsg(V, "Creating new node: ", this);
7172   return V;
7173 }
7174 
getLifetimeNode(bool IsStart,const SDLoc & dl,SDValue Chain,int FrameIndex,int64_t Size,int64_t Offset)7175 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7176                                       SDValue Chain, int FrameIndex,
7177                                       int64_t Size, int64_t Offset) {
7178   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7179   const auto VTs = getVTList(MVT::Other);
7180   SDValue Ops[2] = {
7181       Chain,
7182       getFrameIndex(FrameIndex,
7183                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7184                     true)};
7185 
7186   FoldingSetNodeID ID;
7187   AddNodeIDNode(ID, Opcode, VTs, Ops);
7188   ID.AddInteger(FrameIndex);
7189   ID.AddInteger(Size);
7190   ID.AddInteger(Offset);
7191   void *IP = nullptr;
7192   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7193     return SDValue(E, 0);
7194 
7195   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7196       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7197   createOperands(N, Ops);
7198   CSEMap.InsertNode(N, IP);
7199   InsertNode(N);
7200   SDValue V(N, 0);
7201   NewSDValueDbgMsg(V, "Creating new node: ", this);
7202   return V;
7203 }
7204 
getPseudoProbeNode(const SDLoc & Dl,SDValue Chain,uint64_t Guid,uint64_t Index,uint32_t Attr)7205 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7206                                          uint64_t Guid, uint64_t Index,
7207                                          uint32_t Attr) {
7208   const unsigned Opcode = ISD::PSEUDO_PROBE;
7209   const auto VTs = getVTList(MVT::Other);
7210   SDValue Ops[] = {Chain};
7211   FoldingSetNodeID ID;
7212   AddNodeIDNode(ID, Opcode, VTs, Ops);
7213   ID.AddInteger(Guid);
7214   ID.AddInteger(Index);
7215   void *IP = nullptr;
7216   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7217     return SDValue(E, 0);
7218 
7219   auto *N = newSDNode<PseudoProbeSDNode>(
7220       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7221   createOperands(N, Ops);
7222   CSEMap.InsertNode(N, IP);
7223   InsertNode(N);
7224   SDValue V(N, 0);
7225   NewSDValueDbgMsg(V, "Creating new node: ", this);
7226   return V;
7227 }
7228 
7229 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7230 /// MachinePointerInfo record from it.  This is particularly useful because the
7231 /// code generator has many cases where it doesn't bother passing in a
7232 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,int64_t Offset=0)7233 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7234                                            SelectionDAG &DAG, SDValue Ptr,
7235                                            int64_t Offset = 0) {
7236   // If this is FI+Offset, we can model it.
7237   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7238     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7239                                              FI->getIndex(), Offset);
7240 
7241   // If this is (FI+Offset1)+Offset2, we can model it.
7242   if (Ptr.getOpcode() != ISD::ADD ||
7243       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7244       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7245     return Info;
7246 
7247   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7248   return MachinePointerInfo::getFixedStack(
7249       DAG.getMachineFunction(), FI,
7250       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7251 }
7252 
7253 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7254 /// MachinePointerInfo record from it.  This is particularly useful because the
7255 /// code generator has many cases where it doesn't bother passing in a
7256 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,SDValue OffsetOp)7257 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7258                                            SelectionDAG &DAG, SDValue Ptr,
7259                                            SDValue OffsetOp) {
7260   // If the 'Offset' value isn't a constant, we can't handle this.
7261   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7262     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7263   if (OffsetOp.isUndef())
7264     return InferPointerInfo(Info, DAG, Ptr);
7265   return Info;
7266 }
7267 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)7268 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7269                               EVT VT, const SDLoc &dl, SDValue Chain,
7270                               SDValue Ptr, SDValue Offset,
7271                               MachinePointerInfo PtrInfo, EVT MemVT,
7272                               Align Alignment,
7273                               MachineMemOperand::Flags MMOFlags,
7274                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7275   assert(Chain.getValueType() == MVT::Other &&
7276         "Invalid chain type");
7277 
7278   MMOFlags |= MachineMemOperand::MOLoad;
7279   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7280   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7281   // clients.
7282   if (PtrInfo.V.isNull())
7283     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7284 
7285   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7286   MachineFunction &MF = getMachineFunction();
7287   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7288                                                    Alignment, AAInfo, Ranges);
7289   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7290 }
7291 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)7292 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7293                               EVT VT, const SDLoc &dl, SDValue Chain,
7294                               SDValue Ptr, SDValue Offset, EVT MemVT,
7295                               MachineMemOperand *MMO) {
7296   if (VT == MemVT) {
7297     ExtType = ISD::NON_EXTLOAD;
7298   } else if (ExtType == ISD::NON_EXTLOAD) {
7299     assert(VT == MemVT && "Non-extending load from different memory type!");
7300   } else {
7301     // Extending load.
7302     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7303            "Should only be an extending load, not truncating!");
7304     assert(VT.isInteger() == MemVT.isInteger() &&
7305            "Cannot convert from FP to Int or Int -> FP!");
7306     assert(VT.isVector() == MemVT.isVector() &&
7307            "Cannot use an ext load to convert to or from a vector!");
7308     assert((!VT.isVector() ||
7309             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7310            "Cannot use an ext load to change the number of vector elements!");
7311   }
7312 
7313   bool Indexed = AM != ISD::UNINDEXED;
7314   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7315 
7316   SDVTList VTs = Indexed ?
7317     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7318   SDValue Ops[] = { Chain, Ptr, Offset };
7319   FoldingSetNodeID ID;
7320   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7321   ID.AddInteger(MemVT.getRawBits());
7322   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7323       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7324   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7325   void *IP = nullptr;
7326   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7327     cast<LoadSDNode>(E)->refineAlignment(MMO);
7328     return SDValue(E, 0);
7329   }
7330   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7331                                   ExtType, MemVT, MMO);
7332   createOperands(N, Ops);
7333 
7334   CSEMap.InsertNode(N, IP);
7335   InsertNode(N);
7336   SDValue V(N, 0);
7337   NewSDValueDbgMsg(V, "Creating new node: ", this);
7338   return V;
7339 }
7340 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)7341 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7342                               SDValue Ptr, MachinePointerInfo PtrInfo,
7343                               MaybeAlign Alignment,
7344                               MachineMemOperand::Flags MMOFlags,
7345                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7346   SDValue Undef = getUNDEF(Ptr.getValueType());
7347   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7348                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7349 }
7350 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)7351 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7352                               SDValue Ptr, MachineMemOperand *MMO) {
7353   SDValue Undef = getUNDEF(Ptr.getValueType());
7354   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7355                  VT, MMO);
7356 }
7357 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7358 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7359                                  EVT VT, SDValue Chain, SDValue Ptr,
7360                                  MachinePointerInfo PtrInfo, EVT MemVT,
7361                                  MaybeAlign Alignment,
7362                                  MachineMemOperand::Flags MMOFlags,
7363                                  const AAMDNodes &AAInfo) {
7364   SDValue Undef = getUNDEF(Ptr.getValueType());
7365   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7366                  MemVT, Alignment, MMOFlags, AAInfo);
7367 }
7368 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,EVT MemVT,MachineMemOperand * MMO)7369 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7370                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7371                                  MachineMemOperand *MMO) {
7372   SDValue Undef = getUNDEF(Ptr.getValueType());
7373   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7374                  MemVT, MMO);
7375 }
7376 
getIndexedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7377 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7378                                      SDValue Base, SDValue Offset,
7379                                      ISD::MemIndexedMode AM) {
7380   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7381   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7382   // Don't propagate the invariant or dereferenceable flags.
7383   auto MMOFlags =
7384       LD->getMemOperand()->getFlags() &
7385       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7386   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7387                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7388                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7389 }
7390 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7391 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7392                                SDValue Ptr, MachinePointerInfo PtrInfo,
7393                                Align Alignment,
7394                                MachineMemOperand::Flags MMOFlags,
7395                                const AAMDNodes &AAInfo) {
7396   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7397 
7398   MMOFlags |= MachineMemOperand::MOStore;
7399   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7400 
7401   if (PtrInfo.V.isNull())
7402     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7403 
7404   MachineFunction &MF = getMachineFunction();
7405   uint64_t Size =
7406       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7407   MachineMemOperand *MMO =
7408       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7409   return getStore(Chain, dl, Val, Ptr, MMO);
7410 }
7411 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)7412 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7413                                SDValue Ptr, MachineMemOperand *MMO) {
7414   assert(Chain.getValueType() == MVT::Other &&
7415         "Invalid chain type");
7416   EVT VT = Val.getValueType();
7417   SDVTList VTs = getVTList(MVT::Other);
7418   SDValue Undef = getUNDEF(Ptr.getValueType());
7419   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7420   FoldingSetNodeID ID;
7421   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7422   ID.AddInteger(VT.getRawBits());
7423   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7424       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7425   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7426   void *IP = nullptr;
7427   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7428     cast<StoreSDNode>(E)->refineAlignment(MMO);
7429     return SDValue(E, 0);
7430   }
7431   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7432                                    ISD::UNINDEXED, false, VT, MMO);
7433   createOperands(N, Ops);
7434 
7435   CSEMap.InsertNode(N, IP);
7436   InsertNode(N);
7437   SDValue V(N, 0);
7438   NewSDValueDbgMsg(V, "Creating new node: ", this);
7439   return V;
7440 }
7441 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7442 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7443                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7444                                     EVT SVT, Align Alignment,
7445                                     MachineMemOperand::Flags MMOFlags,
7446                                     const AAMDNodes &AAInfo) {
7447   assert(Chain.getValueType() == MVT::Other &&
7448         "Invalid chain type");
7449 
7450   MMOFlags |= MachineMemOperand::MOStore;
7451   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7452 
7453   if (PtrInfo.V.isNull())
7454     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7455 
7456   MachineFunction &MF = getMachineFunction();
7457   MachineMemOperand *MMO = MF.getMachineMemOperand(
7458       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7459       Alignment, AAInfo);
7460   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7461 }
7462 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)7463 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7464                                     SDValue Ptr, EVT SVT,
7465                                     MachineMemOperand *MMO) {
7466   EVT VT = Val.getValueType();
7467 
7468   assert(Chain.getValueType() == MVT::Other &&
7469         "Invalid chain type");
7470   if (VT == SVT)
7471     return getStore(Chain, dl, Val, Ptr, MMO);
7472 
7473   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7474          "Should only be a truncating store, not extending!");
7475   assert(VT.isInteger() == SVT.isInteger() &&
7476          "Can't do FP-INT conversion!");
7477   assert(VT.isVector() == SVT.isVector() &&
7478          "Cannot use trunc store to convert to or from a vector!");
7479   assert((!VT.isVector() ||
7480           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7481          "Cannot use trunc store to change the number of vector elements!");
7482 
7483   SDVTList VTs = getVTList(MVT::Other);
7484   SDValue Undef = getUNDEF(Ptr.getValueType());
7485   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7486   FoldingSetNodeID ID;
7487   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7488   ID.AddInteger(SVT.getRawBits());
7489   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7490       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7491   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7492   void *IP = nullptr;
7493   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7494     cast<StoreSDNode>(E)->refineAlignment(MMO);
7495     return SDValue(E, 0);
7496   }
7497   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7498                                    ISD::UNINDEXED, true, SVT, MMO);
7499   createOperands(N, Ops);
7500 
7501   CSEMap.InsertNode(N, IP);
7502   InsertNode(N);
7503   SDValue V(N, 0);
7504   NewSDValueDbgMsg(V, "Creating new node: ", this);
7505   return V;
7506 }
7507 
getIndexedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7508 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7509                                       SDValue Base, SDValue Offset,
7510                                       ISD::MemIndexedMode AM) {
7511   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7512   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7513   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7514   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7515   FoldingSetNodeID ID;
7516   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7517   ID.AddInteger(ST->getMemoryVT().getRawBits());
7518   ID.AddInteger(ST->getRawSubclassData());
7519   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7520   void *IP = nullptr;
7521   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7522     return SDValue(E, 0);
7523 
7524   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7525                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7526                                    ST->getMemOperand());
7527   createOperands(N, Ops);
7528 
7529   CSEMap.InsertNode(N, IP);
7530   InsertNode(N);
7531   SDValue V(N, 0);
7532   NewSDValueDbgMsg(V, "Creating new node: ", this);
7533   return V;
7534 }
7535 
getMaskedLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Base,SDValue Offset,SDValue Mask,SDValue PassThru,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,ISD::LoadExtType ExtTy,bool isExpanding)7536 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7537                                     SDValue Base, SDValue Offset, SDValue Mask,
7538                                     SDValue PassThru, EVT MemVT,
7539                                     MachineMemOperand *MMO,
7540                                     ISD::MemIndexedMode AM,
7541                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7542   bool Indexed = AM != ISD::UNINDEXED;
7543   assert((Indexed || Offset.isUndef()) &&
7544          "Unindexed masked load with an offset!");
7545   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7546                          : getVTList(VT, MVT::Other);
7547   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7548   FoldingSetNodeID ID;
7549   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7550   ID.AddInteger(MemVT.getRawBits());
7551   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7552       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7553   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7554   void *IP = nullptr;
7555   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7556     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7557     return SDValue(E, 0);
7558   }
7559   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7560                                         AM, ExtTy, isExpanding, MemVT, MMO);
7561   createOperands(N, Ops);
7562 
7563   CSEMap.InsertNode(N, IP);
7564   InsertNode(N);
7565   SDValue V(N, 0);
7566   NewSDValueDbgMsg(V, "Creating new node: ", this);
7567   return V;
7568 }
7569 
getIndexedMaskedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7570 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7571                                            SDValue Base, SDValue Offset,
