1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PPC implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MCTargetDesc/PPCPredicates.h"
14 #include "PPCFrameLowering.h"
15 #include "PPCInstrBuilder.h"
16 #include "PPCInstrInfo.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterScavenging.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/Target/TargetOptions.h"
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "framelowering"
33 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
34 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
35 STATISTIC(NumPrologProbed, "Number of prologues probed");
36 
37 static cl::opt<bool>
38 EnablePEVectorSpills("ppc-enable-pe-vector-spills",
39                      cl::desc("Enable spills in prologue to vector registers."),
40                      cl::init(false), cl::Hidden);
41 
computeReturnSaveOffset(const PPCSubtarget & STI)42 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
43   if (STI.isAIXABI())
44     return STI.isPPC64() ? 16 : 8;
45   // SVR4 ABI:
46   return STI.isPPC64() ? 16 : 4;
47 }
48 
computeTOCSaveOffset(const PPCSubtarget & STI)49 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
50   if (STI.isAIXABI())
51     return STI.isPPC64() ? 40 : 20;
52   return STI.isELFv2ABI() ? 24 : 40;
53 }
54 
computeFramePointerSaveOffset(const PPCSubtarget & STI)55 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
56   // First slot in the general register save area.
57   return STI.isPPC64() ? -8U : -4U;
58 }
59 
computeLinkageSize(const PPCSubtarget & STI)60 static unsigned computeLinkageSize(const PPCSubtarget &STI) {
61   if (STI.isAIXABI() || STI.isPPC64())
62     return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
63 
64   // 32-bit SVR4 ABI:
65   return 8;
66 }
67 
computeBasePointerSaveOffset(const PPCSubtarget & STI)68 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
69   // Third slot in the general purpose register save area.
70   if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
71     return -12U;
72 
73   // Second slot in the general purpose register save area.
74   return STI.isPPC64() ? -16U : -8U;
75 }
76 
computeCRSaveOffset(const PPCSubtarget & STI)77 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
78   return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
79 }
80 
PPCFrameLowering(const PPCSubtarget & STI)81 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
82     : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
83                           STI.getPlatformStackAlignment(), 0),
84       Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
85       TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
86       FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
87       LinkageSize(computeLinkageSize(Subtarget)),
88       BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
89       CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
90 
91 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
getCalleeSavedSpillSlots(unsigned & NumEntries) const92 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
93     unsigned &NumEntries) const {
94 
95 // Floating-point register save area offsets.
96 #define CALLEE_SAVED_FPRS \
97       {PPC::F31, -8},     \
98       {PPC::F30, -16},    \
99       {PPC::F29, -24},    \
100       {PPC::F28, -32},    \
101       {PPC::F27, -40},    \
102       {PPC::F26, -48},    \
103       {PPC::F25, -56},    \
104       {PPC::F24, -64},    \
105       {PPC::F23, -72},    \
106       {PPC::F22, -80},    \
107       {PPC::F21, -88},    \
108       {PPC::F20, -96},    \
109       {PPC::F19, -104},   \
110       {PPC::F18, -112},   \
111       {PPC::F17, -120},   \
112       {PPC::F16, -128},   \
113       {PPC::F15, -136},   \
114       {PPC::F14, -144}
115 
116 // 32-bit general purpose register save area offsets shared by ELF and
117 // AIX. AIX has an extra CSR with r13.
118 #define CALLEE_SAVED_GPRS32 \
119       {PPC::R31, -4},       \
120       {PPC::R30, -8},       \
121       {PPC::R29, -12},      \
122       {PPC::R28, -16},      \
123       {PPC::R27, -20},      \
124       {PPC::R26, -24},      \
125       {PPC::R25, -28},      \
126       {PPC::R24, -32},      \
127       {PPC::R23, -36},      \
128       {PPC::R22, -40},      \
129       {PPC::R21, -44},      \
130       {PPC::R20, -48},      \
131       {PPC::R19, -52},      \
132       {PPC::R18, -56},      \
133       {PPC::R17, -60},      \
134       {PPC::R16, -64},      \
135       {PPC::R15, -68},      \
136       {PPC::R14, -72}
137 
138 // 64-bit general purpose register save area offsets.
139 #define CALLEE_SAVED_GPRS64 \
140       {PPC::X31, -8},       \
141       {PPC::X30, -16},      \
142       {PPC::X29, -24},      \
143       {PPC::X28, -32},      \
144       {PPC::X27, -40},      \
145       {PPC::X26, -48},      \
146       {PPC::X25, -56},      \
147       {PPC::X24, -64},      \
148       {PPC::X23, -72},      \
149       {PPC::X22, -80},      \
150       {PPC::X21, -88},      \
151       {PPC::X20, -96},      \
152       {PPC::X19, -104},     \
153       {PPC::X18, -112},     \
154       {PPC::X17, -120},     \
155       {PPC::X16, -128},     \
156       {PPC::X15, -136},     \
157       {PPC::X14, -144}
158 
159 // Vector register save area offsets.
160 #define CALLEE_SAVED_VRS \
161       {PPC::V31, -16},   \
162       {PPC::V30, -32},   \
163       {PPC::V29, -48},   \
164       {PPC::V28, -64},   \
165       {PPC::V27, -80},   \
166       {PPC::V26, -96},   \
167       {PPC::V25, -112},  \
168       {PPC::V24, -128},  \
169       {PPC::V23, -144},  \
170       {PPC::V22, -160},  \
171       {PPC::V21, -176},  \
172       {PPC::V20, -192}
173 
174   // Note that the offsets here overlap, but this is fixed up in
175   // processFunctionBeforeFrameFinalized.
176 
177   static const SpillSlot ELFOffsets32[] = {
178       CALLEE_SAVED_FPRS,
179       CALLEE_SAVED_GPRS32,
180 
181       // CR save area offset.  We map each of the nonvolatile CR fields
182       // to the slot for CR2, which is the first of the nonvolatile CR
183       // fields to be assigned, so that we only allocate one save slot.
184       // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
185       {PPC::CR2, -4},
186 
187       // VRSAVE save area offset.
188       {PPC::VRSAVE, -4},
189 
190       CALLEE_SAVED_VRS,
191 
192       // SPE register save area (overlaps Vector save area).
193       {PPC::S31, -8},
194       {PPC::S30, -16},
195       {PPC::S29, -24},
196       {PPC::S28, -32},
197       {PPC::S27, -40},
198       {PPC::S26, -48},
199       {PPC::S25, -56},
200       {PPC::S24, -64},
201       {PPC::S23, -72},
202       {PPC::S22, -80},
203       {PPC::S21, -88},
204       {PPC::S20, -96},
205       {PPC::S19, -104},
206       {PPC::S18, -112},
207       {PPC::S17, -120},
208       {PPC::S16, -128},
209       {PPC::S15, -136},
210       {PPC::S14, -144}};
211 
212   static const SpillSlot ELFOffsets64[] = {
213       CALLEE_SAVED_FPRS,
214       CALLEE_SAVED_GPRS64,
215 
216       // VRSAVE save area offset.
217       {PPC::VRSAVE, -4},
218       CALLEE_SAVED_VRS
219   };
220 
221   static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
222                                            CALLEE_SAVED_GPRS32,
223                                            // Add AIX's extra CSR.
224                                            {PPC::R13, -76},
225                                            CALLEE_SAVED_VRS};
226 
227   static const SpillSlot AIXOffsets64[] = {
228       CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
229 
230   if (Subtarget.is64BitELFABI()) {
231     NumEntries = array_lengthof(ELFOffsets64);
232     return ELFOffsets64;
233   }
234 
235   if (Subtarget.is32BitELFABI()) {
236     NumEntries = array_lengthof(ELFOffsets32);
237     return ELFOffsets32;
238   }
239 
240   assert(Subtarget.isAIXABI() && "Unexpected ABI.");
241 
242   if (Subtarget.isPPC64()) {
243     NumEntries = array_lengthof(AIXOffsets64);
244     return AIXOffsets64;
245   }
246 
247   NumEntries = array_lengthof(AIXOffsets32);
248   return AIXOffsets32;
249 }
250 
spillsCR(const MachineFunction & MF)251 static bool spillsCR(const MachineFunction &MF) {
252   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
253   return FuncInfo->isCRSpilled();
254 }
255 
hasSpills(const MachineFunction & MF)256 static bool hasSpills(const MachineFunction &MF) {
257   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
258   return FuncInfo->hasSpills();
259 }
260 
hasNonRISpills(const MachineFunction & MF)261 static bool hasNonRISpills(const MachineFunction &MF) {
262   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
263   return FuncInfo->hasNonRISpills();
264 }
265 
266 /// MustSaveLR - Return true if this function requires that we save the LR
267 /// register onto the stack in the prolog and restore it in the epilog of the
268 /// function.
MustSaveLR(const MachineFunction & MF,unsigned LR)269 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
270   const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
271 
272   // We need a save/restore of LR if there is any def of LR (which is
273   // defined by calls, including the PIC setup sequence), or if there is
274   // some use of the LR stack slot (e.g. for builtin_return_address).
275   // (LR comes in 32 and 64 bit versions.)
276   MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
277   return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
278 }
279 
280 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
281 /// call frame size. Update the MachineFunction object with the stack size.
282 unsigned
determineFrameLayoutAndUpdate(MachineFunction & MF,bool UseEstimate) const283 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
284                                                 bool UseEstimate) const {
285   unsigned NewMaxCallFrameSize = 0;
286   unsigned FrameSize = determineFrameLayout(MF, UseEstimate,
287                                             &NewMaxCallFrameSize);
288   MF.getFrameInfo().setStackSize(FrameSize);
289   MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
290   return FrameSize;
291 }
292 
293 /// determineFrameLayout - Determine the size of the frame and maximum call
294 /// frame size.
295 unsigned
determineFrameLayout(const MachineFunction & MF,bool UseEstimate,unsigned * NewMaxCallFrameSize) const296 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
297                                        bool UseEstimate,
298                                        unsigned *NewMaxCallFrameSize) const {
299   const MachineFrameInfo &MFI = MF.getFrameInfo();
300   const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
301 
302   // Get the number of bytes to allocate from the FrameInfo
303   unsigned FrameSize =
304     UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
305 
306   // Get stack alignments. The frame must be aligned to the greatest of these:
307   Align TargetAlign = getStackAlign(); // alignment required per the ABI
308   Align MaxAlign = MFI.getMaxAlign();  // algmt required by data in frame
309   Align Alignment = std::max(TargetAlign, MaxAlign);
310 
311   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
312 
313   unsigned LR = RegInfo->getRARegister();
314   bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
315   bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
316                        !MFI.adjustsStack() &&       // No calls.
317                        !MustSaveLR(MF, LR) &&       // No need to save LR.
318                        !FI->mustSaveTOC() &&        // No need to save TOC.
319                        !RegInfo->hasBasePointer(MF); // No special alignment.
320 
321   // Note: for PPC32 SVR4ABI, we can still generate stackless
322   // code if all local vars are reg-allocated.
323   bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
324 
325   // Check whether we can skip adjusting the stack pointer (by using red zone)
326   if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
327     // No need for frame
328     return 0;
329   }
330 
331   // Get the maximum call frame size of all the calls.
332   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
333 
334   // Maximum call frame needs to be at least big enough for linkage area.
335   unsigned minCallFrameSize = getLinkageSize();
336   maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
337 
338   // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
339   // that allocations will be aligned.
340   if (MFI.hasVarSizedObjects())
341     maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
342 
343   // Update the new max call frame size if the caller passes in a valid pointer.
344   if (NewMaxCallFrameSize)
345     *NewMaxCallFrameSize = maxCallFrameSize;
346 
347   // Include call frame size in total.
348   FrameSize += maxCallFrameSize;
349 
350   // Make sure the frame is aligned.
351   FrameSize = alignTo(FrameSize, Alignment);
352 
353   return FrameSize;
354 }
355 
356 // hasFP - Return true if the specified function actually has a dedicated frame
357 // pointer register.
hasFP(const MachineFunction & MF) const358 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
359   const MachineFrameInfo &MFI = MF.getFrameInfo();
360   // FIXME: This is pretty much broken by design: hasFP() might be called really
361   // early, before the stack layout was calculated and thus hasFP() might return
362   // true or false here depending on the time of call.
