1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declarations of classes that represent "derived
10 // types".  These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
12 //
13 // The implementations of these classes live in the Type.cpp file.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/TypeSize.h"
27 #include <cassert>
28 #include <cstdint>
29 
30 namespace llvm {
31 
32 class Value;
33 class APInt;
34 class LLVMContext;
35 
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Int64Ty.
39 /// Integer representation type
40 class IntegerType : public Type {
41   friend class LLVMContextImpl;
42 
43 protected:
IntegerType(LLVMContext & C,unsigned NumBits)44   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45     setSubclassData(NumBits);
46   }
47 
48 public:
49   /// This enum is just used to hold constants we need for IntegerType.
50   enum {
51     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
52     MAX_INT_BITS = (1<<23)   ///< Maximum number of bits that can be specified
53       ///< Note that bit width is stored in the Type classes SubclassData field
54       ///< which has 24 bits. SelectionDAG type legalization can require a
55       ///< power of 2 IntegerType, so limit to the largest representable power
56       ///< of 2, 8388608.
57   };
58 
59   /// This static method is the primary way of constructing an IntegerType.
60   /// If an IntegerType with the same NumBits value was previously instantiated,
61   /// that instance will be returned. Otherwise a new one will be created. Only
62   /// one instance with a given NumBits value is ever created.
63   /// Get or create an IntegerType instance.
64   static IntegerType *get(LLVMContext &C, unsigned NumBits);
65 
66   /// Returns type twice as wide the input type.
getExtendedType()67   IntegerType *getExtendedType() const {
68     return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
69   }
70 
71   /// Get the number of bits in this IntegerType
getBitWidth()72   unsigned getBitWidth() const { return getSubclassData(); }
73 
74   /// Return a bitmask with ones set for all of the bits that can be set by an
75   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
getBitMask()76   uint64_t getBitMask() const {
77     return ~uint64_t(0UL) >> (64-getBitWidth());
78   }
79 
80   /// Return a uint64_t with just the most significant bit set (the sign bit, if
81   /// the value is treated as a signed number).
getSignBit()82   uint64_t getSignBit() const {
83     return 1ULL << (getBitWidth()-1);
84   }
85 
86   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
87   /// @returns a bit mask with ones set for all the bits of this type.
88   /// Get a bit mask for this type.
89   APInt getMask() const;
90 
91   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)92   static bool classof(const Type *T) {
93     return T->getTypeID() == IntegerTyID;
94   }
95 };
96 
getIntegerBitWidth()97 unsigned Type::getIntegerBitWidth() const {
98   return cast<IntegerType>(this)->getBitWidth();
99 }
100 
101 /// Class to represent function types
102 ///
103 class FunctionType : public Type {
104   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105 
106 public:
107   FunctionType(const FunctionType &) = delete;
108   FunctionType &operator=(const FunctionType &) = delete;
109 
110   /// This static method is the primary way of constructing a FunctionType.
111   static FunctionType *get(Type *Result,
112                            ArrayRef<Type*> Params, bool isVarArg);
113 
114   /// Create a FunctionType taking no parameters.
115   static FunctionType *get(Type *Result, bool isVarArg);
116 
117   /// Return true if the specified type is valid as a return type.
118   static bool isValidReturnType(Type *RetTy);
119 
120   /// Return true if the specified type is valid as an argument type.
121   static bool isValidArgumentType(Type *ArgTy);
122 
isVarArg()123   bool isVarArg() const { return getSubclassData()!=0; }
getReturnType()124   Type *getReturnType() const { return ContainedTys[0]; }
125 
126   using param_iterator = Type::subtype_iterator;
127 
param_begin()128   param_iterator param_begin() const { return ContainedTys + 1; }
param_end()129   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
params()130   ArrayRef<Type *> params() const {
131     return ArrayRef(param_begin(), param_end());
132   }
133 
134   /// Parameter type accessors.
getParamType(unsigned i)135   Type *getParamType(unsigned i) const {
136     assert(i < getNumParams() && "getParamType() out of range!");
137     return ContainedTys[i + 1];
138   }
139 
140   /// Return the number of fixed parameters this function type requires.