7572                                            ISD::MemIndexedMode AM) {
7573   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7574   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7575   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7576                        Offset, LD->getMask(), LD->getPassThru(),
7577                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7578                        LD->getExtensionType(), LD->isExpandingLoad());
7579 }
7580 
getMaskedStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Base,SDValue Offset,SDValue Mask,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,bool IsTruncating,bool IsCompressing)7581 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7582                                      SDValue Val, SDValue Base, SDValue Offset,
7583                                      SDValue Mask, EVT MemVT,
7584                                      MachineMemOperand *MMO,
7585                                      ISD::MemIndexedMode AM, bool IsTruncating,
7586                                      bool IsCompressing) {
7587   assert(Chain.getValueType() == MVT::Other &&
7588         "Invalid chain type");
7589   bool Indexed = AM != ISD::UNINDEXED;
7590   assert((Indexed || Offset.isUndef()) &&
7591          "Unindexed masked store with an offset!");
7592   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7593                          : getVTList(MVT::Other);
7594   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7595   FoldingSetNodeID ID;
7596   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7597   ID.AddInteger(MemVT.getRawBits());
7598   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7599       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7600   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7601   void *IP = nullptr;
7602   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7603     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7604     return SDValue(E, 0);
7605   }
7606   auto *N =
7607       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7608                                    IsTruncating, IsCompressing, MemVT, MMO);
7609   createOperands(N, Ops);
7610 
7611   CSEMap.InsertNode(N, IP);
7612   InsertNode(N);
7613   SDValue V(N, 0);
7614   NewSDValueDbgMsg(V, "Creating new node: ", this);
7615   return V;
7616 }
7617 
getIndexedMaskedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7618 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7619                                             SDValue Base, SDValue Offset,
7620                                             ISD::MemIndexedMode AM) {
7621   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7622   assert(ST->getOffset().isUndef() &&
7623          "Masked store is already a indexed store!");
7624   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7625                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7626                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7627 }
7628 
getMaskedGather(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType,ISD::LoadExtType ExtTy)7629 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7630                                       ArrayRef<SDValue> Ops,
7631                                       MachineMemOperand *MMO,
7632                                       ISD::MemIndexType IndexType,
7633                                       ISD::LoadExtType ExtTy) {
7634   assert(Ops.size() == 6 && "Incompatible number of operands");
7635 
7636   FoldingSetNodeID ID;
7637   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7638   ID.AddInteger(VT.getRawBits());
7639   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7640       dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy));
7641   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7642   void *IP = nullptr;
7643   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7644     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7645     return SDValue(E, 0);
7646   }
7647 
7648   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7649   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7650                                           VTs, VT, MMO, IndexType, ExtTy);
7651   createOperands(N, Ops);
7652 
7653   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7654          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7655   assert(N->getMask().getValueType().getVectorElementCount() ==
7656              N->getValueType(0).getVectorElementCount() &&
7657          "Vector width mismatch between mask and data");
7658   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7659              N->getValueType(0).getVectorElementCount().isScalable() &&
7660          "Scalable flags of index and data do not match");
7661   assert(ElementCount::isKnownGE(
7662              N->getIndex().getValueType().getVectorElementCount(),
7663              N->getValueType(0).getVectorElementCount()) &&
7664          "Vector width mismatch between index and data");
7665   assert(isa<ConstantSDNode>(N->getScale()) &&
7666          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7667          "Scale should be a constant power of 2");
7668 
7669   CSEMap.InsertNode(N, IP);
7670   InsertNode(N);
7671   SDValue V(N, 0);
7672   NewSDValueDbgMsg(V, "Creating new node: ", this);
7673   return V;
7674 }
7675 
getMaskedScatter(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType,bool IsTrunc)7676 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7677                                        ArrayRef<SDValue> Ops,
7678                                        MachineMemOperand *MMO,
7679                                        ISD::MemIndexType IndexType,
7680                                        bool IsTrunc) {
7681   assert(Ops.size() == 6 && "Incompatible number of operands");
7682 
7683   FoldingSetNodeID ID;
7684   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7685   ID.AddInteger(VT.getRawBits());
7686   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7687       dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc));
7688   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7689   void *IP = nullptr;
7690   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7691     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7692     return SDValue(E, 0);
7693   }
7694 
7695   IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]);
7696   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7697                                            VTs, VT, MMO, IndexType, IsTrunc);
7698   createOperands(N, Ops);
7699 
7700   assert(N->getMask().getValueType().getVectorElementCount() ==
7701              N->getValue().getValueType().getVectorElementCount() &&
7702          "Vector width mismatch between mask and data");
7703   assert(
7704       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7705           N->getValue().getValueType().getVectorElementCount().isScalable() &&
7706       "Scalable flags of index and data do not match");
7707   assert(ElementCount::isKnownGE(
7708              N->getIndex().getValueType().getVectorElementCount(),
7709              N->getValue().getValueType().getVectorElementCount()) &&
7710          "Vector width mismatch between index and data");
7711   assert(isa<ConstantSDNode>(N->getScale()) &&
7712          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7713          "Scale should be a constant power of 2");
7714 
7715   CSEMap.InsertNode(N, IP);
7716   InsertNode(N);
7717   SDValue V(N, 0);
7718   NewSDValueDbgMsg(V, "Creating new node: ", this);
7719   return V;
7720 }
7721 
simplifySelect(SDValue Cond,SDValue T,SDValue F)7722 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7723   // select undef, T, F --> T (if T is a constant), otherwise F
7724   // select, ?, undef, F --> F
7725   // select, ?, T, undef --> T
7726   if (Cond.isUndef())
7727     return isConstantValueOfAnyType(T) ? T : F;
7728   if (T.isUndef())
7729     return F;
7730   if (F.isUndef())
7731     return T;
7732 
7733   // select true, T, F --> T
7734   // select false, T, F --> F
7735   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7736     return CondC->isNullValue() ? F : T;
7737 
7738   // TODO: This should simplify VSELECT with constant condition using something
7739   // like this (but check boolean contents to be complete?):
7740   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7741   //    return T;
7742   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7743   //    return F;
7744 
7745   // select ?, T, T --> T
7746   if (T == F)
7747     return T;
7748 
7749   return SDValue();
7750 }
7751 
simplifyShift(SDValue X,SDValue Y)7752 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7753   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7754   if (X.isUndef())
7755     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7756   // shift X, undef --> undef (because it may shift by the bitwidth)
7757   if (Y.isUndef())
7758     return getUNDEF(X.getValueType());
7759 
7760   // shift 0, Y --> 0
7761   // shift X, 0 --> X
7762   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7763     return X;
7764 
7765   // shift X, C >= bitwidth(X) --> undef
7766   // All vector elements must be too big (or undef) to avoid partial undefs.
7767   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7768     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7769   };
7770   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7771     return getUNDEF(X.getValueType());
7772 
7773   return SDValue();
7774 }
7775 
simplifyFPBinop(unsigned Opcode,SDValue X,SDValue Y,SDNodeFlags Flags)7776 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7777                                       SDNodeFlags Flags) {
7778   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7779   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7780   // operation is poison. That result can be relaxed to undef.
7781   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7782   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7783   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7784                 (YC && YC->getValueAPF().isNaN());
7785   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7786                 (YC && YC->getValueAPF().isInfinity());
7787 
7788   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7789     return getUNDEF(X.getValueType());
7790 
7791   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7792     return getUNDEF(X.getValueType());
7793 
7794   if (!YC)
7795     return SDValue();
7796 
7797   // X + -0.0 --> X
7798   if (Opcode == ISD::FADD)
7799     if (YC->getValueAPF().isNegZero())
7800       return X;
7801 
7802   // X - +0.0 --> X
7803   if (Opcode == ISD::FSUB)
7804     if (YC->getValueAPF().isPosZero())
7805       return X;
7806 
7807   // X * 1.0 --> X
7808   // X / 1.0 --> X
7809   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7810     if (YC->getValueAPF().isExactlyValue(1.0))
7811       return X;
7812 
7813   // X * 0.0 --> 0.0
7814   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
7815     if (YC->getValueAPF().isZero())
7816       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
7817 
7818   return SDValue();
7819 }
7820 
getVAArg(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)7821 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7822                                SDValue Ptr, SDValue SV, unsigned Align) {
7823   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7824   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7825 }
7826 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDUse> Ops)7827 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7828                               ArrayRef<SDUse> Ops) {
7829   switch (Ops.size()) {
7830   case 0: return getNode(Opcode, DL, VT);
7831   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7832   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7833   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7834   default: break;
7835   }
7836 
7837   // Copy from an SDUse array into an SDValue array for use with
7838   // the regular getNode logic.
7839   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7840   return getNode(Opcode, DL, VT, NewOps);
7841 }
7842 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops)7843 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7844                               ArrayRef<SDValue> Ops) {
7845   SDNodeFlags Flags;
7846   if (Inserter)
7847     Flags = Inserter->getFlags();
7848   return getNode(Opcode, DL, VT, Ops, Flags);
7849 }
7850 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)7851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7852                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7853   unsigned NumOps = Ops.size();
7854   switch (NumOps) {
7855   case 0: return getNode(Opcode, DL, VT);
7856   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7857   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7858   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7859   default: break;
7860   }
7861 
7862 #ifndef NDEBUG
7863   for (auto &Op : Ops)
7864     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7865            "Operand is DELETED_NODE!");
7866 #endif
7867 
7868   switch (Opcode) {
7869   default: break;
7870   case ISD::BUILD_VECTOR:
7871     // Attempt to simplify BUILD_VECTOR.
7872     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7873       return V;
7874     break;
7875   case ISD::CONCAT_VECTORS:
7876     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7877       return V;
7878     break;
7879   case ISD::SELECT_CC:
7880     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7881     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7882            "LHS and RHS of condition must have same type!");
7883     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7884            "True and False arms of SelectCC must have same type!");
7885     assert(Ops[2].getValueType() == VT &&
7886            "select_cc node must be of same type as true and false value!");
7887     break;
7888   case ISD::BR_CC:
7889     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7890     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7891            "LHS/RHS of comparison should match types!");
7892     break;
7893   }
7894 
7895   // Memoize nodes.
7896   SDNode *N;
7897   SDVTList VTs = getVTList(VT);
7898 
7899   if (VT != MVT::Glue) {
7900     FoldingSetNodeID ID;
7901     AddNodeIDNode(ID, Opcode, VTs, Ops);
7902     void *IP = nullptr;
7903 
7904     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7905       return SDValue(E, 0);
7906 
7907     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7908     createOperands(N, Ops);
7909 
7910     CSEMap.InsertNode(N, IP);
7911   } else {
7912     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7913     createOperands(N, Ops);
7914   }
7915 
7916   N->setFlags(Flags);
7917   InsertNode(N);
7918   SDValue V(N, 0);
7919   NewSDValueDbgMsg(V, "Creating new node: ", this);
7920   return V;
7921 }
7922 
getNode(unsigned Opcode,const SDLoc & DL,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)7923 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7924                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7925   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7926 }
7927 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops)7928 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7929                               ArrayRef<SDValue> Ops) {
7930   SDNodeFlags Flags;
7931   if (Inserter)
7932     Flags = Inserter->getFlags();
7933   return getNode(Opcode, DL, VTList, Ops, Flags);
7934 }
7935 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)7936 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7937                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7938   if (VTList.NumVTs == 1)
7939     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7940 
7941 #ifndef NDEBUG
7942   for (auto &Op : Ops)
7943     assert(Op.getOpcode() != ISD::DELETED_NODE &&
7944            "Operand is DELETED_NODE!");
7945 #endif
7946 
7947   switch (Opcode) {
7948   case ISD::STRICT_FP_EXTEND:
7949     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7950            "Invalid STRICT_FP_EXTEND!");
7951     assert(VTList.VTs[0].isFloatingPoint() &&
7952            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7953     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7954            "STRICT_FP_EXTEND result type should be vector iff the operand "
7955            "type is vector!");
7956     assert((!VTList.VTs[0].isVector() ||
7957             VTList.VTs[0].getVectorNumElements() ==
7958             Ops[1].getValueType().getVectorNumElements()) &&
7959            "Vector element count mismatch!");
7960     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7961            "Invalid fpext node, dst <= src!");
7962     break;
7963   case ISD::STRICT_FP_ROUND:
7964     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7965     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7966            "STRICT_FP_ROUND result type should be vector iff the operand "
7967            "type is vector!");
7968     assert((!VTList.VTs[0].isVector() ||
7969             VTList.VTs[0].getVectorNumElements() ==
7970             Ops[1].getValueType().getVectorNumElements()) &&
7971            "Vector element count mismatch!");
7972     assert(VTList.VTs[0].isFloatingPoint() &&
7973            Ops[1].getValueType().isFloatingPoint() &&
7974            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7975            isa<ConstantSDNode>(Ops[2]) &&
7976            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7977             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7978            "Invalid STRICT_FP_ROUND!");
7979     break;
7980 #if 0
7981   // FIXME: figure out how to safely handle things like
7982   // int foo(int x) { return 1 << (x & 255); }
7983   // int bar() { return foo(256); }
7984   case ISD::SRA_PARTS:
7985   case ISD::SRL_PARTS:
7986   case ISD::SHL_PARTS:
7987     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7988         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7989       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7990     else if (N3.getOpcode() == ISD::AND)
7991       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7992         // If the and is only masking out bits that cannot effect the shift,
7993         // eliminate the and.
7994         unsigned NumBits = VT.getScalarSizeInBits()*2;
7995         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7996           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7997       }
7998     break;
7999 #endif
8000   }
8001 
8002   // Memoize the node unless it returns a flag.