363   return (MFI.getStackSize()) && needsFP(MF);
364 }
365 
366 // needsFP - Return true if the specified function should have a dedicated frame
367 // pointer register.  This is true if the function has variable sized allocas or
368 // if frame pointer elimination is disabled.
needsFP(const MachineFunction & MF) const369 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
370   const MachineFrameInfo &MFI = MF.getFrameInfo();
371 
372   // Naked functions have no stack frame pushed, so we don't have a frame
373   // pointer.
374   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
375     return false;
376 
377   return MF.getTarget().Options.DisableFramePointerElim(MF) ||
378          MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
379          MF.exposesReturnsTwice() ||
380          (MF.getTarget().Options.GuaranteedTailCallOpt &&
381           MF.getInfo<PPCFunctionInfo>()->hasFastCall());
382 }
383 
replaceFPWithRealFP(MachineFunction & MF) const384 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
385   bool is31 = needsFP(MF);
386   unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
387   unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
388 
389   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
390   bool HasBP = RegInfo->hasBasePointer(MF);
391   unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
392   unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
393 
394   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
395        BI != BE; ++BI)
396     for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) {
397       --MBBI;
398       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
399         MachineOperand &MO = MBBI->getOperand(I);
400         if (!MO.isReg())
401           continue;
402 
403         switch (MO.getReg()) {
404         case PPC::FP:
405           MO.setReg(FPReg);
406           break;
407         case PPC::FP8:
408           MO.setReg(FP8Reg);
409           break;
410         case PPC::BP:
411           MO.setReg(BPReg);
412           break;
413         case PPC::BP8:
414           MO.setReg(BP8Reg);
415           break;
416 
417         }
418       }
419     }
420 }
421 
422 /*  This function will do the following:
423     - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
424       respectively (defaults recommended by the ABI) and return true
425     - If MBB is not an entry block, initialize the register scavenger and look
426       for available registers.
427     - If the defaults (R0/R12) are available, return true
428     - If TwoUniqueRegsRequired is set to true, it looks for two unique
429       registers. Otherwise, look for a single available register.
430       - If the required registers are found, set SR1 and SR2 and return true.
431       - If the required registers are not found, set SR2 or both SR1 and SR2 to
432         PPC::NoRegister and return false.
433 
434     Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
435     is not set, this function will attempt to find two different registers, but
436     still return true if only one register is available (and set SR1 == SR2).
437 */
438 bool
findScratchRegister(MachineBasicBlock * MBB,bool UseAtEnd,bool TwoUniqueRegsRequired,Register * SR1,Register * SR2) const439 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
440                                       bool UseAtEnd,
441                                       bool TwoUniqueRegsRequired,
442                                       Register *SR1,
443                                       Register *SR2) const {
444   RegScavenger RS;
445   Register R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
446   Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
447 
448   // Set the defaults for the two scratch registers.
449   if (SR1)
450     *SR1 = R0;
451 
452   if (SR2) {
453     assert (SR1 && "Asking for the second scratch register but not the first?");
454     *SR2 = R12;
455   }
456 
457   // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
458   if ((UseAtEnd && MBB->isReturnBlock()) ||
459       (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
460     return true;
461 
462   RS.enterBasicBlock(*MBB);
463 
464   if (UseAtEnd && !MBB->empty()) {
465     // The scratch register will be used at the end of the block, so must
466     // consider all registers used within the block
467 
468     MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
469     // If no terminator, back iterator up to previous instruction.
470     if (MBBI == MBB->end())
471       MBBI = std::prev(MBBI);
472 
473     if (MBBI != MBB->begin())
474       RS.forward(MBBI);
475   }
476 
477   // If the two registers are available, we're all good.
478   // Note that we only return here if both R0 and R12 are available because
479   // although the function may not require two unique registers, it may benefit
480   // from having two so we should try to provide them.
481   if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
482     return true;
483 
484   // Get the list of callee-saved registers for the target.
485   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
486   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
487 
488   // Get all the available registers in the block.
489   BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
490                                      &PPC::GPRCRegClass);
491 
492   // We shouldn't use callee-saved registers as scratch registers as they may be
493   // available when looking for a candidate block for shrink wrapping but not
494   // available when the actual prologue/epilogue is being emitted because they
495   // were added as live-in to the prologue block by PrologueEpilogueInserter.
496   for (int i = 0; CSRegs[i]; ++i)
497     BV.reset(CSRegs[i]);
498 
499   // Set the first scratch register to the first available one.
500   if (SR1) {
501     int FirstScratchReg = BV.find_first();
502     *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
503   }
504 
505   // If there is another one available, set the second scratch register to that.
506   // Otherwise, set it to either PPC::NoRegister if this function requires two
507   // or to whatever SR1 is set to if this function doesn't require two.
508   if (SR2) {
509     int SecondScratchReg = BV.find_next(*SR1);
510     if (SecondScratchReg != -1)
511       *SR2 = SecondScratchReg;
512     else
513       *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
514   }
515 
516   // Now that we've done our best to provide both registers, double check
517   // whether we were unable to provide enough.
518   if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
519     return false;
520 
521   return true;
522 }
523 
524 // We need a scratch register for spilling LR and for spilling CR. By default,
525 // we use two scratch registers to hide latency. However, if only one scratch
526 // register is available, we can adjust for that by not overlapping the spill
527 // code. However, if we need to realign the stack (i.e. have a base pointer)
528 // and the stack frame is large, we need two scratch registers.
529 // Also, stack probe requires two scratch registers, one for old sp, one for
530 // large frame and large probe size.
531 bool
twoUniqueScratchRegsRequired(MachineBasicBlock * MBB) const532 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
533   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
534   MachineFunction &MF = *(MBB->getParent());
535   bool HasBP = RegInfo->hasBasePointer(MF);
536   unsigned FrameSize = determineFrameLayout(MF);
537   int NegFrameSize = -FrameSize;
538   bool IsLargeFrame = !isInt<16>(NegFrameSize);
539   MachineFrameInfo &MFI = MF.getFrameInfo();
540   Align MaxAlign = MFI.getMaxAlign();
541   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
542   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
543 
544   return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
545          TLI.hasInlineStackProbe(MF);
546 }
547 
canUseAsPrologue(const MachineBasicBlock & MBB) const548 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
549   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
550 
551   return findScratchRegister(TmpMBB, false,
552                              twoUniqueScratchRegsRequired(TmpMBB));
553 }
554 
canUseAsEpilogue(const MachineBasicBlock & MBB) const555 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
556   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
557 
558   return findScratchRegister(TmpMBB, true);
559 }
560 
stackUpdateCanBeMoved(MachineFunction & MF) const561 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
562   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
563   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
564 
565   // Abort if there is no register info or function info.
566   if (!RegInfo || !FI)
567     return false;
568 
569   // Only move the stack update on ELFv2 ABI and PPC64.
570   if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
571     return false;
572 
573   // Check the frame size first and return false if it does not fit the
574   // requirements.
575   // We need a non-zero frame size as well as a frame that will fit in the red
576   // zone. This is because by moving the stack pointer update we are now storing
577   // to the red zone until the stack pointer is updated. If we get an interrupt
578   // inside the prologue but before the stack update we now have a number of
579   // stores to the red zone and those stores must all fit.
580   MachineFrameInfo &MFI = MF.getFrameInfo();
581   unsigned FrameSize = MFI.getStackSize();
582   if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
583     return false;
584 
585   // Frame pointers and base pointers complicate matters so don't do anything
586   // if we have them. For example having a frame pointer will sometimes require
587   // a copy of r1 into r31 and that makes keeping track of updates to r1 more
588   // difficult. Similar situation exists with setjmp.
589   if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
590     return false;
591 
592   // Calls to fast_cc functions use different rules for passing parameters on
593   // the stack from the ABI and using PIC base in the function imposes
594   // similar restrictions to using the base pointer. It is not generally safe
595   // to move the stack pointer update in these situations.
596   if (FI->hasFastCall() || FI->usesPICBase())
597     return false;
598 
599   // Finally we can move the stack update if we do not require register
600   // scavenging. Register scavenging can introduce more spills and so
601   // may make the frame size larger than we have computed.
602   return !RegInfo->requiresFrameIndexScavenging(MF);
603 }
604 
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const605 void PPCFrameLowering::emitPrologue(MachineFunction &MF,
606                                     MachineBasicBlock &MBB) const {
607   MachineBasicBlock::iterator MBBI = MBB.begin();
608   MachineFrameInfo &MFI = MF.getFrameInfo();
609   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
610   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
611   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
612 
613   MachineModuleInfo &MMI = MF.getMMI();
614   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
615   DebugLoc dl;
616   // AIX assembler does not support cfi directives.
617   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
618 
619   // Get processor type.
620   bool isPPC64 = Subtarget.isPPC64();
621   // Get the ABI.
622   bool isSVR4ABI = Subtarget.isSVR4ABI();
623   bool isELFv2ABI = Subtarget.isELFv2ABI();
624   assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
625 
626   // Work out frame sizes.
627   unsigned FrameSize = determineFrameLayoutAndUpdate(MF);
628   int NegFrameSize = -FrameSize;
629   if (!isInt<32>(NegFrameSize))
630     llvm_unreachable("Unhandled stack size!");
631 
632   if (MFI.isFrameAddressTaken())
633     replaceFPWithRealFP(MF);
634 
635   // Check if the link register (LR) must be saved.
636   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
637   bool MustSaveLR = FI->mustSaveLR();
638   bool MustSaveTOC = FI->mustSaveTOC();
639   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
640   bool MustSaveCR = !MustSaveCRs.empty();
641   // Do we have a frame pointer and/or base pointer for this function?
642   bool HasFP = hasFP(MF);
643   bool HasBP = RegInfo->hasBasePointer(MF);
644   bool HasRedZone = isPPC64 || !isSVR4ABI;
645   bool HasROPProtect = Subtarget.hasROPProtect();
646   bool HasPrivileged = Subtarget.hasPrivileged();
647 
648   Register SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
649   Register BPReg = RegInfo->getBaseRegister(MF);
650   Register FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
651   Register LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
652   Register TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
653   Register ScratchReg;
654   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
655   //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
656   const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
657                                                 : PPC::MFLR );
658   const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
659                                                  : PPC::STW );
660   const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
661                                                      : PPC::STWU );
662   const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
663                                                         : PPC::STWUX);
664   const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8
665                                                           : PPC::LIS );
666   const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8
667                                                  : PPC::ORI );
668   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
669                                               : PPC::OR );
670   const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
671                                                             : PPC::SUBFC);
672   const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
673                                                                : PPC::SUBFIC);
674   const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
675                                                            : PPC::MFCR);
676   const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
677   const MCInstrDesc &HashST =
678       TII.get(HasPrivileged ? PPC::HASHSTP : PPC::HASHST);
679 
680   // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
681   // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
682   // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
683   // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
684   assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
685          "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
686 
687   // Using the same bool variable as below to suppress compiler warnings.
688   bool SingleScratchReg = findScratchRegister(
689       &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
690   assert(SingleScratchReg &&
691          "Required number of registers not available in this block");
692 
693   SingleScratchReg = ScratchReg == TempReg;
694 
695   int LROffset = getReturnSaveOffset();
696 
697   int FPOffset = 0;
698   if (HasFP) {
699     MachineFrameInfo &MFI = MF.getFrameInfo();
700     int FPIndex = FI->getFramePointerSaveIndex();
701     assert(FPIndex && "No Frame Pointer Save Slot!");
702     FPOffset = MFI.getObjectOffset(FPIndex);
703   }
704 
705   int BPOffset = 0;
706   if (HasBP) {
707     MachineFrameInfo &MFI = MF.getFrameInfo();
708     int BPIndex = FI->getBasePointerSaveIndex();
709     assert(BPIndex && "No Base Pointer Save Slot!");
710     BPOffset = MFI.getObjectOffset(BPIndex);
711   }
712 
713   int PBPOffset = 0;
714   if (FI->usesPICBase()) {
715     MachineFrameInfo &MFI = MF.getFrameInfo();
716     int PBPIndex = FI->getPICBasePointerSaveIndex();
717     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
718     PBPOffset = MFI.getObjectOffset(PBPIndex);
719   }
720 
721   // Get stack alignments.