141   /// This does not consider varargs.
getNumParams()142   unsigned getNumParams() const { return NumContainedTys - 1; }
143 
144   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)145   static bool classof(const Type *T) {
146     return T->getTypeID() == FunctionTyID;
147   }
148 };
149 static_assert(alignof(FunctionType) >= alignof(Type *),
150               "Alignment sufficient for objects appended to FunctionType");
151 
isFunctionVarArg()152 bool Type::isFunctionVarArg() const {
153   return cast<FunctionType>(this)->isVarArg();
154 }
155 
getFunctionParamType(unsigned i)156 Type *Type::getFunctionParamType(unsigned i) const {
157   return cast<FunctionType>(this)->getParamType(i);
158 }
159 
getFunctionNumParams()160 unsigned Type::getFunctionNumParams() const {
161   return cast<FunctionType>(this)->getNumParams();
162 }
163 
164 /// A handy container for a FunctionType+Callee-pointer pair, which can be
165 /// passed around as a single entity. This assists in replacing the use of
166 /// PointerType::getElementType() to access the function's type, since that's
167 /// slated for removal as part of the [opaque pointer types] project.
168 class FunctionCallee {
169 public:
170   // Allow implicit conversion from types which have a getFunctionType member
171   // (e.g. Function and InlineAsm).
172   template <typename T, typename U = decltype(&T::getFunctionType)>
FunctionCallee(T * Fn)173   FunctionCallee(T *Fn)
174       : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
175 
FunctionCallee(FunctionType * FnTy,Value * Callee)176   FunctionCallee(FunctionType *FnTy, Value *Callee)
177       : FnTy(FnTy), Callee(Callee) {
178     assert((FnTy == nullptr) == (Callee == nullptr));
179   }
180 
FunctionCallee(std::nullptr_t)181   FunctionCallee(std::nullptr_t) {}
182 
183   FunctionCallee() = default;
184 
getFunctionType()185   FunctionType *getFunctionType() { return FnTy; }
186 
getCallee()187   Value *getCallee() { return Callee; }
188 
189   explicit operator bool() { return Callee; }
190 
191 private:
192   FunctionType *FnTy = nullptr;
193   Value *Callee = nullptr;
194 };
195 
196 /// Class to represent struct types. There are two different kinds of struct
197 /// types: Literal structs and Identified structs.
198 ///
199 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
200 /// always have a body when created.  You can get one of these by using one of
201 /// the StructType::get() forms.
202 ///
203 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
204 /// uniqued.  The names for identified structs are managed at the LLVMContext
205 /// level, so there can only be a single identified struct with a given name in
206 /// a particular LLVMContext.  Identified structs may also optionally be opaque
207 /// (have no body specified).  You get one of these by using one of the
208 /// StructType::create() forms.
209 ///
210 /// Independent of what kind of struct you have, the body of a struct type are
211 /// laid out in memory consecutively with the elements directly one after the
212 /// other (if the struct is packed) or (if not packed) with padding between the
213 /// elements as defined by DataLayout (which is required to match what the code
214 /// generator for a target expects).
215 ///
216 class StructType : public Type {
StructType(LLVMContext & C)217   StructType(LLVMContext &C) : Type(C, StructTyID) {}
218 
219   enum {
220     /// This is the contents of the SubClassData field.
221     SCDB_HasBody = 1,
222     SCDB_Packed = 2,
223     SCDB_IsLiteral = 4,
224     SCDB_IsSized = 8,
225     SCDB_ContainsScalableVector = 16,
226     SCDB_NotContainsScalableVector = 32
227   };
228 
229   /// For a named struct that actually has a name, this is a pointer to the
230   /// symbol table entry (maintained by LLVMContext) for the struct.
231   /// This is null if the type is an literal struct or if it is a identified
232   /// type that has an empty name.
233   void *SymbolTableEntry = nullptr;
234 
235 public:
236   StructType(const StructType &) = delete;
237   StructType &operator=(const StructType &) = delete;
238 
239   /// This creates an identified struct.
240   static StructType *create(LLVMContext &Context, StringRef Name);
241   static StructType *create(LLVMContext &Context);
242 
243   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
244                             bool isPacked = false);
245   static StructType *create(ArrayRef<Type *> Elements);
246   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
247                             StringRef Name, bool isPacked = false);
248   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
249   template <class... Tys>
250   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
create(StringRef Name,Type * elt1,Tys * ...elts)251   create(StringRef Name, Type *elt1, Tys *... elts) {
252     assert(elt1 && "Cannot create a struct type with no elements with this");
253     return create(ArrayRef<Type *>({elt1, elts...}), Name);
254   }
255 
256   /// This static method is the primary way to create a literal StructType.