8003   SDNode *N;
8004   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8005     FoldingSetNodeID ID;
8006     AddNodeIDNode(ID, Opcode, VTList, Ops);
8007     void *IP = nullptr;
8008     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8009       return SDValue(E, 0);
8010 
8011     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8012     createOperands(N, Ops);
8013     CSEMap.InsertNode(N, IP);
8014   } else {
8015     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8016     createOperands(N, Ops);
8017   }
8018 
8019   N->setFlags(Flags);
8020   InsertNode(N);
8021   SDValue V(N, 0);
8022   NewSDValueDbgMsg(V, "Creating new node: ", this);
8023   return V;
8024 }
8025 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList)8026 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8027                               SDVTList VTList) {
8028   return getNode(Opcode, DL, VTList, None);
8029 }
8030 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1)8031 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8032                               SDValue N1) {
8033   SDValue Ops[] = { N1 };
8034   return getNode(Opcode, DL, VTList, Ops);
8035 }
8036 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2)8037 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8038                               SDValue N1, SDValue N2) {
8039   SDValue Ops[] = { N1, N2 };
8040   return getNode(Opcode, DL, VTList, Ops);
8041 }
8042 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)8043 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8044                               SDValue N1, SDValue N2, SDValue N3) {
8045   SDValue Ops[] = { N1, N2, N3 };
8046   return getNode(Opcode, DL, VTList, Ops);
8047 }
8048 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)8049 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8050                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8051   SDValue Ops[] = { N1, N2, N3, N4 };
8052   return getNode(Opcode, DL, VTList, Ops);
8053 }
8054 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)8055 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8056                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8057                               SDValue N5) {
8058   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8059   return getNode(Opcode, DL, VTList, Ops);
8060 }
8061 
getVTList(EVT VT)8062 SDVTList SelectionDAG::getVTList(EVT VT) {
8063   return makeVTList(SDNode::getValueTypeList(VT), 1);
8064 }
8065 
getVTList(EVT VT1,EVT VT2)8066 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8067   FoldingSetNodeID ID;
8068   ID.AddInteger(2U);
8069   ID.AddInteger(VT1.getRawBits());
8070   ID.AddInteger(VT2.getRawBits());
8071 
8072   void *IP = nullptr;
8073   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8074   if (!Result) {
8075     EVT *Array = Allocator.Allocate<EVT>(2);
8076     Array[0] = VT1;
8077     Array[1] = VT2;
8078     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8079     VTListMap.InsertNode(Result, IP);
8080   }
8081   return Result->getSDVTList();
8082 }
8083 
getVTList(EVT VT1,EVT VT2,EVT VT3)8084 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8085   FoldingSetNodeID ID;
8086   ID.AddInteger(3U);
8087   ID.AddInteger(VT1.getRawBits());
8088   ID.AddInteger(VT2.getRawBits());
8089   ID.AddInteger(VT3.getRawBits());
8090 
8091   void *IP = nullptr;
8092   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8093   if (!Result) {
8094     EVT *Array = Allocator.Allocate<EVT>(3);
8095     Array[0] = VT1;
8096     Array[1] = VT2;
8097     Array[2] = VT3;
8098     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8099     VTListMap.InsertNode(Result, IP);
8100   }
8101   return Result->getSDVTList();
8102 }
8103 
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)8104 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8105   FoldingSetNodeID ID;
8106   ID.AddInteger(4U);
8107   ID.AddInteger(VT1.getRawBits());
8108   ID.AddInteger(VT2.getRawBits());
8109   ID.AddInteger(VT3.getRawBits());
8110   ID.AddInteger(VT4.getRawBits());
8111 
8112   void *IP = nullptr;
8113   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8114   if (!Result) {
8115     EVT *Array = Allocator.Allocate<EVT>(4);
8116     Array[0] = VT1;
8117     Array[1] = VT2;
8118     Array[2] = VT3;
8119     Array[3] = VT4;
8120     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8121     VTListMap.InsertNode(Result, IP);
8122   }
8123   return Result->getSDVTList();
8124 }
8125 
getVTList(ArrayRef<EVT> VTs)8126 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8127   unsigned NumVTs = VTs.size();
8128   FoldingSetNodeID ID;
8129   ID.AddInteger(NumVTs);
8130   for (unsigned index = 0; index < NumVTs; index++) {
8131     ID.AddInteger(VTs[index].getRawBits());
8132   }
8133 
8134   void *IP = nullptr;
8135   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8136   if (!Result) {
8137     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8138     llvm::copy(VTs, Array);
8139     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8140     VTListMap.InsertNode(Result, IP);
8141   }
8142   return Result->getSDVTList();
8143 }
8144 
8145 
8146 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8147 /// specified operands.  If the resultant node already exists in the DAG,
8148 /// this does not modify the specified node, instead it returns the node that
8149 /// already exists.  If the resultant node does not exist in the DAG, the
8150 /// input node is returned.  As a degenerate case, if you specify the same
8151 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)8152 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8153   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8154 
8155   // Check to see if there is no change.
8156   if (Op == N->getOperand(0)) return N;
8157 
8158   // See if the modified node already exists.
8159   void *InsertPos = nullptr;
8160   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8161     return Existing;
8162 
8163   // Nope it doesn't.  Remove the node from its current place in the maps.
8164   if (InsertPos)
8165     if (!RemoveNodeFromCSEMaps(N))
8166       InsertPos = nullptr;
8167 
8168   // Now we update the operands.
8169   N->OperandList[0].set(Op);
8170 
8171   updateDivergence(N);
8172   // If this gets put into a CSE map, add it.
8173   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8174   return N;
8175 }
8176 
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)8177 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8178   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8179 
8180   // Check to see if there is no change.
8181   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8182     return N;   // No operands changed, just return the input node.
8183 
8184   // See if the modified node already exists.
8185   void *InsertPos = nullptr;
8186   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8187     return Existing;
8188 
8189   // Nope it doesn't.  Remove the node from its current place in the maps.
8190   if (InsertPos)
8191     if (!RemoveNodeFromCSEMaps(N))
8192       InsertPos = nullptr;
8193 
8194   // Now we update the operands.
8195   if (N->OperandList[0] != Op1)
8196     N->OperandList[0].set(Op1);
8197   if (N->OperandList[1] != Op2)
8198     N->OperandList[1].set(Op2);
8199 
8200   updateDivergence(N);
8201   // If this gets put into a CSE map, add it.
8202   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8203   return N;
8204 }
8205 
8206 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)8207 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8208   SDValue Ops[] = { Op1, Op2, Op3 };
8209   return UpdateNodeOperands(N, Ops);
8210 }
8211 
8212 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)8213 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8214                    SDValue Op3, SDValue Op4) {
8215   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8216   return UpdateNodeOperands(N, Ops);
8217 }
8218 
8219 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)8220 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8221                    SDValue Op3, SDValue Op4, SDValue Op5) {
8222   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8223   return UpdateNodeOperands(N, Ops);
8224 }
8225 
8226 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,ArrayRef<SDValue> Ops)8227 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8228   unsigned NumOps = Ops.size();
8229   assert(N->getNumOperands() == NumOps &&
8230          "Update with wrong number of operands");
8231 
8232   // If no operands changed just return the input node.
8233   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8234     return N;
8235 
8236   // See if the modified node already exists.
8237   void *InsertPos = nullptr;
8238   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8239     return Existing;
8240 
8241   // Nope it doesn't.  Remove the node from its current place in the maps.
8242   if (InsertPos)
8243     if (!RemoveNodeFromCSEMaps(N))
8244       InsertPos = nullptr;
8245 
8246   // Now we update the operands.
8247   for (unsigned i = 0; i != NumOps; ++i)
8248     if (N->OperandList[i] != Ops[i])
8249       N->OperandList[i].set(Ops[i]);
8250 
8251   updateDivergence(N);
8252   // If this gets put into a CSE map, add it.
8253   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8254   return N;
8255 }
8256 
8257 /// DropOperands - Release the operands and set this node to have
8258 /// zero operands.
DropOperands()8259 void SDNode::DropOperands() {
8260   // Unlike the code in MorphNodeTo that does this, we don't need to
8261   // watch for dead nodes here.
8262   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8263     SDUse &Use = *I++;
8264     Use.set(SDValue());
8265   }
8266 }
8267 
setNodeMemRefs(MachineSDNode * N,ArrayRef<MachineMemOperand * > NewMemRefs)8268 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8269                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8270   if (NewMemRefs.empty()) {
8271     N->clearMemRefs();
8272     return;
8273   }
8274 
8275   // Check if we can avoid allocating by storing a single reference directly.
8276   if (NewMemRefs.size() == 1) {
8277     N->MemRefs = NewMemRefs[0];
8278     N->NumMemRefs = 1;
8279     return;
8280   }
8281 
8282   MachineMemOperand **MemRefsBuffer =
8283       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8284   llvm::copy(NewMemRefs, MemRefsBuffer);
8285   N->MemRefs = MemRefsBuffer;
8286   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8287 }
8288 
8289 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8290 /// machine opcode.
8291 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)8292 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8293                                    EVT VT) {
8294   SDVTList VTs = getVTList(VT);
8295   return SelectNodeTo(N, MachineOpc, VTs, None);
8296 }
8297 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)8298 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8299                                    EVT VT, SDValue Op1) {
8300   SDVTList VTs = getVTList(VT);
8301   SDValue Ops[] = { Op1 };
8302   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8303 }
8304 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)8305 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8306                                    EVT VT, SDValue Op1,
8307                                    SDValue Op2) {
8308   SDVTList VTs = getVTList(VT);
8309   SDValue Ops[] = { Op1, Op2 };
8310   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8311 }
8312 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)8313 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8314                                    EVT VT, SDValue Op1,
8315                                    SDValue Op2, SDValue Op3) {
8316   SDVTList VTs = getVTList(VT);
8317   SDValue Ops[] = { Op1, Op2, Op3 };
8318   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8319 }
8320 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,ArrayRef<SDValue> Ops)8321 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8322                                    EVT VT, ArrayRef<SDValue> Ops) {
8323   SDVTList VTs = getVTList(VT);
8324   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8325 }
8326 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)8327 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8328                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8329   SDVTList VTs = getVTList(VT1, VT2);
8330   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8331 }
8332 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)8333 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8334                                    EVT VT1, EVT VT2) {
8335   SDVTList VTs = getVTList(VT1, VT2);
8336   return SelectNodeTo(N, MachineOpc, VTs, None);
8337 }
8338 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)8339 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8340                                    EVT VT1, EVT VT2, EVT VT3,
8341                                    ArrayRef<SDValue> Ops) {
8342   SDVTList VTs = getVTList(VT1, VT2, VT3);
8343   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8344 }
8345 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)8346 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8347                                    EVT VT1, EVT VT2,
8348                                    SDValue Op1, SDValue Op2) {
8349   SDVTList VTs = getVTList(VT1, VT2);
8350   SDValue Ops[] = { Op1, Op2 };
8351   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8352 }
8353 
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,ArrayRef<SDValue> Ops)8354 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8355                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8356   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8357   // Reset the NodeID to -1.
8358   New->setNodeId(-1);
8359   if (New != N) {
8360     ReplaceAllUsesWith(N, New);
8361     RemoveDeadNode(N);
8362   }
8363   return New;
8364 }
8365 
8366 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8367 /// the line number information on the merged node since it is not possible to
8368 /// preserve the information that operation is associated with multiple lines.
8369 /// This will make the debugger working better at -O0, were there is a higher
8370 /// probability having other instructions associated with that line.
8371 ///
8372 /// For IROrder, we keep the smaller of the two
UpdateSDLocOnMergeSDNode(SDNode * N,const SDLoc & OLoc)8373 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8374   DebugLoc NLoc = N->getDebugLoc();
8375   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8376     N->setDebugLoc(DebugLoc());
8377   }
8378   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8379   N->setIROrder(Order);
8380   return N;
8381 }
8382 
8383 /// MorphNodeTo - This *mutates* the specified node to have the specified
8384 /// return type, opcode, and operands.
8385 ///
8386 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8387 /// node of the specified opcode and operands, it returns that node instead of
8388 /// the current one.  Note that the SDLoc need not be the same.
8389 ///
8390 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8391 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8392 /// node, and because it doesn't require CSE recalculation for any of
8393 /// the node's users.
8394 ///
8395 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8396 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8397 /// the legalizer which maintain worklists that would need to be updated when
8398 /// deleting things.
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,ArrayRef<SDValue> Ops)8399 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8400                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8401   // If an identical node already exists, use it.
8402   void *IP = nullptr;
8403   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8404     FoldingSetNodeID ID;
8405     AddNodeIDNode(ID, Opc, VTs, Ops);
8406     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8407       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8408   }
8409 
8410   if (!RemoveNodeFromCSEMaps(N))
8411     IP = nullptr;
8412 
8413   // Start the morphing.
8414   N->NodeType = Opc;
8415   N->ValueList = VTs.VTs;
8416   N->NumValues = VTs.NumVTs;
8417 
8418   // Clear the operands list, updating used nodes to remove this from their
8419   // use list.  Keep track of any operands that become dead as a result.
8420   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8421   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8422     SDUse &Use = *I++;
8423     SDNode *Used = Use.getNode();
8424     Use.set(SDValue());
8425     if (Used->use_empty())
8426       DeadNodeSet.insert(Used);
8427   }
8428 
8429   // For MachineNode, initialize the memory references information.
8430   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8431     MN->clearMemRefs();
8432 
8433   // Swap for an appropriately sized array from the recycler.
8434   removeOperands(N);
8435   createOperands(N, Ops);
8436 
8437   // Delete any nodes that are still dead after adding the uses for the
8438   // new operands.
8439   if (!DeadNodeSet.empty()) {
8440     SmallVector<SDNode *, 16> DeadNodes;
8441     for (SDNode *N : DeadNodeSet)
8442       if (N->use_empty())
8443         DeadNodes.push_back(N);
8444     RemoveDeadNodes(DeadNodes);
8445   }
8446 
8447   if (IP)
8448     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8449   return N;
8450 }
8451 
mutateStrictFPToFP(SDNode * Node)8452 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8453   unsigned OrigOpc = Node->getOpcode();
8454   unsigned NewOpc;
8455   switch (OrigOpc) {
8456   default:
8457     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8458 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8459   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8460 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8461   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8462 #include "llvm/IR/ConstrainedOps.def"
8463   }
8464 
8465   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8466 
8467   // We're taking this node out of the chain, so we need to re-link things.
8468   SDValue InputChain = Node->getOperand(0);
8469   SDValue OutputChain = SDValue(Node, 1);
8470   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8471 
8472   SmallVector<SDValue, 3> Ops;
8473   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8474     Ops.push_back(Node->getOperand(i));
8475 
8476   SDVTList VTs = getVTList(Node->getValueType(0));
8477   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8478 
8479   // MorphNodeTo can operate in two ways: if an existing node with the
8480   // specified operands exists, it can just return it.  Otherwise, it
8481   // updates the node in place to have the requested operands.
8482   if (Res == Node) {
8483     // If we updated the node in place, reset the node ID.  To the isel,
8484     // this should be just like a newly allocated machine node.
8485     Res->setNodeId(-1);
8486   } else {
8487     ReplaceAllUsesWith(Node, Res);
8488     RemoveDeadNode(Node);
8489   }
8490 
8491   return Res;
8492 }
8493 
8494 /// getMachineNode - These are used for target selectors to create a new node
8495 /// with specified return type(s), MachineInstr opcode, and operands.
8496 ///
8497 /// Note that getMachineNode returns the resultant node.  If there is already a
8498 /// node of the specified opcode and operands, it returns that node instead of
8499 /// the current one.