722   Align MaxAlign = MFI.getMaxAlign();
723   if (HasBP && MaxAlign > 1)
724     assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
725 
726   // Frames of 32KB & larger require special handling because they cannot be
727   // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
728   bool isLargeFrame = !isInt<16>(NegFrameSize);
729 
730   // Check if we can move the stack update instruction (stdu) down the prologue
731   // past the callee saves. Hopefully this will avoid the situation where the
732   // saves are waiting for the update on the store with update to complete.
733   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
734   bool MovingStackUpdateDown = false;
735 
736   // Check if we can move the stack update.
737   if (stackUpdateCanBeMoved(MF)) {
738     const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
739     for (CalleeSavedInfo CSI : Info) {
740       // If the callee saved register is spilled to a register instead of the
741       // stack then the spill no longer uses the stack pointer.
742       // This can lead to two consequences:
743       // 1) We no longer need to update the stack because the function does not
744       //    spill any callee saved registers to stack.
745       // 2) We have a situation where we still have to update the stack pointer
746       //    even though some registers are spilled to other registers. In
747       //    this case the current code moves the stack update to an incorrect
748       //    position.
749       // In either case we should abort moving the stack update operation.
750       if (CSI.isSpilledToReg()) {
751         StackUpdateLoc = MBBI;
752         MovingStackUpdateDown = false;
753         break;
754       }
755 
756       int FrIdx = CSI.getFrameIdx();
757       // If the frame index is not negative the callee saved info belongs to a
758       // stack object that is not a fixed stack object. We ignore non-fixed
759       // stack objects because we won't move the stack update pointer past them.
760       if (FrIdx >= 0)
761         continue;
762 
763       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
764         StackUpdateLoc++;
765         MovingStackUpdateDown = true;
766       } else {
767         // We need all of the Frame Indices to meet these conditions.
768         // If they do not, abort the whole operation.
769         StackUpdateLoc = MBBI;
770         MovingStackUpdateDown = false;
771         break;
772       }
773     }
774 
775     // If the operation was not aborted then update the object offset.
776     if (MovingStackUpdateDown) {
777       for (CalleeSavedInfo CSI : Info) {
778         int FrIdx = CSI.getFrameIdx();
779         if (FrIdx < 0)
780           MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
781       }
782     }
783   }
784 
785   // Where in the prologue we move the CR fields depends on how many scratch
786   // registers we have, and if we need to save the link register or not. This
787   // lambda is to avoid duplicating the logic in 2 places.
788   auto BuildMoveFromCR = [&]() {
789     if (isELFv2ABI && MustSaveCRs.size() == 1) {
790     // In the ELFv2 ABI, we are not required to save all CR fields.
791     // If only one CR field is clobbered, it is more efficient to use
792     // mfocrf to selectively save just that field, because mfocrf has short
793     // latency compares to mfcr.
794       assert(isPPC64 && "V2 ABI is 64-bit only.");
795       MachineInstrBuilder MIB =
796           BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
797       MIB.addReg(MustSaveCRs[0], RegState::Kill);
798     } else {
799       MachineInstrBuilder MIB =
800           BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
801       for (unsigned CRfield : MustSaveCRs)
802         MIB.addReg(CRfield, RegState::ImplicitKill);
803     }
804   };
805 
806   // If we need to spill the CR and the LR but we don't have two separate
807   // registers available, we must spill them one at a time
808   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
809     BuildMoveFromCR();
810     BuildMI(MBB, MBBI, dl, StoreWordInst)
811         .addReg(TempReg, getKillRegState(true))
812         .addImm(CRSaveOffset)
813         .addReg(SPReg);
814   }
815 
816   if (MustSaveLR)
817     BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
818 
819   if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
820     BuildMoveFromCR();
821 
822   if (HasRedZone) {
823     if (HasFP)
824       BuildMI(MBB, MBBI, dl, StoreInst)
825         .addReg(FPReg)
826         .addImm(FPOffset)
827         .addReg(SPReg);
828     if (FI->usesPICBase())
829       BuildMI(MBB, MBBI, dl, StoreInst)
830         .addReg(PPC::R30)
831         .addImm(PBPOffset)
832         .addReg(SPReg);
833     if (HasBP)
834       BuildMI(MBB, MBBI, dl, StoreInst)
835         .addReg(BPReg)
836         .addImm(BPOffset)
837         .addReg(SPReg);
838   }
839 
840   // Generate the instruction to store the LR. In the case where ROP protection
841   // is required the register holding the LR should not be killed as it will be
842   // used by the hash store instruction.
843   if (MustSaveLR) {
844     BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
845         .addReg(ScratchReg, getKillRegState(!HasROPProtect))
846         .addImm(LROffset)
847         .addReg(SPReg);
848 
849     // Add the ROP protection Hash Store instruction.
850     // NOTE: This is technically a violation of the ABI. The hash can be saved
851     // up to 512 bytes into the Protected Zone. This can be outside of the
852     // initial 288 byte volatile program storage region in the Protected Zone.
853     // However, this restriction will be removed in an upcoming revision of the
854     // ABI.
855     if (HasROPProtect) {
856       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
857       const int ImmOffset = MFI.getObjectOffset(SaveIndex);
858       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
859              "ROP hash save offset out of range.");
860       assert(((ImmOffset & 0x7) == 0) &&
861              "ROP hash save offset must be 8 byte aligned.");
862       BuildMI(MBB, StackUpdateLoc, dl, HashST)
863           .addReg(ScratchReg, getKillRegState(true))
864           .addImm(ImmOffset)
865           .addReg(SPReg);
866     }
867   }
868 
869   if (MustSaveCR &&
870       !(SingleScratchReg && MustSaveLR)) {
871     assert(HasRedZone && "A red zone is always available on PPC64");
872     BuildMI(MBB, MBBI, dl, StoreWordInst)
873       .addReg(TempReg, getKillRegState(true))
874       .addImm(CRSaveOffset)
875       .addReg(SPReg);
876   }
877 
878   // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
879   if (!FrameSize)
880     return;
881 
882   // Adjust stack pointer: r1 += NegFrameSize.
883   // If there is a preferred stack alignment, align R1 now
884 
885   if (HasBP && HasRedZone) {
886     // Save a copy of r1 as the base pointer.
887     BuildMI(MBB, MBBI, dl, OrInst, BPReg)
888       .addReg(SPReg)
889       .addReg(SPReg);
890   }
891 
892   // Have we generated a STUX instruction to claim stack frame? If so,
893   // the negated frame size will be placed in ScratchReg.
894   bool HasSTUX = false;
895 
896   // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
897   // pointer is always stored at SP, we will get a free probe due to an essential
898   // STU(X) instruction.
899   if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
900     // To be consistent with other targets, a pseudo instruction is emitted and
901     // will be later expanded in `inlineStackProbe`.
902     BuildMI(MBB, MBBI, dl,
903             TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
904                             : PPC::PROBED_STACKALLOC_32))
905         .addDef(ScratchReg)
906         .addDef(TempReg) // TempReg stores the old sp.
907         .addImm(NegFrameSize);
908     // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
909     // update the ScratchReg to meet the assumption that ScratchReg contains
910     // the NegFrameSize. This solution is rather tricky.
911     if (!HasRedZone) {
912       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
913           .addReg(TempReg)
914           .addReg(SPReg);
915       HasSTUX = true;
916     }
917   } else {
918     // This condition must be kept in sync with canUseAsPrologue.
919     if (HasBP && MaxAlign > 1) {
920       if (isPPC64)
921         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
922             .addReg(SPReg)
923             .addImm(0)
924             .addImm(64 - Log2(MaxAlign));
925       else // PPC32...
926         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
927             .addReg(SPReg)
928             .addImm(0)
929             .addImm(32 - Log2(MaxAlign))
930             .addImm(31);
931       if (!isLargeFrame) {
932         BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
933             .addReg(ScratchReg, RegState::Kill)
934             .addImm(NegFrameSize);
935       } else {
936         assert(!SingleScratchReg && "Only a single scratch reg available");
937         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg)
938             .addImm(NegFrameSize >> 16);
939         BuildMI(MBB, MBBI, dl, OrImmInst, TempReg)
940             .addReg(TempReg, RegState::Kill)
941             .addImm(NegFrameSize & 0xFFFF);
942         BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
943             .addReg(ScratchReg, RegState::Kill)
944             .addReg(TempReg, RegState::Kill);
945       }
946 
947       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
948           .addReg(SPReg, RegState::Kill)
949           .addReg(SPReg)
950           .addReg(ScratchReg);
951       HasSTUX = true;
952 
953     } else if (!isLargeFrame) {
954       BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
955           .addReg(SPReg)
956           .addImm(NegFrameSize)
957           .addReg(SPReg);
958 
959     } else {
960       BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
961           .addImm(NegFrameSize >> 16);
962       BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
963           .addReg(ScratchReg, RegState::Kill)
964           .addImm(NegFrameSize & 0xFFFF);
965       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
966           .addReg(SPReg, RegState::Kill)
967           .addReg(SPReg)
968           .addReg(ScratchReg);
969       HasSTUX = true;
970     }
971   }
972 
973   // Save the TOC register after the stack pointer update if a prologue TOC
974   // save is required for the function.
975   if (MustSaveTOC) {
976     assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
977     BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
978       .addReg(TOCReg, getKillRegState(true))
979       .addImm(TOCSaveOffset)
980       .addReg(SPReg);
981   }
982 
983   if (!HasRedZone) {
984     assert(!isPPC64 && "A red zone is always available on PPC64");
985     if (HasSTUX) {
986       // The negated frame size is in ScratchReg, and the SPReg has been
987       // decremented by the frame size: SPReg = old SPReg + ScratchReg.
988       // Since FPOffset, PBPOffset, etc. are relative to the beginning of
989       // the stack frame (i.e. the old SP), ideally, we would put the old
990       // SP into a register and use it as the base for the stores. The
991       // problem is that the only available register may be ScratchReg,
992       // which could be R0, and R0 cannot be used as a base address.
993 
994       // First, set ScratchReg to the old SP. This may need to be modified
995       // later.
996       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
997         .addReg(ScratchReg, RegState::Kill)
998         .addReg(SPReg);
999 
1000       if (ScratchReg == PPC::R0) {
1001         // R0 cannot be used as a base register, but it can be used as an
1002         // index in a store-indexed.
1003         int LastOffset = 0;
1004         if (HasFP)  {
1005           // R0 += (FPOffset-LastOffset).
1006           // Need addic, since addi treats R0 as 0.
1007           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1008             .addReg(ScratchReg)
1009             .addImm(FPOffset-LastOffset);
1010           LastOffset = FPOffset;
1011           // Store FP into *R0.
1012           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1013             .addReg(FPReg, RegState::Kill)  // Save FP.
1014             .addReg(PPC::ZERO)
1015             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1016         }
1017         if (FI->usesPICBase()) {
1018           // R0 += (PBPOffset-LastOffset).
1019           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1020             .addReg(ScratchReg)
1021             .addImm(PBPOffset-LastOffset);
1022           LastOffset = PBPOffset;
1023           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1024             .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
1025             .addReg(PPC::ZERO)
1026             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1027         }
1028         if (HasBP) {
1029           // R0 += (BPOffset-LastOffset).
1030           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1031             .addReg(ScratchReg)
1032             .addImm(BPOffset-LastOffset);
1033           LastOffset = BPOffset;
1034           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1035             .addReg(BPReg, RegState::Kill)  // Save BP.
1036             .addReg(PPC::ZERO)
1037             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1038           // BP = R0-LastOffset
1039           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
1040             .addReg(ScratchReg, RegState::Kill)
1041             .addImm(-LastOffset);
1042         }
1043       } else {
1044         // ScratchReg is not R0, so use it as the base register. It is
1045         // already set to the old SP, so we can use the offsets directly.
1046 
1047         // Now that the stack frame has been allocated, save all the necessary
1048         // registers using ScratchReg as the base address.