257   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
258                          bool isPacked = false);
259 
260   /// Create an empty structure type.
261   static StructType *get(LLVMContext &Context, bool isPacked = false);
262 
263   /// This static method is a convenience method for creating structure types by
264   /// specifying the elements as arguments. Note that this method always returns
265   /// a non-packed struct, and requires at least one element type.
266   template <class... Tys>
267   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
get(Type * elt1,Tys * ...elts)268   get(Type *elt1, Tys *... elts) {
269     assert(elt1 && "Cannot create a struct type with no elements with this");
270     LLVMContext &Ctx = elt1->getContext();
271     return StructType::get(Ctx, ArrayRef<Type *>({elt1, elts...}));
272   }
273 
274   /// Return the type with the specified name, or null if there is none by that
275   /// name.
276   static StructType *getTypeByName(LLVMContext &C, StringRef Name);
277 
isPacked()278   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
279 
280   /// Return true if this type is uniqued by structural equivalence, false if it
281   /// is a struct definition.
isLiteral()282   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
283 
284   /// Return true if this is a type with an identity that has no body specified
285   /// yet. These prints as 'opaque' in .ll files.
isOpaque()286   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
287 
288   /// isSized - Return true if this is a sized type.
289   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
290 
291   /// Returns true if this struct contains a scalable vector.
292   bool
293   containsScalableVectorType(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
294 
295   /// Returns true if this struct contains homogeneous scalable vector types.
296   /// Note that the definition of homogeneous scalable vector type is not
297   /// recursive here. That means the following structure will return false
298   /// when calling this function.
299   /// {{<vscale x 2 x i32>, <vscale x 4 x i64>},
300   ///  {<vscale x 2 x i32>, <vscale x 4 x i64>}}
301   bool containsHomogeneousScalableVectorTypes() const;
302 
303   /// Return true if this is a named struct that has a non-empty name.
hasName()304   bool hasName() const { return SymbolTableEntry != nullptr; }
305 
306   /// Return the name for this struct type if it has an identity.
307   /// This may return an empty string for an unnamed struct type.  Do not call
308   /// this on an literal type.
309   StringRef getName() const;
310 
311   /// Change the name of this type to the specified name, or to a name with a
312   /// suffix if there is a collision. Do not call this on an literal type.
313   void setName(StringRef Name);
314 
315   /// Specify a body for an opaque identified type.
316   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
317 
318   template <typename... Tys>
319   std::enable_if_t<are_base_of<Type, Tys...>::value, void>
setBody(Type * elt1,Tys * ...elts)320   setBody(Type *elt1, Tys *... elts) {
321     assert(elt1 && "Cannot create a struct type with no elements with this");
322     setBody(ArrayRef<Type *>({elt1, elts...}));
323   }
324 
325   /// Return true if the specified type is valid as a element type.
326   static bool isValidElementType(Type *ElemTy);
327 
328   // Iterator access to the elements.
329   using element_iterator = Type::subtype_iterator;
330 
element_begin()331   element_iterator element_begin() const { return ContainedTys; }
element_end()332   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
elements()333   ArrayRef<Type *> elements() const {
334     return ArrayRef(element_begin(), element_end());
335   }
336 
337   /// Return true if this is layout identical to the specified struct.
338   bool isLayoutIdentical(StructType *Other) const;
339 
340   /// Random access to the elements
getNumElements()341   unsigned getNumElements() const { return NumContainedTys; }
getElementType(unsigned N)342   Type *getElementType(unsigned N) const {
343     assert(N < NumContainedTys && "Element number out of range!");
344     return ContainedTys[N];
345   }
346   /// Given an index value into the type, return the type of the element.
347   Type *getTypeAtIndex(const Value *V) const;
getTypeAtIndex(unsigned N)348   Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
349   bool indexValid(const Value *V) const;
indexValid(unsigned Idx)350   bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
351 
352   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)353   static bool classof(const Type *T) {
354     return T->getTypeID() == StructTyID;
355   }
356 };
357 
getStructName()358 StringRef Type::getStructName() const {
359   return cast<StructType>(this)->getName();
360 }
361 
getStructNumElements()362 unsigned Type::getStructNumElements() const {
363   return cast<StructType>(this)->getNumElements();
364 }
365 
getStructElementType(unsigned N)366 Type *Type::getStructElementType(unsigned N) const {
367   return cast<StructType>(this)->getElementType(N);
368 }
369 
370 /// Class to represent array types.