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT)8500 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8501                                             EVT VT) {
8502   SDVTList VTs = getVTList(VT);
8503   return getMachineNode(Opcode, dl, VTs, None);
8504 }
8505 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1)8506 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8507                                             EVT VT, SDValue Op1) {
8508   SDVTList VTs = getVTList(VT);
8509   SDValue Ops[] = { Op1 };
8510   return getMachineNode(Opcode, dl, VTs, Ops);
8511 }
8512 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2)8513 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8514                                             EVT VT, SDValue Op1, SDValue Op2) {
8515   SDVTList VTs = getVTList(VT);
8516   SDValue Ops[] = { Op1, Op2 };
8517   return getMachineNode(Opcode, dl, VTs, Ops);
8518 }
8519 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)8520 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8521                                             EVT VT, SDValue Op1, SDValue Op2,
8522                                             SDValue Op3) {
8523   SDVTList VTs = getVTList(VT);
8524   SDValue Ops[] = { Op1, Op2, Op3 };
8525   return getMachineNode(Opcode, dl, VTs, Ops);
8526 }
8527 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,ArrayRef<SDValue> Ops)8528 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8529                                             EVT VT, ArrayRef<SDValue> Ops) {
8530   SDVTList VTs = getVTList(VT);
8531   return getMachineNode(Opcode, dl, VTs, Ops);
8532 }
8533 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)8534 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8535                                             EVT VT1, EVT VT2, SDValue Op1,
8536                                             SDValue Op2) {
8537   SDVTList VTs = getVTList(VT1, VT2);
8538   SDValue Ops[] = { Op1, Op2 };
8539   return getMachineNode(Opcode, dl, VTs, Ops);
8540 }
8541 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)8542 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8543                                             EVT VT1, EVT VT2, SDValue Op1,
8544                                             SDValue Op2, SDValue Op3) {
8545   SDVTList VTs = getVTList(VT1, VT2);
8546   SDValue Ops[] = { Op1, Op2, Op3 };
8547   return getMachineNode(Opcode, dl, VTs, Ops);
8548 }
8549 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)8550 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8551                                             EVT VT1, EVT VT2,
8552                                             ArrayRef<SDValue> Ops) {
8553   SDVTList VTs = getVTList(VT1, VT2);
8554   return getMachineNode(Opcode, dl, VTs, Ops);
8555 }
8556 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)8557 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8558                                             EVT VT1, EVT VT2, EVT VT3,
8559                                             SDValue Op1, SDValue Op2) {
8560   SDVTList VTs = getVTList(VT1, VT2, VT3);
8561   SDValue Ops[] = { Op1, Op2 };
8562   return getMachineNode(Opcode, dl, VTs, Ops);
8563 }
8564 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)8565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8566                                             EVT VT1, EVT VT2, EVT VT3,
8567                                             SDValue Op1, SDValue Op2,
8568                                             SDValue Op3) {
8569   SDVTList VTs = getVTList(VT1, VT2, VT3);
8570   SDValue Ops[] = { Op1, Op2, Op3 };
8571   return getMachineNode(Opcode, dl, VTs, Ops);
8572 }
8573 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)8574 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8575                                             EVT VT1, EVT VT2, EVT VT3,
8576                                             ArrayRef<SDValue> Ops) {
8577   SDVTList VTs = getVTList(VT1, VT2, VT3);
8578   return getMachineNode(Opcode, dl, VTs, Ops);
8579 }
8580 
getMachineNode(unsigned Opcode,const SDLoc & dl,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)8581 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8582                                             ArrayRef<EVT> ResultTys,
8583                                             ArrayRef<SDValue> Ops) {
8584   SDVTList VTs = getVTList(ResultTys);
8585   return getMachineNode(Opcode, dl, VTs, Ops);
8586 }
8587 
getMachineNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,ArrayRef<SDValue> Ops)8588 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8589                                             SDVTList VTs,
8590                                             ArrayRef<SDValue> Ops) {
8591   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8592   MachineSDNode *N;
8593   void *IP = nullptr;
8594 
8595   if (DoCSE) {
8596     FoldingSetNodeID ID;
8597     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8598     IP = nullptr;
8599     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8600       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8601     }
8602   }
8603 
8604   // Allocate a new MachineSDNode.
8605   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8606   createOperands(N, Ops);
8607 
8608   if (DoCSE)
8609     CSEMap.InsertNode(N, IP);
8610 
8611   InsertNode(N);
8612   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8613   return N;
8614 }
8615 
8616 /// getTargetExtractSubreg - A convenience function for creating
8617 /// TargetOpcode::EXTRACT_SUBREG nodes.
getTargetExtractSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand)8618 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8619                                              SDValue Operand) {
8620   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8621   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8622                                   VT, Operand, SRIdxVal);
8623   return SDValue(Subreg, 0);
8624 }
8625 
8626 /// getTargetInsertSubreg - A convenience function for creating
8627 /// TargetOpcode::INSERT_SUBREG nodes.
getTargetInsertSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand,SDValue Subreg)8628 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8629                                             SDValue Operand, SDValue Subreg) {
8630   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8631   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8632                                   VT, Operand, Subreg, SRIdxVal);
8633   return SDValue(Result, 0);
8634 }
8635 
8636 /// getNodeIfExists - Get the specified node if it's already available, or
8637 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops)8638 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8639                                       ArrayRef<SDValue> Ops) {
8640   SDNodeFlags Flags;
8641   if (Inserter)
8642     Flags = Inserter->getFlags();
8643   return getNodeIfExists(Opcode, VTList, Ops, Flags);
8644 }
8645 
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)8646 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8647                                       ArrayRef<SDValue> Ops,
8648                                       const SDNodeFlags Flags) {
8649   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8650     FoldingSetNodeID ID;
8651     AddNodeIDNode(ID, Opcode, VTList, Ops);
8652     void *IP = nullptr;
8653     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8654       E->intersectFlagsWith(Flags);
8655       return E;
8656     }
8657   }
8658   return nullptr;
8659 }
8660 
8661 /// doesNodeExist - Check if a node exists without modifying its flags.
doesNodeExist(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops)8662 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
8663                                  ArrayRef<SDValue> Ops) {
8664   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8665     FoldingSetNodeID ID;
8666     AddNodeIDNode(ID, Opcode, VTList, Ops);
8667     void *IP = nullptr;
8668     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
8669       return true;
8670   }
8671   return false;
8672 }
8673 
8674 /// getDbgValue - Creates a SDDbgValue node.
8675 ///
8676 /// SDNode
getDbgValue(DIVariable * Var,DIExpression * Expr,SDNode * N,unsigned R,bool IsIndirect,const DebugLoc & DL,unsigned O)8677 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8678                                       SDNode *N, unsigned R, bool IsIndirect,
8679                                       const DebugLoc &DL, unsigned O) {
8680   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8681          "Expected inlined-at fields to agree");
8682   return new (DbgInfo->getAlloc())
8683       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
8684                  {}, IsIndirect, DL, O,
8685                  /*IsVariadic=*/false);
8686 }
8687 
8688 /// Constant
getConstantDbgValue(DIVariable * Var,DIExpression * Expr,const Value * C,const DebugLoc & DL,unsigned O)8689 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8690                                               DIExpression *Expr,
8691                                               const Value *C,
8692                                               const DebugLoc &DL, unsigned O) {
8693   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8694          "Expected inlined-at fields to agree");
8695   return new (DbgInfo->getAlloc())
8696       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
8697                  /*IsIndirect=*/false, DL, O,
8698                  /*IsVariadic=*/false);
8699 }
8700 
8701 /// FrameIndex
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,bool IsIndirect,const DebugLoc & DL,unsigned O)8702 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8703                                                 DIExpression *Expr, unsigned FI,
8704                                                 bool IsIndirect,
8705                                                 const DebugLoc &DL,
8706                                                 unsigned O) {
8707   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8708          "Expected inlined-at fields to agree");
8709   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
8710 }
8711 
8712 /// FrameIndex with dependencies
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,ArrayRef<SDNode * > Dependencies,bool IsIndirect,const DebugLoc & DL,unsigned O)8713 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8714                                                 DIExpression *Expr, unsigned FI,
8715                                                 ArrayRef<SDNode *> Dependencies,
8716                                                 bool IsIndirect,
8717                                                 const DebugLoc &DL,
8718                                                 unsigned O) {
8719   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8720          "Expected inlined-at fields to agree");
8721   return new (DbgInfo->getAlloc())
8722       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
8723                  Dependencies, IsIndirect, DL, O,
8724                  /*IsVariadic=*/false);
8725 }
8726 
8727 /// VReg
getVRegDbgValue(DIVariable * Var,DIExpression * Expr,unsigned VReg,bool IsIndirect,const DebugLoc & DL,unsigned O)8728 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
8729                                           unsigned VReg, bool IsIndirect,
8730                                           const DebugLoc &DL, unsigned O) {
8731   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8732          "Expected inlined-at fields to agree");
8733   return new (DbgInfo->getAlloc())
8734       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
8735                  {}, IsIndirect, DL, O,
8736                  /*IsVariadic=*/false);
8737 }
8738 
getDbgValueList(DIVariable * Var,DIExpression * Expr,ArrayRef<SDDbgOperand> Locs,ArrayRef<SDNode * > Dependencies,bool IsIndirect,const DebugLoc & DL,unsigned O,bool IsVariadic)8739 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
8740                                           ArrayRef<SDDbgOperand> Locs,
8741                                           ArrayRef<SDNode *> Dependencies,
8742                                           bool IsIndirect, const DebugLoc &DL,
8743                                           unsigned O, bool IsVariadic) {
8744   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8745          "Expected inlined-at fields to agree");
8746   return new (DbgInfo->getAlloc())
8747       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
8748                  DL, O, IsVariadic);
8749 }
8750 
transferDbgValues(SDValue From,SDValue To,unsigned OffsetInBits,unsigned SizeInBits,bool InvalidateDbg)8751 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8752                                      unsigned OffsetInBits, unsigned SizeInBits,
8753                                      bool InvalidateDbg) {
8754   SDNode *FromNode = From.getNode();
8755   SDNode *ToNode = To.getNode();
8756   assert(FromNode && ToNode && "Can't modify dbg values");
8757 
8758   // PR35338
8759   // TODO: assert(From != To && "Redundant dbg value transfer");
8760   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8761   if (From == To || FromNode == ToNode)
8762     return;
8763 
8764   if (!FromNode->getHasDebugValue())
8765     return;
8766 
8767   SDDbgOperand FromLocOp =
8768       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
8769   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
8770 
8771   SmallVector<SDDbgValue *, 2> ClonedDVs;
8772   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8773     if (Dbg->isInvalidated())
8774       continue;
8775 
8776     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8777 
8778     // Create a new location ops vector that is equal to the old vector, but
8779     // with each instance of FromLocOp replaced with ToLocOp.
8780     bool Changed = false;
8781     auto NewLocOps = Dbg->copyLocationOps();
8782     std::replace_if(
8783         NewLocOps.begin(), NewLocOps.end(),
8784         [&Changed, FromLocOp](const SDDbgOperand &Op) {
8785           bool Match = Op == FromLocOp;
8786           Changed |= Match;
8787           return Match;
8788         },
8789         ToLocOp);
8790     // Ignore this SDDbgValue if we didn't find a matching location.
8791     if (!Changed)
8792       continue;
8793 
8794     DIVariable *Var = Dbg->getVariable();
8795     auto *Expr = Dbg->getExpression();
8796     // If a fragment is requested, update the expression.
8797     if (SizeInBits) {
8798       // When splitting a larger (e.g., sign-extended) value whose
8799       // lower bits are described with an SDDbgValue, do not attempt
8800       // to transfer the SDDbgValue to the upper bits.
8801       if (auto FI = Expr->getFragmentInfo())
8802         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8803           continue;
8804       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8805                                                              SizeInBits);
8806       if (!Fragment)
8807         continue;
8808       Expr = *Fragment;
8809     }
8810 
8811     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
8812     // Clone the SDDbgValue and move it to To.
8813     SDDbgValue *Clone = getDbgValueList(
8814         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
8815         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
8816         Dbg->isVariadic());
8817     ClonedDVs.push_back(Clone);
8818 
8819     if (InvalidateDbg) {
8820       // Invalidate value and indicate the SDDbgValue should not be emitted.
8821       Dbg->setIsInvalidated();
8822       Dbg->setIsEmitted();
8823     }
8824   }
8825 
8826   for (SDDbgValue *Dbg : ClonedDVs) {
8827     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
8828            "Transferred DbgValues should depend on the new SDNode");
8829     AddDbgValue(Dbg, false);
8830   }
8831 }
8832 
salvageDebugInfo(SDNode & N)8833 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8834   if (!N.getHasDebugValue())
8835     return;
8836 
8837   SmallVector<SDDbgValue *, 2> ClonedDVs;
8838   for (auto DV : GetDbgValues(&N)) {
8839     if (DV->isInvalidated())
8840       continue;
8841     switch (N.getOpcode()) {
8842     default:
8843       break;
8844     case ISD::ADD:
8845       SDValue N0 = N.getOperand(0);
8846       SDValue N1 = N.getOperand(1);
8847       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8848           isConstantIntBuildVectorOrConstantInt(N1)) {
8849         uint64_t Offset = N.getConstantOperandVal(1);
8850 
8851         // Rewrite an ADD constant node into a DIExpression. Since we are
8852         // performing arithmetic to compute the variable's *value* in the
8853         // DIExpression, we need to mark the expression with a
8854         // DW_OP_stack_value.
8855         auto *DIExpr = DV->getExpression();
8856         auto NewLocOps = DV->copyLocationOps();
8857         bool Changed = false;
8858         for (size_t i = 0; i < NewLocOps.size(); ++i) {
8859           // We're not given a ResNo to compare against because the whole
8860           // node is going away. We know that any ISD::ADD only has one
8861           // result, so we can assume any node match is using the result.
8862           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
8863               NewLocOps[i].getSDNode() != &N)
8864             continue;
8865           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
8866           SmallVector<uint64_t, 3> ExprOps;
8867           DIExpression::appendOffset(ExprOps, Offset);
8868           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
8869           Changed = true;
8870         }
8871         (void)Changed;
8872         assert(Changed && "Salvage target doesn't use N");
8873 
8874         auto AdditionalDependencies = DV->getAdditionalDependencies();
8875         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
8876                                             NewLocOps, AdditionalDependencies,
8877                                             DV->isIndirect(), DV->getDebugLoc(),
8878                                             DV->getOrder(), DV->isVariadic());
8879         ClonedDVs.push_back(Clone);
8880         DV->setIsInvalidated();
8881         DV->setIsEmitted();
8882         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8883                    N0.getNode()->dumprFull(this);
8884                    dbgs() << " into " << *DIExpr << '\n');
8885       }
8886     }
8887   }
8888 
8889   for (SDDbgValue *Dbg : ClonedDVs) {
8890     assert(!Dbg->getSDNodes().empty() &&
8891            "Salvaged DbgValue should depend on a new SDNode");
8892     AddDbgValue(Dbg, false);
8893   }
8894 }
8895 
8896 /// Creates a SDDbgLabel node.
getDbgLabel(DILabel * Label,const DebugLoc & DL,unsigned O)8897 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8898                                       const DebugLoc &DL, unsigned O) {
8899   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8900          "Expected inlined-at fields to agree");
8901   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8902 }
8903 
8904 namespace {
8905 
8906 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8907 /// pointed to by a use iterator is deleted, increment the use iterator
8908 /// so that it doesn't dangle.