1049         if (HasFP)
1050           BuildMI(MBB, MBBI, dl, StoreInst)
1051             .addReg(FPReg)
1052             .addImm(FPOffset)
1053             .addReg(ScratchReg);
1054         if (FI->usesPICBase())
1055           BuildMI(MBB, MBBI, dl, StoreInst)
1056             .addReg(PPC::R30)
1057             .addImm(PBPOffset)
1058             .addReg(ScratchReg);
1059         if (HasBP) {
1060           BuildMI(MBB, MBBI, dl, StoreInst)
1061             .addReg(BPReg)
1062             .addImm(BPOffset)
1063             .addReg(ScratchReg);
1064           BuildMI(MBB, MBBI, dl, OrInst, BPReg)
1065             .addReg(ScratchReg, RegState::Kill)
1066             .addReg(ScratchReg);
1067         }
1068       }
1069     } else {
1070       // The frame size is a known 16-bit constant (fitting in the immediate
1071       // field of STWU). To be here we have to be compiling for PPC32.
1072       // Since the SPReg has been decreased by FrameSize, add it back to each
1073       // offset.
1074       if (HasFP)
1075         BuildMI(MBB, MBBI, dl, StoreInst)
1076           .addReg(FPReg)
1077           .addImm(FrameSize + FPOffset)
1078           .addReg(SPReg);
1079       if (FI->usesPICBase())
1080         BuildMI(MBB, MBBI, dl, StoreInst)
1081           .addReg(PPC::R30)
1082           .addImm(FrameSize + PBPOffset)
1083           .addReg(SPReg);
1084       if (HasBP) {
1085         BuildMI(MBB, MBBI, dl, StoreInst)
1086           .addReg(BPReg)
1087           .addImm(FrameSize + BPOffset)
1088           .addReg(SPReg);
1089         BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
1090           .addReg(SPReg)
1091           .addImm(FrameSize);
1092       }
1093     }
1094   }
1095 
1096   // Add Call Frame Information for the instructions we generated above.
1097   if (needsCFI) {
1098     unsigned CFIIndex;
1099 
1100     if (HasBP) {
1101       // Define CFA in terms of BP. Do this in preference to using FP/SP,
1102       // because if the stack needed aligning then CFA won't be at a fixed
1103       // offset from FP/SP.
1104       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1105       CFIIndex = MF.addFrameInst(
1106           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1107     } else {
1108       // Adjust the definition of CFA to account for the change in SP.
1109       assert(NegFrameSize);
1110       CFIIndex = MF.addFrameInst(
1111           MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
1112     }
1113     BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1114         .addCFIIndex(CFIIndex);
1115 
1116     if (HasFP) {
1117       // Describe where FP was saved, at a fixed offset from CFA.
1118       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1119       CFIIndex = MF.addFrameInst(
1120           MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
1121       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1122           .addCFIIndex(CFIIndex);
1123     }
1124 
1125     if (FI->usesPICBase()) {
1126       // Describe where FP was saved, at a fixed offset from CFA.
1127       unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
1128       CFIIndex = MF.addFrameInst(
1129           MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
1130       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1131           .addCFIIndex(CFIIndex);
1132     }
1133 
1134     if (HasBP) {
1135       // Describe where BP was saved, at a fixed offset from CFA.
1136       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1137       CFIIndex = MF.addFrameInst(
1138           MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
1139       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1140           .addCFIIndex(CFIIndex);
1141     }
1142 
1143     if (MustSaveLR) {
1144       // Describe where LR was saved, at a fixed offset from CFA.
1145       unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
1146       CFIIndex = MF.addFrameInst(
1147           MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
1148       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1149           .addCFIIndex(CFIIndex);
1150     }
1151   }
1152 
1153   // If there is a frame pointer, copy R1 into R31
1154   if (HasFP) {
1155     BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1156       .addReg(SPReg)
1157       .addReg(SPReg);
1158 
1159     if (!HasBP && needsCFI) {
1160       // Change the definition of CFA from SP+offset to FP+offset, because SP
1161       // will change at every alloca.
1162       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1163       unsigned CFIIndex = MF.addFrameInst(
1164           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1165 
1166       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1167           .addCFIIndex(CFIIndex);
1168     }
1169   }
1170 
1171   if (needsCFI) {
1172     // Describe where callee saved registers were saved, at fixed offsets from
1173     // CFA.
1174     const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1175     for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
1176       unsigned Reg = CSI[I].getReg();
1177       if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
1178 
1179       // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1180       // subregisters of CR2. We just need to emit a move of CR2.
1181       if (PPC::CRBITRCRegClass.contains(Reg))
1182         continue;
1183 
1184       if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
1185         continue;
1186 
1187       // For SVR4, don't emit a move for the CR spill slot if we haven't
1188       // spilled CRs.
1189       if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
1190           && !MustSaveCR)
1191         continue;
1192 
1193       // For 64-bit SVR4 when we have spilled CRs, the spill location
1194       // is SP+8, not a frame-relative slot.
1195       if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
1196         // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1197         // the whole CR word.  In the ELFv2 ABI, every CR that was
1198         // actually saved gets its own CFI record.
1199         unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2;
1200         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1201             nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
1202         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1203             .addCFIIndex(CFIIndex);
1204         continue;
1205       }
1206 
1207       if (CSI[I].isSpilledToReg()) {
1208         unsigned SpilledReg = CSI[I].getDstReg();
1209         unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
1210             nullptr, MRI->getDwarfRegNum(Reg, true),
1211             MRI->getDwarfRegNum(SpilledReg, true)));
1212         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1213           .addCFIIndex(CFIRegister);
1214       } else {
1215         int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx());
1216         // We have changed the object offset above but we do not want to change
1217         // the actual offsets in the CFI instruction so we have to undo the
1218         // offset change here.
1219         if (MovingStackUpdateDown)
1220           Offset -= NegFrameSize;
1221 
1222         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1223             nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
1224         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1225             .addCFIIndex(CFIIndex);
1226       }
1227     }
1228   }
1229 }
1230 
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const1231 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
1232                                         MachineBasicBlock &PrologMBB) const {
1233   // TODO: Generate CFI instructions.
1234   bool isPPC64 = Subtarget.isPPC64();
1235   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
1236   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1237   MachineFrameInfo &MFI = MF.getFrameInfo();
1238   MachineModuleInfo &MMI = MF.getMMI();
1239   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
1240   // AIX assembler does not support cfi directives.
1241   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
1242   auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
1243     int Opc = MI.getOpcode();
1244     return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
1245   });
1246   if (StackAllocMIPos == PrologMBB.end())
1247     return;
1248   const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
1249   MachineBasicBlock *CurrentMBB = &PrologMBB;
1250   DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
1251   MachineInstr &MI = *StackAllocMIPos;
1252   int64_t NegFrameSize = MI.getOperand(2).getImm();
1253   unsigned ProbeSize = TLI.getStackProbeSize(MF);
1254   int64_t NegProbeSize = -(int64_t)ProbeSize;
1255   assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
1256   int64_t NumBlocks = NegFrameSize / NegProbeSize;
1257   int64_t NegResidualSize = NegFrameSize % NegProbeSize;
1258   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1259   Register ScratchReg = MI.getOperand(0).getReg();
1260   Register FPReg = MI.getOperand(1).getReg();
1261   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1262   bool HasBP = RegInfo->hasBasePointer(MF);
1263   Register BPReg = RegInfo->getBaseRegister(MF);
1264   Align MaxAlign = MFI.getMaxAlign();
1265   const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
1266   // Subroutines to generate .cfi_* directives.
1267   auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
1268                             MachineBasicBlock::iterator MBBI, Register Reg) {
1269     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1270     unsigned CFIIndex = MF.addFrameInst(
1271         MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
1272     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1273         .addCFIIndex(CFIIndex);
1274   };
1275   auto buildDefCFA = [&](MachineBasicBlock &MBB,
1276                          MachineBasicBlock::iterator MBBI, Register Reg,
1277                          int Offset) {
1278     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1279     unsigned CFIIndex = MBB.getParent()->addFrameInst(
1280         MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
1281     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1282         .addCFIIndex(CFIIndex);
1283   };
1284   // Subroutine to determine if we can use the Imm as part of d-form.
1285   auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
1286   // Subroutine to materialize the Imm into TempReg.
1287   auto MaterializeImm = [&](MachineBasicBlock &MBB,
1288                             MachineBasicBlock::iterator MBBI, int64_t Imm,
1289                             Register &TempReg) {
1290     assert(isInt<32>(Imm) && "Unhandled imm");
1291     if (isInt<16>(Imm))
1292       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
1293           .addImm(Imm);
1294     else {
1295       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
1296           .addImm(Imm >> 16);
1297       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
1298           .addReg(TempReg)
1299           .addImm(Imm & 0xFFFF);
1300     }
1301   };
1302   // Subroutine to store frame pointer and decrease stack pointer by probe size.
1303   auto allocateAndProbe = [&](MachineBasicBlock &MBB,
1304                               MachineBasicBlock::iterator MBBI, int64_t NegSize,
1305                               Register NegSizeReg, bool UseDForm,
1306                               Register StoreReg) {
1307     if (UseDForm)
1308       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
1309           .addReg(StoreReg)
1310           .addImm(NegSize)
1311           .addReg(SPReg);
1312     else
1313       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
1314           .addReg(StoreReg)
1315           .addReg(SPReg)
1316           .addReg(NegSizeReg);
1317   };
1318   // Used to probe realignment gap [stackptr - (stackptr % align), stackptr)
1319   // when HasBP && isPPC64. In such scenario, normally we have r0, r1, r12, r30
1320   // available and r1 is already copied to r30 which is BPReg. So BPReg stores
1321   // the value of stackptr.
1322   // First we have to probe tail interval whose size is less than probesize,
1323   // i.e., [stackptr - (stackptr % align) % probesize, stackptr). At this stage,
1324   // ScratchReg stores the value of ((stackptr % align) % probesize). Then we
1325   // probe each block sized probesize until stackptr meets
1326   // (stackptr - (stackptr % align)). At this stage, ScratchReg is materialized
1327   // as negprobesize. At both stages, TempReg stores the value of
1328   // (stackptr - (stackptr % align)).
1329   auto dynamicProbe = [&](MachineBasicBlock &MBB,
1330                           MachineBasicBlock::iterator MBBI, Register ScratchReg,
1331                           Register TempReg) {
1332     assert(HasBP && isPPC64 && "Probe alignment part not available");
1333     assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
1334     // ScratchReg = stackptr % align
1335     BuildMI(MBB, MBBI, DL, TII.get(PPC::RLDICL), ScratchReg)
1336         .addReg(BPReg)
1337         .addImm(0)
1338         .addImm(64 - Log2(MaxAlign));
1339     // TempReg = stackptr - (stackptr % align)
1340     BuildMI(MBB, MBBI, DL, TII.get(PPC::SUBFC8), TempReg)
1341         .addReg(ScratchReg)
1342         .addReg(BPReg);
1343     // ScratchReg = (stackptr % align) % probesize
1344     BuildMI(MBB, MBBI, DL, TII.get(PPC::RLDICL), ScratchReg)
1345         .addReg(ScratchReg)
1346         .addImm(0)
1347         .addImm(64 - Log2(ProbeSize));
1348     Register CRReg = PPC::CR0;
1349     // If (stackptr % align) % probesize == 0, we should not generate probe
1350     // code. Layout of output assembly kinda like:
1351     // bb.0:
1352     //   ...
1353     //   cmpldi $scratchreg, 0
1354     //   beq bb.2
1355     // bb.1: # Probe tail interval
1356     //   neg $scratchreg, $scratchreg
1357     //   stdux $bpreg, r1, $scratchreg
1358     // bb.2:
1359     //   <materialize negprobesize into $scratchreg>
1360     //   cmpd r1, $tempreg
1361     //   beq bb.4
1362     // bb.3: # Loop to probe each block
1363     //   stdux $bpreg, r1, $scratchreg
1364     //   cmpd r1, $tempreg
1365     //   bne bb.3
1366     // bb.4:
1367     //   ...