371 class ArrayType : public Type {
372   /// The element type of the array.
373   Type *ContainedType;
374   /// Number of elements in the array.
375   uint64_t NumElements;
376 
377   ArrayType(Type *ElType, uint64_t NumEl);
378 
379 public:
380   ArrayType(const ArrayType &) = delete;
381   ArrayType &operator=(const ArrayType &) = delete;
382 
getNumElements()383   uint64_t getNumElements() const { return NumElements; }
getElementType()384   Type *getElementType() const { return ContainedType; }
385 
386   /// This static method is the primary way to construct an ArrayType
387   static ArrayType *get(Type *ElementType, uint64_t NumElements);
388 
389   /// Return true if the specified type is valid as a element type.
390   static bool isValidElementType(Type *ElemTy);
391 
392   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)393   static bool classof(const Type *T) {
394     return T->getTypeID() == ArrayTyID;
395   }
396 };
397 
getArrayNumElements()398 uint64_t Type::getArrayNumElements() const {
399   return cast<ArrayType>(this)->getNumElements();
400 }
401 
402 /// Base class of all SIMD vector types
403 class VectorType : public Type {
404   /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
405   /// minimum number of elements of type Ty contained within the vector, and
406   /// 'vscale x' indicates that the total element count is an integer multiple
407   /// of 'n', where the multiple is either guaranteed to be one, or is
408   /// statically unknown at compile time.
409   ///
410   /// If the multiple is known to be 1, then the extra term is discarded in
411   /// textual IR:
412   ///
413   /// <4 x i32>          - a vector containing 4 i32s
414   /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
415   ///                      of 4 i32s
416 
417   /// The element type of the vector.
418   Type *ContainedType;
419 
420 protected:
421   /// The element quantity of this vector. The meaning of this value depends
422   /// on the type of vector:
423   /// - For FixedVectorType = <ElementQuantity x ty>, there are
424   ///   exactly ElementQuantity elements in this vector.
425   /// - For ScalableVectorType = <vscale x ElementQuantity x ty>,
426   ///   there are vscale * ElementQuantity elements in this vector, where
427   ///   vscale is a runtime-constant integer greater than 0.
428   const unsigned ElementQuantity;
429 
430   VectorType(Type *ElType, unsigned EQ, Type::TypeID TID);
431 
432 public:
433   VectorType(const VectorType &) = delete;
434   VectorType &operator=(const VectorType &) = delete;
435 
getElementType()436   Type *getElementType() const { return ContainedType; }
437 
438   /// This static method is the primary way to construct an VectorType.
439   static VectorType *get(Type *ElementType, ElementCount EC);
440 
get(Type * ElementType,unsigned NumElements,bool Scalable)441   static VectorType *get(Type *ElementType, unsigned NumElements,
442                          bool Scalable) {
443     return VectorType::get(ElementType,
444                            ElementCount::get(NumElements, Scalable));
445   }
446 
get(Type * ElementType,const VectorType * Other)447   static VectorType *get(Type *ElementType, const VectorType *Other) {
448     return VectorType::get(ElementType, Other->getElementCount());
449   }
450 
451   /// This static method gets a VectorType with the same number of elements as
452   /// the input type, and the element type is an integer type of the same width
453   /// as the input element type.
getInteger(VectorType * VTy)454   static VectorType *getInteger(VectorType *VTy) {
455     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
456     assert(EltBits && "Element size must be of a non-zero size");
457     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
458     return VectorType::get(EltTy, VTy->getElementCount());
459   }
460 
461   /// This static method is like getInteger except that the element types are
462   /// twice as wide as the elements in the input type.
getExtendedElementVectorType(VectorType * VTy)463   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
464     assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
465     auto *EltTy = cast<IntegerType>(VTy->getElementType());
466     return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
467   }
468 
469   // This static method gets a VectorType with the same number of elements as
470   // the input type, and the element type is an integer or float type which
471   // is half as wide as the elements in the input type.