8909 ///
8910 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8911   SDNode::use_iterator &UI;
8912   SDNode::use_iterator &UE;
8913 
NodeDeleted(SDNode * N,SDNode * E)8914   void NodeDeleted(SDNode *N, SDNode *E) override {
8915     // Increment the iterator as needed.
8916     while (UI != UE && N == *UI)
8917       ++UI;
8918   }
8919 
8920 public:
RAUWUpdateListener(SelectionDAG & d,SDNode::use_iterator & ui,SDNode::use_iterator & ue)8921   RAUWUpdateListener(SelectionDAG &d,
8922                      SDNode::use_iterator &ui,
8923                      SDNode::use_iterator &ue)
8924     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8925 };
8926 
8927 } // end anonymous namespace
8928 
8929 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8930 /// This can cause recursive merging of nodes in the DAG.
8931 ///
8932 /// This version assumes From has a single result value.
8933 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To)8934 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8935   SDNode *From = FromN.getNode();
8936   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8937          "Cannot replace with this method!");
8938   assert(From != To.getNode() && "Cannot replace uses of with self");
8939 
8940   // Preserve Debug Values
8941   transferDbgValues(FromN, To);
8942 
8943   // Iterate over all the existing uses of From. New uses will be added
8944   // to the beginning of the use list, which we avoid visiting.
8945   // This specifically avoids visiting uses of From that arise while the
8946   // replacement is happening, because any such uses would be the result
8947   // of CSE: If an existing node looks like From after one of its operands
8948   // is replaced by To, we don't want to replace of all its users with To
8949   // too. See PR3018 for more info.
8950   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8951   RAUWUpdateListener Listener(*this, UI, UE);
8952   while (UI != UE) {
8953     SDNode *User = *UI;
8954 
8955     // This node is about to morph, remove its old self from the CSE maps.
8956     RemoveNodeFromCSEMaps(User);
8957 
8958     // A user can appear in a use list multiple times, and when this
8959     // happens the uses are usually next to each other in the list.
8960     // To help reduce the number of CSE recomputations, process all
8961     // the uses of this user that we can find this way.
8962     do {
8963       SDUse &Use = UI.getUse();
8964       ++UI;
8965       Use.set(To);
8966       if (To->isDivergent() != From->isDivergent())
8967         updateDivergence(User);
8968     } while (UI != UE && *UI == User);
8969     // Now that we have modified User, add it back to the CSE maps.  If it
8970     // already exists there, recursively merge the results together.
8971     AddModifiedNodeToCSEMaps(User);
8972   }
8973 
8974   // If we just RAUW'd the root, take note.
8975   if (FromN == getRoot())
8976     setRoot(To);
8977 }
8978 
8979 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8980 /// This can cause recursive merging of nodes in the DAG.
8981 ///
8982 /// This version assumes that for each value of From, there is a
8983 /// corresponding value in To in the same position with the same type.
8984 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To)8985 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8986 #ifndef NDEBUG
8987   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8988     assert((!From->hasAnyUseOfValue(i) ||
8989             From->getValueType(i) == To->getValueType(i)) &&
8990            "Cannot use this version of ReplaceAllUsesWith!");
8991 #endif
8992 
8993   // Handle the trivial case.
8994   if (From == To)
8995     return;
8996 
8997   // Preserve Debug Info. Only do this if there's a use.
8998   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8999     if (From->hasAnyUseOfValue(i)) {
9000       assert((i < To->getNumValues()) && "Invalid To location");
9001       transferDbgValues(SDValue(From, i), SDValue(To, i));
9002     }
9003 
9004   // Iterate over just the existing users of From. See the comments in
9005   // the ReplaceAllUsesWith above.
9006   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9007   RAUWUpdateListener Listener(*this, UI, UE);
9008   while (UI != UE) {
9009     SDNode *User = *UI;
9010 
9011     // This node is about to morph, remove its old self from the CSE maps.
9012     RemoveNodeFromCSEMaps(User);
9013 
9014     // A user can appear in a use list multiple times, and when this
9015     // happens the uses are usually next to each other in the list.
9016     // To help reduce the number of CSE recomputations, process all
9017     // the uses of this user that we can find this way.
9018     do {
9019       SDUse &Use = UI.getUse();
9020       ++UI;
9021       Use.setNode(To);
9022       if (To->isDivergent() != From->isDivergent())
9023         updateDivergence(User);
9024     } while (UI != UE && *UI == User);
9025 
9026     // Now that we have modified User, add it back to the CSE maps.  If it
9027     // already exists there, recursively merge the results together.
9028     AddModifiedNodeToCSEMaps(User);
9029   }
9030 
9031   // If we just RAUW'd the root, take note.
9032   if (From == getRoot().getNode())
9033     setRoot(SDValue(To, getRoot().getResNo()));
9034 }
9035 
9036 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9037 /// This can cause recursive merging of nodes in the DAG.
9038 ///
9039 /// This version can replace From with any result values.  To must match the
9040 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To)9041 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9042   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9043     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9044 
9045   // Preserve Debug Info.
9046   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9047     transferDbgValues(SDValue(From, i), To[i]);
9048 
9049   // Iterate over just the existing users of From. See the comments in
9050   // the ReplaceAllUsesWith above.
9051   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9052   RAUWUpdateListener Listener(*this, UI, UE);
9053   while (UI != UE) {
9054     SDNode *User = *UI;
9055 
9056     // This node is about to morph, remove its old self from the CSE maps.
9057     RemoveNodeFromCSEMaps(User);
9058 
9059     // A user can appear in a use list multiple times, and when this happens the
9060     // uses are usually next to each other in the list.  To help reduce the
9061     // number of CSE and divergence recomputations, process all the uses of this
9062     // user that we can find this way.
9063     bool To_IsDivergent = false;
9064     do {
9065       SDUse &Use = UI.getUse();
9066       const SDValue &ToOp = To[Use.getResNo()];
9067       ++UI;
9068       Use.set(ToOp);
9069       To_IsDivergent |= ToOp->isDivergent();
9070     } while (UI != UE && *UI == User);
9071 
9072     if (To_IsDivergent != From->isDivergent())
9073       updateDivergence(User);
9074 
9075     // Now that we have modified User, add it back to the CSE maps.  If it
9076     // already exists there, recursively merge the results together.
9077     AddModifiedNodeToCSEMaps(User);
9078   }
9079 
9080   // If we just RAUW'd the root, take note.
9081   if (From == getRoot().getNode())
9082     setRoot(SDValue(To[getRoot().getResNo()]));
9083 }
9084 
9085 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9086 /// uses of other values produced by From.getNode() alone.  The Deleted
9087 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To)9088 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9089   // Handle the really simple, really trivial case efficiently.
9090   if (From == To) return;
9091 
9092   // Handle the simple, trivial, case efficiently.
9093   if (From.getNode()->getNumValues() == 1) {
9094     ReplaceAllUsesWith(From, To);
9095     return;
9096   }
9097 
9098   // Preserve Debug Info.
9099   transferDbgValues(From, To);
9100 
9101   // Iterate over just the existing users of From. See the comments in
9102   // the ReplaceAllUsesWith above.
9103   SDNode::use_iterator UI = From.getNode()->use_begin(),
9104                        UE = From.getNode()->use_end();
9105   RAUWUpdateListener Listener(*this, UI, UE);
9106   while (UI != UE) {
9107     SDNode *User = *UI;
9108     bool UserRemovedFromCSEMaps = false;
9109 
9110     // A user can appear in a use list multiple times, and when this
9111     // happens the uses are usually next to each other in the list.
9112     // To help reduce the number of CSE recomputations, process all
9113     // the uses of this user that we can find this way.
9114     do {
9115       SDUse &Use = UI.getUse();
9116 
9117       // Skip uses of different values from the same node.
9118       if (Use.getResNo() != From.getResNo()) {
9119         ++UI;
9120         continue;
9121       }
9122 
9123       // If this node hasn't been modified yet, it's still in the CSE maps,
9124       // so remove its old self from the CSE maps.
9125       if (!UserRemovedFromCSEMaps) {
9126         RemoveNodeFromCSEMaps(User);
9127         UserRemovedFromCSEMaps = true;
9128       }
9129 
9130       ++UI;
9131       Use.set(To);
9132       if (To->isDivergent() != From->isDivergent())
9133         updateDivergence(User);
9134     } while (UI != UE && *UI == User);
9135     // We are iterating over all uses of the From node, so if a use
9136     // doesn't use the specific value, no changes are made.
9137     if (!UserRemovedFromCSEMaps)
9138       continue;
9139 
9140     // Now that we have modified User, add it back to the CSE maps.  If it
9141     // already exists there, recursively merge the results together.
9142     AddModifiedNodeToCSEMaps(User);
9143   }
9144 
9145   // If we just RAUW'd the root, take note.
9146   if (From == getRoot())
9147     setRoot(To);
9148 }
9149 
9150 namespace {
9151 
9152   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9153   /// to record information about a use.
9154   struct UseMemo {
9155     SDNode *User;
9156     unsigned Index;
9157     SDUse *Use;
9158   };
9159 
9160   /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)9161   bool operator<(const UseMemo &L, const UseMemo &R) {
9162     return (intptr_t)L.User < (intptr_t)R.User;
9163   }
9164 
9165 } // end anonymous namespace
9166 
calculateDivergence(SDNode * N)9167 bool SelectionDAG::calculateDivergence(SDNode *N) {
9168   if (TLI->isSDNodeAlwaysUniform(N)) {
9169     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9170            "Conflicting divergence information!");
9171     return false;
9172   }
9173   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9174     return true;
9175   for (auto &Op : N->ops()) {
9176     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9177       return true;
9178   }
9179   return false;
9180 }
9181 
updateDivergence(SDNode * N)9182 void SelectionDAG::updateDivergence(SDNode *N) {
9183   SmallVector<SDNode *, 16> Worklist(1, N);
9184   do {
9185     N = Worklist.pop_back_val();
9186     bool IsDivergent = calculateDivergence(N);
9187     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9188       N->SDNodeBits.IsDivergent = IsDivergent;
9189       llvm::append_range(Worklist, N->uses());
9190     }
9191   } while (!Worklist.empty());
9192 }
9193 
CreateTopologicalOrder(std::vector<SDNode * > & Order)9194 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9195   DenseMap<SDNode *, unsigned> Degree;
9196   Order.reserve(AllNodes.size());
9197   for (auto &N : allnodes()) {
9198     unsigned NOps = N.getNumOperands();
9199     Degree[&N] = NOps;
9200     if (0 == NOps)
9201       Order.push_back(&N);
9202   }
9203   for (size_t I = 0; I != Order.size(); ++I) {
9204     SDNode *N = Order[I];
9205     for (auto U : N->uses()) {
9206       unsigned &UnsortedOps = Degree[U];
9207       if (0 == --UnsortedOps)
9208         Order.push_back(U);
9209     }
9210   }
9211 }
9212 
9213 #ifndef NDEBUG
VerifyDAGDiverence()9214 void SelectionDAG::VerifyDAGDiverence() {
9215   std::vector<SDNode *> TopoOrder;
9216   CreateTopologicalOrder(TopoOrder);
9217   for (auto *N : TopoOrder) {
9218     assert(calculateDivergence(N) == N->isDivergent() &&
9219            "Divergence bit inconsistency detected");
9220   }
9221 }
9222 #endif
9223 
9224 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9225 /// uses of other values produced by From.getNode() alone.  The same value
9226 /// may appear in both the From and To list.  The Deleted vector is
9227 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num)9228 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9229                                               const SDValue *To,
9230                                               unsigned Num){
9231   // Handle the simple, trivial case efficiently.
9232   if (Num == 1)
9233     return ReplaceAllUsesOfValueWith(*From, *To);
9234 
9235   transferDbgValues(*From, *To);
9236 
9237   // Read up all the uses and make records of them. This helps
9238   // processing new uses that are introduced during the
9239   // replacement process.
9240   SmallVector<UseMemo, 4> Uses;
9241   for (unsigned i = 0; i != Num; ++i) {
9242     unsigned FromResNo = From[i].getResNo();
9243     SDNode *FromNode = From[i].getNode();
9244     for (SDNode::use_iterator UI = FromNode->use_begin(),
9245          E = FromNode->use_end(); UI != E; ++UI) {
9246       SDUse &Use = UI.getUse();
9247       if (Use.getResNo() == FromResNo) {
9248         UseMemo Memo = { *UI, i, &Use };
9249         Uses.push_back(Memo);
9250       }
9251     }
9252   }
9253 
9254   // Sort the uses, so that all the uses from a given User are together.
9255   llvm::sort(Uses);
9256 
9257   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9258        UseIndex != UseIndexEnd; ) {
9259     // We know that this user uses some value of From.  If it is the right
9260     // value, update it.
9261     SDNode *User = Uses[UseIndex].User;
9262 
9263     // This node is about to morph, remove its old self from the CSE maps.
9264     RemoveNodeFromCSEMaps(User);
9265 
9266     // The Uses array is sorted, so all the uses for a given User
9267     // are next to each other in the list.
9268     // To help reduce the number of CSE recomputations, process all
9269     // the uses of this user that we can find this way.
9270     do {
9271       unsigned i = Uses[UseIndex].Index;
9272       SDUse &Use = *Uses[UseIndex].Use;
9273       ++UseIndex;
9274 
9275       Use.set(To[i]);
9276     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9277 
9278     // Now that we have modified User, add it back to the CSE maps.  If it
9279     // already exists there, recursively merge the results together.
9280     AddModifiedNodeToCSEMaps(User);
9281   }
9282 }
9283 
9284 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9285 /// based on their topological order. It returns the maximum id and a vector
9286 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()9287 unsigned SelectionDAG::AssignTopologicalOrder() {
9288   unsigned DAGSize = 0;
9289 
9290   // SortedPos tracks the progress of the algorithm. Nodes before it are
9291   // sorted, nodes after it are unsorted. When the algorithm completes
9292   // it is at the end of the list.