1368     MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
1369     MachineBasicBlock *ProbeResidualMBB = MF.CreateMachineBasicBlock(ProbedBB);
1370     MF.insert(MBBInsertPoint, ProbeResidualMBB);
1371     MachineBasicBlock *ProbeLoopPreHeaderMBB =
1372         MF.CreateMachineBasicBlock(ProbedBB);
1373     MF.insert(MBBInsertPoint, ProbeLoopPreHeaderMBB);
1374     MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
1375     MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
1376     MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1377     MF.insert(MBBInsertPoint, ProbeExitMBB);
1378     // bb.4
1379     ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
1380     ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
1381     // bb.0
1382     BuildMI(&MBB, DL, TII.get(PPC::CMPDI), CRReg).addReg(ScratchReg).addImm(0);
1383     BuildMI(&MBB, DL, TII.get(PPC::BCC))
1384         .addImm(PPC::PRED_EQ)
1385         .addReg(CRReg)
1386         .addMBB(ProbeLoopPreHeaderMBB);
1387     MBB.addSuccessor(ProbeResidualMBB);
1388     MBB.addSuccessor(ProbeLoopPreHeaderMBB);
1389     // bb.1
1390     BuildMI(ProbeResidualMBB, DL, TII.get(PPC::NEG8), ScratchReg)
1391         .addReg(ScratchReg);
1392     allocateAndProbe(*ProbeResidualMBB, ProbeResidualMBB->end(), 0, ScratchReg,
1393                      false, BPReg);
1394     ProbeResidualMBB->addSuccessor(ProbeLoopPreHeaderMBB);
1395     // bb.2
1396     MaterializeImm(*ProbeLoopPreHeaderMBB, ProbeLoopPreHeaderMBB->end(),
1397                    NegProbeSize, ScratchReg);
1398     BuildMI(ProbeLoopPreHeaderMBB, DL, TII.get(PPC::CMPD), CRReg)
1399         .addReg(SPReg)
1400         .addReg(TempReg);
1401     BuildMI(ProbeLoopPreHeaderMBB, DL, TII.get(PPC::BCC))
1402         .addImm(PPC::PRED_EQ)
1403         .addReg(CRReg)
1404         .addMBB(ProbeExitMBB);
1405     ProbeLoopPreHeaderMBB->addSuccessor(ProbeLoopBodyMBB);
1406     ProbeLoopPreHeaderMBB->addSuccessor(ProbeExitMBB);
1407     // bb.3
1408     allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), 0, ScratchReg,
1409                      false, BPReg);
1410     BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::CMPD), CRReg)
1411         .addReg(SPReg)
1412         .addReg(TempReg);
1413     BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
1414         .addImm(PPC::PRED_NE)
1415         .addReg(CRReg)
1416         .addMBB(ProbeLoopBodyMBB);
1417     ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
1418     ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
1419     // Update liveins.
1420     recomputeLiveIns(*ProbeResidualMBB);
1421     recomputeLiveIns(*ProbeLoopPreHeaderMBB);
1422     recomputeLiveIns(*ProbeLoopBodyMBB);
1423     recomputeLiveIns(*ProbeExitMBB);
1424     return ProbeExitMBB;
1425   };
1426   // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1427   // SP = SP - SP % MaxAlign.
1428   if (HasBP && MaxAlign > 1) {
1429     // FIXME: Currently only probe the gap [stackptr & alignmask, stackptr) in
1430     // 64-bit mode.
1431     if (isPPC64) {
1432       // Use BPReg to calculate CFA.
1433       if (needsCFI)
1434         buildDefCFA(*CurrentMBB, {MI}, BPReg, 0);
1435       // Since we have SPReg copied to BPReg at the moment, FPReg can be used as
1436       // TempReg.
1437       Register TempReg = FPReg;
1438       CurrentMBB = dynamicProbe(*CurrentMBB, {MI}, ScratchReg, TempReg);
1439       // Copy BPReg to FPReg to meet the definition of PROBED_STACKALLOC_64.
1440       BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg)
1441           .addReg(BPReg)
1442           .addReg(BPReg);
1443     } else {
1444       // Initialize current frame pointer.
1445       BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg)
1446           .addReg(SPReg)
1447           .addReg(SPReg);
1448       // Use FPReg to calculate CFA.
1449       if (needsCFI)
1450         buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1451       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
1452           .addReg(FPReg)
1453           .addImm(0)
1454           .addImm(32 - Log2(MaxAlign))
1455           .addImm(31);
1456       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::SUBFC), SPReg)
1457           .addReg(ScratchReg)
1458           .addReg(SPReg);
1459     }
1460   } else {
1461     // Initialize current frame pointer.
1462     BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
1463     // Use FPReg to calculate CFA.
1464     if (needsCFI)
1465       buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1466   }
1467   // Probe residual part.
1468   if (NegResidualSize) {
1469     bool ResidualUseDForm = CanUseDForm(NegResidualSize);
1470     if (!ResidualUseDForm)
1471       MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
1472     allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
1473                      ResidualUseDForm, FPReg);
1474   }
1475   bool UseDForm = CanUseDForm(NegProbeSize);
1476   // If number of blocks is small, just probe them directly.
1477   if (NumBlocks < 3) {
1478     if (!UseDForm)
1479       MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1480     for (int i = 0; i < NumBlocks; ++i)
1481       allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
1482                        FPReg);
1483     if (needsCFI) {
1484       // Restore using SPReg to calculate CFA.
1485       buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
1486     }
1487   } else {
1488     // Since CTR is a volatile register and current shrinkwrap implementation
1489     // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1490     // CTR loop to probe.
1491     // Calculate trip count and stores it in CTRReg.
1492     MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
1493     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
1494         .addReg(ScratchReg, RegState::Kill);
1495     if (!UseDForm)
1496       MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1497     // Create MBBs of the loop.
1498     MachineFunction::iterator MBBInsertPoint =
1499         std::next(CurrentMBB->getIterator());
1500     MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
1501     MF.insert(MBBInsertPoint, LoopMBB);
1502     MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1503     MF.insert(MBBInsertPoint, ExitMBB);
1504     // Synthesize the loop body.
1505     allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
1506                      UseDForm, FPReg);
1507     BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
1508         .addMBB(LoopMBB);
1509     LoopMBB->addSuccessor(ExitMBB);
1510     LoopMBB->addSuccessor(LoopMBB);
1511     // Synthesize the exit MBB.
1512     ExitMBB->splice(ExitMBB->end(), CurrentMBB,
1513                     std::next(MachineBasicBlock::iterator(MI)),
1514                     CurrentMBB->end());
1515     ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
1516     CurrentMBB->addSuccessor(LoopMBB);
1517     if (needsCFI) {
1518       // Restore using SPReg to calculate CFA.
1519       buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
1520     }
1521     // Update liveins.
1522     recomputeLiveIns(*LoopMBB);
1523     recomputeLiveIns(*ExitMBB);
1524   }
1525   ++NumPrologProbed;
1526   MI.eraseFromParent();
1527 }
1528 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1529 void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
1530                                     MachineBasicBlock &MBB) const {
1531   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1532   DebugLoc dl;
1533 
1534   if (MBBI != MBB.end())
1535     dl = MBBI->getDebugLoc();
1536 
1537   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1538   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1539 
1540   // Get alignment info so we know how to restore the SP.
1541   const MachineFrameInfo &MFI = MF.getFrameInfo();
1542 
1543   // Get the number of bytes allocated from the FrameInfo.
1544   int FrameSize = MFI.getStackSize();
1545 
1546   // Get processor type.
1547   bool isPPC64 = Subtarget.isPPC64();
1548 
1549   // Check if the link register (LR) has been saved.
1550   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1551   bool MustSaveLR = FI->mustSaveLR();
1552   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
1553   bool MustSaveCR = !MustSaveCRs.empty();
1554   // Do we have a frame pointer and/or base pointer for this function?
1555   bool HasFP = hasFP(MF);
1556   bool HasBP = RegInfo->hasBasePointer(MF);
1557   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1558   bool HasROPProtect = Subtarget.hasROPProtect();
1559   bool HasPrivileged = Subtarget.hasPrivileged();
1560 
1561   Register SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
1562   Register BPReg = RegInfo->getBaseRegister(MF);
1563   Register FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
1564   Register ScratchReg;
1565   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
1566   const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
1567                                                  : PPC::MTLR );
1568   const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
1569                                                  : PPC::LWZ );
1570   const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
1571                                                            : PPC::LIS );
1572   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
1573                                               : PPC::OR );
1574   const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
1575                                                   : PPC::ORI );
1576   const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
1577                                                    : PPC::ADDI );
1578   const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
1579                                                 : PPC::ADD4 );
1580   const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
1581                                                      : PPC::LWZ);
1582   const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
1583                                                      : PPC::MTOCRF);
1584   const MCInstrDesc &HashChk =
1585       TII.get(HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK);
1586   int LROffset = getReturnSaveOffset();
1587 
1588   int FPOffset = 0;
1589 
1590   // Using the same bool variable as below to suppress compiler warnings.
1591   bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
1592                                               &TempReg);
1593   assert(SingleScratchReg &&
1594          "Could not find an available scratch register");
1595 
1596   SingleScratchReg = ScratchReg == TempReg;
1597 
1598   if (HasFP) {
1599     int FPIndex = FI->getFramePointerSaveIndex();
1600     assert(FPIndex && "No Frame Pointer Save Slot!");
1601     FPOffset = MFI.getObjectOffset(FPIndex);
1602   }
1603 
1604   int BPOffset = 0;
1605   if (HasBP) {
1606       int BPIndex = FI->getBasePointerSaveIndex();
1607       assert(BPIndex && "No Base Pointer Save Slot!");
1608       BPOffset = MFI.getObjectOffset(BPIndex);
1609   }
1610 
1611   int PBPOffset = 0;
1612   if (FI->usesPICBase()) {
1613     int PBPIndex = FI->getPICBasePointerSaveIndex();
1614     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
1615     PBPOffset = MFI.getObjectOffset(PBPIndex);
1616   }
1617 
1618   bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
1619 
1620   if (IsReturnBlock) {
1621     unsigned RetOpcode = MBBI->getOpcode();
1622     bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
1623                       RetOpcode == PPC::TCRETURNdi ||
1624                       RetOpcode == PPC::TCRETURNai ||
1625                       RetOpcode == PPC::TCRETURNri8 ||
1626                       RetOpcode == PPC::TCRETURNdi8 ||
1627                       RetOpcode == PPC::TCRETURNai8;
1628 
1629     if (UsesTCRet) {
1630       int MaxTCRetDelta = FI->getTailCallSPDelta();
1631       MachineOperand &StackAdjust = MBBI->getOperand(1);
1632       assert(StackAdjust.isImm() && "Expecting immediate value.");
1633       // Adjust stack pointer.
1634       int StackAdj = StackAdjust.getImm();
1635       int Delta = StackAdj - MaxTCRetDelta;
1636       assert((Delta >= 0) && "Delta must be positive");
1637       if (MaxTCRetDelta>0)
1638         FrameSize += (StackAdj +Delta);
1639       else
1640         FrameSize += StackAdj;
1641     }
1642   }
1643 
1644   // Frames of 32KB & larger require special handling because they cannot be
1645   // indexed into with a simple LD/LWZ immediate offset operand.
1646   bool isLargeFrame = !isInt<16>(FrameSize);
1647 
1648   // On targets without red zone, the SP needs to be restored last, so that
1649   // all live contents of the stack frame are upwards of the SP. This means
1650   // that we cannot restore SP just now, since there may be more registers
1651   // to restore from the stack frame (e.g. R31). If the frame size is not
1652   // a simple immediate value, we will need a spare register to hold the
1653   // restored SP. If the frame size is known and small, we can simply adjust
1654   // the offsets of the registers to be restored, and still use SP to restore
1655   // them. In such case, the final update of SP will be to add the frame
1656   // size to it.
1657   // To simplify the code, set RBReg to the base register used to restore
1658   // values from the stack, and set SPAdd to the value that needs to be added
1659   // to the SP at the end. The default values are as if red zone was present.
1660   unsigned RBReg = SPReg;
1661   unsigned SPAdd = 0;
1662 
1663   // Check if we can move the stack update instruction up the epilogue
1664   // past the callee saves. This will allow the move to LR instruction
1665   // to be executed before the restores of the callee saves which means
1666   // that the callee saves can hide the latency from the MTLR instrcution.