getTruncatedElementVectorType(VectorType * VTy)472   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
473     Type *EltTy;
474     if (VTy->getElementType()->isFloatingPointTy()) {
475       switch(VTy->getElementType()->getTypeID()) {
476       case DoubleTyID:
477         EltTy = Type::getFloatTy(VTy->getContext());
478         break;
479       case FloatTyID:
480         EltTy = Type::getHalfTy(VTy->getContext());
481         break;
482       default:
483         llvm_unreachable("Cannot create narrower fp vector element type");
484       }
485     } else {
486       unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
487       assert((EltBits & 1) == 0 &&
488              "Cannot truncate vector element with odd bit-width");
489       EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
490     }
491     return VectorType::get(EltTy, VTy->getElementCount());
492   }
493 
494   // This static method returns a VectorType with a smaller number of elements
495   // of a larger type than the input element type. For example, a <16 x i8>
496   // subdivided twice would return <4 x i32>
getSubdividedVectorType(VectorType * VTy,int NumSubdivs)497   static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
498     for (int i = 0; i < NumSubdivs; ++i) {
499       VTy = VectorType::getDoubleElementsVectorType(VTy);
500       VTy = VectorType::getTruncatedElementVectorType(VTy);
501     }
502     return VTy;
503   }
504 
505   /// This static method returns a VectorType with half as many elements as the
506   /// input type and the same element type.
getHalfElementsVectorType(VectorType * VTy)507   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
508     auto EltCnt = VTy->getElementCount();
509     assert(EltCnt.isKnownEven() &&
510            "Cannot halve vector with odd number of elements.");
511     return VectorType::get(VTy->getElementType(),
512                            EltCnt.divideCoefficientBy(2));
513   }
514 
515   /// This static method returns a VectorType with twice as many elements as the
516   /// input type and the same element type.
getDoubleElementsVectorType(VectorType * VTy)517   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
518     auto EltCnt = VTy->getElementCount();
519     assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX &&
520            "Too many elements in vector");
521     return VectorType::get(VTy->getElementType(), EltCnt * 2);
522   }
523 
524   /// Return true if the specified type is valid as a element type.
525   static bool isValidElementType(Type *ElemTy);
526 
527   /// Return an ElementCount instance to represent the (possibly scalable)
528   /// number of elements in the vector.
529   inline ElementCount getElementCount() const;
530 
531   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)532   static bool classof(const Type *T) {
533     return T->getTypeID() == FixedVectorTyID ||
534            T->getTypeID() == ScalableVectorTyID;
535   }
536 };
537 
538 /// Class to represent fixed width SIMD vectors
539 class FixedVectorType : public VectorType {
540 protected:
FixedVectorType(Type * ElTy,unsigned NumElts)541   FixedVectorType(Type *ElTy, unsigned NumElts)
542       : VectorType(ElTy, NumElts, FixedVectorTyID) {}
543 
544 public:
545   static FixedVectorType *get(Type *ElementType, unsigned NumElts);
546 
get(Type * ElementType,const FixedVectorType * FVTy)547   static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) {
548     return get(ElementType, FVTy->getNumElements());
549   }
550 
getInteger(FixedVectorType * VTy)551   static FixedVectorType *getInteger(FixedVectorType *VTy) {
552     return cast<FixedVectorType>(VectorType::getInteger(VTy));
553   }
554 
getExtendedElementVectorType(FixedVectorType * VTy)555   static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) {
556     return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy));
557   }
558 
getTruncatedElementVectorType(FixedVectorType * VTy)559   static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) {
560     return cast<FixedVectorType>(
561         VectorType::getTruncatedElementVectorType(VTy));
562   }
563 
getSubdividedVectorType(FixedVectorType * VTy,int NumSubdivs)564   static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy,
565                                                   int NumSubdivs) {
566     return cast<FixedVectorType>(
567         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
568   }
569 
getHalfElementsVectorType(FixedVectorType * VTy)570   static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) {