9293   allnodes_iterator SortedPos = allnodes_begin();
9294 
9295   // Visit all the nodes. Move nodes with no operands to the front of
9296   // the list immediately. Annotate nodes that do have operands with their
9297   // operand count. Before we do this, the Node Id fields of the nodes
9298   // may contain arbitrary values. After, the Node Id fields for nodes
9299   // before SortedPos will contain the topological sort index, and the
9300   // Node Id fields for nodes At SortedPos and after will contain the
9301   // count of outstanding operands.
9302   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9303     SDNode *N = &*I++;
9304     checkForCycles(N, this);
9305     unsigned Degree = N->getNumOperands();
9306     if (Degree == 0) {
9307       // A node with no uses, add it to the result array immediately.
9308       N->setNodeId(DAGSize++);
9309       allnodes_iterator Q(N);
9310       if (Q != SortedPos)
9311         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9312       assert(SortedPos != AllNodes.end() && "Overran node list");
9313       ++SortedPos;
9314     } else {
9315       // Temporarily use the Node Id as scratch space for the degree count.
9316       N->setNodeId(Degree);
9317     }
9318   }
9319 
9320   // Visit all the nodes. As we iterate, move nodes into sorted order,
9321   // such that by the time the end is reached all nodes will be sorted.
9322   for (SDNode &Node : allnodes()) {
9323     SDNode *N = &Node;
9324     checkForCycles(N, this);
9325     // N is in sorted position, so all its uses have one less operand
9326     // that needs to be sorted.
9327     for (SDNode *P : N->uses()) {
9328       unsigned Degree = P->getNodeId();
9329       assert(Degree != 0 && "Invalid node degree");
9330       --Degree;
9331       if (Degree == 0) {
9332         // All of P's operands are sorted, so P may sorted now.
9333         P->setNodeId(DAGSize++);
9334         if (P->getIterator() != SortedPos)
9335           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9336         assert(SortedPos != AllNodes.end() && "Overran node list");
9337         ++SortedPos;
9338       } else {
9339         // Update P's outstanding operand count.
9340         P->setNodeId(Degree);
9341       }
9342     }
9343     if (Node.getIterator() == SortedPos) {
9344 #ifndef NDEBUG
9345       allnodes_iterator I(N);
9346       SDNode *S = &*++I;
9347       dbgs() << "Overran sorted position:\n";
9348       S->dumprFull(this); dbgs() << "\n";
9349       dbgs() << "Checking if this is due to cycles\n";
9350       checkForCycles(this, true);
9351 #endif
9352       llvm_unreachable(nullptr);
9353     }
9354   }
9355 
9356   assert(SortedPos == AllNodes.end() &&
9357          "Topological sort incomplete!");
9358   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9359          "First node in topological sort is not the entry token!");
9360   assert(AllNodes.front().getNodeId() == 0 &&
9361          "First node in topological sort has non-zero id!");
9362   assert(AllNodes.front().getNumOperands() == 0 &&
9363          "First node in topological sort has operands!");
9364   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9365          "Last node in topologic sort has unexpected id!");
9366   assert(AllNodes.back().use_empty() &&
9367          "Last node in topologic sort has users!");
9368   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9369   return DAGSize;
9370 }
9371 
9372 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9373 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,bool isParameter)9374 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9375   for (SDNode *SD : DB->getSDNodes()) {
9376     if (!SD)
9377       continue;
9378     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9379     SD->setHasDebugValue(true);
9380   }
9381   DbgInfo->add(DB, isParameter);
9382 }
9383 
AddDbgLabel(SDDbgLabel * DB)9384 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9385 
makeEquivalentMemoryOrdering(SDValue OldChain,SDValue NewMemOpChain)9386 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9387                                                    SDValue NewMemOpChain) {
9388   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9389   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9390   // The new memory operation must have the same position as the old load in
9391   // terms of memory dependency. Create a TokenFactor for the old load and new
9392   // memory operation and update uses of the old load's output chain to use that
9393   // TokenFactor.
9394   if (OldChain == NewMemOpChain || OldChain.use_empty())
9395     return NewMemOpChain;
9396 
9397   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9398                                 OldChain, NewMemOpChain);
9399   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9400   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9401   return TokenFactor;
9402 }
9403 
makeEquivalentMemoryOrdering(LoadSDNode * OldLoad,SDValue NewMemOp)9404 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9405                                                    SDValue NewMemOp) {
9406   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9407   SDValue OldChain = SDValue(OldLoad, 1);
9408   SDValue NewMemOpChain = NewMemOp.getValue(1);
9409   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9410 }
9411 
getSymbolFunctionGlobalAddress(SDValue Op,Function ** OutFunction)9412 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9413                                                      Function **OutFunction) {
9414   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9415 
9416   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9417   auto *Module = MF->getFunction().getParent();
9418   auto *Function = Module->getFunction(Symbol);
9419 
9420   if (OutFunction != nullptr)
9421       *OutFunction = Function;
9422 
9423   if (Function != nullptr) {
9424     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9425     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9426   }
9427 
9428   std::string ErrorStr;
9429   raw_string_ostream ErrorFormatter(ErrorStr);
9430 
9431   ErrorFormatter << "Undefined external symbol ";
9432   ErrorFormatter << '"' << Symbol << '"';
9433   ErrorFormatter.flush();
9434 
9435   report_fatal_error(ErrorStr);
9436 }
9437 
9438 //===----------------------------------------------------------------------===//
9439 //                              SDNode Class
9440 //===----------------------------------------------------------------------===//
9441 
isNullConstant(SDValue V)9442 bool llvm::isNullConstant(SDValue V) {
9443   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9444   return Const != nullptr && Const->isNullValue();
9445 }
9446 
isNullFPConstant(SDValue V)9447 bool llvm::isNullFPConstant(SDValue V) {
9448   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9449   return Const != nullptr && Const->isZero() && !Const->isNegative();
9450 }
9451 
isAllOnesConstant(SDValue V)9452 bool llvm::isAllOnesConstant(SDValue V) {
9453   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9454   return Const != nullptr && Const->isAllOnesValue();
9455 }
9456 
isOneConstant(SDValue V)9457 bool llvm::isOneConstant(SDValue V) {
9458   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9459   return Const != nullptr && Const->isOne();
9460 }
9461 
peekThroughBitcasts(SDValue V)9462 SDValue llvm::peekThroughBitcasts(SDValue V) {
9463   while (V.getOpcode() == ISD::BITCAST)
9464     V = V.getOperand(0);
9465   return V;
9466 }
9467 
peekThroughOneUseBitcasts(SDValue V)9468 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9469   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9470     V = V.getOperand(0);
9471   return V;
9472 }
9473 
peekThroughExtractSubvectors(SDValue V)9474 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9475   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9476     V = V.getOperand(0);
9477   return V;
9478 }
9479 
isBitwiseNot(SDValue V,bool AllowUndefs)9480 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9481   if (V.getOpcode() != ISD::XOR)
9482     return false;
9483   V = peekThroughBitcasts(V.getOperand(1));
9484   unsigned NumBits = V.getScalarValueSizeInBits();
9485   ConstantSDNode *C =
9486       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9487   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9488 }
9489 
isConstOrConstSplat(SDValue N,bool AllowUndefs,bool AllowTruncation)9490 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9491                                           bool AllowTruncation) {
9492   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9493     return CN;
9494 
9495   // SplatVectors can truncate their operands. Ignore that case here unless
9496   // AllowTruncation is set.
9497   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9498     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9499     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9500       EVT CVT = CN->getValueType(0);
9501       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
9502       if (AllowTruncation || CVT == VecEltVT)
9503         return CN;
9504     }
9505   }
9506 
9507   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9508     BitVector UndefElements;
9509     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9510 
9511     // BuildVectors can truncate their operands. Ignore that case here unless
9512     // AllowTruncation is set.
9513     if (CN && (UndefElements.none() || AllowUndefs)) {
9514       EVT CVT = CN->getValueType(0);
9515       EVT NSVT = N.getValueType().getScalarType();
9516       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9517       if (AllowTruncation || (CVT == NSVT))
9518         return CN;
9519     }
9520   }
9521 
9522   return nullptr;
9523 }
9524 
isConstOrConstSplat(SDValue N,const APInt & DemandedElts,bool AllowUndefs,bool AllowTruncation)9525 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9526                                           bool AllowUndefs,
9527                                           bool AllowTruncation) {
9528   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9529     return CN;
9530 
9531   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9532     BitVector UndefElements;
9533     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9534 
9535     // BuildVectors can truncate their operands. Ignore that case here unless
9536     // AllowTruncation is set.
9537     if (CN && (UndefElements.none() || AllowUndefs)) {
9538       EVT CVT = CN->getValueType(0);
9539       EVT NSVT = N.getValueType().getScalarType();
9540       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9541       if (AllowTruncation || (CVT == NSVT))
9542         return CN;
9543     }
9544   }
9545 
9546   return nullptr;
9547 }
9548 
isConstOrConstSplatFP(SDValue N,bool AllowUndefs)9549 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9550   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9551     return CN;
9552 
9553   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9554     BitVector UndefElements;
9555     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9556     if (CN && (UndefElements.none() || AllowUndefs))
9557       return CN;
9558   }
9559 
9560   if (N.getOpcode() == ISD::SPLAT_VECTOR)
9561     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
9562       return CN;
9563 
9564   return nullptr;
9565 }
9566 
isConstOrConstSplatFP(SDValue N,const APInt & DemandedElts,bool AllowUndefs)9567 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9568                                               const APInt &DemandedElts,
9569                                               bool AllowUndefs) {
9570   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9571     return CN;
9572 
9573   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9574     BitVector UndefElements;
9575     ConstantFPSDNode *CN =
9576         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9577     if (CN && (UndefElements.none() || AllowUndefs))
9578       return CN;
9579   }
9580 
9581   return nullptr;
9582 }
9583 
isNullOrNullSplat(SDValue N,bool AllowUndefs)9584 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9585   // TODO: may want to use peekThroughBitcast() here.
9586   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9587   return C && C->isNullValue();
9588 }
9589 
isOneOrOneSplat(SDValue N,bool AllowUndefs)9590 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
9591   // TODO: may want to use peekThroughBitcast() here.
9592   unsigned BitWidth = N.getScalarValueSizeInBits();
9593   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9594   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9595 }
9596 
isAllOnesOrAllOnesSplat(SDValue N,bool AllowUndefs)9597 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
9598   N = peekThroughBitcasts(N);
9599   unsigned BitWidth = N.getScalarValueSizeInBits();
9600   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9601   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9602 }
9603 
~HandleSDNode()9604 HandleSDNode::~HandleSDNode() {
9605   DropOperands();
9606 }
9607 
GlobalAddressSDNode(unsigned Opc,unsigned Order,const DebugLoc & DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned TF)9608 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9609                                          const DebugLoc &DL,
9610                                          const GlobalValue *GA, EVT VT,
9611                                          int64_t o, unsigned TF)
9612     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9613   TheGlobal = GA;
9614 }
9615 
AddrSpaceCastSDNode(unsigned Order,const DebugLoc & dl,EVT VT,unsigned SrcAS,unsigned DestAS)9616 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9617                                          EVT VT, unsigned SrcAS,
9618                                          unsigned DestAS)
9619     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9620       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9621 
MemSDNode(unsigned Opc,unsigned Order,const DebugLoc & dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)9622 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9623                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9624     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9625   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9626   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9627   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9628   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9629 
9630   // We check here that the size of the memory operand fits within the size of
9631   // the MMO. This is because the MMO might indicate only a possible address
9632   // range instead of specifying the affected memory addresses precisely.
9633   // TODO: Make MachineMemOperands aware of scalable vectors.
9634   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9635          "Size mismatch!");
9636 }
9637 
9638 /// Profile - Gather unique data for the node.
9639 ///
Profile(FoldingSetNodeID & ID) const9640 void SDNode::Profile(FoldingSetNodeID &ID) const {
9641   AddNodeIDNode(ID, this);
9642 }
9643 
9644 namespace {
9645 
9646   struct EVTArray {
9647     std::vector<EVT> VTs;
9648 
EVTArray__anon682509e81111::EVTArray9649     EVTArray() {
9650       VTs.reserve(MVT::LAST_VALUETYPE);
9651       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9652         VTs.push_back(MVT((MVT::SimpleValueType)i));
9653     }
9654   };
9655 
9656 } // end anonymous namespace
9657 
9658 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9659 static ManagedStatic<EVTArray> SimpleVTArray;
9660 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9661 
9662 /// getValueTypeList - Return a pointer to the specified value type.
9663 ///
getValueTypeList(EVT VT)9664 const EVT *SDNode::getValueTypeList(EVT VT) {
9665   if (VT.isExtended()) {
9666     sys::SmartScopedLock<true> Lock(*VTMutex);
9667     return &(*EVTs->insert(VT).first);
9668   }
9669   assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && "Value type out of range!");
9670   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9671 }
9672 
9673 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9674 /// indicated value.  This method ignores uses of other values defined by this
9675 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const9676 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9677   assert(Value < getNumValues() && "Bad value!");
9678 
9679   // TODO: Only iterate over uses of a given value of the node
9680   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9681     if (UI.getUse().getResNo() == Value) {
9682       if (NUses == 0)
9683         return false;
9684       --NUses;
9685     }
9686   }
9687 
9688   // Found exactly the right number of uses?
9689   return NUses == 0;
9690 }
9691 
9692 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9693 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const9694 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9695   assert(Value < getNumValues() && "Bad value!");
9696 
9697   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9698     if (UI.getUse().getResNo() == Value)
9699       return true;
9700 
9701   return false;
9702 }
9703 
9704 /// isOnlyUserOf - Return true if this node is the only use of N.
isOnlyUserOf(const SDNode * N) const9705 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9706   bool Seen = false;
9707   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9708     SDNode *User = *I;
9709     if (User == this)
9710       Seen = true;
9711     else
9712       return false;
9713   }
9714 
9715   return Seen;
9716 }
9717 
9718 /// Return true if the only users of N are contained in Nodes.
areOnlyUsersOf(ArrayRef<const SDNode * > Nodes,const SDNode * N)9719 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9720   bool Seen = false;
9721   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9722     SDNode *User = *I;
9723     if (llvm::is_contained(Nodes, User))
9724       Seen = true;
9725     else
9726       return false;
9727   }
9728 
9729   return Seen;
9730 }
9731 
9732 /// isOperand - Return true if this node is an operand of N.
isOperandOf(const SDNode * N) const9733 bool SDValue::isOperandOf(const SDNode *N) const {
9734   return is_contained(N->op_values(), *this);
9735 }
9736 
isOperandOf(const SDNode * N) const9737 bool SDNode::isOperandOf(const SDNode *N) const {
9738   return any_of(N->op_values(),
9739                 [this](SDValue Op) { return this == Op.getNode(); });
9740 }
9741 
9742 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9743 /// be a chain) reaches the specified operand without crossing any
9744 /// side-effecting instructions on any chain path.  In practice, this looks
9745 /// through token factors and non-volatile loads.  In order to remain efficient,
9746 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9747 ///
9748 /// Note that we only need to examine chains when we're searching for
9749 /// side-effects; SelectionDAG requires that all side-effects are represented
9750 /// by chains, even if another operand would force a specific ordering. This
9751 /// constraint is necessary to allow transformations like splitting loads.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const9752 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9753                                              unsigned Depth) const {
9754   if (*this == Dest) return true;
9755 
9756   // Don't search too deeply, we just want to be able to see through
9757   // TokenFactor's etc.