1667   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
1668   if (stackUpdateCanBeMoved(MF)) {
1669     const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
1670     for (CalleeSavedInfo CSI : Info) {
1671       // If the callee saved register is spilled to another register abort the
1672       // stack update movement.
1673       if (CSI.isSpilledToReg()) {
1674         StackUpdateLoc = MBBI;
1675         break;
1676       }
1677       int FrIdx = CSI.getFrameIdx();
1678       // If the frame index is not negative the callee saved info belongs to a
1679       // stack object that is not a fixed stack object. We ignore non-fixed
1680       // stack objects because we won't move the update of the stack pointer
1681       // past them.
1682       if (FrIdx >= 0)
1683         continue;
1684 
1685       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
1686         StackUpdateLoc--;
1687       else {
1688         // Abort the operation as we can't update all CSR restores.
1689         StackUpdateLoc = MBBI;
1690         break;
1691       }
1692     }
1693   }
1694 
1695   if (FrameSize) {
1696     // In the prologue, the loaded (or persistent) stack pointer value is
1697     // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1698     // zone add this offset back now.
1699 
1700     // If the function has a base pointer, the stack pointer has been copied
1701     // to it so we can restore it by copying in the other direction.
1702     if (HasRedZone && HasBP) {
1703       BuildMI(MBB, MBBI, dl, OrInst, RBReg).
1704         addReg(BPReg).
1705         addReg(BPReg);
1706     }
1707     // If this function contained a fastcc call and GuaranteedTailCallOpt is
1708     // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1709     // call which invalidates the stack pointer value in SP(0). So we use the
1710     // value of R31 in this case. Similar situation exists with setjmp.
1711     else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
1712       assert(HasFP && "Expecting a valid frame pointer.");
1713       if (!HasRedZone)
1714         RBReg = FPReg;
1715       if (!isLargeFrame) {
1716         BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
1717           .addReg(FPReg).addImm(FrameSize);
1718       } else {
1719         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1720           .addImm(FrameSize >> 16);
1721         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1722           .addReg(ScratchReg, RegState::Kill)
1723           .addImm(FrameSize & 0xFFFF);
1724         BuildMI(MBB, MBBI, dl, AddInst)
1725           .addReg(RBReg)
1726           .addReg(FPReg)
1727           .addReg(ScratchReg);
1728       }
1729     } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
1730       if (HasRedZone) {
1731         BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
1732           .addReg(SPReg)
1733           .addImm(FrameSize);
1734       } else {
1735         // Make sure that adding FrameSize will not overflow the max offset
1736         // size.
1737         assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
1738                "Local offsets should be negative");
1739         SPAdd = FrameSize;
1740         FPOffset += FrameSize;
1741         BPOffset += FrameSize;
1742         PBPOffset += FrameSize;
1743       }
1744     } else {
1745       // We don't want to use ScratchReg as a base register, because it
1746       // could happen to be R0. Use FP instead, but make sure to preserve it.
1747       if (!HasRedZone) {
1748         // If FP is not saved, copy it to ScratchReg.
1749         if (!HasFP)
1750           BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
1751             .addReg(FPReg)
1752             .addReg(FPReg);
1753         RBReg = FPReg;
1754       }
1755       BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
1756         .addImm(0)
1757         .addReg(SPReg);
1758     }
1759   }
1760   assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
1761   // If there is no red zone, ScratchReg may be needed for holding a useful
1762   // value (although not the base register). Make sure it is not overwritten
1763   // too early.
1764 
1765   // If we need to restore both the LR and the CR and we only have one
1766   // available scratch register, we must do them one at a time.
1767   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
1768     // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1769     // is live here.
1770     assert(HasRedZone && "Expecting red zone");
1771     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1772       .addImm(CRSaveOffset)
1773       .addReg(SPReg);
1774     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1775       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1776         .addReg(TempReg, getKillRegState(i == e-1));
1777   }
1778 
1779   // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1780   // LR is stored in the caller's stack frame. ScratchReg will be needed
1781   // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1782   // a base register anyway, because it may happen to be R0.
1783   bool LoadedLR = false;
1784   if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
1785     BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
1786       .addImm(LROffset+SPAdd)
1787       .addReg(RBReg);
1788     LoadedLR = true;
1789   }
1790 
1791   if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
1792     assert(RBReg == SPReg && "Should be using SP as a base register");
1793     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1794       .addImm(CRSaveOffset)
1795       .addReg(RBReg);
1796   }
1797 
1798   if (HasFP) {
1799     // If there is red zone, restore FP directly, since SP has already been
1800     // restored. Otherwise, restore the value of FP into ScratchReg.
1801     if (HasRedZone || RBReg == SPReg)
1802       BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
1803         .addImm(FPOffset)
1804         .addReg(SPReg);
1805     else
1806       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1807         .addImm(FPOffset)
1808         .addReg(RBReg);
1809   }
1810 
1811   if (FI->usesPICBase())
1812     BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
1813       .addImm(PBPOffset)
1814       .addReg(RBReg);
1815 
1816   if (HasBP)
1817     BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
1818       .addImm(BPOffset)
1819       .addReg(RBReg);
1820 
1821   // There is nothing more to be loaded from the stack, so now we can
1822   // restore SP: SP = RBReg + SPAdd.
1823   if (RBReg != SPReg || SPAdd != 0) {
1824     assert(!HasRedZone && "This should not happen with red zone");
1825     // If SPAdd is 0, generate a copy.
1826     if (SPAdd == 0)
1827       BuildMI(MBB, MBBI, dl, OrInst, SPReg)
1828         .addReg(RBReg)
1829         .addReg(RBReg);
1830     else
1831       BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1832         .addReg(RBReg)
1833         .addImm(SPAdd);
1834 
1835     assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
1836     if (RBReg == FPReg)
1837       BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1838         .addReg(ScratchReg)
1839         .addReg(ScratchReg);
1840 
1841     // Now load the LR from the caller's stack frame.
1842     if (MustSaveLR && !LoadedLR)
1843       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1844         .addImm(LROffset)
1845         .addReg(SPReg);
1846   }
1847 
1848   if (MustSaveCR &&
1849       !(SingleScratchReg && MustSaveLR))
1850     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1851       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1852         .addReg(TempReg, getKillRegState(i == e-1));
1853 
1854   if (MustSaveLR) {
1855     // If ROP protection is required, an extra instruction is added to compute a
1856     // hash and then compare it to the hash stored in the prologue.
1857     if (HasROPProtect) {
1858       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
1859       const int ImmOffset = MFI.getObjectOffset(SaveIndex);
1860       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
1861              "ROP hash check location offset out of range.");
1862       assert(((ImmOffset & 0x7) == 0) &&
1863              "ROP hash check location offset must be 8 byte aligned.");
1864       BuildMI(MBB, StackUpdateLoc, dl, HashChk)
1865           .addReg(ScratchReg)
1866           .addImm(ImmOffset)
1867           .addReg(SPReg);
1868     }
1869     BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
1870   }
1871 
1872   // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1873   // call optimization
1874   if (IsReturnBlock) {
1875     unsigned RetOpcode = MBBI->getOpcode();
1876     if (MF.getTarget().Options.GuaranteedTailCallOpt &&
1877         (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
1878         MF.getFunction().getCallingConv() == CallingConv::Fast) {
1879       PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1880       unsigned CallerAllocatedAmt = FI->getMinReservedArea();
1881 
1882       if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
1883         BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1884           .addReg(SPReg).addImm(CallerAllocatedAmt);
1885       } else {
1886         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1887           .addImm(CallerAllocatedAmt >> 16);
1888         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1889           .addReg(ScratchReg, RegState::Kill)
1890           .addImm(CallerAllocatedAmt & 0xFFFF);
1891         BuildMI(MBB, MBBI, dl, AddInst)
1892           .addReg(SPReg)
1893           .addReg(FPReg)
1894           .addReg(ScratchReg);
1895       }
1896     } else {
1897       createTailCallBranchInstr(MBB);
1898     }
1899   }
1900 }
1901 
createTailCallBranchInstr(MachineBasicBlock & MBB) const1902 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
1903   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1904 
1905   // If we got this far a first terminator should exist.
1906   assert(MBBI != MBB.end() && "Failed to find the first terminator.");
1907 
1908   DebugLoc dl = MBBI->getDebugLoc();
1909   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1910 
1911   // Create branch instruction for pseudo tail call return instruction.
1912   // The TCRETURNdi variants are direct calls. Valid targets for those are
1913   // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1914   // since we can tail call external functions with PC-Rel (i.e. we don't need
1915   // to worry about different TOC pointers). Some of the external functions will
1916   // be MO_GlobalAddress while others like memcpy for example, are going to
1917   // be MO_ExternalSymbol.
1918   unsigned RetOpcode = MBBI->getOpcode();
1919   if (RetOpcode == PPC::TCRETURNdi) {
1920     MBBI = MBB.getLastNonDebugInstr();
1921     MachineOperand &JumpTarget = MBBI->getOperand(0);
1922     if (JumpTarget.isGlobal())
1923       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1924         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1925     else if (JumpTarget.isSymbol())
1926       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1927         addExternalSymbol(JumpTarget.getSymbolName());
1928     else
1929       llvm_unreachable("Expecting Global or External Symbol");
1930   } else if (RetOpcode == PPC::TCRETURNri) {
1931     MBBI = MBB.getLastNonDebugInstr();
1932     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1933     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
1934   } else if (RetOpcode == PPC::TCRETURNai) {
1935     MBBI = MBB.getLastNonDebugInstr();
1936     MachineOperand &JumpTarget = MBBI->getOperand(0);
1937     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
1938   } else if (RetOpcode == PPC::TCRETURNdi8) {
1939     MBBI = MBB.getLastNonDebugInstr();
1940     MachineOperand &JumpTarget = MBBI->getOperand(0);
1941     if (JumpTarget.isGlobal())
1942       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1943         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1944     else if (JumpTarget.isSymbol())
1945       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1946         addExternalSymbol(JumpTarget.getSymbolName());
1947     else
1948       llvm_unreachable("Expecting Global or External Symbol");
1949   } else if (RetOpcode == PPC::TCRETURNri8) {
1950     MBBI = MBB.getLastNonDebugInstr();
1951     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1952     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
1953   } else if (RetOpcode == PPC::TCRETURNai8) {
1954     MBBI = MBB.getLastNonDebugInstr();
1955     MachineOperand &JumpTarget = MBBI->getOperand(0);
1956     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
1957   }
1958 }
1959 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const1960 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
1961                                             BitVector &SavedRegs,
1962                                             RegScavenger *RS) const {
1963   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1964 
1965   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1966 
1967   //  Save and clear the LR state.
1968   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1969   unsigned LR = RegInfo->getRARegister();
1970   FI->setMustSaveLR(MustSaveLR(MF, LR));
1971   SavedRegs.reset(LR);
1972 
1973   //  Save R31 if necessary
1974   int FPSI = FI->getFramePointerSaveIndex();
1975   const bool isPPC64 = Subtarget.isPPC64();
1976   MachineFrameInfo &MFI = MF.getFrameInfo();
1977 
1978   // If the frame pointer save index hasn't been defined yet.
1979   if (!FPSI && needsFP(MF)) {
1980     // Find out what the fix offset of the frame pointer save area.
1981     int FPOffset = getFramePointerSaveOffset();
1982     // Allocate the frame index for frame pointer save area.
1983     FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
1984     // Save the result.
1985     FI->setFramePointerSaveIndex(FPSI);
1986   }
1987 
1988   int BPSI = FI->getBasePointerSaveIndex();
1989   if (!BPSI && RegInfo->hasBasePointer(MF)) {
1990     int BPOffset = getBasePointerSaveOffset();
1991     // Allocate the frame index for the base pointer save area.
1992     BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
1993     // Save the result.
1994     FI->setBasePointerSaveIndex(BPSI);
1995   }
1996 
1997   // Reserve stack space for the PIC Base register (R30).
1998   // Only used in SVR4 32-bit.