571     return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy));
572   }
573 
getDoubleElementsVectorType(FixedVectorType * VTy)574   static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) {
575     return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy));
576   }
577 
classof(const Type * T)578   static bool classof(const Type *T) {
579     return T->getTypeID() == FixedVectorTyID;
580   }
581 
getNumElements()582   unsigned getNumElements() const { return ElementQuantity; }
583 };
584 
585 /// Class to represent scalable SIMD vectors
586 class ScalableVectorType : public VectorType {
587 protected:
ScalableVectorType(Type * ElTy,unsigned MinNumElts)588   ScalableVectorType(Type *ElTy, unsigned MinNumElts)
589       : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {}
590 
591 public:
592   static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts);
593 
get(Type * ElementType,const ScalableVectorType * SVTy)594   static ScalableVectorType *get(Type *ElementType,
595                                  const ScalableVectorType *SVTy) {
596     return get(ElementType, SVTy->getMinNumElements());
597   }
598 
getInteger(ScalableVectorType * VTy)599   static ScalableVectorType *getInteger(ScalableVectorType *VTy) {
600     return cast<ScalableVectorType>(VectorType::getInteger(VTy));
601   }
602 
603   static ScalableVectorType *
getExtendedElementVectorType(ScalableVectorType * VTy)604   getExtendedElementVectorType(ScalableVectorType *VTy) {
605     return cast<ScalableVectorType>(
606         VectorType::getExtendedElementVectorType(VTy));
607   }
608 
609   static ScalableVectorType *
getTruncatedElementVectorType(ScalableVectorType * VTy)610   getTruncatedElementVectorType(ScalableVectorType *VTy) {
611     return cast<ScalableVectorType>(
612         VectorType::getTruncatedElementVectorType(VTy));
613   }
614 
getSubdividedVectorType(ScalableVectorType * VTy,int NumSubdivs)615   static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy,
616                                                      int NumSubdivs) {
617     return cast<ScalableVectorType>(
618         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
619   }
620 
621   static ScalableVectorType *
getHalfElementsVectorType(ScalableVectorType * VTy)622   getHalfElementsVectorType(ScalableVectorType *VTy) {
623     return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy));
624   }
625 
626   static ScalableVectorType *
getDoubleElementsVectorType(ScalableVectorType * VTy)627   getDoubleElementsVectorType(ScalableVectorType *VTy) {
628     return cast<ScalableVectorType>(
629         VectorType::getDoubleElementsVectorType(VTy));
630   }
631 
632   /// Get the minimum number of elements in this vector. The actual number of
633   /// elements in the vector is an integer multiple of this value.
getMinNumElements()634   uint64_t getMinNumElements() const { return ElementQuantity; }
635 
classof(const Type * T)636   static bool classof(const Type *T) {
637     return T->getTypeID() == ScalableVectorTyID;
638   }
639 };
640 
getElementCount()641 inline ElementCount VectorType::getElementCount() const {
642   return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this));
643 }
644 
645 /// Class to represent pointers.
646 class PointerType : public Type {
647   explicit PointerType(LLVMContext &C, unsigned AddrSpace);
648 
649 public:
650   PointerType(const PointerType &) = delete;
651   PointerType &operator=(const PointerType &) = delete;
652 
653   /// This constructs a pointer to an object of the specified type in a numbered
654   /// address space.
655   static PointerType *get(Type *ElementType, unsigned AddressSpace);
656   /// This constructs an opaque pointer to an object in a numbered address
657   /// space.
658   static PointerType *get(LLVMContext &C, unsigned AddressSpace);
659 
660   /// This constructs a pointer to an object of the specified type in the
661   /// default address space (address space zero).
getUnqual(Type * ElementType)662   static PointerType *getUnqual(Type *ElementType) {
663     return PointerType::get(ElementType, 0);
664   }
665 
666   /// This constructs an opaque pointer to an object in the
667   /// default address space (address space zero).
getUnqual(LLVMContext & C)668   static PointerType *getUnqual(LLVMContext &C) {
669     return PointerType::get(C, 0);
670   }
671 
672   /// Return true if the specified type is valid as a element type.
673   static bool isValidElementType(Type *ElemTy);
674 
675   /// Return true if we can load or store from a pointer to this type.