9758   if (Depth == 0) return false;
9759 
9760   // If this is a token factor, all inputs to the TF happen in parallel.
9761   if (getOpcode() == ISD::TokenFactor) {
9762     // First, try a shallow search.
9763     if (is_contained((*this)->ops(), Dest)) {
9764       // We found the chain we want as an operand of this TokenFactor.
9765       // Essentially, we reach the chain without side-effects if we could
9766       // serialize the TokenFactor into a simple chain of operations with
9767       // Dest as the last operation. This is automatically true if the
9768       // chain has one use: there are no other ordering constraints.
9769       // If the chain has more than one use, we give up: some other
9770       // use of Dest might force a side-effect between Dest and the current
9771       // node.
9772       if (Dest.hasOneUse())
9773         return true;
9774     }
9775     // Next, try a deep search: check whether every operand of the TokenFactor
9776     // reaches Dest.
9777     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9778       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9779     });
9780   }
9781 
9782   // Loads don't have side effects, look through them.
9783   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9784     if (Ld->isUnordered())
9785       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9786   }
9787   return false;
9788 }
9789 
hasPredecessor(const SDNode * N) const9790 bool SDNode::hasPredecessor(const SDNode *N) const {
9791   SmallPtrSet<const SDNode *, 32> Visited;
9792   SmallVector<const SDNode *, 16> Worklist;
9793   Worklist.push_back(this);
9794   return hasPredecessorHelper(N, Visited, Worklist);
9795 }
9796 
intersectFlagsWith(const SDNodeFlags Flags)9797 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9798   this->Flags.intersectWith(Flags);
9799 }
9800 
9801 SDValue
matchBinOpReduction(SDNode * Extract,ISD::NodeType & BinOp,ArrayRef<ISD::NodeType> CandidateBinOps,bool AllowPartials)9802 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9803                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9804                                   bool AllowPartials) {
9805   // The pattern must end in an extract from index 0.
9806   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9807       !isNullConstant(Extract->getOperand(1)))
9808     return SDValue();
9809 
9810   // Match against one of the candidate binary ops.
9811   SDValue Op = Extract->getOperand(0);
9812   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9813         return Op.getOpcode() == unsigned(BinOp);
9814       }))
9815     return SDValue();
9816 
9817   // Floating-point reductions may require relaxed constraints on the final step
9818   // of the reduction because they may reorder intermediate operations.
9819   unsigned CandidateBinOp = Op.getOpcode();
9820   if (Op.getValueType().isFloatingPoint()) {
9821     SDNodeFlags Flags = Op->getFlags();
9822     switch (CandidateBinOp) {
9823     case ISD::FADD:
9824       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9825         return SDValue();
9826       break;
9827     default:
9828       llvm_unreachable("Unhandled FP opcode for binop reduction");
9829     }
9830   }
9831 
9832   // Matching failed - attempt to see if we did enough stages that a partial
9833   // reduction from a subvector is possible.
9834   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9835     if (!AllowPartials || !Op)
9836       return SDValue();
9837     EVT OpVT = Op.getValueType();
9838     EVT OpSVT = OpVT.getScalarType();
9839     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9840     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9841       return SDValue();
9842     BinOp = (ISD::NodeType)CandidateBinOp;
9843     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9844                    getVectorIdxConstant(0, SDLoc(Op)));
9845   };
9846 
9847   // At each stage, we're looking for something that looks like:
9848   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9849   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9850   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9851   // %a = binop <8 x i32> %op, %s
9852   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9853   // we expect something like:
9854   // <4,5,6,7,u,u,u,u>
9855   // <2,3,u,u,u,u,u,u>
9856   // <1,u,u,u,u,u,u,u>
9857   // While a partial reduction match would be:
9858   // <2,3,u,u,u,u,u,u>
9859   // <1,u,u,u,u,u,u,u>
9860   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9861   SDValue PrevOp;
9862   for (unsigned i = 0; i < Stages; ++i) {
9863     unsigned MaskEnd = (1 << i);
9864 
9865     if (Op.getOpcode() != CandidateBinOp)
9866       return PartialReduction(PrevOp, MaskEnd);
9867 
9868     SDValue Op0 = Op.getOperand(0);
9869     SDValue Op1 = Op.getOperand(1);
9870 
9871     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9872     if (Shuffle) {
9873       Op = Op1;
9874     } else {
9875       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9876       Op = Op0;
9877     }
9878 
9879     // The first operand of the shuffle should be the same as the other operand
9880     // of the binop.
9881     if (!Shuffle || Shuffle->getOperand(0) != Op)
9882       return PartialReduction(PrevOp, MaskEnd);
9883 
9884     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9885     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9886       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9887         return PartialReduction(PrevOp, MaskEnd);
9888 
9889     PrevOp = Op;
9890   }
9891 
9892   // Handle subvector reductions, which tend to appear after the shuffle
9893   // reduction stages.
9894   while (Op.getOpcode() == CandidateBinOp) {
9895     unsigned NumElts = Op.getValueType().getVectorNumElements();
9896     SDValue Op0 = Op.getOperand(0);
9897     SDValue Op1 = Op.getOperand(1);
9898     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9899         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9900         Op0.getOperand(0) != Op1.getOperand(0))
9901       break;
9902     SDValue Src = Op0.getOperand(0);
9903     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9904     if (NumSrcElts != (2 * NumElts))
9905       break;
9906     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9907           Op1.getConstantOperandAPInt(1) == NumElts) &&
9908         !(Op1.getConstantOperandAPInt(1) == 0 &&
9909           Op0.getConstantOperandAPInt(1) == NumElts))
9910       break;
9911     Op = Src;
9912   }
9913 
9914   BinOp = (ISD::NodeType)CandidateBinOp;
9915   return Op;
9916 }
9917 
UnrollVectorOp(SDNode * N,unsigned ResNE)9918 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9919   assert(N->getNumValues() == 1 &&
9920          "Can't unroll a vector with multiple results!");
9921 
9922   EVT VT = N->getValueType(0);
9923   unsigned NE = VT.getVectorNumElements();
9924   EVT EltVT = VT.getVectorElementType();
9925   SDLoc dl(N);
9926 
9927   SmallVector<SDValue, 8> Scalars;
9928   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9929 
9930   // If ResNE is 0, fully unroll the vector op.
9931   if (ResNE == 0)
9932     ResNE = NE;
9933   else if (NE > ResNE)
9934     NE = ResNE;
9935 
9936   unsigned i;
9937   for (i= 0; i != NE; ++i) {
9938     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9939       SDValue Operand = N->getOperand(j);
9940       EVT OperandVT = Operand.getValueType();
9941       if (OperandVT.isVector()) {
9942         // A vector operand; extract a single element.
9943         EVT OperandEltVT = OperandVT.getVectorElementType();
9944         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9945                               Operand, getVectorIdxConstant(i, dl));
9946       } else {
9947         // A scalar operand; just use it as is.
9948         Operands[j] = Operand;
9949       }
9950     }
9951 
9952     switch (N->getOpcode()) {
9953     default: {
9954       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9955                                 N->getFlags()));
9956       break;
9957     }
9958     case ISD::VSELECT:
9959       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9960       break;
9961     case ISD::SHL:
9962     case ISD::SRA:
9963     case ISD::SRL:
9964     case ISD::ROTL:
9965     case ISD::ROTR:
9966       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9967                                getShiftAmountOperand(Operands[0].getValueType(),
9968                                                      Operands[1])));
9969       break;
9970     case ISD::SIGN_EXTEND_INREG: {
9971       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9972       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9973                                 Operands[0],
9974                                 getValueType(ExtVT)));
9975     }
9976     }
9977   }
9978 
9979   for (; i < ResNE; ++i)
9980     Scalars.push_back(getUNDEF(EltVT));
9981 
9982   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9983   return getBuildVector(VecVT, dl, Scalars);
9984 }
9985 
UnrollVectorOverflowOp(SDNode * N,unsigned ResNE)9986 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9987     SDNode *N, unsigned ResNE) {
9988   unsigned Opcode = N->getOpcode();
9989   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9990           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9991           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9992          "Expected an overflow opcode");
9993 
9994   EVT ResVT = N->getValueType(0);
9995   EVT OvVT = N->getValueType(1);
9996   EVT ResEltVT = ResVT.getVectorElementType();
9997   EVT OvEltVT = OvVT.getVectorElementType();
9998   SDLoc dl(N);
9999 
10000   // If ResNE is 0, fully unroll the vector op.
10001   unsigned NE = ResVT.getVectorNumElements();
10002   if (ResNE == 0)
10003     ResNE = NE;
10004   else if (NE > ResNE)
10005     NE = ResNE;
10006 
10007   SmallVector<SDValue, 8> LHSScalars;
10008   SmallVector<SDValue, 8> RHSScalars;
10009   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10010   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10011 
10012   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10013   SDVTList VTs = getVTList(ResEltVT, SVT);
10014   SmallVector<SDValue, 8> ResScalars;
10015   SmallVector<SDValue, 8> OvScalars;
10016   for (unsigned i = 0; i < NE; ++i) {
10017     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10018     SDValue Ov =
10019         getSelect(dl, OvEltVT, Res.getValue(1),
10020                   getBoolConstant(true, dl, OvEltVT, ResVT),
10021                   getConstant(0, dl, OvEltVT));
10022 
10023     ResScalars.push_back(Res);
10024     OvScalars.push_back(Ov);
10025   }
10026 
10027   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10028   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10029 
10030   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10031   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10032   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10033                         getBuildVector(NewOvVT, dl, OvScalars));
10034 }
10035 
areNonVolatileConsecutiveLoads(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const10036 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10037                                                   LoadSDNode *Base,
10038                                                   unsigned Bytes,
10039                                                   int Dist) const {
10040   if (LD->isVolatile() || Base->isVolatile())
10041     return false;
10042   // TODO: probably too restrictive for atomics, revisit
10043   if (!LD->isSimple())
10044     return false;
10045   if (LD->isIndexed() || Base->isIndexed())
10046     return false;
10047   if (LD->getChain() != Base->getChain())
10048     return false;
10049   EVT VT = LD->getValueType(0);
10050   if (VT.getSizeInBits() / 8 != Bytes)
10051     return false;
10052 
10053   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10054   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10055 
10056   int64_t Offset = 0;
10057   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10058     return (Dist * Bytes == Offset);
10059   return false;
10060 }
10061 
10062 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10063 /// if it cannot be inferred.
InferPtrAlign(SDValue Ptr) const10064 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10065   // If this is a GlobalAddress + cst, return the alignment.
10066   const GlobalValue *GV = nullptr;
10067   int64_t GVOffset = 0;
10068   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10069     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10070     KnownBits Known(PtrWidth);
10071     llvm::computeKnownBits(GV, Known, getDataLayout());
10072     unsigned AlignBits = Known.countMinTrailingZeros();
10073     if (AlignBits)
10074       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10075   }
10076 
10077   // If this is a direct reference to a stack slot, use information about the
10078   // stack slot's alignment.
10079   int FrameIdx = INT_MIN;
10080   int64_t FrameOffset = 0;
10081   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10082     FrameIdx = FI->getIndex();
10083   } else if (isBaseWithConstantOffset(Ptr) &&
10084              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10085     // Handle FI+Cst
10086     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10087     FrameOffset = Ptr.getConstantOperandVal(1);
10088   }
10089 
10090   if (FrameIdx != INT_MIN) {
10091     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10092     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10093   }
10094 
10095   return None;
10096 }
10097 
10098 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10099 /// which is split (or expanded) into two not necessarily identical pieces.
GetSplitDestVTs(const EVT & VT) const10100 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10101   // Currently all types are split in half.
10102   EVT LoVT, HiVT;
10103   if (!VT.isVector())
10104     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10105   else
10106     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10107 
10108   return std::make_pair(LoVT, HiVT);
10109 }
10110 
10111 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10112 /// type, dependent on an enveloping VT that has been split into two identical
10113 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10114 std::pair<EVT, EVT>
GetDependentSplitDestVTs(const EVT & VT,const EVT & EnvVT,bool * HiIsEmpty) const10115 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10116                                        bool *HiIsEmpty) const {
10117   EVT EltTp = VT.getVectorElementType();
10118   // Examples:
10119   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10120   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10121   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10122   //   etc.
10123   ElementCount VTNumElts = VT.getVectorElementCount();
10124   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10125   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10126          "Mixing fixed width and scalable vectors when enveloping a type");
10127   EVT LoVT, HiVT;
10128   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10129     LoVT = EnvVT;
10130     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10131     *HiIsEmpty = false;
10132   } else {
10133     // Flag that hi type has zero storage size, but return split envelop type
10134     // (this would be easier if vector types with zero elements were allowed).
10135     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10136     HiVT = EnvVT;
10137     *HiIsEmpty = true;
10138   }
10139   return std::make_pair(LoVT, HiVT);
10140 }
10141 
10142 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10143 /// low/high part.
10144 std::pair<SDValue, SDValue>
SplitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT)10145 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10146                           const EVT &HiVT) {
10147   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10148          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10149          "Splitting vector with an invalid mixture of fixed and scalable "
10150          "vector types");
10151   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10152              N.getValueType().getVectorMinNumElements() &&
10153          "More vector elements requested than available!");
10154   SDValue Lo, Hi;
10155   Lo =
10156       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10157   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10158   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10159   // IDX with the runtime scaling factor of the result vector type. For
10160   // fixed-width result vectors, that runtime scaling factor is 1.