1999   if (FI->usesPICBase()) {
2000     int PBPSI = MFI.CreateFixedObject(4, -8, true);
2001     FI->setPICBasePointerSaveIndex(PBPSI);
2002   }
2003 
2004   // Make sure we don't explicitly spill r31, because, for example, we have
2005   // some inline asm which explicitly clobbers it, when we otherwise have a
2006   // frame pointer and are using r31's spill slot for the prologue/epilogue
2007   // code. Same goes for the base pointer and the PIC base register.
2008   if (needsFP(MF))
2009     SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
2010   if (RegInfo->hasBasePointer(MF))
2011     SavedRegs.reset(RegInfo->getBaseRegister(MF));
2012   if (FI->usesPICBase())
2013     SavedRegs.reset(PPC::R30);
2014 
2015   // Reserve stack space to move the linkage area to in case of a tail call.
2016   int TCSPDelta = 0;
2017   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2018       (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
2019     MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
2020   }
2021 
2022   // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2023   // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2024   // object at the offset of the CR-save slot in the linkage area. The actual
2025   // save and restore of the condition register will be created as part of the
2026   // prologue and epilogue insertion, but the FixedStack object is needed to
2027   // keep the CalleSavedInfo valid.
2028   if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
2029        SavedRegs.test(PPC::CR4))) {
2030     const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
2031     const int64_t SpillOffset =
2032         Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
2033     int FrameIdx =
2034         MFI.CreateFixedObject(SpillSize, SpillOffset,
2035                               /* IsImmutable */ true, /* IsAliased */ false);
2036     FI->setCRSpillFrameIndex(FrameIdx);
2037   }
2038 }
2039 
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const2040 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
2041                                                        RegScavenger *RS) const {
2042   // Get callee saved register information.
2043   MachineFrameInfo &MFI = MF.getFrameInfo();
2044   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2045 
2046   // If the function is shrink-wrapped, and if the function has a tail call, the
2047   // tail call might not be in the new RestoreBlock, so real branch instruction
2048   // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2049   // RestoreBlock. So we handle this case here.
2050   if (MFI.getSavePoint() && MFI.hasTailCall()) {
2051     MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
2052     for (MachineBasicBlock &MBB : MF) {
2053       if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
2054         createTailCallBranchInstr(MBB);
2055     }
2056   }
2057 
2058   // Early exit if no callee saved registers are modified!
2059   if (CSI.empty() && !needsFP(MF)) {
2060     addScavengingSpillSlot(MF, RS);
2061     return;
2062   }
2063 
2064   unsigned MinGPR = PPC::R31;
2065   unsigned MinG8R = PPC::X31;
2066   unsigned MinFPR = PPC::F31;
2067   unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
2068 
2069   bool HasGPSaveArea = false;
2070   bool HasG8SaveArea = false;
2071   bool HasFPSaveArea = false;
2072   bool HasVRSaveArea = false;
2073 
2074   SmallVector<CalleeSavedInfo, 18> GPRegs;
2075   SmallVector<CalleeSavedInfo, 18> G8Regs;
2076   SmallVector<CalleeSavedInfo, 18> FPRegs;
2077   SmallVector<CalleeSavedInfo, 18> VRegs;
2078 
2079   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2080     unsigned Reg = CSI[i].getReg();
2081     assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
2082             (Reg != PPC::X2 && Reg != PPC::R2)) &&
2083            "Not expecting to try to spill R2 in a function that must save TOC");
2084     if (PPC::GPRCRegClass.contains(Reg)) {
2085       HasGPSaveArea = true;
2086 
2087       GPRegs.push_back(CSI[i]);
2088 
2089       if (Reg < MinGPR) {
2090         MinGPR = Reg;
2091       }
2092     } else if (PPC::G8RCRegClass.contains(Reg)) {
2093       HasG8SaveArea = true;
2094 
2095       G8Regs.push_back(CSI[i]);
2096 
2097       if (Reg < MinG8R) {
2098         MinG8R = Reg;
2099       }
2100     } else if (PPC::F8RCRegClass.contains(Reg)) {
2101       HasFPSaveArea = true;
2102 
2103       FPRegs.push_back(CSI[i]);
2104 
2105       if (Reg < MinFPR) {
2106         MinFPR = Reg;
2107       }
2108     } else if (PPC::CRBITRCRegClass.contains(Reg) ||
2109                PPC::CRRCRegClass.contains(Reg)) {
2110       ; // do nothing, as we already know whether CRs are spilled
2111     } else if (PPC::VRRCRegClass.contains(Reg) ||
2112                PPC::SPERCRegClass.contains(Reg)) {
2113       // Altivec and SPE are mutually exclusive, but have the same stack
2114       // alignment requirements, so overload the save area for both cases.
2115       HasVRSaveArea = true;
2116 
2117       VRegs.push_back(CSI[i]);
2118 
2119       if (Reg < MinVR) {
2120         MinVR = Reg;
2121       }
2122     } else {
2123       llvm_unreachable("Unknown RegisterClass!");
2124     }
2125   }
2126 
2127   PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
2128   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2129 
2130   int64_t LowerBound = 0;
2131 
2132   // Take into account stack space reserved for tail calls.
2133   int TCSPDelta = 0;
2134   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2135       (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
2136     LowerBound = TCSPDelta;
2137   }
2138 
2139   // The Floating-point register save area is right below the back chain word
2140   // of the previous stack frame.
2141   if (HasFPSaveArea) {
2142     for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
2143       int FI = FPRegs[i].getFrameIdx();
2144 
2145       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2146     }
2147 
2148     LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
2149   }
2150 
2151   // Check whether the frame pointer register is allocated. If so, make sure it
2152   // is spilled to the correct offset.
2153   if (needsFP(MF)) {
2154     int FI = PFI->getFramePointerSaveIndex();
2155     assert(FI && "No Frame Pointer Save Slot!");
2156     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2157     // FP is R31/X31, so no need to update MinGPR/MinG8R.
2158     HasGPSaveArea = true;
2159   }
2160 
2161   if (PFI->usesPICBase()) {
2162     int FI = PFI->getPICBasePointerSaveIndex();
2163     assert(FI && "No PIC Base Pointer Save Slot!");
2164     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2165 
2166     MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
2167     HasGPSaveArea = true;
2168   }
2169 
2170   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2171   if (RegInfo->hasBasePointer(MF)) {
2172     int FI = PFI->getBasePointerSaveIndex();
2173     assert(FI && "No Base Pointer Save Slot!");
2174     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2175 
2176     Register BP = RegInfo->getBaseRegister(MF);
2177     if (PPC::G8RCRegClass.contains(BP)) {
2178       MinG8R = std::min<unsigned>(MinG8R, BP);
2179       HasG8SaveArea = true;
2180     } else if (PPC::GPRCRegClass.contains(BP)) {
2181       MinGPR = std::min<unsigned>(MinGPR, BP);
2182       HasGPSaveArea = true;
2183     }
2184   }
2185 
2186   // General register save area starts right below the Floating-point
2187   // register save area.
2188   if (HasGPSaveArea || HasG8SaveArea) {
2189     // Move general register save area spill slots down, taking into account
2190     // the size of the Floating-point register save area.
2191     for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
2192       if (!GPRegs[i].isSpilledToReg()) {
2193         int FI = GPRegs[i].getFrameIdx();
2194         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2195       }
2196     }
2197 
2198     // Move general register save area spill slots down, taking into account
2199     // the size of the Floating-point register save area.
2200     for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
2201       if (!G8Regs[i].isSpilledToReg()) {
2202         int FI = G8Regs[i].getFrameIdx();
2203         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2204       }
2205     }
2206 
2207     unsigned MinReg =
2208       std::min<unsigned>(TRI->getEncodingValue(MinGPR),
2209                          TRI->getEncodingValue(MinG8R));
2210 
2211     const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
2212     LowerBound -= (31 - MinReg + 1) * GPRegSize;
2213   }
2214 
2215   // For 32-bit only, the CR save area is below the general register
2216   // save area.  For 64-bit SVR4, the CR save area is addressed relative
2217   // to the stack pointer and hence does not need an adjustment here.
2218   // Only CR2 (the first nonvolatile spilled) has an associated frame
2219   // index so that we have a single uniform save area.
2220   if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
2221     // Adjust the frame index of the CR spill slot.
2222     for (const auto &CSInfo : CSI) {
2223       if (CSInfo.getReg() == PPC::CR2) {
2224         int FI = CSInfo.getFrameIdx();
2225         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2226         break;
2227       }
2228     }
2229 
2230     LowerBound -= 4; // The CR save area is always 4 bytes long.
2231   }
2232 
2233   // Both Altivec and SPE have the same alignment and padding requirements
2234   // within the stack frame.
2235   if (HasVRSaveArea) {
2236     // Insert alignment padding, we need 16-byte alignment. Note: for positive
2237     // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2238     // we are using negative number here (the stack grows downward). We should
2239     // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2240     // is the alignment size ( n = 16 here) and y is the size after aligning.
2241     assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
2242     LowerBound &= ~(15);
2243 
2244     for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
2245       int FI = VRegs[i].getFrameIdx();
2246 
2247       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2248     }
2249   }
2250 
2251   addScavengingSpillSlot(MF, RS);
2252 }
2253 
2254 void
addScavengingSpillSlot(MachineFunction & MF,RegScavenger * RS) const2255 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
2256                                          RegScavenger *RS) const {
2257   // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2258   // a large stack, which will require scavenging a register to materialize a
2259   // large offset.
2260 
2261   // We need to have a scavenger spill slot for spills if the frame size is
2262   // large. In case there is no free register for large-offset addressing,
2263   // this slot is used for the necessary emergency spill. Also, we need the
2264   // slot for dynamic stack allocations.
2265 
2266   // The scavenger might be invoked if the frame offset does not fit into
2267   // the 16-bit immediate. We don't know the complete frame size here
2268   // because we've not yet computed callee-saved register spills or the
2269   // needed alignment padding.
2270   unsigned StackSize = determineFrameLayout(MF, true);
2271   MachineFrameInfo &MFI = MF.getFrameInfo();
2272   if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
2273       (hasSpills(MF) && !isInt<16>(StackSize))) {
2274     const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
2275     const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
2276     const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
2277     const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
2278     unsigned Size = TRI.getSpillSize(RC);
2279     Align Alignment = TRI.getSpillAlign(RC);
2280     RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false));
2281 
2282     // Might we have over-aligned allocas?
2283     bool HasAlVars =
2284         MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
2285 
2286     // These kinds of spills might need two registers.
2287     if (spillsCR(MF) || HasAlVars)
2288       RS->addScavengingFrameIndex(
2289           MFI.CreateStackObject(Size, Alignment, false));
2290   }
2291 }
2292 
2293 // This function checks if a callee saved gpr can be spilled to a volatile
2294 // vector register. This occurs for leaf functions when the option
2295 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2296 // which were not spilled to vectors, return false so the target independent
2297 // code can handle them by assigning a FrameIdx to a stack slot.
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2298 bool PPCFrameLowering::assignCalleeSavedSpillSlots(
2299     MachineFunction &MF, const TargetRegisterInfo *TRI,
2300     std::vector<CalleeSavedInfo> &CSI) const {
2301 
2302   if (CSI.empty())
2303     return true; // Early exit if no callee saved registers are modified!
2304 
2305   // Early exit if cannot spill gprs to volatile vector registers.
2306   MachineFrameInfo &MFI = MF.getFrameInfo();
2307   if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
2308     return false;
2309 
2310   // Build a BitVector of VSRs that can be used for spilling GPRs.
2311   BitVector BVAllocatable = TRI->getAllocatableSet(MF);
2312   BitVector BVCalleeSaved(TRI->getNumRegs());
2313   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2314   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2315   for (unsigned i = 0; CSRegs[i]; ++i)
2316     BVCalleeSaved.set(CSRegs[i]);
2317 
2318   for (unsigned Reg : BVAllocatable.set_bits()) {
2319     // Set to 0 if the register is not a volatile VSX register, or if it is
2320     // used in the function.