676   static bool isLoadableOrStorableType(Type *ElemTy);
677 
678   /// Return the address space of the Pointer type.
getAddressSpace()679   inline unsigned getAddressSpace() const { return getSubclassData(); }
680 
681   /// Implement support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)682   static bool classof(const Type *T) {
683     return T->getTypeID() == PointerTyID;
684   }
685 };
686 
getExtendedType()687 Type *Type::getExtendedType() const {
688   assert(
689       isIntOrIntVectorTy() &&
690       "Original type expected to be a vector of integers or a scalar integer.");
691   if (auto *VTy = dyn_cast<VectorType>(this))
692     return VectorType::getExtendedElementVectorType(
693         const_cast<VectorType *>(VTy));
694   return cast<IntegerType>(this)->getExtendedType();
695 }
696 
getWithNewType(Type * EltTy)697 Type *Type::getWithNewType(Type *EltTy) const {
698   if (auto *VTy = dyn_cast<VectorType>(this))
699     return VectorType::get(EltTy, VTy->getElementCount());
700   return EltTy;
701 }
702 
getWithNewBitWidth(unsigned NewBitWidth)703 Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
704   assert(
705       isIntOrIntVectorTy() &&
706       "Original type expected to be a vector of integers or a scalar integer.");
707   return getWithNewType(getIntNTy(getContext(), NewBitWidth));
708 }
709 
getPointerAddressSpace()710 unsigned Type::getPointerAddressSpace() const {
711   return cast<PointerType>(getScalarType())->getAddressSpace();
712 }
713 
714 /// Class to represent target extensions types, which are generally
715 /// unintrospectable from target-independent optimizations.
716 ///
717 /// Target extension types have a string name, and optionally have type and/or
718 /// integer parameters. The exact meaning of any parameters is dependent on the
719 /// target.
720 class TargetExtType : public Type {
721   TargetExtType(LLVMContext &C, StringRef Name, ArrayRef<Type *> Types,
722                 ArrayRef<unsigned> Ints);
723 
724   // These strings are ultimately owned by the context.
725   StringRef Name;
726   unsigned *IntParams;
727 
728 public:
729   TargetExtType(const TargetExtType &) = delete;
730   TargetExtType &operator=(const TargetExtType &) = delete;
731 
732   /// Return a target extension type having the specified name and optional
733   /// type and integer parameters.
734   static TargetExtType *get(LLVMContext &Context, StringRef Name,
735                             ArrayRef<Type *> Types = std::nullopt,
736                             ArrayRef<unsigned> Ints = std::nullopt);
737 
738   /// Return the name for this target extension type. Two distinct target
739   /// extension types may have the same name if their type or integer parameters
740   /// differ.
getName()741   StringRef getName() const { return Name; }
742 
743   /// Return the type parameters for this particular target extension type. If
744   /// there are no parameters, an empty array is returned.
type_params()745   ArrayRef<Type *> type_params() const {
746     return ArrayRef(type_param_begin(), type_param_end());
747   }
748 
749   using type_param_iterator = Type::subtype_iterator;
type_param_begin()750   type_param_iterator type_param_begin() const { return ContainedTys; }
type_param_end()751   type_param_iterator type_param_end() const {
752     return &ContainedTys[NumContainedTys];
753   }
754 
getTypeParameter(unsigned i)755   Type *getTypeParameter(unsigned i) const { return getContainedType(i); }
getNumTypeParameters()756   unsigned getNumTypeParameters() const { return getNumContainedTypes(); }
757 
758   /// Return the integer parameters for this particular target extension type.
759   /// If there are no parameters, an empty array is returned.
int_params()760   ArrayRef<unsigned> int_params() const {
761     return ArrayRef(IntParams, getNumIntParameters());
762   }
763 
getIntParameter(unsigned i)764   unsigned getIntParameter(unsigned i) const { return IntParams[i]; }
getNumIntParameters()765   unsigned getNumIntParameters() const { return getSubclassData(); }
766 
767   enum Property {
768     /// zeroinitializer is valid for this target extension type.
769     HasZeroInit = 1U << 0,
770     /// This type may be used as the value type of a global variable.
771     CanBeGlobal = 1U << 1,
772   };
773 
774   /// Returns true if the target extension type contains the given property.
775   bool hasProperty(Property Prop) const;
776 
777   /// Returns an underlying layout type for the target extension type. This
778   /// type can be used to query size and alignment information, if it is
779   /// appropriate (although note that the layout type may also be void). It is
780   /// not legal to bitcast between this type and the layout type, however.
781   Type *getLayoutType() const;
782 
783   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Type * T)784   static bool classof(const Type *T) { return T->getTypeID() == TargetExtTyID; }
785 };
786 
getTargetExtName()787 StringRef Type::getTargetExtName() const {
788   return cast<TargetExtType>(this)->getName();
789 }
790 
791 } // end namespace llvm
792 
793 #endif // LLVM_IR_DERIVEDTYPES_H
794