10161   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10162                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10163   return std::make_pair(Lo, Hi);
10164 }
10165 
10166 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
WidenVector(const SDValue & N,const SDLoc & DL)10167 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10168   EVT VT = N.getValueType();
10169   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10170                                 NextPowerOf2(VT.getVectorNumElements()));
10171   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10172                  getVectorIdxConstant(0, DL));
10173 }
10174 
ExtractVectorElements(SDValue Op,SmallVectorImpl<SDValue> & Args,unsigned Start,unsigned Count,EVT EltVT)10175 void SelectionDAG::ExtractVectorElements(SDValue Op,
10176                                          SmallVectorImpl<SDValue> &Args,
10177                                          unsigned Start, unsigned Count,
10178                                          EVT EltVT) {
10179   EVT VT = Op.getValueType();
10180   if (Count == 0)
10181     Count = VT.getVectorNumElements();
10182   if (EltVT == EVT())
10183     EltVT = VT.getVectorElementType();
10184   SDLoc SL(Op);
10185   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10186     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10187                            getVectorIdxConstant(i, SL)));
10188   }
10189 }
10190 
10191 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const10192 unsigned GlobalAddressSDNode::getAddressSpace() const {
10193   return getGlobal()->getType()->getAddressSpace();
10194 }
10195 
getType() const10196 Type *ConstantPoolSDNode::getType() const {
10197   if (isMachineConstantPoolEntry())
10198     return Val.MachineCPVal->getType();
10199   return Val.ConstVal->getType();
10200 }
10201 
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool IsBigEndian) const10202 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10203                                         unsigned &SplatBitSize,
10204                                         bool &HasAnyUndefs,
10205                                         unsigned MinSplatBits,
10206                                         bool IsBigEndian) const {
10207   EVT VT = getValueType(0);
10208   assert(VT.isVector() && "Expected a vector type");
10209   unsigned VecWidth = VT.getSizeInBits();
10210   if (MinSplatBits > VecWidth)
10211     return false;
10212 
10213   // FIXME: The widths are based on this node's type, but build vectors can
10214   // truncate their operands.
10215   SplatValue = APInt(VecWidth, 0);
10216   SplatUndef = APInt(VecWidth, 0);
10217 
10218   // Get the bits. Bits with undefined values (when the corresponding element
10219   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10220   // in SplatValue. If any of the values are not constant, give up and return
10221   // false.
10222   unsigned int NumOps = getNumOperands();
10223   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10224   unsigned EltWidth = VT.getScalarSizeInBits();
10225 
10226   for (unsigned j = 0; j < NumOps; ++j) {
10227     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10228     SDValue OpVal = getOperand(i);
10229     unsigned BitPos = j * EltWidth;
10230 
10231     if (OpVal.isUndef())
10232       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10233     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10234       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10235     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10236       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10237     else
10238       return false;
10239   }
10240 
10241   // The build_vector is all constants or undefs. Find the smallest element
10242   // size that splats the vector.
10243   HasAnyUndefs = (SplatUndef != 0);
10244 
10245   // FIXME: This does not work for vectors with elements less than 8 bits.
10246   while (VecWidth > 8) {
10247     unsigned HalfSize = VecWidth / 2;
10248     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
10249     APInt LowValue = SplatValue.trunc(HalfSize);
10250     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
10251     APInt LowUndef = SplatUndef.trunc(HalfSize);
10252 
10253     // If the two halves do not match (ignoring undef bits), stop here.
10254     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10255         MinSplatBits > HalfSize)
10256       break;
10257 
10258     SplatValue = HighValue | LowValue;
10259     SplatUndef = HighUndef & LowUndef;
10260 
10261     VecWidth = HalfSize;
10262   }
10263 
10264   SplatBitSize = VecWidth;
10265   return true;
10266 }
10267 
getSplatValue(const APInt & DemandedElts,BitVector * UndefElements) const10268 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10269                                          BitVector *UndefElements) const {
10270   unsigned NumOps = getNumOperands();
10271   if (UndefElements) {
10272     UndefElements->clear();
10273     UndefElements->resize(NumOps);
10274   }
10275   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10276   if (!DemandedElts)
10277     return SDValue();
10278   SDValue Splatted;
10279   for (unsigned i = 0; i != NumOps; ++i) {
10280     if (!DemandedElts[i])
10281       continue;
10282     SDValue Op = getOperand(i);
10283     if (Op.isUndef()) {
10284       if (UndefElements)
10285         (*UndefElements)[i] = true;
10286     } else if (!Splatted) {
10287       Splatted = Op;
10288     } else if (Splatted != Op) {
10289       return SDValue();
10290     }
10291   }
10292 
10293   if (!Splatted) {
10294     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10295     assert(getOperand(FirstDemandedIdx).isUndef() &&
10296            "Can only have a splat without a constant for all undefs.");
10297     return getOperand(FirstDemandedIdx);
10298   }
10299 
10300   return Splatted;
10301 }
10302 
getSplatValue(BitVector * UndefElements) const10303 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10304   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10305   return getSplatValue(DemandedElts, UndefElements);
10306 }
10307 
getRepeatedSequence(const APInt & DemandedElts,SmallVectorImpl<SDValue> & Sequence,BitVector * UndefElements) const10308 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10309                                             SmallVectorImpl<SDValue> &Sequence,
10310                                             BitVector *UndefElements) const {
10311   unsigned NumOps = getNumOperands();
10312   Sequence.clear();
10313   if (UndefElements) {
10314     UndefElements->clear();
10315     UndefElements->resize(NumOps);
10316   }
10317   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10318   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10319     return false;
10320 
10321   // Set the undefs even if we don't find a sequence (like getSplatValue).
10322   if (UndefElements)
10323     for (unsigned I = 0; I != NumOps; ++I)
10324       if (DemandedElts[I] && getOperand(I).isUndef())
10325         (*UndefElements)[I] = true;
10326 
10327   // Iteratively widen the sequence length looking for repetitions.
10328   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10329     Sequence.append(SeqLen, SDValue());
10330     for (unsigned I = 0; I != NumOps; ++I) {
10331       if (!DemandedElts[I])
10332         continue;
10333       SDValue &SeqOp = Sequence[I % SeqLen];
10334       SDValue Op = getOperand(I);
10335       if (Op.isUndef()) {
10336         if (!SeqOp)
10337           SeqOp = Op;
10338         continue;
10339       }
10340       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10341         Sequence.clear();
10342         break;
10343       }
10344       SeqOp = Op;
10345     }
10346     if (!Sequence.empty())
10347       return true;
10348   }
10349 
10350   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10351   return false;
10352 }
10353 
getRepeatedSequence(SmallVectorImpl<SDValue> & Sequence,BitVector * UndefElements) const10354 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10355                                             BitVector *UndefElements) const {
10356   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10357   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10358 }
10359 
10360 ConstantSDNode *
getConstantSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const10361 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10362                                         BitVector *UndefElements) const {
10363   return dyn_cast_or_null<ConstantSDNode>(
10364       getSplatValue(DemandedElts, UndefElements));
10365 }
10366 
10367 ConstantSDNode *
getConstantSplatNode(BitVector * UndefElements) const10368 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10369   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10370 }
10371 
10372 ConstantFPSDNode *
getConstantFPSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const10373 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10374                                           BitVector *UndefElements) const {
10375   return dyn_cast_or_null<ConstantFPSDNode>(
10376       getSplatValue(DemandedElts, UndefElements));
10377 }
10378 
10379 ConstantFPSDNode *
getConstantFPSplatNode(BitVector * UndefElements) const10380 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10381   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10382 }
10383 
10384 int32_t
getConstantFPSplatPow2ToLog2Int(BitVector * UndefElements,uint32_t BitWidth) const10385 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10386                                                    uint32_t BitWidth) const {
10387   if (ConstantFPSDNode *CN =
10388           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10389     bool IsExact;
10390     APSInt IntVal(BitWidth);
10391     const APFloat &APF = CN->getValueAPF();
10392     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10393             APFloat::opOK ||
10394         !IsExact)
10395       return -1;
10396 
10397     return IntVal.exactLogBase2();
10398   }
10399   return -1;
10400 }
10401 
isConstant() const10402 bool BuildVectorSDNode::isConstant() const {
10403   for (const SDValue &Op : op_values()) {
10404     unsigned Opc = Op.getOpcode();
10405     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10406       return false;
10407   }
10408   return true;
10409 }
10410 
isSplatMask(const int * Mask,EVT VT)10411 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10412   // Find the first non-undef value in the shuffle mask.
10413   unsigned i, e;
10414   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10415     /* search */;
10416 
10417   // If all elements are undefined, this shuffle can be considered a splat
10418   // (although it should eventually get simplified away completely).
10419   if (i == e)
10420     return true;
10421 
10422   // Make sure all remaining elements are either undef or the same as the first
10423   // non-undef value.
10424   for (int Idx = Mask[i]; i != e; ++i)
10425     if (Mask[i] >= 0 && Mask[i] != Idx)
10426       return false;
10427   return true;
10428 }
10429 
10430 // Returns the SDNode if it is a constant integer BuildVector
10431 // or constant integer.
isConstantIntBuildVectorOrConstantInt(SDValue N) const10432 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
10433   if (isa<ConstantSDNode>(N))
10434     return N.getNode();
10435   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10436     return N.getNode();
10437   // Treat a GlobalAddress supporting constant offset folding as a
10438   // constant integer.
10439   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10440     if (GA->getOpcode() == ISD::GlobalAddress &&
10441         TLI->isOffsetFoldingLegal(GA))
10442       return GA;
10443   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
10444       isa<ConstantSDNode>(N.getOperand(0)))
10445     return N.getNode();
10446   return nullptr;
10447 }
10448 
10449 // Returns the SDNode if it is a constant float BuildVector
10450 // or constant float.
isConstantFPBuildVectorOrConstantFP(SDValue N) const10451 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
10452   if (isa<ConstantFPSDNode>(N))
10453     return N.getNode();
10454 
10455   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10456     return N.getNode();
10457 
10458   return nullptr;
10459 }
10460 
createOperands(SDNode * Node,ArrayRef<SDValue> Vals)10461 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10462   assert(!Node->OperandList && "Node already has operands");
10463   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10464          "too many operands to fit into SDNode");
10465   SDUse *Ops = OperandRecycler.allocate(
10466       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10467 
10468   bool IsDivergent = false;
10469   for (unsigned I = 0; I != Vals.size(); ++I) {
10470     Ops[I].setUser(Node);
10471     Ops[I].setInitial(Vals[I]);
10472     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10473       IsDivergent |= Ops[I].getNode()->isDivergent();
10474   }
10475   Node->NumOperands = Vals.size();
10476   Node->OperandList = Ops;
10477   if (!TLI->isSDNodeAlwaysUniform(Node)) {
10478     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10479     Node->SDNodeBits.IsDivergent = IsDivergent;
10480   }
10481   checkForCycles(Node);
10482 }
10483 
getTokenFactor(const SDLoc & DL,SmallVectorImpl<SDValue> & Vals)10484 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10485                                      SmallVectorImpl<SDValue> &Vals) {
10486   size_t Limit = SDNode::getMaxNumOperands();
10487   while (Vals.size() > Limit) {
10488     unsigned SliceIdx = Vals.size() - Limit;
10489     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10490     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10491     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10492     Vals.emplace_back(NewTF);
10493   }
10494   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10495 }
10496 
getNeutralElement(unsigned Opcode,const SDLoc & DL,EVT VT,SDNodeFlags Flags)10497 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
10498                                         EVT VT, SDNodeFlags Flags) {
10499   switch (Opcode) {
10500   default:
10501     return SDValue();
10502   case ISD::ADD:
10503   case ISD::OR:
10504   case ISD::XOR:
10505   case ISD::UMAX:
10506     return getConstant(0, DL, VT);
10507   case ISD::MUL:
10508     return getConstant(1, DL, VT);
10509   case ISD::AND:
10510   case ISD::UMIN:
10511     return getAllOnesConstant(DL, VT);
10512   case ISD::SMAX:
10513     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
10514   case ISD::SMIN:
10515     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
10516   case ISD::FADD:
10517     return getConstantFP(-0.0, DL, VT);
10518   case ISD::FMUL:
10519     return getConstantFP(1.0, DL, VT);
10520   case ISD::FMINNUM:
10521   case ISD::FMAXNUM: {
10522     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
10523     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
10524     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
10525                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
10526                         APFloat::getLargest(Semantics);
10527     if (Opcode == ISD::FMAXNUM)
10528       NeutralAF.changeSign();
10529 
10530     return getConstantFP(NeutralAF, DL, VT);
10531   }
10532   }
10533 }
10534 
10535 #ifndef NDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSetImpl<const SDNode * > & Visited,SmallPtrSetImpl<const SDNode * > & Checked,const llvm::SelectionDAG * DAG)10536 static void checkForCyclesHelper(const SDNode *N,
10537                                  SmallPtrSetImpl<const SDNode*> &Visited,
10538                                  SmallPtrSetImpl<const SDNode*> &Checked,
10539                                  const llvm::SelectionDAG *DAG) {
10540   // If this node has already been checked, don't check it again.
10541   if (Checked.count(N))
10542     return;
10543 
10544   // If a node has already been visited on this depth-first walk, reject it as
10545   // a cycle.
10546   if (!Visited.insert(N).second) {
10547     errs() << "Detected cycle in SelectionDAG\n";
10548     dbgs() << "Offending node:\n";
10549     N->dumprFull(DAG); dbgs() << "\n";
10550     abort();
10551   }
10552 
10553   for (const SDValue &Op : N->op_values())
10554     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10555 
10556   Checked.insert(N);
10557   Visited.erase(N);
10558 }
10559 #endif
10560 
checkForCycles(const llvm::SDNode * N,const llvm::SelectionDAG * DAG,bool force)10561 void llvm::checkForCycles(const llvm::SDNode *N,
10562                           const llvm::SelectionDAG *DAG,
10563                           bool force) {
10564 #ifndef NDEBUG
10565   bool check = force;
10566 #ifdef EXPENSIVE_CHECKS
10567   check = true;
10568 #endif  // EXPENSIVE_CHECKS
10569   if (check) {
10570     assert(N && "Checking nonexistent SDNode");
10571     SmallPtrSet<const SDNode*, 32> visited;
10572     SmallPtrSet<const SDNode*, 32> checked;
10573     checkForCyclesHelper(N, visited, checked, DAG);
10574   }
10575 #endif  // !NDEBUG
10576 }
10577 
checkForCycles(const llvm::SelectionDAG * DAG,bool force)10578 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10579   checkForCycles(DAG->getRoot().getNode(), DAG, force);
10580 }
10581