2321     if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
2322         MF.getRegInfo().isPhysRegUsed(Reg))
2323       BVAllocatable.reset(Reg);
2324   }
2325 
2326   bool AllSpilledToReg = true;
2327   unsigned LastVSRUsedForSpill = 0;
2328   for (auto &CS : CSI) {
2329     if (BVAllocatable.none())
2330       return false;
2331 
2332     unsigned Reg = CS.getReg();
2333 
2334     if (!PPC::G8RCRegClass.contains(Reg)) {
2335       AllSpilledToReg = false;
2336       continue;
2337     }
2338 
2339     // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2340     // into one VSR using the mtvsrdd instruction.
2341     if (LastVSRUsedForSpill != 0) {
2342       CS.setDstReg(LastVSRUsedForSpill);
2343       BVAllocatable.reset(LastVSRUsedForSpill);
2344       LastVSRUsedForSpill = 0;
2345       continue;
2346     }
2347 
2348     unsigned VolatileVFReg = BVAllocatable.find_first();
2349     if (VolatileVFReg < BVAllocatable.size()) {
2350       CS.setDstReg(VolatileVFReg);
2351       LastVSRUsedForSpill = VolatileVFReg;
2352     } else {
2353       AllSpilledToReg = false;
2354     }
2355   }
2356   return AllSpilledToReg;
2357 }
2358 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2359 bool PPCFrameLowering::spillCalleeSavedRegisters(
2360     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2361     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2362 
2363   MachineFunction *MF = MBB.getParent();
2364   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2365   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2366   bool MustSaveTOC = FI->mustSaveTOC();
2367   DebugLoc DL;
2368   bool CRSpilled = false;
2369   MachineInstrBuilder CRMIB;
2370   BitVector Spilled(TRI->getNumRegs());
2371 
2372   VSRContainingGPRs.clear();
2373 
2374   // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2375   // or two GPRs, so we need table to record information for later save/restore.
2376   llvm::for_each(CSI, [&](const CalleeSavedInfo &Info) {
2377     if (Info.isSpilledToReg()) {
2378       auto &SpilledVSR =
2379           VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second;
2380       assert(SpilledVSR.second == 0 &&
2381              "Can't spill more than two GPRs into VSR!");
2382       if (SpilledVSR.first == 0)
2383         SpilledVSR.first = Info.getReg();
2384       else
2385         SpilledVSR.second = Info.getReg();
2386     }
2387   });
2388 
2389   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2390     unsigned Reg = CSI[i].getReg();
2391 
2392     // CR2 through CR4 are the nonvolatile CR fields.
2393     bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
2394 
2395     // Add the callee-saved register as live-in; it's killed at the spill.
2396     // Do not do this for callee-saved registers that are live-in to the
2397     // function because they will already be marked live-in and this will be
2398     // adding it for a second time. It is an error to add the same register
2399     // to the set more than once.
2400     const MachineRegisterInfo &MRI = MF->getRegInfo();
2401     bool IsLiveIn = MRI.isLiveIn(Reg);
2402     if (!IsLiveIn)
2403        MBB.addLiveIn(Reg);
2404 
2405     if (CRSpilled && IsCRField) {
2406       CRMIB.addReg(Reg, RegState::ImplicitKill);
2407       continue;
2408     }
2409 
2410     // The actual spill will happen in the prologue.
2411     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2412       continue;
2413 
2414     // Insert the spill to the stack frame.
2415     if (IsCRField) {
2416       PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2417       if (!Subtarget.is32BitELFABI()) {
2418         // The actual spill will happen at the start of the prologue.
2419         FuncInfo->addMustSaveCR(Reg);
2420       } else {
2421         CRSpilled = true;
2422         FuncInfo->setSpillsCR();
2423 
2424         // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
2425         // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2426         CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
2427                   .addReg(Reg, RegState::ImplicitKill);
2428 
2429         MBB.insert(MI, CRMIB);
2430         MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
2431                                          .addReg(PPC::R12,
2432                                                  getKillRegState(true)),
2433                                          CSI[i].getFrameIdx()));
2434       }
2435     } else {
2436       if (CSI[i].isSpilledToReg()) {
2437         unsigned Dst = CSI[i].getDstReg();
2438 
2439         if (Spilled[Dst])
2440           continue;
2441 
2442         if (VSRContainingGPRs[Dst].second != 0) {
2443           assert(Subtarget.hasP9Vector() &&
2444                  "mtvsrdd is unavailable on pre-P9 targets.");
2445 
2446           NumPESpillVSR += 2;
2447           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
2448               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
2449               .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
2450         } else if (VSRContainingGPRs[Dst].second == 0) {
2451           assert(Subtarget.hasP8Vector() &&
2452                  "Can't move GPR to VSR on pre-P8 targets.");
2453 
2454           ++NumPESpillVSR;
2455           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
2456                   TRI->getSubReg(Dst, PPC::sub_64))
2457               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
2458         } else {
2459           llvm_unreachable("More than two GPRs spilled to a VSR!");
2460         }
2461         Spilled.set(Dst);
2462       } else {
2463         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2464         // Use !IsLiveIn for the kill flag.
2465         // We do not want to kill registers that are live in this function
2466         // before their use because they will become undefined registers.
2467         // Functions without NoUnwind need to preserve the order of elements in
2468         // saved vector registers.
2469         if (Subtarget.needsSwapsForVSXMemOps() &&
2470             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2471           TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
2472                                        CSI[i].getFrameIdx(), RC, TRI);
2473         else
2474           TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, CSI[i].getFrameIdx(),
2475                                   RC, TRI);
2476       }
2477     }
2478   }
2479   return true;
2480 }
2481 
restoreCRs(bool is31,bool CR2Spilled,bool CR3Spilled,bool CR4Spilled,MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,unsigned CSIIndex)2482 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
2483                        bool CR4Spilled, MachineBasicBlock &MBB,
2484                        MachineBasicBlock::iterator MI,
2485                        ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
2486 
2487   MachineFunction *MF = MBB.getParent();
2488   const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
2489   DebugLoc DL;
2490   unsigned MoveReg = PPC::R12;
2491 
2492   // 32-bit:  FP-relative
2493   MBB.insert(MI,
2494              addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
2495                                CSI[CSIIndex].getFrameIdx()));
2496 
2497   unsigned RestoreOp = PPC::MTOCRF;
2498   if (CR2Spilled)
2499     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
2500                .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
2501 
2502   if (CR3Spilled)
2503     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
2504                .addReg(MoveReg, getKillRegState(!CR4Spilled)));
2505 
2506   if (CR4Spilled)
2507     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
2508                .addReg(MoveReg, getKillRegState(true)));
2509 }
2510 
2511 MachineBasicBlock::iterator PPCFrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2512 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2513                               MachineBasicBlock::iterator I) const {
2514   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2515   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2516       I->getOpcode() == PPC::ADJCALLSTACKUP) {
2517     // Add (actually subtract) back the amount the callee popped on return.
2518     if (int CalleeAmt =  I->getOperand(1).getImm()) {
2519       bool is64Bit = Subtarget.isPPC64();
2520       CalleeAmt *= -1;
2521       unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
2522       unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
2523       unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
2524       unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
2525       unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
2526       unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
2527       const DebugLoc &dl = I->getDebugLoc();
2528 
2529       if (isInt<16>(CalleeAmt)) {
2530         BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
2531           .addReg(StackReg, RegState::Kill)
2532           .addImm(CalleeAmt);
2533       } else {
2534         MachineBasicBlock::iterator MBBI = I;
2535         BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
2536           .addImm(CalleeAmt >> 16);
2537         BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
2538           .addReg(TmpReg, RegState::Kill)
2539           .addImm(CalleeAmt & 0xFFFF);
2540         BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
2541           .addReg(StackReg, RegState::Kill)
2542           .addReg(TmpReg);
2543       }
2544     }
2545   }
2546   // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2547   return MBB.erase(I);
2548 }
2549 
isCalleeSavedCR(unsigned Reg)2550 static bool isCalleeSavedCR(unsigned Reg) {
2551   return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
2552 }
2553 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2554 bool PPCFrameLowering::restoreCalleeSavedRegisters(
2555     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2556     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2557   MachineFunction *MF = MBB.getParent();
2558   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2559   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2560   bool MustSaveTOC = FI->mustSaveTOC();
2561   bool CR2Spilled = false;
2562   bool CR3Spilled = false;
2563   bool CR4Spilled = false;
2564   unsigned CSIIndex = 0;
2565   BitVector Restored(TRI->getNumRegs());
2566 
2567   // Initialize insertion-point logic; we will be restoring in reverse
2568   // order of spill.
2569   MachineBasicBlock::iterator I = MI, BeforeI = I;
2570   bool AtStart = I == MBB.begin();
2571 
2572   if (!AtStart)
2573     --BeforeI;
2574 
2575   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2576     unsigned Reg = CSI[i].getReg();
2577 
2578     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2579       continue;
2580 
2581     // Restore of callee saved condition register field is handled during
2582     // epilogue insertion.
2583     if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
2584       continue;
2585 
2586     if (Reg == PPC::CR2) {
2587       CR2Spilled = true;
2588       // The spill slot is associated only with CR2, which is the
2589       // first nonvolatile spilled.  Save it here.
2590       CSIIndex = i;
2591       continue;
2592     } else if (Reg == PPC::CR3) {
2593       CR3Spilled = true;
2594       continue;
2595     } else if (Reg == PPC::CR4) {
2596       CR4Spilled = true;
2597       continue;
2598     } else {
2599       // On 32-bit ELF when we first encounter a non-CR register after seeing at
2600       // least one CR register, restore all spilled CRs together.
2601       if (CR2Spilled || CR3Spilled || CR4Spilled) {
2602         bool is31 = needsFP(*MF);
2603         restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
2604                    CSIIndex);
2605         CR2Spilled = CR3Spilled = CR4Spilled = false;
2606       }
2607 
2608       if (CSI[i].isSpilledToReg()) {
2609         DebugLoc DL;
2610         unsigned Dst = CSI[i].getDstReg();
2611 
2612         if (Restored[Dst])
2613           continue;
2614 
2615         if (VSRContainingGPRs[Dst].second != 0) {
2616           assert(Subtarget.hasP9Vector());
2617           NumPEReloadVSR += 2;
2618           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
2619                   VSRContainingGPRs[Dst].second)
2620               .addReg(Dst);
2621           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2622                   VSRContainingGPRs[Dst].first)
2623               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2624         } else if (VSRContainingGPRs[Dst].second == 0) {
2625           assert(Subtarget.hasP8Vector());
2626           ++NumPEReloadVSR;
2627           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2628                   VSRContainingGPRs[Dst].first)
2629               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2630         } else {
2631           llvm_unreachable("More than two GPRs spilled to a VSR!");
2632         }
2633 
2634         Restored.set(Dst);
2635 
2636       } else {
2637        // Default behavior for non-CR saves.
2638         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2639 
2640         // Functions without NoUnwind need to preserve the order of elements in
2641         // saved vector registers.
2642         if (Subtarget.needsSwapsForVSXMemOps() &&
2643             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2644           TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
2645                                         TRI);
2646         else
2647           TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
2648 
2649         assert(I != MBB.begin() &&
2650                "loadRegFromStackSlot didn't insert any code!");
2651       }
2652     }
2653 
2654     // Insert in reverse order.
2655     if (AtStart)
2656       I = MBB.begin();
2657     else {
2658       I = BeforeI;
2659       ++I;
2660     }
2661   }
2662 
2663   // If we haven't yet spilled the CRs, do so now.
2664   if (CR2Spilled || CR3Spilled || CR4Spilled) {
2665     assert(Subtarget.is32BitELFABI() &&
2666            "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2667     bool is31 = needsFP(*MF);
2668     restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
2669   }
2670 
2671   return true;
2672 }
2673 
getTOCSaveOffset() const2674 unsigned PPCFrameLowering::getTOCSaveOffset() const {
2675   return TOCSaveOffset;
2676 }
2677 
getFramePointerSaveOffset() const2678 unsigned PPCFrameLowering::getFramePointerSaveOffset() const {
2679   return FramePointerSaveOffset;
2680 }
2681 
getBasePointerSaveOffset() const2682 unsigned PPCFrameLowering::getBasePointerSaveOffset() const {
2683   return BasePointerSaveOffset;
2684 }
2685 
enableShrinkWrapping(const MachineFunction & MF) const2686 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2687   if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
2688     return false;
2689   return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
2690 }
2691